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Chapter 2

Introduction

In his famous 1857 Bakerian lecture titled ‘Experimental Relations of Gold
(and other metals) to Light’ [1], Michel Faraday illustrated his work on col-
loids with suspended gold particles, or as he called them: gold sols. Gold
sols had then been known from alchemists for two centuries but Faraday was
the first to present a scientific study on their formation and properties.

Faraday showed that if the conditions were well controlled, part of the gold
was reduced into highly fine particles which produced a beautiful ruby fluid.
However, by adding salts the ruby fluid could be changed into a deep blue
or violet fluid, or any color in between, without any gold being redissolved.
Faraday concluded that this could be attributed to a change in size of the
particles by a certain mechanism, as he stated:

“There is probably some physical change in the condition of the
particles, caused by the presence of the salt and such affecting
media, which is not a change of the gold as gold, but rather
a change of the relation of the surface of the particles to the
surrounding medium.”

Not only had he shown that gold nanoparticles show significantly different
behavior than the bulk, that the variation of colors was due to some variations
in geometry, but at the same time he conducted the first experiments on the
manipulation of metallic particles on the nanoscale, thereby initiating the
fields of nanotechnology and nanoscience, all this more than 150 years ago.

Since the days of Faraday our understanding of the optical response
of gold nanoparticles has improved tremendously. In the beginning of the
20th century, Maxwell and Garnett explained the scattering effects and color
changes in small metal particles and Mie quantitatively explained the strong
size dependence on the optical properties. Several decades later also anisotropic
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particles were found in photographic emulsions and their optical interactions
were explained by Gans’ theory.

The realization that plasmon properties are largely controlled by the
shape of a metal structure at subwavelength dimensions, has boosted in-
terest in plasmon-based phenomena, especially during last decade [2]. Al-
though experiments and applications of plasmonics have thrived in the in-
frared (IR) and near infrared (NIR) fraction of the electromagnetic spectrum,
experiments at optical (visible) wavelengths have posted serious limits on the
feasibility of, for instance, a plasmonic all-optical chip or plasmonic meta-
materials for visible wavelengths of light. The reason for this is twofold:

1. The small feature size of such structures makes reliable fabrication of
such structures challenging;

2. Significant absorption of plasmon energy in the structures due to intrin-
sic material loss at optical frequencies makes energy loss an important
and limiting effect.

One of the envisioned applications of plasmonics is to bring the well estab-
lished field of radiowave and microwave technology into the visible spectrum
[3]. Since the characteristic dimensions of an antenna are on the order of
the radiation wavelength, fabrication accuracy down to a few nanometers is
required. Due to intensive research in the areas for the nanotechnology and
nanoscience, several fabrication methods such as focused ion beam (FIB)
[4] milling, electron-beam lithography [5] or by self-assembly [6] have been
successfully using to fabricate nanoantennas.

One of the fundamental examples of antenna technology is the well known
half wavelength or dipole antenna. A transmitting antenna consists of two
conductors of length L/4, connected by a sinusoidally varying current source.
In this case electromagnetic waves with a wavelength λ = 2 · L will radiate
away from the antenna. Due to the reciprocity of this electromagnetic prob-
lem, the same antenna will also act as an efficient receiver for these waves
and convert it into a current.

When the dipole antenna is scaled down towards visible and NIR wave-
lengths (380 - 1400 nm), the antenna losses increase significantly. Due to
the skin effect, the induced current can be described as a localized plasmonic
resonance and the classic scaling law for the half wave antenna is not valid
anymore and the actual length becomes much smaller [7]. The coherent
oscillation of the conduction electrons in a gold or silver antenna dephases
by a variety of processes, such as electron-phonon coupling (conversion into
heat) or electron-electron scattering, such as excitation into a empty levels
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in the conduction band (interband transitions) or from the d-band into the
conduction band (intraband transitions). These effects are entirely described
by the electric permittivity of the material [8]. When the particles become
larger, the plasmon oscillation can also lose energy by radiation coupling and
a scattering field is generated [9].

To reduce the damping of the plasmon resonance in optical antennas,
two approaches are used in this work. To reduce the the radiation losses,
the dipole antenna is coupled to a non-radiating antenna mode of a nanoring
placed next to the antenna, thereby storing the field energy into a non-
radiating mode. If this proves to be successful, the energy could possibly
be guided away from the dipole antenna using a chain of rings or other
particles [10, 11]. Secondly, a new method of gold substrate fabrication using
chemically synthesized single-crystal gold flakes is developed.

8



Chapter 3

Theory of Plasmons

To aid the design of plasmonic nanostructures a solid, fundamental under-
standing of the phenomena is necessary. In this chapter several approaches
to describe plasmons are presented.

3.1 Plasmons
First of all, what is a ‘plasmon’? Imagine a perfectly conducting cube on
which an external, static electric field is applied from left to right. The free
electrons in the metal feel the Coulomb force and collectively move to the left,
creating a negative surface charge on the left side of the cube and leaving
a positive surface charge on the right side, such that the total field inside
the cube is zero. Now if the field is switched off, the electrons are repelled
from the left side and attracted to the right side of the cube and the electron
density starts oscillating back and forth around the equilibrium position with
a characteristic frequency called the plasma frequency [12]:

ωp =

√√√√ nee2

m∗eε0
(3.1)

where ne is the conduction electron density, e is the elementary charge, m∗e
the effective electron mass and ε0 the permittivity of free space. A plasmon
is a quantization of this collective, longitudinal oscillation of the free electron
plasma of a metal or semiconductor.

3.2 Antenna theory
Another approach to describe the optical interaction of light with a metallic
nanoparticle is to describe it as an antenna. In traditional antenna design,
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structures are used which have characteristic lengths that optimized for a
certain wavelength. For example, an ideal half-wave dipole antenna consists
of a small metallic rod with a radius R << λ and a length L

L = λ

2 . (3.2)

However, when a classical antenna is scaled down such that it should be
resonant for electromagnetic fields at optical frequencies (e.g. visible light),
the simple scaling breaks down because the penetration of the fields into the
material cannot be neglected and formula 3.2 is not valid anymore. Because
of the small size of the antenna, the skin effect has a significant effect on
the effective impedance (or equivalently the complex index of refraction) of a
electromagnetic wave on the antenna. The penetration of the incident wave
generates density fluctuations in the free electron density close the surface,
so this is in fact a plasmonic effect [7].

If the effect of the plasmons would be included in the calculation of the
effective wavelength for a cylindrical antenna of radius r, a linear scaling law
can be found [7]:

λeff = λ
√
εs

√√√√ 4π2εs(r2/λ2)z̃2

1 + 4π2εs(r2/λ2)z̃2 − 4r (3.3)

z̃ = a1 + a2
λ

λp
(3.4)

a1 = 1
3e

ζ

[
1 +
√

3ζ
2

]
−

2
(
ε∞ + εse

2ζ/2
)

3εseζ

[
1 +
√

3
2

1 + ζ√
ζ

]
(3.5)

a2 =
2
√
ε∞ + εse2ζ/2

3εseζ

[
1 +
√

3
2

1 + ζ√
ζ

]
(3.6)

ζ = 5
3 + 2γ (3.7)

where λeff is the effective wavelength, ε∞ and λp are the electric permittivity
at infinite wavelength and the plasma wavelength of the antenna material, εs
is electric permittivity of the surrounding medium, R is the antenna radius
and γ is Euler’s constant. For gold at optical frequencies, ε∞ ≈ 11 F/m and
λp ≈ 138 nm.

For a plasmonic half wavelength antenna of radius r, the resonance con-
dition now becomes

L = 1
2λeff (3.8)

where L is the length of the nanoantenna and λeff is the effective wavelength
as calculated with formula 3.3.
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In case of a plasmonic ring antenna, the plasmon resonances on the ring
can be described as standing waves formed by plasmon resonances on a infi-
nite cylinder of radius r [11, 13]. In this case the resonance conditions for a
plasmonic nanoring becomes

R = N · λeff
2π (3.9)

where R is the radius of ring, r is the radius of the cross section of the ring
wall, N is the number of plasmonic wavelengths on the ring and λeff is the
effective wavelength as calculated with formula 3.3. N = 1 for the dipolar
mode, N = 2 for the quadrupole mode, etc.
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Chapter 4

Finite Difference Simulations

4.1 Introduction

The electromagnetic field in problems with arbitrarily shaped nanoparticles
is often of such complexity that numerical methods have to be used to predict
the optical interaction of such particle with a light field. Numerical methods
for this purpose have been developed in the field of computational electromag-
netics as early as 1964 for the discrete dipole approximation (DDA) method
[14], however only in last decade did numerical methods gain widespread use
due to a tremendous increase in computational power and the development
of new methods such as the finite difference in time domain method (FDTD)
and the boundary element method (BEM). These three techniques are the
most widely used numerical methods for the calculation of the electromag-
netic response of nanostructures.

The basis of the boundary element method method is the fact that the
electromagnetic field in a homogeneous volume can be determined by the
fields and their derivatives, or equivalently by the charge and current dis-
tribution, on the surface of the volume. By expressing and discretizing the
scattered fields in terms of charges and current distributions and combin-
ing them with the Maxwell boundary conditions leads to a system of linear
equations which can be solved using normal linear algebra methods.

In the discrete dipole approximation the metal is described by a lattice
of coupled point dipoles where the lattice can be shaped in any shape. An
electric field is imposed on the dipoles in the frequency domain and the
resulting polarization of each dipole resulting from the external field and the
local fields produced by the other dipoles is calculated, from which a total
polarization as function of frequency can be derived.

The finite difference time domain method relies on a step-wise calculation
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of the propagation of an incident electromagnetic field through a discretized
simulation space called a Yee latice. The name is derived from the fact
that this method approximates the time and space derivatives of the fields
by finite differences by discretizing the fields on a Yee cell (see figure 4.1).
During each time step, the updated value for the electric field is calculated
from the previous value and the numerical curl of the magnetic fields (and
vice versa for the magnetic field) for all points in space. This method of
choosing how the curls should be calculated has been proposed by Yee in
1966 and has shown to be very robust [15]. Therefore it is used as the basis
for most software implementations of FTTD.

Figure 4.1: A Yee cube illustrating the distribution of the electric and mag-
netic fields used for discretizing the fields in FDTD simulations [16]

Not only the structure of interest but also a sufficiently large surround-
ing medium has to be discretized in case of FDTD simulations to allow for
the source field to accurately reach the structure and to give the generated
scattered field space to propagate away from the structure. The surrounding
space is typically as large as the near-field, so depending of the wavelength
range of interest. In these simulations a surrounding space of 1.2 µm is used
in all three dimensions. Using near-field to far-field transformations, the
far-field response of a near-field simulation can be simulated. An important
advantage of the FDTD method is the use of a pulsed excitation wave, such
that the response on all frequency components can be simulated in one single
simulation run.
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4.2 Implementation in CST Microwave Stu-
dio

CST Microwave Studio (CST) is a software package for FDTD simulations.
It consists of a graphical user interface, with which structures can be defined
in a CAD-like manner. All structures can be parameterized, such that the
structures can generated with varying parameters without manually setting
up the whole simualtion. All simulations were performed on a PC with a
quadcore CPU running at 2.9 GHz, 16 GB DDR3 RAM and CST Studio
Suite 2011.

4.2.1 Meshing methods
The most delicate parameter in the simulation process is the discretization or
‘meshing’ of the simulation domain. The mesh must strike a balance between
a fine enough mesh to resolve all relevant geometrical details and a practical
utilization of computational resources and simulation runtime. CST offers
two automatic strategies for mesh optimization, namely the ‘expert system’
method and the ‘energy based’ method.

Expert system

The ‘expert system’ (ES) strategy is an iterative method to find an optimum
mesh density for a certain problem. First, the problem must be defined in
terms of geometry, materials, boundary conditions of the simulation domain,
source fields, a relatively coarse mesh and a success parameter. The suc-
cess parameter is a measurable quantity, such as a resonance frequency or
extinction cross section, which is to be calculated after each simulation run.
Multiple simulation runs are performed where after each run the mesh is
homogeneously refined (a constant mesh density within the same material),
the success parameter and the difference with the previous value of the pa-
rameter is calculated. If the difference is smaller than a user set threshold,
the optimization is stopped.

The advantage of the ES method is that once optimized settings for the
mesh are found, the same settings can be applied for comparable problems,
as long as there are not significant differences in the field distribution.

To asses the usability of the method in terms of accuracy and computa-
tion resources, a simulation of the optical interaction of a gold antenna in
vacuum is performed with ES mesh optimization. The antenna is modeled
as a cylinder with a length of 110 nm, a radius of 10 nm and is described
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by a first order Drude model to increase simulation speed. Interband transi-
tions at shorter wavelengths are therefore not included in the model, but for
sake of comparison of meshing methods this poses no problem. A sufficiently
broadband pulsed planewave, incident at normal angle to the cylinder’s axis,
is used as source. For each run, the far-field extinction cross section is calcu-
lated as function of frequency. Twenty subsequent runs were performed and
five resulting simulation results are shown in figure 4.2.
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Figure 4.2: Extinction cross section of a single gold cylinder in vacuum as
function of mesh optimization run using the expert system method

From the results shown in figure 4.2 several conclusions can be drawn.
In terms of characteristics of the main dipole resonance, such as resonance
strength, frequency and linewidth, the mesh with a total of N = 0.96 · 106

meshcells is already accurate within less than 2 percent as compared with
the result with N = 4.56 · 106 meshcells. Performing the same comparison
for the smaller resonance around ν = 5.6 · 1014 Hz, the difference with the
most accurate result is less than 5 percent. However, the two finest meshes,
with N = 3.90 · 106 and N = 4.56 · 106 meshcells respectively, do not overlap
completely suggesting full convergence has not occurred, not even with these
dense meshes (corresponding with a meshstep of 1 nm in the metal and 2.7
nm in the surrounding medium). The narrow spike at the right side of the
spectrum is a computational artifact, likely to stem from a scaling problem
in the post-processing of data in CST.
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Simulation run Meshcells [millions] Solver time [min]
1 0.1 4.5
5 0.32 12.5
10 0.97 32
19 3.90 135
20 4.56 172

Table 4.1: Simulation times during ES meshing optimization

If only the main dipole resonance is of interest, the ES method can be
an efficient meshing method which gives a reasonable accurate mesh with
the least amount of meshcells for a certain desired accuracy. If also smaller
resonances are of interest or a higher degree of accuracy is required, this
method does not give satisfying results since accurate convergence requires a
very dense mesh. Since the example shown here is of small scale, using this
method for larger scale nanostructures such as multiple particles would re-
quire an tremendous amount of simulation time (see table 4.1) and a different
meshing method might be advantageous.

Energy based

The ‘energy based’ (EB) method is the same as the ES strategy but increases
the mesh density only there, where a high energy density has been simulated.
In this case the mesh density is not necessarily constant within the geometry
of the nanoparticle nor within the surrounding space as is the case with the
ES method and the mesh is only refined there were it is contributing most
to a optimum mesh. At least one run is needed to adapt the mesh to the
energy distribution of the nanostructure and as opposed to the ES method,
mesh settings cannot be reused since the adaptation has to be carried out
for every structure.

The same simulation is performed as described in previous section, except
the meshing method is changed to Energy Based. Every subsequent run, the
amount of meshcells is increased by seventy percent as compared with the
previous run. A total of seven runs are performed and the results of the five
most interesting results are shown in figure 4.2.
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Figure 4.3: Extinction cross section of a single gold cylinder in vacuum as
function of mesh optimization run using the energy based method
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When compared with the ES method, the EB method converges much
faster in terms of meshcells and simulation runs. The last three iterations
produce very similar results, such that the run with N = 3.2 · 106 meshcells
is almost hidden under the most accurate result with N = 5.5 ·106 meshcells.
The simulation run with only N = 1.9 · 106 meshcells is accurate within
one percent for the resonance characteristics (resonance strength, frequency
and linewidth) of both the main resonance as the smaller resonance around
ν = 5.7 · 1014 Hz as compared with the most accurate run.

The EB method is more expensive in terms of simulation runtime. Be-
cause the method is based on subsequent refinement of the mesh, several
runs are necessary and the total cumulative solver times should be consid-
ered. The corresponding times for this mesh optimization can be found in
table 4.2. Comparing these values with the ES method, it is clear that the
EB method takes approximately twice as long, but the convergence is much
better at a much lower amount of meshcells.

Simulation run Meshcells [millions] Cumulative solver time [min]
1 0.21 8
4 1.10 118
5 1.87 271
6 3.21 678
7 5.48 1340

Table 4.2: Simulation times during EB meshing optimization

4.2.2 Material description
For the description of material properties a material database is included in
CST. However, the relevant parameters in the database, such as the electric
permittivity ε or the magnetic permeability µ, are in most cases only given
at the single radio frequency of 10 GHz. CST offers the possibility to add
new metallic and dielectric materials to the database with user-defined char-
acteristics, as long as the material behavior can be described by the following
model.

To have a correct description of gold at optical frequencies, empirical data
for the electric permittivity of gold from Johnson & Christy [17] is fitted to
a general polynomial model

ε(ω) = ε∞ +
2∑

n=1

γ0,n + iωγ1,n

δ0,n + iωδ1,n − ω2 . (4.1)
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Equation 4.1 describes a complex resonant model of 4th order, where ε∞ is
the electric permittivity at zero frequency (DC) and γ{1,2},n and δ{1,2},n are
fitting parameters which can be related to a physical interpretation in terms
of poles and zeros by formulas 4.2 to 4.6

ωpole,n =
√
δ0,n (4.2)

ωzero,n = γ0,n

γ1,n
(4.3)

Qn =

√
δ0,n

δ1,n
(4.4)

Gn = γ0,n

δ0,n
(4.5)

(4.6)

where ωpole,n is the angular frequency of the n-th pole, ωzero,n is the angular
frequency of the n-th zero, Qn is the quality factor of the n-th pole and Gn

is the partial strength or gain of the n-th pole. Using this model, the fitted
values for the physical parameters are shown in table 4.3 and the empirical
data and the fit are plotted in figure 4.4.

Parameter Value
ε∞ 1 [F/m]
ωpole,1 6.4224·1014 rad·s−1

ωpole,2 5.2096·1013 rad·s−1

ωzero,1 3.0206·1014 rad·s−1

ωzero,2 7.0612·1015 rad·s−1

Q1 1.2731
Q2 3.4779
G1 2.6616
G2 1533.6

Table 4.3: Fitted parameter values for empirical data of the electric permit-
tivity of gold

As can be seen from figure 4.4, the 4th order fit of the electric permittiv-
ity of gold corresponds sufficiently with the empirical data for wavelengths
greater than 400 nanometer, which is the wavelength range of interest. Lower
order models are not in sufficient agreement with the empirical data, because
in that case either the low or high wavelength region is correctly described
but not both. Higher order models could be used if the application demands
a better correspondence with the empirical data, but this comes at a higher
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Figure 4.4: Electric permittivity ε of gold used in simulations

computational cost since for each order an extra differential equation has to
be solved. Since the empirical data was obtained for thermally evaporated
thin films of gold, the electric permittivity might differ from samples which
are fabricated with differing methods. Therefore, within this project the
accuracy of the model is sufficient, keeping in mind that the used electric
permittivity for gold might differ when compared to experiments. The 4th
order fit will be used in the following simulations.

4.2.3 Extraction of near-field data as function of time
To analyze the coupling of two structures, the near-field of both structures has
to be compared. In CST only a few tools are available to extract simulated
fields.

Far-field Near-field
Extinction cross section Time averaged field on curve
Scattering cross section Time averaged field in volume
Absorption cross section Time averaged field on plane
Directionality Field in single point
Field in single point

In the case of closed systems such as microresonators, CST has a build-in
mode solver to find the eigenmodes of certain electromagnetic problem. How-
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ever, for open systems such as nanoantennas, none of the build-in functions
gives the local field as function of both location and time. The fields can
only be shown as function of time, not as function of frequency (or incident
wavelength) thus analysis of modal coupling of nanoantennas is not directly
possible. An software extension to CST in the form of a VisualBasic macro
was written to be able to extract the desired information. The extension
generates a series of near-field time monitors at desired locations above the
structures before the simulation starts and exports the data automatically
when the simulation is finished. Afterwards the data is analyzed in Matlab.

The exported simulation data consists of the electric field 10 nanometers
above the bar and ring structure, along the axis of the respective structure.
Since the field is known as function of both position and time, the field as
function as frequency or spatial frequency (k-vector) can be calculated used
the Fourier transform.

~E (x, t)
F(x) //

F(t)
��

~E (k, t)
F(t)

��
~E (x, ω) F(x)

// ~E (k, ω)

In this manner the coupling between the two structures can be investi-
gated using only a single simulation run performed in CST. In case of the
fields on the bar, the fields are transformed first into cylindrical coordinates
and then Fourier transformed.

4.3 Simulations of gold nanostructures

With current top-down fabrication methods only nanostructures with straight
edges can be fabricated reliably. Therefore the half wave nanoantenna and
the nanoring simulated in this section have a rectangular cross section as op-
posed to a circular cross section as described in the theory. From literature
it is expected that a different cross section has only a minor influence on the
resonance conditions [11]. Because of fabrication limitations, the height of
the structures is kept constant for most simulations at 30 nanometer. The
gold will be described by the 4th order fit as described in section 4.2.2 and
the material surrounding the antenna structures is taken to be vacuum. For
meshing the EB method is used.
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Figure 4.5: Geometry of simulated ring and bar structures as seen along
z-axis. The structures have a height h in the z direction.

4.3.1 Optical response of single bar
A gold nanobar antenna of various geometries (length L, height h and width
w) is simulated such that it can be compared with the optical wavelength
scaling theory for antenna. A broadband pulsed planewave incident at normal
angle and with the electric field vector aligned along the long axis is used as
excitation source, so only dipole resonances can be excited in the structure.
The local electric field is simulated and exported as described in section 4.2.3.

Influence of length

The width and height of the gold bar are kept constant at 30 nm. The length
is varied between 20 and 220 nanometer. The maximum field energy |E|2
as function of excitation wavelength is derived from the simulation data and
shown in figure 4.6.

Since the local field and thus also the field energy assume a maximum
at resonance, it is clear that the classical antenna law fails to describe the
resonant length of the antenna as function of length. The smaller resonance
seen around λ = 600 nm is probably due to a plasmon resonance along the
short axis of the antenna.
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Figure 4.6: Simulated local field energy maxima as function of incident wave-
length. Both the width and height of the gold bar is 30 nm
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Figure 4.7: Simulated resonance wavelength as function of bar antenna
length. Both the width and height of the gold bar is 30 nm

In figure 4.7 the simulated resonant wavelength of bar antennas of dif-
fering length is shown, along with the theoretical prediction using formula
3.3. It is assumed that the bar can be approximated as a cylinder with a
corresponding cylindrical radius of R = w/2. The theory and the simulation
data are in approximate agreement within 12 percent. Taken over the whole
spectrum, the trend is fairly well predicted by theory.
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Influence of the cross section

Using the same simulation parameters as above the influence of the width on
the resonant wavelength is investigated. The length is fixed at 100 nanometer
and the height at 30 nanometer.
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Figure 4.8: Simulated resonance wavelength as function of bar antenna width.
The length is 100 nm and and the height is 30 nm

The results from the simulation are shown in figure 4.8. Although the
resonance is clearly tunable by changing the width only, the assumption
that the bar can accurately be described as a cylinder with radius R = w/2
clearly fails for a significant difference between the two short axis of the
bar, e.g. a difference between the height and the width. A mismatch of 20
nanometer between the height and the width would cause a difference with
the theoretical prediction by approximately 7%.

The same simulation is repeated as above, but now with the height and
the width of the bar antenna linked such that the antenna has a symmetric
cross section. The results are shown in figure 4.9. Figure 4.9 shows an ex-
cellent agreement between the theory and the simulation for small antennas
with a width and height smaller than 35 nanometer. Thicker antennas de-
viate approximately 3 percent from theory, which could be explained by the
fact that at larger cross sections the deviation of a cylinder becomes larger
for which the theory is less correct.
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Figure 4.9: Simulated resonance wavelength as function of bar antenna width
and height. The length is 100 nm.

4.3.2 Optical response of single ring
A gold nanoring antenna which consists of a short, hollow cylinder with a
height h, a major radius Rmajor and minor radius Rminor, such that the inner
diameter is Rmajor−Rminor and the outer diameter is equal to Rmajor+Rminor,
is simulated such that it can be compared with the optical wavelength scaling
theory for antenna and with the bar antenna. The excitation planewave is
incident under normal angle with the plane of the ring. The same simulation
parameters and post-processing is applied as with the bar antenna. It is
assumed that for a dipolar resonance the ring can be described like a standing
plasmonic wave of plasmons on a infinite wire with radius Rminor (see section
3.2).

Excited ring modes

A gold nanoring with a minor radius of Rmajor = 50 nm, Rminor = 24 nm
and a height of h = 30 nm is simulated and the electric field along the
circumference of the ring ~E(s, t) is used to calculate the field as function of
k-vector and frequency ~E(k, ω) using the Fourier transform. The total local
field energy | ~E(k, ω)|2 is calculated and shown in figure 4.10 for the k-vectors
corresponding to the dipole (N = 1) and quadrupole (N = 2) mode of the
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ring. The scale is converted into wavelength for comparison.
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Figure 4.10: Local field energy for a single gold ring as function of wavelength
for the dipole (N = 1) and quadrupole (N = 2) mode.

The simulation shows that only the dipole mode is excited under these
excitation conditions. The higher order modes have a energy close to zero
over the whole spectrum. This example is characteristic for the following
simulations.

Influence of major radius

A gold nanoring with a minor radius of Rminor = 10 nm and a height of
h = 30 nm is simulated while varying the major radius Rmajor from 20 to 70
nm. The corresponding resonance wavelength and the theoretical prediction
using formula 3.3 are shown in figure 4.11.

The trend is in resonance wavelength as function of major radius is accu-
rately predicted by the model only when the radius of the theorical waveguide
(as described by formula 3.3) is taken to be h/2 = 15 nm instead of the ac-
tual Rminor = 10 nm. This shows that in case of a asymmetric cross section
the choice of effective radius is not as clear as is the case with the nanobar
antenna.
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Figure 4.11: Simulated resonance wavelength as function of ring antenna
major radius. The minor radius is 10 nm and the height is 30 nm.

Influence of minor radius

The same simulation is performed as in the previous section, but now varying
the minor radius Rminor from 2 to 40 nm. The height is constant at 30 nm
and the major radius is 50 nanometer.

As is seen in figure 4.12 the dependence on the minor radius is not accu-
rately predicted by theory because of the asymmetry in the waveguide. For
the symmetric case (Rminor = 15 nm), the difference with the simulation is
approximately 10 percent.
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Figure 4.12: Simulated resonance wavelength as function of ring antenna
minor radius. The major radius is 50 nm and the height is 30 nm.
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4.3.3 Optical response of combined bar ring structure
A combined structure consisting of a bar with fixed dimensions L = 88 nm,
w = 50 nm and h = 30 nm and a ring with fixed dimensions Rminor = 25 nm
and h = 30 nm is simulated. The distance between the two structures ∆Y
is variable between 15, 30 or 50 nm and Rmajor is varied between 80 and 200
nm.

The maximum local field energy max |EN(ω)|2 for the first four ring modes
(N = 1..4) above the ring as function of Rmajor is calculated from the simu-
lation data as is shown in figure 4.13. Similar graphs for ∆Y = 30 nm and
∆Y = 50 nm are included in appendix A for better readability. For some
data sets is was not possible to load the exported data due to data corruption.
The problem has shown to occur precariously. While the exact origin of this
problem is unknown, it has to be sought either in way CST parameterizes
subsequent simulation runs or within the data-extraction extension.

Figure 4.13 shows that the dipole, quadrupole and hexapole mode can be
excited depending on the major radius of the ring. The dipole mode becomes
weaker as the radius becomes larger, as can also be seen in figures A.1 and
A.2. This can be explained by a larger mismatch between the dipole mode
on the bar and ring. The quadrupole and hexapole mode seem to couple
optimally for Rmajor ≈ 100 nm and Rmajor ≈ 150 nm respectively, although
the resolution does not allow to draw a conclusion solely based on those
values. The same figure for Rmajor = 97.5 nm is placed in the appendix.

To have a clearer picture of the modal structure of the ring, the local
field energy for the four modes on ring as function of excitation wavelength
is shown in figure 4.14 for the case of Rmajor = 150 nm.
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Figure 4.13: Maximum local field energy as function of Rmajor with ∆Y = 15
nm.
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Figure 4.14: Local field energy for the bas and ring modes for Rmajor = 150
nm as function of wavelength.
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(d) λ = 1410 nm

Figure 4.15: Instantaneous field |E| · cos (φ) along structure for several wave-
lengths for structure with ∆Y = 15 nm and Rmajor = 150 nm.

The corresponding field energy is included for the bar as well. A narrow
hexapole mode (FWHM ≈ 50 nm) is clearly visible around λ = 664 nm. Also
the splitted dipole mode is visible around λ = 491 nm and λ = 1410 nm.
A small quadrupole mode is visible around λ = 610 nm. The corresponding
instantaneous electric fields |E| · cos (φ) along the structure are shown in
figure 4.15. φ is the spectral phase of the field and can be used to show that
two structures resonating at the same frequency are either in phase or out of
phase. This can be seen in the case of two dipole fields: the fields at λ = 1410
nm are in phase and represent a bonding mode. The dipole mode at λ =
491 nm is in anti-phase with the dipole mode on the bar and represents a so
called anti-bonding mode. Since the oscillating charges are closer together,
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the restoring Coulomb repulsion force is larger and the oscillation occurs
at a higher frequency in case of the anti-bonding mode as opposed to the
bonding mode which oscillates at a lower frequency (with a corresponding
larger wavelength). The nomenclature for these bonding modes is taken
from molecular physics: when two atoms bond together to form a molecule,
the resulting wavefunction for the electron density can have two different
energies: one with a higher energy such that the atoms are repulsed (anti-
bonding) and one with a lower energy such that binding occurs.

The resonance wavelength and FWHM linewidth of all found simulated
dipolar bar resonances and non-dipolar ring resonances are registered in table
A.1 to A.3 in appendix A. In figure 4.16 a comparison is made between all
ring modes and theory. The theory predicts the resonant wavelengths within
7% for the higher order ring modes with Rmajor ranging from 80 to 200
nanometer and a Rminor of 25 nm.
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Figure 4.16: Comparison of theory and simulation for resonant wavelength

The average linewidth found for the higher order ring modes for the
strongest coupled case (∆Y = 15 nm) is 58 ± 5 nm. The corresponding
average of the bar mode is equal to 71 ± 6 nm so the coupling to a higher
order ring mode can increase the lifetime by a small amount. However, fabri-
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cation imperfections will most probably cancel the marginal advantage. The
same holds for the other two cases.

4.4 Conclusion and discussion
Simulations on a single bar, a single ring and coupled bar and ring antenna
structures have been performed. It is found that a linear scaling law, ac-
counting for plasmonic effects in nanoantennas, can be used to predict the
resonance wavelengths based on classical resonance conditions for a bar and
ring antenna for large scale antennas. The theory is typically accurate within
10%, depending on the geometry.

Coupling of the dipole mode to higher order ring modes is possible for
narrow wavelength ranges (typically 50 nm) but no apparent gain in oscil-
lation lifetime has been observed. Since the dipole and higher order mode
are coherently coupled, it would not be possible to store energy in the ‘non-
radiative’ higher order mode because it is tightly coupled to a radiative mode.
A possible solution would be to use a chain of rings to carry the energy away
from the dipole mode. For this to work an efficient ring-ring coupling must
exist for the incident wavelength and the intrinsic material loss should be
sufficiently low. The results shown here provides the first step for such sub-
wavelength waveguide.

In a few cases the exported data was corrupted, but this might indicate
a problem in the simulation in CST itself. Except from that, the near-field
extension for CST works as expected and gives direct access to near field
information. This method provides the user with a lot of freedom and is
thus a powerful add-on to CST.
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Chapter 5

Fabrication of gold
nanostructures

5.1 Introduction
For the realization of plasmonic nanostructures several techniques are avail-
able. The two most frequently used techniques are focused ion beam milling
(FIB) and e-beam lithography. In this work FIB was chosen because of
the required resolution, the availability of in-house knowledge. The actual
fabrication was performed using the excellent infrastructure at the MESA+
institute of nanotechnology.

5.2 Gold thin films
Two methods of gold thin film fabrication have been used.

5.2.1 Poly crystalline gold films using sputtering
A thin gold film of 30 nanometer is deposited on a substrate using thermal
sputtering of gold. As a substrate both glass as glass with a thin layer of
indium tin oxide is used. The physical vapor deposition method (PVD)
yields a controllable thickness with an accuracy better than 5 nanometer.
The produced gold films are typically poly cystalline with a grain size of 10
to 30 nanometer.

This method has several advantages.

1. The thin film area usable for following production steps is large (mul-
tiple square centimeters).
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2. Film thickness is well controlled and can be chosen within 5 nanometer
accuracy. No additional fabrication steps are needed to adjust the
thickness afterwards.

3. It consists of a single fabrication step.

The disadvantage of the PCD method is the roughness of the thin film
due to the grains, which is the limiting factor when high resolution ( 20 nm)
structures are desired.

5.2.2 Mono crystalline gold films using chemically grown
flakes

In the recent years new methods have become available to synthesize all
kinds of gold nanoparticles with controllable shapes and good monodispersity
[18]. In a recent paper, Huang et al. developed a chemical synthesis (CS)
process to synthesize atomically flat, single crystalline gold crystals [19]. This
methods was implemented together with D.J. Dikken M.Sc. of the Optical
Sciences group.

Depending on the synthesis parameters such as temperature, timing and
concentrations, not only single crystals but a variety of nanoparticle shapes
grow. The single crystals are usually not monodisperse and thickness typi-
cally vary between 50 and 300 nanometer, while the area varies between 500
and 10.000 square micrometers with the tendency that thicker crystals are
larger.

After synthesis the solution with flakes and other particles is flown over
a glass or glass with ITO substrate and blown dry. The adhered particles
are observed using a optical microscope and the thinnest, single crystalline
particles are selected. The selection is based on the characteristic shape
and the fact that flakes with a thickness smaller than 200 nm are partially
transparent.

In case of a glass substrate, a carbon sticker is placed placed close to
the flakes and a conducting wire is deposited from the carbon to the flake
using FIB-assisted chemical vapor deposition. This is necessary because a
grounded sample is needed for FIB to prevent local changing. These steps
are not needed in case of a ITO substrate because ITO conducts sufficiently.

The gold flake is thinned by a a single milling step. If the desired thickness
is achieved a pattern can be carved out of the gold using FIB milling.
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5.3 Milling strategies
Milling of thin gold films is known to be hindered by a few difficulties.

1. The milling speed is much higher at slopes. This implicates that when
the thin film is not smooth, milling enhances (amplifies) the unwanted
surface roughness.

2. Gold redeposition from milled areas causes unwanted asymmetry in the
resulting structures when milling in a raster-like manner.

3. The milling speed is thermally sensitive with respect to the used sub-
strate. Therefore a calibration for each substrate must be made.

To fabricate gold nanostructures using FIB milling with typical smallest fea-
ture sizes of ten to twenty nanometers, a smart milling sequence has to be
employed. For each structure a specialized structure definition file is gener-
ated, containing a specific sequence and dwell time which which the focused
ion beam is directly controlled. In this work these so called ‘stream files’ are
generated with a Matlab script and can be loaded into the control software
of the FEI NovaLab600 dual-beam machine. The FIB process was operated
by and optimized with the help of ing. F.B. Segerink of the Optical Sciences
group. The basic design rules are: large surfaces first, mill from different
directions alternately and mill the smallest features (such as gaps) lastly. An
example is shown if figure 5.1.

Figure 5.1: Example of a smart milling sequence for a bar ring structure.
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5.4 Fabrication results

5.4.1 Poly crystalline gold
Nanobars with a length of 100 nanometer are fabricated using FIB milling
and a poly crystalline gold film.

Figure 5.2: SEM micrograph of FIB fabricated nanoantennas on poly crys-
talline gold, overview.

As can be seen in figure 5.3, the roughness of the initial thin film has
been converted into small gold islands. Although nanoantennas with a de-
sired length of 100 nanometer are fabricated, the gold islands are clearly
obstructing the desired pattern.
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Figure 5.3: SEM micrograph of FIB fabricated nanoantennas on poly crys-
talline gold, zoom. The window width is 2.5 µm.
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5.4.2 Single crystalline gold
The same pattern as in the previous case was milled into a single crystalline
gold flake. The results are shown in figure 5.4 and 5.5.

Figure 5.4: SEM micrograph of FIB fabricated nanoantennas on single crys-
talline gold, overview.

As apparent from figure 5.4, some organic material is contaminating the
flake. The effect of such contamination is clearly visible in figure 5.5. The
pattern is locally disfigured, but outside the contaminated area the bars
are of excellent quality. The fabrication reproducibility of these antennas is
approximately 5 nanometer. The problem of contamination should be coun-
tered from two sides: optimize the synthesis procedure such that less organic
material is present in the solution and/or look for a different flake with less
contamination. The FIB thinning step does not significantly increase the
surface roughness.

Another fabrication example is shown in figure 5.4.2. The ring are slightly
asymmetric, but reproduce very well. The bar length is 100 nm, the ring wall
alternates between 30 and 35 nm and the gap size is less than 20 nanometers.
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Figure 5.5: SEM micrograph of FIB fabricated nanoantennas on a single
crystalline gold flake. The window width is 2.5 µm.
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Figure 5.6: SEM micrograph of FIB fabricated bar ring structures on a single
crystalline gold flake.
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5.5 Conclusion
The use of single crystalline gold flakes is advantageous when small feature
sizes (20 nm) and a high reproducibility are needed. The use of a ITO
substrate circumvents the need for grounding the small crystals using carbon
stickers or FIB-assisted deposition of small metal wires.
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Chapter 6

Spectroscopy of single
nanoantennas

To measure the scattering properties of single nanoantenna, an optical setup
was designed and build. The design requirements are as follows.

1. Broadband (visible and NIR spectrum)

2. Sensitive for the signal of a single nanoantenna

3. Accurate positioning of the sample

4. Partially automated to aid the measurement of multiple antenna

6.1 Experimental considerations
The strength of a scatterer can be given in terms of it’s scattering cross
section σsca [m2]. The scattering cross section is hypothetical area which
describes the chance that incident light is being scattered from the particle
and is in general different than the geometrical cross section of the particle.
The scattering cross section is part of the extinction cross section σext [m2]of
a particle:

σext = σabs + σsca (6.1)
with σabs being the absorption cross section. The extinction cross section is
related to the absorbance of a medium through the law of Lamber-Beer:

I(l) = 10−C·l·σext · I0 (6.2)

with I0 the incident irradiance, C the concentration of particles, l the length
of the path traversed through the medium and I(l) the resulting irradiance.
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For a single particle of cross section σext and a incoming light beam with
area Abeam, the fraction of power which is scattered is

Isca = σsca
Abeam

· I0. (6.3)

For a single cylindrical bar antenna of length L = 100 nm and diameter
D =30 nm a typical scattering cross section of σsca = 1 · 10−14 m2 is found
through FDTD simulations and in literature [8].

6.2 Setup
A crossed polarizers confocal scanning microscope has been chosen as the best
solution. Confocality suppress signal from other locations than the antenna
and the crossed polarizers suppress the non scattered signal sufficiently. An-
other option which has been considered intensively is the dark-field method,
where light is collected at different angles than the angles at which the in-
cident light illuminates the sample. This method might be successful when
the dark-field signal is collected at the same side of the sample (by the use
of a special objective) but in transmission mode scattering from the rest of
the sample prevents decent filtering. A confocal pinhole to sufficiently shield
from the scattering rejects too much signal, such that alignment of the dark-
field field stop is not possible. Using a high power source might circumvent
this problem.

A broadband lamp (Apex Arc High Stability Lamp Source, Xe) in com-
bination with computer controllable 4f-monochromator is used to generate a
selectable output wavelength between 500 and 1000 nm with a bandwidth of
8 nm over the whole spectrum. The 4f monochromator consists of a blazed,
ruled grating (1200 lines per mm) which is mounted on a stepper motor with
an stepsize of 1/100 degree. A lens (f = 125 mm) placed at f from the grating
focuses the color component of a adjustable slit, which is adjusted to said
bandwidth. Another lens (f = 125 mm) collimates the monochromatic light
from the slit towards the sample stage.

A unused portion of the beam is diverted used a D-shaped mirror towards
a 50:50 beam splitter, which divides the light between a photodiode (PIN
10D) and a 10x objective which focuses the light into a fiber for the fiber
spectrometer (Avantes AvaSpec-3648). This part can be used to characterize
the beam in terms of spectrum and power.

The total output spectrum of the light source is shown in figure 6.1.
The data from the spectrometer was calibrated using a Spectra Physics 404
Optical power meter.
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Figure 6.1: Total output spectrum from monochromator

Two broadband polarizers (Thorlabs Linear Film Polarizer LPVIS) in
crossed configuration are used to suppress the non-scattered light. One is
placed just before the sample stage, with the transmission axis rotated +45
degrees compared the the vertical axis, while the other one is placed just after
the sample stage with the transmission axis rotated -45 degrees compared the
the vertical axis. Light which traverses the sample stage without a change
in it’s polarization is reduced by a factor of 106 in the wavelength range of
550 to 1000 nm.

The sample stage consists of a excitation objective (Nikon M-Plan 40x
0.5 ELWD) which focuses the light down to a spot of approximately 40 by 40
µm through the substrate of the sample. The sample itself is mounted into
a homemade sample holder made out of stainless ferromagnetic steel, such
that samples can be secured using strong magnets. The sample holder is
mounted on top of a SmarAct MSC x,y,z-nanopositioner which a maximum
range of tens of millimeters and a positioning accuracy around 1 nm. The
SmarAct has a build in feedback loop to compensate for drift.

A collection objective (Zeiss Plan Neo Fluar 0.75 NA ∞/0.17) collects
the light directly from the samples surface. An achromatic doublet lens (f
= 120 mm) is used as tubelens to focus the image through the secondary
polarizer onto a 20 µm pinhole placed in front of a APD detector (EG&G
SPCM-AQ-160). A flippable mirror can be used to divert the image onto a
CCD camera to aid positioning.

The combination of the infinity corrected objective and the tube lens with
f = 120 mm has a magnification of 24x. In combination with the used pinhole,
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an area of approximately 830 nm in diameter in the focal plane is collected.
This is suitable for both single structures as larger, combined structures. The
sensitivity of the setup is limited by the extinction of the crossed polarizers.
A count rate of approximately 3 · 105 counts per second (5% of maximum
countrate) is due to non-filtered excitation light. The background light (from
environment) is approximately 300 counts per second.

6.2.1 Control and data acquisition
The stepper motor and nanopositioner are controlled by the setup PC. A
Labview program was written to perform raster scans with a user settable
range and step size. At each position the monochromator is stepped through
the whole spectrum. For each step the APD and photodiode are simulta-
neously read out, using a break-out board connected to a NI M-series DAQ
card, so that a correction for fluctuating power from the lamp can be made.
For each position the exact position is read out from the nanopositioner. If
desired, also the full spectrum can be captured during each monochromator
step.

6.3 Measurement results
The transmission of the sample is calculated using a reference measurement
on an empty part of the sample, e.g. only glass. The transmission of the
sample as function of wavelength is calculated as follows:

T (λ) =
Is

Isp

Ir

Irp

= Is(λ) · Irp(λ)
Ir(λ) · Isp(λ) (6.4)

with Is the measured signal from the APD, Isp the measured signal from the
PD, Ir the measured signal from the APD for the reference location and Irp
the measured signal from the PD for the reference location.

The sample consists out of small nanobars with a length of 100 nm and a
width of 30 nm as seen in figure 5.4 and 5.5. The sample is placed such that
the bars are vertical.

Two typical measured spectra are shown in figure 6.3 and 6.3.
As can be seen in the figures, no clear signature of the nanoantenna can

be seen and strange artifacts can be seen for higher wavelengths. This has
several causes.

1. The spectrum from the lamp is not smooth enough to approximate
the monochromatic light as being a Gaussian, which is the basis of the
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Figure 6.2: Typical measured transmission spectrum.
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Figure 6.3: Typical measured transmission spectrum.
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conversion between the steps of the stepper motor and wavelength.

2. The fabricated sample suffers from both organic residue and remaining
gold between the antennas due to drift during the FIB milling.

The transmission is mostly above one, as would be expected with the
crossed polarizer scheme. The large gold structures appear as very broad
scatters in the spectrum and no clear signature of a antenna can be distin-
guished.

6.4 Conclusion and discussion
Due to an unsuitable sample and complicating spectrum from the broadband
lamp no spectrum a single nanoantenna has been observed yet. The problem
with the lamp spectrum could be compensated for if the spectrum at each
stepper motor step n is measured. The measured intensity on the APD is
proportional to

Is(n) ∝
∫
S(λ, n) · T (λ)dλ (6.5)

with T the transmission of the sample and S(λ) the spectrum during mea-
surement n. If a whole sequential measurement series is performed and the
problem is discretized (sum over all λ)

Is(n) ∝
∑

S(λ, n) · T (λ) (6.6)

becomes
~Is ∝ S(λ, n) · ~T (λ) (6.7)

which is a normal linear algebra problem which might be solved for T(λ)
if formula 6.7 is well conditioned. This idea has been explored shortly but
preliminary results indicate that the spectrum varies too strongly such that
no solution can found. The use of a highly sensitive spectrometer instead
of this lamp combined with a monochromator would be a solution. Another
solution would be to use different lamp with a smoother spectrum.

The fabrication of the nanoantenna is already adjusted to prevent the
gold residue by a adjustment of the smart milling, but due to lack of time
these samples could not be fabricated and measured in time.
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Chapter 7

Discussion and Conclusions

Simulations on a single bar, a single ring and coupled bar and ring antenna
structures have been performed. It is found that a linear scaling law, ac-
counting for plasmonic effects in nanoantennas, can be used to predict the
resonance wavelengths based on classical resonance conditions for a bar and
ring antenna for large scale antennas. The theory is typically accurate within
10%, depending on the geometry.

Coupling of the dipole mode to higher order ring modes is possible for
narrow wavelength ranges (typically 50 nm) but no apparent gain in oscil-
lation lifetime has been observed. Since the dipole and higher order mode
are coherently coupled, it would not be possible to store energy in the ‘non-
radiative’ higher order mode because it is tightly coupled to a radiative mode.
A possible solution would be to use a chain of rings to carry the energy away
from the dipole mode. For this to work an efficient ring-ring coupling must
exist for the incident wavelength and the intrinsic material loss should be
sufficiently low. The results shown here provides the first step for such sub-
wavelength waveguide.

In a few cases the exported data was corrupted, but this might indicate
a problem in the simulation in CST itself. Except from that, the near-field
extension for CST works as expected and gives direct access to near field
information. This method provides the user with a lot of freedom and is
thus a powerful add-on to CST.

The fabrication of the nanostructures using single crystalline gold flakes
has been explored and the preliminary results are satisfying. Improvements
can still be made, as the solution in which the flakes are conceived is not free
from organic residue, which influences both fabrication and measurements in
a negative manner. Also a large fraction of the produces flakes are too thick,
which can be optimized by tuning the synthesis parameters. However, the
low surface roughness and the absence of grains have pushed the possibilities
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of nanostructure fabrication using of FIB milling further and are an attractive
alternative to the physical vapor method.

No scattering spectra of single nanoantenna have been observed yet due to
the influence of residue and fabrication artifacts, which is the limiting factor
at the moment. The fabrication method has already adjusted to prevent the
influence of drift during the FIB process on the fabricated samples.
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Appendix A

Simulations: additional figures
and tables

A.1 Maximum local field energy with ∆Y =
30 nm.
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Figure A.1: Maximum local field energy with ∆Y = 30 nm.
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A.2 Maximum local field energy with ∆Y =
50 nm.
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Figure A.2: Maximum local field energy with ∆Y = 50 nm.
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A.3 Local field energy for the bar and ring
modes for Rmajor = 97.5 nm

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

8

9

10
x 10

−3

Wavelength [nm]

|E
N
|2  [(

V
/m

)2 ]

Local field energy

 

 
Dipole

(a) Bar

200 400 600 800 1000 1200 1400

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
−3 Local field energy, Rmajor = 97.5 nm

Wavelength [nm]

|E
N
|2  [(

V
/m

)2 ]

 

 

Dipole
Quadrupole
Hexapole
Octopole

(b) Ring

Figure A.3: Local field energy for the bar and ring modes for Rmajor = 97.5
nm as function of wavelength.

A.4 Tables with bar ring resonances
The values for the center wavelength and FWHM linewidth have an estimated
error of 15 nm. Q, H and O stand for a quadrupole, hexapole and octopole
respectively. These correspond with a plasmon ring resonance of order N =
2, 3, 4.
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∆Y = 15 nm
bar ring

Rmajor [nm] λ0 ±∆λ [nm] type λ0 ±∆λ [nm]
80 655±50 Q 638±65
97.5 655±90 Q 658±55
115 655±60 Q 695±90

H 625±70
132.5 655±90 H 640±50
150 655±90 H 660±50

O 618±55
185 655±40 O 648±45
202.5 670±80 O 660±40

Table A.1: Center wavelength and FWHM linewidth of dipole bar mode and
non-dipolar ring modes for ∆Y = 15 nm.

∆Y = 30 nm
bar ring

Rmajor [nm] λ0 ±∆λ [nm] type λ0 ±∆λ [nm]
80 638±45 Q 630±50
100 630±60 Q 660±60

H 638±65
140 638±62 H 640±40

O 610±50
160 635±50 H 673±25

O 620±40
180 640±60 O 635±30
200 643±55 O 653±35

Table A.2: Center wavelength and FWHM linewidth of dipole bar mode and
non-dipolar ring modes for ∆Y = 30 nm.
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∆Y = 50 nm
bar ring

Rmajor [nm] λ0 ±∆λ [nm] type λ0 ±∆λ [nm]
80 633±55 Q 625±40
100 630±50 Q 653±55
110 633±45 Q 670±100

H 615±50
120.5 630±60 H 623±45
140 630±50 H 638±35

O 610±50
150 628±55 H 653±55

O 613±45

Table A.3: Center wavelength and FWHM linewidth of dipole bar mode and
non-dipolar ring modes for ∆Y = 50 nm.
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Appendix B

Schematic overview of setup
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Abbreviation meaning
APD EG&G SPCM-AQ-160
AS Adjustable slit
BS 50:50 beamsplitter
CCD Pixelink CD camera
DM D-shaped mirror
FM Flip mirror
GR Blazed grating on stepper rotation table, 1200 lines per mm
Lamp Newport Apex Xe lamp

L1 & L2 Lens, f = 125 mm
L3 Achromatic doublet Lens, f = 120 mm
O1 Objective, 10x magnification
O2 Objective, Nikon M-Plan 40x 0.5 NA ELWD 210/0
O3 Objective, Zeiss Plan Neo-fluar 0.75 NA, ∞/0.17

P1 & P2 Thorlabs Linear film polarizer LPVIS
PD photodiode PIN 10D
PH Pinhole, 20 micrometer diameter
SM Sample mount on a Smaract x,y,z MCS
SPM Avantes Avaspec-3648 spectrometer
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