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Summary

Traditionally diagnostic facilities schedule appointments for all patients that require an examination.
Allowing patients to walk in without an appointment reduces access times. It also creates the possibility
to combine outpatient consultations and diagnostic examinations on one day, which speeds up the
diagnostic process. Since not all patients can walk in, our goal is to develop an algorithm that generates
appointment schedules with which both patients with an appointment and walk-in patients can be
served. The generated schedule should prescribe the number of appointments to schedule per day and
the moment on the day to schedule these appointments. We maximize the fraction of walk-in patients
that can be served on the day of their arrival, while satisfying an access time service level norm for
patients with an appointment. We conducted our research at the Academic Medical Centre (AMC), a
large academic hospital in Amsterdam.

A methodology developed in earlier research [37] generates good schedules by complete enumera-
tion. However, schedules of realistic size cannot be generated since evaluating all solutions is too time
consuming. We build on this earlier research, but to achieve computational efficiency we use heur-
istics that are based on workload levelling. From our literature review it appeared that local search
techniques are often useful to improve the schedules found with heuristics, so we also use local search
techniques in our algorithm. To generate an appointment schedule, we first determine a capacity cycle
that indicates how many appointments should be scheduled per day in a planning cycle (i.e. one week).
The next step is to allocate these appointments over the available time slots of a day.

For both capacity cycle generation and day schedule generation we tested several local search tech-
niques to obtain improved appointment schedules. These tests were performed on small instances, such
that we could compare the outcomes of our heuristics to the solutions found with complete enumeration.
We first tested our capacity cycle generating heuristics, while using complete enumeration for making
day schedules. Secondly we tested all combinations of capacity cycle heuristics, day schedule heuristics
and local search techniques. We tested for 36 problem instances. The best performing heuristic with
respect to the fraction of walk-in patients served on the day of their arrival, determines the number
of appointments to schedule per day based on the expected number of arriving walk-in patients per
day. Allocating appointments to time slots of a day gives the best performance when we generate an
initial schedule based on a heuristic that allocates appointments to time slots with few expected walk-in
arrivals, in combination with a simple random search technique. This confirms findings from literature,
that state that random search outperforms more advanced local search methods for certain cases.

The best performing combination of heuristics deviates less than 0.5% from complete enumeration
on average, defers in the worst case 4.99% more walk-in patients than complete enumeration and finds
the same solution as complete enumeration in 72% of the test instances. Deviations from complete
enumeration were in most cases caused by a tight allowed access time. A tight access time makes it
harder to allocate appointments over the days in a cycle, which makes the schedule less flexible. This
best performing combination of heuristics needs less than 5 minutes to generate a (small) appointment

schedule on average, while complete enumeration needs more than 8 hours on average. However, the
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performance differences among the best performing combinations of heuristics were small, so we decided
to test the three best performing combinations in our case study.

In the case study we used data of the CT-scan facility of the AMC, gathered in 2008. In our first
tests on this large instance, it appeared that the approach we used to evaluated day schedules (as
described in [37]) gave unreliable results. Therefore we adapted this approach, which finally led to
reliable values for the performance of day schedules. As a benchmark we use day schedule generation
rules from literature. Because methods to generate capacity cycles are scarce in literature, we decided
to use our capacity cycle heuristics to generate capacity cycles for the benchmarks. We observe from
the case study that all combinations of heuristics we tested perform significantly better with respect to
the fraction of walk-in patients served on the day of their arrival than the benchmarks. Our algorithm
deferred 75.5% less patients than the best performing benchmark and 99.43% of the walk-in patients
could be served on the day of their arrival (with a workload of 62.3%). Furthermore, our algorithm
was able to find an appointment schedule for the case study instance within 1.5 hours runtime. When
evaluating the resulting appointment schedules, we see that appointments are planned in quiet periods
of the day with respect to arriving walk-in patients. This is according to our expectations, since in
this way workload gets balanced over the day. We also observe that the waiting behaviour of walk-in
patients is exploited. All resources are used for appointments at the start of the day, in such way that
arriving walk-in patients in the first time slots can be served after this early block of appointments. In
a test on a scaled-up case study instance with a workload of 85%, this algorithm serves 94.16% of the
walk-in patients on the day of their arrival and it defers 55.8% less patients than the best performing
benchmark. The corresponding appointment schedule was generated in 3.2 hours. These results are
promising, however more extensive testing is necessary to confirm these findings.

Before our algorithm can be implemented in practice, we recommend to perform a simulation study
to test the influence of the assumptions we model. Simulation is a flexible method, so characteristics
from practice that we do not model can then be incorporated. One can think of different patient
types, stochastic service times and stochastic waiting times for walk-in patients. We advise to execute
this research in close collaboration with the CT-scan facility, so that commitment and trust in the
planning algorithm can be created. It is also important to optimise the parameters of the local search
techniques used in our algorithm. The choices we make show promising results, however it might be
that performance with respect to runtime or the fraction of walk-in patients served on the day of their
arrival can be improved. Since deviations from complete enumeration are mainly caused by our capacity
cycle generating heuristics, we advise to conduct further research to better capacity cycle generating
heuristics. A more advanced local search technique than we use, based on random search for example,
might be a good option.

We can conclude that the algorithm we develop in this thesis fills a gap in appointment scheduling
literature. Our algorithm is able to generate appointment schedules of realistic size with good perform-
ance in reasonable time. Furthermore, our algorithm brings successful implementation of one-stop-shop

in healthcare (and other businesses that use appointment systems) a step closer.
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Chapter 1

Introduction

Rising healthcare costs and increasing patient expectations about the quality of care emphasize the
need for process innovations in healthcare. Timely access and short waiting times are important char-
acteristics of a high quality care provider. However, many consultations and examinations in hospitals
still take place on appointment. This delays the treatment process of a patient, which can deteriorate
the quality of care. In case appointment schedules would take both patients with an appointment and
walk-in patients into consideration, the diagnostic process speeds up and patient satisfaction increases.
Therefore we develop an appointment scheduling algorithm, based on earlier research [37], that can
deal with both walk-in patients and patients with an appointment.

In Section 1.1 we start with an introduction of the Academic Medical Centre (AMC), which is the
hospital where we conduct our research. We describe the problem as faced by the AMC in Section 1.2
and present our research objectives in Section 1.3. In Section 1.4 we give an overview of the remainder
of this thesis.

1.1 Academic Medical Centre Amsterdam

We conduct our research at the AMC, a large academic hospital in Amsterdam that is connected to the
University of Amsterdam. The AMC is the preferred hospital for about 200,000 residents living close
to it. Because of the academic nature of the AMC, the hospital serves patients with more complicated
diseases. These patients come from all over the Netherlands.

The AMC has three main tasks: offering education to medicine students, giving patients the care
they need, and performing high level medical scientific research. This thesis is written in collabora-
tion with the department Quality and Process Innovation (Kwaliteit en Proces Innovatie (KPT)). This
department contributes to the three main tasks of the AMC by supporting other departments in im-
proving their quality of care. KPI develops models and methods that can be applied within the AMC to
obtain these structural quality improvements, for example in the fields of patient logistics and evidence

based medicine.

1.2 Problem description and scope

Diagnostic examinations often occur in combination with outpatient consultations. However, diagnostic
facilities in the AMC traditionally work with appointment systems. This means that patients who need
a diagnostic examination have to make an appointment after their outpatient consultation, which may
cause high access times. We define access time as the time (in days) between the day on which the

patient makes an appointment and the day the patient is served.



Since fast diagnosis is important for the quality of care, it would be preferable to have no access time
at all [41]. Having no access time, the one-stop-shop idea [5], is also preferable from a patient’s point of
view. Without access time, patients only have to visit the hospital once for an outpatient consultation
and diagnostic examination. This saves time for the patient and treatment can be started earlier.

Allowing patients to walk in at diagnostic facilities without an appointment would reduce access
times. The possibility to combine outpatient consultations and diagnostic examinations on one day,
which speeds up the diagnostic process, would then also arise. However, diagnostic examinations cannot
be planned in advance, because the decision to perform a diagnostic examination usually depends on
the findings of the doctor during the consultation. This gives reason to leave some space in appointment
schedules of diagnostic facilities to accommodate for these walk-in patients. Successful implementations
of systems with walk-in report to improve patient satisfaction and resource utilisation while reducing
healthcare costs [42, 45].

Allowing walk-in patients to enter diagnostic examinations would still result in a consultation fol-
lowed by a diagnostic examination, but then in most cases on the same day. Diagnostic facilities with
low-variable and short service times have the highest chance to successfully adopt such a strategy. A
highly variable service time causes a higher risk on large waiting times [51] and that is what we want
to avoid from a patient point of view.

Patrick [43] argues that allowing access exclusively for walk-in patients is not a good idea with respect
to throughput and costs. Since demand is then highly uncertain, workload is often unbalanced over the
day which results in under- and over- utilisation of resources. Earlier research at the AMC shows that a
combination of scheduled appointments and unscheduled appointments (walk-in) has more advantages
than a setting with only walk-in patients [38]. This is mainly a practical issue, since some patients prefer
an appointment and some examinations need the presence of specialists who are not always available. To
achieve this combination of scheduled appointments and walk-in patients in outpatient clinics, Kortbeek
et al. [37] developed a method to design appointment schedules. Their algorithm is able to generate
small appointment schedules (e.g. 8 time slots per day) that can deal with walk-in. However, the
computational complexity of their algorithm is very high such that appointment schedules for practice
cannot be generated in reasonable time. Because their model is not able to generate appointment
schedules of realistic size, its performance and applicability in practice is uncertain. Because we are
looking for a method that can be used in practice, we have to adapt the model of Kortbeek et al. [37]

to overcome these practical issues. This leads us to the following problem statement:

"The potential of combining scheduled and unscheduled patient arrivals for diagnostic facilities is
clear. However, a method to develop appointment schedules for diagnostic examinations in practice is

lacking."

We position our research in the healthcare planning and control framework as developed by Hans et al.
[25]. This framework spans four hierarchical levels of control and four managerial areas as displayed
in Figure 1.1. Since our research aims to design appointment schedules, we position it as resource
capacity planning on a tactical level. It is positioned as resource capacity planning because appointment
scheduling is a typical activity in this managerial area [25]. Our goal is to make appointment schedules
that can be used for some time without allocating actual patients to the schedule. Therefore our
algorithm can be used on a tactical level. The schedules generated by our algorithm can be used in
operational planning, where actual patients are allocated to the schedule. On the other hand, the
schedules that our algorithm generates are based on strategic decisions such as the number of resources

a facility needs.



Medical Resource Capacity Material Financial
Planning Planning Planning Planning
Research, . . . Investment plans,
. Case mix planning, Supply chain and . .
Strategical development of . . contracting with
. workforce planning warehouse design .
medical protocols insurers
N
T
. Treatment selection, Appointment Supplier selection, Budget and cost 2
Tactical . . . . 2
protocol selection scheduling tendering allocation g
s
=N
)
aQ
8
. Di i heduling of . . 3
Operational 1AEN0SIS and SC. ec‘lui 1ng o Materials Cash flow analysis, 5
Offline planning of an individual purchasing billing 2
individual treatment treatments %ﬁ
3
N\
Operational Diagno§ing Monitoring, Ru.sh ordering, Billipg
Online emergencies and emergency inventory complications and
complications coordination replenishing changes

& Managerial Areas >

Figure 1.1: Healthcare planning and control framework

1.3 Research objectives

Kortbeek et al. [37] developed an algorithm that can generate appointment schedules, but the compu-
tational complexity for calculating these appointment schedules is high. They indicate that a challenge
lies in achieving numerical efficiency of their algorithm. The purpose of our research is therefore to
adapt the model of Kortbeek et al. [37] such that appointment schedules of realistic size can be gener-
ated. Because our algorithm should be used in practice, it is important that our algorithm is relatively
fast (i.e. a planner has limited time to generate an appointment schedule).

As said, we use the model and algorithm as presented by Kortbeek et al. [37] as the starting point
of our research. Their algorithm generates cyclic appointment schedules. This means that the planning
horizon in their model consists of several days. For all of these days an appointment schedule has
to be made, that combines scheduled appointments and walk-in arrivals. In Kortbeek et al. [37] a
good appointment schedule has two main characteristics. The first characteristic is that access time for
patients who require an appointment is lower than an access time norm set by the management of the
facility. Access time is dependent on the number of appointments allocated to the days over the planning
horizon. The second characteristic is that the percentage of walk-in patients served on the day of their
arrival is maximised. This characteristic is dependent on the way appointments are scheduled over the
day. Since our algorithm is based on that of Kortbeek et al. [37], our appointment schedules should
also possess these two characteristics, however our algorithm should generate appointment schedules of
realistic size (i.e. more than 30 time slots per day). We identified the following research objectives to

achieve this overall research aim:
1. Find a good way to determine how many appointments should be planned per day;
2. Find a good way to allocate appointments to time slots;

3. Assess how the algorithm performs in generating feasible appointment schedules that allow for

both scheduled and unscheduled appointments for the CT-scan facility of the AMC.



When we want to allocate appointments to time slots, we first have to know how many appointments
we have to schedule at each day over the planning horizon. Our second research goal is to find a good
and fast way of allocating appointments to time slots. Our last goal is to test the performance of our
algorithm with data from the CT-scan facility of the AMC. When we answer our three research ques-
tions, we are able to deliver an appointment scheduling algorithm that can generate good appointment

schedules of realistic size in little time.

1.4 Report overview

In this section we give an overview of the content of this report. In Chapter 2 we describe the problem
as faced by the AMC. We discuss the desired output of our scheduling algorithm and we describe the
algorithm of Kortbeek et al. [37]. In Chapter 3 we present an overview of literature that deals with
appointment scheduling. Our main interest is in literature that combines scheduled appointments and
walk-in patients in one appointment schedule. In Chapter 4 we develop heuristics that can generate
appointment schedules and we discuss local search techniques that can improve the schedules found
with our heuristics. In Chapter 5 we show the results of tests we executed on theoretical problem
instances. In Chapter 6 we perform a case study with data of the CT-scan facility at the AMC. In
Chapter 7 we end this thesis with conclusions and recommendations. In that chapter we also discuss
the limitations of our study and give suggestions for further research. For clarity we present a list of

symbols on page vi and a list of abbreviations on page vii.



Chapter 2

Problem analysis

In this chapter we give an overview of the algorithm of Kortbeek et al. [37], which we use as the
starting point of our study. Section 2.1 presents the desired situation with respect to the output of the
appointment scheduling algorithm we develop. In Section 2.2 we present the approach of Kortbeek et
al. [37] and introduce their notation and assumptions. In Section 2.3 we describe how the algorithm
of Kortbeek et al. [37] generates appointment schedules. In Section 2.4 we present a summary and our

conclusions.

2.1 Desired situation

In the ideal situation, hospitals are able to combine walk-in patients and scheduled appointments in
appointment schedules that give an optimal solution. In an optimal solution, all walk-in patients are
served on the day of their arrival and all patients with an appointment request are served within the
access time norm. Since an optimal solution is very hard to obtain because of computational complexity,
we aim to outperform existing scheduling techniques with our algorithm. This implies that we have
to make a clever choice in allocating time slots to appointments and leaving time slots free to serve
walk-in patients. In Figure 2.1 we present a possible output in the desired situation, that can be
used by planners to schedule appointments. Coloured blocks indicate a scheduled appointment (or the
opportunity to schedule an appointment) and the white blocks indicate time slots that are left free to
serve walk-in patients.

For certain diagnostic examinations, such as CT scans at the CT-scan facility, service times are
relatively short and usually time slots of equal size are used for all examinations [23]. This implies
that our algorithm should be able to produce good schedules consisting of many time slots. The target
number of time slots that should be included is 34 per day: a resource at the CT-scan facility of the
AMC is used for 8.5 hours per day and the average service time is 15 minutes. The same applies for
the used planning cycle, this should preferably be a maximum of approximately 10 working days. Our
algorithm should also be able to make a good appointment schedule in case multiple resources are
available. For the CT-scan facility of the AMC this would mean that a schedule should be generated
for a maximum of three resources.

Kortbeek et al. [37] have developed an algorithm that is able to generate good appointment sched-
ules. However, the runtime to generate a schedule for a small instance (smaller than the desired
parameter settings as described, more on this in Section 2.2) is about nine hours on an Intel 3.2 Ghz
PC with 4Gb of RAM. Therefore, the method of Kortbeek et al. [37] is not directly applicable in
practice. This means that our algorithm should generate good appointment schedules under the same

assumptions as in Kortbeek et al. [37], but much faster. A trade-off should be made between runtime
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Figure 2.1: Visual representation of ideal output of our algorithm

and schedule performance. Preferably a schedule can be generated in little time. However, a charac-
teristic of tactical schedules is that they only have to be updated once in a few months (e.g. seasonal
updates). We expect that a better performance can be obtained when the runtime is higher (more
possible schedules can be evaluated), but a planner cannot wait too long to receive a new appointment
schedule (e.g. claim on hardware, possibility to make changes in the schedule). From a practical point

of view, we think that the maximum runtime of our algorithm should not exceed one day.

2.2 Approach of Kortbeek et al. [37]

Kortbeek et al. [37] present a method to design cyclic appointment schedules that can be used at
diagnostic facilities that serve patients with an appointment and walk-in patients. Their method
consists of two models: one to evaluate the access process of patients with an appointment (Access
model) and one to evaluate the day process of appointments and walk-in patients (Day model). The
Access model evaluates the time a patient has to wait from the day an appointment is made until the
day of service. The Day model evaluates the time a walk-in patient has to wait from the time of arrival
until service. It may happen that the facility is temporary congested, which results in high waiting
times for walk-in patients. If a walk-in patient has to wait more than g time slots to receive service,
the patient is offered an appointment on another day. Kortbeek et al. [37] refer to such patients as
deferred patients. We discuss the Access- and Day model in more detail in Section 2.3. The goal of
Kortbeek et al. [37] is to minimise the number of walk-in patients who have to be deferred. This is
equal to maximising the fraction of walk-in patients who can be served on the day they arrive. This
should be done under the constraint that the access time of patients with an appointment request is
lower than a preset access time service level norm. The idea is that the management of the hospital
can decide on this access time service level norm (e.g. 95% of the patients requesting an appointment
should be served within 10 days).

Assumptions. Because walk-in demand and appointment demand are often cyclic 3, 16], Kortbeek
et al. [37] propose a Cyclic Appointment Schedule (CAS) with a length of D days, R resources and T
time slots of length A on each day.! This CAS is represented by C' = (C!,...,CP), where C? indicates
the appointment schedule on day d. Two types of patients have to be served: patients with a scheduled

'n their numerical example Kortbeek et al. [37] study a one-resource situation, with a cycle length of 5 days consisting
of 8 equally sized time slots.



appointment and patients who walk in (unscheduled patients). Walk-in patients are willing to wait for
treatment a maximum of g time slots after arrival. In case service cannot start whitin this interval, the
walk-in patient is offered an appointment at a later day and the patient becomes a deferred patient. All
patients with an appointment, so patients with a scheduled appointment and deferred walk-in patients,
are scheduled First Come First Served (FCFS). Kortbeek et al. [37] assume a non-stationary Poisson
process for the arrival of appointment requests, with initial arrival rates A',..., AP for each day in the
planning cycle. Patients with an appointment have priority over walk-in patients and may not show
up. If a patient shows up it is assumed that he is on time, which is a reasonable reflection of reality
[28]. For walk-in patients the arrival rate depends on the day d and time slot ¢t. The arrival process of
these patients is also modelled as a non-stationary Poisson process with arrival rates x{. Service times
are assumed to be the same for walk-in patients and patients with an appointment. This service time is
assumed to be deterministic and equal to the length of one time slot (i.e. in the algorithm of Kortbeek

et al. [37] patients always need one time slot for service). Note that a list of symbols can be found on

page .

2.3 Models and algorithm

The performance of the Access model and the Day model is measured on different time scales (days
for the Access model versus minutes for the Day model), which makes a comparison of both measures
difficult. Therefore, Kortbeek et al. [37] decompose the planning process in these two models to
determine performance measures for the access time of a patient with an appointment request (Access
model) and waiting time for walk-in patients (Day model). Kortbeek et al. [37] link the Access model
and the Day model with an iterative algorithm, to balance the scheduled and unscheduled arrivals.
This iterative algorithm determines the optimal size of the group of deferred patients by gradually
increasing its size during each iteration [37]. Now we will describe the Access model, the Day model
and the iterative algorithm as presented by Kortbeek et al. [37] in more detail.

The Access Model determines how many time slots should be reserved for appointments over
the planning cycle, under the constraint that this number of appointments is sufficient to meet the
access time service level norm. Furthermore, the Access model determines how these appointments are
divided over the days in the planning cycle. The output of the Access model is called a capacity cycle
and is represented by K = (k',..., k"), where k¢ represents the number of time slots that has to be
reserved for appointments on day d. A capacity cycle K only indicates how many time slots have to
be reserved for appointments on each day, it does not indicate which time slots have to be reserved for
appointments, this is determined by the Day model.

The Day model uses the capacity cycles generated by the Access model to generate all possible
day schedules. A day schedule indicates in which time slots appointments can be scheduled and where
space for walk-in patients should be reserved. From all possible day schedules, the Day model gives the
best performing day schedule per day of the capacity cycle as output. The best schedule is the one that
minimises the expected number of deferred patients. A day schedule is represented by C?% = (c¢, ..., c%),
where ¢f is the mazimum number of patients that may be scheduled in time slot ¢ on day d.2 The
values of k¢ are thus an upper bound to the number of scheduled appointments on a certain day. We
describe the steps to evaluate a day schedule in Appendix A. The combination of a capacity cycle K
and its corresponding best day schedules C = (C*, ..., CP) forms the CAS. This CAS represents how

many and which time slots have to be reserved for appointments on each day.

2We explicitly use mazimum here, because the appointment slots as placed in the best schedule found are not neces-
sarily fully occupied by appointments. Appointments can only be scheduled in those time slots, but the actual occupation
is dependent on the number of appointment requests (which may be lower than the number of reserved time slots).



The iterative algorithm minimises the number of deferred walk-in patients while satisfying the
[37], the

expected number of deferred patients is set to zero. First, all feasible capacity cycles are determined

access time service level norm. In the first iteration of the algorithm of Kortbeek et al.

with the Access model. Second, for each capacity cycle generated with the Access model, the Day
model determines all possible schedules for each day in the cycle. For each day in each capacity cycle,
the Day model selects the best day schedule generated. The last step of the Day model is to choose
the combination of a capacity cycle and its corresponding set of day schedules that minimises the
total number of deferred patients. If the number of deferred patients in an iteration is (much) larger
than in a previous iteration, the number of time slots reserved for appointments was apparently not
sufficient and more time slots should be reserved for appointments. To overcome this problem, a new
iteration is started. At the start of a new iteration, the appointment request rate is updated for each
day: it consists of the number of deferred patients of that day in the previous iteration added to the
initial arrival rate of appointment requests and is represented by v¢. This new appointment request
rate is used to evaluate the Access and Day model again. This is done until there is no significant
change in the number of deferred patients in two subsequent iterations anymore (i.e. the number of
time slots reserved is sufficient to service all scheduled patients and all deferred patients that receive an
appointment, while the remaining walk-in patients are served on the day of arrival). This balance should
hold for all days in the capacity cycle, so balance in the sum of deferred patients over all days is not
sufficient. Since all feasible capacity cycles for a certain K and all possible day schedules are evaluated,
the algorithm of Kortbeek et al. [37] returns the best possible solution for a given K. However, the
gradual increase of deferred patients among iterations may cause a capacity cycle to increase with more
than one appointment. This implies that certain capacity cycles might not be evaluated (e.g. first
K = 16 would have been evaluated and thereafter X' = 18, so K = 17 would not have been evaluated),
which makes it hard to proof that the algorithm of Kortbeek et al. [37] gives an optimal solution (the
optimal solution might for example be found when K = 17 would have been evaluated). Figure 2.2

presents a visualisation of the approach as presented in Kortbeek et al. [37].
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Figure 2.2: Algorithm of Kortbeek et al. [37]




2.4 Summary & conclusion

As discussed in Chapter 1 our aim is to develop a fast algorithm that works under the same assump-
tions as in [37]. Ideally, our algorithm outperforms existing scheduling techniques that can deal with
appointments and walk-in patients, as we discuss in Chapter 3.

We use the algorithm of Kortbeek et al. [37] as starting point for our research to develop good
appointment schedules. Their method consists of two models: one to evaluate the access process of
patients with an appointment (Access model) and one to evaluate the day process of appointments and
walk-in patients (Day model). Subsequently an iterative algorithm maximises the number of walk-in
patients that can be served on the day of arrival while satisfying the access time service level norm for
patients with an appointment request.

Finding the best CAS is done in the algorithm of Kortbeek et al. by complete enumeration. This
way of working guarantees a good schedule, although this may take very long because all possible

solutions have to be evaluated in each iteration.



Chapter 3

Literature review

In this chapter we give an overview of established theories and state of the art research in appointment
scheduling. We start in Section 3.1 with a review of appointment scheduling research for outpatient
facilities. We discuss methods to find good capacity cycles in Section 3.2. In Section 3.3 we give an
overview of methods that can be used for making day schedules that incorporate appointments and

walk-in patients. Section 3.4 ends this chapter with a summary and conclusions.

3.1 Appointment scheduling in outpatient clinics

Well designed appointment schedules are able to deliver timely and convenient access to healthcare for
all patients. Besides that, physician idle time and patient waiting time should be minimised [24]. It is
desirable to schedule patients that request for an appointment as fast as possible, since excessive access
time to health services can lead to serious safety concerns [41]. Access time is measured as the time
between the day of the appointment request and the day the appointment takes place. Besides timely
access, long waiting times should be avoided to keep the satisfaction of patients and quality of care at
a high level [46]. Waiting time is measured as the time in minutes between the time of arrival at the
facility and the time of service. Earlier research at the AMC shows that a combination of appointments
and walk-in results in the best performance with regard to timely access and patient preferences 38, 52].
Kopach et al. [36] discourage to allow for too many walk-in patients. They show that this can lead
to a deterioration of the continuity of care, because there is a higher probability of seeing a different
physician than the one the patient is used to see. This results in lower patient satisfaction and quality
of care.

One of the first papers that addresses appointment scheduling in healthcare is the work of Welch and
Bailey [60]. The appointment rule they describe schedules two patients in the first time slot, one patient
in each time slot thereafter and no patient in the last time slot. This rule appears to perform very well
in appointment scheduling [11, 28, 34, 53]. However, in the sixty years after their work, still no generally
accepted way for making good appointment schedules has been found [3, 13, 20, 28]. Cayirli and Veral
[10] present an extensive review of outpatient appointment scheduling research. They argue that many
scholars focus on developing models for a certain hospital or case, but that the development of generally
applicable appointment schedules has not been done so far. A reason why the developed models are
not generally applicable in most cases, may be that problem parameters (e.g. arrival probabilities of
patients) heavily affect appointment schedules and their performance [53].

The appointment system we study can be characterised as an adapted Individual Block, Fixed Inter-
val system (IBFI). In a pure IBFI each patient has a different appointment time and these appointments

are equally spaced over the day [13, 55]. Instead of only scheduling appointments, our model and the
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model of Kortbeek et al. [37] also include no-shows and walk-in patients.

Hassin and Mendel [26], Kaandorp and Koole [29] and Ratcliffe et al. [48] are some examples that
discuss incorporating no-shows, however these authors do not take walk-in patients into consideration.
Cayirli et al. [12] present several appointment rules for making appointment schedules in outpatient
clinics with no-shows and walk-in patients, which were evaluated by applying simulation and appear
to perform well. However, to the best of our knowledge no paper discusses the behaviour of walk-in
patients as Kortbeek et al. [37] do. In Kortbeek et al. walk-in patients get an appointment in case their
service cannot start within a certain number of time slots (e.g. within half an hour). Other authors
let walk-in patients wait as long as necessary for service or let them call at the start of a day for an
appointment on that day, which is often referred to as same day scheduling, open access or advanced
access [41]. This decreases the uncertainty in the arrival behaviour of walk-in patients as modelled by
Kortbeek et al. [37].

In other businesses than healthcare, researchers study appointment scheduling techniques that deal
with walk-ins as well. A revenue management approach that makes a trade-off between reservations
and walk-in customers in the hotel business is discussed by Bitran and Gilbert [8] and the same is done
for airlines (see for example Talluri and van Ryzin [57]) and restaurants (see for example Bertsimas
and Shioda [6] or Kimes et al. [32]). However, these models cannot easily be applied to our problem.
These models use prices to control access to a resource, which is generally not the leading performance

measure for decision making in healthcare [24].

3.2 Finding good capacity cycles

Methods to determine how many appointments should be scheduled per day of the planning cycle, under
the constraint that walk-in patients are served within a certain number of time slots and that patients
with an appointment request are served within a certain number of days, are scarce in literature. We
could not find any author, besides Kortbeek et al. [37], that determines how these appointments should
be divided over the days in the planning cycle under these constraints. For determining the total
number of appointments that has to be scheduled in an entire cycle, Kortbeek et al. [37] generate
all capacity cycles and choose the best one. They use discrete-time queuing analysis to evaluate this
access process. Kim and Giachetti [31] present a stochastic mathematical model that determines the
optimal number of appointments that can be scheduled to maximise profit, while also no-shows appear
and walk-in patients can enter the facility. One of the cost components they use to calculate profit is
the cost for rejected patients, which is comparable to the deferred patients in the model of Kortbeek
et al. [37]. However, they do not incorporate the possibility to offer a deferred patient an appointment
on another day. Thereby, they assume that walk-in patients are willing to wait until the end of the
day to get service. Qu et al. [47] demonstrate that the optimal percentage of time slots held open
for patients that call for an appointment within 12 - 72 hours (call-in) is dependent on the ratio of
the average call-in demand to the server capacity. However, in their model patients enter the facility
via open-access (i.e. they get an appointment in 12 - 72 hours from the moment they request for
an appointment), which reduces the scheduling problem to a pure appointment scheduling problem
without the walk-in characteristic we are studying. Balasubramanian et al. [4] develop an analytic
model to optimally allocate limited physician capacity in an outpatient clinic with both appointments
and walk-in patients, while maximising timely access and continuity of care (i.e. building a strong or
permanent relationship between a patient and a specific physician). Optimal allocation means that
their model determines how many time slots should be left open for walk-in patients on a single day
(so they do not make a planning for multiple days). However, this paper takes continuity of care as

main performance measure, such that the probability that patients see their preferred physician is high.
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No walk-in is used as in Kortbeek et al. [37], but urgent patients get an appointment on the day of
the appointment request (open access). Balasubramanian et al. [4] conclude that a heuristic method
that suggests the number of time slots to reserve for appointments would complement their work.
However, since a schedule is made for only one day and all patients (including urgent patients) arrive
by appointment, their approach reduces to an appointment scheduling problem without the walk-in

property as in Kortbeek et al. [37].

3.3 Finding good day schedules

Appointment scheduling techniques to make day schedules can be divided in exact approaches and
heuristics. Exact approaches are applied to design and optimise appointment schedules, whereas heur-
istics only design schedules. Heuristics can be subdivided in constructive heuristics and local search
techniques. A constructive heuristic generates a solution (appointment schedule) based on some preset
rules. A local search technique modifies an initial solution several times to obtain improved solutions.
In the remainder of this section we discuss earlier research that uses these methods to design good day
schedules.

Exact approaches. Several attempts are made in literature to find exact solutions for appointment
scheduling problems. We take the approach as developed by Kortbeek et al. [37] as starting point of
our research and our work is therefore comparable to their study. Other authors that also use exact
approaches and that only differ slightly from our approach (e.g. in the behaviour of walk-in patients)
are Kolisch and Sickinger [35] and Gocgun et al. [22]. The latter tries to derive properties of optimal
appointment schedules, although these are refuted by Sickinger and Kolisch [53]. We describe these
papers in more detail in the remainder of this section.

Kortbeek et al. [37] see appointment systems as a combination of two separate queuing systems.
One system concerns the process of patients making an appointment for treatment on a certain day
(Access model), whereas the other system concerns the service of patients on a specific day (Day model).
They use finite time Markov chain theory to analyse the day model. Their work is an extension to
the model of Creemers and Lambrecht [17], who present a similar approach as Kortbeek et al. [37]
but do not consider walk-in patients. Kolisch and Sickinger [35] present a Markov Decision Process
(MDP) for scheduling patients on two parallel CT-scanners. In their research scheduled outpatients
arrive according to an appointment schedule, whereas inpatients and emergencies arrive at random and
can thus be seen as walk-in patients. This is comparable to our study, although Kolisch and Sickinger
[35] assume that emergency patients are served immediately after arrival and arriving inpatients are
willing to wait until the end of the planning horizon. This is different compared to our study.

Gocgun et al. [22] conducted a study that determines per time slot which decision to take (i.e. which
patient type to serve). They conclude that the optimal policy (with revenue as performance indicator)
has a threshold structure. In their MDP an optimal action is determined for each time slot where a
given number of inpatients and outpatients are waiting for service (i.e. determine which patient type
to schedule in that time slot). They show that in the optimal policy outpatients have priority until
some threshold has been reached (which represents the number of waiting inpatients). This follows
from the chosen cost parameters, because the costs of an inpatient not receiving service are assumed to
be much larger than the rejection costs for outpatients. Furthermore they show that a priority-based
scheduling heuristic performs second-best to their optimal policy, but this heuristic approach does not
give an optimal solution. However, Sickinger and Kolisch [53] question the applicability of priority-
based scheduling heuristics. They mention that priority rules, where for example first all outpatients
are served and thereafter all inpatients (based on Green et al. [23]), are not always optimal. This

non-optimality is for example proven in one of their numerical examples with a schedule of 8 time
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slots where the number of appointments to be scheduled is equal to the number of time slots available
while overbooking of time slots is allowed. They show that in this setting it is optimal to book many
outpatients early on a day (with some time slots overbooked), then leaving a time slot open for an
inpatient and thereafter scheduling the last outpatient. This undermines the priority rule with first
adjacent time slots with scheduled outpatients and next adjacent time slots reserved for inpatients.

Although models based on queuing theory are able to find optimal solutions (e.g. by complete
enumeration of all possibilities), the practical application seems to decrease with the problem size
[17, 37]. Tt is recognised that queuing models might work well for small problems, but that for larger
problems the dimensions of the solution space become too large to optimally solve the problem in little
time [19, 39, 40, 44]. Many authors that start with an MDP or other exact approach, identify this
problem and present heuristics or approximation algorithms to overcome the curse of dimensionality
(e.g. [23, 44]).

A last point of caution has to do with implementing an algorithm in practice. A study in two
university hospitals argues that acceptance for computer-based decision rules in medical environments
is low [35]. So a simple (or at least understandable and intuitive) algorithm to make appointment
schedules would be preferable [22, 35]. Exact approaches are often highly mathematical, which can
make implementation in practice hard.

Constructive heuristics. Because the solution space of exact approaches may grow rapidly with
problem size, constructive heuristics can be used to find a good appointment schedule in little time. Au-
thors that study appointment scheduling heuristics that incorporate appointments and walk-in patients,
often use constructive heuristics and apply simulation for performance evaluation (e.g. [3, 39, 50]). Con-
structive heuristics are often expressed as appointment rules. Many authors conclude that the sixty
years old appointment rule of Bailey and Welch [60] still performs very well. However, Cayirli et al. [13]
develop an appointment rule that outperforms the rule of Bailey in the tests they performed. Klassen
and Rohleder [34], Chen and Robinson [15] and Su and Shih [56] study different forms of appointment
rules where patients with an appointment arrive and where a form of walk-in is allowed. Lin et al. [39]
use a reduction heuristic instead of an appointment rule to make appointment schedules. We discuss
these papers in more detail in the remainder of this section.

According to Gupta and Wang [24], heuristics based on appointment rules generally perform well in
outpatient scheduling. As said, the appointment rule proposed by Bailey and Welch [60] performs very
well in case the service time is deterministic and equal to one time slot [11, 12]. This rule prescribes that
patients are scheduled at equal intervals in time slots of fixed size. In the first time slot two patients
should be scheduled, one patient in each time slot thereafter and in the last time slot no appointment
should be scheduled. Sickinger and Kolisch [53] show that the rule of Bailey also performs well with
respect to total costs when taking into account scheduled outpatients, randomly arriving inpatients and
randomly arriving emergency patients. They cannot recommend the use of this rule in case the costs
of waiting or the costs of denied service are very high for randomly arriving inpatients. The difference
with our study is that emergencies are served immediately and that inpatients (who are treated as
walk-in patients) are willing to wait for service until the end of the day. For a setting where both
patients with an appointment and walk-in patients visit the outpatient clinic and the service time is
stochastic, Cayirli et al. [13] present a ‘universal appointment rule’ for the case that no-shows appear.
In the tests they perform they show that their rule outperforms the rule of Bailey and that optimal
day schedules (with scheduled appointments, no-shows and walk-in patients) display a dome pattern
in the case that service times are stochastic [26, 29, 49]. The dome pattern is formed by appointment
intervals that increase from the start of the day until a certain time slot has been reached and thereafter
the appointment intervals decrease towards the end of the day. However, in their work walk-ins are

assumed to arrive randomly while in our study walk-in arrivals follow a non-stationary Poisson process
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with time slot dependent arrival rates. Thereby, their rule takes service of walk-ins into account by
dynamically changing the length of the appointment intervals. It might for example be that the mean
service time of a patient is one time slot, but that we also expect a walk-in patient to arrive in 50% of
the cases in that time slot. Cayirli et al. [13] suggest then to schedule the first appointment at ¢t = 1
and the second appointment at ¢t = 2.5 to take the expected effect of an arriving walk-in patient into
account. This differs also from our study, where service of a patient is assumed to take one time slot
and where walk-in patients are explicitly taken into account.

Klassen and Rohleder [34] suggest that leaving time slots open for urgent patients at the beginning of
a day is good for reducing waiting time, while leaving these time slots open at the end of the day results
in more urgent patients being helped. In a later study these authors report that spreading urgent slots
equally over the day performs best with respect to waiting time and the number of patients served [33].
Su and Shih [56] report that an alternating sequence of appointments and walk-in patients performs
best, which is comparable to spreading urgent slots equally over the day. Chen and Robinson [15] study
the case of patients that call at the beginning of a day for an appointment later that day. Based on
their research, they argue that the first few time slots on a day should be dedicated to patients that
made a call at the beginning of a day. After this period, a block should be scheduled with appointments
that were made earlier and at the end of the day a block of patients that called for an appointment
should be allowed again. Although patients are served on the day of their call, these patients cannot be
compared to the walk-in patients we study. Because call-in patients make an appointment, they know
when to come to the clinic and this avoids excessive waiting times (such that the probability of deferral
is much lower than in our case).

Lin et al. [39] develop an appointment scheduling method that incorporates no-shows and patients
that call for an appointment. A planner has to decide where to schedule the calling patients (i.e.
sequential clinical scheduling [39]). This can be on the day of the call or on another day. They describe
a heuristic approach to solve this problem, which is not based on an appointment rule. Their aim is to
reduce the solution space of the MDP model they describe, by aggregating time slots and applying an
approximate dynamic programming method [39] to the new instance (which has less time slots). After
this step, a myopic heuristic (i.e. a heuristic that maximises immediate rewards and does not take
future information into account) determines in which of the merged slots an appointment has to be
scheduled. Freville and Plateau [21] confirm the positive effect of a solution space reduction algorithm
on runtime performance. Although reduction might be a fruitful idea, Lin et al. [39] place an important
remark on the level of aggregation: if too much aggregation is required for fast computation, far from
optimal schedules can be the result.

Local search. Since schedules designed by constructive heuristics can be far from optimal, local
search heuristics can be applied to improve these appointment schedules [9, 59]. Local search heuristics
start with an initial schedule (which may be random or well chosen, dependent on the local search
technique) and improve that by changing the initial schedule. This initial schedule is often the output
of a constructive heuristic. Kortbeek et al. [37] mention that the model structure of the day process
suggests that local search methods might be worth exploring.

A local search procedure for finding outpatient appointment schedules without walk-in patients as
described by Kaandorp and Koole [29], appears to be optimal because of its multi-modularity property.
We discuss their method in more detail in Section 4.4.2. Sickinger and Kolisch [53] argue that a simple
neighbourhood search outperforms Tabu search for improving outpatient appointment schedules. The
problem they describe is very similar to our problem of finding day schedules. Their neighbourhood
search changes the initial schedule by randomly increasing or decreasing the number of appointments
in a time slot. Denton et al. [18] use Simulated Annealing (SA) to improve initial schedules for

outpatient surgery scheduling. They adapt their initial schedule by moving appointments forward or

14



backward in time. Denton et al. [18] conclude that applying SA results in substantial improvements,
but that it converges slowly. They encourage future research of more advanced local search methods
such as Genetic Algorithms (GA). Vanden Bosch et al. [58] report a local search procedure that swaps
appointments between time slots. Their procedure was able to give an optimal solution in 85% of the
studied cases for outpatient appointment scheduling. Although these last two papers do not incorporate
walk-in patients, we think that the local search techniques they use are generally applicable to any
(appointment) scheduling problem. All papers that test a form of local search on their constructive
heuristics report that this improvement step results in better performing schedules than the schedules

generated with their heuristic procedures.

3.4 Summary & conclusion

In the six decades after the first paper on outpatient appointment scheduling appeared, still no generally
accepted way for making good appointment schedules has been found. Although many attempts are
made to find good day schedules, not so many incorporate both appointments and walk-in patients.
The majority of papers that incorporate walk-in patients do not take into account that walk-in patients
leave the clinic if their waiting time becomes too large. Exact approaches that do so are mostly based
on queuing theory and are able to find optimal solutions. However, these approaches can only find
solutions for small instances because of their computational complexity. Several authors try to derive
properties of optimal solutions, but a generally accepted set of properties cannot be defined. Many
authors argue that queuing models might work well for small problems, but that for larger problems
the dimensions of the solution space become too large to optimally solve the problem in reasonable
time.

Finding good capacity cycles is less widely discussed in literature. A few authors comment on this
problem, but it has to be concluded that more research is needed to find the optimal number of time
slots to reserve for appointments. Models to generate appointment schedules or capacity cycles from
other businesses, like the airline industry or hotel and restaurant management, cannot easily be applied
to our problem since healthcare scheduling does not use prices to control access to outpatient clinics.

Constructive heuristics are proposed to find good day schedules in little time. Constructive heuristics
that appear to perform well in literature might be used as a benchmark when we evaluate the algorithm
we develop. No single heuristic is accepted to be the best and some papers state that the chosen
scheduling approach should be adapted to the unique environment of the outpatient clinic under study.
Local search heuristics seem to have a positive effect on the performance of appointment schedules
generated by constructive heuristics. Several local search techniques are discussed in literature and
all of them result in an increased performance compared to the initial schedules they start with. A
promising way to decrease computation time is to use a heuristic or algorithm that reduces the solution
space, such that less solutions have to be evaluated to get an appointment schedule.

Finally we can conclude that simple and understandable algorithms or appointment rules would be

preferable, since acceptance for computer-based decision rules in medical environments is low.

15



Chapter 4

Algorithm development

In this chapter we present our appointment scheduling algorithm that combines patients with a sched-
uled appointment and walk-in patients. Section 4.1 presents the structure of our algorithm. In Section
4.2 we discuss heuristics to generate capacity cycles and in Section 4.3 we present heuristics to generate
day schedules. In Section 4.4 we discuss local search techniques that can improve the appointment

schedules generated by our heuristics. Section 4.5 ends this chapter with a summary and conclusions.

4.1 Algorithm structure

The structure of our algorithm is based on the model structure of Kortbeek et al. [37] that we describe
in Chapter 2. This means that our algorithm consists of three parts: determining a good capacity cycle
K (access process), good day schedules C¢ for each day d in the planning cycle (day process), and an
iterative algorithm that links the access and day process.!

The difference of our model compared to the model of Kortbeek et al. [37] is that we use heuristics
to determine the capacity cycle K = (k',... kP) and the day schedules C?¢ for each day d, whereas
Kortbeek et al. [37] evaluate all possible capacity cycles and day schedules. A heuristic is a method to
find a solution in a structured way. Because heuristics do not evaluate all possible solutions but generally
construct only a single solution, they are fast. We expect therefore that our heuristic approach leads to
better performance with respect to runtime. A disadvantage of heuristics is that their solutions might
deviate from optimal solutions, such that the number of deferred patients found with our algorithm is
worse than found with complete enumeration as in the method of Kortbeek et al. [37].

Our algorithm starts with the initialisation of the appointment request rates and the arrival rates
of walk-in patients. After this step, an iteration of our algorithm starts with a heuristic that generates
a capacity cycle K = (k',..., k") that meets the preset access time service level norm (so we do not
create all feasible capacity cycles as in Kortbeek et al. [37]). This access time service level norm
prescribes the percentage of appointments that should be served whitin a preset number of days from
the day of the appointment request (i.e. 95% of the appointment requests should be served within 10
days from the request). Achieving the access time service level norm is easy if we choose a high number
of appointments that we schedule over the planning cycle (i.e. defer all walk-in patients such that
they get an appointment). However, our aim is to minimise the number of deferred walk-in patients,
which implies that we should schedule as few appointments as possible. Our algorithm takes both the
request rate of appointments, and the arrival rate of walk-in patients into account for determining a
capacity cycle. In Kortbeek et al. [37] only information about the appointment request rates is used

for generating a capacity cycle. We present our heuristics for generating capacity cycles in Section 4.2.

INote that a list of symbols can be found on page vi.

16



After generating a capacity cycle another heuristic generates day schedules for all days in the planning
cycle. We design these day schedules in such a way that the number of deferred patients is as low as
possible. We present our heuristics for generating day schedules in Section 4.3.

From our literature review it appeared that local search techniques can often improve appointment
schedules that are generated by heuristics, so we also apply local search techniques to generate improved
appointment schedules. We discuss local search techniques for generating capacity cycles and day
schedules with improved performance in Section 4.4. Because local search may be unguided, for example
in random search, we start day d in iteration ¢4 1 with the best appointment schedule found in iteration
¢ in case the capacity on that day has not changed among subsequent iterations. By doing this, the
day schedule of that day d can only be improved in upcoming iterations. In case the capacity of that
day has changed, we use one of our day schedule heuristics to generate an initial schedule.

The final step in an iteration of our algorithm is to perform a balance check, which is the same as
the one discussed by Kortbeek et al. [37]. We start a new iteration if no balance in the number of
deferred patients has been obtained for all days in the planning cycle and the algorithm is finished if
this balance is present. In Figure 4.1 we present an overview of our algorithm, which is based on the
overview in [37]. The phases where we propose to use a local search technique do not necessarily have
to be executed, since local search techniques only have the potential to improve the solutions found

with our heuristics.

Initialise iteration Generate capacity Generate day Balance check
cycle | . schedules
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combination of
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deferrals per day
Figure 4.1: Algorithm overview
4.2 Heuristics for generating capacity cycles
When we want to create a good capacity cycle K = (k!,..., k"), we first have to know how many

time slots I' we have to reserve for appointments over the entire length of the cycle (i.e. I' = 3" k9).

d
We argue that it is not necessary to find the best I' in one iteration of our algorithm. Since in each
iteration the number of deferred patients is added to the appointment request rate, I' can and should

be adjusted in each iteration.
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For a feasible appointment schedule, the number of time slots for appointments (capacity) should
be larger than the number of appointment requests (demand). We propose to use Equation 4.1 to
determine an initial value for I', which serves as input for the heuristics we discuss later in this section.

In Equation 4.1, % is the appointment request rate.

D
P =1> 4 (4.1)
d=1

The last step to generate a capacity cycle K = (k',...,kP) is to allocate the total of I" appointments
over the days d in the planning cycle. It should be noted that it is not guaranteed that Equation 4.1
gives a capacity with which a capacity cycle can be generated that satisfies the access time service
level norm S™°"(y). The access time service level, S(y), which is the percentage of patients with an
appointment that is served within y days, should be larger than or equal to this access time service
level norm S™"™(y). The access time service level norm can be set by the management of the facility.
Kortbeek et al. [37] present the steps to calculate the access time service level S(y), based on the access
time probability distributions. The access time service level norm can for example be ™" (10) = 95%.
This means that 95% of the patients with an appointment request should be served whithin y = 10
days after their appointment request.

If we find a capacity cycle K = (k',..., k") that does not meet this access time service level norm,
we reserve more time slots for appointments. We proceed adding appointments until we get a feasible
capacity cycle (i.e. the access time service level norm has been reached under the found capacity cycle
and capacity I'). This increasing of I" is done in the heuristics that we present in Sections 4.2.1 and
4.2.2. In case we use a local search technique for capacity cycles (as we discuss in Section 4.4.1), we first
generate neighbouring capacity cycles before increasing the number of appointments to allocate over
the cycle. This increases the probability that we find a cycle that satisfies the access time service level
norm, while the cycle capacity remains low. If it appears that none of these neighbouring cycles satisfies
the access time service level norm, we proceed with increasing the number of appointments that has to
be allocated. Scheduling additional appointments results in less available remaining resources to serve
walk-in patients. This might result in more deferred patients, which deteriorates the performance of
the generated schedule. It is thus important to schedule as few appointments as possible.

In Sections 4.2.1 and 4.2.2 we propose two heuristics that can be used to find a good capacity cycle.
Both heuristics are constructive and based on the idea that the workload per day, which consists of
walk-in patients and patients with an appointment, should be levelled. Levelling means that all days
of the planning cycle have approximately the same workload. These heuristics assume that the total
number of appointments I' that has to be reserved in a cycle is known and initially calculated using
Equation 4.1.

4.2.1 Workload levelling based on mean walk-in arrival rates

Walk-in patients are preferably served on the day of their arrival, whereas patients with an appointment
request can be scheduled on any day in the planning cycle as long as the access time service level norm
is satisfied. We operationalise this by determining how many slots 1/? we expect to remain free per day
if we serve all walk-in patients that we expect to arrive on that day.

This heuristic iteratively allocates an appointment to the day with the highest number of expected
free slots. If there is a tie, we choose for the earliest day in the week, but another allocation would
also be possible. To make sure that we take the already allocated appointments into account when
determining the next appointment to be scheduled, we decrease the expected number of free slots

with one on the day where an appointment was added. This is done until the number of allocated
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appointments N is equal to the total number of appointments I' that we have to allocate in the cycle.
Obviously, the number of reserved slots on a day cannot be larger than the total number of available
slots R - T on that day. At the end of this heuristic, we check whether the access time service level
of the capacity cycle found satisfies the access time service level norm. In case this norm is violated,
we increase the total number of appointments in the cycle I' and execute Heuristic 1 again or we first
execute the local search procedure for capacity cycles (LS-CC) that we describe in Section 4.4.1. We
proceed until we find a feasible capacity cycle. In case we apply LS-CC and we find multiple cycles
that satisfy the access time service level norm, we will generate day schedules for all these day schedules
with one of our day schedule heuristics that we describe in Section 4.3. From these cycles with their
corresponding day schedules, we select the best performing combination. Heuristic 1 gives an overview

of this procedure in pseudo code.

Heuristic 1 Generating a capacity cycle K = (k!,..., k")

D
F:Zfdaﬂ
ford:gltoDd%

Yh=R-T— 3 x{
t=1

¢’d = ¢d

k=0
end for
N:=0

while N < T do
§ := argmax1) @
if k% < R-T then

ko :=k0 41
Y=y -1
N:=N-+1
else
Y0 = —BigM
end if
end while

if LS-CC is used then
Execute LS-CC

end if

if S(y) < S"orm(y),V K = (k',...,kP) then
I'=T+1
Execute Heuristic 1

end if

To clarify the working of Heuristic 1 we give an example in Table 4.1. Assume that we have to allocate
I' = 22 appointments to a cycle with a length of D = 5 days, the initial number of free time slots per
day ¥? is equal to (1.5,2.0,5.0,7.2,2.3) and there are 7' = 8 time slots per day. We also assume that

one resource R is available.?

4.2.2 Workload levelling based on the probability of insufficient capacity

This heuristic is comparable to Heuristic 1 in the sense that we take the arrival rates of walk-in patients
into account and that we want to level the workload over all days in the planning cycle. However, in
this heuristic we allocate appointments to the days that have the lowest probability w? of insufficient

capacity. We define the probability of insufficient capacity as the probability that the expected number

2These settings are the same as in the last iteration of the numerical example given in Kortbeek et al. [37].
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Iteration @ Capacity cycle K = k', ... kP

0 (15,2.0,5.0,7.2,2.3) (0,0,0,0,0)
1 (1.5,2.0,5.0,6.2,2.3) (0,0,0,1,0)
2 (1.5,2.0,5.0,5.2,2.3) (0,0,0,2,0)
21 (=0.5,—1.0,0.0, — BigM, —0.7) (2,3,5,8,3)
22 (=0.5,—1.0, —1.0, —BigM, —0.7) (2,3,6,8,3)

Table 4.1: An example for generating a capacity cycle with Heuristic 1

of arriving walk-in patients becomes larger than the available capacity when an extra time slot would
be reserved for appointments on a day d. Equation 4.2 formally represents this probability that the
expected number of arriving walk-in patients A% on day d becomes larger than the number of free time
slots when an extra time slot is reserved for an appointment on that day. In each step of this heuristic
we increase the number of time slots to reserve for appointments on day d by one on the day that

has the lowest probability w?.? Since the arrival rate of walk-in patients is Poisson distributed, A? is
T
Poisson distributed as well with mean Y x¢. Since A? follows a Poisson distribution we can compute

t=1
Equation 4.2, as is shown in Equation 4.3.

wl=P(A?> (R-T — k%)) (4.2)
RT—k%-1 A\ T

wi=1- Z ﬁ-e*’\ Where/\:X;Xf (4.3)
1=0 t=

Heuristic 2 continues with allocating appointments until the number of allocated appointments N is
equal to I, like in Heuristic 1. The maximum number of appointments that can be allocated to a certain
day is again bounded by the number of available time slots on that day. At the end of this heuristic, we
check whether the access time service level of the capacity cycle found satisfies the access time service
level norm. Again, we use the approach of Kortbeek et al. [37] to calculate this access time service
level. In case the norm is violated, we increase the total number of appointments in the cycle I' and
execute Heuristic 1 again, or we first execute the local search procedure for capacity cycles (LS-CC)
that we describe in Section 4.4.1. We proceed until we find a feasible capacity cycle. Heuristic 2 gives
an overview of this procedure in pseudo code.

To clarify the working of Heuristic 2 we present a numerical example in Table 4.2. Assume again
that we have to allocate I' = 22 appointments to a cycle with a length of D = 5 days, the expected
number of arriving walk-in patients per day A? is equal to (6.5,6.0,3.0,0.8,5.7) and there are T = 8

time slots per day. We also assume that one resource R is available.*

Allocated Appointments wh WP min w? Capacity cycle K = k,... kP
0 (0.327,0.256,0.012,0.000, 0.216) 0.000 (0,0,0,0,0)
1 (0.327,0.256, 0.012,0.000, 0.216) 0.000 (0,0,0,1,0)
2 (0.327,0.256, 0.012,0.000, 0.216) 0.000 (0,0,0,2,0)
21 (0.631,0.715,0.577, BigM,0.673)  0.577 (2,3,5,8,3)
22 (0.631,0.715,0.801, BigM,0.673)  0.631 (2,3,6,8,3)

Table 4.2: An example for generating a capacity cycle with Heuristic 2

3This is not the exact probability that we have to defer a walk-in patient but an approximation. It is not clear in
which time slot the added appointment is scheduled, which is important to evaluate the performance of a schedule.
4These settings are the same as in the last iteration of the numerical example given in Kortbeek et al. [37].
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Heuristic 2 Generating a capacity cycle K = (k!,... k")

D

= fdzl 7]
for d:=1to D do

k4 :=0
wl:=P(AY> (R-T — k)
end for
N:=0
while N < T do

6 :=argmin w

if k¥ < R-T then

d

k=Ko 41
W i=P(A° > (R-T — k%))
N =N+1
else
W = BigM
end if
end while

if LS-CC is used then
Execute LS-CC

end if

if S(y) < S"r™(y),V K = (k',...,kP) then
I'=I+1
Execute Heuristic 2

end if

4.3 Heuristics for generating day schedules

In this section we discuss two heuristics to generate day schedules. A day schedule for day d is rep-
resented by C?% = (¢{,...,c%), where c¢{ represents the number of scheduled appointments at time slot
t. Many authors in literature argue that using fixed appointment rules works well for the facilities
or problem instances they study. Other authors in literature suggest that appointment rules cannot
generally be applied, but that they only work well for the facility under study [53]. This is because
in a general diagnostic facility many parameters influence the optimal location of appointments in the
schedule (e.g. the arrival rate of walk-in patients or the number of time slots a walk-in patient is willing
to wait for service). Different parameter configurations (i.e. another diagnostic facility) can therefore
result in less performing schedules when appointment rules are applied. This is what we want to avoid,
since we are looking for a generally applicable appointment scheduling algorithm.

In Section 4.3.1 we present our first heuristic to generate a day schedule. This heuristic is construct-
ive and generates a day schedule while taking the arrival rates of walk-in patients and the available
number of resources into account. We present our second day schedule heuristic in Section 4.3.2. This
second heuristic does not generate an entire day schedule, but reduces the solution space by forcing
some time slots to be empty. This heuristic might be of interest when applying a local search technique,
such that not the entire solution space is available for generating neighbour solutions. Both heuristics
assume that a feasible capacity cycle has been found already (i.e. by executing one of the heuristics

that we presented in Section 4.2).
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4.3.1 Allocate appointments to time slots with few expected walk-in arrivals

In our model walk-in patients have the characteristic that they are willing to wait a maximum of g time
slots for service after their arrival. If a walk-in patient receives no service in this interval, the patient
is offered an appointment on another day (the patient becomes a deferred patient). We exploit this
characteristic for finding a day schedule. The first step of this heuristic is to determine the number of
resources (where we can serve a patient) we expect to be free per time slot, #¢. This ¢ depends on the
time walk-in patients are willing to wait for service. It is equal to the number of available resources
minus the sum of the expected walk-in arrivals in the time slots ¢ — g until the current time slot ¢
and the appointments that are scheduled in those time slots. We allocate an appointment to the time
slot where 0¢ is the highest, such that expected busy time slots with respect to walk-in arrivals are
left open. We do this until the number of reserved time slots for appointments is equal to k¢, and we
do this for each day. Each time we allocate an appointment to a time slot, we update the value of
6¢. The maximum number of appointments per time slot is bounded by the available capacity R. It
should be noted that it is not our intention to present a heuristic that finds the best possible schedule.
The schedule generated with this heuristic should be used as an initial schedule for the local search

techniques we describe in Section 4.4. Heuristic 3 gives an overview of this procedure in pseudo code.

Heuristic 3 Generating a day schedule C¢ = (c{,...,c%)

for d:=1to D do
fort:=1to Ttdo

0f = X R—x{
T=maz(t—g,0)
=0
end for
N:=0

while N < k¢ do
0 = arg max 0

if cg < R then

cg = cg +1
N:=N+1
for t := ¢ to min(d + ¢,7T) do
0d .= 0F — 1

end for

else
04 .= —BigM

end if

end while

end for

To clarify the working of Heuristic 3 we give an example in Table 4.3. Assume that we have to allocate
k% = 6 appointments to a day d with 8 time slots and R = 1 resource. The arrival rate of walk-in
patients Xf is equal to (0.15,0.30,0.45,0.60,0.60,0.45,0.30,0.15) and walk-in patients are willing to

wait a maximum of g = 2 time slots for service.’

4.3.2 Reduce the solution space by forcing time slots to be empty

In Heuristic 3 we sequentially build up complete day schedules for all days in the planning cycle.
However, the heuristic that we present in this section is a reduction heuristic that does not generate a

complete schedule. This heuristic determines in which time slots no appointments should be allocated.

5These settings are the same as in the last iteration of day 3 in the numerical example as given by Kortbeek et al.
[37].
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N | Time slot t: 1 2 3 4 5 6 7 8

0 (‘)f: 0.850 1.550 2.100 1.650 1.350 1.350 1.650 2.100
cd: 0 0 0 0 0 0 0 0

1 Gf: 0.850 1.550 1.100 0.650 0.350 1.350  1.650 2.100
cd: 0 0 1 0 0 0 0 0

2 (‘)f: 0.850 1.550 1.100 0.650 0.350 1.350 1.650 1.100
cd: 0 0 1 0 0 0 0 1

3 Gf: 0.850 1.550 1.100 0.650 0.350 1.350  0.650 0.100
cf: 0 0 1 0 0 0 1 1

4 9,‘}: 0.850 0.550 0.100 —0.350 0.350 1.350  0.650 0.100
ci: 0 1 1 0 0 0 1 1

5 egl: 0.850 0.550 0.100  —0.350 0.350 0.350  0.650 0.100
cd: 0 1 1 0 0 1 1 1

6 9?: —0.150 —0.450 —0.900 —-0.350 0.350 0.350 —0.350 —0.900
ci: 1 1 1 0 0 1 1 1

Table 4.3: An example for generating a day schedule with Heuristic 3

We expect that this reduction heuristic is especially beneficial when we apply local search techniques.
By forcing some time slots to be empty, less possible day schedules can be generated which speeds up
the runtime of our algorithm. For a combination with a local search technique this means that the size
of the neighbourhood decreases.

This reduction heuristic starts in the same way as Heuristic 3, where we calculate the expected
number of free resources per time slot §¢. This heuristic proceeds with determining how many time
slots z¢ we can force to remain empty for each day. We base 2% on the number of time slots k¢ that has
to be reserved for appointments, multiplied with a safety factor 8. This safety factor is needed because
this heuristic might force the wrong time slots to be empty. The higher the value of the safety factor,
the less time slots are forced to remain empty. We force the z¢ time slots that have the lowest value of
¢ to be empty on each day d. Since this heuristic does not generate a feasible day schedule, Heuristic
3 should be used afterwards to allocate appointments to the remaining free time slots. Heuristic 4

summarises this procedure in pseudo code.

Heuristic 4 A reduction heuristic that forces some time slots to be empty

for d:=1to D do
2% :=max(0,R- T — [k? + - VEk1])
fort:=1 to Ttdo

0f = X X
T=maz(t—g,0)
el =7
end for
N:=0

while N < 2¢ do
0 = arg mtin 04

if cg =7 then

cd:=0
N:=N-+1
else
0% := BigM
end if
end while

end for
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To clarify the working of Heuristic 4 we give an example in Table 4.4. Assume that we have to reserve
k% = 2 appointments on a certain day d where 8 places are available. Furthermore we assume that the
arrival rate of walk-in patients Xf is equal to (0.30,0.60,1.00, 1.40, 1.40, 1.00,0.55,0.25).5 We assume
that the safety factor 3 is equal to 2 in this example. The number of time slots 2% that we force to be
empty would then be equal to T — [k? + 8- VE1] =8 — [2+2- /2] = 3.

Time slot ¢: 1 2 3 4 5 6 7 8
9,‘}: 0.300 0.900 1.900 3.000 3.800 3.800 2.950 1.800
cd: ? ? ? 0 0 0 ? ?

Table 4.4: An example for generating a reduced day schedule solution space with Heuristic 4

4.4 Local search for appointment schedule improvement

Heuristics generally give non-optimal solutions. Therefore we use local search techniques to find ap-
pointment schedules with an improved performance, compared to the appointment schedules found
with our capacity cycle and day schedule heuristics. A local search technique starts with an initial
solution and makes small changes to this initial solution, such that a neighbour solution is created. By
doing this many times, many neighbour solutions are created. This increases the probability of finding
a schedule with increased performance. The local search techniques we describe in Sections 4.4.1 and

4.4.2 take the solutions of our heuristics from Section 4.2 and 4.3 as initial solution.

4.4.1 Generating neighbouring capacity cycles

We propose to use a simple swapping procedure to find neighbour solutions of the capacity cycle found
with one of the heuristics that we presented in Section 4.2. We denote this swapping procedure by LS-
CC. Instead of only working with the capacity cycle as generated by one of those heuristics, we increase
the solution space by adding some neighbouring capacity cycles. In our swapping procedure the total
number of appointments I' to allocate in the planning cycle remains constant. We swap n appointments
between two days (i.e. we add n appointments to a certain day and subtract n appointments on another
day). In the worst case this means that we have to evaluate n- (D - (D — 1)) additional capacity cycles
when the cycle length equals D. We expect that the capacity cycle heuristics from Section 4.2 give
good initial capacity cycles, such that the value of n can remain small (e.g. at most 2) to find good
neighbouring capacity cycles. Generating and evaluating many neighbour solutions slows down our
algorithm, but we expect that the probability to find a good final appointment schedule increases since

more capacity cycles, and thus appointment schedules, are evaluated.

4.4.2 Local search for day schedules

For the day schedules generated with the heuristics that we presented in Section 4.3 we expect that their
performance with respect to the number of deferred walk-in patients can also be improved. Therefore
we propose to use local search techniques to find day schedules with a better performance. The total
number of allocated appointments per day k% is constant during our local search procedure. This
ensures that neighbouring day schedules found with one of the local search techniques we propose, are

still feasible with respect to the access time service level norm.

6These settings are the same as in the last iteration of day 1 in the numerical example as given by Kortbeek et al.
[37].
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We would like to use well known local search techniques with a good performance. However, from
literature it appears that no single local search technique is dominant nowadays [27]. Bianchi et al.
[7] argue that not much research has been done to compare different local search heuristics for the
same problem. They give a short overview of papers that do compare local search heuristics and
among the winners are tabu search and Genetic Algorithms (GA), but never Simulated Annealing
(SA). Sickinger and Kolisch show that a simple random search outperforms tabu search for making
appointment schedules. Kaandorp and Koole [29] present a local search technique for an appointment
scheduling problem that always gives an optimal solution. Their model assumptions are comparable to
our assumptions, although there are some differences. In their model no unscheduled patients can be
served and they use exponentially distributed service times. Now we give a short description of these
five local search techniques.

Simulated Annealing is based on the controlled cooling process of metals to decrease the number
of defects in the metal. To find good day schedules, SA starts with a random initial schedule. In
every step of the annealing procedure a neighbour schedule is evaluated. In a neighbour schedule a
free time slot and a time slot reserved for an appointment are exchanged. If this exchange results
in an improved schedule, this schedule is accepted. If this exchange does not result in an improved
schedule, the schedule is accepted with a certain probability. This makes sure that not only schedules
with improved solutions are accepted, such that escapes from local optima are possible. The acceptance
probability is initially high, but decreases as the algorithm proceeds. This makes SA initially a random
search method where good and bad solutions are accepted, but at the end of the process SA acts as a
local search method that only accepts improved solutions.

Tabu search starts with a well chosen initial day schedule. From this initial schedule, all neighbour
schedules are evaluated. The neighbour schedule with the best objective value (i.e. the lowest number
of deferred walk-in patients) is chosen. In a neighbour schedule a free time slot and a time slot reserved
for an appointment are exchanged. The last n exchanges are stored in a tabu list. Exchanges in this
list are not allowed to be executed again to generate new neighbour schedules. Neighbour schedule
generation terminates when no improvements are being found, after a fixed number of evaluations or
when all neighbours are in the tabu list.

Random search can start with a well chosen initial schedule, but this is not necessary. From
the initial schedule, a neighbour schedule is evaluated. In this neighbour schedule a randomly chosen
free time slot and a randomly chosen time slot reserved for an appointment are exchanged. If the
performance of this neighbour schedule is better than the initial schedule, we proceed generating new
neighbour solutions based on this improved schedule. Neighbour schedule generation proceeds until a
schedule is evaluated that does not result in an increased performance or after a certain number of
neighbour schedules have been generated.

Genetic Algorithms are based on the evolution process that can be observed in nature, like
survival of the fittest. As a local search heuristic, first an initial population of day schedules is generated.
From this population the ¢ best performing schedules are selected. Based on these schedules new
schedules are generated by mutation and recombination, which form a new population. Mutation is done
by randomly exchanging a free time slot with a time slot reserved for an appointment. Recombination
is done by exchanging two parts (containing multiple time slots) of a day schedule, such that a new day
schedule is generated. From this new population again the ¢ best performing schedules are selected.
This process proceeds until a certain number of generations have been evaluated.

Kaandorp and Koole present a swapping algorithm that always gives the optimal appointment
schedule for the problem they study. They start with some initial schedule (might be random) and
swap appointments in this schedule in a structured way. For their swapping procedure, Kaandorp and

Koole [29] define the following vectors:
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Uy, (-1,0,...,0,1),

Ug, (1,-1,0,...,0),

vi=| o= :
ur—1, (O,...,l,—l,O),
wr (0,...,0,1,—1)

Furthermore they define the set I, which is a strict subset of V* (U C V*). As neighbourhood of schedule
x they take all vectors of the form z+vq +...4vg with vq,...,v, € V* such that x+v1+... 4+ > 0. A
vector u; can be interpreted as moving an appointment from time slot ¢ to time slot ¢t — 1. If a schedule
is found with an improved performance, this schedule is set as the initial schedule and the local search
method starts again. This procedure is repeated until a schedule is found that cannot be improved by
adding one of the vectors ) ,, v. Kaandorp and Koole [29] prove that this approach results in optimal
schedules. They use other performance measures than we do for day schedules, but since performance
measures are only used to evaluate day schedules and not to generate them, we expect that this has
no influence on the applicability of their local search technique in our algorithm. They also state that
this approach takes a lot of time, but that a reduced form of their algorithm (only use solutions of the
form x + u,) is fast and results in good schedules.

The most important characteristic of the local search technique that we want to apply is that the
technique is able to generate improved appointment schedules in little time. The iterative character
of our algorithm, as presented in Figure 4.1 in Section 4.1, ensures that our algorithm generates many
day schedules before it finds a final appointment schedule. This holds also for the last iteration of our
algorithm: the capacity cycle found in the last iteration cannot be different from the capacity cycle in
(at least) the second to last iteration, since otherwise there would be no balance in deferred patients
per day. Therefore the time to find better neighbour solutions with a local search technique can be
small. In Table 4.5 we give a qualitative comparison of the local search heuristics that we evaluated for

our study.

Local search technique Characteristics

Simulated Annealing Can converge to a global optimum

Easy to implement

- Performance dependent on parameter choices
Converges slowly

Easy to implement

Can escape from local optima

Performance dependent on parameter choices
Outperformed by simple random search [53]
Easy to implement

Good performance for a similar problem [53]
Search is unguided, outcomes are unpredictable
Relatively easy to implement

Search space may grow rapidly

Can converge to a global optimum [29]
Relatively easy to implement

Smaller (non-optimal) neighbourhood gives good results [29]
- Search space may grow rapidly [29]

+ +

Tabu search

+ +

Random search

+ 4

+ 1

Genetic Algorithms

Kaandorp and Koole

+ 4+

Table 4.5: Comparison of local search heuristics

SA can find a global optimum, but its performance strongly depends on the chosen parameter values

and it can take long to find better solutions than the initial solution. Thereby, SA was never among the
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best performing local search techniques in the review of Bianchi et al. [7]. In their review they assessed
the performance of several local search techniques for several scheduling problems. Our comparison
in Table 4.5 shows that tabu search, random search, GA’s and the approach of Kaandorp and Koole
[29] seem the most promising with respect to implementability and the time to find good neighbour
solutions. However, tabu search is outperformed by a simple random search in an earlier study on
appointment scheduling [53]. Therefore we choose to work with random search (denoted by LS-RS),
a genetic algorithm (denoted by LS-GA) and the approach of Kaandorp and Koole [29] (denoted by
LS-KK). These three local search techniques are relatively easy to implement and are able to generate

good solutions.

4.5 Summary & conclusion

In this chapter we developed the structure of our algorithm. Our algorithm is based on the model
structure as presented in [37]. Instead of using complete enumeration to generate capacity cycles and
day schedules, we propose heuristics and local search techniques to find a good appointment schedule
fast. In a good appointment schedule few walk-in patients are deferred and the access time service level
norm is satisfied for patients with an appointment request.

Our capacity cycle generating heuristics aim to level workload (consisting of scheduled appointments
and walk-in patients) among days in the planning cycle. Our first day schedule heuristic allocates
appointments to time slots with few expected walk-in patients. The second day schedule heuristic is a
reduction heuristic, that forces some time slots to be empty. This might be beneficial when using local
search techniques, since the size of the solution space decreases and that may decrease runtime.

The performance of heuristics can often be improved by using local search techniques. From liter-
ature it appears that no single local search technique is dominant in appointment scheduling. Based
on reviews in literature we select Random Search, Genetic Algorithms and the local search technique
of Kaandorp and Koole [29] as promising techniques to use in improving day schedules. For capacity
cycle generation we use a swapping procedure that generates neighbouring capacity cycles based on an
initial cycle. In Chapter 5 we will assess the performance of our heuristics and the selected local search

techniques.
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Chapter 5

Algorithm testing

In this chapter we compare the performance of our heuristics and local search techniques as presented
in Sections 4.2, 4.3 and 4.4 with each other and with the performance of the algorithm of Kortbeek et
al. [37]. The purpose of these tests is to identify the best combination of heuristics and local search
techniques that we can use for our case study in Chapter 6 and that ultimately can be used in practice.
We start with outlining our test approach in Section 5.1. In Section 5.2 we give an overview of our
test settings and in Section 5.3 we present the test results. We end this chapter with a summary and

conclusions in Section 5.4.

5.1 Approach

We propose to start testing with our capacity cycle generating heuristics, while using complete enu-
meration for making day schedules. In this way, we can assess the performance of our capacity cycle
heuristics, without the disturbances in performance that might be caused by day schedule generating
heuristics (we evaluate all possible day schedules for our heuristic capacity cycles, so the best pos-
sible day schedules are always chosen). We compare the outcomes of these tests with the outcomes as
generated by the algorithm of Kortbeek et al. [37], so with complete enumeration for both capacity
cycle and day schedule generation. After these tests, we can assess which capacity cycle generating
heuristics perform well. The main criterion here is the number of deferred patients. A criterion that is
of less interest for small instances, but that might become important for practical problems, is runtime.
Therefore we also measure the runtime of all combinations.

Secondly we test all combinations of capacity cycle heuristics, day schedule heuristics and local
search techniques. From these tests, we select the best performing combinations of heuristics and local
search techniques. We use these combinations in our case study. We select the combinations that
perform well with respect to the number of deferred patients. In case many combinations appear to
perform well, we also take runtime into consideration as selection criterion. Table 5.1 gives an overview
of all possible heuristics, local search techniques and exact techniques that we can use to generate

appointment schedules.

Capacity Cycle Generation Day Schedule Generation
Method Local Search Technique Method Local Search Technique
Complete enumeration (CE)  Swapping for Complete enumeration (CE) Random search (LS-RS)
Heuristic 1 (H1) capacity cycles (LS-CC) Heuristic 3 (H3) Genetic algorithm (LS-GA)
Heuristic 2 (H2) Heuristic 4 (H4) Kaandorp and Koole [29] (LS-KK)

Table 5.1: Overview of test combinations
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5.2 Test settings

In this section we present the settings that we used in our tests. In Section 5.2.1 we present the different
parameters and parameter values of the problem instances we test for. Heuristic 4 and the local search
techniques we use in our tests are parameter dependent. This means that the chosen values for the
parameters influence the performance of Heuristic 4 and the local search techniques. In Section 5.2.2

we give an overview of the parameters and their values in our tests.

5.2.1 Parameters test instances

For the combinations of capacity cycle heuristic, day schedule heuristic and local search techniques we
perform tests for several problem instances. In Table 5.2 we give an overview of the test parameters

and the values of these parameters we test for.

Parameter Description Base case Low value High value
R Number of available resources 1 - —
D Length of the planning cycle 5 — —
T Total number of available time 8 — —
slots per day
g Maximum waiting time in time 2 — 4

slots that a walk-in patient ac-
cepts for service
q No-show probability 0.15
(y, 8™ ™ (y))  Access time service level norm: (10,95%) (5,95%) (15,95%)
fraction of jobs with access time
not greater than y is at least S(y)

o

Table 5.2: Overview of test parameters

From Table 5.2 it is clear that we only test for small instances with 8 time slots per day and a planning
cycle of 5 days. We have explicitly chosen to do this because we are now able to compare the performance
of our heuristics to the performance of the algorithm of Kortbeek et al. [37]. The algorithm of Kortbeek
et al. [37] is based on complete enumeration, so the schedules found with their approach are the best
we can compare with. When we would increase the number of time slots, the length of the planning
cycle or the number of resources, the algorithm of Kortbeek et al. [37] is not able to generate a solution
anymore. This is because of limitations on runtime and computer memory. Since we want to compare
the solution found with our algorithm to the solution found by complete enumeration, we perform the
tests in this chapter only on small instances. We argue that testing on a small instance is sufficient to
reject a number of possible heuristics. If the performance of a combination of heuristics deviates a lot
from complete enumeration on small instances, there is a high probability that this combination would
give a bad performance for a large instance also.

We adjust the maximum waiting time a walk-in patient is willing to wait, g, since this parameter is
expected to be dependent on the kind of facility. Earlier research has shown that walk-in patients are
willing to wait before they receive service [52]. We test with two values, such that we can assess what
the influence is of a larger or smaller maximum waiting time for walk-in patients. Another parameter
we adjust is the no-show probability of patients with an appointment. Literature reports varying
values of this no-show rate, but we found that most values are between 10% and 20% [11, 28, 58]. We
test therefore for a maximum no-show rate of 15%. We think that it is also interesting to see how
our heuristics perform when every patient shows up, because then the workload of the facility might

become very high. We also adjust the access time service level norm, since this norm can be set by
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the management of the facility and thus can be different among clinics. The base case access time
service level norm is set on serving 95% of the appointment requests within 10 days from their request,
which corresponds with patient preferences in earlier research [52]. However, we think that it is also
interesting to see how our heuristics perform when this norm is tighter or more loose. Therefore we
also test for an access time service level norm where 95% of the appointments should be served within
5 and 15 days respectively.

Besides the parameters as presented in Table 5.2, we also test our heuristics for different appointment
request rates and walk-in arrival rates. We test for three theoretical patterns of the walk-in arrival rates
as displayed in Figures 5.1, 5.2 and 5.3. The actual appointment request rates and walk-in arrival rates
for pattern 1, 2 and 3 can be found in Appendix B. Pattern 1 is equal to the walk-in arrival rates as
used in the numerical example of Kortbeek et al. [37] and pattern 2 and 3 are new patterns. These
new patterns are theoretical and might not reflect practice. However, we think that testing for many
different patterns is the best way to assess the performance of our heuristics. In Figure 5.4 we display
the three appointment request rate patterns we test for, where pattern 1 is equal to the appointment
request rate pattern as used in the numerical example of Kortbeek et al. [37] and pattern 2 and 3 are
new patterns.

From the test parameters in Table 5.2, we test for all combinations of base case, low value and high
value. This gives 12 parameter configurations in total. On each of these configurations we perform tests
for patterns 1 to 3. In total we thus test for 36 instances per combination of heuristics. In our opinion
testing for many problem instances is necessary to show that our heuristics are able to generate good
appointment schedules under different parameter settings. In case our heuristics generate appointment
schedules with good performance for all different tests, the general applicability of our heuristics to any
facility is expected to be larger. In Table 5.3 we give an overview of the combinations of appointment

request rate patterns and walk-in arrival rate patterns we test for.

Combination Appointment request rate pattern Walk-in arrival rate pattern

P1 Pattern 1 Pattern 1
P2 Pattern 2 Pattern 2
P3 Pattern 3 Pattern 3

Table 5.3: Combinations of appointment request rate patterns and walk-in arrival rate patterns
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5.2.2 Parameters Heuristic 4 and local search techniques

Heuristic 4 and the local search techniques we use in our tests are parameter dependent. This means
that the chosen values for these parameters influence the performance of Heuristic 4 and the local search
techniques. Therefore we shortly discuss the chosen parameter values in this section.

Heuristic 4. The parameter we have to choose in our reduction heuristic for day schedules is the
safety factor 5. The value of 3 influences the number of time slots that this heuristic forces to be empty.
The higher (3, the lower the reduction in solution space. We choose to use a value for § of 2. This
means that we increase the arrival rate of appointment requests with 2 times its standard deviation (in
case the appointment request rate is Poisson distributed). More details about Heuristic 4 can be found
in Section 4.3.2. The value of 3 we choose is often used in inventory management literature when for
example calculating safety stocks (e.g. [54]).

Swapping for capacity cycles. The parameter to choose here is the maximum deviation n from
the capacity cycle as generated by one of our capacity cycle generation heuristics. We choose this
deviation n to be 2. This means that from the initial capacity cycle, all neighbouring capacity cycles
are generated (based on the initial capacity cycle) where we subtract 1 or 2 appointments on one day
and add these appointments on another day.

Random search. The parameter to choose here is the number of neighbouring day schedules to
generate. We set this parameter to 10, such that we generate 10 randomly modified day schedules.
As initial schedule we take the day schedule as generated by one of our day schedule heuristics. If a
modification results in an improved schedule, we accept this schedule and proceed with modifying this
schedule, until 10 schedules are generated.

Genetic Algorithm. The parameters to choose here are the population size, the number of muta-
tions and recombinations and the number of generations. We start with an initial schedule generated
by one of our day schedule generating heuristics. From this schedule we make a population of 10 day
schedules. In this population, 5 schedules are based on the initial schedule on which we apply a random
swap (mutation) and the other 5 schedules are based on a random swap in combination with exchanging
the first half of time slots with the second half of time slots (recombination). We evaluate these 10
schedules and select the 4 best performing day schedules. These 4 schedules are the initial schedules of
a new generation. For each of these initial schedules we apply the same procedure as just described.
We proceed until we have evaluated the schedules of 2 generations (excluding the initial generation).

Kaandorp and Koole. In this method no parameter has to be chosen, but the choice between
complete execution of the method of Kaandorp and Koole [29] or an implementation with a smaller
neighbourhood has to be made. As Kaandorp and Koole [29] indicate, using their full method with
a very large neighbourhood results in an optimal schedule but takes hours to calculate. They also
indicate that using a small neighbourhood is fast and able to give very good results. Therefore we use
a small neighbourhood, where new schedules are created (based on the initial schedule) by moving at
most one appointment to an earlier or later time slot.!

In general we can conclude that we use relatively small neighbourhoods for our local search heur-
istics. Ome could argue that small neighbourhoods might deteriorate the performance of a solution,
but Kaandorp and Koole [29] show that a small neighbourhood can also result in good performance.
Thereby, our algorithm is iterative, which means that our local search techniques are executed again
in each iteration. This iterative character would lead to an explosion of runtime in case we would use
large neighbourhoods. However, we expect that these iterations have a positive effect on performance,

because many new solutions are evaluated in each iteration of our algorithm.

INotice that this is not the same as described by [29], where appointments could only be moved to an earlier time
slot. We include the possibility to move an appointment to a later time slot, because we expect that this results in an
increased performance while it is still relatively fast.
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5.3 Results

In this section we discuss the performance of our heuristics. The performance measures we use are the
number of deferred patients and algorithm runtime. In Section 5.3.1 we present the performance of
our capacity cycle generating heuristics, with complete enumeration for the day schedules. In Section
5.3.2 we present the performance of our capacity cycle heuristics in combination with a day schedule

generating heuristic and a local search technique.

5.3.1 Performance capacity cycle heuristics

In this section we present the tests we performed on our capacity cycle generating heuristics and
the swapping procedure for capacity cycles (LS-CC). In these tests we use complete enumeration to
generate day schedules. We use the walk-in arrival rate patterns and appointment request rates as
displayed in Figures 5.1, 5.2, 5.3 and 5.4. Per capacity cycle method, we test for 36 instances (3
patterns with 12 instances per pattern). In Appendix C we present a complete overview of the tests
we performed on our capacity cycle generating methods. All tests we refer to in this section, can be

found in that appendix. We give a summary of these results in Table 5.4.

Capacity Day Fra.ction .Of Average AV(.:ra_g ¢ Maximum San.lc Average  Average

o hedul walk-in patients number of deviation  Jeviation  solution nmbtime  runtime

C}:;led . ihu; served on day deferred from from as (seconds) (minutes)
fetod - metho of arrival patients ~ CE+CE  (gpiCcp CE+CE

CE CE 74.04% 5.598 - - - | 28892.7 481.55

H1 CE 73.67% 5.678 1.43% 5.52% 39% 3.0 0.05

H2 CE 73.73% 5.666 1.22% 4.99% 31% 3.1 0.05

H1+4+LS-CC CE 73.95% 5.618 0.36% 4.99% 2% 33.2 0.55

H2+LS-CC CE 73.94% 5.620 0.40% 4.99% 69% 33.0 0.55

Table 5.4: Summary of performance capacity cycle generating heuristics

From Table 5.4 we see that all combinations of capacity cycle generating heuristics and complete
enumeration to generate day schedules are able to come up with a feasible appointment schedule within
one minute runtime on average. However, not all combinations achieve the same performance with
respect to the number of deferred patients. As expected, when applying the model of Kortbeek et al.
[37] (CE4-CE) we find the least number of deferred patients. This corresponds with the highest fraction
of walk-in patients served on the day of their arrival. Under complete enumeration we serve on average
74.04% of the walk-in patients on the day of their arrival, while our best performing combination of
heuristics (i.e. H14LS-CC+CE) serves on average 73.95% of the walk-in patients on the day of their
arrival. This difference is very small, which means that Heuristic 1 in combination with the swapping
procedure (LS-CC) can find cycles that are close to the cycles found under complete enumeration.

Heuristic 1 and Heuristic 2 are faster when the swapping procedure for capacity cycles is not used.
This is according to our expectations, since the swapping procedure generates additional capacity
cycles. For all these cycles day schedules have to be generated and those combinations have to be
evaluated, which takes time. However, more capacity cycles are evaluated so the probability to find a
better solution than that would be found without the swapping procedure increases. From Table 5.4
we observe indeed that using the swapping procedure for capacity cycles results in a higher fraction of
the walk-in patients served on the day of their arrival. Similarly, using the swapping procedure results
in increased performance with respect to the average number of deferred patients and the number of
times that our heuristics obtain the same performance as under complete enumeration.

Although our capacity cycle generating heuristics in combination with the swapping procedure

deviate less than 0.5% from complete enumeration on average, these combinations defer in the worst case
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4.99% more walk-in patients than with complete enumeration. From our detailed results in Appendix C
(tests 125 and 161) it appears that this worst case performance is obtained for the same test setting. In
that setting we use arrival rate pattern 2 (Figure 5.2), walk-in patients are willing to wait a maximum
of 2 time slots, the no-show percentage is 15% and 95% of the patients with an appointment request
need to be served within 5 days from their request. Although this worst case appears with pattern 2,
the same setting with pattern 1 and 3 also gives a relatively large deviation from complete enumeration.
It appears that decreasing the no-show percentage to 0% while keeping all other settings the same (test
127) results in a deviation of 1.25%. Days in a planning cycle may have different appointment request
rates, so the number of no-shows might also be different among days. However, our capacity cycle
generating heuristics do not take no-shows into account. This may lead to capacity cycles that deviate
from the cycles generated with complete enumeration. This is what we observe in the capacity cycle
found by complete enumeration, which has a capacity cycle with one scheduled appointment less than
in the Cyclic Appointment Schedule (CAS) found with H14+LS-CC+CE and H24+LS-CC+CE.
However, the combination of H1+LS-CC+CE finds the same CAS as complete enumeration when
the maximum number of time slots that walk-in patients are willing to wait is increased to 4 (test
130) and when the access time service level norm is increased to serving 95% of the patients with
an appointment request within 10 days from their request (test 121). We expect that this improved
performance is caused by using more relaxed settings: when walk-in patients and patients with an
appointment request are willing to wait longer, we can exploit this relaxed behaviour by letting them
wait during busy periods of the day (walk-in patients) or week (patients with an appointment request).
For combination H2+LS-CC+CE the worst case behaviour also improves under these relaxed settings,
however still deviations from complete enumeration of 1.39% and 0.16% are found when we relax the
waiting behaviour of walk-in patients and patients with an appointment request (test 157 and 166
respectively). This suggests that having no-shows or a low allowed waiting time for walk-in patients
makes it more difficult to generate an appointment schedule, but that the main deterioration is caused
by a tight access time service level norm. Besides the average deviation from complete enumeration,
we see that H1+LS-CC+CE outperforms H24+LS-CC+CE with the swapping procedure on the
number of times that the same solution is found as under complete enumeration. This together with
the worse case behaviour of both combinations implies that Heuristic 1 with the swapping procedure
is better than Heuristic 2 with the swapping procedure.

One might expect that Heuristic 2 should outperform Heuristic 1, since Heuristic 1 is only based
on mean walk-in arrival rates whereas Heuristic 2 is based on the probability of insufficient capacity on
a day. This is what we observe (on average) when we do not use the swapping procedure (LS-CC).
However, for some situations Heuristic 1 outperforms Heuristic 2. We analysed such a situation (tests
49 and 85, base case test instance). Recall that Heuristic 1 adds appointments to the day with the
highest number of free slots, while Heuristic 2 adds appointments to the day with the lowest probability
of insufficient capacity. In case that for example two days have the same number of free time slots,
Heuristic 1 allocates the appointment to the earliest day of these two. At the end of the second
iteration of our algorithm for these instances, Heuristic 1 allocates 5 appointments to day 1 and 5 to
day 5, whereas Heuristic 2 allocates 4 appointments to day 1 and 6 to day 5 (day 2, 3 and 4 are the
same for both heuristics). In this iteration a difference in cycles arises, which also results in a difference
in the number of deferred patients. This suggests that allocating relatively many appointments to day 1
seems profitable, although the total number of expected walk-in patients on day 1 is higher than on day
5 (3.6 versus 2.6 respectively). Recall from Figure 5.2 that day 1 has a monotonically increasing walk-in
arrival rate, whereas the walk-in arrival rate pattern on day 5 consists of two peaks that have their
maxima around time slots 2 and 6. Although day 5 has a lower number of expected walk-in arrivals

than day 1, it is apparently harder to schedule appointments to day 5 because of the walk-in arrival rate
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pattern. Because Heuristic 1 allocates to the earliest of those days in case of a tie, it may benefit from a
walk-in arrival rate pattern on day 1 in which appointments can easily be scheduled. Because the total
expected walk-in arrival rate on that day might be higher, Heuristic 2 always allocates to the day with
the lowest probability of insufficient capacity. In our example it appears that it is difficult to allocate
appointments on day 5 (because of the walk-in arrival pattern), which results in a bad performance of

Heuristic 2.

5.3.2 Performance day schedule heuristics

The next step of our approach is to test Heuristics 1 and 2 in combination with the swapping procedure
for capacity cycles, our day schedule generating heuristics and the local search techniques for day
schedules. Again we use the walk-in arrival rate patterns and appointment request rates as displayed in
Figures 5.1, 5.2, 5.3 and 5.4. Per combination of heuristics, we test again for 36 instances. In Appendix
D we present a complete overview of the tests we performed to select a good combination of capacity
cycle generating heuristic, day schedule heuristic and local search technique. All tests we refer to in

this section, can be found in that appendix. We give a summary of these results in Table 5.5.

Capacity Day Frafction © f Average Avgage Maximum San'1e Average  Average

lo schedule walk-in patients number of deviation  deviation solution runtime  runtime

eye served on day deferred from from as . ds inutes
method method of arrival patients CE+CE  Cp+CE  CE+CE (seconds)  (minutes)

CE CE 74.04% 5.598 - - - 28892.7 481.55

H1 H3+LS-RS 73.63% 5.687 1.58% 5.70% 31% 2.1 0.03

H1 H4+LS-RS 72.93% 5.837 4.27% 11.99% 6% 2.3 0.04

H1 H3+LS-GA 73.62% 5.690 1.65% 7.18% 36% 10.1 0.17

H1 H4+LS-GA 73.31% 5.755 2.81% 10.94% 28% 31.7 0.53

H1 H3+LS-KK 72.85% 5.854 4.58% 15.13% 25% 1.8 0.03

H2 H3+LS-RS 73.72% 5.667 1.23% 4.99% 28% 2.2 0.04

H2 H4+LS-RS 73.24% 5.772 3.10% 11.99% 25% 2.5 0.04

H2 H3+LS-GA 73.73% 5.666 1.23% 4.99% 31% 10.5 0.18

H2 H4+LS-GA 73.43% 5.730 2.36% 8.88% 31% 37.9 0.63

H2 H3+LS-KK 72.93% 5.839 4.31% 15.13% 28% 1.8 0.03
H1+LS-CC H3+4LS-RS 73.88% 5.632 0.61% 5.70% 56% 50.7 0.84
H14+LS-CC H4+LS-RS 73.58% 5.697 1.77% 7.64% 36% 48.5 0.81
H14+LS-CC H3+LS-GA 73.95% 5.618 0.36% 4.99% 72% 247.2 4.12
H14LS-CC H4+LS-GA 73.78% 5.654 1.01% 5.70% 53% 514.5 8.57
H14LS-CC H3+LS-KK 73.48% 5.719 2.16% 9.95% 44% 42.2 0.70
H24LS-CC H3+LS-RS 73.88% 5.634 0.65% 5.70% 58% 51.1 0.85
H2+LS-CC H4+LS-RS 73.60% 5.693 1.70% 7.73% 47% 50.8 0.85
H2+LS-CC H3+LS-GA 73.91% 5.626 0.51% 4.99% 69% 335.9 5.60
H2+4+LS-CC H4+LS-GA 73.76% 5.659 1.09% 7.73% 64% 515.5 8.59
H2+LS-CC H3+LS-KK 73.44% 5.728 2.33% 10.27% 53% 41.6 0.69

Table 5.5: Summary of performance capacity cycle and day schedule generating heuristics

From Table 5.5 we see that all our heuristic combinations generate a solution within 10 minutes on
average, whereas complete enumeration needs more than 8 hours on average. We observe that random
search (LS-RS) is relatively fast and performs better than the approach of Kaandorp and Koole
[29] (LS-KK), but it performs worse than our genetic algorithm implementation (LS-GA). LS-KK
searches the solution space in a structured way and terminates when no improved schedules can be found
anymore. As described in Section 4.4 we use the version of LS-KK with a small neighbourhood, so
not all possible day schedules are generated. This might result in returning local optima, which we also
observe from the relatively high average number of deferred patients and bad worst case performance
when using LS-KK. This also explains why LS-GA outperforms LS-KK, since the randomness in
both LS-RS and LS-GA makes it possible to generate all possible schedules, although by accepting

only improved schedules these local search techniques can also get stuck in a local optimum. We

35



would expect that LS-GA always outperforms LS-RS, because the solution space of LS-GA is larger,
so that the probability to find an improved schedule is higher than with LS-RS. However, when
we do not use the swapping procedure for capacity cycles (LS-CC), random search outperforms our
genetic algorithm implementation. On the other hand, when using LS-CC our genetic algorithm
implementation outperforms random search. We observe the same in Table 5.5 when using complete
enumeration for day schedule generation. This suggests that our capacity cycle heuristics have a
large influence on the performance of the appointment schedules we generate, and that even complete
enumeration for day schedules cannot counterbalance the performance deterioration caused by our
capacity cycle heuristics.

When using heuristics instead of complete enumeration to generate day schedules, runtime often
increases. This is not according to our expectations, since heuristics generate less day schedules than
complete enumeration which should reduce runtime. Part of the runtime increase can be explained by
the difference in technical implementation of the complete enumeration procedure and our local search
techniques for day schedules. The complete enumeration implementation uses a database from which
day schedules and their performance can be read, which is fast. However, our local search techniques
evaluate the performance of a day schedule each time it is generated. It might thus be that schedules are
evaluated multiple times, which slows down our algorithm. Another part of the runtime increase might
be explained by the number of iterations needed to find a solution. With complete enumeration, in
each iteration the best solution possible is selected. This results in a relatively low number of iterations
needed to find an appointment schedule with balance in the number of deferred patients among days
in subsequent iterations. Because LS-RS and LS-GA allocate appointments randomly to time slots,
it is harder to find an appointment schedule with the same number of deferred patients in subsequent
iterations. Therefore many iterations are needed to find a solution, which increases runtime. Since we
can choose the solution space when we use our heuristics, we can generate appointment schedules of
realistic size in reasonable time. This is not possible with complete enumeration, since the solution
space would explode for large instances (see Chapter 2).

Since LS-CC generates additional cycles, we would expect that its performance is always better
than without using this procedure. For the average number of deferred patients and the number of
times that the same solution is found as with complete enumeration, this is true. However, for the
worst case performance when using Heuristics 2, 3 and LS-RS we see that using LS-CC results in
deteriorated worst case performance (test 233 and 582 respectively). The difference can be explained
by the randomness of LS-RS. Only improved schedules are accepted, which makes it possible that the
local search method gets stuck in a local optimum. This might be the case for the two instances as
mentioned, which explains the difference.

Another remarkable observation is that our reduction heuristic (Heuristic 4) does not reduce runtime,
but increases runtime on average for most combinations of heuristics. When using Heuristic 1 or 2 in
combination with the swapping procedure (LS-CC) and random search, using our reduction heuristic
results in slightly lower runtime than without the reduction heuristic. However, this difference is very
small and does not outweigh the increase in the average number of deferred patients and worst case
performance. Because the solution space is reduced, we expect that it is harder to find day schedules
that result in balance of deferred patients among days in subsequent iterations. This results in capacity
cycles with too many scheduled appointments (i.e. many deferred patients). So our reduction heuristic
may result in fast execution of a single iteration, but it also causes our algorithm to run many iterations
to find a solution.

We observe from Table 5.5 that the combination of Heuristic 1, 3, the swapping procedure for capa-
city cycles (LS-CC) and the genetic algorithm (LS-GA) for day schedules is the best performer with

respect to average number of deferred patients, maximum deviation from complete enumeration and
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the number of times that it obtains the same solution as complete enumeration. With this combination
of heuristics appointment schedules are generated that serve on average 73.95% of the walk-in patients
on the day they the arrive. Compared to the 74.04% of the walk-in patients that are served on the day
of their arrival as found with complete enumeration, we can conclude that the combination of Heuristics
1, 3, LS-CC and LS-GA comes very close to the result obtained with complete enumeration. Its worst
case performance is the same as when using complete enumeration for day schedules. In that setting
we use arrival rate pattern 2 (Figure 5.2), walk-in patients are willing to wait a maximum of 2 time
slots, the no-show percentage is 15% and 95% of the patients with an appointment request need to be
served within 5 days from their request. To show where this best performing combination of heuristics
deviates from complete enumeration, we present in Figure 5.5 the appointment schedules created by
complete enumeration (light coloured bars) and the combination of Heuristics 1, 3 LS-CC and LS-GA

(dark coloured bars) compared to the walk-in arrival rates (line).
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Figure 5.5: CAS with CE4CE and H1+H3+LS-CC+LS-GA vs. walk-in arrival rates

We observe from Figure 5.5 that on Monday the best performing combination of heuristics gives the
same appointment schedule as complete enumeration. Since the walk-in arrival rate is increasing over
the day and walk-in patients are willing to wait 2 time slots, leaving time slots open at the end of the
day is beneficial. We observe that we do not schedule an appointment in the last time slot, because
a relatively high number of expected walk-in patients would then be deferred. On Tuesday we see
that complete enumeration only schedules one appointment, whereas the best performing combination
of heuristics schedules two appointments. Again, walk-in patients are willing to wait for service so
planning an appointment in the first time slot does not directly lead to deferral of many walk-in
patients. However, our heuristics schedule also an appointment in the last time slot. This results in a
high probability that the walk-in patients that arrive in that time slot get an appointment on another
day. This seems counterintuitive, but it might be that the relatively low walk-in rate in this time slot
causes our heuristics to schedule an appointment in the last time slot. On Wednesday we observe again
that the best performing combination of heuristics gives the same schedule as complete enumeration.
Again the waiting behaviour of walk-in patients is exploited by scheduling appointments early on the
day. On Thursday the walk-in arrival rate is very low over the day. Therefore the entire day is used
to serve patients with an appointment. Again the best performing combination of heuristics gives
the same schedule as complete enumeration. The combination of heuristics gives a different schedule
than complete enumeration on Friday, with an equal number of scheduled appointments as complete
enumeration. However, the performance with respect to the number of deferred patients is the same
for both schedules. This implies that there is not always a single best performing day schedule, given
a certain number of appointments to schedule. We can conclude that the performance difference in
this worst case scenario is caused by the Tuesday schedule, since complete enumeration needs one
appointment less than the combination of heuristics on that day.

When we compare the average results in Table 5.5 with Table 5.4 where we use complete enumeration
to generate day schedules, we see that our GA implementation results in the same performance as when
complete enumeration is used to generate day schedules. This suggests again that the deviation from

complete enumeration is caused by our capacity cycle generating heuristics, when using Heuristics 1,
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3, LS-CC and LS-GA. Observe as well that choosing Heuristic 1 instead of Heuristic 2 results in only
a slightly lower fraction of walk-in patients served on the day of their arrival. Since the performance
differences with respect to deferred patients are small, we select the three best performing combinations
to test in our case study in Chapter 6. The three best performing combinations of heuristics are
Heuristics 1, 3, LS-CC and LS-GA, Heuristics 2, 3, LS-CC and LS-GA, Heuristics 1, 3, LS-CC
and LS-RS.

5.4 Summary & conclusion

We tested all combinations of heuristics and local search techniques on 36 problem instances and we
can conclude that most of the combinations of heuristics are able to come up with a feasible solution
within one minute of runtime, which is much faster than complete enumeration. Because of randomness
in the local search techniques and differences in technical implementation, our day schedule heuristics
might result in a higher runtime than using complete enumeration to generate day schedules for small
instances. This would support the use of complete enumeration for day schedules. However, for
large instances heuristics are the only option to generate an appointment schedule, since complete
enumeration takes too many computations.

The fraction of walk-in patients served on the day of their arrival is within 2 percent point from
complete enumeration. The combination of Heuristics 1, 3, LS-CC and LS-GA is the overall best
performer when not taking runtime into account. With this combination of heuristics we obtained in
our tests the same performance with respect to the number of deferred patients as when using complete
enumeration to generate day schedules. The worst case performance of this combination of heuristics
is obtained when the access time service level norm is set on serving 95% of the appointment requests
within 5 days. This is observed for all tested patterns. This implies that relatively many patients
get deferred in case this combination of heuristics is applied in a facility that sets a low access time
norm. We observe the same worse case behaviour when using complete enumeration for day schedule
generation, which suggests that our capacity cycle heuristics are the cause of this deviation. We would
therefore advise to conduct further research in improving capacity cycle generating heuristics.

Since we only test on relatively small instances, we cannot be completely sure whether the best per-
forming combination of heuristics in small tests is also the best performer on large instances. Therefore
we select the three best performing combinations of heuristics to assess in our case study in Chapter
6. These are the combinations of Heuristics 1, 3, LS-CC and LS-GA, Heuristics 2, 3, LS-CC and
LS-GA, and Heuristics 1, 3, LS-CC and LS-RS.
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Chapter 6

Case study

In this chapter we assess the performance of our algorithm and that of benchmarks from literature on
data of the CT-scan facility of the AMC. In Section 6.1 we describe how a CT-scan is made. In Section
6.2 we discuss the setup of our algorithm in our case study. In Section 6.3 we present the results of the

case study. We end this chapter with a summary and conclusions in Section 6.4.

6.1 Making a CT-scan

The radiology department of the AMC uses medical imaging technologies for diagnostic examinations.
Each day about 400 to 500 patients visit the radiology department and each year more than 200,000
diagnostic examinations are performed [2]. Available imaging technologies are regular x-ray technology,
ultrasound technology, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT). The
images created by these technologies are used by medical specialists to support the right treatment of
the patient. The CT-scan facility is part of the radiology department and each year more than 10,000
patients undergo a CT-scan in the AMC [38]. In this case study we use data of that CT-scan facility.

A CT-scanner makes an image of (a part of) the body. An image consists of thin slices (with
thickness varying from 1 to 10 mm.), that are made with the use of x-rays. In the final image a
distinction can be made between tissues with different densities. This makes it possible to distinguish
bones and blood vessels for example. In Figure 6.1a we present a schematic overview of a diagnostic
examination with a CT-scanner and in Figure 6.1b we present examples of images created with a
CT-scanner.

In Figure 6.1a, (1) indicates the x-ray detector. This detector turns around, just like the x-ray
source (2). The detector and source turn in a fixed direction (3). For each slice of the image, one
rotation is made. In Figure 6.1a, (4) indicates the housing of the CT-scanner. The scanner can be set
on an angle, to make an image of the body from another direction. When a CT-scan is being made, the
patient lies on a bed (5) that moves through the scanner. Number (6) indicates the x-ray beam and (7)
indicates a manual control panel. Usually, the laboratory worker who makes the CT-scan controls the

scanner from another room such that this person is protected against the x-rays in the scanning room.

6.2 Case study setup

In this section we discuss the setup of our algorithm, that we use in our case study. To evaluate large
instances, we modified the method that Kortbeek et al. [37] use to evaluate the performance of day

schedules. We discuss these modifications in Section 6.2.1. In Section 6.2.2 we present the data set
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(b) Example of images created by a CT-scanner
(a) Schematic overview CT-scanner [30] 1]

that we use in the case study. We compare the performance of our algorithm with benchmarks from

literature. In Section 6.2.3 we describe these benchmarks.

6.2.1 Technical modifications

In our first tests on large instances, it appeared that the algorithm of Kortbeek et al. [37] gave unreliable
results. Namely, a negative number of walk-in patients got deferred, which is of course not possible.
After we evaluated the code of the software they wrote around their algorithm, we concluded that the
negative number of deferred patients is caused by the generating function approach that Kortbeek et
al. [37] use to evaluate day schedules. They use an approach based on generating functions to derive
expressions for the distribution of the backlog at the start of each day in the planning cycle. Therefore
we had to modify this approach to find reliable results for the backlog distribution at the start of each
day in the cycle.

Kortbeek et al. [37] give the transition probabilities for going from a day d with a backlog that
equals 7, to day d + 1 with a backlog that equals i’. From these transition probabilities, the stationary
probabilities that at the start of day d, the backlog equals j jobs can be found. Instead of using a
generating function approach, we solve the corresponding linear balance equations with Gauss Jordan
elimination. To let our approach work, we have to decide on a value for the maximum expected backlog
on a day. We use a maximum backlog of 100. From our experiments it appears that the probability
that this backlog is realised on a certain day is generally lower than 103, which supports our choice.

We implemented our approach with the Embarcadero Delphi XE programming package.

6.2.2 Settings CT-scan facility

For the case study we use data that was collected in 2008 for an earlier study in the AMC [38]. Although
this data might be outdated, we can still use it to assess the performance of our algorithm. The
purpose of this case study is to show that our algorithm performs better than appointment rules from
literature. It should be noted that when applying our algorithm in practice at the CT-scan department
of the AMC, a new data analysis should be done to obtain reliable and up-to-date estimates of the
input parameters. Up-to-date information is necessary, otherwise our algorithm would probably give

unsatisfactory appointment schedules. Other facility characteristics we use in this case study, such as
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the number of available scanners, are also based on the situation in 2008.

In 2008, the AMC had three CT-scanners available. However, one of them was dedicated for
scanning emergency patients such that we take it out of our analysis. Since part of the patients (15.4%
[38]) needs two time slots for service, we adjust the walk-in arrival rates and appointment request rates
for these patients. One of the assumptions of our algorithm is that service times are deterministic and
equal to one time slot, so we cannot schedule appointments with a duration of two time slots (equal to
30 minutes). To incorporate the effect of these longer appointments on the workload of the CT-scan
facilty, we adjust the walk-in arrival rates and appointment request rates. Therefore we multiply the
walk-in arrival rates for each time slot with 0.154 - 2 4 0.846 - 1 = 1.154. The workload of the facility
under study becomes then 62.3%.

Each day the facility is 8.5 hours operational (facility opens at 8:00 and closes at 16:30), such that
the day schedules in this case study consist of 34 time slots of 15 minutes. The appointment schedule
we create has a length of 5 days, such that the resulting appointment schedule can be repeated each
week. The time that walk-in patients are willing to wait is set on 2 time slots, which is equal to 30
minutes. In earlier research at the AMC towards patient preferences it was found that 80% of the
walk-in patients want to be served within 30 minutes [52]. The same research concludes that patients
with an appointment request prefer to be served within 11 days. The current access time norm of the
AMC is 10 days [14], so we set the access time service level norm for our case study such that 95%
of the patients with an appointment request should be served within 10 days. Figures about no-show
rates differ a lot in literature. However, figures between 10% and 20% are most common [11, 28, 58]. In
an earlier study at the AMC towards the feasibility of walk-in at the CT-scan facility, a no-show rate
of 3.1% was found [38]. Because this is low compared to literature and this number is only based on
registered no-shows (so it might be that part of the no-shows were not registered), we set the no-show

rate for our case study at 5.0%. We give an overview of the CT-scan facility parameters in Table 6.1.

Parameter Description Parameter value
R Number of available resources 2
D Length of the planning cycle 5 days
h Length of a time slot 15 minutes
T Total number of available time slots per resource per 34
day
g Maximum number of time slots that a walk-in pa- 2 (i.e. 30 minutes)

tient accepts to wait for service

q No-show probability 0.05

(y, S™™™(y))  Access time service level norm: fraction of jobs with  (10,95%)
access time not greater than y is at least S™"™ (y)

Table 6.1: An overview of the CT-scan facility characteristics used in our case study

For the appointment request rate and walk-in arrival rates we use estimated values from earlier research
conducted on 2008 data [38, 52]. It appears from these studies that from all the patients that need a
CT-scan, 76.4% prefers walk-in. This means that 23.6% of all patients prefers to make an appointment
for a visit to the CT-scan. In those studies an arrival pattern is presented for the case that all patients
are walk-in patients. This pattern shows arriving walk-in patients from 7:00 to 17:45, so also outside
opening hours. We treat the walk-in patients that arrive outside opening hours according to that
pattern as patients with an appointment request, since they cannot be served on the day they arrive.
A part of the remaining walk-in arrivals (so the expected rates during opening hours) also prefers an
appointment. This part is found by multiplying the arrival rate of walk-in patients per time slot with

the probability that a patient prefers an appointment and sum these values per day. To generate the
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walk-in arrival rate pattern we multiply the walk-in arrival rate per time slot and per day with the
percentage of patients that prefers walk-in. We display the resulting expected walk-in arrival rates and

appointment request rates in Figures 6.1 and 6.2 respectively.
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Figure 6.2: Appointment request rates AMC CT-scan facility [38, 52]

6.2.3 Benchmarks

In our literature review we identified appointment scheduling rules that appeared to be effective in
generating day schedules. We use three different benchmarks. In our first benchmark (B1) we schedule
appointments in alternating sequence over the day. Su and Shih [56] describe this approach, and
a similar approach is described by Klassen and Rohleder [33], who state that urgent slots (walk-in
patients in our case) should be spread evenly over the day. In our second benchmark (B2) we first
schedule a block of time slots where only walk-in patients can be served, then we schedule a block of
appointments and finally we schedule a block for walk-in patients again. We assume that the blocks
for walk-in patients are of equal size. Chen and Robinson [15] present this approach and show that it
performs well in generating day schedules. Our third benchmark (B3) is a combination of the previous
two benchmarks. We schedule blocks of appointments and blocks where arriving walk-in patients can
be served in alternating sequence over the day. We choose the length of these blocks equal to the time
g that walk-in patients are willing to wait, so that walk-in patients that arrive in the first time slot

of an appointment block can be served after this block. We give an example of the three benchmarks
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in Figure 6.3, where black squares indicate slots reserved for appointments and white squares indicate
slots that are free to serve walk-in patients.

In our literature review (Chapter 3) we concluded that methods to determine how many appoint-
ments to schedule per day in a planning cycle are scarce. Therefore we decide to generate capacity
cycles for our benchmarks in the same way as we do for our own algorithm. We run our algorithm
with the capacity cycle generating heuristics 1 and 2 and the swapping procedure for capacity cycles
LS-CC, while using the benchmarks to generate day schedules. Per benchmark we select the best
performing schedule (performance may be different when using different combinations of capacity cycle
generating heuristics). We also use the iterative character of our algorithm. In practice we would expect
that planners adjust their schedules if it appears that too many walk-in patients are deferred, waiting
time for walk-in patients is too high and when the access time service level norm for patients with
an appointment is violated. This justifies the use of the iterations in the benchmarks, because these
iterations have the same adjusting effect. This approach may lead to better appointment schedules
than a planner would make (manually) in practice (since many options are evaluated and we use itera-
tions). However, when our algorithm still outperforms the benchmarks, this supports the applicability
of our algorithm in practice. To the best of our knowledge this is the fairest approach to compare the

performance of our algorithm with that of benchmarks.
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Figure 6.3: Benchmarks day schedule generation

6.3 Results

In this section we present the results with respect to the number of deferred patients and runtime for the
three best performing combinations of heuristics that we identified in Chapter 5. We also present the
performance of the three benchmarks from literature. When applying the best performing algorithms
from Chapter 5 on the case study test instance, it appeared that no solution could be found when
using the local search parameter settings (e.g. number of neighbour schedules for random search) as
used for small instances in Chapter 5. Therefore we increased the number of neighbour schedules to
generate for random search and the population size for the genetic algorithm. In Chapter 5 we found
appointment schedules with high performance when using 10 neighbour schedules with random search
and when using a population size of 10 with the genetic algorithm implementation. First we increased
these values to 30 and 50, but again no solution could be found within 48 hours runtime. This is
probably due to the randomness in both local search methods, and the highly increased solution spaced
of our case study test instance compared to the small test instance in Chapter 5. Finally we found
a solution when using 75 neighbour schedules for random search and a population size of 75 for the
genetic algorithm implementation. We give a summary of these results in Table 6.2.

From Table 6.2 we observe that all combinations of heuristics we tested perform significantly better
with respect to the number of deferred patients than the benchmarks. We tested the benchmarks
with the four possible capacity cycle generating heuristics (H1, H2, H1+LS-CC and H2+LS-CC).
It appears that all benchmarks show the best result with respect to the number of deferred patients

when we use Heuristic 1 in combination with the swapping procedure for capacity cycles LS-CC.
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Capacity Day Fra:Ctlon Of N b f d f d R t' R t'
o schedule walk-in patients umber of deferre up ime untime
mceyt(}Jlo d method served on day patients (minutes)  (hours)
of arrival
H14+LS-CC H3+LS-GA 99.42% 0.890 1360.5 22.68
H2+LS-CC H3+LS-GA 99.43% 0.875 1102.1 18.37
H1+LS-CC H3+LS-RS 99.43% 0.869 82.9 1.38
H1+LS-CC Benchmark 1 97.58% 3.687 5.1 0.09
H1+LS-CC Benchmark 2 91.98% 12.221 7.6 0.13
H1+LS-CC Benchmark 3 97.67% 3.553 5.0 0.08

Table 6.2: Overview of performance benchmarks and our algorithm

The best performing combination of heuristics is the combination of Heuristics 1, 3, LS-CC and LS-
RS. This combination serves 99.43% of the walk-in patients on the day of their arrival. The best
performing benchmark with respect to the number of deferred patients is Benchmark 3. However,
the best performing combination of heuristics defers 75.5% less patients than this best performing
benchmark. This is equal to almost a 2 percent point increase in the fraction of walk-in patients served
on the day of their arrival. These promising results might be explained by the relatively low workload
of the system under study. We expect that under a higher workload than the 62.3% in our case study,
the fraction of walk-in patients served on the day of their arrival decreases.

Under a high workload we expect to have less flexibility in allocating appointments, which may
increase the number of deferred patients. To get a first idea about the influence of a high workload,
which is not observed in the 2008 data set but that might occur in the future, we scale the data set from
the case study up such that the workload becomes 85%. For this data set, we generate an appointment
schedule with our best performing combination of heuristics (i.e. H1, 3, 1, 3, LS-CC and LS-RS) and
the three benchmarks. Under this relatively high workload, we observe that the fraction of walk-in
patients served on the day of their arrival remains high on 94.16%. The best performing benchmark
under this high workload is again Benchmark 3 in combination with Heuristic 2 to generate capacity
cycles and it generates a schedule where 86.78% of the walk-in patients can be served on the day of their
arrival. Although more extensive testing under a high workload seems necessary, this first test shows
that the difference between our algorithm and the best performing benchmark increases. Furthermore,
the combination of Heuristics 1, 3, LS-CC and LS-RS generates a schedule under the high workload
in 3.2 hours. This suggests that runtime will increase under a high workload, but again, more tests are
necessary to confirm this hypothesis. In Appendix F we give a summary of these results.

The capacity cycle found in the last iteration of the best performing combination of heuristics (i.e.
Heuristics 1, 3, LS-CC and LS-RS) is equal to (14,10,10,10,17) (details can be found in Appendix
E). This result confirms the findings of Sickinger and Kolisch [53], who state that a simple random
search procedure outperforms more advanced local search methods. The difference with the second and
third best combination of heuristics is small, however these combinations have a much higher runtime
than the best performing combination. To achieve the access time service level norm it is required to
schedule 61 appointments, while the number of appointment requests in the last iteration is 60.205.
This means that only a buffer capacity of 0.795 is needed to account for the variability in appointment

request arrivals, so capacity is used efficiently.
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Now we discuss the day schedules generated in the

last iteration by the combination of Heuristics 1, 2.5
3, LS-CC and LS-RS, which is the best perform- 2

ing combination. Since walk-in patients are will-

ing to wait 30 minutes (i.e. 2 time slots) for ser-

1 . [
| ’ | |
vice, it is beneficial to use all available resources |
05 ; '\
for appointments in the first two time slots. Ar- | il
riving walk-in patients can then be served in the 8:00 8:45 9:30 10:15 11:00 11:45 12:30 13:15 14:00 14:45 15:30 16:15

third time slot. This is what we observe from the
day schedule for Monday, as we present in Figure Figure 6.4: Appointment schedule and walk-in ar-
6.4. The relatively low walk-in arrival rate at the 1jyal rate on Monday

start of the day causes our algorithm to schedule

appointments at the start of the day. Around 9:30 hours the walk-in arrival rate becomes that high,
that the algorithm leaves all resources free to serve arriving walk-in patients. Just after lunch (around
13:15 hours) relatively few walk-in patients are expected to arrive, which leads to reserving time slots
for patients with an appointment. The same holds for the end of the day, with a low walk-in arrival
rate. Observe that after the morning never more than 2 time slots after each other are reserved for
appointments. This is to make sure that arriving walk-in patients can be served within g time slots,

which is equal to 30 minutes in our case study.
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Figure 6.5: Appointment schedule and walk-in arrival rates

From Tuesday to Thursday similar day schedules are generated, as we observe from Figure 6.5 a, b
and c. This is according to our expectations, since the walk-in arrival rate patterns do not differ that
much among those days and the number of appointments to plan is the same for Tuesday, Wednesday
and Thursday. Like on Monday, appointments are scheduled at the start of the day where the walk-in
arrival rate is relatively low. We see that our algorithm also schedules appointments around lunch,
since the walk-in arrival rate is low at that moment of the day. Again, no more than 2 time slots are
used after each other to serve patients with an appointment. This is logical, since the allowed waiting

time for walk-in patients is then not violated.

On Friday relatively many appointments have

to be scheduled. Again we observe that those ap-

pointments are scheduled around peaks in walk-

in arrival demand. A difference with the previous

days is that on Friday more than 2 appointments ! T -
are scheduled after each other at the end of the |os II I , 'I'II"mI

day. However, the CT-scan facility has 2 avail- 0
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able resources. By reserving one CT-scanner for
Figure 6.6: Appointment schedule and walk-in ar-

walk-in patients in the afternoon, arriving walk- ]
rival rate on Friday

in patients can be served with that scanner. Since
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the walk-in arrival rate is low during the blocks of scheduled appointments in the afternoon, 1 scanner
should be sufficient to serve the arriving walk-in patients.

All day schedules in our case study show that it is beneficial to schedule appointments in time slots
where few walk-in patients are expected to arrive, so around peaks with high expected walk-in arrival
rates. We also observe this for the test we performed on a instance with a workload of 85%, as we
present in Appendix F. This is according to our expectations, since this balances the workload over a
day.

6.4 Summary & conclusion

In this chapter we presented the results of our case study. We conduct our case study with data of the
CT-scan facility at the AMC gathered in 2008 for an earlier study. We gave a short overview of how a
CT-scan is being made and which characteristics the CT-scan facility of the AMC has. Based on data
from this facility we compare the three best performing combinations of heuristics from Chapter 5 with
benchmarks from literature. It appears that for the situation as it was in 2008 our best performing
algorithm (i.e. Heuristics 1, 3, LS-CC and LS-RS) is able to find an appointment schedule in less
than 1.5 hours and serves 99.43% of the walk-in patients on the day they arrive. This result confirms
earlier research that states that a random search implementation can outperform more advanced local
search methods.

The benchmarks do not take the walk-in arrival pattern into account, but they generate a fixed
schedule with some preset appointment rule. This results in many deferred patients, because the
benchmarks also schedule appointments in time slots where we expect relatively many walk-in patients
to arrive. Our algorithm exchanges appointments in time slots randomly during the search for bet-
ter day schedules (both for the genetic algorithm implementation and random search), such that no
appointments are scheduled in time slots with many expected walk-in arrivals. In our case study we
show that our algorithm balances workload by planning appointments in time slots with few expected
walk-in arrivals, while leaving time slots open at moments where we expect many walk-in patients to
arrive. This results in 75.5% less deferred patients than found with the best performing benchmark

from literature.
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Chapter 7

Conclusions and recommendations

In this chapter we present the conclusions of our research. In Section 7.1 we present our conclusions.
In Section 7.2 we touch on elements of our research that might be subject to discussion. In Section 7.3

we end this chapter with interesting directions for further research.

7.1 Conclusions

Traditionally diagnostic facilities schedule appointments for all patients that require an examination.
Allowing patients to walk in without an appointment reduces access times. It also creates the possibility
to combine outpatient consultations and diagnostic examinations on one day, which speeds up the
diagnostic process. Since not all patients can walk in, our algorithm generates appointment schedules
with which both patients with an appointments and walk-in patients can be served. The generated
schedule prescribes the number of appointments to plan per day and the moment on the day to plan
these appointments. We maximize the fraction of walk-in patients that can be served on the day of
their arrival (which is equal to minimising the number of deferred patients), while satisfying an access
time service level norm for patients with an appointment.

The best performance with respect to the number of deferred patients and runtime is obtained when
using a capacity cycle generating heuristic based on the mean number of free time slots per day (H1)
in combination with the swapping procedure to generate additional cycles (LS-CC), a day schedule
generating heuristic that generates an initial day schedule based on mean walk-in arrival rates (H3)
and a random search technique (LS-RS) to find improved day schedules. We observe that deviations
from the solutions found for problem instances with the algorithm of Kortbeek et al. [37] (i.e. by
complete enumeration) were caused by the capacity cycle generating heuristics. It appears that the
day schedule generating heuristics are able to come up with the same schedules as found with complete
enumeration. Apparently it is harder to determine the total number of appointments to plan in a cycle
and to allocate these appointments over the days in the cycle, than to allocate appointments to time
slots of a day.

When we apply our algorithm to data from the CT-scan facility of the AMC, we see that our
best performing algorithm (i.e. H1+H3+LS-CC+LS-RS) is able to defer 75.5% less patients than
the best performing benchmark from literature. This combination is also the fastest combination of
heuristics that we assessed in the case study. With a workload of 62.3% (case study) it serves 95% of
the patients with an appointment request within 10 days and 99.43% of the walk-in patients is served
on the day of their arrival. This means that for a practical situation, as in the case study, almost all
walk-in patients get consultation and diagnostic examination at the same day (one-stop-shop). The

appointment schedule from the case study is generated within 1.5 hours. This is even faster then when
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using complete enumeration for small instances, so our algorithm is much more efficient in generating
appointment schedules than complete enumeration with respect to runtime. It might even be faster than
generating an appointment schedule manually, which also supports the applicability of our algorithm
in practice. In a test on a scaled-up case study instance with a workload of 85%, this algorithm serves
94.16% of the walk-in patients on the day of their arrival and it defers 55.8% less patients than the best
performing benchmark. The corresponding appointment schedule was generated in 3.2 hours. These
results are promising, however more extensive testing is necessary to confirm these findings.

Our algorithm seems to be sensitive to a tight access time service level norm. The tightest access
time norm we tested for was equal to serving 95% of the appointment requests within 5 days and for
this instance our algorithm gave 5% deviation in the number of deferred patients compared to complete
enumeration on small instances. At the moment, the preferred maximal access time for CT-scans in
the AMC is 10 days, under which conditions our algorithm performs good (both on small instances
and in the case study). In all cases we evaluated we see that our algorithm performs better than the
benchmarks from literature we tested for. Although the case study shows promising results with respect
to the performance of our algorithm, we doubt direct applicability in practice. To clarify this point, we
discuss limitations of our research in Section 7.2 and suggest interesting directions for further research

in Section 7.3.

7.2 Discussion

Our research is based on the approach described by Kortbeek et al. [37]. The assumptions in our model
are therefore equal to the assumptions Kortbeek et al. [37] make in their model. We think that some
assumptions might not completely reflect reality, which might be an issue in implementing our algorithm
in practice. The first assumption is that service times in the model are assumed to be deterministic
and of equal length. This is a reasonable approximation for a CT-scan department where almost all
appointments have the same duration, but this might be different for other applications with more
variability in service times. Examples where our model could be applied but where service times are
probably non-deterministic are car repair shops or service engineers that serve requests on appointment,
but that also have to deal with emergency requests. Examples with scheduled appointments and
(urgent) walk-in with variable service times are MRI-scan facilities and operating theatres.

In our model patients of only one type can be served. However, in practice many patient types (or
customer types) should be served that all have different characteristics. Characteristics that may differ
among patients are for example the time they are willing to wait for service and their preparation time
before they can receive service (e.g. some patients need to take contrast fluid before a CT-scan).

In our tests to find the best performing combination of heuristics and local search techniques we
only tested on small instances (i.e. 1 resource, a planning cycle of 5 days and 8 time slots per day), to
compare the performance of our heuristics with complete enumeration. However, it might be that the
best performing heuristics on small instances are not the best performing heuristics for larger instances.
This is what we observe in the case study in Chapter 6. On the other hand, we show that the best
performing heuristics from our tests on small instances are all able to generate appointment schedules
of good quality in the case study. These schedules are generated fast and a large part of the walk-in
patients can be served on the day of their arrival, which is the aim of our research.

A last point of discussion is the importance of our algorithm’s runtime. Since a planner would
like to generate schedules as fast as possible, a very low runtime would be preferable. However, our
algorithm can be applied on a tactical level. This means that our algorithm generates schedules for a
long term (e.g. a season of three months), which implies that our algorithm should generate a schedule

only a few times per year. In that case, runtime is less important. We think that a trade-off should
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be made between high algorithm performance (high runtime) and usability in practice (relatively low

runtime, to reduce the risk of losing data in case of incidents (e.g. power failures)).

7.3 Suggestions for further research

In our study we assess the performance of our algorithm on a problem instance with input parameters
from practice. As discussed in Section 7.2, practice is not fully reflected in our model. We think it is
of interest to assess the performance of the appointment schedules generated with our algorithm in a
simulation study. Simulation studies are very flexible and can be used to make a detailed reflection of
practice. We think it is also important to actively collaborate with the CT-scan (or other demanding)
facility at the AMC, such that commitment and trust in the new appointment scheduling algorithm are
established. In case the simulation study shows that the assumptions of our model are too restrictive
for an application in practice, modelling of stochastic service times or different patient types might be
necessary.

Before our algorithm can be applied in practice, it should be clear how often new appointment
schedules have to be generated. Since our algorithm generates cyclic schedules on the tactical planning
level, it is not necessary to update the schedules each week. However, arrival rates of walk-in patients
and appointment requests may differ among periods in the year. Therefore we suggest to perform a data
analysis on historical data to make clusters of periods with equal characteristics, for which appointment
schedules can be made.

In our model we assume that part of all patients with an appointment does not show up (i.e. a
no-show). To effectively use resources, we think it is interesting to study the possibility to overbook
some time slots. By allowing more demand than capacity in the facility, the negative effect of no-shows
can be neutralised. It would be interesting to study which time slots should then be overbooked.

Another suggestion for further research is the optimisation of the local search techniques we use.
As we described in Section 5.2.2, we configure our local search techniques only once. We generate for
example 10 neighbour schedules with our random search technique in each iteration of our algorithm,
although a lower or higher number of neighbour schedules might also be possible. This might influence
the test results. Fortunately, we show that the choices we make result in good performing heuristics
compared to complete enumeration. It might however be that still too many capacity cycles and day
schedules are evaluated, which slows down our algorithm but results in good performance. Therefore we
propose to study the effect of local search neighbourhood size on algorithm performance with respect
to deferred patients and runtime.

A last interesting direction for further research is developing a better capacity cycle heuristic or
adapting our local search technique for capacity cycles, since a large part of the deviation from complete
enumeration is caused by our capacity cycle heuristics. Our algorithm generates neighbouring capacity
cycles based on an initial cycle in one step and applies a day schedule generating technique on all of these
cycles. Finally we choose the best performing combination of capacity cycle and corresponding day
schedules. However, generating capacity cycles step-by-step might give better results. Our approach
would then be to generate an initial capacity cycle and apply day schedule generating techniques on
this cycle. The next step would be to modify the initial capacity cycle (e.g. at random) and apply
day schedule generating techniques again. If this modified capacity cycle has improved performance
compared to the initial cycle, we accept this new cycle and otherwise we keep working with the initial
cycle. We repeat this procedure until a stopping criterion is met (e.g. a fixed number of capacity cycles
are generated). We expect that this approach gives good results, since in each step a better solution can
be found. This is not true for our current approach. We would also advise to include a way to escape

from local optima, by for example accepting worse performing schedules with certain probability.
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Appendix A

Day schedule evaluation example

In this appendix we discuss the approach to determine the performance of day schedules, as described
in Kortbeek et al. [37].

Not all reserved appointment slots are always used: this is dependent on the number of patients
waiting to get an appointment, which follows a certain probability distribution. Kortbeek et al. [37]
introduce the following additional notation: C% = &, ..., & where C? is the day schedule of day d with
the realised appointments and E;;i indicates how many appointments were realised on day d in time slot
t. Kortbeek et al. [37] assume that patients are served First Come First Served (FCFS). The realised
schedule C? is always a truncated version of C% (i.e. not all scheduled appointments should be realised
in practice), the appointment schedule on day d.

We present a numerical example to clarify the evaluation of a day schedule C¢. Assume that
k? = 4 and that we have to allocate these appointments to 8 time slots. The day schedule we want
to evaluate is C? = (1,0,1,0,0,1,1,0). To do this, we evaluate all possible realisation schedules.
All realisation schedules have a certain probability of occurrence, based on the expected number of
appointments that are present. Let B¢ be the probability distribution of the appointments realised on
day d, let P(B% = i) be the probability that the realised number of appointments on day d equals i
and let v? represent the number of deferred patients on day d. Table A.1 displays all possible realised
day schedules and their performance. Here we added the subscript i to é¢ and v? to indicate the
realised day schedule and number of deferred patients when the realised number of scheduled patients
is equal to i. The performance of day schedule C? is the expected number of deferred patients. In the
numerical example in table A.1 the expected number of deferred patients is 1.07, which is calculated
by: >0, P(B? = i)*vZ. In our numerical example we assume that no more than 4 patients can arrive,

to keep the example understandable.

i P(BT=i) & v

0 0.05 (0,0,0,0,0,0,0,0) 0.00
1 0.20 (1,0,0,0,0,0,0,0) 0.20
2 0.10 (1,0,1,0,0,0,0,0) 0.80
3 015 (1,0,1,0,0,1,0,0) 1.00
4 0.50 (1,0,1,0,0,1,1,0) 1.60

Table A.1: Numerical example of day schedule evaluation



Appendix B

Arrival rates test setting

In this appendix we present the arrival rate patterns as used in our tests. Table B.1 presents the walk-
in arrival rates corresponding to pattern 1, Table B.2 presents the walk-in arrival rates corresponding
to pattern 2 and Table B.3 presents the walk-in arrival rates corresponding to pattern 3. Table B.4

presents the initial appointment request rates of the three patterns.

x¢ t
d 1 2 3 4 5 6 7 8 Total
1 ]030 0.60 1.00 1.40 1.40 1.00 0.55 0.25 | 6.50
2 | 1.10 1.00 090 0.80 0.70 0.60 0.50 0.40 | 6.00
3 1015 030 045 060 0.60 045 0.30 0.15| 3.00
4 1010 0.10 0.10 0.10 0.10 0.10 0.10 0.10 | 0.80
5 1030 090 1.50 1.00 0.30 0.75 0.65 0.30 | 5.70
Table B.1: Walk-in arrival rates pattern 1
x¢ t
d 1 2 3 4 5 6 7 8 Total
1 ]0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 | 3.60
2 1090 1.20 1.30 1.20 1.00 0.80 0.60 0.40 | 7.40
3 107 100 070 140 070 090 1.00 0.90 | 7.30
4 1000 015 020 020 020 0.20 0.15 0.00 | 1.10
5 1020 040 040 0.20 0.40 0.50 0.40 0.10 | 2.60
Table B.2: Walk-in arrival rates pattern 2
X7 t
d 1 2 3 4 5 6 7 8 Total
1 ] 0.20 0.50 0.80 0.50 0.50 0.80 0.50 0.20 | 4.00
2 | 010 0.30 0.60 1.00 1.00 0.60 0.30 0.10 | 4.00
3 1020 1.00 120 020 020 0.80 1.20 0.20 | 5.00
4 1010 0.10 0.10 3.00 0.10 0.10 0.10 0.10 | 3.70
5 1030 070 030 0.70 0.30 0.70 0.30 0.70 | 4.00

Table B.3: Walk-in arrival rates pattern 3
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)\d
d | Pattern 1 Pattern 2 Pattern 3
1 5 2 3
2 0 3 3
3 2 4 3
4 0 3 3
5 7 2 3

Table B.4: Appointment request rates
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Appendix C

Results of capacity cycle generation

tests

In this appendix we present detailed results of the tests we performed on our capacity cycle heuristics in

combination with local search for capacity cycles, while using complete enumeration for day schedules.

Total Deviation Runtime  Runtime
Test R D T g q y,Snorm(y) x, A  Heuristic | deferred  from (seconds)  (minutes)
patients ~CE+CE
1 1 5 8 2 0.15 10, 95% P1 CE+CE 5.969 - 32220.0 537.00
2 1 5 8 4 015 10, 95% P1 CE+CE 4.362 - 31620.0 527.00
3 1 5 8 2 0.00 10, 95% P1 CE+CE 6.890 - 45600.0 760.00
4 1 5 8 2 0.15 15, 95% P1 CE+CE 5.639 - 31800.0 530.00
5 1 5 8 2 0.15 5, 95% P1 CE+CE 6.540 - 54660.0 911.00
6 1 5 8 4 0.15 15, 95% P1 CE+CE 3.966 - 31467.5 524.46
7 1 5 8 2 0.00 5, 95% P1 CE+CE 7.570 - 56284.7 938.08
8§ 1 5 8 2 0.00 15, 95% P1 CE4CE 6.477 - 43319.9 722.00
9 1 5 8 4 0.00 5, 95% P1 CE+CE 5.558 - 58078.7 967.98
0 1 5 8 4 0.15 5, 95% P1 CE+CE 4.548 - 36738.8 612.31
1 1 5 8 4 0.00 10, 95% P1 CE+CE 4.915 - 48159.9 802.66
12 1 5 8 4 0.00 15, 95% P1 CE4+CE 4.666 - 31527.7 525.46
13 1 5 8 2 0.15 10, 95% P2 CE4+CE 6.328 - 28440.0 474.00
14 1 5 8 4 0.15 10, 95% P2 CE+CE 4.668 - 23040.0 384.00
5 1 5 8 2 0.00 10, 95% P2 CE+CE 6.797 - 28020.0 467.00
6 1 5 8 2 0.15 15, 95% P2 CE+CE 6.328 - 28320.0 472.00
17 1 5 8 2 0.15 5, 95% P2 CE+CE 6.767 - 30210.0 503.50
8 1 5 8 4 0.15 15, 95% P2 CE+CE 4.669 - 21527.3 358.79
9 1 5 8 2 0.00 5, 95% P2 CE+CE 7.692 - 28047.0 467.45
20 1 5 8 2 0.00 15, 95% P2 CE+CE 6.797 - 27404.6 456.74
21 1 5 8 4 0.00 5, 95% P2 CE4+CE 6.253 - 46894.9 781.58
22 1 5 8 4 0.15 5, 95% P2 CE+CE 5.292 - 26061.3 434.35
23 1 5 8 4 0.00 10, 95% P2 CE+CE 5.373 - 22354.1 372.57
24 1 5 8 4 0.00 15, 95% P2 CE+CE 5.373 - 22138.7 368.98
25 1 5 8 2 0.15 10, 95% P3 CE+CE 5.511 - 15869.3 264.49
26 1 5 8 4 0.15 10, 95% P3 CE+CE 3.421 - 13176.7 219.61
27 1 5 8 2 0.00 10, 95% P3 CE+CE 6.446 - 17277.1 287.95
28 1 5 8 2 0.15 15, 95% P3 CE4CE 5.511 - 17481.0 291.35
29 1 5 8 2 0.15 5, 95% P3 CE+CE 6.308 - 16379.5 272.99
30 1 5 8 4 0.15 15, 95% P3 CE4+CE 3.421 - 13986.1 233.10
31 1 5 8 2 0.00 5, 95% P3 CE+CE 7.450 - 20237.2 337.29
32 1 5 8 2 0.00 15, 95% P3 CE4+CE 6.446 - 19297.4 321.62
33 1 5 8 4 0.00 5, 95% P3 CE+CE 4.928 - 18237.4 303.96
3 1 5 8 4 0.15 5, 95% P3 CE+CE 3.842 - 17260.1 287.67
35 1 5 8 4 0.00 10, 95% P3 CE+CE 4.402 - 17574.5 292.91

Table continues on next page

v



Total Deviation Runtime  Runtime
Test R D T g q y,Snorm(y) x, A  Heuristic | deferred  from (seconds)  (minutes)
patients ~CE+CE

36 1 5 8 4 0.00 15,95% P3 CE+CE 4.402 - 19426.0 323.77
37 1 5 8 2 0.15 10, 95% P1 H1+CE 6.007 0.65% 2.9 0.05
3831 5 8 4 0.15 10,95% P1  H1+CE 4.362 0.00% 3.6 0.06
39 1 5 8 2 0.00 10,95% P1  H1+CE 6.913 0.34% 3.7 0.06
40 1 5 8 2 0.15 15,95% P1 H1+CE 5.639 0.00% 2.2 0.04
41 1 5 8 2 0.15 5,95% Pl HI14CE 6.801 3.99% 4.8 0.08
42 1 5 8 4 0.15 15, 95% P1 H1+CE 3.966 0.00% 2.2 0.04
43 1 5 8 2 0.00 5, 95% P1 H1+CE 7.739 2.23% 5.8 0.10
4 1 5 8 2 0.00 15,95% P1 H1+CE 6.536 0.91% 2.4 0.04
45 1 5 8 4 0.00 5,95% P1 H1+4CE 5.752 3.49% 5.1 0.08
46 1 5 8 4 0.15 5, 95% P1 H14-CE 4.663 2.53% 3.9 0.06
47 1 5 8 4 0.00 10,95% P1  H1+CE 4.915 0.00% 3.6 0.06
48 1 5 8 4 0.00 15, 95% P1 H14+CE 4.761 2.04% 2.4 0.04
49 1 5 8 2 0.15 10, 95% P2 HI1+CE 6.328 0.00% 2.0 0.03
50 1 5 8 4 0.15 10,95% P2 H1+CE 4.669 0.02% 2.0 0.03
50 1 5 8 2 0.00 10, 95% P2 H1+CE 6.798 0.00% 1.9 0.03
52 1 5 8 2 0.15 15,95% P2 H1+CE 6.328 0.00% 1.9 0.03
58 1 5 8 2 0.15 5,95% P2 H1+4+CE 7.105 4.99% 4.9 0.08
54 1 5 8 4 015 15,95% P2 HI1+CE 4.669 0.00% 2.2 0.04
5 1 5 8 2 0.00 5, 95% P2 H1+4-CE 7.788 1.25% 3.7 0.06
5 1 5 8 2 0.00 15,95% P2 H1+CE 6.798 0.00% 1.9 0.03
571 5 8 4 0.00 5,95% P2 H1+4CE 6.404 2.42% 3.9 0.06
581 5 8 4 0.15 5,95% P2 H14CE 5.550 4.87% 3.6 0.06
59 1 5 8 4 0.00 10, 95% P2 H1+CE 5.455 1.54% 2.1 0.04
60 1 5 8 4 0.00 15, 95% P2 H1+CE 5.455 1.54% 2.1 0.04
61 1 5 8 2 0.15 10, 95% P3  H1+CE 5.607 1.74% 2.2 0.04
62 1 5 8 4 0.15 10, 95% P3  HI1+CE 3.421 0.00% 2.4 0.04
63 1 5 8 2 0.00 10, 95% P3 H1+CE 6.586 2.16% 2.3 0.04
64 1 5 8 2 0.15 15, 95% P3 H1+4+-CE 5.607 1.74% 2.1 0.03
656 1 5 8 2 0.15 5,95% P3 H1+4+CE 6.308 0.00% 3.5 0.06
66 1 5 8 4 0.15 15,95% P3 H1+CE 3.421 0.00% 2.4 0.04
67 1 5 8 2 0.00 5 9% P3 H14+CE 7.542 1.23% 4.2 0.07
68 1 5 8 2 0.00 15, 95% P3 H1+CE 6.586 2.16% 2.3 0.04
69 1 5 8 4 0.00 595% P3 H14CE 5.200 5.52% 4.6 0.08
0 1 5 8 4 0.15 5,95% P3 H1+4CE 3.928 2.25% 3.3 0.05
717 1 5 8 4 0.00 10, 95% P3 HI1+CE 4.402 0.00% 2.7 0.05
72 1 5 8 4 0.00 15,95% P3 HI1+CE 4.402 0.00% 2.7 0.04
31 5 8 2 0.15 10, 95% P1  H2+CE 6.007 0.65% 3.0 0.05
74 1 5 8 4 0.5 10, 95% P1  H2+CE 4.362 0.00% 3.7 0.06
7 1 5 8 2 0.00 10, 95% P1 H2+4CE 6.913 0.34% 4.2 0.07
™ 1 5 8 2 0.15 15,95% P1  H2+CE 5.639 0.00% 2.2 0.04
7T 1 5 8 2 0.15 5,95% Pl H2+4CE 6.801 3.99% 5.0 0.08
™ 1 5 8 4 0.15 15,95% P1  H2+CE 3.966 0.00% 2.2 0.04
79 1 5 8 2 0.00 5, 95% P1 H2+CE 7.739 2.23% 6.5 0.11
8 1 5 8 2 0.00 15, 95% P1 H2+CE 6.536 0.91% 2.5 0.04
81 1 5 8 4 0.00 5,95% P1 H2+4CE 5.752 3.49% 5.1 0.08
8 1 5 8 4 0.15 5,95% Pl H2+4CE 4.663 2.53% 3.9 0.07
83 1 5 8 4 0.00 10,95% P1  H2+CE 4.915 0.00% 3.7 0.06
8 1 5 8 4 0.00 15, 95% P1 H2+4CE 4.761 2.04% 2.4 0.04
8% 1 5 8 2 0.15 10, 95% P2 H2+CE 6.338 0.16% 2.0 0.03
8 1 5 8 4 0.15 10, 95% P2  H2+CE 4.793 2.68% 2.0 0.03
8 1 5 8 2 0.00 10, 95% P2  H2+CE 6.863 0.96% 2.2 0.04
8 1 5 8 2 0.15 15, 95% P2 H2+CE 6.338 0.16% 1.9 0.03
89 1 5 8 2 0.15 5, 95% P2 H2+CE 7.105 4.99% 5.1 0.08
9 1 5 8 4 0.15 15,95% P2 H2+CE 4.793 2.65% 2.0 0.03
99 1 5 8 2 0.00 5,95% P2 H2+4CE 7.788 1.25% 3.8 0.06
92 1 5 8 2 0.00 15,95% P2 H2+CE 6.863 0.96% 2.0 0.03
93 1 5 8 4 0.00 5, 95% P2 H2+4CE 6.404 2.42% 4.6 0.08
94 1 5 8 4 0.15 5,95% P2 H2+4CE 5.368 1.43% 3.4 0.06
9% 1 5 8 4 0.00 10, 95% P2 H2+CE 5.455 1.54% 2.2 0.04
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Total Deviation Runtime  Runtime
Test R D T g q y,Snorm(y) X, A Heuristic | deferred  from (seconds)  (minutes)
patients CE+CE
9% 1 5 8 4 0.00 15, 95% P2 H2+CE 5.455 1.54% 2.1 0.04
97 1 5 8 2 0.15 10, 95%  P3 H2+CE 5.511 0.00% 2.2 0.04
98 1 5 8 4 0.15 10, 95%  P3 H2+4+CE 3.421 0.00% 2.5 0.04
9 1 5 8 2 0.00 10, 95%  P3 H2+CE 6.502 0.87% 2.3 0.04
100 1 5 8 2 0.15 15,95%  P3 H2+CE 5.511 0.00% 2.1 0.03
01 1 5 8 2 0.15 5 95%  P3 H2+4+CE 6.308 0.00% 3.5 0.06
102 1 5 8 4 0.15 15,95%  P3 H2+CE 3.421 0.00% 2.5 0.04
103 1 5 &8 2 0.00 5, 95% P3 H2+4+CE 7.542 1.23% 4.1 0.07
104 1 5 8 2 0.00 15,95%  P3 H2+CE 6.502 0.87% 2.4 0.04
105 1 5 8 4 0.00 5 95%  P3 H2+CE 4.972 0.91% 4.1 0.07
106 1 5 8 4 015 5 95%  P3 H2+4+CE 3.872 0.80% 3.5 0.06
107 1 5 8 4 0.00 10, 95%  P3 H2+CE 4.402 0.00% 2.6 0.04
108 1 5 8 4 0.00 15,95%  P3 H2+CE 4.402 0.00% 2.6 0.04
109 1 5 8 2 0.15 10, 95% P1 H1+LS-CC+CE 5.969 0.00% 374 0.62
110 1 5 8 4 0.15 10,95% P1 H1+LS-CC+CE 4.362 0.00% 34.9 0.58
111 1 5 8 2 0.00 10,95% P1 H1+LS-CC+CE 6.890 0.00% 56.3 0.94
112 1 5 8 2 015 15,95% P1 H1+LS-CC+CE 5.639 0.00% 30.2 0.50
113 1 5 8 2 0.15 5,95% Pl H1+4LS-CC+CE 6.591 0.79% 54.8 0.91
14 1 5 8 4 0.15 15,95% P1 H1+LS-CC+CE 3.966 0.00% 21.9 0.37
15 1 5 8 2 0.00 5,95% Pl HI1+LS-CC+CE 7.570 0.00% 74.1 1.24
116 1 5 8 2 0.00 15,95% P1 H1+LS-CC+CE 6.477 0.00% 55.0 0.92
117 1 5 8 4 0.00 5, 95% P1 H1+4+LS-CC+CE 5.567 0.16% 57.2 0.95
118 1 5 8 4 0.15 5,95% Pl H1+4LS-CC+CE 4.548 0.00% 54.4 0.91
119 1 5 8 4 0.00 10, 95% P1 H1+LS-CC+CE 4.915 0.00% 35.7 0.59
120 1 5 8 4 0.00 15,95% P1 H1+LS-CC+CE 4.761 2.04% 37.0 0.62
120 1 5 8 2 015 10, 95% P2 H1+LS-CC+CE 6.328 0.00% 21.9 0.37
122 1 5 8 4 015 10, 95% P2 H1+LS-CC+CE 4.669 0.02% 17.6 0.29
123 1 5 8 2 0.00 10,95% P2 H1+LS-CC+CE 6.797 0.00% 21.9 0.37
124 1 5 8 2 015 15,95% P2 H1+LS-CC+CE 6.328 0.00% 21.5 0.36
125 1 5 8 2 015 5,95% P2 HI14LS-CC+CE 7.105 4.99% 39.1 0.65
126 1 5 8 4 0.15 15,95% P2 H1+LS-CC+CE 4.669 0.00% 17.3 0.29
127 1 5 8 2 0.00 5,95% P2 H1+4LS-CC+CE 7.788 1.25% 34.9 0.58
1286 1 5 8 2 0.00 15,95% P2 H1+LS-CC+CE 6.797 0.00% 21.6 0.36
129 1 5 8 4 0.00 5,95% P2 H1+4LS-CC+CE 6.253 0.00% 48.4 0.81
130 1 5 8 4 0.15 5, 95% P2 H1+4+LS-CC+CE 5.292 0.00% 28.1 0.47
131 1 5 8 4 0.00 10, 95% P2 H1+LS-CC+CE 5.373 0.00% 25.1 0.42
132 1 5 8 4 0.00 15,95% P2 H1+LS-CC+CE 5.373 0.00% 20.3 0.34
133 1 5 8 2 015 10, 95% P3 H1+LS-CC+CE 5.511 0.00% 23.0 0.38
134 1 5 8 4 0.15 10, 95% P3 H1+LS-CC+CE 3.421 0.00% 18.2 0.30
13 1 5 8 2 0.00 10, 95% P3 H1+LS-CC+CE 6.483 0.58% 28.2 0.47
136 1 5 8 2 0.15 15,95% P3 H1+LS-CC+CE 5.511 0.00% 25.5 0.42
137 1 5 8 2 0.15 5,95% P3 H1+4LS-CC+CE 6.308 0.00% 35.0 0.58
133 1 5 8 4 015 15,95% P3 H1+LS-CC+CE 3.421 0.00% 16.4 0.27
139 1 5 8 2 0.00 5,95% P3 H1+4LS-CC+CE 7.450 0.00% 46.3 0.77
140 1 5 8 2 0.00 15,95% P3 H1+LS-CC+CE 6.483 0.58% 31.3 0.52
141 1 5 8 4 0.00 5,95% P3 H1+LS-CC+CE 4.955 0.55% 28.1 047
142 1 5 8 4 015 5,95% P3 H1+4+LS-CC+CE 3.872 0.80% 27.6 0.46
143 1 5 8 4 0.00 10, 95% P3 H1+LS-CC+CE 4.402 0.00% 23.4 0.39
144 1 5 8 4 0.00 15,95% P3 H1+LS-CC+CE 4.402 0.00% 25.9 0.43
145 1 5 8 2 0.15 10, 95% P1 H2+LS-CC+CE 5.969 0.00% 37.5 0.63
146 1 5 8 4 0.15 10, 95% P1 H2+LS-CC+CE 4.362 0.00% 33.8 0.56
147 1 5 8 2 0.00 10, 95% P1 H2+LS-CC+CE 6.890 0.00% 56.6 0.94
148 1 5 8 2 0.15 15,95% P1 H2+LS-CC+CE 5.639 0.00% 29.6 0.49
149 1 5 8 2 0.15 5, 95% P1 H2+4+LS-CC+CE 6.591 0.79% 55.3 0.92
50 1 5 8 4 0.15 15,95% P1 H2+LS-CC+CE 3.966 0.00% 24.1 0.40
51 1 5 8 2 0.00 5,95% Pl H2+4LS-CC+CE 7.570 0.00% 72.9 1.21
52 1 5 8 2 0.00 15,95% P1 H2+LS-CC+CE 6.477 0.00% 47.0 0.78
53 1 5 8 4 0.00 5,95% P1 H2+4LS-CC+CE 5.567 0.16% 49.6 0.83
154 1 5 8 4 0.15 5,95% Pl H2+4LS-CC+CE 4.548 0.00% 50.1 0.84
5 1 5 8 4 0.00 10,95% P1 H2+LS-CC+CE 4.915 0.00% 35.0 0.58
Table continues on next page

VI



Total

Deviation

Test R D T g g y,Snorm(y) X, A Heuristic | deferred  from l(zlel?zggf) ?gﬁ:;i)
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156 1 5 8 4 0.00 15,95% P1 H2+LS-CC+CE 4.761 2.04% 34.8 0.58
57 1 5 8 2 015 10, 95% P2 H2+LS-CC+CE 6.338 0.16% 25.0 0.42
158 1 5 8 4 015 10, 95% P2 H2+LS-CC+CE 4.669 0.02% 16.1 0.27
159 1 5 8 2 0.00 10, 95% P2 H2+LS-CC+CE 6.863 0.96% 25.3 0.42
160 1 &5 8 2 0.15 15, 95% P2 H2+4+LS-CC+CE 6.338 0.16% 24.4 0.41
61 1 5 8 2 0.15 5,95% P2 H24LS-CC+CE 7.105 4.99% 38.6 0.64
62 1 5 8 4 015 15,95% P2 H2+LS-CC+CE 4.669 0.00% 16.3 0.27
63 1 5 8 2 0.00 5,95% P2 H2+LS-CC+CE 7.788 1.25% 34.9 0.58
64 1 5 8 2 0.00 15,95% P2 H2+LS-CC+CE 6.863 0.96% 24.5 0.41
65 1 5 8 4 0.00 5,95% P2 H24LS-CC+CE 6.253 0.00% 48.1 0.80
66 1 5 8 4 015 5,95% P2 H24+LS-CC+CE 5.366 1.39% 30.5 0.51
67 1 5 8 4 0.00 10, 95% P2 H2+LS-CC+CE 5.373 0.00% 27.7 0.46
68 1 5 8 4 0.00 15,95% P2 H2+LS-CC+CE 5.373 0.00% 19.9 0.33
69 1 5 8 2 015 10, 95% P3 H2+LS-CC+CE 5.511 0.00% 23.1 0.39
170 1 5 8 4 015 10, 95%  P3 H2+LS-CC+CE 3.421 0.00% 16.2 0.27
71 1 5 8 2 0.00 10, 95% P3 H2+LS-CC+CE 6.446 0.00% 28.7 0.48
172 1 5 8 2 0.15 15,95% P3 H2+LS-CC+CE 5.511 0.00% 28.0 0.47
173 1 5 8 2 015 5,95% P3 H2+4LS-CC+CE 6.308 0.00% 35.6 0.59
174 1 5 8 4 015 15,95% P3 H2+LS-CC+CE 3.421 0.00% 16.5 0.27
175 1 5 8 2 0.00 5,95% P3 H2+4LS-CC+CE 7.450 0.00% 46.6 0.78
176 1 5 8 2 0.00 15,95% P3 H2+LS-CC+CE 6.446 0.00% 32.8 0.55
77 1 5 8 4 0.00 5,95% P3 H2+4LS-CC+CE 4.928 0.00% 29.5 0.49
78 1 5 8 4 0.15 5, 95% P3 H2+4+LS-CC+CE 3.842 0.00% 24.7 0.41
179 1 5 8 4 0.00 10, 95% P3 H2+LS-CC+CE 4.402 0.00% 23.1 0.38
180 1 5 8 4 0.00 15,95% P3 H2+LS-CC+CE 4.402 0.00% 26.9 0.45
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Appendix D

Results of day schedule generation

tests

In this appendix we present detailed results of the tests we performed on our capacity cycle heuristics,
in combination with our day schedule heuristics and the local search techniques for capacity cycles and

day schedules.

Total Deviation Runtime  Runtime
Test R D T g q y,Snorm(y) x, A  Heuristic | deferred  from (seconds)  (mimutes)
patients ~CE+CE
1 1 5 8 2 0.15 10, 95% P1 CE+CE 5.969 - 32220.0 537.00
2 1 5 8 4 015 10, 95% P1 CE+CE 4.362 - 31620.0 527.00
3 1 5 8 2 0.00 10, 95% P1 CE+CE 6.890 - 45600.0 760.00
4 1 5 8 2 0.15 15, 95% P1 CE+CE 5.639 - 31800.0 530.00
5 1 5 8 2 0.15 5, 95% P1 CE+CE 6.540 - 54660.0 911.00
6 1 5 8 4 0.15 15, 95% P1 CE+CE 3.966 - 31467.5 524.46
7 1 5 8 2 0.00 5, 95% P1 CE+CE 7.570 - 56284.7 938.08
8 1 5 8 2 0.00 15, 95% P1 CE+CE 6.477 - 43319.9 722.00
9 1 5 8 4 0.00 5, 95% P1 CE+CE 5.558 - 58078.7 967.98
0 1 5 8 4 0.15 5, 95% P1 CE+CE 4.548 - 36738.8 612.31
1 1 5 8 4 0.00 10, 95% P1 CE+CE 4.915 - 48159.9 802.66
12 1 5 8 4 0.00 15, 95% P1 CE+CE 4.666 - 31527.7 525.46
13 1 5 8 2 0.15 10, 95% P2 CE+4CE 6.328 - 28440.0 474.00
14 1 5 8 4 0.15 10, 95% P2 CE+CE 4.668 - 23040.0 384.00
5 1 5 8 2 0.00 10, 95% P2 CE+CE 6.797 - 28020.0 467.00
6 1 5 8 2 0.15 15, 95% P2 CE+CE 6.328 - 28320.0 472.00
7 1 5 8 2 0.15 5, 95% P2 CE+CE 6.767 - 30210.0 503.50
8 1 5 8 4 0.15 15, 95% P2 CE+CE 4.669 - 21527.3 358.79
9 1 5 8 2 0.00 5, 95% P2 CE+CE 7.692 - 28047.0 467.45
20 1 5 8 2 0.00 15, 95% P2 CE+CE 6.797 - 27404.6 456.74
211 5 8 4 0.00 5, 95% P2 CE+CE 6.253 - 46894.9 781.58
22 1 5 8 4 0.15 5, 95% P2 CE+CE 5.292 - 26061.3 434.35
23 1 5 8 4 0.00 10, 95% P2 CE+CE 5.373 - 22354.1 372.57
24 1 5 8 4 0.00 15, 95% P2 CE+CE 5.373 - 22138.7 368.98
25 1 5 8 2 0.15 10, 95% P3 CE+CE 5.511 - 15869.3 264.49
26 1 5 8 4 0.15 10, 95% P3 CE+4CE 3.421 - 13176.7 219.61
27 1 5 8 2 0.00 10, 95% P3 CE+CE 6.446 - 17277.1 287.95
28 1 5 8 2 0.15 15, 95% P3 CE+CE 5.511 - 17481.0 291.35
29 1 5 8 2 0.15 5, 95% P3 CE+CE 6.308 - 16379.5 272.99
30 1 5 8 4 0.15 15, 95% P3 CE+CE 3.421 - 13986.1 233.10
31 1 5 8 2 0.00 5, 95% P3 CE+CE 7.450 - 20237.2 337.29
32 1 5 8 2 0.00 15, 95% P3 CE+CE 6.446 - 19297.4 321.62
33 1 5 8 4 0.00 5, 95% P3 CE+CE 4.928 - 18237.4 303.96
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Deviation

Test R D T g q y,Snorm(y) X, A Heuristic | deferred  from 22223:) gﬁﬁiﬁ;)
patients CE+CE
34 1 5 8 4 0.15 5, 95% P3 CE+CE 3.842 - 17260.1 287.67
35 1 5 8 4 0.00 10, 95% P3 CE+CE 4.402 - 17574.5 292.91
36 1 5 8 4 0.00 15, 95% P3 CE+CE 4.402 - 19426.0 323.77
37 1 5 8 2 015 10, 95% P1 H1+H3+LS-RS 6.007 0.65% 2.0 0.03
38 1 5 8 4 0.15 10, 95% P1 H14+H3+LS-RS 4.362 0.00% 2.1 0.04
39 1 5 8 2 0.00 10, 95% P1 H14+H3+LS-RS 6.913 0.34% 2.8 0.05
40 1 5 8 2 0.15 15, 95% P1 H14+H3+LS-RS 5.639 0.00% 1.2 0.02
41 1 5 8 2 0.15 5, 95% P1 H1+H3+4LS-RS 6.801 3.99% 4.2 0.07
42 1 5 8 4 0.15 15, 95% P1 H14+H3+LS-RS 4.191 5.70% 1.6 0.03
43 1 5 8 2 0.00 5, 95% P1 H14+H3+LS-RS 7.739 2.23% 5.2 0.09
4 1 5 8 2 0.00 15, 95% P1 H14+H3+LS-RS 6.584 1.65% 1.4 0.02
45 1 5 8 4 0.00 5, 95% P1 H1+H3+LS-RS 5.752 3.49% 4.7 0.08
46 1 5 8 4 0.15 5, 95% P1 H14+H3+LS-RS 4.663 2.53% 3.2 0.05
47 1 5 8 4 0.00 10, 95% P1 H1+H3+LS-RS 4.915 0.00% 2.6 0.04
48 1 5 8 4 0.00 15, 95% P1 H14+H3+LS-RS 4.761 2.04% 1.5 0.02
49 1 5 8 2 0.15 10, 95% P2 H1+H3+LS-RS 6.328 0.00% 1.3 0.02
50 1 5 8 4 0.15 10, 95% P2 H14+H3+LS-RS 4.669 0.02% 1.0 0.02
51 1 5 8 2 0.00 10, 95% P2 H1+H3+LS-RS 6.798 0.00% 1.2 0.02
52 1 5 8 2 015 15, 95% P2 H1+H3+LS-RS 6.328 0.00% 1.2 0.02
53 1 5 8 2 015 5, 95% P2 H1+H3+LS-RS 7.105 4.99% 3.8 0.06
54 1 5 8 4 0.15 15, 95% P2 H14+H3+LS-RS 4.669 0.00% 1.0 0.02
5 1 5 8 2 0.00 5, 95% P2 H1+H3+LS-RS 7.788 1.25% 3.4 0.06
56 1 5 8 2 0.00 15, 95% P2 H1+H3+LS-RS 6.797 0.00% 1.1 0.02
57 1 5 8 4 0.00 5, 95% P2 H1+H3+LS-RS 6.404 2.42% 2.8 0.05
58 1 5 8 4 0.15 5, 95% P2 H14+H3+LS-RS 5.550 4.87% 2.6 0.04
59 1 5 8 4 0.00 10, 95% P2 H1+H3+LS-RS 5.455 1.54% 1.3 0.02
60 1 5 8 4 0.00 15, 95% P2 H14+H3+LS-RS 5.455 1.54% 1.3 0.02
61 1 5 8 2 015 10, 95% P3 H1+H3+LS-RS 5.607 1.74% 1.1 0.02
62 1 5 8 4 0.15 10, 95% P3 H14+H3+LS-RS 3.452 0.90% 0.8 0.01
63 1 5 8 2 0.00 10, 95% P3 H1+H3+LS-RS 6.586 2.16% 1.7 0.03
64 1 5 8 2 0.15 15, 95% P3 H14+H3+LS-RS 5.607 1.74% 1.0 0.02
656 1 5 8 2 015 5, 95% P3 H1+H3+LS-RS 6.312 0.06% 2.5 0.04
66 1 5 8 4 0.15 15, 95% P3 H14+H3+LS-RS 3.421 0.00% 0.8 0.01
67 1 5 8 2 0.00 5, 95% P3 H1+H3+LS-RS 7.542 1.23% 3.0 0.05
68 1 5 8 2 0.00 15, 95% P3 H14+H3+LS-RS 6.586 2.16% 1.3 0.02
69 1 5 8 4 0.00 5, 95% P3 H1+H3+LS-RS 5.200 5.52% 3.8 0.06
70 1 5 8 4 0.15 5, 95% P3 H14+H3+LS-RS 3.928 2.25% 2.0 0.03
71 1 5 8 4 0.00 10, 95% P3 H1+H3+LS-RS 4.402 0.00% 1.4 0.02
72 1 5 8 4 0.00 15, 95% P3 H14+H3+LS-RS 4.402 0.00% 1.4 0.02
73 1 5 8 2 015 10, 95% P1 H1+H4+LS-RS 6.007 0.65% 2.4 0.04
4 1 5 8 4 015 10, 95% P1 H14+H4+LS-RS 4.362 0.00% 2.7 0.05
71 5 8 2 0.00 10, 95% P1 H14+H4+LS-RS 6.914 0.34% 2.6 0.04
7% 1 5 8 2 0.15 15, 95% P1 H14+H4+LS-RS 6.007 6.54% 1.8 0.03
1 5 8 2 015 5, 95% P1 H1+H4+LS-RS 7.010 7.18% 3.1 0.05
7 1 5 8 4 015 15, 95% P1 H1+H4+LS-RS 4.191 5.70% 1.1 0.02
79 1 5 8 2 0.00 5, 95% P1 H14+H4+LS-RS 7.739 2.23% 4.8 0.08
80 1 5 8 2 0.00 15, 95% P1 H14+H4+LS-RS 6.584 1.65% 2.8 0.05
81 1 5 8 4 0.00 5, 95% P1 H1+H4+LS-RS 6.166 10.94% 5.8 0.10
82 1 5 8 4 0.15 5, 95% P1 H14+H4+LS-RS 4.663 2.53% 3.1 0.05
8 1 5 8 4 0.00 10, 95% P1 H14+H4+LS-RS 5.311 8.07% 3.2 0.05
84 1 5 8 4 0.00 15, 95% P1 H14+H4+LS-RS 4.761 2.04% 1.7 0.03
8% 1 5 8 2 0.15 10, 95% P2 H1+H4+LS-RS 6.699 5.8T% 1.1 0.02
8 1 5 8 4 0.15 10, 95% P2 H1+H4+LS-RS 5.227 11.99% 1.3 0.02
8 1 5 8 2 0.00 10, 95% P2 H1+H4+LS-RS 7.317 7.64% 1.4 0.02
8 1 5 8 2 0.15 15, 95% P2 H1+H4+LS-RS 6.699 5.87% 1.1 0.02
89 1 5 8 2 015 5, 95% P2 H1+H4+LS-RS 7.105 4.99% 2.9 0.05
9 1 5 8 4 0.15 15, 95% P2 H1+H4+LS-RS 4.945 5.92% 1.0 0.02
91 1 5 8 2 0.00 5, 95% P2 H1+H4+LS-RS 8.149 5.93% 3.8 0.06
92 1 5 8 2 0.00 15, 95% P2 H1+H4+LS-RS 7.317 7.64% 1.2 0.02
93 1 5 8 4 0.00 5, 95% P2 H1+H4+LS-RS 6.405 2.42% 3.8 0.06
94 1 5 8 4 0.15 5, 95% P2 H14+H4+LS-RS 5.703 7.76% 3.3 0.05
95 1 5 8 4 0.00 10, 95% P2 H1+H4+LS-RS 5.820 8.33% 14 0.02
9% 1 5 8 4 0.00 15, 95% P2 H1+H4+LS-RS 5.820 8.33% 1.5 0.03
97 1 5 8 2 0.15 10, 95% P3 H1+H4+LS-RS 5.607 1.74% 1.5 0.02
Table continues on next page
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Total Deviation Runtime  Runtime
Test R D T g q y,Snorm(y) x, A Heuristic | deferred  from (seconds)  (minutes)
patients CE+CE
98 1 5 8 4 0.15 10, 95% P3 H1+H44LS-RS 3.421 0.00% 1.6 0.03
9 1 5 8 2 0.00 10, 95% P3 H1+H4+4LS-RS 6.586 217% 2.1 0.03
100 1 5 8 2 0.15 15, 95% P3 H1+H44LS-RS 5.607 1.74% 1.2 0.02
101 1 5 8 2 0.15 5, 95% P3  H1+H4+4LS-RS 6.510 3.20% 2.2 0.04
102 1 5 8 4 0.15 15, 95% P3 H1+H4+4LS-RS 3.421 0.00% 14 0.02
103 1 5 8 2 0.00 5, 95% P3 H1+H4+4LS-RS 7.542 1.23% 2.6 0.04
104 1 5 8 2 0.00 15, 95% P3 H1+H4+4LS-RS 6.586 217% 1.8 0.03
10061 5 8 4 0.00 5, 95% P3 H1+H4+LS-RS 5.200 5.53% 2.9 0.05
106 1 5 8 4 0.15 5, 95% P3 H1+H4+4LS-RS 3.928 2.25% 2.1 0.04
107 1 5 8 4 0.00 10, 95% P3 H1+H4+LS-RS 4.402 0.00% 1.8 0.03
108 1 5 8 4 0.00 15, 95% P3 H1+H4+4LS-RS 4.402 0.00% 1.2 0.02
109 1 5 8 2 015 10, 95% P1 H1+H3+LS-GA 6.007 0.65% 7.6 0.13
110 1 5 8 4 0.15 10, 95% P1 H1+H3+4+LS-GA 4.362 0.00% 4.4 0.07
111 1 5 8 2 0.00 10, 95% P1 H1+4+H3+4+LS-GA 6.914 0.34% 7.3 0.12
112 1 5 8 2 0.15 15, 95% P1 H1+H3+LS-GA 5.639 0.00% 6.6 0.11
113 15 8 2 0.15 5, 95% P1 H1+H3+LS-GA 7.010 7.18% 16.0 0.27
114 1 5 8 4 0.15 15, 95% P1 H1+H3+4+LS-GA 4.191 5.70% 8.6 0.14
115 1 5 8 2 0.00 5, 95% P1 H1+4+H3+4+LS-GA 7.739 2.23% 6.1 0.10
116 1 5 8 2 0.00 15, 95% P1 H1+H3+LS-GA 6.536 0.91% 6.2 0.10
117 1 5 8 4 0.00 5, 95% P1 H1+4+H3+4+LS-GA 5.752 3.49% 7.0 0.12
118 1 5 8 4 0.15 5, 95% P1 H1+H3+LS-GA 4.663 2.53% 5.7 0.09
119 1 5 8 4 0.00 10, 95% P1 H1+H3+4+LS-GA 4.915 0.00% 8.0 0.13
120 1 5 8 4 0.00 15, 95% P1 H1+H3+LS-GA 4.761 2.04% 4.8 0.08
12171 5 8 2 0.15 10, 95% P2 H1+H3+LS-GA 6.328 0.00% 4.4 0.07
122 1 5 8 4 0.15 10, 95% P2 H1+H3+4+LS-GA 4.669 0.02% 3.5 0.06
123 1 5 8 2 0.00 10, 95% P2 H1+H3+LS-GA 6.798 0.00% 3.4 0.06
124 1 5 8 2 0.15 15, 95% P2 H1+H3+LS-GA 6.328 0.00% 5.5 0.09
125 1 5 8 2 0.15 5, 95% P2 H1+H3+4+LS-GA 7.105 4.99% 6.8 0.11
126 1 5 8 4 0.15 15, 95% P2 H1+H3+LS-GA 4.669 0.00% 3.9 0.07
127 1 5 8 2 0.00 5, 95% P2 H1+H3+LS-GA 7.788 1.25% 5.3 0.09
128 1 5 8 2 0.00 15, 95% P2 H1+H3+LS-GA 6.798 0.00% 7.8 0.13
129 1 5 8 4 0.00 5, 95% P2 H1+H3+LS-GA 6.405 2.42% 74 0.12
130 15 8 4 0.15 5, 95% P2 H1+H3+4+LS-GA 5.550 4.87% 5.2 0.09
131 1 5 8 4 0.00 10, 95% P2 H1+H3+LS-GA 5.455 1.54% 6.7 0.11
132 1 5 8 4 0.00 15, 95% P2 H1+H3+LS-GA 5.455 1.54% 7.2 0.12
133 1 5 8 2 0.15 10, 95% P3 H1+H3+LS-GA 5.607 1.74% 14.8 0.25
134 1 5 8 4 0.15 10, 95% P3 H1+H3+LS-GA 3.421 0.00% 13.5 0.22
1351 5 8 2 0.00 10, 95% P3 H1+H3+LS-GA 6.586 2.17% 14.6 0.24
136 1 5 8 2 0.15 15, 95% P3 H1+H3+LS-GA 5.607 1.74% 5.8 0.10
137 1 5 8 2 0.15 5, 95% P3 H1+H3+4+LS-GA 6.308 0.00% 24.9 0.42
1331 5 8 4 0.15 15, 95% P3 H1+H3+LS-GA 3.421 0.00% 12.6 0.21
139 1 5 8 2 0.00 5, 95% P3 H1+H3+LS-GA 7.542 1.23% 52.5 0.88
140 1 5 8 2 0.00 15, 95% P3 H1+H3+4+LS-GA 6.592 2.26% 32.1 0.53
141 1 5 8 4 0.00 5, 95% P3 H1+H3+4+LS-GA 5.200 5.53% 14.8 0.25
142 1 5 8 4 0.15 5, 95% P3 H1+H3+LS-GA 3.928 2.25% 7.5 0.12
143 1 5 8 4 0.00 10, 95% P3 H1+H3+4+LS-GA 4.402 0.00% 8.7 0.15
144 1 5 8 4 0.00 15, 95% P3 H1+H3+LS-GA 4.402 0.00% 7.8 0.13
145 1 5 8 2 0.15 10, 95% P1 H1+H4+4LS-GA 6.007 0.65% 3.7 0.06
146 1 5 8 4 0.15 10, 95% P1 H1+4+H4+LS-GA 4.362 0.00% 5.9 0.10
147 1 5 8 2 0.00 10, 95% P1 H1+H4+LS-GA 6.914 0.34% 5.5 0.09
148 1 5 8 2 0.15 15, 95% P1 H1+4+H4+LS-GA 5.639 0.00% 3.8 0.06
149 1 5 8 2 0.15 5, 95% P1 H1+H4+LS-GA 6.801 3.99% 8.2 0.14
150 1 5 8 4 0.15 15, 95% P1 H1+4+H4+LS-GA 3.966 0.00% 4.6 0.08
151 1 5 8 2 0.00 5, 95% P1 H1+H4+4LS-GA 7.739 2.23% 13.6 0.23
152 1 5 8 2 0.00 15, 95% P1 H1+4+H4+LS-GA 6.536 0.91% 7.9 0.13
153 1 5 8 4 0.00 5, 95% P1 H1+H4+LS-GA 6.166 10.94% 9.3 0.15
154 1 5 8 4 0.15 5, 95% P1 H1+H4+LS-GA 4.663 2.53% 8.7 0.14
155 1 5 8 4 0.00 10, 95% P1 H1+H4+LS-GA 4.915 0.00% 4.8 0.08
156 1 5 8 4 0.00 15, 95% P1 H1+4+H4+LS-GA 4.761 2.04% 7.7 0.13
157 1 5 8 2 0.15 10, 95% P2 H1+H4+LS-GA 6.328 0.00% 121.5 2.03
158 1 5 8 4 0.15 10, 95% P2 H1+H4+LS-GA 5.092 9.08% 52.2 0.87
159 1 5 8 2 0.00 10, 95% P2 H1+H4+LS-GA 7.317 7.64% 27.0 0.45
60 1 5 8 2 0.15 15, 95% P2 H1+H4+LS-GA 6.699 5.87% 40.4 0.67
61 1 5 8 2 0.15 5, 95% P2 H1+H4+LS-GA 7.105 4.99% 5.8 0.10
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162 1 5 8 4 0.15 15, 95% P2 H1+H4+LS-GA 4.815 3.13% 12.3 0.20
163 1 5 8 2 0.00 5, 95% P2 H14+H4+LS-GA 7.789 1.25% 13.3 0.22
64 1 5 8 2 0.00 15, 95% P2 H1+H4+LS-GA 7.317 7.64% 40.9 0.68
165 1 5 8 4 0.00 5, 95% P2 H14+H4+LS-GA 6.404 2.42% 5.9 0.10
166 1 5 8 4 0.15 5, 95% P2 H1+H4+LS-GA 5.550 4.87% 38.4 0.64
67 1 5 8 4 0.00 10, 95% P2 H1+H4+LS-GA 5.648 5.13% 21.3 0.35
68 1 5 8 4 0.00 15, 95% P2 HI14+H4+4LS-GA 5.648 5.12% 466.5 .77
69 1 5 8 2 0.15 10, 95% P3 H14+H4+LS-GA 5.607 1.74% 11.8 0.20
7m0 1 5 8 4 0.15 10, 95% P3 H1+H4+LS-GA 3.421 0.00% 5.7 0.09
171 1 5 8 2 0.00 10, 95% P3 H1+H4+LS-GA 6.586 217% 24.7 0.41
172 1 5 8 2 0.15 15, 95% P3 H14+H4+LS-GA 5.607 1.74% 44.0 0.73
173 1 5 8 2 0.15 5, 95% P3 H14+H4+LS-GA 6.308 0.00% 13.6 0.23
174 1 5 8 4 0.15 15, 95% P3 H1+H4+LS-GA 3.421 0.00% 8.6 0.14
175 1 5 8 2 0.00 5, 95% P3 H14+H4+LS-GA 7.542 1.23% 43.5 0.72
76 1 5 8 2 0.00 15, 95% P3 H14+H4+LS-GA 6.586 217% 12.1 0.20
w7 1 5 8 4 0.00 5, 95% P3 H14+H4+LS-GA 5.200 5.52% 14.3 0.24
78 1 5 8 4 0.15 5, 95% P3 H14+H4+4LS-GA 3.928 2.25% 10.5 0.18
79 1 5 8 4 0.00 10, 95% P3 H14+H4+LS-GA 4.402 0.00% 14.0 0.23
180 1 5 8 4 0.00 15, 95% P3 H1+H4+LS-GA 4.402 0.01% 10.4 0.17
181 1 5 8 2 0.15 10, 95% P1 H1+H3+LS-KK 6.824 14.33% 2.7 0.05
182 1 5 8 4 0.15 10, 95% P1 H1+H3+LS-KK 4.362 0.00% 2.2 0.04
183 1 5 8 2 0.00 10, 95% P1 H1+H34LS-KK 7.380 7.12% 2.0 0.03
184 1 5 8 2 0.15 15, 95% P1 H14+H3+4LS-KK 6.492 15.13% 1.5 0.03
18 1 5 8 2 0.15 5, 95% P1 H14+H3+LS-KK 6.894 5.41% 3.2 0.05
186 1 5 8 4 0.15 15, 95% P1 H14+H3+4LS-KK 3.966 0.00% 1.0 0.02
187 1 5 8 2 0.00 5, 95% P1 H14+H3+LS-KK 7.791 2.92% 4.9 0.08
18 1 5 8 2 0.00 15, 95% P1 H14+H3+4LS-KK 7.380 13.94% 1.9 0.03
189 1 5 8 4 0.00 5, 95% P1 H14+H3+LS-KK 5.752 3.49% 4.1 0.07
190 1 5 8 4 0.15 5, 95% P1 H14+H3+4LS-KK 4.663 2.53% 2.7 0.04
191 1 5 8 4 0.00 10, 95% P1 H14+H3+LS-KK 4.915 0.00% 24 0.04
192 1 5 8 4 0.00 15, 95% P1 H14+H3+4+LS-KK 4.761 2.04% 1.2 0.02
193 1 5 8 2 0.15 10, 95% P2 H14+H3+LS-KK 6.718 6.16% 0.9 0.02
194 1 5 8 4 0.15 10, 95% P2 H14+H3+4LS-KK 4.669 0.02% 0.7 0.01
195 1 5 8 2 0.00 10, 95% P2 H14+H3+LS-KK 7.643 12.44% 1.2 0.02
196 1 5 8 2 0.15 15, 95% P2 H14+H3+4+LS-KK 6.718 6.16% 0.9 0.01
197 1 5 8 2 0.15 5, 95% P2 H14+H3+LS-KK 7.307 7.98% 2.7 0.05
198 1 5 8 4 0.15 15, 95% P2 H14+H3+4LS-KK 4.669 0.00% 0.8 0.01
199 1 5 8 2 0.00 5, 95% P2 H14+H3+LS-KK 8.334 8.35% 3.5 0.06
200 1 5 8 2 0.00 15, 95% P2 H1+H3+LS-KK 7.643 12.44% 1.2 0.02
201 1 5 8 4 0.00 5, 95% P2 H14+H3+LS-KK 6.404 2.42% 2.7 0.05
202 1 5 8 4 0.15 5, 95% P2 H14+H3+4LS-KK 5.550 4.87% 2.2 0.04
203 1 5 8 4 0.00 10, 95% P2 H14+H3+LS-KK 5.455 1.54% 1.0 0.02
204 1 5 8 4 0.00 15, 95% P2 H14+H3+4LS-KK 5.455 1.54% 0.9 0.02
205 1 5 8 2 0.15 10, 95% P3 H14+H3+LS-KK 5.607 1.74% 1.0 0.02
206 1 5 8 4 0.15 10, 95% P3 H14+H3+4LS-KK 3.421 0.00% 0.6 0.01
207 1 5 8 2 0.00 10, 95% P3 H14+H3+4LS-KK 6.586 2.16% 1.2 0.02
2086 1 5 8 2 0.15 15, 95% P3 H14+H3+LS-KK 5.607 1.74% 0.9 0.01
209 1 5 8 2 0.15 5, 95% P3 H1+H3+4LS-KK 6.308 0.00% 2.3 0.04
210 1 5 8 4 0.15 15, 95% P3 H1+H3+4+LS-KK 3.421 0.00% 0.6 0.01
211 1 5 8 2 0.00 5, 95% P3 H14+H3+4LS-KK 7.542 1.23% 3.3 0.06
212 1 5 8 2 0.00 15, 95% P3 H14+H3+LS-KK 6.586 2.16% 1.1 0.02
213 1 5 8 4 0.00 5, 95% P3 H1+H3+4LS-KK 5.200 5.52% 3.2 0.05
214 1 5 8 4 0.15 5, 95% P3 H1+H3+LS-KK 3.928 2.25% 1.6 0.03
215 1 5 8 4 0.00 10, 95% P3 H14+H3+4LS-KK 4.402 0.00% 1.0 0.02
216 1 5 8 4 0.00 15, 95% P3 H1+H3+LS-KK 4.402 0.00% 0.9 0.02
217 1 5 8 2 0.15 10, 95% P1  H24+H3+LS-RS 6.007 0.65% 2.1 0.03
218 1 5 8 4 0.15 10, 95% P1  H24+H3+LS-RS 4.362 0.00% 2.5 0.04
219 1 5 8 2 0.00 10, 95% P1  H24+H3+LS-RS 6.913 0.34% 4.2 0.07
220 1 5 8 2 0.15 15, 95% P1  H24+H3+LS-RS 5.639 0.00% 1.7 0.03
221 1 5 8 2 0.15 5, 95% P1 H2+H3+LS-RS 6.801 3.99% 5.3 0.09
222 1 5 8 4 0.15 15, 95% P1  H24+H3+LS-RS 3.978 0.32% 1.2 0.02
223 1 5 8 2 0.00 5, 95% P1 H2+H3+4+LS-RS 7.744 2.30% 5.5 0.09
224 1 5 8 2 0.00 15, 95% P1  H24+H3+LS-RS 6.536 0.90% 1.5 0.02
225 1 5 8 4 0.00 5, 95% P1 H2+H3+4LS-RS 5.752 3.49% 4.1 0.07
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226 1 5 8 4 0.15 5, 95% P1  H2+H34LS-RS 4.663 2.53% 2.8 0.05
227 1 5 8 4 0.00 10, 95% P1 H2+H3+LS-RS 4.915 0.00% 2.6 0.04
228 1 5 8 4 0.00 15, 95% P1  H2+H3+4LS-RS 4.761 2.04% 1.5 0.02
229 1 5 8 2 0.15 10, 95% P2 H2+H3+4LS-RS 6.338 0.16% 1.2 0.02
230 1 5 8 4 0.15 10, 95% P2 H2+H3+4LS-RS 4.793 2.68% 1.0 0.02
231 1 5 8 2 0.00 10, 95% P2 H2+H3+4LS-RS 6.863 0.96% 1.4 0.02
232 1 5 8 2 0.15 15, 95% P2 H2+H3+LS-RS 6.338 0.16% 14 0.02
233 1 5 8 2 0.15 5, 95% P2 H2+H3+4LS-RS 7.105 4.99% 4.7 0.08
234 1 5 8 4 0.15 15, 95% P2 H2+H3+LS-RS 4.793 2.66% 1.0 0.02
235 1 5 8 2 0.00 5, 95% P2 H2+H34LS-RS 7.789 1.25% 2.6 0.04
236 1 5 8 2 0.00 15, 95% P2 H2+H3+4LS-RS 6.863 0.96% 1.4 0.02
237 1 5 8 4 0.00 5, 95% P2 H2+H34LS-RS 6.404 2.42% 3.9 0.07
238 1 5 8 4 0.15 5, 95% P2 H2+H3+4LS-RS 5.368 1.43% 3.3 0.05
239 1 5 8 4 0.00 10, 95% P2 H2+H34LS-RS 5.455 1.54% 1.2 0.02
240 1 5 8 4 0.00 15, 95% P2 H2+H3+LS-RS 5.455 1.54% 1.3 0.02
241 1 5 8 2 0.15 10, 95% P3 H2+H34LS-RS 5.511 0.00% 0.9 0.02
242 1 5 8 4 0.15 10, 95% P3 H2+H3+4LS-RS 3.421 0.00% 0.9 0.01
243 1 5 8 2 0.00 10, 95% P3 H2+H3+4LS-RS 6.502 0.87% 1.5 0.03
244 1 5 8 2 0.15 15, 95% P3 H2+H3+4LS-RS 5.511 0.00% 1.1 0.02
245 1 5 8 2 0.15 5, 95% P3 H2+H3+4LS-RS 6.308 0.00% 2.7 0.05
246 1 5 8 4 0.15 15, 95% P3 H2+H3+4LS-RS 3.421 0.00% 1.3 0.02
247 1 5 8 2 0.00 5, 95% P3 H2+H3+LS-RS 7.542 1.23% 2.8 0.05
248 1 5 8 2 0.00 15, 95% P3 H2+H34LS-RS 6.502 0.87% 14 0.02
2499 1 5 8 4 0.00 5, 95% P3 H2+H3+LS-RS 4.972 0.91% 2.7 0.04
250 1 5 8 4 0.15 5, 95% P3 H2+H34LS-RS 3.879 0.97% 1.6 0.03
251 1 5 8 4 0.00 10, 95% P3 H2+H3+LS-RS 4.402 0.00% 1.8 0.03
252 1 5 8 4 0.00 15, 95% P3 H2+H34LS-RS 4.402 0.00% 1.3 0.02
253 1 5 8 2 0.15 10, 95% P1  H2+H4+LS-RS 6.007 0.65% 2.0 0.03
254 1 5 8 4 0.15 10, 95% P1 H2+H4+4LS-RS 4.362 0.00% 2.8 0.05
2561 5 8 2 0.00 10, 95% P1  H2+H4+LS-RS 6.916 0.38% 3.3 0.06
256 1 5 8 2 0.15 15, 95% P1 H2+H4+4LS-RS 5.639 0.00% 2.0 0.03
257 1 5 8 2 0.15 5, 95% P1  H2+H4+4LS-RS 7.010 7.18% 6.0 0.10
258 1 5 8 4 0.15 15, 95% P1  H2+H4+LS-RS 4.191 5.70% 1.7 0.03
259 1 5 8 2 0.00 5, 95% P1 H2+H4+4LS-RS 7.791 2.92% 3.8 0.06
260 1 5 8 2 0.00 15, 95% P1 H2+H4+4LS-RS 6.536 0.91% 2.1 0.04
261 1 5 8 4 0.00 5, 95% P1  H2+H4+4LS-RS 5.752 3.49% 3.5 0.06
262 1 5 8 4 0.15 5, 95% P1  H2+H4+4LS-RS 5.039 10.78% 5.0 0.08
263 1 5 8 4 0.00 10, 95% P1 H2+H4+4LS-RS 4.915 0.00% 24 0.04
264 1 5 8 4 0.00 15, 95% P1 H2+H4+4LS-RS 4.761 2.04% 1.6 0.03
260 1 5 8 2 0.15 10, 95% P2 H2+H4+4LS-RS 6.538 3.31% 1.6 0.03
266 1 5 8 4 0.15 10, 95% P2 H2+H4+LS-RS 5.227 11.99% 1.3 0.02
267 1 5 8 2 0.00 10, 95% P2 H2+H4+LS-RS 7.323 7.73% 5.4 0.09
268 1 5 8 2 0.15 15, 95% P2 H2+H4+4LS-RS 6.538 3.31% 14 0.02
269 1 5 8 2 0.15 5, 95% P2 H2+H4+LS-RS 7.105 4.99% 3.5 0.06
270 1 5 8 4 0.15 15, 95% P2 H2+H4+4LS-RS 5.228 11.96% 1.1 0.02
271 1 5 8 2 0.00 5, 95% P2 H2+H4+LS-RS 7.788 1.25% 3.7 0.06
272 1 5 8 2 0.00 15, 95% P2 H2+H4+4LS-RS 7.323 7.73% 1.3 0.02
273 1 5 8 4 0.00 5, 95% P2 H2+H4+LS-RS 6.404 2.42% 4.1 0.07
274 1 5 8 4 0.15 5, 95% P2 H2+H4+4LS-RS 5.368 1.43% 2.7 0.05
275 1 5 8 4 0.00 10, 95% P2 H2+H4+LS-RS 5.820 8.33% 1.4 0.02
276 1 5 8 4 0.00 15, 95% P2 H2+H4+4LS-RS 5.820 8.33% 1.1 0.02
277 1 5 8 2 0.15 10, 95% P3 H2+H4+LS-RS 5.511 0.00% 1.2 0.02
278 1 5 8 4 0.15 10, 95% P3 H2+H4+LS-RS 3.426 0.15% 1.2 0.02
279 1 5 8 2 0.00 10, 95% P3 H2+H4+LS-RS 6.502 0.87% 1.5 0.03
280 1 5 8 2 0.15 15, 95% P3 H2+H4+4LS-RS 5.511 0.00% 1.3 0.02
281 1 5 8 2 0.15 5, 95% P3 H2+H44LS-RS 6.308 0.00% 2.3 0.04
282 1 5 8 4 0.15 15, 95% P3 H2+H4+LS-RS 3.421 0.00% 2.1 0.03
283 1 5 8 2 0.00 5, 95% P3 H2+H4+4LS-RS 7.542 1.23% 2.4 0.04
284 1 5 8 2 0.00 15, 95% P3 H2+H4+4LS-RS 6.502 0.87% 1.8 0.03
285 1 5 8 4 0.00 5, 95% P3 H2+H4+4LS-RS 4.973 0.91% 2.2 0.04
286 1 5 8 4 0.15 5, 95% P3 H2+H4+4LS-RS 3.879 0.98% 1.7 0.03
287 1 5 8 4 0.00 10, 95% P3 H2+H4+4LS-RS 4.402 0.00% 1.1 0.02
288 1 5 8 4 0.00 15, 95% P3 H2+H4+4LS-RS 4.402 0.00% 5.0 0.08
280 1 5 8 2 0.15 10, 95% P1 H2+H3+LS-GA 6.007 0.65% 5.0 0.08
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290 1 5 8 4 0.15 10, 95% P1 H2+H3+LS-GA 4.362 0.00% 8.7 0.14
291 1 5 8 2 0.00 10, 95% P1 H2+H3+LS-GA 6.914 0.34% 5.5 0.09
292 1 5 8 2 0.15 15, 95% P1 H2+H3+LS-GA 5.639 0.00% 6.2 0.10
293 1 5 8 2 0.15 5, 95% P1 H2+H3+LS-GA 6.801 3.99% 9.2 0.15
294 1 5 8 4 0.15 15, 95% P1 H2+H3+LS-GA 3.966 0.00% 3.7 0.06
29 1 5 8 2 0.00 5, 95% P1 H2+H3+LS-GA 7.739 2.23% 13.1 0.22
296 1 5 8 2 0.00 15, 95% P1 H2+H3+LS-GA 6.536 0.91% 4.2 0.07
297 1 5 8 4 0.00 5, 95% P1 H2+4+H3+LS-GA 5.752 3.49% 7.1 0.12
298 1 5 8 4 0.15 5, 95% P1 H2+H3+LS-GA 4.663 2.53% 5.1 0.08
299 1 5 8 4 0.00 10, 95% P1 H2+4+H3+LS-GA 4.915 0.00% 5.0 0.08
300 1 5 8 4 0.00 15, 95% P1 H2+H3+LS-GA 4.761 2.04% 4.8 0.08
300 1 5 8 2 0.15 10, 95% P2 H2+H3+LS-GA 6.338 0.16% 4.2 0.07
302 1 5 8 4 0.15 10, 95% P2 H2+H3+LS-GA 4.793 2.68% 3.6 0.06
303 1 5 8 2 0.00 10, 95% P2 H2+H3+LS-GA 6.863 0.96% 4.7 0.08
304 1 5 8 2 0.15 15, 95% P2 H2+H3+LS-GA 6.338 0.16% 4.5 0.07
300 1 5 8 2 0.15 5, 95% P2 H2+H3+LS-GA 7.105 4.99% 8.1 0.14
306 1 5 8 4 0.15 15, 95% P2 H2+H3+LS-GA 4.793 2.65% 3.9 0.07
307 1 5 8 2 0.00 5, 95% P2 H2+H3+LS-GA 7.789 1.25% 7.0 0.12
308 1 5 8 2 0.00 15, 95% P2 H2+H3+LS-GA 6.863 0.96% 4.5 0.07
309 1 5 8 4 0.00 5, 95% P2 H2+H3+LS-GA 6.404 2.42% 8.9 0.15
310 1 5 8 4 0.15 5, 95% P2 H2+H3+LS-GA 5.368 1.43% 6.3 0.10
311 1 5 8 4 0.00 10, 95% P2 H2+H3+LS-GA 5.455 1.54% 6.4 0.11
312 1 5 8 4 0.00 15, 95% P2 H2+H3+LS-GA 5.455 1.54% 6.3 0.10
313 1 5 8 2 0.15 10, 95% P3 H2+H3+LS-GA 5.511 0.00% 5.3 0.09
314 1 5 8 4 0.15 10, 95% P3 H2+H3+4+LS-GA 3.421 0.00% 9.2 0.15
315 1 5 8 2 0.00 10, 95% P3 H2+H3+LS-GA 6.509 0.98% 68.3 1.14
3166 1 5 8 2 0.15 15, 95% P3 H2+H3+LS-GA 5.511 0.00% 5.3 0.09
317 1 5 8 2 0.15 5, 95% P3 H2+H3+LS-GA 6.308 0.00% 12.3 0.21
318 15 8 4 0.15 15, 95% P3 H2+H3+LS-GA 3.421 0.00% 7.1 0.12
3199 1 5 8 2 0.00 5, 95% P3 H2+H3+LS-GA 7.542 1.23% 36.2 0.60
320 1 5 8 2 0.00 15, 95% P3 H2+H3+LS-GA 6.502 0.87% 56.0 0.93
3211 5 8 4 0.00 5, 95% P3 H2+H3+4+LS-GA 4.973 0.91% 10.6 0.18
322 1 5 8 4 0.15 5, 95% P3 H2+H3+LS-GA 3.872 0.80% 7.0 0.12
323 1 5 8 4 0.00 10, 95% P3 H2+H3+LS-GA 4.402 0.00% 7.9 0.13
324 1 5 8 4 0.00 15, 95% P3 H2+H3+LS-GA 4.402 0.00% 7.3 0.12
3261 5 8 2 0.15 10, 95% P1 H2+H4+LS-GA 6.007 0.65% 6.1 0.10
326 1 5 8 4 0.15 10, 95% P1 H2+H4+LS-GA 4.362 0.00% 5.7 0.10
327 1 5 8 2 0.00 10, 95% P1 H2+H4+LS-GA 6.914 0.34% 19.2 0.32
328 1 5 8 2 0.15 15, 95% P1 H2+H4+4+LS-GA 5.639 0.00% 3.7 0.06
329 1 5 8 2 0.15 5, 95% P1 H2+H4+4LS-GA 6.801 3.99% 6.1 0.10
330 1 5 8 4 0.15 15, 95% P1 H2+H4+LS-GA 3.966 0.00% 3.6 0.06
331 1 5 8 2 0.00 5, 95% P1 H2+H4+LS-GA 8.243 8.88% 62.4 1.04
332 1 5 8 2 0.00 15, 95% P1 H2+H4+LS-GA 6.536 0.91% 6.7 0.11
333 1 5 8 4 0.00 5, 95% P1 H2+H4+LS-GA 5.752 3.49% 6.6 0.11
334 1 5 8 4 0.15 5, 95% P1 H2+H4+LS-GA 4.663 2.53% 5.3 0.09
335 1 5 8 4 0.00 10, 95% P1 H2+H4+LS-GA 4.915 0.00% 4.9 0.08
336 1 5 8 4 0.00 15, 95% P1 H2+H4+LS-GA 4.761 2.04% 26.3 0.44
337 1 5 8 2 0.15 10, 95% P2 H2+H4+LS-GA 6.538 3.31% 7.5 0.13
338 1 5 8 4 0.15 10, 95% P2 H2+H4+LS-GA 4.941 5.85% 39.9 0.66
339 1 5 8 2 0.00 10, 95% P2 H2+H4+LS-GA 7.323 7.73% 4.8 0.08
340 1 5 8 2 0.15 15, 95% P2 H2+H4+LS-GA 6.338 0.16% 27.0 0.45
341 1 5 8 2 0.15 5, 95% P2 H2+H4+LS-GA 7.105 4.99% 9.7 0.16
342 1 5 8 4 0.15 15, 95% P2 H2+H4+LS-GA 4.940 5.80% 94.9 1.58
343 1 5 8 2 0.00 5, 95% P2 H2+H4+LS-GA 7.789 1.25% 7.2 0.12
344 1 5 8 2 0.00 15, 95% P2 H2+H4+LS-GA 7.323 7.73% 4.5 0.08
345 1 5 8 4 0.00 5, 95% P2 H2+H4+LS-GA 6.405 2.42% 15.5 0.26
346 1 5 8 4 0.15 5, 95% P2 H2+H4+LS-GA 5.368 1.43% 9.0 0.15
347 1 5 8 4 0.00 10, 95% P2 H2+H4+LS-GA 5.820 8.33% 440.8 7.35
348 1 5 8 4 0.00 15, 95% P2 H2+H4+LS-GA 5.455 1.54% 379.6 6.33
349 1 5 8 2 0.15 10, 95% P3 H2+H4+LS-GA 5.511 0.00% 7.8 0.13
350 1 5 8 4 0.15 10, 95% P3 H2+H4+LS-GA 3.421 0.00% 13.8 0.23
351 1 5 8 2 0.00 10, 95% P3 H2+H4+LS-GA 6.509 0.98% 20.1 0.34
352 1 5 8 2 0.15 15, 95% P3 H2+H4+LS-GA 5.511 0.00% 17.6 0.29
353 1 5 8 2 0.15 5, 95% P3 H2+H4+LS-GA 6.308 0.00% 16.1 0.27
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334 1 5 8 4 0.15 15,95%  P3 H2+H4+LS-GA 3.421 0.00% 4.9 0.08
355 1 5 8 2 0.00 5, 95% P3 H2+H4+LS-GA 7.542 1.23% 10.1 0.17
3%6 1 5 8 2 0.00 15, 95% P3 H2+H4+LS-GA 6.509 0.98% 32.5 0.54
3%7 1 5 8 4 0.00 5 95%  P3 H2+H4+LS-GA 4.972 0.91% 9.6 0.16
358 1 5 8 4 0.15 5, 95% P3 H2+H4+LS-GA 3.873 0.80% 17.7 0.29
359 1 5 8 4 0.00 10, 95% P3 H2+H4+LS-GA 4.402 0.00% 8.7 0.15
360 1 5 8 4 0.00 15,95%  P3 H2+H4+LS-GA 4.402 0.00% 10.2 0.17
361 1 5 8 2 0.15 10, 95% P1 H2+H3+LS-KK 6.824 14.33% 1.2 0.02
362 1 5 8 4 0.15 10, 95% P1 H2+H3+LS-KK 4.362 0.00% 0.8 0.01
363 1 5 8 2 0.00 10, 95% P1 H2+H3+LS-KK 7.380 7.12% 14 0.02
364 1 5 8 2 0.15 15, 95% P1 H2+H3+LS-KK 6.492 15.13% 1.0 0.02
365 1 5 8 2 0.15 5, 95% P1 H2+H3+LS-KK 6.894 5.41% 3.2 0.05
366 1 5 8 4 0.15 15,95%  P1 H2+H3+LS-KK 3.966 0.00% 1.1 0.02
367 1 5 8 2 0.00 5, 95% P1 H2+H3+LS-KK 7.791 2.92% 4.9 0.08
368 1 5 8 2 0.00 15, 95% P1 H2+H3+LS-KK 7.380 13.94% 1.9 0.03
369 1 5 8 4 0.00 5, 95% P1 H2+H3+LS-KK 5.752 3.49% 3.9 0.07
370 1 5 8 4 0.15 5, 95% P1 H2+H3+LS-KK 4.663 2.53% 2.7 0.04
371 1 5 8 4 0.00 10, 95% P1 H2+H3+LS-KK 4.915 0.00% 2.8 0.05
372 1 5 8 4 0.00 15, 95%  P1 H2+H3+LS-KK 4.761 2.04% 1.2 0.02
373 1 5 8 2 0.15 10, 95% P2 H2+H3+LS-KK 6.880 8.72% 1.5 0.02
374 1 5 8 4 0.15 10, 95% P2 H2+H3+LS-KK 4.793 2.68% 0.9 0.01
37% 1 5 8 2 0.00 10, 95% P2 H2+H3+LS-KK 7.495 10.27% 14 0.02
376 1 5 8 2 0.15 15, 95% P2 H2+H3+LS-KK 6.880 8.72% 1.3 0.02
377 1 5 8 2 0.15 5, 95% P2 H2+H3+LS-KK 7.307 7.98% 4.0 0.07
378 1 5 8 4 0.15 15, 95% P2 H2+H3+LS-KK 4.793 2.65% 0.8 0.01
379 1 5 8 2 0.00 5, 95% P2 H2+H3+LS-KK 8.334 8.35% 3.5 0.06
380 1 5 8 2 0.00 15, 95% P2 H2+H3+LS-KK 7.495 10.27% 1.2 0.02
381 1 5 8 4 0.00 5,95% P2 H2+H3+LS-KK 6.404 2.42% 3.5 0.06
382 1 5 8 4 0.15 5, 95% P2 H2+H3+LS-KK 5.368 1.43% 2.3 0.04
383 1 5 8 4 0.00 10, 95% P2 H2+H3+4+LS-KK 5.455 1.54% 1.0 0.02
384 1 5 8 4 0.00 15, 95% P2 H2+H3+LS-KK 5.455 1.54% 1.0 0.02
38 1 5 8 2 0.15 10, 95% P3 H2+H3+LS-KK 5.511 0.00% 0.8 0.01
38 1 5 8 4 0.15 10, 95% P3 H2+H3+LS-KK 3.421 0.00% 0.6 0.01
387 1 5 8 2 0.00 10, 95% P3 H2+H3+LS-KK 6.502 0.87% 1.2 0.02
388 1 5 8 2 0.15 15, 95% P3 H2+H3+LS-KK 5.511 0.00% 0.8 0.01
339 1 5 8 2 0.15 5, 95% P3 H2+H3+LS-KK 6.308 0.00% 2.7 0.05
390 1 5 8 4 0.15 15, 95% P3 H2+H3+LS-KK 3.421 0.00% 0.6 0.01
391 1 5 8 2 0.00 5, 95% P3 H2+H3+LS-KK 7.542 1.23% 2.9 0.05
392 1 5 8 2 0.00 15,95%  P3 H2+H3+LS-KK 6.502 0.87% 1.1 0.02
393 1 5 8 4 0.00 5, 95% P3 H2+H3+LS-KK 4.972 0.91% 2.2 0.04
394 1 5 8 4 0.15 5, 95% P3 H2+H3+LS-KK 3.872 0.80% 1.5 0.02
395 1 5 8 4 0.0 10, 95%  P3 H2+H3+LS-KK 4.402 0.00% 1.0 0.02
396 1 5 8 4 0.00 15, 95% P3 H2+H3+LS-KK 4.402 0.00% 0.9 0.02
397 1 5 8 2 0.15 10, 95% P1 H14+H3+4LS-CC+LS-RS 5.969 0.00% 43.9 0.73
398 1 5 8 4 0.15 10, 95% P1 H14+H3+4LS-CC+LS-RS 4.362 0.00% 46.8 0.78
399 1 5 8 2 0.00 10, 95% P1 H1+H3+LS-CC+LS-RS 6.892 0.02% 63.3 1.05
400 1 5 8 2 0.15 15, 95% P1 H14+H3+4LS-CC+LS-RS 5.639 0.00% 38.3 0.64
4001 1 5 8 2 0.15 5, 95% P1 H1+H3+LS-CC+LS-RS 6.591 0.79% 63.4 1.06
402 1 5 8 4 0.15 15,95% P1 H1+H3+LS-CC+LS-RS 4.191 5.70% 39.4 0.66
403 1 5 8 2 0.00 5, 95% P1 H14+H3+4LS-CC+LS-RS 7.575 0.06% 84.2 1.40
404 1 5 8 2 0.00 15, 95% P1 H1+H3+LS-CC+LS-RS 6.477 0.00% 51.2 0.85
405 1 5 8 4 0.00 5, 95% P1 H14+H3+4LS-CC+LS-RS 5.567 0.16% 60.0 1.00
406 1 5 8 4 0.15 5, 95% P1 H14+H3+4LS-CC+LS-RS 4.548 0.00% 56.3 0.94
407 1 5 8 4 0.00 10, 95% P1 H1+H3+LS-CC+LS-RS 4.915 0.00% 424 0.71
408 1 5 8 4 0.00 15, 95% P1 H1+H3+4LS-CC+LS-RS 4.761 2.04% 48.0 0.80
409 1 5 8 2 0.15 10, 95% P2 H1+H3+4LS-CC+LS-RS 6.328 0.00% 28.4 0.47
410 1 5 8 4 0.15 10, 95% P2 H1+H3+LS-CC+LS-RS 4.669 0.02% 26.0 0.43
411 1 5 8 2 0.00 10, 95% P2 H1+H3+LS-CC+LS-RS 6.797 0.00% 25.8 0.43
412 1 5 8 2 0.15 15, 95% P2 H1+H3+4LS-CC+LS-RS 6.328 0.00% 27.7 0.46
413 1 5 8 2 0.15 5,95% P2 H1+H3+LS-CC+LS-RS 7.105 4.99% 43.8 0.73
414 1 5 8 4 0.15 15, 95% P2 H1+H3+LS-CC+LS-RS 4.669 0.00% 21.2 0.35
415 1 5 8 2 0.00 5, 95% P2 H1+H3+4LS-CC+LS-RS 7.788 1.25% 39.9 0.66
416 1 5 8 2 0.00 15,95% P2 H1+H3+LS-CC+LS-RS 6.798 0.00% 26.8 0.45
417 1 5 8 4 0.00 5, 95% P2 H1+H3+4LS-CC+LS-RS 6.253 0.00% 51.8 0.86
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418 1 5 8 4 0.15 5, 95% P2 H1+H3+LS-CC+LS-RS 5.292 0.00% 34.7 0.58
419 1 5 8 4 0.00 10, 95% P2 H1+H3+LS-CC+LS-RS 5.373 0.00% 44.3 0.74
420 1 5 8 4 0.00 15, 95% P2 H1+H3+4+LS-CC+LS-RS 5.373 0.00% 27.8 0.46
421 1 5 8 2 0.15 10, 95% P3 H1+H3+LS-CC+LS-RS 5.540 0.53% 57.7 0.96
422 1 5 8 4 0.15 10, 95% P3  H1+H3+LS-CC+LS-RS 3.421 0.00% 60.7 1.01
423 1 5 8 2 0.00 10, 95% P3 H1+H3+LS-CC+LS-RS 6.483 0.58% 61.3 1.02
424 1 5 8 2 0.15 15, 95% P3  H1+H3+LS-CC+LS-RS 5.540 0.53% 56.1 0.93
425 1 5 8 2 0.15 5, 95% P3 H1+H3+LS-CC+LS-RS 6.308 0.00% 76.2 1.27
426 1 5 8 4 0.15 15, 95% P3 H1+H3+LS-CC+LS-RS 3.440 0.57% 38.5 0.64
427 1 5 8 2 0.00 5, 95% P3 H1+H3+LS-CC+LS-RS 7.450 0.00% 79.1 1.32
428 1 5 8 2 0.00 15, 95% P3 H1+H3+LS-CC+LS-RS 6.484 0.58% 86.4 1.44
429 1 5 8 4 0.00 5, 95% P3 H1+H3+LS-CC+LS-RS 5.156 4.64% 108.3 1.81
430 1 5 8 4 0.15 5, 95% P3 H1+H3+LS-CC+LS-RS 3.872 0.80% 44.3 0.74
431 1 5 8 4 0.00 10, 95% P3 H1+H3+LS-CC+LS-RS 4.402 0.00% 59.2 0.99
432 1 5 8 4 0.00 15, 95% P3 H1+H3+LS-CC+LS-RS 4.402 0.00% 61.4 1.02
433 1 5 8 2 0.15 10, 95% P1  H1+H4+LS-CC+LS-RS 5.969 0.00% 38.9 0.65
434 1 5 8 4 0.15 10, 95% P1  H14+H4+LS-CC+LS-RS 4.452 2.08% 37.5 0.62
435 1 5 8 2 0.00 10, 95% P1 H1+H4+LS-CC+LS-RS 6.890 0.00% 82.7 1.38
436 1 5 8 2 0.15 15, 95% P1  H14+H4+LS-CC+H+LS-RS 5.639 0.00% 39.4 0.66
437 1 5 8 2 0.15 5, 95% P1 H1+H4+LS-CC+LS-RS 6.592 0.79% 62.4 1.04
438 1 5 8 4 0.15 15, 95% P1  H14+H4+LS-CC+LS-RS 4.191 5.70% 50.1 0.84
439 1 5 8 2 0.00 5, 95% P1  H1+H4+4LS-CC+LS-RS 7.570 0.00% 97.9 1.63
440 1 5 8 2 0.00 15, 95% P1  H14+H4+LS-CC+LS-RS 6.478 0.02% 47.8 0.80
441 1 5 8 4 0.00 5, 95% P1 H1+H4+4LS-CC+LS-RS 5.567 0.16% 61.1 1.02
442 1 5 8 4 0.15 5, 95% P1 H1+H4+LS-CC+LS-RS 4.548 0.00% 45.9 0.76
443 1 5 8 4 0.00 10, 95% P1  H1+H4+LS-CC+LS-RS 4.915 0.00% 48.0 0.80
444 1 5 8 4 0.00 15, 95% P1 H1+H4+LS-CC+LS-RS 4.761 2.04% 40.0 0.67
445 1 5 8 2 0.15 10, 95% P2 H1+H4+LS-CC+LS-RS 6.538 3.31% 39.8 0.66
446 1 5 8 4 0.15 10, 95% P2 H1+H4+LS-CC+LS-RS 5.014 7.42% 26.8 0.45
47 1 5 8 2 0.00 10, 95% P2 H14+H4+LS-CC+LS-RS 7.317 7.64% 29.9 0.50
448 1 5 8 2 0.15 15, 95% P2 H1+H4+LS-CC+LS-RS 6.538 3.31% 26.0 0.43
449 1 5 8 2 0.15 5, 95% P2 H14+H4+LS-CC+LS-RS 7.105 4.99% 31.6 0.53
450 1 5 8 4 0.15 15, 95% P2 H1+H4+LS-CC+LS-RS 4.827 3.38% 24.4 0.41
451 1 5 8 2 0.00 5, 95% P2 H1+H4+LS-CC+LS-RS 7.789 1.25% 36.9 0.61
452 1 5 8 2 0.00 15, 95% P2 H1+H4+LS-CC+LS-RS 7.317 7.64% 31.8 0.53
453 1 5 8 4 0.00 5, 95% P2 H14+H4+LS-CC+LS-RS 6.253 0.00% 33.2 0.55
454 1 5 8 4 0.15 5, 95% P2 H1+H4+LS-CC+LS-RS 5.368 1.43% 26.1 0.43
455 1 5 8 4 0.00 10, 95% P2 H1+H4+LS-CC+LS-RS 5.553 3.36% 31.5 0.53
456 1 5 8 4 0.00 15, 95% P2 H1+H4+LS-CC+LS-RS 5.609 4.40% 26.6 0.44
457 1 5 8 2 0.15 10, 95% P3 H1+H4+LS-CC+H+LS-RS 5.540 0.53% 60.7 1.01
458 1 5 8 4 0.15 10, 95% P3 H1+H4+LS-CC+LS-RS 3.421 0.00% 36.6 0.61
459 1 5 8 2 0.00 10, 95% P3 H14+H4+LS-CC+LS-RS 6.484 0.58% 71.0 1.18
460 1 5 8 2 0.15 15, 95% P3 H1+H4+LS-CC+LS-RS 5.540 0.53% 38.6 0.64
461 1 5 8 2 0.15 5,95% P3 H1+H4+LS-CC+LS-RS 6.308 0.00% 68.9 1.15
462 1 5 8 4 0.15 15, 95% P3 H1+H4+LS-CC+LS-RS 3.421 0.00% 52.2 0.87
463 1 5 8 2 0.00 5,95% P3 H1+H4+LS-CC+LS-RS 7.450 0.00% 83.5 1.39
464 1 5 8 2 0.00 15, 95% P3  H1+H4+LS-CC+LS-RS 6.484 0.58% 76.3 1.27
465 1 5 8 4 0.00 5, 95% P3 H1+H4+LS-CC+LS-RS 4.957 0.59% 70.0 1.17
466 1 5 8 4 0.15 5, 95% P3 H1+H4+LS-CC+LS-RS 3.881 1.01% 47.4 0.79
467 1 5 8 4 0.00 10, 95% P3 H1+H4+LS-CC+LS-RS 4.402 0.00% 55.4 0.92
468 1 5 8 4 0.00 15, 95% P3  H1+H4+LS-CC+LS-RS 4.402 0.00% 70.5 1.17
469 1 5 8 2 0.15 10, 95% P1 H1+H3+LS-CC+LS-GA 5.969 0.00% 180.5 3.01
470 1 5 8 4 0.15 10, 95% P1 H1+4+H3+LS-CC+LS-GA 4.362 0.00% 72.4 1.21
471 1 5 8 2 0.00 10, 95% P1 H1+H3+LS-CC+LS-GA 6.890 0.00% 165.5 2.76
472 1 5 8 2 0.15 15, 95% P1 H14+H3+LS-CC+LS-GA 5.639 0.00% 123.7 2.06
473 1 5 8 2 0.15 5, 95% P1 H1+H3+LS-CC+LS-GA 6.591 0.79% 112.3 1.87
471 1 5 8 4 0.15 15, 95% P1 H14+H3+LS-CC+LS-GA 3.966 0.00% 93.1 1.55
47% 1 5 8 2 0.00 5, 95% P1 H1+H3+LS-CC+LS-GA 7.570 0.00% 222.8 3.71
4% 1 5 8 2 0.00 15, 95% P1 H1+H3+LS-CC+LS-GA 6.477 0.00% 107.9 1.80
477 1 5 8 4 0.00 5, 95% P1 H1+4+H3+LS-CC+LS-GA 5.567 0.16% 153.7 2.56
47 1 5 8 4 0.15 5, 95% P1 H1+H3+LS-CC+LS-GA 4.548 0.00% 236.4 3.94
479 1 5 8 4 0.00 10, 95% P1 H1+4+H3+LS-CC+LS-GA 4.915 0.00% 99.9 1.67
480 1 5 8 4 0.00 15, 95% P1 H1+H3+LS-CC+LS-GA 4.761 2.04% 107.9 1.80
481 1 5 8 2 0.15 10, 95% P2 H14+H3+LS-CC+LS-GA 6.328 0.00% 70.6 1.18
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482 1 5 8 4 0.15 10, 95% P2 H1+H3+4+LS-CC+LS-GA 4.669 0.02% 121.5 2.02
483 1 5 8 2 0.00 10, 95% P2 H1+H3+4LS-CC+LS-GA 6.798 0.00% 75.2 1.25
48 1 5 8 2 0.15 15, 95% P2 H14+H34LS-CC+LS-GA 6.328 0.00% 73.2 1.22
48 1 5 8 2 0.15 5, 95% P2 H1+4+H34LS-CC+LS-GA 7.105 4.99% 102.5 1.71
48 1 5 8 4 0.15 15, 95% P2 H14+H3+4LS-CC+LS-GA 4.669 0.00% 86.0 1.43
487 1 5 8 2 0.00 5, 95% P2 H14+H34LS-CC+LS-GA 7.788 1.25% 83.9 1.40
48 1 5 8 2 0.00 15, 95% P2 H1+H3+LS-CC+LS-GA 6.798 0.00% 73.8 1.23
489 1 5 8 4 0.00 5, 95% P2 HI1+H3+LS-CC+LS-GA 6.253 0.00% 117.0 1.95
490 1 5 8 4 0.15 5, 95% P2 H1+H3+LS-CC+LS-GA 5.292 0.00% 95.5 1.59
491 1 5 8 4 0.00 10, 95% P2 H14+H3+LS-CC+LS-GA 5.373 0.00% 129.0 2.15
492 1 5 8 4 0.00 15, 95% P2 H1+H3+LS-CC+LS-GA 5.373 0.00% 89.4 1.49
4993 1 5 8 2 0.15 10, 95%  P3 H14+H3+4LS-CC+LS-GA 5.511 0.00% 522.7 8.71
494 1 5 8 4 0.15 10, 95% P3 H1+H3+4LS-CC+LS-GA 3.421 0.00% 288.6 4.81
495 1 5 8 2 0.00 10, 95% P3 H1+H3+4LS-CC+LS-GA 6.484 0.58% 490.3 8.17
496 1 5 8 2 0.15 15, 95% P3 H14+H34LS-CC+LS-GA 5.511 0.00% 447.5 7.46
497 1 5 8 2 0.15 5, 95% P3 H1+H3+4LS-CC+LS-GA 6.308 0.00% 644.1 10.74
498 1 5 8 4 0.15 15, 95% P3 H1+H3+LS-CC+LS-GA 3.421 0.00% 195.4 3.26
499 1 5 8 2 0.00 5, 95% P3 H1+H3+4+LS-CC+LS-GA 7.450 0.00% 442.2 7.37
500 1 5 8 2 0.00 15, 95% P3 H1+H3+LS-CC+LS-GA 6.484 0.58% 297.0 4.95
501 1 5 8 4 0.00 5, 95% P3 H1+H3+4LS-CC+LS-GA 4.955 0.56% 354.9 5.91
52 1 5 8 4 0.15 5,95% P3 HI1+H3+4LS-CC+LS-GA 3.872 0.80% 246.2 4.10
503 1 5 8 4 0.00 10, 95% P3 H1+H34LS-CC+LS-GA 4.402 0.00% 408.8 6.81
504 1 5 8 4 0.00 15, 95% P3 H14+H34+LS-CC+LS-GA 4.402 0.00% 1766.7 29.45
506 1 5 8 2 0.15 10, 95% P1 H1+H4+4LS-CC+LS-GA 5.969 0.00% 340.4 5.67
506 1 5 8 4 0.15 10, 95% P1 H14+H4+LS-CC+LS-GA 4.362 0.00% 82.7 1.38
507 1 5 8 2 0.00 10, 95% P1 H14+H4+LS-CC+LS-GA 6.890 0.00% 197.0 3.28
508 1 5 8 2 0.15 15,95% P1 H14+H4+4LS-CC+LS-GA 5.639 0.00% 73.6 1.23
509 1 5 8 2 015 5, 95% P1 H14+H4+LS-CC+LS-GA 6.591 0.79% 114.6 1.91
510 1 5 8 4 0.15 15, 95% P1 H14+H4+4LS-CC+LS-GA 4.191 5.70% 254.1 4.23
511 1 5 8 2 0.00 5, 95% P1 H14+H4+LS-CC+LS-GA 7.570 0.00% 755.7 12.59
512 1 5 8 2 0.00 15, 95% P1 H14+H4+4LS-CC+LS-GA 6.477 0.00% 309.6 5.16
513 1 5 8 4 0.00 5, 95% P1 H1+H4+LS-CC+LS-GA 5.567 0.16% 177.6 2.96
514 1 5 8 4 0.15 5, 95% P1 H1+H4+LS-CC+LS-GA 4.548 0.00% 123.9 2.06
515, 1 5 8 4 0.00 10, 95% P1 H14+H4+LS-CC+LS-GA 4.915 0.00% 153.0 2.55
516 1 5 8 4 0.00 15, 95% P1 H14+H4+LS-CC+LS-GA 4.761 2.04% 109.5 1.83
517 1 5 8 2 0.15 10, 95% P2 H14+H4+4LS-CC+LS-GA 6.338 0.16% 714.0 11.90
518 1 5 8 4 0.15 10, 95% P2 H1+4+H4+4LS-CC+LS-GA 4.871 4.36% 745.3 12.42
519 1 5 8 2 0.00 10, 95% P2 H14+H44LS-CC+LS-GA 7.081 4.17% 1144.8 19.08
520 1 5 8 2 0.15 15, 95% P2 H1+4+H44LS-CC+LS-GA 6.338 0.16% 870.5 14.51
521 1 5 8 2 0.15 5, 95% P2 H1+H4+4LS-CC+LS-GA 7.105 4.99% 84.8 1.41
522 1 5 8 4 015 15, 95% P2 H14+H4+LS-CC+LS-GA 4.690 0.46% 90.7 1.51
523 1 5 8 2 0.00 5, 95% P2 H1+H4+4LS-CC+LS-GA 7.789 1.25% 74.9 1.25
524 1 5 8 2 0.00 15, 95% P2 H1+H4+LS-CC+LS-GA 7.081 4.17% 3439.9 57.33
525 1 5 8 4 0.00 5, 95% P2 H1+H4+LS-CC+LS-GA 6.253 0.00% 126.0 2.10
526 1 5 8 4 0.15 5, 95% P2 HI1+H4+4LS-CC+LS-GA 5.368 1.43% 394.3 6.57
527 1 5 8 4 0.00 10, 95% P2 H14+H4+LS-CC+LS-GA 5.373 0.00% 363.3 6.05
52801 5 8 4 0.00 15,95% P2 H14+H4+4LS-CC+LS-GA 5.373 0.00% 1203.5 20.06
529 1 5 8 2 0.15 10, 95% P3 H1+H4+LS-CC+LS-GA 5.511 0.00% 1471.2 24.52
50 1 5 8 4 0.15 10, 95% P3 H14+H4+4LS-CC+LS-GA 3.421 0.00% 322.1 5.37
531 1 5 8 2 0.00 10, 95% P3 H14+H4+LS-CC+LS-GA 6.483 0.58% 273.0 4.55
532 1 5 8 2 0.15 15, 95% P3 H1+H4+4LS-CC+LS-GA 5.511 0.00% 878.6 14.64
533 1 5 8 2 0.15 5, 95% P3 H14+H4+LS-CC+LS-GA 6.308 0.00% 995.6 16.59
534 1 5 8 4 0.15 15, 95% P3 H1+H4+4LS-CC+LS-GA 3.421 0.00% 365.6 6.09
53 1 5 8 2 0.00 5, 95% P3 H1+H4+LS-CC+LS-GA 7.450 0.00% 505.0 8.42
536 1 5 8 2 0.00 15, 95% P3 H14+H4+LS-CC+LS-GA 6.484 0.58% 324.0 5.40
537 1 5 8 4 0.00 5, 95% P3 H14+H4+LS-CC+LS-GA 5.156 4.63% 453.5 7.56
538 1 5 8 4 0.15 5, 95% P3 H14+H4+LS-CC+LS-GA 3.872 0.80% 249.8 4.16
539 1 5 8 4 0.00 10, 95% P3 H14+H44LS-CC+LS-GA 4.402 0.00% 385.1 6.42
540 1 5 8 4 0.00 15, 95% P3 H14+H4+LS-CC+LS-GA 4.402 0.00% 353.9 5.90
541 1 5 8 2 0.15 10, 95% P1 H1+H3+LS-CC+LS-KK 6.168 3.33% 39.3 0.65
542 1 5 8 4 0.15 10, 95% P1 H1+H3+LS-CC+LS-KK 4.362 0.00% 40.7 0.68
543 1 5 8 2 0.00 10, 95% P1 H1+H3+LS-CC+LS-KK 6.997 1.55% 53.1 0.88
54 1 5 8 2 0.15 15, 95% P1 H1+H3+LS-CC+LS-KK 5.995 6.32% 36.7 0.61
55 1 5 8 2 0.15 5, 95% P1 H1+H3+LS-CC+LS-KK 6.763 3.41% 65.7 1.09
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56 1 5 8 4 0.15 15, 95% P1 H1+H3+LS-CC+LS-KK 3.966 0.00% 27.7 0.46
547 1 5 8 2 0.00 5, 95% P1 H14+H3+LS-CC+LS-KK 7.712 1.87% 83.8 1.40
58 1 5 8 2 0.00 15, 95% P1 H1+H3+LS-CC+LS-KK 6.621 2.22% 51.6 0.86
59 1 5 8 4 0.00 5,95% Pl H14+H3+LS-CC+LS-KK 5.567 0.16% 58.2 0.97
50 1 5 8 4 0.15 5, 95% P1 H1+H3+LS-CC+LS-KK 4.548 0.00% 56.3 0.94
51 1 5 8 4 0.00 10, 95% P1 H1+H3+LS-CC+LS-KK 4.915 0.00% 40.3 0.67
552 1 5 8 4 0.00 15, 95% P1 H1+H3+LS-CC+LS-KK 4.761 2.04% 36.6 0.61
53 1 5 8 2 0.15 10, 95% P2 H1+H3+LS-CC+LS-KK 6.544 3.41% 25.3 0.42
554 1 5 8 4 0.15 10, 95% P2 H14+H3+4+LS-CC+LS-KK 4.669 0.02% 22.8 0.38
55 1 5 8 2 0.00 10, 95% P2 H1+H3+LS-CC+LS-KK 7.474 9.95% 35.8 0.60
56 1 5 8 2 0.15 15, 95% P2 H14+H3+LS-CC+LS-KK 6.544 3.41% 24.1 0.40
57 1 5 8 2 0.15 5, 95% P2 H1+H3+LS-CC+LS-KK 7.307 7.98% 36.4 0.61
58 1 5 8 4 0.15 15, 95% P2 H14+H3+LS-CC+LS-KK 4.669 0.00% 22.3 0.37
59 1 5 8 2 0.00 5, 95% P2 H1+H3+LS-CC+LS-KK 8.315 8.09% 46.7 0.78
560 1 5 8 2 0.00 15, 95% P2 H1+H3+LS-CC+LS-KK 7.474 9.95% 374 0.62
561 1 5 8 4 0.00 5, 95% P2 H1+H3+LS-CC+LS-KK 6.253 0.00% 43.1 0.72
562 1 5 8 4 0.15 5, 95% P2 H1+H3+LS-CC+LS-KK 5.292 0.00% 34.0 0.57
563 1 5 8 4 0.00 10, 95% P2 H1+H3+LS-CC+LS-KK 5.373 0.00% 27.3 0.45
564 1 5 8 4 0.00 15, 95% P2 H1+H3+LS-CC+LS-KK 5.373 0.00% 25.7 0.43
565 1 5 8 2 0.15 10, 95% P3 H1+H3+LS-CC+LS-KK 5.511 0.00% 39.2 0.65
566 1 5 8 4 0.15 10, 95% P3 H1+H3+LS-CC+LS-KK 3.421 0.00% 32.3 0.54
567 1 5 8 2 0.00 10, 95% P3 H1+H3+LS-CCH+LS-KK 6.483 0.58% 48.4 0.81
568 1 5 8 2 0.15 15, 95% P3 H1+H3+LS-CC+LS-KK 5.511 0.00% 41.7 0.70
59 1 5 8 2 0.15 5,95% P3 H1+H3+LS-CC+LS-KK 6.312 0.06% 55.7 0.93
570 1 5 8 4 0.15 15, 95% P3 H1+H3+LS-CC+LS-KK 3.421 0.00% 27.5 0.46
571 1 5 8 2 0.00 5, 95% P3 H1+H3+LS-CC+LS-KK 7.450 0.00% 71.5 1.19
572 1 5 8 2 0.00 15, 95% P3 H1+H3+LS-CC+LS-KK 6.483 0.58% 48.1 0.80
573 1 5 8 4 0.00 5, 95% P3 H1+H3+LS-CC+LS-KK 4.955 0.55% 58.1 0.97
574 1 5 8 4 0.15 5, 95% P3 H14+H3+4+LS-CC+LS-KK 3.872 0.80% 40.2 0.67
57% 1 5 8 4 0.00 10, 95% P3 H1+H3+LS-CC+LS-KK 4.402 0.00% 44.8 0.75
576 1 5 8 4 0.00 15, 95% P3 H1+H3+LS-CCH+LS-KK 4.402 0.00% 42.5 0.71
577 1 5 8 2 0.15 10, 95% P1 H2+4+H3+LS-CC+LS-RS 5.969 0.00% 53.7 0.89
57 1 5 8 4 0.15 10, 95% P1 H2+4+H3+LS-CC+LS-RS 4.362 0.00% 39.9 0.67
579 1 5 8 2 0.00 10, 95% P1 H2+4+H3+LS-CC+LS-RS 6.892 0.02% 63.5 1.06
580 1 5 8 2 0.15 15, 95% P1  H24+H3+LS-CC+LS-RS 5.639 0.00% 34.9 0.58
581 1 5 8 2 0.15 5, 95% P1 H2+4+H3+LS-CC+LS-RS 6.591 0.79% 57.3 0.96
582 1 5 8 4 0.15 15, 95% P1  H2+H3+4LS-CC+LS-RS 4.191 5.70% 41.7 0.69
583 1 5 8 2 0.00 5, 95% P1 H2+4+H3+LS-CC+LS-RS 7.633 0.83% 90.2 1.50
584 1 5 8 2 0.00 15,95% P1 H24+H3+LS-CC+LS-RS 6.478 0.02% 52.7 0.88
585 1 5 8 4 0.00 5, 95% P1 H2+4+H3+LS-CC+LS-RS 5.567 0.16% 67.8 1.13
586 1 5 8 4 0.15 5, 95% P1 H2+4+H3+LS-CC+LS-RS 4.548 0.00% 51.8 0.86
587 1 5 8 4 0.00 10, 95% P1 H2+4+H3+LS-CC+LS-RS 4.915 0.00% 45.3 0.76
588 1 5 8 4 0.00 15, 95% P1 H2+4+H3+LS-CC+LS-RS 4.761 2.04% 39.6 0.66
589 1 5 8 2 0.15 10, 95% P2 H2+4+H3+LS-CC+LS-RS 6.338 0.16% 31.4 0.52
50 1 5 8 4 0.15 10, 95% P2 H2+4+H3+LS-CC+LS-RS 4.871 4.36% 29.3 0.49
591 1 5 8 2 0.00 10, 95% P2 H2+H3+LS-CC+LS-RS 6.863 0.96% 26.8 0.45
52 1 5 8 2 0.15 15, 95% P2 H2+4+H3+LS-CC+LS-RS 6.338 0.16% 29.5 0.49
593 1 5 8 2 015 5, 95% P2 H2+H3+4LS-CC+LS-RS 7.105 4.99% 64.0 1.07
54 1 5 8 4 0.15 15, 95% P2 H2+4+H3+LS-CC+LS-RS 4.669 0.00% 29.9 0.50
55 1 5 8 2 0.00 5, 95% P2 H2+H3+LS-CC+LS-RS 7.788 1.25% 37.6 0.63
56 1 5 8 2 0.00 15, 95% P2 H2+4+H3+LS-CC+LS-RS 6.863 0.96% 26.9 0.45
57 1 5 8 4 0.00 5, 95% P2 H2+4+H3+LS-CC+LS-RS 6.253 0.00% 54.2 0.90
598 1 5 8 4 0.15 5, 95% P2 H2+4+H3+LS-CC+LS-RS 5.366 1.39% 46.2 0.77
59 1 5 8 4 0.00 10, 95% P2 H2+4+H3+LS-CC+LS-RS 5.373 0.00% 30.2 0.50
600 1 5 8 4 0.00 15, 95% P2 H24+H3+LS-CCH+LS-RS 5.373 0.00% 29.1 0.49
601 1 5 8 2 0.15 10, 95% P3 H2+4+H3+LS-CC+LS-RS 5.511 0.00% 44.2 0.74
602 1 5 8 4 0.15 10, 95% P3 H2+H3+LS-CC+LS-RS 3.421 0.00% 41.8 0.70
603 1 5 8 2 0.00 10, 95% P3 H2+4+H3+LS-CC+LS-RS 6.446 0.00% 63.8 1.06
604 1 5 8 2 0.15 15, 95% P3 H2+H3+LS-CC+LS-RS 5.511 0.00% 474 0.79
605 1 5 8 2 0.15 5, 95% P3 H2+4+H3+LS-CC+LS-RS 6.308 0.00% 63.5 1.06
606 1 5 8 4 0.15 15, 95% P3 H2+4+H3+LS-CC+LS-RS 3.421 0.00% 34.8 0.58
607 1 5 8 2 0.00 5, 95% P3 H2+4+H3+LS-CC+LS-RS 7.450 0.00% 134.6 2.24
608 1 5 8 2 0.00 15, 95% P3 H2+4+H3+LS-CC+LS-RS 6.446 0.00% 103.8 1.73
609 1 5 8 4 0.00 5, 95% P3 H2+4+H3+LS-CC+LS-RS 4.928 0.00% 81.3 1.36
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610 1 5 8 4 0.15 5, 95% P3  H2+H3+LS-CC+LS-RS 3.842 0.00% 50.3 0.84
611 1 5 8 4 0.00 10, 95% P3 H2+H3+LS-CC+LS-RS 4.402 0.00% 55.2 0.92
612 1 5 8 4 0.00 15, 95% P3  H2+H3+LS-CC+LS-RS 4.402 0.00% 46.8 0.78
613 1 5 8 2 0.15 10, 95% P1  H2+4+H4+LS-CC+H+LS-RS 5.969 0.00% 39.1 0.65
614 1 5 8 4 0.15 10, 95% P1  H2+H4+LS-CC+LS-RS 4.362 0.00% 33.2 0.55
615 1 5 8 2 0.00 10, 95% P1  H24+H4+LS-CC+LS-RS 6.890 0.00% 59.8 1.00
616 1 5 8 2 0.15 15, 95% P1  H2+H4+4LS-CC+LS-RS 5.639 0.00% 43.2 0.72
617 1 5 8 2 0.15 5,95% P1 H2+H4+LS-CC+LS-RS 6.592 0.79% 82.3 1.37
618 1 5 8 4 0.15 15, 95% P1 H2+H4+LS-CC+LS-RS 4.205 6.05% 30.4 0.51
619 1 5 8 2 0.00 5,95% P1 H2+H4+LS-CC+LS-RS 7.673 1.36% 67.8 1.13
620 1 5 8 2 0.00 15, 95% P1 H2+H4+4LS-CC+LS-RS 6.477 0.00% 51.8 0.86
621 1 5 8 4 0.00 5, 95% P1 H2+H4+LS-CC+LS-RS 5.567 0.15% 58.3 0.97
622 1 5 8 4 0.15 5, 95% P1  H2+H4+LS-CC+H+LS-RS 4.548 0.00% 74.4 1.24
623 1 5 8 4 0.00 10, 95% P1 H2+H4+LS-CC+LS-RS 4.915 0.00% 37.3 0.62
624 1 5 8 4 0.00 15, 95% P1 H2+H4+4LS-CC+LS-RS 4.761 2.04% 47.5 0.79
625 1 5 8 2 0.15 10, 95% P2 H2+H4+LS-CC+LS-RS 6.538 3.31% 49.1 0.82
626 1 5 8 4 0.15 10, 95% P2 H2+H4+LS-CC+LS-RS 5.014 7.42% 40.1 0.67
627 1 5 8 2 0.00 10, 95% P2 H2+H4+LS-CC+LS-RS 7.323 7.73% 55.2 0.92
628 1 5 8 2 0.15 15, 95% P2 H2+4+H4+LS-CC+H+LS-RS 6.522 3.06% 44.0 0.73
629 1 5 8 2 0.15 5, 95% P2 H2+H4+LS-CC+LS-RS 7.105 4.99% 61.5 1.02
630 1 5 8 4 0.15 15, 95% P2 H2+H4+LS-CC+LS-RS 4.827 3.38% 29.8 0.50
631 1 5 8 2 0.00 5, 95% P2 H2+H4+LS-CC+LS-RS 7.788 1.25% 39.2 0.65
632 1 5 8 2 0.00 15, 95% P2 H2+4+H4+LS-CC+H+LS-RS 7.323 7.73% 41.3 0.69
633 1 5 8 4 0.00 5, 95% P2 H2+H4+LS-CC+LS-RS 6.253 0.00% 47.3 0.79
634 1 5 8 4 0.15 5, 95% P2 H2+H4+LS-CC+LS-RS 5.366 1.39% 31.3 0.52
635 1 5 8 4 0.00 10, 95% P2 H2+H4+LS-CC+LS-RS 5.553 3.36% 29.5 0.49
636 1 5 8 4 0.00 15,95% P2 H2+H4+LS-CC+LS-RS 5.553 3.36% 34.5 0.57
637 1 5 8 2 0.15 10, 95% P3 H2+H4+LS-CC+LS-RS 5.511 0.00% 40.1 0.67
638 1 5 8 4 0.15 10,95% P3 H2+4+H4+LS-CC+LS-RS 3.421 0.00% 58.3 0.97
639 1 5 8 2 0.00 10, 95% P3 H2+H4+LS-CC+LS-RS 6.483 0.58% 57.9 0.97
640 1 5 8 2 0.15 15, 95% P3 H2+H4+LS-CC+LS-RS 5.511 0.00% 59.6 0.99
641 1 5 8 2 0.15 5, 95% P3 H2+H4+4LS-CC+LS-RS 6.308 0.00% 66.1 1.10
642 1 5 8 4 0.15 15, 95% P3 H2+H4+LS-CC+LS-RS 3.421 0.00% 37.0 0.62
643 1 5 8 2 0.00 5, 95% P3  H2+H4+LS-CC+LS-RS 7.450 0.00% 79.0 1.32
644 1 5 8 2 0.00 15, 95% P3 H2+H4+LS-CC+LS-RS 6.484 0.58% 68.5 1.14
645 1 5 8 4 0.00 5, 95% P3 H2+H4+LS-CC+LS-RS 4.955 0.55% 62.2 1.04
646 1 5 8 4 0.15 5, 95% P3 H2+H4+LS-CC+LS-RS 3.842 0.00% 70.2 1.17
647 1 5 8 4 0.00 10, 95% P3 H24+H4+LS-CC+H+LS-RS 4.402 0.00% 48.0 0.80
648 1 5 8 4 0.00 15, 95% P3 H2+H4+LS-CC+LS-RS 4.402 0.00% 53.7 0.89
649 1 5 8 2 0.15 10, 95% P1 H2+H3+LS-CC+LS-GA 5.969 0.00% 143.4 2.39
650 1 5 8 4 0.15 10, 95% P1 H2+H3+LS-CC+LS-GA 4.362 0.00% 195.5 3.26
651 1 5 8 2 0.00 10, 95% P1 H2+H3+LS-CC+LS-GA 6.890 0.00% 137.6 2.29
652 1 5 8 2 0.15 15, 95% P1 H2+4+H3+LS-CC+LS-GA 5.639 0.00% 98.9 1.65
663 1 5 8 2 0.15 5, 95% P1 H2+H3+LS-CC+LS-GA 6.591 0.79% 125.1 2.08
654 1 5 8 4 0.15 15, 95% P1 H2+4+H3+LS-CC+LS-GA 3.966 0.00% 66.0 1.10
655 1 5 8 2 0.00 5, 95% P1 H24+H3+LS-CC+LS-GA 7.570 0.00% 363.9 6.06
656 1 5 8 2 0.00 15, 95% P1 H2+4+H3+LS-CC+LS-GA 6.477 0.00% 106.4 1.77
657 1 5 8 4 0.00 5, 95% P1 H24+H3+LS-CC+LS-GA 5.567 0.16% 226.1 3.77
658 1 5 8 4 0.15 5, 95% P1 H2+4+H3+LS-CC+LS-GA 4.548 0.00% 121.0 2.02
659 1 5 8 4 0.00 10, 95% P1 H24+H3+LS-CC+LS-GA 4.915 0.00% 199.4 3.32
660 1 5 8 4 0.00 15, 95% P1 H2+4+H3+LS-CC+LS-GA 4.761 2.04% 104.0 1.73
661 1 5 8 2 0.15 10, 95% P2 H2+H3+LS-CC+LS-GA 6.338 0.16% 179.5 2.99
662 1 5 8 4 0.15 10, 95% P2 H2+4+H3+LS-CC+LS-GA 4.871 4.36% 112.9 1.88
663 1 5 8 2 0.00 10, 95% P2 H2+H3+LS-CC+LS-GA 6.863 0.96% 88.5 1.47
664 1 5 8 2 0.15 15, 95% P2 H2+H3+LS-CC+LS-GA 6.338 0.16% 100.9 1.68
665 1 5 8 2 0.15 5,95% P2 H2+H3+LS-CC+LS-GA 7.105 4.99% 97.9 1.63
666 1 5 8 4 0.15 15, 95% P2 H2+4+H3+LS-CC+LS-GA 4.669 0.00% 134.8 2.25
667 1 5 8 2 0.00 5, 95% P2 H2+H3+LS-CC+LS-GA 7.788 1.25% 82.1 1.37
668 1 5 8 2 0.00 15, 95% P2 H2+H3+LS-CC+LS-GA 6.863 0.96% 111.1 1.85
669 1 5 8 4 0.00 5, 95% P2 H2+H3+LS-CC+LS-GA 6.253 0.00% 150.2 2.50
670 1 5 8 4 0.15 5, 95% P2 H2+4+H3+LS-CC+LS-GA 5.366 1.39% 127.1 2.12
671 1 5 8 4 0.00 10, 95% P2 H2+4+H3+LS-CC+LS-GA 5.373 0.00% 94.3 1.57
672 1 5 8 4 0.00 15, 95% P2 H2+H3+LS-CC+LS-GA 5.373 0.00% 100.5 1.68
673 1 5 8 2 0.15 10, 95% P3 H2+4+H3+LS-CC+LS-GA 5.511 0.00% 1713.9 28.57
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674 1 5 8 4 0.15 10, 95% P3 H2+H3+4LS-CC+LS-GA 3.421 0.00% 253.7 4.23
675 1 5 8 2 0.00 10, 95% P3 H2+H3+4LS-CC+LS-GA 6.446 0.00% 1812.1 30.20
676 1 5 8 2 0.15 15, 95% P3 H2+4+H34+LS-CC+LS-GA 5.511 0.00% 722.0 12.03
677 1 5 8 2 0.15 5, 95% P3 H24+H34LS-CC+LS-GA 6.308 0.00% 1436.6 23.94
678 1 5 8 4 0.15 15, 95% P3 H2+H3+4+LS-CC+LS-GA 3.421 0.00% 185.7 3.10
679 1 5 8 2 0.00 5, 95% P3 H2+H3+LS-CC+LS-GA 7.450 0.00% 656.5 10.94
680 1 5 8 2 0.00 15, 95% P3 H2+H3+LS-CC+LS-GA 6.446 0.00% 265.3 4.42
681 1 5 8 4 0.00 5, 95% P3 H2+H3+LS-CC+LS-GA 4.928 0.00% 602.2 10.04
682 1 5 8 4 0.15 5, 95% P3 H2+H3+LS-CC+LS-GA 3.842 0.00% 242.5 4.04
683 1 5 8 4 0.00 10, 95% P3 H2+H3+LS-CC+LS-GA 4.402 0.00% 534.0 8.90
684 1 5 8 4 0.00 15, 95% P3 H2+H3+LS-CC+LS-GA 4.402 0.00% 402.7 6.71
685 1 5 8 2 0.15 10, 95% P1 H2+4+H4+LS-CC+LS-GA 5.969 0.00% 151.7 2.53
686 1 5 8 4 0.15 10, 95% P1 H2+H4+LS-CC+LS-GA 4.362 0.00% 218.2 3.64
687 1 5 8 2 0.00 10, 95% P1 H2+H4+LS-CC+LS-GA 6.890 0.00% 118.7 1.98
688 1 5 8 2 0.15 15, 95% P1 H2+H4+LS-CC+LS-GA 5.639 0.00% 102.3 1.71
689 1 5 8 2 0.15 5, 95% P1 H2+H4+LS-CC+LS-GA 6.591 0.79% 174.7 291
690 1 5 8 4 0.15 15, 95% P1 H2+4+H4+LS-CC+LS-GA 4.191 5.70% 111.2 1.85
691 1 5 8 2 0.00 5,95% P1 H24+H44LS-CC+LS-GA 7.570 0.00% 238.9 3.98
692 1 5 8 2 0.00 15, 95% P1 H2+4+H4+LS-CC+LS-GA 6.477 0.00% 110.6 1.84
693 1 5 8 4 0.00 5, 95% P1 H2+4+H4+4LS-CC+LS-GA 5.567 0.16% 266.6 4.44
694 1 5 8 4 0.15 5, 95% P1 H2+4+H4+LS-CC+LS-GA 4.548 0.00% 197.9 3.30
695 1 5 8 4 0.00 10, 95% P1 H2+H4+4LS-CC+LS-GA 4.915 0.00% 98.7 1.64
696 1 5 8 4 0.00 15, 95% P1 H2+H4+LS-CC+LS-GA 4.761 2.04% 107.6 1.79
697 1 5 8 2 0.15 10, 95% P2 H2+H4+LS-CC+LS-GA 6.338 0.16% 207.1 3.45
698 1 5 8 4 0.15 10, 95% P2 H2+H4+LS-CC+LS-GA 4.871 4.36% 388.8 6.48
699 1 5 8 2 0.00 10, 95% P2 H2+H4+LS-CC+LS-GA 7.323 7.73% 171.3 2.85
700 1 5 8 2 015 15,95% P2 H24+H4+4LS-CC+LS-GA 6.338 0.16% 2014.0 33.57
W1 1 5 8 2 015 5, 95% P2 H2+H4+LS-CC+LS-GA 7.105 4.99% 98.8 1.65
702 1 5 8 4 0.15 15, 95% P2 H2+H4+4LS-CC+LS-GA 4.690 0.46% 2539.5 42.32
703 1 5 8 2 0.00 5, 95% P2 H2+H4+LS-CC+LS-GA 7.788 1.25% 85.5 1.43
74 1 5 8 2 0.00 15, 95% P2 H2+H4+4LS-CC+LS-GA 7.323 7.73% 147.7 2.46
705 1 5 8 4 0.00 5, 95% P2 H2+H4+LS-CC+LS-GA 6.253 0.00% 205.0 3.42
76 1 5 8 4 0.15 5, 95% P2 H2+H4+LS-CC+LS-GA 5.366 1.39% 113.9 1.90
77 1 5 8 4 0.00 10, 95% P2 H2+H4+LS-CC+LS-GA 5.373 0.00% 377.1 6.29
708 1 5 8 4 0.00 15, 95% P2 H2+4+H4+LS-CC+LS-GA 5.373 0.00% 444.7 7.41
w9 1 5 8 2 0.15 10, 95% P3 H2+H4+4LS-CC+LS-GA 5.511 0.00% 623.6 10.39
710 1 5 8 4 0.15 10, 95% P3 H2+4+H4+LS-CC+LS-GA 3.421 0.00% 650.3 10.84
7111 5 8 2 0.00 10, 95% P3 H2+4+H44LS-CC+LS-GA 6.446 0.00% 539.6 8.99
712 1 5 8 2 0.15 15, 95% P3 H2+H4+LS-CC+LS-GA 5.511 0.00% 310.1 5.17
713 1 5 8 2 0.15 5, 95% P3 H2+4+H4+4LS-CC+LS-GA 6.308 0.00% 1950.3 32.51
714 1 5 8 4 0.15 15, 95% P3 H2+H4+LS-CC+LS-GA 3.421 0.00% 191.1 3.18
715 1 5 8 2 0.00 5, 95% P3 H2+H4+4LS-CC+LS-GA 7.451 0.00% 785.2 13.09
716 1 5 8 2 0.00 15, 95% P3 H2+H4+LS-CC+LS-GA 6.446 0.00% 1744.4 29.07
717 1 5 8 4 0.00 5, 95% P3 H2+H4+LS-CC+LS-GA 4.928 0.00% 788.9 13.15
718 1 5 8 4 0.15 5, 95% P3 H2+H4+LS-CC+LS-GA 3.842 0.00% 637.6 10.63
719 1 5 8 4 0.00 10, 95% P3 H2+4+H4+LS-CC+LS-GA 4.402 0.00% 457.9 7.63
720 1 5 8 4 0.00 15,95%  P3 H24+H4+4LS-CC+LS-GA 4.402 0.00% 1189.9 19.83
721 1 5 8 2 0.15 10, 95% P1 H2+H3+LS-CC+LS-KK 6.168 3.33% 36.5 0.61
722 1 5 8 4 0.15 10, 95% P1 H2+H3+LS-CC+LS-KK 4.362 0.00% 38.6 0.64
723 1 5 8 2 0.00 10, 95% P1 H2+H3+LS-CC+LS-KK 6.997 1.55% 46.7 0.78
74 1 5 8 2 0.15 15, 95% P1 H2+H3+LS-CC+LS-KK 5.995 6.32% 33.9 0.56
725 1 5 8 2 015 5, 95% P1 H2+H3+LS-CC+LS-KK 6.763 3.41% 61.5 1.03
726 1 5 8 4 015 15,95% P1 H2+H3+LS-CC+LS-KK 3.966 0.00% 26.5 0.44
727 1 5 8 2 0.00 5, 95% P1 H2+H3+LS-CC+LS-KK 7.712 1.87% 90.0 1.50
728 1 5 8 2 0.00 15, 95% P1 H2+H3+LS-CC+LS-KK 6.621 2.22% 41.4 0.69
729 1 5 8 4 0.00 5, 95% P1 H2+H3+LS-CC+LS-KK 5.567 0.16% 62.6 1.04
730 1 5 8 4 0.15 5, 95% P1 H2+H3+LS-CC+LS-KK 4.548 0.00% 51.8 0.86
731 1 5 8 4 0.00 10, 95% P1 H2+H3+LS-CC+LS-KK 4.915 0.00% 43.3 0.72
732 1 5 8 4 0.00 15, 95% P1 H2+H3+LS-CC+LS-KK 4.761 2.04% 36.8 0.61
3 1 5 8 2 015 10, 95% P2 H2+H3+LS-CC+LS-KK 6.719 6.18% 26.7 0.44
74 1 5 8 4 015 10, 95% P2 H2+H3+LS-CC+LS-KK 4.669 0.02% 19.9 0.33
75 1 5 8 2 0.00 10, 95% P2 H2+H3+4LS-CC+LS-KK 7.495 10.27% 32.1 0.53
736 1 5 8 2 015 15, 95% P2 H2+H3+LS-CC+LS-KK 6.719 6.18% 25.7 0.43
737 1 5 8 2 0.15 5, 95% P2 H2+H3+LS-CC+LS-KK 7.307 7.98% 34.6 0.58

Table continues on next page
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Total

Deviation

Test R D T g q y,Snorm(y) x, A Heuristic | deferred  from 2:223:) Eﬁflrfll:tr;z)
patients ~CE+CE
738 1 5 8 4 0.15 15, 95% P2 H2+H3+LS-CC+LS-KK 4.669 0.00% 234 0.39
739 1 5 8 2 0.00 5, 95% P2 H2+H3+LS-CC+LS-KK 8.315 8.09% 48.1 0.80
740 1 5 8 2 0.00 15, 95% P2 H2+H3+4LS-CC+LS-KK 7.495 10.27% 33.9 0.56
741 1 5 8 4 0.00 5, 95% P2 H2+H3+LS-CC+LS-KK 6.253 0.00% 50.5 0.84
742 1 5 8 4 0.15 5, 95% P2 H2+H3+LS-CC+LS-KK 5.366 1.39% 39.2 0.65
743 1 5 8 4 0.00 10, 95% P2 H2+H3+LS-CC+LS-KK 5.373 0.00% 25.9 0.43
74 1 5 8 4 0.00 15, 95% P2 H2+H3+LS-CC+LS-KK 5.373 0.00% 25.3 0.42
745 1 5 8 2 0.15 10, 95% P3 H2+H3+LS-CC+LS-KK 5.511 0.00% 38.3 0.64
746 1 5 8 4 0.15 10, 95% P3 H2+H3+LS-CC+LS-KK 3.421 0.00% 27.7 0.46
747 1 5 8 2 0.00 10, 95% P3 H2+H3+LS-CC+LS-KK 6.446 0.00% 48.3 0.81
748 1 5 8 2 0.15 15, 95% P3 H2+H3+LS-CC+LS-KK 5.511 0.00% 40.3 0.67
79 1 5 8 2 0.15 5, 95% P3 H2+H3+LS-CC+LS-KK 6.312 0.06% 56.0 0.93
70 1 5 8 4 0.15 15, 95% P3 H2+H3+LS-CC+LS-KK 3.421 0.00% 26.5 0.44
751 1 5 8 2 0.00 5, 95% P3 H2+H3+LS-CC+LS-KK 7.450 0.00% 74.9 1.25
752 1 5 8 2 0.00 15, 95% P3 H2+H3+LS-CC+LS-KK 6.446 0.00% 47.7 0.79
73 1 5 8 4 0.00 5, 95% P3 H2+H3+LS-CC+LS-KK 4.928 0.00% 54.0 0.90
w41 5 8 4 015 5, 95% P3 H2+H3+LS-CC+LS-KK 3.842 0.00% 41.3 0.69
75 1 5 8 4 0.00 10, 95% P3 H2+H3+LS-CC+LS-KK 4.402 0.00% 44.2 0.74
w1 5 8 4 0.00 15, 95% P3 H2+H3+LS-CC+LS-KK 4.402 0.00% 42.5 0.71
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Appendix E

Numerical results in the case study

In this appendix we present the final results per iteration of our algorithm (combination of Heuristics
1, 3, LS-CC and LS-RS).

Tteration Day Appointment requests Deferred patients Capacity cycle CAS
n d A Iteration n — 1 Iteration n k¢ c?
1 1 12.023 0 0.237 14 (2,1,1,2,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,1,0,0,1,0)
2 11.944 0 0.188 10 (2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1.,1, ,0)
3 11.626 0 0.157 10 (21021101OUUOOOOUUOOOO1,1,00000000000)
4 13.460 0 0.225 10 (2,1,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0)
5 10.282 0 0.155 16 (1,1,2,1,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,2,1,0,1,0,0,1,0,1,1,0,0)
2 1 12.260 0.237 0.221 14 (2,1,1,2,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,1,1,0,0,0)
2 12.132 0.188 0.184 10 (21111,1,00000000000000110,1,0000000000)
3 11.783 0.157 0.151 10 (2,2,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0)
4 13.685 0.225 0.218 10 (2,1,1,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0)
5 10.437 0.155 0.137 17 (22111,1,00000001000000011,1,01100,1,1,100)
3 1 12.244 0.221 0.221 14 (2,1,1,2,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,1,1,0,0,0)
2 12.127 0.184 0.184 10 (2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0)
3 11.777 0.151 0.151 10 (22011,1,0100000000000001100000000000)
4 13.677 0.218 0.209 10 (2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0)
5 10.419 0.137 0.137 17 (2,2,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,1,1,0,0)
4 1 12.244 0.221 0.219 14 (2112010000000100000001120000010100)
2 12.127 0.184 0.184 10 (2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0)
3 11.777 0.151 0.148 10 (2, ,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
4 13.669 0.209 0.209 10 (2211110000000000000001010000000000)
5 10.419 0.137 0.135 17 (2,2,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,1,1,1,0,0)
5 1 12.242 0.219 0.206 14 (2, s s ,0,0,1,2,0,0,0,0,0,1,0,1,0,0)
2 12.127 0.184 0.184 10 (2111110000000000000011010000000000)
3 11.774 0.148 0.148 10 (2,2,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
4 13.669 0.209 0.209 10 (2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0)
5 10.418 0.135 0.132 17 (2211110000000100000001111100011100)
6 1 12.229 0.206 0.201 14 (2, 1,2,0,0,0,0,0,1,1,0,0,0)
2 12.127 0.184 0.184 10 (2, 1 1 1 1 1,0,0, () U 0,0 0 () () [J U (] () () 1,1,0,1,0,0,0,0,0,0,0,0,0,0)
3 11.774 0.148 0.148 10 (2,2,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
4 13.669 0.209 0.209 10 (22111,1,00000000000000010,1,0000000000)
5 10.414 0.132 0.132 17 (2,2,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0)
7 1 12.224 0.201 0.200 14 (2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,0,0,0,0,0,1,0,1,0,0)
2 12.127 0.184 0.184 10 (21111,1,00000000000000110,1,0000000000)
3 11.774 0.148 0.147 10 (2,2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
4 13.669 0.209 0.209 10 (2211110000000000000001010000000000)
5 10.414 0.132 0.132 17 (2,2,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0)
8 1 12.223 0.200 0.199 14 (2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,0,1,0,1,0,0)
2 12.127 0.184 0.184 10 (2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0)
3 11.773 0.147 0.147 10 (2,2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
4 13.669 0.209 0.209 10 (2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0)
5 10.414 0.132 0.132 17 (2,2,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0)
9 1 12.222 0.199 0.199 14 (2,2,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,1,0,0,0,0,1,0,1,0,0)
2 12.127 0.184 0.184 10 (2,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0)
3 11.773 0.147 0.147 10 (2211,1,1 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0)
4 13.669 0.209 0.209 10 (22111,1,00000000000000010,1,0000000000)
5 10.414 0.132 0.132 17 (2,2,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,1,1,1,0,0)
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Appendix F

Case study test under 85% workload

In this appendix we show the results that we obtained in a first test where the workload is 85%. We
present a table with performance measures and show graphs with the appointment schedules plotted

against the walk-in arrival rate.

Capacity Day Fraction of ' Fraction of '
eycle schodule walk-in patients Ruptlme walk-in patients Ruptlme
mothod method served on day (minutes)  served on day (minutes)

of arrival of arrival
Workload 62.3% Workload 85.0%

H1+LS-CC H3-+LS-RS 99.43% 82.9 94.16% 192.2
H1+LS-CC Benchmark 1 97.58% 5.1 86.24% 14.2
H1+4+LS-CC Benchmark 2 97.58% 5.1 86.24% 14.2
H2+LS-CC Benchmark 3 97.67% 5.0 86.78% 12.0

Table F.1: Performance of the algorithm and benchmarks with a workload of 85%

;||!!|||,:|!|i| !!:\!u “...illll 1 || i || RS "niii!h
Monday Tuesday Wednesday Thursday Friday

Figure F.1: Appointment schedule and walk-in arrival rate per day with a workload of 85%
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