
1

Master Thesis

TWENTE UNIVERSITY

DEVELOPMENT OF AN

AUTOMATED EXERCISE

DETECTION AND EVALUATION

SYSTEM USING THE KINECT

DEPTH CAMERA.

Frodo Muijzer

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

BIOMEDICAL SIGNALS AND SYSTEMS

EXAMINATION COMMITTEE

Prof.dr.ir. H.J. Hermens

29-01-2014

3

Preface
This master thesis gives a detailed description on how the Microsoft Kinect camera can be used for

automated rehabilitation exercise evaluation in a non-supervised setting. The research was done

under the authority of Roessingh Research and Development (RRD) and forms the conclusion of the

master curriculum Biomedical Engineering at the University of Twente. Daily supervision is in the hands

of Harm op den Akker and Thijs Tönis, both PhD students at the Telemedicine group of Roessingh

Research and Development and the Remote Monitoring and Treatment group of the University of

Twente. Ronald Poppe, a postdoctoral researcher at the Human Media Interaction group of the

University Twente is the external advisor. Last, Hermie Hermens, professor in Telemedicine and

chairman of the Remote Monitoring and Treatment group of the University of Twente, is the graduate

professor.

4

Abstract
Due to a growing number of chronically ill patients, there is an increasing demand for automated

rehabilitation exercise detection and evaluation systems which can be used in a non-supervised out-

of-clinic setting. This report described the development and implementation of a proof-of-principle

exercise detection and evaluation framework. The objective was to find out whether the affordable

Microsoft Kinect depth camera can be used for such an exercise evaluation system. Microsoft

developed the Kinect depth camera to enable control of specially designed games via body

movements. Unfortunately, the Kinect cannot track subtle movements. In Chapter 3 of this thesis it is

shown that out of 109 realistic rehabilitation exercises, 98 would certainly not be suitable for

evaluation with the Kinect depth camera without significant adaptations.

In order to detect and evaluate an exercise, the exercise has to be taught to the computer system,

either via automated learning, or via explicitly defining the parameters. For this project, the latter was

chosen, because it provided the context information needed for evaluation. Unfortunately, no

generally accepted method exists to parameterize an exercise. Therefore, the concepts of a method

used to notate dances, Labanotation, were used to develop a new parameterization method. This

method (described in Chapter 4) parameterizes an exercise by first defining the relevant body parts,

then dividing the whole exercise into segments of a specific duration, and for each segment describing

the movements of each relevant body part in terms of horizontal and vertical translations and

rotations.

Chapter 5 gave a method to convert the parameterized exercise into an exercise playlist. The chapter

also described how to convert joint positions, measured by the Kinect, into the translations used in the

parameterization (horizontal, vertical and rotation). Next a method was given to compare a single

measured translation to an arbitrary element from the exercise playlist. Finally, the difficult issue of

when to advance to subsequent items in the playlist was described. At the start of the exercise, this

comparison can be made between the first measured items, and the first items from the exercise

playlist. Because the detection algorithm might fail to detect movements, the system is able to advance

even if not all previous items have been matched. It can advance when the larger part of the previous

items could be matched, or when the current measured translations form a good match to a future

part of the exercise playlist. Missed exercise specification elements are marked, enabling evaluation

of the movements the user failed to make. Chapter 6 described the implementation of the detection

and evaluation system.

Chapter 7 discussed the protocol and results of experiments carried out to test the performance of the

system. Unfortunately, the results of these experiments were not positive. The main issue lies outside

the scope of the implementation: the subpar skeleton tracking performance of the Kinect SDK. Solely

based on this, it can be stated that the Kinect depth camera cannot be used for automated

rehabilitation exercise evaluation without alteration of the exercises, or exercise specific workarounds.

Despite negative experiment results, the developed Labanotation based parameterization method

provided a good balance between a too cumbersome quantitative notation and a too vague text-based

notation. The method was suitable for both the specification and detection of the movements,

enabling straightforward comparison between the exercise specification and user performance.

5

Samenvatting
Door het toenemende aantal chronisch zieken, is er een groeiende behoefte aan systemen die

revalidatieoefeningen kunnen herkennen en evalueren in een thuissituatie zonder professionele

ondersteuning. Deze masterthesis beschrijft een haalbaarheidsonderzoek naar een raamwerk voor

een herkennings- en evaluatiesysteem dat gebruik maakt van de Microsoft Kinect dieptecamera. De

Kinect is door Microsoft ontwikkeld om computerspellen te besturen middels lichaamsbewegingen.

Helaas is het aantal lichaamsdelen dat de Kinect kan herkennen beperkt, en herkent het subtiele

bewegingen niet. In hoofdstuk 3 van deze thesis is aangetoond dat, zonder aanpassingen, slechts 11

van de 109 realistische revalidatieoefeningen geschikt zouden zijn voor evaluatie met de Kinect.

Alvorens het computersysteem een oefening kan herkennen en evalueren, moet het systeem bekend

gemaakt worden met de oefening. Er zijn twee manieren om een oefening in te leren, middels

automatisch leren of via het toekennen van expliciete parameters. De laatste methode is gekozen,

omdat deze de contextinformatie geeft die nodig is voor de evaluatie. Helaas bestaan er geen

algemeen geaccepteerde methoden om een oefening om te zetten in parameters. Daarom zijn

concepten uit de dansnotatie Labanotation gebruikt om een nieuwe parameterisatie methode te

ontwikkelen. Deze methode (beschreven in hoofdstuk 4) parameteriseert de oefening door eerst de

relevante lichaamsdelen te definiëren, vervolgens wordt de oefening opgedeeld in segmenten van een

specifieke duur. Voor elk segment worden de bewegingen van elk relevant lichaamsdeel omschreven

in de termen: horizontale en verticale translaties en rotatie.

In hoofdstuk 5 wordt beschreven hoe een afspeellijst gemaakt wordt van een geparameteriseerde

oefening. Het hoofdstuk beschrijft verder hoe de lichaamsposities, gemeten door de Kinect, vertaald

worden in de termen van de parameterisatie methode (horizontale en verticale translatie en rotatie).

Vervolgens wordt omschreven hoe een set van gemeten translaties vergeleken kan worden met een

willekeurig element uit de afspeellijst. Als laatste wordt beschreven hoe het systeem de voortgang in

de afspeellijst kan bepalen. Aan het begin van de oefening wordt de vergelijking natuurlijk gemaakt

tussen het eerste element uit de afspeellijst en de eerste meetwaarden. Omdat het systeem niet altijd

alle bewegingen juist zal detecteren, kan de afspeellijst ook doorlopen worden wanneer het

merendeel van de bewegingen herkend is, of wanneer de huidige bewegingen overeenkomen met een

later deel van de afspeellijst. Elementen uit de afspeellijst die niet herkend zijn, worden gemarkeerd

om evaluatie van gebruikersfouten mogelijk te maken. In hoofdstuk 6 wordt de implementatie van het

hierboven behandelde systeem beschreven.

Hoofdstuk 7 beschrijft het protocol en de resultaten van de experimenten die uitgevoerd zijn om de

prestaties van het systeem in kaart te brengen. Helaas waren deze resultaten negatief. Het grootste

probleem lag buiten het bestek van dit onderzoek, namelijk, de middelmatige lichaamsherkenning van

de Kinect camera. Gebaseerd op alleen de herkenningskwaliteit, kan al gesteld worden dat de Kinect

camera geen geschikt hulpmiddel is voor het automatisch herkennen en evalueren van onaangepaste

rehabilitatieoefeningen.

Ondanks de negatieve experimentresultaten, bood de, op Labanotation gebaseerde, parameterisatie-

methode een goede balans tussen een onwerkbare kwantitatieve notatie en een onduidelijke

tekstuele notatie. De methode leent zich zowel voor het omschrijven van de oefeningen als voor het

opslaan van de herkenningsresultaten. Dit maakt het vergelijken van de gebruikersuitvoering met de

omschrijving eenvoudig.

7

Table of contents
Preface ... 3

Abstract ... 4

Samenvatting ... 5

Table of contents ... 7

1 Introduction ... 9

1.1 Physical therapy and rehabilitation ... 9

1.2 Kinect ... 9

1.3 Assignment .. 9

1.4 Context and approach ... 10

2 Context and background ... 13

2.1 The Kinect depth camera .. 13

2.2 Automated posture and motion detection methods .. 23

2.3 Notation of human postures and motion ... 25

3 Selection and detailed analysis of exercise ... 31

3.1 Introduction ... 31

3.2 Available exercises .. 31

3.3 Suitability of exercise for automated detection .. 33

3.4 Selection of a target exercise .. 35

3.5 Detailed description of the target exercise ... 37

4 Parameterization of exercises ... 39

4.1 Introduction ... 39

4.2 Parameterization of the target exercise.. 39

4.3 Development of a parameterization framework based on Laban movement analysis 41

4.4 Data model and conclusion ... 48

5 Automated evaluation of an exercise ... 49

5.1 Introduction ... 49

5.2 Processing of parameterization... 49

5.3 Measure and process skeleton data from the Kinect depth camera 51

6 Implementation ... 63

6.1 Introduction ... 63

6.2 Implementation of exercise parameterization framework ... 64

6.3 Implementation of detection and evaluation framework .. 65

8

7 Evaluation of the automated detection and evaluation system ... 71

7.1 Introduction ... 71

7.2 Performance indicators ... 71

7.3 Experiment protocol .. 72

7.4 Analysis .. 73

7.5 Results ... 74

7.6 Summary ... 81

8 Discussion & Conclusion .. 83

8.1 Discussion .. 83

8.2 Conclusion ... 89

8.3 Future vision .. 91

9 Bibliography ... 95

10 Appendixes .. 99

10.1 Software Parameters ... 99

10.3 CoCo Exercise evaluation .. 100

10.4 Patient information letter ... 102

10.5 Experiment explanation for test subject ... 104

10.6 Experiment results .. 105

9

1 Introduction

1.1 Physical therapy and rehabilitation
Every day, many people are limited in their activities of daily life due to a severe trauma. To regain

functionality, or cope with the loss of functionality, intensive rehabilitation is required. Initially, the

patient will be supervised at a rehabilitation center, but after 6 to 12 months, the patient will visit the

rehabilitation center less frequent. In most cases, this does not mean rehabilitation is “finished”, the

patient should continue to do exercises. Unfortunately, the lack of supervision and motivation (Jolly et

al., 2007) while training at home, makes rehabilitation at home less effective.

The total costs of healthcare take up a larger percentage of the gross national product (GNP) each year,

for example: 17% of GNP in the US today compared to 5% 60 years ago (“OECD Health Data 2010,”

2010). Therefore, instead of increasing the number of the visits to the rehabilitation center to increase

the outcome, authorities are looking for ways to decrease the amount of visits, in order to save money.

Telemedicine – the remote delivery of healthcare via ICT – is one of the promising ways to decrease

the health care expenses without decreasing the outcome.

Since a few years, patients can do rehabilitation exercises at home, using telemedicine. For example

via a web portal that shows them relevant training videos. But to be a good substitute for the face-to-

face contact with the physician at the rehabilitation center, these telemedicine applications need to

be able to provide direct feedback to the patient about their performance. To measure performance

and give automated feedback, detection of posture and movement is required. There are many

systems that can detect posture and movement of a patient, but they are too complicated to be used

in a home setting, such as multi-camera tracking systems (Pastor, Hayes, & Bamberg, 2012), or lack

specificity, like accelerometer-based systems.

1.2 Kinect
Recently, Microsoft released the Xbox Kinect, a depth camera that allows users to control a computer

game via body movements and postures. Because the Kinect is very affordable and easy to setup, it

could be an ideal tool for detection of posture and movement in a home-setting. The Kinect uses an

infra-red projector / camera to measure depth, and is equipped with a normal video camera. Via the

depth image, it can separate the subject from the background, which makes automated subject

tracking and analysis much more reliable. To promote use of the Kinect outside of the gaming industry,

software development kits (SDKs) for the Kinect are made available. These SDKs give access to the

movement data of the people that are being tracked by the Kinect camera. The movement data is

presented via the position in space of the main joints, in essence generating a moving “stick figure”.

1.3 Assignment
In this master thesis, research was done to find out whether the Microsoft Kinect is a suitable tool for

automated exercise detection and evaluation.

The main research question is: “How can the Microsoft Kinect camera be used for automated

rehabilitation exercise evaluation in a non-supervised setting?”

10

In this research question we define the “non-supervised” setting as a training location outside of the

rehabilitation center, without the presence of professional care givers. For example, this can be at

home, or in a community center.

Before this question can be answered, several sub-questions need answering:

 What are the pose and movement detection capabilities of the Kinect depth camera when

tracking a single person in a non-supervised exercise setting?

 What type of rehabilitation exercises can be evaluated using a Kinect depth camera in a non-

supervised setting?

 Which measurable body movement parameters can be used to evaluate the performance of

an exercise that is part of a non-supervised training scheme for rehabilitation patients?

 How can the measured body movement parameters be automatically detected from the

motion data recorded with a Kinect depth camera?

 How can the detected movements be compared to the intended exercise, in order to be able

to evaluate performance?

This explorative research forms the starting point for an automated system that can provide exercise

detection, performance evaluation and performance improvement feedback for many exercise types.

As a proof of principle, the detection and evaluation components of this system are implemented for

a single representative example exercise. For the implementation a generalized framework was

developed that can be used to recognize and give feedback on various types of exercises. With the

tools of this framework, new exercises can be entered into the system, without the need of rewriting

the software. To enhance the exercise performance of the patient, a feedback loop is needed. This

loop consists of the software giving feedback on errors made by the patient, and the patient acting on

this feedback. In the proof-of-principle software, this feedback loop was not implemented. In a vision

at the end of this thesis is shown how such an extension could be integrated into the framework.

1.4 Context and approach
From 2010 to 2012, Roessingh Research and Development (RRD), together with multiple partners,

developed the “ConditieCoach” (CoCo, or “ConditionCoach”). CoCo is an ICT service for self-

management of physical fitness of elderly and chronically ill patients. CoCo offers online individual

exercise therapy via a web portal. This web portal consists of an individualized training program,

illustrated by a set of relevant training videos, chosen from a database of over 200 training videos.

Each exercise available in CoCo is accompanied by a short explanation.

The research to find out how the Microsoft Kinect camera can be used for automated rehabilitation

exercise evaluation in a home setting is divided into tasks that relate to measurement and tasks that

relate to analysis. The tasks are also divided into two stages: A = Preparation research and B =

Implementation (see Figure 1 for an overview of the individual tasks and their order).

In the first stage (Chapter 2), the properties of the Kinect are researched (Figure 1: A1, A3), to find out

which types of movements can be detected. For example, the Kinect application programming

interface (API) does not include the finger joints, making it impossible to evaluate e.g. grasping

exercises. Paragraph 2.1 discusses these properties of the Kinect. The next paragraph will discuss the

evaluation of exercises, for example what measurable parameters could be used to judge exercise

performance (A2, A4). The detailed properties of the Kinect (A1, A3) combined with information on

11

evaluation of exercises (A2, A4) forms the basis for a set of rules that can indicate if the Kinect is a

suitable evaluation tool for a specific exercise. In Chapter 3, these rules are applied on all exercises in

the CoCo database, and one target exercise is chosen that is feasible and relevant to evaluate (A5).

The second stage of the research involves the design and the proof of principle implementation of the

automated evaluation for the target exercise. To make sure the system can be extended to contain all

feasible exercises from the CoCo database, a method is defined to parameterize the exercises (Chapter

4). This parameterization method is described, but not implemented. The data model underlying the

method is implemented, and has to be specified manually for the target exercises (B1).

After the target exercise is parameterized, an algorithm is designed (Chapter 5) and implemented

(Chapter 6) to detect the exercise parameters from the movement data (B3). This algorithm reads the

exercise specification and compares the patient’s performance to the specification (B2). The deviations

between the measured performance and exercise specification are the input for the automated

evaluation algorithm (B4). Augmented with metadata from the exercise specification, this algorithm

can judge the impact of the errors made during the exercise performance.

To test the evaluation algorithms, several healthy persons have performed the target exercise, both

correctly and with some deliberate mistakes (B5). These sessions are recorded with the Kinect depth

camera and processed by the prototype implementation. Via a set of predefined performance

indicators, the performance of the prototype is evaluated (Chapter 7).

Figure 1: Scheme of the approach, items marked with A are related to the preparation research, and the items marked

with B are related to the implementation of the prototype.

A1

Read about and experiment with
posture detection using Kinect

A3

Evaluate accuracy of Kinect posture
detection

A5

Choose target exercise(s) that are
feasible to evaluate

B1
Parametrize target exercise(s)

A2

Research what exercises are
relevant

A4

Research how to evaluate such
exercises

B2
Relate parameters to performance

indicators for target exercise(s)

B5
Evaluate detection and evaluation
algorithms on healthy test subjects

Measurement

Analysis

B4
Implement evaluation algorithm for

target exercise(s)

B3

Implement detection algorithm for
target exercise(s)

13

2 Context and background
In this chapter we present technical and practical information on the Kinect depth camera such as

detection accuracy. Second, general information on exercises and evaluation of exercises is discussed.

2.1 The Kinect depth camera
The Kinect depth camera is one of the first widely available and affordable camera’s that can detect

depth, i.e. the distance from the camera to an object. Microsoft co-developed this camera together

with PrimeSense (PrimeSense, 2011), to make a robust contactless user interface for their Xbox 360

gaming computer. The contactless user interface is offered by linking system actions to postures and

gestures of the user. Therefore the posture and movement of the user need to be tracked.

Conventional cameras can be used to track a user, but they are easily disturbed when there is no

significant visual difference between the user and the background, i.e. a person in a grey sweater in

front of a grey wall. A depth camera does not have this limitation, it can easily detect that the wall is

further away from the sensor than the user, and in this way discern between the user and the

surrounding objects. The depth information also greatly improves detection accuracy for limbs that

are moving towards or away from the camera.

2.1.1 Technical properties of Kinect

Figure 2 shows a “see trough” image of the Kinect depth camera, with the major components marked.

The IR Emitter / IR Sensor combo is used to measure the distance between objects and the sensor, the

Color Sensor records normal video and the Microphone Array is used as an directional microphone,

which can either sense the direction of a sound source, or “listen” to sound from a specific direction.

Last, the sensor can be tilted 27o with use of the Tilt Motor to get the subject in view. Rotation is also

possible, albeit manually.

Figure 2: See trough image of the Kinect depth camera with the major features marked. (Microsoft, 2012)

Currently, three closely related devices are sold commercially, all compatible with the PrimeSense

OpenNI software. PrimeSense sells their own camera, called the “Carmine”, Asus sells the “Xtion”, and

Microsoft sells two versions of their Kinect. The “Kinect for Windows” and the “Kinect for Xbox”. The

Xbox version, as its name suggests, is only meant for use with Microsoft’s Xbox 360 game console,

whereas the Windows version is meant to be used with Windows PCs.

14

Even before the release of the “Kinect for Windows”, Microsoft released the Kinect Software

Development Kit (SDK) (Microsoft, 2013a) which gives access to the raw image and depth videos, but

also to the pose and movement data that is extracted from those raw videos. The Microsoft Kinect SDK

can be used together with the “Kinect for Xbox” as well, but not with the PrimeSense Carmine or Asus

Xtion. For those sensors, PrimeSense released the “Natural Interaction” SDK (Currently: OpenNI 2.0).

This SDK works with both versions of the Microsoft Kinect as well, even though Microsoft officially

does not support the use of OpenNI with their sensors.

Table 1 lists the main specifications of the three closely related sensors. The relevant differences are:

- The Kinect needs an external power supply

- The Kinect has an microphone array to detect the direction of a sound source

- The Asus Xtion does not have a normal camera (only depth)

- The Kinect for Windows and Carmine support the “near” mode, which changes the range from

80cm-4m to 40cm-3m.

 Table 1: Comparison of the different PrimeSense based depth sensors (sources: (Asus, 2012; IFixit, 2011; iPiSoft, 2013;
Microsoft, 2012; PrimeSense, 2011, 2012)).

The depth images received from a structured light 3D-scanner such as in the Kinect camera are the

result of an algorithm that performs dense 3D image acquisition using structured light with a pattern

of projected infrared points. The deformation of a speckle pattern projected on the scene, with respect

 MS
Kinect
for Xbox

MS Kinect
for
Windows

PrimeSense
Carmine
1.08

PrimeSense
Carmine
1.09

Asus
Xtion
Pro

Asus Xtion
Pro Live

Release date Nov 2010 Feb 2012 Aug 2012 Apr
2011

Jul 2011

Intended use Gaming Commercial,
consumer

Commercial, development Development

Range 80cm-4m 40cm – 3m 80cm – 3.5m 35cm – 1.4m 80cm – 3.5m

SoC PrimeSense PS1080-A2

Introduction
Price

$ 150 $ 250 $ 200 $ 190 $ 270

Resolution /
Frame rate RGB

1280x960 / 12fps
640x480 / 30fps

1280x960 n.a. 1280x1024
/ 30fps

Resolution /
Frame rate
depth

640x480 / 30fps 640x480 / 30fps
320x240 / 60fps

Accelerometer 3-axis, 2G range, 1°
resolution

n.a.

Automatic Tilt 1-axis, ±27° n.a.

Field of view 43° vertical
57° horizontal

45° vertical
58° horizontal

Audio 4 microphones, 16KHz 2 microphones

Power use 12 watt (External PSU) 2.5 watt (USB Powered)

Dimensions 30.5 x 7.5 x 6 cm 18 x 3.5 x 5 cm

Weight 1.3 kg 0.3 kg

SDK MS Kinect SDK /
OpenNI + NITE

OpenNI + NITE

15

to a reference pattern, reveals information about the distance of the objects and results in a calibrated

depth mapping of the scene (Elteren & Zant, 2012). Figure 3 shows the world, seen through the IR

sensor of the Kinect. The speckle pattern is analyzed in the Primesense processor integrated in the

sensor, to create a depth map of the whole image. For each point, the distance between that point

and the sensor is stored and sent to the PC. The unaltered infra-red and color videos, and the audio

streams are also sent to the PC. The latency of these streams, including the depth map, is roughly 45ms

(PrimeSense, 2011). All the streams together nearly fill the bandwidth of the USB 2.0 interface.

Therefore only a single sensor can be connected to an USB controller (most PCs have multiple

controllers) and recording / processing of the streams generates a high load on the PC.

Figure 3: Dot pattern as seen by IR camera on Kinect (left: full frame, right: detail of pattern).

2.1.2 Software Development Kits

Currently, there are two SDKs that enable skeletal tracking using the Kinect: MicroSoft’s own Kinect

SDK, and PrimeSense’s OpenNI + NITE. Other markerless motion tracking software packages exist, but

these must be trained for a specific use case, such as OpenCV, or require a multi-camera setup, such

as Organic Motion OpenStage.

The Microsoft Kinect SDK and OpenNI + NITE are made for the same purpose: tracking a skeleton using

a depth camera based on PrimeSense technology. Compared to OpenNI + NITE the Microsoft Kinect

SDK does have some advantages and downsides (see Table 2):

Microsoft Kinect SDK PrimeSense’s OpenNI + NITE

Closed source Open source

Fully supported in C++, C#, partly in Visual Basic Fully supported in C++, partly supported in C#

Windows only Windows, OS X and Linux support

Tracks persons without requiring an initial pose Requires “initial pose”

Complete and up-to-date documentation Good documentation for OpenNI, but NITE
documentation is outdated

Only functions with Kinect, and forces use of
“Kinect for Windows” sensor for executables

Works with all Primesense based sensors

Tracks up to 6 persons, but only the first two
have a complete skeleton

Fully tracks 6 persons

Tracks up to 20 joints Tracks up to 24 joints
Table 2: Comparison between the MS SDK and Primesense OpenNI / NITE software.

In terms of accuracy of the skeleton tracking of a single person (the usecase in this project) the

differences between the two software packages are minor. Although the initial pose, holding both

hands in the air, required by the OpenNI + NITE software, can cause serious problems for rehabilitation

16

purposes. For example, many CVA patients will have serious issues striking the initial pose, due to

hemiplegia (Pastor et al., 2012).

In research there is a bias towards using open-source software. This means that most research projects

used the Kinect together with OpenNI and NITE software. Thus OpenNI / NITE enables to take

advantage of research projects of which the source code was made public. Unfortunately, these

research projects all use C++, which is not very suitable for unexperienced programmers. Especially

because the documentation of OpenNI / NITE is less coherent and up to date than Microsoft’s Kinect

SDK documentation. Support for the relatively easy-to-learn C# language, and the better

documentation were the main reasons to choose the Microsoft Kinect SDK for this project.

2.1.3 Skeletal Tracking

For the skeletal tracking to work reliably, the full body has to be in the field of view of the Kinect

camera. The relatively narrow vertical field of view of 43o greatly limits the area in which the user can

move around.

Figure 4: Working range and field of view of a Kinect depth camera. As can be seen in the left view, the movement range
towards or away from the sensor is very limited. The right image shows that the movement range to the left or right is
much larger (Microsoft, 2013a).

Figure 4 clearly shows this limitation. In the picture on the left, the dark shaded area represents the

area in which reliable depth data is available. The person, 180cm in length, is standing as close to the

sensor as possible. Nevertheless, he can only move one step back, before he is standing too far from

the sensor. The right image shows that the horizontal plane allows for free movement. Unfortunately,

the software cannot track a person not facing the sensor, thus the Kinect is not suitable for free walking

exercises. When the person is detected and the skeleton is tracked, the position of the joints listed in

Table 3 and depicted in Figure 5 are available.

17

Member name Description

AnkleLeft Left ankle
AnkleRight Right ankle
ElbowLeft Left elbow
ElbowRight Right elbow
FootLeft Left foot
FootRight Right foot
HandLeft Left hand
HandRight Right hand
Head Head
HipCenter Center, between hips
HipLeft Left hip
HipRight Right hip
KneeLeft Left knee
KneeRight Right knee
ShoulderCenter Center, between shoulders
ShoulderLeft Left shoulder
ShoulderRight Right shoulder
Spine Spine
WristLeft Left wrist

Figure 5: MS Kinect SDK joints (Microsoft, 2013a).

Table 3: JointType Enumeration (MS Kinect SDK).

The Microsoft SDK has two states: recognized and tracked. Up to 6 persons can be recognized, these 6

get a unique ID, and a location of the Hip Center joint. If a person re-enters the scene, the old ID is

coupled to this user. This recoupling of the old ID is not guaranteed to work reliably, thus for person

identification other technologies should be used, for example the SHORE project by Fraunhofer (Ruf,

Ernst, & Küblbeck, 2011). Up to two persons can be in the tracked state, for those two, the full set of

joint positions is given, including the orientation of the bones in between the joints. When the OpenNI

+ NITE software is used, 2 extra bones become available: Collar Left and Right. The Collar bones are in

most cases redundant to the Shoulder joints, but could be useful to track movements in which the

torso remains static, but the shoulders move, for example when moving the shoulders forwards.

Figure 6: Joint orientation information hierarchy, the properties of a bone are stored in the parent, which is displayed
towards the left.

Positions and orientations of joints can be given in two ways: hierarchical and absolute. The absolute

representation uses the global Kinect camera coordinates (y-axis is upright, the x-axis is to the left, and

the z-axis faces the camera). Hierarchical representation gives orientation relative to the parent joint.

The Hip Center joint is highest in this hierarchy, the full tree is given in Figure 6, and an example is

given in Figure 7.

18

Figure 7: Schematic view of the relative bone and joint orientations. Mark that the orientation of the axis differs per joint
(Microsoft, 2013a).

Next to joints, the orientation of the bones in between the joints is given. Bone rotation is stored in a

bone’s child joint. For example, the rotation of the left hip bone is stored in the Hip Left joint. The

rotation of bones is used extensively for avateering: creating a virtual textured character that follows

the movements of the tracked person.

2.1.4 Detection accuracy and capabilities

The detection accuracy of the Kinect should be looked on in two ways, first the sensor has a certain

technical accuracy, limited by the technology chosen. And second, the accuracy of the human motion

detection greatly depends on the optimization of the advanced software that converts the raw sensor

data to moving stick figures.

Technical accuracy

As stated in the previous chapter, the Kinect sensor has a 1280x1024 RGB sensor, and a 1280x1024

infrared sensor (Khoshelham & Elberink, 2012). Both can record with a frequency of up to 60 frames

per second, but due to bandwidth limitations, this frame rate can only be achieved at reduced

resolutions. At the “default” frame rate of 30 fps, both RGB and depth cameras output a 640 x 480

pixels image. This sensor resolution corresponds to a theoretical effective resolution of ca. 2

millimeters for objects nearby, to a maximum of 4 cm at the maximum distance (Khoshelham &

Elberink, 2012). Obviously, this theoretical resolution is limited by optical imperfections. The lens is

not perfect, and shows some distortion, roughly 1.5% at the far corners.

For the depth image, the relation between the sensor resolution and the resolution of the resulting

depth image is not straightforward. The depth image is the result of a triangulation process in which

the shift and scaling of the observed infrared speckle pattern is calculated. The speckle pattern is

observed with the infrared camera. Multiple pixels are needed to “know” the shift and scale of the

pattern. This means the resolution of the depth image is much lower than the resolution of the infrared

camera. How much lower, depends on several factors:

19

- The amount of infrared light naturally available at the scene

Infrared light present at the scene, lowers the contrast of the speckle pattern, making it more

difficult to detect. Thus it is wise to avoid direct sunlight on the scene.

- The reflection properties of the objects in view

Both materials that reflect IR light in a distorted fashion (like a glass bottle), or do not reflect at all

(like a furry carpet), severely hamper the depth detection accuracy (Dutta, 2012). For most fabric

types, and for human skin, this is not an issue.

- The position of the objects in the viewpoint

The accuracy of the Kinect depth image is better when the object to be tracked is placed in the

center of the frame. This has multiple reasons, the two most important are: the optical distortion

is increased at the edges of the frame, and second, the angle of the projected IR beams is smaller

at the edges, decreasing the chance on direct reflection. Indirect reflection (scattering) either

decreases the amount of IR light that reaches the sensor, or worse, interferes with the IR patterns

from other objects.

- Objects casting shadows

Shadows are a problem for the structured light depth detection principle. Because the IR projector

and sensor are not at the same physical position, objects cast two shadows. In Figure 3 (page 15),

the person is holding a pen. Next to the pen, at the right side, a black shadow of the pen can be

seen. This spot is where the structured light was blocked by the pen, and obviously no depth

information is available. The second shadow is not visible in this image, because it’s the area

directly behind the pen. This area received the structured light, but could not reflect this to the

camera, because the pen was blocking the path to the IR sensor. The result of this shadowing, is a

“halo” around objects that are closer to the sensor. It can be detected that this halo is not part of

the object, but its depth information is missing for this halo. These shadows, combined with the

low resolution, result in a poor accuracy of small objects (Dutta, 2012).

Park et al. have looked at the accuracy of the Kinect depth camera in great detail (Park, Shin, Bae, &

Baeg, 2012). Their “uncertainty ellipsoid map”, shown in Figure 8, is an illustration of how the accuracy

deceases further away from the sensor. The ellipsoids are much larger for a larger Z. Away from the

center, the ellipsoids are wider as well, but this effect is less pronounced.

20

Figure 8: Uncertainty ellipsoid map in the entire measurable Cartesian space (Park et al., 2012).

Practical accuracy

For the detection framework discussed in this thesis, the raw Kinect Depth data will not be used. The

framework uses the skeletal movement data generated by the Software Development Kits. As

described in the introduction, the software bundled together with the Kinect, uses the depth data to

generate a moving stick figure of the persons in view. Because the depth data is the major input for

the human movement detection, its accuracy is still relevant. As stated in the previous paragraph, the

depth resolution is much lower than the horizontal / vertical resolution. This reflects on the accuracy

of the movement model. This model is most accurate when the user moves within a vertical plane,

parallel to the sensor, as nearby as possible while keeping the full body in the field of view of the

sensor. The movement model accuracy is hampered when:

- Detailed depth data is needed

A person that is tracked with the Kinect doesn’t need to be standing in a plane parallel to the

sensor, because the depth image can be used to calculate the angle between the plane and the

sensor. But the more the person is standing perpendicular to the sensor, the narrower its

silhouette becomes, greatly reducing the accuracy of the movement data.

21

- Body parts are occluded

Depth data can also be required when body parts move in front of each other. For example, when

the tracked person moves his hand in front of his torso, the Kinect SDK will be able to track this, if

the distance between the hand and torso is large enough (approximately 5 cm).

Even when the depth data is accurate enough, there are situations in which this data is of little use:

when body parts are too close to each other, or when the silhouette is not clear.

- Body parts are joined

When two body parts are so close to each other, that there is no detectable

gap, tracking of these body parts is severely hampered. In most cases, the

software will try to guess the positions of the body parts which are joined.

But the algorithm is easily fooled, for example by moving your arms from

above your head, downwards along your body, and then moving them

further such that eventually your left arm is on the right, and your right arm

on the left. The software will have a hard time detecting this movement, and

might conclude incorrectly that your arms have become much shorter, but

that the left arm is still left and vice versa. It’s hard to create a workaround

for these false detections, because the algorithm is very unpredictable in

these edge cases.

- Silhouettes are vague

By far the most important input for the skeletal movement detection, is the

silhouette. If this silhouette does not resemble a human being, detection will

fail. Silhouettes get obscured when the user is wearing very loose clothing,

for example the man in Figure 9 cannot be tracked reliably because the

silhouette of his arms is obscured by the cape.

Silhouettes are also obscured when the user is holding a large object. The software then must decide

whether this object is foreign or part of the body, but is incapable of doing this reliably and

consequently. A way to circumvent this limitation, is to use opaque objects. This has been done by

Pastor et al.; the authors used a transparent table, in order to let the patients rest their hands on the

table, without interfering with detection accuracy (Pastor et al., 2012).

The normal modus of the Kinect SDK relies on the silhouette for skeleton tracking. This only works if

the person is standing at some distance away from other objects. In the “seated modus” of the MS

Kinect SDK (version 1.5 or later) (see Figure 10), the software relies on movement, and is thereby able

to discern between the moving person and a static chair (Microsoft, 2013b). In this seated modus, only

the arms, shoulders, neck and head are tracked. Another difference from the normal modus, is the

type of initiation. Normally the MS Kinect SDK will start tracking an object that resembles a human,

even if it remains static. In the seated modus, the object has to move before it will be recognized by

the Kinect SDK.

Figure 9: man in cape

22

Figure 10: Normal and seated tracking modus, showing 20 compared to 10 joints (MS Kinect SDK (Microsoft, 2013b)).

Latency of the skeleton model greatly depends on the processing power of the PC. The raw image

stream has a latency of ± 45ms, whereas the skeleton latency ranges from 100 to 200ms, depending

on the resolution and number of tracked persons, with peaks up to 500ms (Livingston, Sebastian, Ai,

& Decker, 2012).

The Kinect Skeleton Tracking incorporates 20 joints to represent

the human movement. The number of joints in a real body is much

larger. Some significant omissions are:

- Lack of fingers

The Kinect model only tracks the wrist and hand, no fingers. It

can detect a hand “grip”, which can be used to grasp / drag

something in a virtual interface. (See Figure 11)

- Only three joints represent the spinal cord

Because the spinal cord is represented by a fixed set of joints,

realistic bending of the back is not possible.

- Facial expressions are neglected

Eyes and mouth are not part of the skeleton model, omitting a large part of the normal human

interaction. Since version 1.5, the Microsoft Kinect SDK has a separate “Face Tracking” module,

Figure 11: Hand Grip (Microsoft,
2013a).

23

which analyses the 2D position of 87 points of the head which can be used to generate a virtual

face mask. This functionality is not used for this project.

- All joints are simple ball and socket joints

In reality, some joints, such as the shoulders, are complex groups of joints that allows much more

types of motion than a ball and socket joint. Chang et al. have shown that quality of tracking the

hand and elbow is much higher than tracking of the shoulder movement (Chang et al., 2012).

2.2 Automated posture and motion detection methods
The Kinect SDK used in combination with the Kinect depth camera determines orientation and position

of 20 joints. With this data, a realistic representation of human movement can be given. But

interpretation of this movement is not straight-forward. To interpret motion, recognition of postures

and movements is essential. The moment in time and the context in which these postures and

movements are performed, determine the meaning of these movements. For example, for a system

that is controlled via gestures, the interpretation system needs to be able to discern reliably between

all available gestures, and needs to be able to detect the moment at which these gestures were

performed. In context of this thesis, the system does not need to be able to discern between all

movements from all exercises, because it is known beforehand which exercise the patient is about to

perform. However, it is essential to be able to detect if the sequence of the movements was correct.

Contrary to gesture detection, for the exercise detection and evaluation, it is essential to be able to

detect movements that were performed incorrectly, and detect what the patient did instead of the

correct movement. Without information on incorrect movements, it is not possible to give feedback

to the patient about what he or she has done wrong.

Automated recognition / interpretation of motion can be divided into two methods: Learning and

Parameterization.

 Learning

As the name says, a “learning” recognition system, “learns” itself. For this, it needs a reference set. To

learn a system to be able to discern between 20 gestures, it needs to “see” at least one performance

of each gesture. When it is then presented with a new recording, it determines which of the reference

performances comes closest to the new performance. This matching can be done by searching for

cross-correlations (Chang et al., 2012) between the new recording and each reference recording.

When the number of reference recordings grows, this will take a significant amount of processing

power. For large reference sets, methods like Hidden Markov Models (Brucker, 2012) and Neural

Networks give a much better performance than a linear cross-correlation search. Large reference sets

are important to get robust recognition. If only a single reference performance is available, a match

can only be made if the new performance is very similar to the reference performance. Similar not only

in movements and timing (signal), but also in all other properties, such as the posture of the performer

(noise). Increasing the number of reference recordings of the same performance, increases the

variance in properties which are not relevant to the performance (noise), but does not increase the

variance in the performance movement (signal), thereby increasing the “signal to noise” ratio (as long

as all performers perform the movement correctly!). With a higher number of reference recordings,

the system is able to recognize the performance longer despite an increased number of random

artifacts.

24

Before a new recording can be fed into a learning system, it has to be normalized. By normalizing,

properties that are specific for a certain user, can be removed. Common ways of normalization are in

time and dimension. For normalization in time, the reference and new recordings are resampled such

that their duration is equal. In this way, the performance speed has no influence on the detection. For

normalization in dimension, the reference and new recordings are scaled such that for example the

height of the performer is one, this makes recognition robust for performers with different height.

Normalization of the orientation is another common form of normalization in dimension, in which the

recording is rotated such that each user’s body makes the same angle to the camera, ruling out

differences in the global orientation. What aspects can be normalized, depends on the purpose of the

learning system: after normalization in time, recognition of a movement that was performed too

slowly, is no longer possible.

The output of a learning system can only be the quality of a match with one or more reference

recordings. This means that for every feature that has to be recognized, one or more dedicated

reference recordings are required. To detect a perfect performance of an exercise, the number of

required reference recordings is limited, but to be able to evaluate the performance, a much higher

number of reference recordings is needed. The higher number of recordings is needed because

evaluation not only requires to recognize what went according to plan, but also what went wrong.

Thus of each error that the system should be able to evaluate, one or more recordings needs to be

present in the reference set.

 Parameterization

An alternative to automated learning, is to parameterize the movements. The parameters can either

describe static postures or dynamic efforts resulting in movement. A description of a series of static

postures describes a movement by identifying the position of several body parts at known intervals in

time. The movement in between these defined postures (also called “key frames”) is not defined.

Instead of describing static postures, a movement can also be described by identifying the changes

between the postures at known intervals. The parameters then define the effort needed to go from

one posture to another. For example, moving hands above the head in a static parameterization will

describe two static postures, the first with the hands along the body, and the second with the hands

above the head. The effort based parameterization of the same movement will only have one step:

move hands upwards. In most cases it’s not practical to use an exclusively effort based

parameterization method, because it lacks an initial posture. Without a defined starting point, the

result of any effort is undefined as well. Another issue with an exclusively effort based

parameterization can be drift. If the effort based parameterization contains many steps, and in each

step a small error is made, the end result of the whole movement can differ significantly from the

intended movement. The static postures do not require input from a previous step, and therefore

maintain their accuracy. By adding a static initial posture to an effort based parameterization method,

any kind of movement can be described fully. Static postures (key frames) can also be added at longer

intervals to deal with the drift, at the cost of increased complexity.

Compared to the learning systems, parameterization has the substantial advantage that it is context

aware. If a certain parameter describes that the hands move upwards, and this movement was not

recognized, it can be concluded that the hands did not move upwards. Whereas when a learned

reference was not recognized, little can be concluded, because it was not known what the meaning of

25

the reference was. For evaluation, being able to recognize errors made by the patient is essential.

Parameterization is much more suited to do this, and is therefore chosen as method for the design in

this thesis.

This is not to say parameterization doesn’t have downsides. The most difficult aspect of this method

is to create a suitable set of parameters. There is no straightforward method to define any sort of

human movement in a structured parameterized way. Chapter 2.3 will go into detail on this topic. Even

though, creation of the parameters is very complex, it only has to be done once. Contrary to the

reference sets for the learning system, parameters can be adjusted. Patient-specific aspects can be

taken into account, for example by reducing the range of motion of a certain joint. Such alterations

would not be possible using a learned reference recording.

2.3 Notation of human postures and motion
“Teaching” exercises to a computer can be done in two ways, via automated learning, or via explicitly

defining the parameters. For this project, the latter is most relevant, because it can easily be extended

into an automated evaluation system. Unfortunately, the literature on systems that have implemented

a way to easily add new exercises to the system, fail to explain how they implemented this. They just

mention that there are “interactive tools for assisting the therapist with creating new exercises”

(Camporesi, Kallmann, & Han, 2010), or give a method without context: “Accumotion recognition

algorithm is based on multiple kinematics evaluation functions based on taking the dot products of a

target bone position and the user bone position” (Fujimura, Kosaka, & Robert, 2012).

In many papers there is information on the modalities that are taken into account while determining

the parameters needed to describe the exercises. For example, Jack et al. use range, speed,

fractionation (independence of (finger) movement) and strength of movement (Jack, Boian, & Merians,

2000) to describe the movements. To learn the “Reactive Virtual Trainer” new exercises, Van

Welbergen and Ruttkay have developed a method in which a specific path in time is described for each

“key body point” (Welbergen & Ruttkay, 2008). This combines both position and speed accuracy into

the evaluation. This concept is well visualized in their paper (Figure 12).

Figure 12: Assumed motion path of a body point, with expected, early, late and wrong positions (Welbergen & Ruttkay,
2008).

For their exercises, the “key body points” were the four extremities: hands and feet. For the repetitive

but simple exercises they targeted, this was sufficient, but for the much more complex set of exercises

26

present in the CoCo database, more “key body points” (or more appropriate for the Kinect: key body

joints), need to be defined. The number is practically limited by the 20 joints available in the Kinect

SDK Skeleton model.

A few publications exists in which a universal movement notation is developed, specifically aimed at

evaluation of exercises (Lu & Jiang, 2013; Ukita, Kaulen, & Röcker, 2014). Unfortunately, these

publications were published after this stage of the research was completed.

2.3.1 Dance notation

In contrary to the world of rehabilitation, in dance and music, extensive notation “languages” exist.

One of the first successful attempts for a universal “dance notation”, was the Labanotation developed

by Ann Hutchinson Guest (Guest, 1977) based on the Laban Movement Studies by Rudolf Laban (1879-

1958). Despite being one of the more successful notations of today, neither Labanotation, nor any

other dance notation can be called a “standard”, such as the staff notation used to write down music.

Dance notations are not popular because they are not intuitive in use (Kahol & Tripathi, 2006), and

complex to learn. The complexity is evident, when looking at a small part of the Labanotation of the

“Autumn Quartet”, in Figure 13.

Figure 13: Start of the "Autumn Quartet" (Extract from Wordpress blog by Michael J. Morris).

Despite the complexity, Labanotation, or its derivatives, “Kinetographie Laban” and “Motif”, are

relevant to this research, because it is one of the very few standardized ways to describe motion, that

is compatible to every kind of dance, and as such also for almost any type of movement. Labanotation

and the movement analysis rationale behind it, has been used for experimental research in

revalidation therapy (Foroud & Whishaw, 2006).

Labanotation describes movements by describing the effort and movements that are needed to get to

the desired posture. This is essentially different from the “keyframe animation” that is commonly in

use for human movement animation and analysis on a computer, in which only the end positions are

described.

27

Labanotation symbols are placed on a staff, and read from the bottom to the top. The center of the

staff represents the transference of weight of the body, and to the left and right, the left and right

parts of the body are represented. The transference of weight column records every change in the

center of weight, including which body part carries the center of weight (usually the legs). The columns

for transference of weight, legs, body, arm and head are always drawn, more columns can be added

when required, for example, a column for the feet is added when a foot should make a movement that

is not logical in respect to the movement of the legs (e.g. turning them outwards).

The length of the staff is directly related to time. Thus when a movement takes much time, the symbol

will be stretched over a large part of the staff.

To indicate in which horizontal direction a movement takes place, a basis of 9 directions is used: Place,

Forward, Backward, Left, Right, Left forward, Right forward, Left backward and Right backward (see

Figure 14). Three vertical directions are discerned: Up, Middle and Down. These are indicated by the

shading of the symbol for the horizontal direction. If required, a more detailed direction can be given

by adding “pins”. These are particularly useful to indicate a single body part has a movement relative

to another body part, instead of relative to the body as a whole.

Figure 14: Labanotation direction symbols (Griesbeck, 1996).

When a direction symbol is placed in any column other than the “center of weight” column, it indicates

the movement of that body part is relative to the point of attachment. See Figure 15 for a visualization

of the arm movement and respective symbols.

Figure 15: Arm gestures and the direction symbols (Griesbeck, 1996).

28

Via symbols in the “center of weight” column, five situations can be indicated:

1. Hold: nothing changes, can be indicated by a dot.

2. Shift: weight carrying body parts do not change, but center of weight does, for example by

bending the knees to lower center of mass.

3. Transfer: change weight carrying body part, for example during walking. Switch to another

body part can be indicated by the adding the logo of that body part to the “center of weight”

column (see Figure 16 for the logos).

4. Jump: while in the air, no body part carries the weight, and the “center of weight” column is

empty.

5. Turn: turns are indicated via skewed rectangles. Most turns take place around the vertical axis.

Figure 16: Labanotation: Signs for parts of the body (By Huster via Wikimedia Commons).

The position and length of the direction signs indicate the quantity, but Labanotation also allows

indication of the quality of a movement. For example, a cross indicates that a movement should be

made in a shortened or contracted way. In six levels, the amount of contraction can be indicated. Other

space measure qualities are: extension, folding, unfolding, joining and spreading. Next to the space

measure, quality can also be indicated via accents, for example: weighty, gentle, strong, relaxed,

emphasized, etc.

If independent movement of multiple body parts should take place simultaneously, this is indicated

via a large vertical bow, joining all symbols of the simultaneous movement.

The last group of symbols consists of paths and floor plans. For example to indicate that the whole

body is moving in a continuously larger circle. The floor plans are essentially a map indicating the

movement of the whole body. These are particularly useful if interaction between multiple people

takes place.

Use of Labanotation to describe exercises

If the Labanotation is to be used to describe rehabilitation exercises, the physician entering the

exercises would need more information on the notation than given in the previous sections. However,

it is not realistic to expect a physician to become a master in the Labanotation before he or she can

use the system. Because the Labanotation can capture virtually any movement with this limited set of

symbols, the notation does indicate what modalities are considered of importance when a movement

has to be captured on paper. Without using the Labanotation symbols, it is still possible to extract the

29

same information from an exercise description, and as such use the concept of the language, without

the language specific syntax. This would mean, first start by defining the timing of the exercise. A new

time segment starts when movement is static. Then analyze the direction of the “center of weight” in

time. Next decide which body parts perform specific movements that need separate notation. Divide

this motion into horizontal and vertical translations or a rotation. And determine the duration of each

movement.

Along with the description of the exercise, there must be room for metadata to personalize the

exercise. For example, the required movement speed can be dependent on the age of the patient. For

evaluation, it is also important to define the restrictions on movements. Errors in movements of certain

body parts might have much lower impact than errors made in the movement of other body parts.

31

3 Selection and detailed analysis of exercise

3.1 Introduction
The previous chapter gave information on the capabilities of the Kinect depth camera and discussed

ways to parameterize a movement via the Labanotation. In this chapter, a set of exercises is presented,

which are all suitable for unsupervised home training. The knowledge on the technical capabilities of

the Kinect is applied on the set of exercises to give an indication of the types of exercises for which the

Kinect depth camera is potentially a useful tool to perform automated exercise detection and

evaluation. In the last sections a single target exercise is chosen, to support development and testing

of the actual detection and evaluation system. This exercise is described in detail.

3.2 Available exercises
To get a good view of the type of exercises which are suited to be included in a home training program,

the exercise database behind the home rehabilitation system “ConditieCoach” (CoCo) is analyzed.

CoCo is developed by RRD, together with multiple partners, from 2010 to 2012. In these years, over

500 patients used CoCo as an experimental addition to their rehabilitation program.

CoCo consists of three parts (Tabak et al., 2013):

1. Activity monitoring by use of a Smartphone and movement sensor

2. Online individual exercise therapy

3. Telemonitoring and feedback

Part 2 consists of an individualized training program, illustrated by a set of relevant training videos,

chosen from a database of over 200 training videos. This database of training videos forms an excellent

basis to find out what type of exercises could be evaluated with a Kinect depth camera.

CoCo is divided into four main “care paths”: COPD, Acute Hip (hip surgery after trauma), Conservative

Hip (planned hip surgery) and Oncology. For each path a specific set of exercise videos is available, but

a single exercise can be part of multiple paths. Each path contains exercises in multiple categories, for

example: thorax mobilization, relaxation and breathing techniques. Each exercise available in CoCo is

accompanied by a short explanation (see the screenshot in Figure 17). This explanation text contains

roughly the same information as spoken by the “actor” in the videos. Each explanation contains the

same set of sections: purpose, performance, attention points, extra information and number of

repetitions (doses).

32

Figure 17: Screenshot of the CoCo web portal showing a training video from the care path "Hip Conservative".

To clarify what kind of information is given, the explanation of the “turning of torso” exercise is taken

as an example.

Purpose contains an explanation of the purpose of the exercise, for the example exercise, it is explained

that COPD causes the torso to stiffen, and that this exercise helps to loosen up the torso.

The performance section contains important information for the evaluation of the exercise. It contains

the starting position, plus the movements needed. For the example, it indicates that the patient should

sit on a stool, facing a mirror, and with both hands in the neck.

In the attention points important remarks are given to prevent the patient from making errors while

performing the exercise. These are the points that should also be noted by the automated evaluation

system. For the example exercise, the following things are important:

- Keep upright

- Do not move your hips

- Do not pull your neck

- Keep your elbows facing outwards

Extra information contains remarks on the performance, such as an alternative to the main

movements, or a work around to cope with handicaps. For the example exercise, it lists that the arms

could also be crossed on the shoulders.

33

Last, doses (repetitions) indicates how many times the exercise should be repeated. Unfortunately,

these explanations are static, and not personalized. As a result, doses usually lists that the patient

should adhere to the number of repetitions indicated by the therapist.

3.3 Suitability of exercise for automated detection
In the previous paragraph, an overview of the CoCo home training program is given. In this paragraph,

the exercises of CoCo are evaluated with respect to the capabilities of the Kinect depth camera. The

outcome of this evaluation (Appendix 10.3) will indicate for every exercise in the CoCo database, if the

Kinect would be a suitable tool to evaluate it. Several key indicators are taken into account, to decide

whether the exercise in question would be suitable for automated detection or evaluation with a

Kinect. The final outcome of this analysis can be threefold:

A. The exercise is not suitable for detection

B. Performance of the exercise can be detected, but not evaluated

C. Performance of the exercise can be detected and evaluated

Incorporating the Kinect depth camera for exercises in group B can be useful to measure the adherence

to the training program, but the Kinect depth camera cannot be used to evaluate if the patient did the

exercises correctly, nor can it give feedback to the patient to improve his performance.

To give some information on why an exercise falls in category A, B or C, a “check” is given for each key

indication. The following aspects are considered “key factors”:

• Incomplete model

– The detection algorithms have a simplified human model. This model lacks the hands,

facial expressions and torso details, and has simplified shoulder joints.

• Fine movements

– Although the resolution of the outcome of the detection algorithms is high, the

accuracy can be limited. For example, loose clothing will severely reduce the accuracy.

Therefore, the Kinect is not suitable to detect fine movements.

• Contact objects

– The Kinect depth camera is triggered by blobs that have equal distance from the

sensor. Consequently, when a person is holding a large object close to his / her body,

that object becomes “part” of the person and will confuse recognition.

• Occlusion problems

– Due to limited depth resolution, tracking of body parts that are in front of other body

parts is limited. If the person holds his hands together on his belly, the Kinect cannot

discern between the belly and hands, but when the hands are held 20cm in front of

the belly, the Kinect will be able to discern between the hands and belly.

• Viewpoint problems

– The Kinect measures depth from a single point. It cannot look through objects, it only

knows silhouettes, and the distance from each point. The smaller the silhouette, the

lower the accuracy. When the person is standing sideways to the sensor (with his right

arm facing the sensor, and the left arm pointing away from the sensor), the silhouette

gives little information on the pose.

34

• Orientation information

– Absolute position outcome of the detection algorithms is much more accurate than

orientation outcome. When, for example, the person is standing with his arms pointing

forwards, and hand palms facing downwards, the simplified human model might

indicate exactly the same pose than when the person is standing with hand palms

facing upwards. In that case, the orientation of the arm joints is incorrect for at least

one pose.

Table 4: A small part of the CoCo evaluation table (Appendix 10.3 contains full version).

Table 4 shows a small portion of the CoCo evaluation results table, the full table can be found in

Appendix 10.3. The table contains the following information: the first column lists the exercise code

used for reference in CoCo. The next column contains a small green patch, the shading of this patch is

based on the number of patients that performed this exercise. During the years that CoCo was running,

the number of prescriptions per exercise were logged. The darkest patches represent the most

frequently prescribed exercise. When this column is left blank, no data was available about

prescription frequency. The next column lists the Dutch title of the exercise. The six following columns

match with the “key factors” given in the previous paragraph. A red downward arrow indicates that

there will be problems during detection or evaluation. Yellow bars indicate potential issues, and green

upwards arrows indicate that no problems are expected. The next two columns are “Detection

possible” and “Evaluation possible”. A red circle with a cross indicates that either detection or

evaluation is not possible at all, a yellow explanation mark indicates potential issues, and a green check

indicates no expected problems. The last column contains remarks on issues specific to the exercise,

for example that the use of a chair can distort the detection and evaluation. In such a case, it is wise

to look for another tool to keep balance, which occludes less from the human body.

Of the total of ca. 200 videos, 109 were analyzed, the others were left out because they were obviously

unsuitable for automated detection and evaluation, such as behavior change and psychological

exercises. Table 5 shows that out of the 109 videos analyzed, 41 were fully detectable, and only 11

were suitable for automated evaluation.

 Fully Party Not

Detection possible 41 36 26

Evaluation possible 11 42 58
Table 5: Analysis results of 109 exercise videos.

35

3.4 Selection of a target exercise
In paragraph 3.3, a method is defined to analyze whether the Kinect is a good tool to detect and

evaluate a specific exercise. To develop and test the detection and evaluation framework conceived in

this thesis, a “target exercise” is needed. This exercise should meet the following demands:

- detectable and evaluable (green checks in the last two columns of Table 4)

- relevant (higher number of prescriptions)

- automated detection and evaluation should have an added value

Table 6: CoCo evaluation table, filtered for "Suitable for evaluation".

Table 6 shows the CoCo evaluation table, but then filtered for exercises that are expected to be both

detectable and evaluable. Of these exercises, only four are “relevant”, because only four have been

subscribed a significant number of times during the CoCo trials. These four are C11, C13, HA33 and

HC05. Of these four, a visual summary is given, followed by a discussion on the added value of

automated evaluation.

- C11: “Strength exercise rectus abdominis”

Exercise C11 requires the Kinect SDK to be in “seated” modus. The Kinect SDK probably has a hard time

detecting the crossing of the arms, but the effect of the exercise remains the same when the hands

are lain on the shoulders without crossing the arms. Automated evaluation is a useful addition for this

exercise, because the exercise can easily be done too fast or too superficial. Both aspects can be

measured well with the Kinect SDK.

36

- C13: “Stretch of torso”

Exercise C13 also requires the Kinect SDK to be in “seated” modus. The quality of the execution of this

exercise largely depends on the breathing technique used, which cannot be detected or evaluated with

the Kinect SDK. Evaluation on whether the exercise is done too fast or too shallow is possible, therefore

automated evaluation can still be useful, but not to the extent of that of C11.

- HA33: “Walk sideways”

Detection and evaluation of exercise HA33 is very simple, but the field of view of the Kinect limits the

number of sideways steps that can be made before leaving the frame. An automated detection and

evaluation system can evaluate if the exercise was performed too fast, or whether the steps are too

small or too large. Because the exercise is very straightforward, the added value of such an automated

system seems low.

- HC05: “Stretch of exterior upper leg muscle”

37

Automated detection and evaluation of exercise HC05 is possible and useful. During performance, it is

important to keep stretch on the muscles in the upper leg. The automated detection and evaluation

system can be used to check whether the patient held the last state long enough, and whether he or

she bent their upper body far enough. Unfortunately, detection of crossed body parts is not reliable

with a Kinect depth camera. Therefore evaluation of the crossing of the legs can be difficult.

3.4.1 Conclusion

Exercise HC05: “Stretch of exterior upper leg muscle” is chosen to be the target exercise, because it

can be used to test the full skeleton model of the Kinect, and not the seated modus. For the target

exercise, a more elaborate description is given in the next paragraph.

3.5 Detailed description of the target exercise
The full (translated) exercise description of the target exercise from the CoCo database is:

Introduction

The aim of this exercise is to extend the muscle on the outside of the upper leg. Maintaining the length

of this muscle is essential for the movements that you have to make while walking.

Performance

Initial posture: standing upright, behind a chair, both feet flat on the ground.

Move your healthy leg across the front of your affected leg, and place both feet next to each other.

Keep your knees straight while doing so. Now start moving your hips sideways in the direction of your

affected leg, while moving your upper body in the opposite direction. You should feel stretch on the

outside of your upper leg. Maintain this stretch for several seconds, before moving back to the initial

position slowly.

Attention

Compensation movements, Sufficient stretch on the outside of the upper leg:

To increase the stretch in the outside of the upper leg, you can move the arm of the affected side above

your head, towards the healthy side.

Keep looking forward.

If you need more support, you can grab the back of the chair with your hands.

39

4 Parameterization of exercises

4.1 Introduction
As stated in paragraph 2.3, few tools are available to make a structured, standardized and universal

notation of an exercise. Traditional verbal descriptions are too vague for use in an automated system,

and automated learning techniques lack context, making it very complex to indicate which aspects of

the posture are important for the exercise.

Despite being tailored for the dancing world, Labanotation does offer a way to describe any type of

human motion in a structured manner. Labanotation is an effort-based notation, only the actions that

cause the change in posture are notated, for example “move arm upwards”. Body parts that do not

perform a significant action, are not described. Therefore, the notation always contains as little

information as possible. Labanotation fulfills most requirements for a structured exercise notation, but

has one major downside: it is complex. Fortunately, the notation itself is not needed, only the structure

/ rationale behind the notation. Therefore a step-by-step plan is developed, which will help to give all

information needed to register the full exercise, without the need of extensive knowledge on the

Labanotation. This chapter will describe this plan, including the data model to support it. This data

model will be the input for the automated detection and evaluation system design, discussed in

Chapter 5.

4.2 Parameterization of the target exercise
In order to detect and evaluate the target exercise chosen in the previous chapter, it needs to be

parameterized. Intuitively, the exercise can be defined by the three postures in which the patient

should be static for a certain time. The starting state, with both feet next to each other, state 2, in

which the legs are crossed, and state 3, in which the upper body is bend to the side. The patient starts

in state 1, then proceeds to state 2. From state 2, the transition to state 3 is made slowly, and state 3

is held for some time, before returning to state 2 slowly. In Figure 18, these three states are depicted.

Figure 18: Main states of CoCo exercise HC05.

For each of these three states, and for the transition between these states, the description gives

several aspects that should be fulfilled before the exercise is performed correctly. In order for the

automated system to check these aspects, the translation into parameters must be made. These

parameters have the joint positions (x,y,z) of the Kinect SDK as input. A possible set of parameters is

given in Table 7, as an illustration. These parameters are not tested in real life.

40

Aspect Parameter

 State 1: Normal stand

Check on straightness Absolute range z-coordinates Hip_Center and
Shoulder_Center < β

Check on distance between feet Abs(Ankle_right(x) - ankle_left(x)) < β

Keep for certain time (stability) Sum of absolute distance traveled by Hip_Center and
Shoulder_Center < β

 Transition state 1  2

Swing bad foot in front of good foot Ankle_right(z) + π - ankle_left(z) > β AND
Check for x-legs

Keep knees straight 2/(Ankle_right(z) + Hip_right(z)) + π > Knee_right(z) AND
2/(Ankle_left(z) + Hip_left(z)) + π > Knee_left(z)

Keep upperpart straight Abs(Shoulder_center(z) – Spine(z)) < β AND
Abs(Shoulder_right(z) – Shoulder_left(z) < β

 State 2: Stand with feets crossed

Both feet next to each other Abs(Ankle_right(z) - ankle_left(z)) < β

Whole body straight Absolute range z-coordinates Hip_Center and
Shoulder_Center < β

Keep for certain time (stability) Sum of absolute distance traveled by Hip_Center and
Shoulder_Center

 Transition state 2  3

Move hips in direction of affected leg Hip_center(x) - (2/(Ankle_right(x) - ankle_left(x)) < β

Move shoulders in direction of sound
leg

Shoulder_center(x) - (2/(Ankle_right(x) - ankle_left(x)) < β

Movement speed should be slow Sum of differential of Hip_Center and Shoulder_Center

 State 3: legs crossed, upper body bend

Keep for certain time (stability) Sum of absolute distance traveled by Hip_Center and
Shoulder_Center

 Transition state 3  2

Move hips towards neutral Hip_center(x) + (2/(Ankle_right(x) - ankle_left(x)) < β

Move shoulders towards neutral Shoulder_center(x) + (2/(Ankle_right(x) - ankle_left(x)) < β

Movement speed should be slow Sum of differential of Hip_Center and Shoulder_Center

Table 7: Parameters of exercise HC05 (Greek letters are variables that are patient dependent).

41

Table 7 gives a good basis to build an evaluation algorithm. Each parameter can be explicitly

programmed into the system. After defining patient specific threshold ranges, the performance can be

evaluated. However, when another exercise is to be added to the system, the whole process of

defining, implementing and testing all parameter checks needs to be done again. This implies

“reinventing the wheel” many times, which is a serious downside. Furthermore, it is hard to say

beforehand whether a certain parameter is actually implementable into the detection and evaluation

system. To obtain a universal parameterization structure, a method is proposed, which follows the

structure of the Labanotation. This method is given in section 4.3 in the form of a step-by-step decision

model. All aspects of Laban that are not applicable to automated detection and evaluation of exercises

are omitted. Examples of omissions are: expression accents (angry, sad) and interaction between

multiple dancers. The method conceived in section 4.3, should enable anyone to get all parameters

that make up a simple Labanotation, without actually knowing the Laban methods. In the real

Labanotation, the target exercise, would be as displayed in Figure 19.

Figure 19: Labanotation of target exercise.

4.3 Development of a parameterization framework based on Laban

movement analysis
Laban is based on four components: Body, Effort, Shape and Space (Foroud & Whishaw, 2006). Body

and Space cover the kinematics of the movement, and Effort and Shape the non-kinematic aspects.

Initially, only the Kinematics are relevant for the detection and evaluation system, because these

describe the movement of the body parts, and the movement of the person itself. Effects of the non-

kinematics described in Effort and Shape, such as anger and rhythm, are not relevant for the exercises.

Labanotation starts with an initial pose, indicated by the symbols below the double horizontal line.

This remainder of the notation only describes changes to this initial pose, that have to performed, for

example “move hand upwards”. The concept of describing an absolute position is different from only

detecting changes in position. To limit the complexity of the initial proof of principle system, it has

been limited to detection of change in position. This means that the system requires a single initial

starting position. The first movement described, always describes the changes to this initial position.

42

The initial position is standing with feet next to each other, toes and face facing forward, and arms

hold along the body (not touching it), hand palms facing towards the body.

Because only the changes to an initial position are stored, it is not straight forward to get the absolute

position at any stage of the exercise, other than the initial stage. For example, to get the absolute

posture at stage 10, first stages 1 to 9 have to be processed. Each processing step will add some error,

thus the calculated absolute posture at stage 10 can deviate significantly from the intended posture.

For detection and evaluation of the exercise, absolute postures are not essential, but they can be of

great use for visual feedback to the user. For example to show an animated avatar that performs the

exercise.

4.3.1 Choosing the right joint model

Before the movement of the body parts can be registered, it has to be known which body parts perform

relevant movements. It’s important to use the least complex joint model and never to describe

movement of body parts that are not relevant to the exercise. Not only would this add non-

information, it would actually force the person into performing this non-relevant movement exactly as

described. For example, if the head is described as “place” (= no movement) throughout the exercise,

this means the person is not allowed to look around, even though this has little influence on his quality

of performance with respect to the exercise.

In most cases, a subset of the full joint model can be used, but in some cases it’s more practical to

define new body parts. For example the “arms” are not defined in the full joint model (only the hand,

wrist and elbow). Three extra joint models are defined, which range from limited to nearly as complete

as the full model. These models are shown and explained in Table 8.

 Joint model Comments

B
asic > > >

 > > > > > > >

One of the key concepts of Labanotation is to
use as little detail as possible. The most basic
joint model is displayed left, it consists of a
single “body”, the arms and the legs. Describing
the movement of these 5 elements suffices to
describe for example normal walking.
The double lines indicate a rigid structure, i.e.
when an arm moves, its point of attachment is
at the outer side of the rigid structure.

One step more complex, a division between
upper and lower body is made. This complexity
is required to describe a bending movement.
For example bending forward.

43

> > > > > > > > > > C
o

m
p

le
x

The next step towards the full model, has
simplified arms and legs, but the full set of
joints in the torso. Trough description of the
movements of these joints, a movement like
nodding with the head can be described.

The most complex model, is by definition the
full joint model of the current MS Kinect SDK.
Future versions of the MS Kinect SDK will
support more joints, for example an extra
“thumb joint”, increasing the complexity of the
“full joint model”.

Table 8: Joint models

In every description, the basis of the body has to be present. This is the “origin” of the body, and

describes movement of the “whole” body. In the Kinect skeleton joint model, the “hip center” joint

represents the “origin” of the body.

For the target exercise, the full joint model is not needed, the simplest joint model does not support

the bending of the upper body to the side, and therefore the second body model is chosen. The

relevant body parts are the arms, legs, upper body, and support (always present).

4.3.2 Timeline and durations

As can be seen in Figure 19, each body part has its own column in the Labanotation. This means that

each analysis step has to be performed separately for each body part, thereby always starting with the

“support”.

The first thing that has to be analyzed per body part is the timeline. The timeline is very important,

because the distance travelled is directly coupled to the time. If, for example, the “upwards”

movement of the arm has a duration of 15 seconds, and the body part’s normal speed is 10 cm/s, the

expected traveled distance of the arm is 150 cm. Obviously, the arm cannot go upwards that far.

The timeline is made up by segments. In essence each motion segment starts at a point at which no

body part performs any movement, and lasts till the next moment at which no body part performs any

movement, just like the example at the beginning of section 4.2. A single segment can be repeated,

for when the exercise contains repetition, or a set of segments can be repeated (A  B  C  B  C

 B  C). In the flow chart of Figure 20 the steps needed to identify the segments are depicted.

44

Figure 20: Steps to be taken in order to define the segments that form the timeline of an exercise. Has to be applied for
each body part.

The flow chart of Figure 20 must first be executed on the “support”, but because most exercises are

performed in place, the “support” will have a single segment, equal to the duration of the whole

exercise. When a body part has a clear moment for which the movement speed is zero (usually a

turning point, at which an extreme was reached), this marks the start of a new segment. It can be that

another body part has segments which are shorter than those of the other body parts. Either the

movements of that body part start later, or end earlier, than of the body part with longer segments. In

the first case, the movement specification must include a delay, to make it start later. In the second

case, the movement duration can be shorter than for the other body part, thereby not filling the full

segment. If movement “A” starts before the start of movement “B”, and “A” also stops before the stop

of movement “B”, then the segment will start at the start of “A” and end at the end of “B”. In this way,

a single timeline is made for all body parts. Not each body part has to be active in each segment, but

segments may not overlap, and are always consecutive. The steps visualized in Figure 21 are used to

identify the duration of the movement for each body part.

Figure 21: Steps to be taken in order to define the duration of each movement for each body part.

Start with whole
exercise

Is exercise ended?

Moment is end of
previous and start of

next segment

Start of exercise is start
of first segment

End with known
segments

Identify first
new moment

where
movement

speed is zero

yesno

Start with known
motion segments

does
movement start at

segment start?

duration equals to
segment length

no

does
movement end at

segment end?

no

yes

yes
does

movement end at
segment end?

yes

enter
movement start
in % of segment

length

enter
movement end
in % of segment

length

no

movement starts at
segment start, and ends

after *%of segment
leght

movement ends at
segment end, and starts

after *%of segment
leght

enter
movement end
in % of segment

length

enter
movement start
in % of segment

length

movement starts after
*% and ends after *% of

segment leght

End with known
duration

45

4.3.3 Movements

The movements that are used to define the timeline and durations, evidently need to be

parameterized themselves. To identify movement, three “types” of translations are available:

Horizontal Translation, Vertical Translation and Rotation. The first two are also used to create a special

type of translation: the Relation.

Horizontal Translation

A horizontal translation, is a movement of a body part in a horizontal plane. Figure 22 shows the steps

needed to define the horizontal movement direction. The distance the body part travels during this

movement, is not related to the direction, but to the duration of the movement, as explained in the

previous paragraph. When there is no movement, this results in a “horizontal direction = place”. There

are eight other horizontal directions predefined to notate movement in the Labanotation:

 F = Forward

 B = Backward

 L = Left

 R = Right

 LF = Left forward

 RF = Right forward

 LB = Left backward

 RB = Right backward

Figure 22: Steps to be taken in order to define the horizontal direction of a movement.

Many movements do not take place exclusively in the horizontal plane. Therefore, the horizontal

movement, can be adjusted with a vertical direction modifier.

Vertical Translation

For movement in the vertical plane, only three options are available: up, middle and down. Middle is

the neutral position, thus remaining in the horizontal plane. An upwards movement of the foot in place

(thus bending the knee) would have horizontal direction place, and vertical direction “up”. The simple

steps to define these three options are depicted in Figure 23.

Start with specific
body part

Does body part
move in horizontal

direction?

Horizontal movement is:
Place

yes

no

choose from 8
horizontal
movement
directions

Horizontal movement is:
F, B, L. E, LF, RF, LB or FB

End with known
horizontal movement

direction

46

Figure 23: Steps to be taken in order to define the vertical direction of a movement.

Identify rotation

The last type of translation is used to describe a rotation. For example, rotating the hand such that the

hand palm faces downwards instead of upwards. The imaginary rotation axis is drawn trough the

parent bone. For the example of the hand, the rotation axis is the underarm. The direction of the

rotation can be identified, and the amount of rotation, in four steps: 90o, 180o, 270o and 360o. The

amount of rotation therefore is NOT related to the duration of the movement, contrary to the

horizontal and vertical translations. The steps needed to identify the rotation, and depicted in Figure

24

Figure 24: Steps to be taken in order to define the rotation of a movement.

Identify relation

A special type of translation, is the “relation”. Relations are used to indicate interaction between two

body parts (or foreign objects). For example, “left hand” is “up” in relation to “head”, indicates the

person should hover his left hand above his head. Such a relation is easier to comprehend for a real

person, than a series of horizontal and vertical translations, which guide the hand to the place above

Start with specific
body part

Indicate vertical
direction of the

movement?

Add up / high modifier
to direction.

Add middle modifier to
direction.

Add down / low
modifier to direction.

End with known vertical
movement direction

middle

up

down

Start with specific
body part

Does body part
rotate?

No rotation needed.

yes

Turn to left or right

no

choose amount
of turn:

¼. ½ & ¾.
x/4 left rotation

x/4 right rotation

End with known
rotation.

left

right

47

the head. Unfortunately, the opposite is true for automated detection using software. The horizontal

and vertical translations used to define a relation, are the same as the separate horizontal direction

and vertical directions described above.

Figure 25: Steps to be taken in order to define a movement of a body part via the relation in position to another body part.

4.3.4 Accents and space measurements

If no special notice is given, all movements are performed “normally”. This means that the movement

is performed at an “average” speed, and the movement takes up the whole duration. Thus, there is a

direct relation between the duration of a movement and the distance the specific body part should

travel. If the movement should be performed faster or slower than “normal”, this can be identified via

accents. A movement can have three “speeds”: normal, slow and fast. What the exact values of these

speeds are, depends on the type of movement, the body part and the person performing the exercise.

The speed could be made a function of the age or sex of the patient.

4.3.5 Personalization

Next to the static parameterization of the exercise, a dynamic component is needed as well:

“personalization”. In the previous paragraph, personalization based on age and sex is already

mentioned. These two factors can influence the speed at which the exercises are performed. The

timeline can be dependent on the properties of the patient as well, for example in the number of

repeats, or the time the exercises takes. A more complex type of personalization, is to modify the

actual movements based on the properties of the patient. For example, the exercises for the acute hip

patients in the CoCo database, are all aimed at improving the affected side. Therefore, these exercises

need to be mirrored if the patient is affected at the other side.

If patients are unable to perform a certain exercise due to handicaps, the exercise should also be

adapted. For example, if a patient misses an arm, the exercise specification should not demand that

both arms are raised. Such modifications of the exercises are beyond the scope of this research.

Start with specific
body part

Is position of
body part related to

other part.
No relation needed.

yes

no

choose second
body part

End with known
relation.

Does body part
move in horizontal

direction?

Horizontal movement is:
F, B, L. E, LF, RF, LB or FB

Indicate vertical
direction of the

movement?

Add up / high modifier
to direction for selected

body part.

Add middle modifier to
direction for selected

body part.

Add down / low
modifier to direction for

selected body part.

middle

up

down

no

yes

48

4.4 Data model and conclusion
The exercise properties, the timeline, the movements with their durations, and the personalization

options together form a hierarchical structure. This structure is used for the data model, in which the

exercises will be communicated and stored. On top is the exercise, with certain parameters, such as

the name and category. Each exercise also has a joint model and information on personalization.

Exercises have one or more segments, these segments are portions of the timeline. Each segment

contains multiple body parts. For each body part, all the movement types are given (direction, rotation

etc.). Each modifier has its own duration. This results in the following data model:

Figure 26: Class diagram of parameterization data model.

This model will be converted to an XML and Class data model, for easy implementation and

communication between the software and some web site. All aspects from the data model will be

input for the logic that is developed in the next chapter (Chapter 5), and implemented in Chapter 6.

49

5 Automated evaluation of an exercise

5.1 Introduction
In the previous chapter, the data model was described in which the exercises are parameterized. This

chapter will discuss a system to read such a parameterized exercise, compare it to skeleton movement

measured by the Kinect depth camera and evaluate the performance of the exercise.

The system to detect and evaluate the exercises can be divided into three components:

- Read and interpret the parameterized exercise.

- Measure and process skeleton data from the Kinect depth camera.

- Compare measured movement and compare this to the exercise in order to interpret and

evaluate the movements.

Figure 27: Simplified class overview of the detection and evaluation system.

Figure 27 shows a simplified class diagram of a possible implementation of the detection and

evaluation system. The left blocks deal with parsing of the exercise specification, the “ResultIterpreter”

deals with the interpretation, and the remaining blocks deal with the measurement. The next three

paragraphs follow this division.

5.2 Processing of parameterization

5.2.1 Exercise specification playlist

Exercises are specified using a hierarchical data model based on the Labanotation. This data model is

shown in Figure 26. But a real life performance of an exercise happens in a sequential instead of a

hierarchical manner, therefore the exercise specification needs to be converted to a sequential format.

This sequential “playlist” contains all successive segments, and takes the “repeat” and “next segment”

information in to account. When a certain segment has to be repeated 5 times, it will be placed in the

KinectRecorder

getRelativeJointPosition (x,y,z)

HorizontalDirectionDetector

amount

accent

VerticalDirectionDetector

amount

accent

RotationDetector

amount

accent

RelativeDetector

amount

accent

xmlParser

exercise

Exercise

SegmentSet
BodyPart
HorizontalDirection

Rotation
VerticalDirection

Relative
Duration

WindowSampler

getWindowStart
getWindowEnd

returnWindowTranslation

WindowSizes

getDurations

return Window Sizes

SimpleTranslationResult

getDetectorResults

return Combined result

ResultWeighter

getResults

return final Result

ResultInterpreter

check against Exercise

return faults

Personalization

getStablePosture

50

playlist 5 times. The exercise playlist indicates at each moment in time what each body part must do.

Because not every body part performs an action all the time, the relevant number of body parts can

change depending on the segment. If a body part is not available at a certain time, this means that this

body part does not perform a relevant action at that time. The actions of this body part at such a

moment are ignored. When it is important that the body part is kept at a constant position, this

specification should explicitly state this, for example by indicating the Horizontal direction is “Place”.

5.2.2 Sample window lengths

Based on the duration of all translations in the exercise specification, a suitable sampling window

duration is chosen. The duration of a window is the time in between two samples of skeleton positions.

These two positions are subtracted from each other, to get the relative movement of the window,

which is the translation at the given time. The shortest window at which the movement data is sampled

should be at least as short as the shortest duration of the translations in the exercise specification. In

practice even a shorter window is needed, because sampling of the windows is not perfectly in sync

with the performance of the actions. As discussed in the next paragraph, the system can sample using

multiple window sizes. The longer windows are all an exact multiplication of the shortest window to

keep implementation simple. The duration of the longest window is related to the duration of the

longest translation. The other windows are equally divided between the shortest and longest window,

rounded to be multiples of the shortest window.

Figure 28: All joints of the Kinect skeleton model.

5.2.3 Relevant Body Parts

In paragraph 4.3.1 the different joint models which can be used to describe the movements, are

discussed. Not all joints in these models are part of the Kinect skeleton model, therefore a translation

between the body part names used in the exercise specification, and the Kinect “compliant” joints

must be made. Body parts without a direct equivalent are: Body, Upper Body, Lower Body, Arm and

Leg. The “Body” is by definition the most important body part in the Labanotation hierarchy, and the

equivalent exists in the Kinect hierarchy as well: “Hip Center”. Movement of the “Upper body” is

related to movement of the following Kinect joints: Shoulder Center/Left/Right and the Head. The

“Lower body” relates to Hip Center/Left/Right and the Spline. For the upper and lower body, the

central joints (Hip Center and Shoulder Center) represent the movement best, because these are in

the center of mass of a relatively ridged part of the body. “Arm” relates to the left or right Wrist, Hand

and Elbow. And last, the “Leg” relates to the left or right Knee, Ankle and Foot. For the arms and legs,

the movement of the extremities is more important than the movement of the elbow or knee, because

51

the movement is limited in the parent joint (hip/shoulder), and elbow or knee are close to the parent

joint.

Most of the body parts are present at both the left and the right side of the body. In the exercise

specification the following identifiers are available to control which side is meant: both, left, right,

affected and non-affected (see paragraph 4.3.5). These modifiers are ignored for body parts that have

no left and right version: Hip center, Spine, Shoulder center and head. For the other body parts, the

option “both” will place both the left and right version in the list of body parts that need to be tracked

(the relevant body part list). For the options “left” and “right” evidently, the left or right version of the

body part is placed in the list. The “affected” and “non-affected” options are substituted by left or

right, based on the “affected” field in the personalization options (see paragraph 4.3.5). Summarized:

the body part parser reads through the whole exercise specification. It places each body part which

has an active role in the exercise in the relevant body part list, but only after it is translated to a specific

Kinect compliant joint.

5.3 Measure and process skeleton data from the Kinect depth camera
In order to compare the movement of the patient with the exercise playlist discussed in the previous

chapter, these movements first need to be detected and formatted in the same “language” as used for

the playlist. For a given duration, for each body part, the system should be able to detect the following

aspects: amount and direction of the horizontal en vertical translations, rotations, and movement

relative to another body part.

5.3.1 Sample windows

In paragraph 5.2.2 the calculation of the window lengths based on the durations of elements in the

exercise specification is discussed. Even for very short elements in the exercise specification, the native

sample interval (inverse of sample rate) of the Kinect will be much shorter than the desired interval

between two samples which are used to calculate the translations. In other words, the sample rate of

the translation detection is much lower than the sample rate of the source Kinect data. The simplest

way to convert the sample rate is to discard unneeded samples. A large disadvantage of subsampling

by omitting samples, is the sensitivity for high-frequency noise. See for an example Figure 29, if in this

signal, the two sample positions would be at x=2 and x=8, the result would be an increase of 22, but

the full signal clearly shows a decreasing instead of an increasing trend. This problem is overcome by

low pass filtering of the source signal with a cutoff frequency of half the final sample rate. This removes

fast transients in the position data, and thus “smoothens” the movements.

52

Figure 29: Signal with downwards trend, and a single noise spike.

The duration and start time of the measurement of a single translation should match the duration and

start time of the action which is specified in the playlist. Obviously, the position in time in this playlist

is not known beforehand, and therefore the desired window length to sample the translation is

undefined. Two ways to deal with this are: to combine multiple short windows to generate longer

windows, or use overlapping windows of multiple lengths. Both methods provide a way to measure

translations that have a longer duration, while ignoring shorter “noise-like” translations. The

“overlapping windows of multiple lengths” option is more complex to implement, but has the

advantage that the window lengths do not need to be multiples of each other, and allows the cutoff

frequency of the low pass filter to be specific to the window size. The last advantage becomes greater

if the difference in length of the shortest and longest window becomes larger.

Figure 30: Example of sampling using three different window sizes, with overlap each with a horizontal translation direction
and an amount between brackets.

Figure 30 shows an example of sampling with three different window sizes. Only the shortest window

needs to be sampled, because the longer window lengths are multiples of the short window length. As

such, the result of the longer windows can be calculated afterwards. The horizontal part of the result

of each short window is shown in the figure, including the amount in brackets. The results of the longer

windows can be calculated by summing the amount, and averaging the angle, as explained in

paragraph 5.3.3.

5.3.2 Data preprocessing

Besides low-pass filtering the source position data, other forms of preprocessing can be of use. To limit

required processing power, translation samples which are almost zero, can be put at exactly 0. Next to

applying a threshold, preprocessing can also process trends. If a translation retains its direction and

amount over multiple windows, the chance that it is measurement noise, is low, even if the amount

per window is low. Therefore such a “long term” translation should have a greater impact during the

data interpretation. Detecting whether a translation is monotone, can be done by calculating the

2; 18

8; 40

8; 14.6

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14

Raw signal

First order fit

1

A B C D E F G

2
3

forward(3) forward(2) left(2) left(4) left(3) left(4)

53

change in amount and direction between the current and the previous sample of the same body part

and convert this to percentage. The percentage change in angle is calculated by:
𝑀𝐷−1

|𝜃2−𝜃1|
∗ 100%, with

“MD” being the maximal allowed deviation. If both the percentage change in amount and angle are

above a predefined threshold, the translation can be considered monotone.

5.3.3 Translation recording

In the previous paragraph information is given on combining amount and direction of multiple

windows. This can only be done after the amount and direction of a single window are known. The

next paragraph discusses how to convert the position samples into a specific direction and amount of

translation.

Figure 31: Schematic representation of three position points in 2D.

Figure 31 shows a 2 dimensional representation of three consecutive samples of a single body part. T1,

T2 and T3 are sampled exactly one window length in time from each other. These three position

samples are converted into translation samples, which form the input for the rest of the analysis. A

translation sample is the difference between two position samples. The three position samples result

in two translation samples. For example, the result of the first translation in Figure 31 is (xs1 = x2 – x1)

(ys1 = y2 – y1) (zs1 = z2 – z1) (the z-axis is not shown in Figure 31).

From the 3 dimensional translation sample, the amount and direction of the translation are calculated.

The relation between the amount and duration of a translation is given via the “normal speed” (see

paragraph 4.3.2). The direction relates to the eight horizontal directions (plus the static “place”), three

vertical directions (“up”, “middle” & “down”) and two rotation directions (“left” and “right”), see

paragraph 4.3.3. Because the amount and direction are specific for a single type of translation in the

Labanotation, only a 2-dimensional plane or a single axis is needed to calculate them. For the horizontal

directions, the X and Z axis are used, and the Y axis is used for the vertical directions. Calculation of

the amount of the horizontal translations is done using the Pythagorean Theorem. An example is given

in Figure 31, the first amount in this graph is 𝑎1 = √𝑥𝑠1
2 + 𝑦𝑠1

2. The direction of the horizontal

translation is based on the angle of the translation, from the same figure, the first angle is 𝜃1 = tan−1 𝑧

𝑥
.

Each measured angle is related to a direction from the Labanotation. For the horizontal translations,

the “right” direction is defined to be 0 / 360o, which relates to a translation with positive X values,

“forward” is defined to be 90o, and relates to negative Z values. Figure 32 shows all 8 directions possible

54

for the horizontal translations. The angles listed in this figure relate to the boundaries of each direction,

for example, when a measured angle is between 22.5 and 67.5o, the direction “Front Right” is coupled

to this angle.

Figure 32: The basic horizontal directions drawn on the z and x axis.

The calculation of the amount and direction of a Vertical translation differs from the Horizontal

translations. The amount of the vertical translation is directly given by the y-axis of the translation.

Vertical translations can have only three directions: “up”, “middle” and “down”. These directions are

determined via a predefined threshold on the y-axis, if the translation (relative change in position)

exceeds this threshold, it is counted as “up” and if the translation is smaller than minus-threshold it is

counted as “down”. All movements in between the positive and negative threshold are counted as

“middle”.

Figure 33: The basic vertical directions drawn on the y and z axis.

The calculation of the amount and direction of the rotation translations differs from that of the

horizontal and vertical translations. Rotations can only take place in two directions: “clockwise” or

x

z

Front

BackBack Left Back Right

Front RightFront Left

RightLeft

22.5°157.5°

337.5°202.5°

67.5°

292.5°247.5°

112.5°

55

“counter-clockwise” (“right” or “left”). The amount of rotation relates to the number of degrees of

rotation, for example if the hand is rotated from facing down, to facing up, the amount is 180o. Joint

positions on themselves do not give any information on the orientation of the body parts. Luckily, the

skeleton model of the Kinect also contains information of the orientation of “bones”. These

orientations are stored in the parent joint (see Figure 6 and Figure 7 in paragraph 2.1.3). Translations

are solely based on relative changes, therefore the hierarchical model is not important. The amount

and direction follows directly from the change in the sign and quality of change between two samples

of the “bone orientation”. Figure 34 shows an example of a “clockwise” rotation of amount θr of the

wrist.

Figure 34: Schematic view of the rotation of the arm, seen from the front of the fist.

Relative translations are only defined via horizontal and vertical directions. Instead of the relative

change in position of a single body part over time, the relation is calculated by measuring the relative

position of one body part compared to another. For example, if the hand has a relative translation with

the head of “horizontal = place”, “vertical = up”, the x-position and z-position of the hand and head

should be in the same range, and the y-position of the hand should be higher than that of the head.

The definition of the horizontal and vertical directions is the same as for the separate translations

discussed above, but the concept of amount is more difficult. In the Labanotation, the duration of the

translation defines the distance traveled, thus the longer a translation lasts, the higher its amount. For

a relative translation, the maximal “amount” is reached when the relative positions are exactly as

defined, for the example, the maximum would be when the x and z positions are exactly the same, and

the y-position is higher. Beyond a certain threshold of deviation between the specified and actual

relative positions, the amount is counted as zero.

5.3.4 Comparison between exercise specification elements and detection results.

When the exercise playlist and the result of the translation samples are known, these have to be

compared in order to evaluate the exercise performance. Table 9 shows the concept of comparing the

exercise specification with the detection results. In the left column, the specification is shown, and the

three columns on the right show respectively the short, medium and long window. It’s important to

notice that this table only refers to a single body part and a single translation type. In reality each

relevant body part would have such a table for each translation type in use. Each element in the

exercise specification has a certain duration. Therefore the element must be matched against a

detection result with the same duration.

x

y

x r

yr

x

y

x
y

x r

yr

r

56

Exercise Window short Window medium Window long Tim
e 

Forward (9) Forward (10)

Forward (8)
…

Side (8)

Down (4)

Side (15) Up (7)
Side (8)

Side (4)

Up (10) Middle (10)
Middle (6) …

Side (5) Side (5)

Table 9: Example of the specification and results of three different window sizes for a single body part (the amount of the
translation is given between brackets).

In Table 9, the first and last two exercise elements have a short duration, and will be matched against

the short window. The second element lasts longer, and will be matched against the long window.

Strictly looking at matching window size causes problems when the exercise is performed too fast or

slow. To (partly) overcome this problem, the matching detection window gets an increased weight,

but the other detection windows are not ignored. This means it is easier to get a match from a

detection window that has the same length as the specification element, but when a longer detection

window has a much better match it will still win. In Table 9 this can be seen for the second element:

the long window, which matches in length, has the right direction but a much higher amount. The

middle window, however, makes a perfect match, and is therefore counted as a successful

performance of this element of the specification. If no match can be made, the exercise performance

lacked the required translations. In this case, the translation with the highest amount at the moment

of the failing match is counted as the action the user performed instead. In Table 9 the specification

element “up” is not found in the detection results, the highest detection result at that time was

“middle”, thus the user kept the body part at the same height, instead of moving it up.

In the previous example, comparisons are made based on directions. In practice, a continuous direction

indication in angles is used, because this makes comparison much easier (the difference between

“forward” and “forward left” is vague, whereas the difference between 90o and 45o is perfectly clear).

Figure 35 shows an example with at the left a graph with two translations (three 2D position samples),

and at the right the average of these two translations. The amount for the average translation is

calculated via the Pythagorean Theory: √(𝑥1 + 𝑥2)2 + (𝑦1 + 𝑦2)2 = 𝑎𝑚, and the angle is calculated

by averaging θ1 and θ2.

57

Figure 35: Schematic graph showing three measurement points on the left and the average of those points on the right.

When the total amount and average angle of the required number of detection windows is calculated,

these can be compared with an element from the exercise specification playlist. If the amount and

angle of the detection and specification match exactly, this is counted as a 100% match, and if the

difference is greater than a predefined threshold, the match “quality” is 0%.

There are two methods to calculate the match quality, the absolute difference between the

specification and measured value, and the distance to zero. The absolute difference amount is

calculated by |𝑎𝑚 − 𝑎𝑠| (see Figure 36). The specified amount is calculated via multiplying the duration

of the exercise specification element with the predefined “normal” speed of the user performing the

exercise. The absolute difference in angle is calculated by |𝜃𝑚 − 𝜃𝑠| (keeping into account that 0o =

360o). The specified angle is based on the definition of the specified direction (see Figure 32 and Figure

33).

Figure 36: Schematic graph showing the average measurement of three points on the left and the average of those points
on the left, and the specified point on the left.

x

y

t1

t2

t3

x1

a1

a2

x2

y2

2

1
y1

am

x

y

t1

t2

t3

xm

ym

m

am

x

y

t1

t2

t3

xm

ym

m

am

x

y

t1

t3

xmxs

ym

ys

as

m

s

58

The conversion from an absolute amount difference to the match quality in percentages for horizontal

and vertical translations is:

𝑚𝑎𝑡𝑐ℎ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 100 − |100 − 𝑎𝑠/
𝑎𝑚

100
| {1}

this equation always results in a value between 0 and 100%, independent of whether the specification

is larger or smaller than the detection result.

A different approach is needed when the specified amount is zero (keep body part static), because it

is much easier to remain static than to move in a specific direction with a specific speed. For

translations with a specified amount of zero, calculation of the match quality is based on a predefined

maximal distance to zero (MDZ). If the measured result is above this maximum distance, the match

quality is 0%, if it is actually 0, the match quality is 100%. This results in the following calculation (as=0):

𝑚𝑎𝑡𝑐ℎ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 100 −
𝑀𝐷𝑍−1

|𝑎𝑚|
∗ 100% {2}

Calculation of the match quality of the difference in angles is based on a predefined maximum

difference between the specified and measured angle. If the difference is larger than this threshold

(MAD), the match quality is 0%, if the two angles are equal, the match quality is 100%:

𝑚𝑎𝑡𝑐ℎ 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 100 −
𝑀𝐴𝐷−1

|𝜃𝑚−𝜃𝑠|
∗ 100% {3}

Calculation of the match quality of the amount of rotation can be done via the equation above {3}. For

the rotation, the angle represents the amount of rotation. The direction of the rotation can only be

“left” or “right”. If the direction of the specified rotation does not match the measured direction, the

performance is incorrect, and the match quality is always set to 0%.

The match quality calculation used for the amount of passive translations (equation {2}), can also be

used to calculate the match quality of a relative translation when the horizontal direction is “place” or

vertical direction is “middle”. In this case am is substituted by the difference in position of the current

and relative body part. For the other directions the difference in angle between the specification and

measurement is used to substitute am resulting in an equation similar to {3}. The vertical directions

“up” and “down” act as a condition, which is either met (the current body part was above / below the

relative body part) or not met. Therefore, when the vertical component has the direction “up” o

“down” and this condition is not met, the match quality will be 0%. Because of this binary concept, it

is not wise to define only a relative translation with only a vertical component. It should always be

combined with a horizontal component, or another type of translation.

5.3.5 Determining the position in the exercise specification playlist.

The previous section (5.3.4) explained how the match quality between a single element of the

specification, and the detection results for a matching window length can be calculated. Such a

calculation only makes sense when the position in the exercise playlist, and thus the progress of the

exercise is known. Unfortunately, determining this position is not straight-forward. The two main

difficulties are:

A. What to do if elements from the exercise specification playlist are not detected?

B. When can the matching advance to later elements in the exercise specification playlist?

59

Because the exercise playlist is chronological, the matching will start at the first element of the body

part in question. Figure 37 shows the steps in this match process, including the actions taken when

difficulty “A” arises.

Figure 37: Match process for a single measurement sample.

Exercise
specification

Deviation below
threshold?

Get filtered
measurement

Get first non-
matched exercise

spec for the
bodypart

Determine the
number of

measurement
windows needed to

match the
specification

If possible, load
those number of

windows from
measurement set

Measurements

Manually start
evaluation

Determine average
of those windows

per translation

Determine
deviation between
measurement and

specification

Mark specification
element as
“matched”

Advance one
position in

soecification
yesno

Mark measurement
as evaluated

Go to next
measurement

sample

Increase
threshold

Add evaluation
results to

measurements

max 10x

60

Although it is possible to start right away, random actions by an unprepared user might accidently

match part of the exercise, and cause troubles with the further matching process. Therefore, the first

step in Figure 37 is to manually start the matching algorithm. The second step is to load the current

measurement sample. This sample contains the filtered translations, and positions for a single body

part. Third, the first non-matched specification element for the body part in question is loaded from

the exercise specification playlist. It can very well be that this is not possible, because not each relevant

body part is active at every moment during the exercise. If this is the case, the matching process is

halted, and the system instantly goes to the last step: “Go to next measurement sample”. If the

specification element loaded successfully, the fourth step is to compare the duration of the

specification element to the window length of the current measurement sample, in order to calculate

the number of measurement samples needed. Next, the system will check if this number of

measurement samples is available, and if these samples are not already used for a previous successful

match. The fifth step is to calculate the amount and direction over the multiple measurement samples,

as discussed in paragraph 5.3.3. The sixth step is to compare the amount and direction of the

measurement with the specification element, as discussed in paragraph 5.3.4. In the seventh step, the

average of the different match qualities for direction and amount of multiple translations is compared

to a predefined match quality threshold. If the threshold is exceeded, a “match” is made, and both the

specification element and the measurement sample are marked as “matched”. The last step is then to

load the next measurement sample and start all over again. This is repeated till the latest measurement

samples are processed of all relevant body parts.

If the threshold is not exceeded, difficulty “A” took place: the current specification element could not

be detected. This can mean four things:

- the specification element was not yet performed

- the performance of the specification element was not correctly detected (missed by system)

- the performance of the specification element was incorrect (error by user)

- the performance of the specification element was omitted (forgotten by user)

For the first reason, the system should just wait until the specification element is performed. But if the

system waits, while the missing element was caused by one of the last three reasons, it will never try

to match the rest of the exercise. To prevent stalling in one of these last three situations, the system

will continue with the same measurement sample, but now try to match this sample to the next

element in the exercise specification playlist. Thus it will again perform step three till six, but now with

the next specification sample. In step seven, the matching threshold is increased, to make it harder to

get a match on the next specification element. This is done to prevent matching on a false part of the

exercise, because it is assumed that it is more likely that the user forgets a single step, than multiple

steps. After predefinable number of attempts to match the measurement sample, with each time a

decreased chance, this process is stopped, and the next measurement sample is loaded. As

consequence, the system will fail to find a match if multiple steps were omitted by the user, or when

only a few steps were missed, but the steps afterwards were performed mediocre (with a decreased

matching chance, a higher performance quality is required before a match can be made).

The result of the matching process described above, is a match quality, a match indication (match or

no match) and a position in the exercise specification playlist at which this match was made. If all body

parts made a match at the same position in the exercise specification playlist, it’s obvious that for the

61

next measurement samples, also the next position in the specification playlist should be used. But if

only a part of the body parts got a match, advancing in the playlist is not obvious. It’s evident that all

body parts should be at the same position in the exercise playlist, thus some “broker” must decide

when to advance the position. The way to handle this problem (Issue “B” on the previous page), is

depicted in Figure 38.

Figure 38: Decision tree for advancing in the exercise specification playlist.

The process in Figure 38 starts as soon as a match quality is determined for every relevant body part.

The process will load all match qualities, and sums these per position in the exercise playlist (sequence

number). This gives a match quality per sequence number, which is compared to the total obtainable

match for this sequence number (the number of active body parts is not constant in the exercise

playlist, nor is the total obtainable match). This comparison results in a match percentage per sequence

Exercise
specification

Relevant match
above threshold

Get current
sequence number

per body partMeasurements

Start

Get number of
relevant body parts

All body parts get
new sequence

number
yes

Mark
skipped

translations

Get match quality
per body part

Sum match quality
per sequence

number

Calculate highest
percentage match,
compared to total

relevant match

All body parts retain
old sequence

number

Search
translation

with highest
amount

no

62

number. If none of these match percentages is above a predefined threshold, nothing happens, and

the system continues to try to make a match at the same position in the exercise specification playlist

as before. If the highest of the matches is higher than the predefined threshold, this is a “global” match.

This means that for the next measurement samples, the system will try to match these with the

specification elements at this sequence number (position) in the exercise specification playlist. If the

match was made for all body parts at the same position in the exercise specification playlist, it was a

“perfect” match. Otherwise, the exercise specification elements that were not matched are marked.

Because the process will advance to the next position in the playlist, these elements will never be

matched. The largest translation present in the measurement samples of the body parts of these

missed elements is marked as well. These translations are the most prominent movements the user

performed (or the system falsely detected) at the moment of the missed elements. As such, these

movements can be considered false, and included in the evaluation of the exercise performance, or in

the real-time feedback to the performer.

63

6 Implementation

6.1 Introduction
In chapter 4 a method is described to parameterize an exercise by first defining the relevant body

parts, then divide the whole exercise into segments of a specific duration, and for each segment

describe the movements of each relevant body part in terms of horizontal and vertical translations and

rotations. Chapter 5 gave a method to convert the parameterized exercise into an exercise playlist

(section 5.2). It described how to convert joint positions, measured by the Kinect, into the translations

used in the parameterization (horizontal, vertical and rotation) (section 5.3.3). Next a method was

given to compare a single measured translation to an arbitrary element from the exercise playlist

(section 5.3.4). At the start of the exercise, this comparison can be made between the first measured

items, and the first items from the exercise playlist. Section 5.3.5 dealt with the difficult issue on when

to advance to later items in the playlist. It’s not practical to only advance if all previous items have

been matched, because the detection might miss movements, or the user can forget a part of the

exercise. Therefore, advancing in the playlist can be done when the larger part of the previous items

could be matched, or when the current measured translation form a very good match to a future part

of the exercise playlist. The exercise specification elements that were missed, are the movements the

user failed to make, and are marked for evaluation.

This chapter describes how the concepts from chapter 4 and 5 are implemented into detection and

evaluation framework prototype to test the feasibility of the concept. The detection framework is

based on the “Kinect Toolbox” by David Catuhe (Catuhe, 2013). This toolbox is extensively documented

in the book “Programming with the Kinect for Windows Software Development Kit”. The toolbox shows

the RGB image with a skeleton overlay (if available), it has the functionality to detect postures and

gestures, and enables recording and replay of Kinect data. In the toolbox, two namespaces are added:

Exercise and ExerciseDetection. The namespace Exercise contains the classes that are used

to define a static exercise specification (the concepts from chapter 4). These classes are discussed in

section 0. The namespace ExerciseDetection contains the parts to interpret the exercise

specification, record the joint positions, convert joint positions into specific translations and compare

(interpret) the translations to the exercise specification (the concepts from chapter5). The

implementation of these parts is discussed in section 6.3. Apart from these two namespaces, the only

changes to the toolbox are made in the code which controls the main loop of the framework:

MainWindow.xaml.cs. In this class the initialization takes place, and each time the

SkeletonFrameReady event is fired, the relevant parts of ExerciseDetection are executed.

For development of C# code, Microsoft’s Visual Studio 2012 professional 32bit is used. It perfectly

integrates with the Microsoft Kinect SDK v1.6, and is one of the most advanced IDEs (Integrated

Development Environment) for C++/C# development available for Windows. Other tools of the

development environment were: MS Windows SDK for Windows 7 (v 7.1), MS Kinect Runtime v1.6 and

MS Kinect Developer Toolkit v1.6.

64

6.2 Implementation of exercise parameterization framework
In chapter 4 a structure is defined to parameterize an exercise using the Labanotation concept, without

requiring extensive knowledge of the Laban movement analysis methods. Section 4.4 proposes a data

model to store all parameters which make up the exercise specification (the class diagram is shown in

Figure 26 at page 48, the hierarchical data tree is given below, see Table 10). Because this data model

is used exclusively to store data, the implementation is straight forward. For each class constructors

are made, these constructors force inclusion of all needed elements. For example, to create a

BodyPart instance, instances of each translation are required, and those must contain an instance of

the Duration class. A complete specification of a specific exercise is thus one instance of Exercise,

containing an array of SegmentSet, each element of this array contains an array of Segment, and

each Segment contains multiple instances of BodyPart.

 Exercise | name=(string) | category=(string)
o Description

 Introduction (String)
 Performance (String)
 Attention (String)

o Joints (string) | model=(string)
o Personalization |affected=(string) | side=(string)
o Segments

 SegmentSet | seq=(int) |repeatSet=(int) | nextSegmentSet=(int)

 Segment |id=(int) |repeatSingle=(int)
o BodyPart (String) | side=(string)

 HorizontalDirection (String) |modifier=(string) |
accent=(string) | space=(string)

 Duration (int) | constraint=(string)
 VerticalDirection (String) |modifier=(string) |

accent=(string) | space=(string)

 Duration (int) | constraint=(string)
 HorizontalDirection (String) |twist=(string) |

modifier=(string) | accent=(string) |
space=(string)

 Duration (int) | constraint=(string)
 Relation | relative=(string)

 HorizontalDirection (String)

 VerticalDirection (String)
 Duration (int) | constraint=(string)

Table 10: Hierarchical data structure of an exercise specification

Manually creating instances of multiple classes in order to store an exercise specification is only suited

for testing of the prototype. Eventually, the system should work together with a site such as CoCo. To

communicate the exercise specification, and more importantly, the personalization options, an

external data format is better suited. The Extensible Markup Language (XML) is a popular data format

to communicate between separate programs. An example XML containing all parameters from the

target exercise is made. An extract of this XML is given below:

<SegmentSet seq="1" repeatSet="0" nextSegmentSet="2">
 <Segment id="0" repeatSingle="0">
 <BodyPart side="both">
 Support
 <HorizontalDirection modifier="none" accent="normal" space="normal">
 Place
 <Duration constraint="none"> 10 </Duration>
 </HorizontalDirection>
 <VerticalDirection modifier="none" accent="normal" space="normal">
 Middle

65

 <Duration constraint="none"> 10 </Duration>
 </VerticalDirection>
 <Rotation twist="no" modifier="none" accent="normal" space="normal">
 Neutral
 <Duration constraint="none"> 10 </Duration>
 </Rotation>
 <Relation relative="none">
 <HorizontalDirection> Place </HorizontalDirection>
 <VerticalDirection> Middle </VerticalDirection>
 <Duration constraint="none"> 10 </Duration>
 </Relation>
 </Joint>

The XML follows the same hierarchical structure as the data model given in Figure 26 (page 48) and

Table 10. An XML reader was not implemented, because this was not deemed essential for this project.

6.3 Implementation of detection and evaluation framework
The implementation of the concepts discussed in chapter 5 can be divided into two stages (see Figure

39). First, the software is initialized (discussed in section 6.3.1). In this stage the exercise parameters

are parsed to create the exercise playlist, and suitable parameters such as the sampling window length

are defined. The second stage is the “Running” state, which is executed each time new skeleton data

from the Kinect is available. The first step of this stage is to check if the skeleton position data needs

to be stored, next the joint positions are converted into translations (section 6.3.2), then these

translations are compared to the exercise playlist and last, the position in the exercise playlist is

advanced if the match between the measured translations and the exercise playlist was good enough

(section 6.3.3).

Figure 39: Implementation overview of detection and evaluation framework.

6.3.1 Initialization

The first step of the initialization phase of the detection and evaluation system, is the creation of the

detectionParameters. This dictionary of floats contains all parameters used throughout the

system, which need “tuning”. The most important one is “Normal speed”. This value relates the

duration of a translation to the amount, and is essentially the speed at which all movements must be

performed. The “Normal speed” is specified as a single value for all horizontal and vertical translations,

but can have a different value for rotations. The dictionary also contains a number of thresholds, such

as the level below which something is considered zero, the maximum deviation allowed for an amount

Parse exercise
parameters

Exercise
specification

Init

Run

Store relevant joint
positions

Convert to
translations

Compare to exercise
playlist

Advance in exercise
playlist

66

match etc. All detection parameters can be found in the table in Appendix 10.1, and are also discussed

in the description of the class where the parameter is used.

Next, the class getWindowSizes looks through the exercise specification, and calculates suitable

window sizes to sample the movements. It does so by looking through the duration of each translation

type in the exercise specification. The shortest window is the shortest duration divided by the

windowDivider factor, the longest window is the longest duration divided by the windowDivider

factor. The middle window is halfway in between the shortest and longest window. Both the medium

and longest window are rounded to be a factor of the shortest window.

The third part of the initialization, is the BodyPartReader, which looks through the exercise

specification to gather which body parts are used in the specification. These body parts are placed in

the RelevantBodyPartList. Each body part is only placed in this List once. The method takes

"affected" and "non-affected" sides into account, and for side "both" it will place both the Left and

Right instance of the body part in the list. Furthermore, it substitutes body parts that are not native to

the Kinect SDK, with the closest native Kinect SDK body part. For example: “Arms”, “side = both”,

becomes: [Wrist Left, Wrist Right] See Table 11 for the non-Kinect joints and their compliant

equivalents.

Custom joint Kinect “compliant” equivalent

Body Hip center
Upper body Shoulder center
Lower body Hip center
Arm Wrist
Leg Ankle

Table 11: Reference between custom and Kinect "compliant" joints.

The last part of the initialization is the exerciseSequenceReader, a class that converts the exercise

specification into an exercise playlist. The main difference between the specification and the playlist is

that the latter has a specific incremental sequence number for each element in the list, and that

segments which are supposed to be repeated, are placed in the playlist multiple times.

6.3.2 Position and Translation recording

As soon as a person is recognized by the Kinect SDK, it fires SkeletonReady events. Such an event

indicates that new skeleton data is available. The skeleton data is processed in the Kinect Toolkit

method ProcessSkeletonFrame. This method is called roughly every 33ms, corresponding to the

sample frequency of the Kinect depth camera. The class WindowTiming generates a slower clock to

reduce the sample frequency of the detection and evaluation system. Each time WindowTiming

indicates a window length has passed, the following classes are executed sequentially:

WindowSampler, TranslationSampler, ResultWeighter and ResultInterpreter (see

Figure 40). A short description of the first three classes is given in the following paragraphs, together

with the WindowTiming class, section 6.3.3 will discuss the ResultInterpreter.

67

Figure 40: Class overview of the "Run" phase in the MainWindow.xml.cs

Window Timing

The sample rate of the Kinect is 30fps (33ms), and the shortest window length used in the target

exercise is 833ms; consequently, only each 25th sample should be taken into account to calculate the

translation. Unfortunately, the sample rate of the Kinect is not guaranteed, and will vary due to system

load and other external factors. For a non-constant sample rate, a reliable external timer is needed to

get a constant interval between two samples that are used to calculate the translation.

CheckWindowTiming is the method that keeps track of the time. Each time the class is executed, it

will check if the current time is a "WindowSize" from the previous time (or from 0). When a

"WindowSize" has passed, it will return true, otherwise false. If the time passed, is longer than the

"WindowSize", it will substract the time "overdue" from the next "WindowSize", to prevent drift. Only

the shortest window has to be taken into account, because the longer windows are a multiple of the

shortest window.

Window Sampler

Window sampler is a simple class that stores the current position of a single body part. For each

sample, it creates a new instance of ExerciseEntry, to store joint position, time, sequence number

and body part. It also drops the oldest positions, if the ExerciseEntries array grows beyond 1000

items.

Translation Sampler

The Translation Sampler, calculates the difference between two position measurements of a single

body part. It automatically starts at the latest sample, and goes back, until all samples (body parts) that

belong to the last measurement time are processed. For each sample, checks if the previous sample

for the same body part is present. This information is used during the result interpretation, when

multiple samples are combined to form a longer window. For each sample, a new instance of

TranslationEntry is created, and the translations and offset are stored in this entry. It drops the

oldest positions, if the TranslationEntries array grows beyond 1000 items.

68

Result Weighter

The ResultWeighter class adjusts the weighting for the results from all detectors and all body parts.

Currently, two types of weighting are implemented: it increases the weight of constant translations,

this means that a translation at a constant speed and constant direction is amplified, and it sets the

amount of translations which are close to zero at exactly zero. The resultWeighter class is a good

place to implement more filtering steps in the future, such as a lowpass filter.

6.3.3 Result interpretation

Result interpretation is the process in which the detected translations are compared to the exercise

specification. Figure 41 shows the relevant classes of the ResultInterpreter including the two

important loops. The outer loop, loops trough all uninterpreted translation samples. The inner loop,

loops through the exercise playlist to compare a single measured translation to multiple elements from

the exercise playlist.

Figure 41: Class overview of the ResultInterpreter

The ResultInterpreter starts with the latest item of EntriesTranslation. Each item of

EntriesTranslation contains a single translation of a single body part. The ResultInterpreter

loops back through the EntriesTranslation list, until it reaches samples that have the tag

ResultInterpretation set to “done”.

69

The first thing the ResultInterpreter does, is to check the current sequence number. The current

sequence number indicates at which position in the exercise the patient is. This number is calculated

by the PlayListSequenceNumberChecker class based on an array containing the match quality at

a specific sequence number for a specific body part. If enough body parts have an increased sequence

number, the sequence number for all body parts is increased, thus the system advances through the

exercise specification. It keeps into account that not all body parts need to play an active role at a

certain time in the exercise.

When the current sequence number is known, the ReadExercisePlayList will load the specified

translations belonging to the body part of the current EntiresTranslation sample. These

translations, Horizontal, Vertical, Rotation and Relation, all have a direction, angle and duration. The

amount is calculated based on "normal speed" of the user.

But not all, or even none, of the translations have to be active (not every relevant body part, performs

relevant actions all the time). Therefore, the AvailabilityInPlayListChecker checks if the body

part is present at the current sequence number, and if at least one of the translations is active. When

this is the case, the longest duration of the active translations is divided by the window size, to get the

number of windows needed to be able to evaluate a translation over the given duration. If enough

uninterpreted samples are available to fulfill the specified duration, the

DetectionResultsOfWindowsReader will load those samples, and calculate the total amount and

average direction (see section 5.3.3). The DetectionWithSpecifcationComparer compares this

measured total amount and average direction to the specification loaded by the

ReadExercisePlayList to calculate the match.

The matches for each translation type, are averaged to calculate the total match for the current body

part. If this total match is above the match threshold, the loop is stopped, and the

ResultInterpreter will continue with the next measured translation.

If the total match is below the match threshold, the same measured translation will be compared to

the next element in the exercise playlist, and the match threshold is increased. After 6 times, or when

the last element of the exercise playlist is reached, the loop is stopped as well.

71

7 Evaluation of the automated detection and evaluation system

7.1 Introduction
A series of experiments has been carried out to evaluate the performance of the system. The results

of these experiments are analyzed in order to give both a quantitative and a qualitative outcome.

Because the system is far from complete, it will have (known) gaps in functionality, and sub-optimal

performance. In this chapter, an indication of the impact of these gaps is given, but more importantly,

the performance of the features that are functional is quantified and discussed. First, the performance

indicators are discussed, then the measurement protocol is given, followed by a data analysis of the

measurement results. The chapter is concluded by a conclusion and discussion.

7.2 Performance indicators
Quantitative outcome measures require to have tangible performance indicators (PI). These indicators

are organized into categories which match the chronological “flow” of the whole process. In the

experiment results analysis, these performance indicators will be analyzed for multiple recordings of

the same exercise, performed by multiple persons, in multiple ways. The categories of performance

indicators are: Exercise, Parameterization, Measurement and Software. The performance indicators

are scored per body part per segment of the exercise. All scoring aspects are listed in detail below, and

are numbered for reference in the Appendix 10.6. Not all performance indicators can be determined

on body part level of detail, therefore some fields in the table are combined. These indicators are

marked with “per segment”.

7.2.1 Exercise

For the Exercise category, the number of deviations between the exercise specification and the user

performance is scored. These are incorrect movements made by the subject, either intentionally or by

accident. In theory, the automated evaluation should come up with the same deviations.

PI 1. Count the number of times a body part is moved such that it would result in a different

Labanotation.

7.2.2 Measurement

All errors made by the Kinect depth camera, and accompanying SDK are scored in the Measurement

category. Of the aspects measured within classes of the automated detection and evaluation system,

those class names are indicated. Nevertheless, the cause of these errors will often lie within the

Microsoft Kinect SDK and not in the listed class.

PI 2. Count the number of times the movement of a relevant body part is not correctly calculated by

the Kinect SDK skeleton model. A body part is incorrect when its false position would result in a

different Labanotation.

PI 3. Count the number of relevant joints that are inferred (this means an uncertain position is given

for this joint).

PI 4. Count the total number of joints that are inferred.

PI 5. WindowTiming: number of samples of which the jitter is higher than the window length (per

segment).

PI 6. SkeletonTracking: number of times multiple persons are recognized. (per segment)

72

PI 7. TranslationSampler: number of times the previous sample of same body part cannot be found.

This indicates dropped or unmeasured body part samples (per segment).

PI 8. TranslationSampler: the average duration between two consecutive samples of the same body

part (in ms) (per segment). (window duration is set to be 833 ms in these experiments)

PI 9. TranslationSampler: the maximum duration between two consecutive samples of the same body

part (in ms) (per segment).

PI 10. TranslationSampler: the minimum duration between two consecutive samples of the same body

part (in ms) (per segment).

7.2.3 Processing

The last category is processing. Per class of the automated detection and evaluation system, a score of

its performance is given, in respect to the intended behavior.

PI 11. ResultInterpreter: number of times there were not enough uninterpreted samples to match the

specified duration (per segment).

PI 12. ResultInterpreter: number of times the maxFutureIterations is reached (per segment),

maxFutureIterations is the number of steps of the exercise playlist the

ResultInterpreter is allowed to look into the future to try to find a match.

PI 13. ResultInterpreter: number of times the matchThreshold is increased (per segment), the

matchThreshold is increased each time the ResultInterpreter advances one step into the

future of the exercise playlist to try to find a match.

PI 14. ResultInterpreter: number of times the indicated “strongest translation” matched the

performed translation when a part of the specification could not be matched. Only indications

of an active movement are taken into account. (count negative if a “strongest translation” is

given incorrectly. If there were both correct and incorrect indications, only the correct ones are

counted.)

PI 15. ResultInterpreter: number of times an indicated match was correct. (count negative if an

indicated match was incorrect, if there were both correct and incorrect matches, only the

correct ones are counted.)

7.3 Experiment protocol
Before starting the experiments, the tests subjects have to read and agree to the patient information

letter, which can be found in Appendix 10.4. Among others, the inclusion criteria are stated in this

letter: above 18, proficient in Dutch, and without physical handicaps.

The protocol for the experiment consists of six performances of the target exercise given in section 3.4

(page 35). For the first performance, a very short explanation is given on paper (see Appendix 10.5.1)

Start in in normal stance, with both feet next to each other, then swing your right leg along

your left leg. Next, move your hips towards the left, while at the same time move the upper

body towards the right.

Before the start of the second performance, the test subject is given the full explanation of the CoCo

exercise description, also on paper (see Appendix 10.5.2). After reading this, the example video is

shown to them. In this explanation, the references to the supporting chair are removed, because the

chair can interfere with the Kinect depth sensing qualities. Furthermore, “affected” side is replaced by

“left”, and logically “un-affected” by “right”.

73

In the last performance, the test subject is asked to perform the same exercise in the same manner,

but move their upper body to the right instead of the left.

Each of these three performances is done twice, the first with instruction to perform the exercise at

an easy speed, the second at a bit higher speed. These arbitrary speed instructions will result in

exercise performances at different speeds, which can be used to test the algorithms for robustness to

change in exercise duration. Because duration is not normalized, this is expected to be of influence to

the detection and evaluation quality.

The test subject will perform the exercise while facing the Kinect depth camera. The distance between

the camera and the front of the shoes of the test subject is 3 meters. The recording is made via the

built-in recording feature of the Kinect Tool Box used throughout this project. This functionality

generates data which is proprietary to this program, thus the datasets cannot be interpreted by third

party software such as the Kinect toolkits for Matlab. The recording functionality is used despite these

limitations, because the recordings can be fed to the implemented automated detection and

evaluation system without any effort.

7.4 Analysis
The recordings of each experiment are replayed in the Kinect Toolkit, with all detection and evaluation

disabled. Because there is no simple way to convert the Kinect video data including the skeleton

overlay to a video file, the screen is captured via a screen recorder (Camtasia Recorder 8 (TechSmith,

2013)). The skeleton overlay generated by the Kinect Toolkit has some issues. The first problem is a

lack of synchronization between the RGB video stream and the skeleton model. The skeleton overlay

has a delay, which is related to the amount of processing power available. To limit the delay, all

processing has been disabled while making the screen recording. The second problem is a scaling offset

between the video and skeleton model. Both problems can be seen in Figure 42, while this capture

was made, the right hand moved to the left fast, and the skeleton representation is lagging behind. It

can also be seen that the shoulders are drawn significantly below where they appear on the RGB image.

In general the skeleton model is slightly smaller than the RGB image. The skeleton and RGB image are

aligned at the feet, resulting in the largest offset at the shoulders and the head. These two problems

are only relevant for the visualization; the position and timestamp of the coordinates of the skeleton

model are correct.

Figure 42: Frame recorded by a screen recording, showing both a scaling offset and a delay between the RGB image and
the skeleton overlay (This is a frame from a session with all processing enabled. The screen recordings used for manual

annotation do not show this much delay, because most processing steps are disabled).

74

A logger is implemented to analyze the performance of the detection and evaluation system. This

logger writes debug information to a text file with the following structure:

time stamp; method name; result 1; .. ; result n;

The timestamp is based on the current system time, not the time of the recording. Via annotation of

the captured videos, the time of the following moments is determined: start of the recording, start of

segment 1, start of segment 2, start of segment 3 and end of segment 3. The start of the recording is

also marked in the log file, thus the time stamps can be used to filter the log file for events that

happened during a specific segment.

Performance indicators 1 and 2 listed in paragraph 7.4 are determined by manual annotation based

on the screen recording. To perform the annotation, the screen recordings with skeleton overlay were

analyzed frame-by-frame. The position of the skeleton overlay was compared to the actual position of

the body part, but only for the 6 relevant body parts, position errors in other body parts were ignored,

because these are not used in the detection and evaluation system.

The rest of the performance indicators is given via filtering of the log files for the specific keywords.

Performance indicator 4 uses a free format, in which the incorrect body parts are noted by

abbreviations (see Table 12 for the abbreviations used). For performance indicator 14 and 15, the log

result is compared to the video via manual annotation based on the screen recording.

Joint abbr. Joint abbr.

Spine Sp Hand Right HaR

Head He Hip Left HL

Shoulder Left SL Knee Left KL

Elbow Left EL Foot Left FL

Hand Left HaL Hip Right HR

Shoulder Right SR Knee Right KR

Elbow Right ER Foot Right FR
Table 12: Abbreviations used to define the non-relevant body parts in the results.

7.5 Results
All 8 subjects successfully completed all 6 performances of the experiment protocol. The subjects did

not make the correct movements based on the short description (session 1 & 2). However, three

subjects were already familiar with the chosen target exercise, and made no false movements during

session 1 & 2. These three subjects are marked in Table 13, together with the ID, length and sex of all

subjects.

ID Length Sex Comments

1 160 F
2 191 M Was already familiar with the exercise
3 185 M Was already familiar with the exercise
4 202 M
5 192 M
6 173 F
7 175 F Was already familiar with the exercise
8 178 F

Table 13: Information on experiment participants.

75

7.5.1 Segment duration

As stated in section 7.3, the experiment consisted of three different exercise descriptions: a

deliberately vague description, a complete description and a mirrored complete description (see

Appendix 10.5.2). Each subject performed each description twice, first at normal speed and second a

bit faster. Both normal and faster are subjective instructions, and therefore some deviation in

performance speed can be expected.

Figure 43: Average segment duration of the six experiments for the three segments. The black error bars indicate the
minimum and maximum durations.

Figure 43 shows the average duration of each segment over all 8 subjects, for each experiment session,

measured via manual annotation of the video recordings of each experiment. It can be seen that each

second performance was performed faster. See Table 14 for the average performance speeds per

segment and in total for the “normal” and “fast” performances.

The horizontal line at 5 seconds in Figure 43 is emphasized because the individual segments have a

parameterized duration of 5 seconds in the target exercise specification. Unfortunately, the average

performance duration of a segment was less than 5 seconds in all but one case. Segment 2 of

experiment 3 was the only performance that matched the parameterized duration of 5 seconds with

a relatively small margin of error (average 5.06 with a variance of 0.38). In general both the normal

and fast performances were too short, and the variance was very high (see Table 14). Because the

system doesn’t normalize for changes in performance speed, this has a negative effect on the detection

performance.

performance speed normal fast

average segment 1 2.8 (1.2) 1.9 (0.9)

average segment 2 3.9 (2.4) 2.6 (2.3)

average segment 3 4.6 (6.5) 2.9 (1.0)

sum 11.3 (12.7) 7.4 (7.1)
Table 14: average segment durations (variance between brackets) for normal (session 1, 3 & 5) and fast (session 2, 4 & 6)
performances.

The short duration of the segments not only disturbs detection of movements, in some cases it even

makes evaluation on a segment level impossible. When a segment duration is shorter than the

0

1

2

3

4

5

6

7

8

9

normal (1) fast (2) normal (3) fast (4) normal (5) fast (6)

D
u

ra
ti

o
n

 (
s)

Minimal | Explained | Mirrored

dur. segment 1

dur. segment 2

dur. segment 3

76

sampling window length, there is a chance that nothing was measured during the segment. Experiment

session two by subject 3, 5 and 6, and session 1 by subject 6 have segment durations shorter than

833ms. Due to lack of samples, the result tables in the Appendix show blanks for these sessions.

7.5.2 Performance indicators

In section 7.2, 15 performance indicators are listed. All the results of all 15 performance indicators are

listed in the Appendix 10.6 for each subject, each session, each segment and each relevant body part

(for some). Table 15 lists a results table for a single session. In the top left the subject is listed (“S1” =

Subject 1), the session number is listed below the subject number, next to the body part indicators (B

= Body, AL/AR = Arm Left / Right, LL/LR = Leg Left / Right and UB = Upper Body). The 9 rows are

repeated six times, for the six sessions. The rows marked 1 till 4 contain the first four performance

indicators, which are given per body part. Performance indicators 14 and 15 are marked per body part

as well. Performance indicators 5 till 13 are listed in a single row, because these are only given per

segment. Each field in the table is colored green or red, green indicates a good result, red indicates a

bad result.

Table 15: Extract from result table, subject 1, session 1.

Performance indicator 1 represents the number of times a body part is moved such that it would result

in a different Labanotation. These are errors made by the performer. Obviously, these errors are

present in the first two sessions for subjects who were not familiar with the exercise, because of the

deliberately vague exercise description. The movement of the upper body also differs from the target

exercise in sessions 5 and 6, because the subjects were asked to bend their upper body left instead of

right. Notable errors are wrong movement of the right arm of Subject 1, session 4, and of the left arm

of Subject 8, session 3, both to regain balance.

Performance indicators 2, 3 and 4 represent errors made by the Kinect SDK. Indicator 2 is determined

by subjectively analyzing the videos with the skeleton overlay. Indicator 3 and 4 represent the number

of samples that are reported to be inferred by the Kinect SDK.

The results show that the Kinect SDK is better able to track the legs during Segment 1 than during

Segment 2 and 3. In other words, the Kinect SDK is better able to follow the legs when these are going

from normal to crossed, than when the legs remain crossed, or return to the normal position. In

general, Segment 2 has a much higher number of tracking errors than Segment 3, although the

movements and durations are comparable (bending of upper body). In Segment 2 the legs remain

77

crossed, which apparently lowers tracking performance for the other body parts as well (upper body,

arms).

Even though indicators 2 and 3 both represent position errors of relevant body parts, the different

assessment method gives different results. In most cases, the manual annotation and the Kinect SDK

agree, but in a few cases they contradict. For example session 3 of Subject 3 had a visually error-free

skeleton, but 8 relevant samples were indicated to be “inferred”. Session 3 of subject 8 shows the

inverse, visually the skeleton did not track the movements correctly, but the Kinect SDK did not report

tracking issues. Due to these contradictions, the “inferred” status reported by the Kinect SDK can only

be used to predict the chance on tracking errors. This also means the common practice of dropping

“inferred” samples is not wise, because these samples can very well be correct.

In general, tracking issues were most apparent for the crossing of the legs, looking at sessions 3 till 6,

11 crossings were correctly detected, and 21 were missed. While bending the upper body, the Kinect

SDK confuses the position of the left or right shoulder, but the shoulder center remains fairly accurate.

Unfortunately, the Hip Center joint is placed too far towards the bending direction, making it hard to

determine the actual angle between the upper and lower body. Indicator 4 shows that the knees and

extremities (hands, feet) are often missing. Because this is a common issue of the Kinect SDK, the joints

one step more proximal (wrists, ankles) were already chosen to determine the position of the Legs and

Arms.

Performance indicator 5 indicates the number of samples of which the jitter is higher than the window

length (per segment). These are samples which are measured correctly by the Kinect, but for which

the processing took more than a single window length. With a sample interval of 833 ms, none of the

measurements show samples of which the jitter is higher than the window length.

Performance indicator 6 indicates the number of times multiple persons are recognized by the Kinect

SDK. All performances were carried out with only one the subject in view. The Kinect SDK agrees to

this.

Performance indicator 7 indicates the number of times the previous sample of the same body part

cannot be found. As stated previously, in order to get some output, the Kinect software was configured

such that it did not drop “inferred” samples. Samples with the state “not tracked” would still trigger

indicator 7, but none of the measurement showed such samples.

Performance indicators 8, 9 and 10 respectively give the average, minimum and maximum duration

between two consecutive samples of the same body part (in ms). The timestamps stored together with

the Kinect joint positions are based on the current system time at the moment of processing. If there

is insufficient capacity, this processing will take longer, delaying the timestamp given to the Kinect

data. For prerecorded data, such a delay causes a shift between the relative time on which the sample

was measured, and the time of the time stamp given to the sample. This shift causes an over or under

estimation of the duration between two samples, and thus an under or over estimation of the

movement speed. Four out of the 48 experiments had minimal or maximal sample interval durations

which deviated more than 5% from the intended sample duration of 833 ms. Subject 7, session 4 was

the only performance for which the average sample interval deviated more than 5%.

78

Performance indicator 11 lists the number of times there were not enough “uninterpreted” samples

to match the specified duration. When the system finds a match between the measured translations

and the specification, these translation samples are marked “interpreted”. Thus a lack of

“uninterpreted” samples can only happen at the start, or after the system found a match. If the system

works correctly, it will find a match at every segment (thus once per 5 seconds) for every body part. A

segment lasts 6 window durations (6 x 0.8 = 5s) of which the first 5 would trigger PI11 because there

are not enough “uninterpreted” samples yet. Therefore, PI11 would indicate 30 per segment if the

system would function perfectly. During the experiments the system did not function perfectly. The

results show many cases in which there was a lack of “uninterpreted” samples during the last part

(Segment 3), even though not a single match was made. Performance indicator 5 indicates no samples

were dropped, so the samples are actually available. The occurrence given for indicator 11 is always a

multiple of 6: the number of relevant body parts. Furthermore, if there are no matches, it correlates

well with the segment duration (occurrences ≈ (segment duration / window length) x 6). It is apparent

that either the system that marks samples as “interpreted” or the system that checks if enough

“uninterpreted” samples are available is malfunctioning. More research is needed to indicate the exact

source.

Performance indicators 12 and 13 give two numbers which indicate the functioning of the Result

Interpreter. If no match can be found between a measured translation and the current specification

element, the system will try to match between the same measured translation and the next

specification element. But each time it goes to a next element, the chance of a match is lowered.

Indicator 12 gives the number of times this chance is lowered. After looking 5 steps into the future,

the match is indicated as failed, the number of times this happens is given by indicator 13. Thus, if no

match is found, 12 should be five times as large as 13, and if a match is found, this factor should be

lower. Table 16 indicates that when matches were found, 21 out 34 times the factor remained 5. This

indicates that the system does not stop to look for a match with a future sample, after a match was

found. As a result the system will erroneously indicate that the user made both a correct and an

incorrect movement at the same time, with the same body part.

 match no match

factor is 5 21 109

factor is not 5 13 1
Table 16: Four cases for the factor between indicator 12 and 13, a factor of 5 is correct if there was no match, and the

factor should be lower when there was a match. The factor is counted for each segment of each session for each subject
(total 144).

When the system fails to find a match after looking 5 steps into the future of the exercise playlist, it

will indicate the largest translation of the specific body part for evaluation purposes. This indication

tells what movement the subject performed instead of the specified movement. Indicator 14

represents the number of times these indicated largest translations correspond with the movement

performed by the subject, but only when the subject’s movement was not according to the

specification. If the movement was according to the specifications, the system should have been able

to find a match, and should not indicate the movement under “largest translations”. Because most

user performances were without errors, most indications are per definition incorrect. The results show

negative numbers, because the user performed the movement correctly, and the system counted the

movement under “not matched”. The largest number of “largest translation” indications is given for

79

the arms, possibly because the wrists (the measurement location for the arms) travel the furthest of

all relevant body parts during the exercise.

The last indicator (15) lists the number of correct matches per relevant body part. Just as for indicator

14, the system seems to favor indicating matches for the arms. When a body part is indicated as a

match, the system should not look for other matches for the same body part in the same segment.

This is in agreement with the results, which never show more than one match per body part per

segment. Most matches are made during the third segment, and very few during the first segment. In

total, only 4 out of the 288 possible matches were successful in the first segment. As a consequence,

the system will never proceed through the exercise playlist in a normal manner; it will fail to match the

first item in the playlist, and will match later items with a lower chance. Experiments in which the

subject remained motionless a relatively long time before starting the exercise, show more matches

in the second segment. This indicates the system needs some time to settle. This settling time can be

related to the requirement of at least two weighted translation samples for every body part, before

the matching process can start. This delayed start combined with the low sample frequency, means

the matching starts 1.6 to 2.4 seconds after start of the recording.

7.5.3 Kinect joint tracking status

Analysis of the log files indicates that a significant number of joint samples are marked “inferred”.

Common practice is to drop these samples, because they are unreliable. The implementation of the

WindowSampler is such that it requests a sample at a specific time, and waits a full window length if

no sample was available at the time of request. Furthermore, the ResultInterpreter stops looking

for other body parts as soon as it cannot find enough samples for a specific body part. These two design

choices, make the impact of lost samples very high, because it generates gaps of a full window length

in the data. Considering that many performances of experiment segments took place in 2 or 3 window

lengths, those segments are missed completely when 33-50% of the data was missing. To limit the

impact of the inferred samples, the Kinect Toolkit was configured to never drop samples. This means

it can use samples which are known to be unreliable. Further analysis was carried out to find ways to

deal with the inferred samples. A logger was made that stores the joint status (Tracked, Inferred, Not-

Tracked) for each frame for each sample. The frame rate of the raw joint data is theoretically 30 fps,

but the logging showed it was practically 27-28fps. This logger was ran on the recording of experiment

session 3 for every subject.

80

Table 17: Kinect tracking status during experiment 3 for 8 subjects. The numbers indicate the number of times a block of
at least one window length (0.8s) was inferred, the bars indicate the portion of tracked samples.

Table 17 shows the tracking status for each body part for all 8 subjects. None of the samples had the

status “Not-Tracked”. The bars indicate the percentage of samples that had the status “Tracked”, for

all subjects the following joints were tracked 100% of the time: Hip Center/Left/Right, Spine, Shoulder

Center/Left, Head, ElbowLeft and WristLeft. In other words: only 9 out of 20 joints were correctly

tracked, which is not a good score. But a joint which is reliable 90% of the time, can be of use, if the

inferred samples are distributed evenly. Figure 44 shows an extract of a set of graphs which show the

tracking status over time for the HipRight, KneeRight, AnkleRight and FootRight joints.

Figure 44: Kinect tracking status of subject 1 experiment 3 for the HipRight, KneeRight, AnkleRight and FootRight joints
(x-axis in seconds).

Figure 44 shows that the inferred errors are not distributed homogeneously. Small peaks such as in

the Foot Right, could be filtered or ignored via a smart buffering system that always returns the last

“tracked” sample. But such a system won’t help for the large gaps such as shown in the Knee Right and

Ankle Right graphs. Left of the small bars in Table 17 a number is shown, which represents the number

of times the tracking status was “inferred” for at least 24 samples. The duration of a single sample is

ca 36ms, thus 24 samples equals 870ms, which is more than a single window length (833ms). When 24

samples are missing, this will have a negative impact on the detection algorithms, no matter the

filtering or buffering systems used. Table 17 indicates that unrepairable inferred errors (gaps) are

present for all subjects, especially for the Ankles, Knees and Hands. Furthermore, the number of gaps

does not relate directly to the portion of inferred samples, for example the Knee Left for subject 5 and

lost

inferred

tracked
HipRight

lost

inferred

tracked
KneeRight

0 5 10 15 (s)
lost

inferred

tracked
AnkleRight

0 5 10 15 (s)
lost

inferred

tracked
FootRight

81

6 shows only two gaps, but less than 50% of the samples are tracked. This means the gaps are very

long, and will have a large negative impact.

7.6 Summary
The results of the experiments show that the current implementation cannot be used to detect and

evaluate exercises. On multiple fields the automated detection and evaluation system is not

performing well. The errors are caused unexpected performance speed of the subjects, limited

skeleton tracking performance, and errors in the implementation. Despite giving a printed exercise

explanation, including an example video, the variance in performance speed was high, and the

segment durations were shorter than the desired 5 seconds. The skeleton tracking performance also

failed more than expected. Only in 8 out of 46 experiments, the crossing of the legs was detected

correctly, and in 10 out of 46 experiments, other relevant body parts were misplaced as well. There

was only a single experiment in which the Kinect itself did not report tracking errors, but the crossing

of legs was still missed in this experiment, diminishing the value of the “tracked” status reported by

the Kinect SDK. Results indicate that the timing and processing speed of the system is adequate, but

the system fails to correctly find matches between the measured translations and the exercise playlist.

Even when matches are found, in a few cases (21 out of 144) the system continues to look for matches

during the same segment. This indicates that the marking of matches is not reliable. On a positive note,

the system was able to process all recordings, to read the skeleton data, convert this into translations,

compare the translations to the exercise specification, and advance in this exercise specification

playlist. Because the duration of the exercise performance differed significantly from the specification

and the Kinect SDK skeleton was unreliable, the experiment results do not necessarily reflect the

performance of the remaining processing steps.

83

8 Discussion & Conclusion

8.1 Discussion
As can be read in section 7.5, the results of the experiments show that the implementation all in all

does not function well. This section discusses what parts of the design and / or implementation are

good, despite the negative results, and where redesign or reimplementation is required.

Figure 45 shows an overview of the most important parts of the detection and evaluation system. The

blocks in Figure 45 make it appear as if those blocks are isolated components in the software, and

fortunately this is true for the major part. However, due to underestimation of the complexity of the

interpretation of the measured translations, parts E and F are intertwined. This underestimation of the

complexity is also reflected in the absence of debugging tools, such as tester classes and decent error

logging. Such functionality is common in complex software, but often omitted in simple prototypes. A

future version of the system definitely should have functionality to isolate each component of the

software and test the functionality of the component with known and error-free input data. In the

current design, the low quality of the data generated by the Kinect SDK, made it very hard to discern

between errors caused by faulty input data and errors caused by bugs in the software. Generating

good test data is time consuming, but with hindsight it would have saved a lot of time during debugging

of the system. The next paragraphs will discuss issues of each of the components shown in Figure 45,

together with possible improvements.

Figure 45: Overview of the most important steps of the detection and evaluation system implementation.

A) Exercise parameters

The exercise parameterization model based on Labanotation provides a good balance between a

complete description of each body part’s position at every moment in time, and a vague verbal

description of the exercise. By omitting irrelevant movements, the model is more robust to detection

errors or user variations in body parts which are not relevant. Due to the relatively small set of

language components (the different types of translations, body parts, segments etc.) the concept is

easy to learn. And despite this small set, the language is not limited to a specific type of exercises or

movements. Therefore, it can be stated that the exercise parameterization model based on

Labanotation is a satisfactory result to the research initiated by the following research sub-question:

Exercise parameters
Exercise

specification playlist

Init

Run

Skeletal positions Translations
Matches per body

part
Position in playlist

C D E F

A

B

3 4 5

1 2

84

“Which measurable body movement parameters can be used to evaluate the performance of an

exercise that is part of a non-supervised training scheme for rehabilitation patients?”

Converting an exercise into any structured language does require to be able to recognize and isolate

those components in the exercise. For example identifying the efforts that cause a transition from one

posture to another can be more complex than just identifying these two postures. A system that can

visualize the motion would help significantly in generating correct parameters, because it can provide

the physician with direct feedback on the results of the chosen parameters. Two software packages

that can visualize Labanotation are: LabanEditor (Kojima, 2002) and LabanDancer (Wang, 2005).

The exercise parameterization model has some support for dynamic personalization, but the current

options are too limited to be of use. The “side” of a body part can be personalized (“affected arm”),

while the direction does not support personalization. A movement direction “towards affected side”

would often be required together with the use of the affected side implementation. A specific

requirements analysis is advised to find out what the needs for personalization are for rehabilitation

exercises.

B) Exercise specification playlist

The conversion from the exercise parameters into an exercise playlist does not propose problems.

C) Skeletal positions

Without any uncertainty, the Kinect is not the best tool for the automated evaluation of realistic

rehabilitation exercises. Analysis showed that out of the 109 realistic exercises, only 11 exercises are

suitable without alteration. This analysis was related to the first two research sub-questions: “What

are the pose and movement detection capabilities of the Kinect depth camera when tracking a single

person in a non-supervised exercise setting?” and “What type of rehabilitation exercises can be

evaluated using a Kinect depth camera in a non-supervised setting?” During the analysis, it became

clear that these two questions cannot be discussed separately. Due to the low skeleton tracking

performance, only a small subset of the rehabilitation exercises was suitable. Most exercises contained

subtle movements, or required contact with a large object (i.e. a bed) that would definitely confuse

the detection. Even when the exercise seemed suitable on paper, the skeleton tracking produced too

much errors to be of real use. To work around the skeleton tracking issues, almost all rehabilitation

exercises will require minor or major adjustments, or specific workarounds have to be found for each

exercise. The latter renders the concept of a universal exercise parameterization method pointless,

whereas the first is in conflict with the goal of making a universal exercise evaluation tool.

To achieve better tracking performance, a better skeleton tracking technique could be used. At the

end of 2013 Microsoft released the successor of the Kinect: the Kinect “One”. Microsoft states that

this sensor has an improved resolution, and promises that the skeleton tracking will be better.

Currently, no release date for the Kinect “One” SDK is given, therefore it remains unknown how much

better the Kinect “One” will be. Affordable sensory enhanced clothing recently became available

(Athos Works, Inc.) which determines movement of body parts via integrated multichannel EMG.

Inevitably, such a system will have both advantages and disadvantages compared to the depth camera

based techniques, and thus require new feasibility studies.

85

Filtering can improve the skeletal input data for the automated detection and evaluation system,

without changing the sensor. As discussed in 5.3.2, the skeleton data subsampling system requires

low-pass filtering. This filtering step is not implemented in the prototype due to time constraints. The

framework in which the filter can be implemented, the ResultWeighter, is present, but currently

only used to add weight to constant trends. A filter that takes the position of neighboring body parts

into account might help to make the position estimations more realistic. In the Kinect Skeleton model

the length of bones can change frequently, and there are no limitations on realistic degrees of freedom

of a joint. Via patient specific parameters, bone lengths and degrees of freedom of joints can defined,

which will help to identify and correct detection errors. Another option that might improve the

skeleton tracking performance, is an exchange of Kinect software. In the starting phase of this project

a choice between Microsoft’s Kinect SDK and PrimeSense’s OpenNI/NITE was made. Based on short

experiments, and evaluation of the specifications, the skeleton tracking performance of both systems

seemed comparable. Because the skeleton tracking performance turned out to be one of the major

issues of the system, a more in-depth evaluation on the performance differences between the two

skeleton tracking packages is justified. Both filtering and exchanging the Kinect software probably does

not improve the tracking performance enough to make the Kinect depth camera suitable for detection

of unaltered exercises. All Kinect enabled exercise evaluation applications found in literature, are

implemented for a limited set of exercises. These exercises mainly consist of coarse movements,

without interaction with foreign objects. If the Kinect would be suitable for a broad range of exercises

by using different software and advanced filtering, this would be shown in literature.

Sub-sampling of the skeleton positions for detection and evaluation is done at a relatively low

frequency of 0.8 seconds. The average duration of the first segment of all experiments was 2.35s. If

this segment starts halfway a sample window, this means that 2 times 17% of the duration of the

segment is mixed up with another sample (at beginning and end). It is not acceptable to obscure 1/3th

of the segment, therefore a much shorter sample interval should be used. Unfortunately, the

experiment results show that processing of the samples can take up to 175ms in the worst case. This

indicates that ca 6Hz is the upper max with the present efficiency and processing power (Intel Core i5

2520M). A higher sampling frequency enables a much more flexible windowing system, without the

need for overlapping windows. A higher sample rate will also help to shorten the startup delay of the

system. Currently, the first output is generated after two window lengths, but not all subjects remain

static for so long.

D) Translations

The exercise parameterization model based on Labanotation is not only used to define the exercise,

the same set of concepts and language components is also used for the detection and evaluation. Using

the same language for both specification and detection makes comparison between the specification

and the measurements straightforward. The developed system is able to convert the measured joint

positions into translations that are compliant with the Labanotation based model. Every translation

belongs to a specific body part, and has a specific duration. The experiment results show that the

duration concept is flawed (see the next paragraph), but the concept of multiple translation types per

body has much potential. Therefore it forms a successful result for the research initiated by the fourth

research sub-question: “How can the measured body movement parameters be automatically detected

from the motion data recorded with a Kinect depth camera?”

86

Of the four translation types, currently only the horizontal and vertical translations are fully

implemented. To achieve a universal detection and evaluation system, implementation of rotational

translations has to be finished. However, for the relative translation, finishing the implementation is

not straightforward. The current implementation has a strict division in body parts, but for calculation

of the relative translation, information of multiple body parts is needed. Furthermore, the concept of

the relative translation is much less straightforward than that of the other translations, and in most

cases it gives redundant data in respect to the horizontal and vertical translations. Therefore, a new

requirements analysis of the usability of the relative translations is advised before deciding to

implement the relative translations.

In section 7.5.1 is shown that there was a large variation in the exercise duration between subjects,

but that all performances were shorter than expected. For example, segment 1 lasted only 2.5 seconds,

half of the time it was parameterized to last. As a consequence, the movements the subjects

performed during the second segment are accounted to belong to segment 1, and are thus mixed up.

This happens because the system assumed that the first segment lasted 5 seconds. Obviously, a more

flexible segment duration system is needed. If the requirement for a real-time system is dropped,

normalization in time can be used. To normalize the time, the start and end of the exercise have to be

detected (from static to static posture), and this interval has to be scaled to last one “unit”. The

exercise parameters will have to be given in portions of this “unit”. To make the system better suited

for real-time applications, correlation can be used to detect the segment durations. Via cross

correlation between the exercise specification and the measured translations, the time shift that gives

the best match can be found. When the correct time shift is found, the measured translations can be

scaled in time (made shorter or longer), to search for the highest correlation with the exercise

specification. Such a system would need some settling time, for example by first performing a “trial”

exercise. The advantage is that it still enables to give feedback on performance speed, information

which would be lost when the duration is normalized to one “unit”.

Translations are calculated based on the change in position between two consecutive samples (see

section 5.3.3). For each body part, these translations are calculated in exactly the same way, which can

give problems at the extremities. See for an example Figure 46, while this person was bending her

upper body, the right hand moved down, and the left arm moved up and towards the left (see also the

overlay skeleton on the right of Figure 46). Despite a significant movement of the hands, the user

probably did not intent to move her hands. Unintentional movements are obviously only a problem if

they occur for relevant body parts. Unfortunately, this was the case for the target exercise, in which

the subjects were asked to hold their arms along their body. There are two “solutions” to this problem.

The first would be to predict such involuntary movements and explicitly incorporate them in the

exercise parameters. The second solution is to calculate the translations based on relative changes of

a joint in respect to the parent joint. In the example, the position and orientation of the shoulder joints

can first be subtracted from the hand joints, before calculating the movement of the hands.

87

Figure 46: Screen capture of a skeleton overlay of a person standing upright (green), and bend (red). On the right, the full
upright skeleton is drawn, and the arms of the bent skeleton.

E) Matches per body part

As stated at the beginning of section 8.1, components “E” (Matches per body part) and “F” (Position

in playlist) were designed as a single function. This is also reflected in the last research sub-question:

How can the detected movements be compared to the intended exercise, in order to be able to evaluate

performance?, in which comparison of single movements and evaluation of the whole exercise are

proposed in a single question. It soon became clear that comparing a single measurement sample, is

not comparable to the evaluation of the exercise in its total. The Labanotation based language

provided a very good basis to perform the comparison. Because the same modalities were used for

the specification and the storage of the measurement results, it was possible to calculate the

“mathematical” difference (the match quality) between a single specification element and a

measurement sample. The challenge lies in knowing to what specification element the comparison has

to be made. In the start this is simply the first element of the specification playlist, but when to advance

to later elements? In the design, the system would advance in the playlist if the average match quality

of all relevant body parts was above a predefined threshold. This did not work correctly, mainly

because the major part of the exercise specification contained passive translations (do nothing). These

passive translations were matched when the subject was standing still, and the system advanced in

the playlist before the subject could even start the performance. A division between active and passive

translations was made to overcome this problem. Due to limited quality of the skeleton model there

was no decent test data to evaluate this concept. Therefore, the system in its current form can only be

presented as a system which is able to compare a single measurement sample to a single specification

element (component E). The renewed knowledge of the required functionality of the part that controls

the position in the playlist (component F) makes a much more reliable design possible, than the current

proposed and implemented design.

A full redesign of component E is not required, but there are parts which can be improved. The match

between a measured translation and the exercise specification is influenced by the type of

specification element. For example, passive elements require a more strict match than active

elements. The current implementation to influence the match is a bit of a “hack”, because it wasn’t

part of the design initially, and added later. It would be better to implement a system to add a “quality”

88

indication to each measured translation and for each scoring aspect. This makes it much easier to, for

example, give more “weight” to an active translation or to decrease the “weight” of translations that

relied on samples with an “inferred” tracking status.

Matches are also influenced by multiple predefined parameters, for example the relation between

body part displacement and duration of an action, the minimal match quality for a match to be

considered “good”, etc. (see appendix 10.1). Because the system never produced reliable output, it

was hard to optimize all these parameters. The current parameters are based on theoretical analysis,

or analysis of incomplete results. Therefore, it can be assumed that optimizing these parameters will

definitely improve the performance of the system. The most important parameter, “normal speed”,

which relates body part displacement to the duration of an action, could even be optimized on the fly,

via a correlation system comparable to the segment duration optimization discussed earlier.

F) Position in playlist

The ResultInterpreter calculates a match between measured translations of a single body part

and the elements of the exercise specification playlist at the position which it receives from the

PercentageChecker. If this match fails, it will try to match the next element from the exercise

specification playlist. If the match was successful, it will mark the measured translations as matched.

The PercentageChecker does not get feedback on the end result of a match, it just gives a single

exercise playlist position based on the results of the previous run. This makes the control of the

position in the exercise playlist (the progress of the exercise performance) difficult to follow. Analysis

of the log file shows that there are serious bugs in this position control, see for example Table 18, here

the Right Ankle triggered a “Failed to match” and “Match” at the same time. This is clearly incorrect,

but the exact source of the error is hard to track, due to the lack of a central broker to control the

position in the playlist.

Time Class Action Body part Sequence # Match quality

25.490 resultInterpreter Match AnkleRight 9 46.6
25.491 resultInterpreter Failed to match AnkleRight 4

Table 18: Extract from log file, showing contradictive results.

A “Failed to match” will trigger an indication of the “Largest translation”, to evaluate what the person

did instead of the intended movement. If only a single element in the exercise specification playlist

could not be matched, it is clear which body part performed a false movement, and how long this

movement lasted. But the “Largest translations” are also triggered when the position in the playlist is

not known at all. In this case, the “largest translations” can only indicate what the user did, and not

what he should have done. Therefore, in the current implementation it is better to mute the “Largest

translation” feedback if multiple elements are missing.

89

8.2 Conclusion
There is a demand for automated rehabilitation exercise detection and evaluation systems which can

be used in a non-supervised out-of-clinic setting. In this report, research is done to find out whether

the affordable Microsoft Kinect depth camera can be used for such an exercise evaluation system. The

Kinect depth camera is developed to control specially designed games via body movements. Due to

the limited resolution of the depth camera, the Kinect cannot track subtle movements such as

movement of the chest due to respiration, and is easily confused if limbs are crossed. Such limitations

hamper the use of the Kinect for automated evaluation of rehabilitation exercises. Analysis of 109

realistic rehabilitation exercises showed that 98 exercises would certainly not be suitable for

evaluation without altering the exercise.

The detection and evaluation system is based on a set of parameters of an exercise. Parameterization

is chosen over reference recordings, because the latter lacks context information. A reference

recording based detection system can indicate that a performance was false, but is not able to tell

what exact movement caused the error, and what specific changes are needed to correct the error.

Unfortunately, there is no universally accepted method to parameterize an exercise. Therefore, the

concepts of a method used to notate dances, Labanotation, are used to create a new parameterization

method. This method can be used to specify all movements which are relevant for an exercise. Based

on this method, a detection and evaluation system is designed and implemented. This system reads

the parameterized exercise to create an exercise playlist containing all translations of each relevant

body part in successive order. The system converts the joint positions, measured by the Kinect SDK,

into translations of the same type as used in the parameterization. These translations are compared

to the exercise playlist, and when a sufficient part is matched, the position in the playlist is advanced.

In order to test the implementation, 8 subjects each performed 6 different versions of the same target

exercise. Unfortunately, the results of these experiments were not positive. The main issue lies outside

the scope of the implementation: the subpar skeleton tracking performance. Only in 8 out of 46

experiments, the crossing of the legs was detected correctly, and in 10 out of 46 experiments, multiple

relevant body parts were misplaced. Solely based on the skeleton tracking performance of the Kinect

SDK, it can be stated that the Kinect depth camera is not a suitable tool for evaluation of common

rehabilitation exercises. The exercise parameterization method makes it unfeasible to create exercise

specific workarounds to cope with the Kinect skeleton tracking limitations. Requiring to adapt the

exercises or exercise specifications to the limitations of the Kinect, also defeats the goal of creating a

universal exercise detection and evaluation framework.

The high number of errors in the skeletal positions made it hard to determine the performance of the

detection and evaluation system. But even in the experiment performances containing few skeleton

tracking errors, the number of correct matches made by the system remains too low to advance in the

exercise playlist. The high variance in performance duration definitely played a role in the low

detection rate, showing that the system requires additional functionality to normalize the exercise

duration. Experiment results indicate that the timing and processing speed of the system are adequate,

but the system often fails to correctly find matches between the measured translations and the

exercise playlist. Even when matches are found, in a few cases (21 out of 144) the system continues to

look for matches during the same segment. This indicates that the marking of matches is not reliable.

90

The main research question was: “How can the Microsoft Kinect camera be used for automated

rehabilitation exercise evaluation in a non-supervised setting?” The proposed design and

implementation showed that the Microsoft Kinect camera cannot be used for automated

rehabilitation exercise evaluation without alteration of the exercises, or exercise specific workarounds.

To see if the framework would generate sensible results with a better sensor, an addition is needed

which enables testing of the system with known and error free input data. During development, a full

redesign of the ResultInterpreter was already considered, because identifying the cause of the

errors became harder and harder when the complexity grew. Unfortunately, time limitations made

this redesign impossible. However, if time is invested in this framework, the parts of the

ResultInterpreter which control the position in the playlist should definitely be redesigned. The

parameterization language based upon Labanotation showed a lot of potential, and should be

maintained in the redesign. It caused no problems at all as method to specify the exercise. The

interpretation of the duration of a movement turned out to be a hard-to-solve problem. Normalization

in time can be used, but is difficult to implement in a real-time system. It is also possible to ignore

duration and speed altogether, but this limits the modalities of feedback on the patient performance.

Perhaps the best, but also the most complex way, would be to “learn” the performance speed on-the-

fly.

91

8.3 Future vision
When the detection and evaluation system developed in this thesis would be fully functional, it can be

a valuable addition to a system such as the CoCo web portal. As stated earlier, the current home

rehabilitation systems lack sufficient monitoring tools. They are not able to adapt the exercises to the

current progress of the patient, nor are they able to check whether the patient actually performed the

prescribed exercises. This section describes two scenarios that give some insight in how a home

rehabilitation system equipped with a fully functional detection and evaluation system would offer a

more real-time interaction with the patient (“The interactive coach”) and how such a system would

offer a professional caregiver valuable information on the patient’s compliance (“The compliance

monitor”).

8.3.1 Scenario: The interactive coach

Laura is a 35 year old researcher. Last summer she fell while mountain biking, and seriously injured her

legs. Since then she regularly visits the rehabilitation center to regain full function of her legs. But now

that she has recovered enough, she is not allowed to go to the rehabilitation center anymore. Instead

she has to continue her exercises at home. To increase the efficacy of home training, her rehabilitation

doctor prescribes Laura the Virtual Exercise Coach. This is a web portal accompanied by a depth

camera. The depth camera is installed in Laura’s living room on top of her television. To use the Virtual

Exercise Coach Laura simply browses to the web portal using her Windows PC, and holds her insurance

card in front of the depth camera. The Virtual Exercise Coach then loads Laura’s profile, consisting of a

list of suitable exercises for the day. Each exercise has a specific category and difficulty, and the weekly

goal consists of a target per category. Laura gets in front of the television, and the Virtual Exercise

Coach indicates that Laura can choose an exercise and start the workout. By making a fist, and then

moving her hands up and down, Laura chooses the exercise “Knee flexion and extension” from the

category “leg strength exercises”. An animated figure resembling a woman of Laura’s age appears on

the television screen performing the chosen exercise. Because Laura knows this exercise by heart, she

says “skip” out loud to skip the example performance. While performing the exercise, Laura noticed

that the pace has gone up compared to last week. The Virtual Exercise Coach increased the pace to

compensate for Laura’s recovery and thus keeping the exercise equally challenging. After 10 minutes

Laura starts to get bored due to the short and repetitive exercise. Via visual mood recognition, the

Virtual Exercise Coach senses this mood change, and suggests to change the exercise to a more exciting

one. Laura accepts to start the new exercise, and the Virtual Exercise Coach will monitor if her mood

indeed improves, to optimize the suggestion system. Laura is not very familiar with the new exercise

and makes some errors. After 2 repetitions, the animated figure appears on the television to give an

example performance with Laura’s errors exaggerated, so she can see what she did wrong. Because

Laura is lacking the strength to improve on these errors in this complex exercise, the system presents

an alternative exercise that targets the movements she did wrong, but which is easier to perform.

Laura accepts this suggestion, and starts performing the exercise. Because the exercise is less

demanding, Laura’s heart rate drops. The Virtual Exercise Coach senses that her heart rate is

decreasing via the optical heart rate sensor, and compensates by increasing the pace of the exercise.

After another 15 minutes, Laura stops the Virtual Exercise Coach, and goes to work on her bicycle. The

mobile client of the Virtual Exercise Coach installed on her smartphone monitors her trip on the bicycle.

When she arrives at her destination, she gets a popup telling her that her physical condition is

improving well, and that she was able to travel the distance 2 minutes faster than last week. At the

92

end of the day Laure made a huge detour on her way back to home. Because of this activity, the upper

leg strength exercises for the next day are automatically omitted from the program.

8.3.2 Scenario: The compliance monitor

Peter is a 50 year old accountant, who sits at his desk for 8 hours a day. Peter’s physical condition is

going downhill for quite some years, and is becoming critical recently. On advice of his general

practitioner, Peter joined a personal health improvement program of the insurance company. In this

program individuals are stimulated to live healthier by following guidelines regarding diet, daily activity

and smoking. The adherence to the program is rewarded with a discount on their insurance costs. At

the next biannual checkup, Peter assured the GP that he did all the exercises of the program. But the

GP had reasons to doubt Peter’s honesty, because Peter’s weight increased significantly in the last 6

months. The GP wanted Peter to perform his exercises, but knew Peter wouldn’t stick to the training

scheme on his own. Because Peter’s condition is not severe enough to send him to a rehabilitation

center, the GP puts Peter on the new Virtual Exercise Coach program.

The Virtual Exercise Coach is a web portal accompanied by a small PC and a depth camera. The PC was

installed in Peter’s living room, and connected to his television. The depth camera was placed on top

of this television. To use the Virtual Exercise Coach Peter simply turns on the small PC, and holds his

insurance card in front of the depth camera. The Virtual Exercise Coach then loads Peter’s profile,

consisting of a list of suitable exercises for the day. Each exercise has a specific category and difficulty,

and the weekly goal consists of a target per category. Peter gets in front of the television, and the

Virtual Exercise Coach indicates Peter can choose an exercise and start the workout. By making a fist,

and then moving his hands up and down, Peter chooses the exercise “bending the torso” from the

category, “sitting movement exercises”. Because this exercise has a difficulty of only “3”, Peter should

perform the exercise 10 times each day to reach the target. But after only 5 times he got bored and

stopped with the exercises for the day. In the next weeks Peter exercised less and less, despite

messages on his phone reminding him of the exercise goals.

Peter’s GP also received a message from the Virtual Exercise Coach about Peter’s subpar performance,

and asked Peter about his performance at the next biannual checkup. As a consequence of his bad

performance, Peter is expelled from the personal health improvement program, and loses the discount

on his insurance costs. He is allowed to keep the Virtual Exercise Coach and will regain the discount

when he achieves the exercise target for the next month.

8.3.3 Analysis

The first scenario depicts a system which is interactive and multimodal. Both of which are important

aspects to motivate people in performing relatively dull exercises. People are more motivated to do

repetitive tasks if their virtual trainer is “reactive” (Bickmore & Cassell, 1989). This reaction (or

feedback) should not be limited to technical aspects, psychological and sociological interaction are key

aspects in keeping a patient motivated. Unfortunately, interaction on a social level has always turned

out to be very difficult to implement into an ICT system. The social aspect of the reaction in the scenario

could be facilitated by automated object detection systems, like Fraunhofer’s SHORE (Ruf et al., 2011),

which can give an indication of the mood of the patient. The technical input is given by measuring key

performance indicators such as exercise duration, movement speed, heart rate and movement

distance (for example: how far the patient bends his / her upper body). The social aspect can be

facilitated by logging activity during the day, and subsequently adapting the exercises based on the

93

activity patterns of the patient. A “vision” of social interaction, not given in this scenario, is a system

enhanced with a “virtual community”. The virtual community is a group of patients that all use the

same home rehabilitation web portal, for roughly the same goals, and form a community by

communicating with each other via the web portal. One of the reasons to build such a community is

peer pressure. It is shown that people tend to perform better if the quality of their performance is

related to a position in a competition (Torsi & Wright, 2010). Such a ranking can be generated based

on the measured exercise performance quality, but normalization is required. Unfortunately,

normalization is not trivial because each patient shows his / her own recovery speed, and only a part

of this recovery speed is related to the willingness and adherence of the patient. Factors such as the

type of trauma play a large role in the recovery speed, but cannot be influenced by the patient, and

therefore such factors should not play a role in the competition.

95

9 Bibliography

Asus. (2012). Xtion PRO LIVE. Retrieved February 18, 2013, from
http://www.asus.com/Multimedia/Xtion_PRO_LIVE/#specifications

Bickmore, T., & Cassell, J. (1989). Social Dialogue with Embodied Conversational Agents. In Natural,
Intelligent and Effective Interaction with Multimodal Dialogue Systems.

Brucker, F. (2012). Analysis of methods for segmentation and representation of time series for the
recognition of motion pattern. Institut fur Parallele und Verteilte Systeme. Retrieved from
http://elib.uni-stuttgart.de/opus/volltexte/2012/7497/

Camporesi, C., Kallmann, M., & Han, J. J. (2010). VR Solutions for Improving Physical Therapy, (128),
915665.

Catuhe, D. (2013). Kinect Toolbox. Retrieved October 07, 2013, from
http://kinecttoolbox.codeplex.com/

Chang, C.-Y., Lange, B., Zhang, M., Koenig, S., Requejo, P., Somboon, N., … Rizzo, A. (2012). Towards
Pervasive Physical Rehabilitation Using Microsoft Kinect. Proceedings of the 6th International
Conference on Pervasive Computing Technologies for Healthcare, 2–5.
doi:10.4108/icst.pervasivehealth.2012.248714

Dutta, T. (2012). Evaluation of the KinectTM sensor for 3-D kinematic measurement in the workplace.
Applied ergonomics, 43(4), 645–9. doi:10.1016/j.apergo.2011.09.011

Elteren, T. van, & Zant, T. van der. (2012). Real-Time Human Pose and Gesture Recognition for
Autonomous Robots Using a Single Structured Light 3D-Scanner. Workshop Proceedings of the
8th …, 213–220. doi:10.3233/978-1-61499-080-2-213

Foroud, A., & Whishaw, I. Q. (2006). Changes in the kinematic structure and non-kinematic features
of movements during skilled reaching after stroke: a Laban Movement Analysis in two case
studies. Journal of neuroscience methods, 158(1), 137–49. doi:10.1016/j.jneumeth.2006.05.007

Fujimura, W., Kosaka, T., & Robert, S. (2012). AccuMotion : for the post-PC era. In VRIC ’12
Proceedings of the 2012 Virtual Reality International Conference.
doi:10.1145/2331714.2331732

Griesbeck, C. (1996). Introduction to Labanotation. Retrieved from http://user.uni-
frankfurt.de/~griesbec/LABANE.HTML

Guest, A. H. (1977). Labanotation: Or, Kinetography Laban : the System of Analyzing and Recording
Movement. Theatre Arts Books. Retrieved from
http://books.google.nl/books?id=Tq1YRDuJnvYC

IFixit. (2011). Microsoft Kinect Teardown. Retrieved February 18, 2013, from
http://www.ifixit.com/Teardown/Microsoft+Kinect+Teardown/4066/1

96

iPiSoft. (2013). ASUS Xtion vs MS Kinect Comparison. Wiki. Retrieved February 18, 2013, from
http://wiki.ipisoft.com/ASUS_Xtion_vs_MS_Kinect_Comparison

Jack, D., Boian, R., & Merians, A. (2000). A virtual reality-based exercise program for stroke
rehabilitation. Proceedings of the …, 56–63. Retrieved from
http://dl.acm.org/citation.cfm?id=354340

Jolly, K., Taylor, R., Lip, G. Y. H., Greenfield, S., Raftery, J., Mant, J., … Lee, K. W. (2007). The
Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Home-based compared with
hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and
patient adherence. Health Technol Assess., 11(35).

Kahol, K., & Tripathi, P. (2006). Motion Sequences with a Personalized Annotation System.
MultiMedia, IEEE (Volume:13 , Issue: 1), 37–45.

Khoshelham, K., & Elberink, S. O. (2012). Accuracy and resolution of Kinect depth data for indoor
mapping applications. Sensors (Basel, Switzerland), 12(2), 1437–54. doi:10.3390/s120201437

Kojima, K. (2002). Labaneditor: Graphical editor for dance notation. Robot and Human …, 59–64.
Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1045598

Livingston, M. a., Sebastian, J., Ai, Z., & Decker, J. W. (2012). Performance measurements for the
Microsoft Kinect skeleton. 2012 IEEE Virtual Reality (VR), 119–120.
doi:10.1109/VR.2012.6180911

Lu, Y., & Jiang, H. (2013). Human movement summarization and depiction from videos. In Multimedia
and Expo (ICME), 2013 IEEE International Conference on.

Microsoft. (2012). Kinect for Windows Sensor Components and Specifications. Micosoft Developer
Network. Retrieved February 18, 2013, from http://msdn.microsoft.com/en-
us/library/jj131033.aspx

Microsoft. (2013a). Kinect for Windows SDK - MSDN Docs. Retrieved from
http://msdn.microsoft.com/en-us/library/hh855347.aspx

Microsoft. (2013b). Kinect for Windows SDK: Tracking Modes (Seated and Default). Retrieved from
http://msdn.microsoft.com/en-us/library/hh973077.aspx

OECD Health Data 2010. (2010). Eco-Santé 2011.

Park, J.-H., Shin, Y.-D., Bae, J.-H., & Baeg, M.-H. (2012). Spatial uncertainty model for visual features
using a KinectTM sensor. Sensors (Basel, Switzerland), 12(7), 8640–62. doi:10.3390/s120708640

Pastor, I., Hayes, H. a, & Bamberg, S. J. M. (2012). A feasibility study of an upper limb rehabilitation
system using kinect and computer games. In Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society.
Conference (Vol. 2012, pp. 1286–9). doi:10.1109/EMBC.2012.6346173

PrimeSense. (2011). The PrimeSense TM 3D Awareness Sensor.

97

PrimeSense. (2012). Developers > Get your Sensor. Retrieved February 18, 2013, from
http://www.primesense.com/developers/get-your-sensor/

Ruf, T., Ernst, A., & Küblbeck, C. (2011). Face detection with the sophisticated high-speed object
recognition engine (SHORE). Microelectronic Systems, 237–246. doi:10.1007/978-3-642-23070-
7

Tabak, M., Brusse-Keizer, M., Ommeren, C., Kotte, H., Weltevreden, P., Hermens, H., & Vollenbroek-
Hutten, M. (2013). A telecare programme for self-management of COPD exacerbations and
promotion of an active lifestyle. In European Respiratory Society Annual Congress. Retrieved
from http://www.rrd.nl/projects/CoCo.html

TechSmith. (2013). Camtasia Studio. Retrieved from
http://www.techsmith.com/download/camtasia/default.asp

Torsi, S., & Wright, P. (2010). The self-management of chronic illnesses: Theories and technologies. …
Technologies for …. doi:10.4108/ICST.PERVASIVEHEALTH2010.8914

Ukita, N., Kaulen, D., & Röcker, C. (2014). Towards an Automatic Motion Coaching System. In
International Conference on Physiological Computing Systems (pp. 167–172).

Wang, W. (2005). The IS Framework for Preserving Dance Heritage. Goizueta Business School Paper
Series.

Welbergen, H. Van, & Ruttkay, Z. (2008). Elbows Higher ! Performing , Observing and Correcting
Exercises by a, 409–416.

99

10 Appendixes

10.1 Software Parameters
Parameter Name Value Explanation

ZeroThreshold 0.005 All translation amounts below threshold are set to zero in the
"Weighted" translation list.

RepetitionBonus 1.3 When a translation is happening in the same direction, and
with the same amount, for multiple windows, it is increased
with this bonus factor, to make it more important.

RepetitionThresholdPercent 85 Threshold in percentage, sequential samples may differ this
much to be considered within trend.

WindowDivider 4 The shortest window is "WindowDivider" times shorter than
the shortest element from the exercise specification.

NormalSpeed 4 This is the essential value, relates a "normal" movement of a
certain duration into an absolute displacement. Used for
Horizontal and Vertical translations.

NormalSpeedRotation 4 This is the essential value, relates a "normal" movement of a
certain duration into an absolute displacement. Used for
Rotational translations.

FutureTimePenalty 0.95 The penalty for shifting forward in de spec.
MatchThresholdPercent 75 If deviation in percentages between the specification and

measurement is above this number, that body part is
matched.

MatchThresholdAllBodyParts 75 The percentage of the relevant body parts that have to be
matched, in order to skip to the next element in the spec.

ZeroThresholdMatching 0.05 The minimal value before match can be made.
MaxDistanceToZero 0.2 If specified value is 0, this is the max distance to this value,

all above gives 0% match, all below "ZeroThreshold" gives
100% match.

VerticalMiddleThreshold 0.15 If measured vertical translation is between + and -
VerticalMiddleThreshold it is seen as a "middle" direction.

HorizontalPlaceThreshold 0.10 If measured horizontal translation is between + and -
HorizontalPlaceThreshold it is seen as a "place" direction.

MaxAngleDeviationHorizontal 180 The maximum difference between measured and specified
angle, before the match is considered 0%.

MaxAngleDeviationVertical 360 The maximum difference between measured and specified
angle, before the match is considered 0%.

MaxFutureIterations 9 If measurement cannot be matched with current
specification, an attempt is made to match with the next step
in the specification. This is the limit on how often this is done.

VerticalAngleFactor 25 The verticalAngleFactor is a number between one and 100, if
it is 25, this means the angle accounts for 1/4th of the match
and the amount for 3/4th.

ZeroThreshold 0.005 All translation amounts below threshold are set to zero in the
"Weighted" translation list.

100

10.3 CoCo Exercise evaluation

101

102

10.4 Patient information letter

Titel studie

Ontwikkeling van een herkennings- en evaluatie platform gebaseerd op de Kinect diepte camera.

Inleiding

U hebt aangegeven interesse te hebben in deelname aan het hierboven genoemde onderzoek met.

Uw toestemming moet u kunnen baseren op goede voorlichting onzerzijds. Daarom ontvangt u deze

schriftelijke informatie, die u rustig kunt (her)lezen en in eigen kring bespreken. Ook daarna kunt u

altijd nog vragen voorleggen aan de onderzoeker die aan het einde van deze informatie genoemd

wordt.

Doel en achtergrond van het onderzoek

Als uitbreiding op de reeds beschikbare thuis trainingssystemen, is een meer interactieve invulling

gewenst. Enerzijds om meer informatie te krijgen over de therapietrouw van de patiënt, en anderzijds

om de patiënt sneller te voorzien van feedback om zo de training nuttiger te maken.

Wanneer komt u in aanmerking voor het onderzoek?

De studie bestaat uit een experimenten. U komt in aanmerking voor deelname aan experiment als u

in staat bent tot het lezen en schrijven van de Nederlandse taal en minimaal 18 jaar oud bent. U kunt

helaas niet meedoen aan de experimenten wanneer u lijdt aan een lichamelijke beperking,

bijvoorbeeld wanneer u niet normaal kunt lopen, of balans problemen heeft.

Wat houdt het onderzoek voor u in?

Het experiment bestaat uit het 6 keer uitvoeren van de zelfde, korte, oefening voor een Kinect diepte

camera. Bij elke uitvoering zullen andere instructies gegeven worden. Alle uitvoeringen worden

opgenomen, waarbij u herkenbaar in beeld bent. Deze beelden worden alleen voor analyse gebruikt.

Beelden die in media gebruikt worden, zullen eerst gecensureerd worden.

Risico's

Er zijn geen risico’s verbonden aan het experiment.

Mogelijke voordelen

Dit onderzoek draagt voornamelijk bij aan de ontwikkeling van nieuwe technieken en methoden waar

mogelijk in de toekomst andere personen voordeel van kunnen hebben.

Vertrouwelijkheid

De gegevens die gedurende het onderzoek over u verzameld worden zullen vertrouwelijk behandeld

worden. De gegevens zullen zodanig gecodeerd worden dat ze niet tot u te herleiden zijn. De codering

is dan ook niet gebaseerd op bijvoorbeeld geboortedatum, initialen en geslacht.

Vrijwillige deelname

103

U bent vrij deelname aan dit onderzoek toe te staan of te weigeren. Ook indien u nu toestemming

geeft, kunt u te allen tijde zonder opgave van redenen weer intrekken.

Voor nadere informatie

Indien u nog vragen heeft, kunt u die voorleggen aan de verantwoordelijke onderzoeker

Frodo Muijzer, BSc.

Roessingh Research and Development

Roessinghsbleekweg 33b

7522 AH Enschede

Telefoon: 0621711087

Mail: f.muijzer@rrd.nl

Hierbij verklaart u de Proefpersoneninformatie gelezen te hebben, en akkoord te zijn met de

bepalingen die hierin gesteld zijn:

Proefpersoon: _____________

Handtekening: _____________

Datum: _____________

Plaats: _____________

104

10.5 Experiment explanation for test subject

10.5.1 First experiment

Oefening Rekken van spier buitenzijde bovenbeen

Start in normale stand houding, met beide voeten naast elkaar. Zwaai het rechter been voor het linker

been. Beweeg dan de heupen naar links, en tegelijkertijd het bovenlichaam naar rechts.

10.5.2 Second experiment

Bekijk oefening Rekken van spier buitenzijde bovenbeen (hc05)

Inleiding

Deze oefening heeft als doel het verlengen van de spier aan de buitenzijde van het bovenbeen. Het

behoud van de lengte van deze spier is essentieel voor de beweging die u tijdens het looppatroon moet

maken.

Uitvoering

Uitgangshouding:

In stand rechtop, beide voeten plat op de grond.

Kruis uw rechter been voor uw linker been langs en zet de voeten naast elkaar neer. Houdt hierbij de

knieën gestrekt. Beweeg nu met uw heupen zijwaarts richting uw linker been waarbij u uw

bovenlichaam in tegengestelde richting beweegt. Als het goed is voelt u nu de rek aan de buitenzijde

van uw bovenbeen. Houdt deze rek enkele tellen vast. Beweeg vervolgens weer rustig terug naar de

beginpositie.

Let op

Compensatiebewegingen

Voldoende rek aan buitenzijde van het bovenbeen

Voor meer rek kan u met de arm van de linker zijde boven uw hoofd mee bewegen naar de rechter

zijde

Blijf recht naar voren kijken

Overig

Bij deze omschrijving hoort een video, die u dient te bekijken.

105

10.6 Experiment results
 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1

2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 1 2 0 0 0 3 1 2 0 0 1 1 1 1 0

4 6 (KL, FR) 12 (ER, HaR, KL, KR) 3 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 840 833 844 24 12 60 0 0 0 825 817 835 36 18 90 0 0 0 835 828 847 12 15 77

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 1

2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 1 0 0 0 0 4 1 4 0 0 0 1 0 0 0 0 0

4 2 (KL, KR) 15 (SR, ER, HR, KL, KR, FR) 1 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 836 829 843 24 12 60 0 0 0 836 809 852 36 24 120 0 0 0 829 820 837 12 14 76

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 4 0 0 0 0 0 2 0 0 0 0 0

4 3 (KL, KR, FL) 13 (SR, FL, KR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 823 813 834 24 12 60 0 0 0 836 803 857 36 29 145 0 0 0 827 820 832 24 24 120

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

3 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

4 2 (KR) 5 (SR, KL, KR) 2 (KR, FR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 834 825 843 30 15 75 0 0 0 836 825 848 12 12 60 0 0 0 837 816 867 0 18 90

14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

3 2 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

4 2 (FL, KR) 9 (SL, KL, FL, KR, FR) 2 (KL, FR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 823 818 827 24 12 60 0 0 0 835 825 841 24 18 90 0 0 0 833 816 848 12 17 85

14 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4 1 (KR) 9 (SL, HaL, KL, FL, FR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 822 817 827 0 0 0 0 0 0 836 821 857 36 18 90 0 0 0 830 816 852 24 16 85

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

106

S2 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

3 1 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0

4 3 (KR) 9 (HaR, KR) 2 (HaR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 827 817 833 18 22 110 0 0 0 836 802 861 42 53 265 0 0 0 833 821 857 30 30 150

14 0 -1 -1 0 0 0 0 -4 -3 0 0 0 0 -5 0 0 0 0

15 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

3 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

4 4 (HaL, KR) 8 (HaL, HaR, KR) 3 (HaL, KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 838 730 946 24 12 60 0 0 0 830 807 859 0 18 90 0 0 0 833 809 855 12 23 115

14 0 0 0 0 0 0 0 -3 -3 0 0 0 0 -1 -3 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 5 1 0 0 0 0 0 3 0 0 0 0

4 0 () 13 (HaL, HaR, KL, KR) 10 (HaL, HaR, KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 840 822 860 48 24 120 0 0 0 830 803 845 42 41 205 0 0 0 832 805 853 24 35 175

14 0 0 0 0 0 0 0 0 -5 0 0 0 0 -1 -4 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

4 0 () 5 (KL, KR, FR) 4 (KL, KR, FR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 846 838 854 24 12 60 0 0 0 829 798 843 0 30 150 0 0 0 834 808 850 0 18 90

14 0 0 0 0 0 0 0 -5 -5 0 0 0 0 -3 -3 -1 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0

3 1 1 0 0 0 0 1 1 0 1 0 0 0 4 0 2 0 0

4 0 () 7 (SL, HaL, KL) 12 (SL, HaL, KL, FL)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 824 798 862 48 24 120 0 0 0 837 817 855 30 29 145 0 0 0 833 815 860 12 42 210

14 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -3 0 0 0

15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

3 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0

4 0 () 3 (SL, HaL, KL) 7 (HaL, KL)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 838 835 840 0 0 0 0 0 0 836 824 854 48 24 120 0 0 0 829 813 845 12 24 120

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 -3 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

107

S3 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

4 0 () 1 (FL) 1 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 830 812 848 12 6 30 0 0 0 837 821 853 24 11 55 0 0 0 833 826 838 24 17 91

14 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0 -1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3

4

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 832 824 839 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 0 () 0 () 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 831 813 844 36 18 90 0 0 0 835 826 850 36 35 175 0 0 0 833 790 868 6 30 150

14 0 0 0 0 0 0 0 -5 0 0 0 0 0 -5 -4 0 0 0

15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 1 0 0 0 0 0 2 1 2 0 0 0

4 0 () 7 (KL, FL, KR, FR) 9 (SR, HaR, FL, FR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 833 804 870 12 6 30 0 0 0 825 809 849 48 24 120 0 0 0 838 825 859 12 21 111

14 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -1 -2 0 -2

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 2 1 0 2 0 0 0 1 0 0 0 0

4 5 (KL, FL, FR) 13 (HaL, FL, KR, FR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 831 821 846 36 18 90 0 0 0 829 813 856 0 28 143 0 0 0 836 827 848 18 18 90

14 0 0 0 0 0 0 -2 -2 -2 -3 -2 -2 -3 0 0 -3 0 1

15 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 3 1 0 1 0 0 2 0 0 0 0 0

4 1 (FR) 7 (HaL, KL, FR) 3 (HaL, KL)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 827 794 848 24 12 60 0 0 0 837 558 1107 36 18 90 0 0 0 832 809 853 6 16 80

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

108

S4 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

3 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0

4 1 (KR) 5 (HaR, KL, KR) 4 (HaR, KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 824 798 848 36 18 90 0 0 0 831 814 852 24 24 120 0 0 0 839 818 855 0 23 115

14 0 0 0 0 0 0 0 -2 -2 0 0 0 0 -3 -3 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

4 0 () 0 () 3 (HaR, KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 850 839 860 24 12 60 0 0 0 821 805 837 24 12 60 0 0 0 830 800 856 12 18 90

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

3 0 2 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0

4 2 (FR) 6 (HaR, KL, FR) 2 (KL)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 837 811 851 36 29 145 0 0 0 832 819 843 18 42 210 0 0 0 833 820 854 30 35 175

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

3 2 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0

4 1 (KR) 7 (HaR, KL, KR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 831 800 863 24 12 60 0 0 0 835 817 860 24 21 110 0 0 0 821 804 831 0 19 91

14 0 0 0 0 0 0 0 -2 -2 0 0 0 -2 0 0 -3 -3 -2

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0

3 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4 2 (KL) 4 (KL, KR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 835 827 844 48 24 120 0 0 0 829 809 854 12 24 120 0 0 0 833 808 877 6 35 175

14 0 0 0 0 0 0 0 -3 -3 0 0 0 0 -4 -5 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

3 1 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

4 1 (KL) 5 (SL, KL) 1 (KL)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 840 826 854 24 12 60 0 0 0 827 695 986 24 18 90 0 0 0 830 812 849 12 22 115

14 0 0 0 0 0 0 0 -1 -1 0 0 0 -2 0 0 -2 -1 -1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

109

S5 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

4 2 (KL, KR) 2 (FL, KR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 839 808 871 24 12 60 0 0 0 827 817 839 12 18 90 0 0 0 835 811 861 12 23 115

14 0 0 0 0 0 0 0 -2 -2 0 0 0 0 -1 -3 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

4 0 () 3 (HaL, FL, KR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 827 827 827 0 0 0 0 0 0 830 830 831 0 0 0 0 0 0 825 818 831 24 12 60

14

15

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

3 1 0 0 0 0 0 4 0 3 0 0 0 0 1 0 0 0 0

4 2 (KL, KR) 16 (SR, ER, HaR, KL, KR) 3 (KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 821 797 846 12 6 30 0 0 0 836 816 867 48 42 210 0 0 0 829 815 840 0 30 150

14 0 0 0 0 0 0 0 -3 -3 0 0 0 0 -5 -5 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

3 0 1 0 0 0 0 1 1 2 0 0 0 1 1 0 0 0 0

4 3 (KL, FL, KR) 4 (ER, HaR, KR) 1 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 829 827 831 12 6 30 0 0 0 830 809 852 24 12 60 0 0 0 835 819 848 30 21 111

14 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 0 -1

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0

3 0 1 0 0 0 0 0 1 0 0 0 0 2 1 0 0 0 0

4 1 (KR) 8 (SL, KL, FL, KR, FR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 818 771 846 12 6 30 0 0 0 831 816 846 48 30 150 0 0 0 833 819 864 0 30 150

14 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -5 -5 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

4 2 (KR, FR) 1 (SL) 2 (SL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 834 822 845 12 6 30 0 0 0 839 836 843 24 12 60 0 0 0 831 822 844 24 24 120

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

110

S6 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 1 (KR) 1 (FL) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 832 832 832 0 0 0 0 0 0 835 835 835 12 6 30 0 0 0 836 821 850 24 12 60

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 () 0 () 1 (HaR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

14

15

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 0 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0

4 5 (KL, FL, KR) 18 (HaL, SR, HaR, KL, KR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 843 839 849 12 6 30 0 0 0 829 816 843 48 36 180 0 0 0 830 822 841 0 24 120

14 0 0 0 0 0 0 0 -2 -2 0 0 0 0 -4 -4 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0

4 1 (KR) 13 (HaL, SR, HaR, KR) 1 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 832 832 833 0 0 0 0 0 0 833 812 854 36 18 90 0 0 0 833 825 840 24 15 84

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0

3 2 0 0 0 0 0 5 0 0 0 0 0 1 0 0 0 0 0

4 1 (KL) 16 (SL, HaL, HaR, KL, KR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 833 823 843 0 0 0 0 0 0 835 804 855 48 24 120 0 0 0 834 818 854 48 12 118

14 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 -1

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0

3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

4 6 (SL, HaL, HaR, KL, KR) 9 (HaL, HaR, KL) 5 (HaL, HaR, KL, FL)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 848 825 856 0 0 0 0 0 0 827 818 837 36 18 90 0 0 0 830 804 868 36 26 134

14 0 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 -1 -1 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 -1

111

S7 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

3 1 0 0 0 0 0 4 0 0 0 0 0 5 3 0 0 0 0

4 2 (KR) 3 (SR, KR) 4 (KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 833 816 856 36 24 120 0 0 0 831 816 848 0 24 120 0 0 0 836 792 849 30 28 140

14 0 -1 -1 0 0 0 0 -4 -4 0 0 0 0 -1 -1 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

3 0 1 0 0 0 0 1 1 0 0 0 0 2 0 0 0 0 0

4 3 (KL, FL, KR) 2 (KL, KR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 824 796 859 36 18 90 0 0 0 828 816 839 12 8 41 0 0 0 839 818 861 6 15 74

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -2 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0

3 0 0 0 0 0 0 2 0 0 0 0 0 6 2 0 0 0 0

4 4 (KL, KR) 7 (KL, KR) 11 (SR, HaR, KL, FL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 838 819 873 54 35 175 0 0 0 824 797 841 24 30 150 0 0 0 836 801 855 0 60 300

14 0 0 -1 0 0 0 0 -1 -4 0 0 0 0 -9 -9 0 0 0

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3 2 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

4 4 (KL, KR) 4 (SR, KR) 3 (KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 868 822 955 36 23 115 0 0 0 789 687 844 12 14 75 0 0 0 829 813 844 6 38 190

14 0 -1 0 0 0 0 0 -2 0 0 0 0 -5 -1 0 -6 -3 -5

15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 3 (KL, KR) 2 (KR) 5 (KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 834 821 849 60 36 180 0 0 0 830 812 855 0 24 120 0 0 0 834 800 867 0 42 210

14 0 -1 -1 0 0 0 0 -4 -4 0 0 0 0 -7 -7 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 (KL) 3 (SL, KL) 6 (EL, KL, FL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 830 812 844 48 24 120 0 0 0 834 818 850 12 12 60 0 0 0 834 820 852 12 35 175

14 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -3 -5 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

112

S8 Segment 1 Segment 2 Segment 3

01 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4 3 (KL, KR) 1 (KL) 6 (KL, KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 838 813 857 36 18 90 0 0 0 826 816 842 12 16 84 0 0 0 835 813 870 228 103 515

14 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -3 -3 0

15 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

02 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

3 2 1 0 0 0 0 2 1 0 0 0 0 3 0 0 0 0 0

4 4 (KL, KR) 5 (KR) 2 (KR)

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 835 825 855 60 30 150 0 0 0 830 814 844 6 29 145 0 0 0 834 818 849 24 30 150

14 0 0 0 0 0 0 0 0 0 -2 -1 0 0 0 0 -2 -2 0

15 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

03 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 () 0 () 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 835 794 897 24 13 69 0 0 0 831 817 848 36 39 192 0 0 0 833 820 850 36 28 140

14 0 0 0 0 0 0 1 -1 0 0 -2 -2 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

04 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

4 0 () 2 (FL, FR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 845 845 845 0 0 0 0 0 0 833 806 855 60 48 240 0 0 0 832 815 865 24 28 140

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 0 0 0

15 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0

05 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0

4 1 (FR) 8 (SL, HaL, HaR, FR) 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 827 826 827 24 12 60 0 0 0 834 812 858 12 30 150 0 0 0 833 823 852 0 30 150

14 0 0 0 0 0 0 0 0 0 -3 -3 0 0 0 0 -3 -3 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

06 B AL AR LL LR UB B AL AR LL LR UB B AL AR LL LR UB

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4 1 (FR) 0 () 0 ()

 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13

 0 0 0 855 855 855 12 6 30 0 0 0 824 811 836 24 12 60 0 0 0 837 834 844 24 18 90

14 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

113

	Preface
	Abstract
	Samenvatting
	Table of contents
	1 Introduction
	1.1 Physical therapy and rehabilitation
	1.2 Kinect
	1.3 Assignment
	1.4 Context and approach

	2 Context and background
	2.1 The Kinect depth camera
	2.1.1 Technical properties of Kinect
	2.1.2 Software Development Kits
	2.1.3 Skeletal Tracking
	2.1.4 Detection accuracy and capabilities

	2.2 Automated posture and motion detection methods
	2.3 Notation of human postures and motion
	2.3.1 Dance notation

	3 Selection and detailed analysis of exercise
	3.1 Introduction
	3.2 Available exercises
	3.3 Suitability of exercise for automated detection
	3.4 Selection of a target exercise
	3.4.1 Conclusion

	3.5 Detailed description of the target exercise

	4 Parameterization of exercises
	4.1 Introduction
	4.2 Parameterization of the target exercise
	4.3 Development of a parameterization framework based on Laban movement analysis
	4.3.1 Choosing the right joint model
	4.3.2 Timeline and durations
	4.3.3 Movements
	4.3.4 Accents and space measurements
	4.3.5 Personalization

	4.4 Data model and conclusion

	5 Automated evaluation of an exercise
	5.1 Introduction
	5.2 Processing of parameterization
	5.2.1 Exercise specification playlist
	5.2.2 Sample window lengths
	5.2.3 Relevant Body Parts

	5.3 Measure and process skeleton data from the Kinect depth camera
	5.3.1 Sample windows
	5.3.2 Data preprocessing
	5.3.3 Translation recording
	5.3.4 Comparison between exercise specification elements and detection results.
	5.3.5 Determining the position in the exercise specification playlist.

	6 Implementation
	6.1 Introduction
	6.2 Implementation of exercise parameterization framework
	6.3 Implementation of detection and evaluation framework
	6.3.1 Initialization
	6.3.2 Position and Translation recording
	6.3.3 Result interpretation

	7 Evaluation of the automated detection and evaluation system
	7.1 Introduction
	7.2 Performance indicators
	7.2.1 Exercise
	7.2.2 Measurement
	7.2.3 Processing

	7.3 Experiment protocol
	7.4 Analysis
	7.5 Results
	7.5.1 Segment duration
	7.5.2 Performance indicators
	7.5.3 Kinect joint tracking status

	7.6 Summary

	8 Discussion & Conclusion
	8.1 Discussion
	8.2 Conclusion
	8.3 Future vision
	8.3.1 Scenario: The interactive coach
	8.3.2 Scenario: The compliance monitor
	8.3.3 Analysis

	9 Bibliography
	10 Appendixes
	10.1 Software Parameters
	10.2
	10.3 CoCo Exercise evaluation
	10.4 Patient information letter
	10.5 Experiment explanation for test subject
	10.5.1 First experiment
	10.5.2 Second experiment

	10.6 Experiment results

