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Abstract 
 
Vital for the success of the robot soccer system is a streamlined strategy. Robot soccer 
strategy is a form of decision making for robots. On the soccer pitch, robots, divided in 
two teams, interact with each other and a ball, each trying to win a soccer match. In a 
streamlined strategy, robots in the same team try to maximize the scoring opportunities 
for their team and minimize the scoring opportunities of the opponent by means of 
strategic plans.  
 
Already for robot soccer, strategy research has been directed towards the use of 
weighted linear functions. However, for creating and adapting strategies, the use of a 
weighted linear function seems to be complex.  
 
This thesis presents a different direction in strategy design. This uses finite state 
machines (FSM) to create directed positioning for the robots. The transitions of the state 
machines consist of guarded plans, where the guards are based on existing 
observations. Observations represent expert knowledge about situation on the robot 
soccer pitch and plans represent expert knowledge about the strategic means for the 
robots. In the FSM approach, strategies are represented explicitly by assigning roles to 
robots and modeling the desired behavior for each role with an FSM. Two of such 
strategies are given, namely the “2-2 formation” and “1-3 formation with rotational tactic”.  
 
The two strategies have been tested in robot soccer tournaments. On these tournaments, 
universities have the means of testing their robot soccer system against each other. The 
“1-3 formation with rotational tactic” proved most successful. This strategy was able to 
recover from failed shoot attempts and used multiple coordinated robots to perform 
scoring attempts. Nevertheless, the “2-2 formation” seemed to have a more robust 
defense. A future direction to a “2-2 formation with rotational tactic” is suggested, which 
combines the advantages of both strategies.  
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1 Introduction 
 
Robot soccer is a very attractive game that gives researchers all over the world the 
means to demonstrate the current state of new technology. It provides a test bed for new 
technology in image processing, robot hardware, motion control and artificial intelligence. 
This chapter first discusses a set-up for a robot soccer game. Second, it discusses the 
system with which the MI20 team plays robot soccer. In addition, existing problems are 
mentioned. Third, the problem definition is given and this chapter ends with the outline of 
this thesis. 

1.1 The game 
 
The MI20 team [1] participates in a FIRA league [2]. MI20 plays its matches in the 
MiRoSot league [3]. In this league, robots have maximum dimensions of 7.5 x 7.5 x 7.5 
cm, and use a two-wheeled differential drive. At the University of Twente Dr. M. Poel and 
Dr. A.L. Schoute lead the project.  
 

 
Figure 1 Set-up of the MiRoSot game 

 
Figure 1 shows the typical set up of a MiRoSot game. In a game, two teams play against 
each other. Each team has its own camera, transmitter, robots and computer. The 
camera observes the field and the transmitter sends radio signals to the robots.  

1.2 The current system 
 
The first version of the MI20 system was developed in 2002 [10]. Maarten Buth [8], Paul 
de Groot [9] and I, have developed the currently used system, also known as the second 
version. 
 
This section will first show the architecture of the current system. Next, it discusses the 
previous developed Strategy modules in the MI20 project and its relevant experienced 
problems regarding Strategy. 

1.2.1 Software modules 
 
To play robot soccer our system has delegated different tasks among software modules. 
These software modules often represent the different research. This section discusses 
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the different software modules; Vision, State Estimator, Strategy, Motion and 
RFcomm. Figure 2 shows the system architecture.  
 

  Tranceiver

Vision

State Estimator

Strategy

Motion

RFcomm

World Data

ActionSet

SnapShots

Velocities

MI20 System
   Camera

 
Figure 2 System architecture MI20 v2.0 

 
Vision 

The Vision module is responsible for retrieving relevant information from the images 
send by the camera. A data type called Snapshot combines the positional information 
of all robots and the ball. For the team robots, the Snapshot contains also their 
orientation. 

 
State estimator 

The State Estimator its responsibility is, to approximate the real world situation as 
good as possible. Filtering techniques and prediction correct the noisy delayed vision 
information. It also determines derivates like linear and angular speed from the 
Snapshot. The estimated information is being stored in a data structure called World 
Data.  

 
Strategy 

This module creates strategic Actions for the robots. The strategy depends upon the 
information given by the State Estimator. The strategy module has to retrieve 
meaningful information from so-called World Data and creates Actions for robots to 
execute. It is necessary that the Motion module can adequately execute Actions. 
These Actions are stored in a data structure ActionSet. Yet it is not the responsibility 
for the strategy module to create smart team play; Human operators and strategy 
module designers should realize smart team play.  

 
Motion 

The Motion module is important with regards of the ability to utilize the robot 
effectively. It depends upon the functioning of the robot on the field and the task it has 
been assigned. Some important tasks are moving as fast as possible to a certain point, 
following as accurate as possible a moving target and intercepting a ball. The Motion 
module also depends upon the information created by the State Estimator and it 
creates Velocities for the robots from the given Actions stored in the ActionSet.  
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Rfcomm (Radio Frequency Communications) 
The RFcomm module utilizes the different communication devices of the robots. 
RFcomm sends Velocities, translated into adequate radiosignals, and sends it to 
each robot by using the transceivers.  

 
This thesis will describe work related to the strategy module. In the MI20 project, 
research has already been done for strategy module.  

1.2.2 Previous work on Strategy 
 
Seesink [1] developed the the Strategy module in the first version of the MI20 system. 
Using feature extraction, the module transformed the input space into more suitable 
strategic information. Adaptations to this strategy module were being made by 
Poelman [6] and van Amstel [7]. Petit [5] investigated a second approach for the 
Strategy. Petit created a decision system based upon potential fields.  
 
Next the so-called Single Neuron Approach developed by Seesink [1], which has also 
been implemented and used in tournaments, and the Potential Field Approach by Petit [5] 
will be discussed. 
 
Single Neuron Approach 

The Single Neuron Approach uses a weighted linear function, like a single neuron, to 
create output from a given input. The idea of the single Neuron Approach is first to 
transform the state vectors in World Data[1] of different objects on the robot soccer 
field into features [1]. Each feature has a semantic meaning (expert knowledge) about 
a certain aspect of the game. For example a feature could indicate to which extend a 
team player has a scoring opportunity. In Seesink’s [1] design these features are not 
based upon game statistics, but only upon the locations of the different robots and the 
ball. Second, the method combines the values of the features with reward and penalty 
weights and these weights can differ for the different roles. For each logical plan [1] the 
value of this combination is a measurement for the desirability for this plan. Third, the 
method chooses the most desired plan. A logical plan can be queued after or replace 
the current plan which has to be executed by the motion part of the system.  

 
Potential Field Approach 

The potential field approach proposal by C. Petit [5] distinguishes two parts in 
Strategy. One part chooses an interception strategy that is case-based and selects 
one robot as an on-ball player [5]. The other part assigns plans for the other robots in a 
supporting strategy. Potential fields are the basis for the design. The approach creates 
one potential field for all robots. The method retrieves all strategic positions from this 
potential field. First, a desirability value is computed for each position in the field, this 
leads to a potential field. The desirability value is based upon an additive combination 
of sub-functions. Such a sub function creates desirability values for a certain plan at 
each position on the field. The method creates a combined field from the desirability 
fields. Second, the method selects the top positions from the combined potential field. 
Third, the method allocates these positions among the robots.  
 

The advantage of the Single Neuron approach is that it facilitates in easy adding expert 
knowledge to the system by means of features. This approach also has some 
disadvantages. The next section will discuss these disadvantages. The main advantage 
of the potential field approach is that it always appoints an on-ball player. The main 
disadvantage that it has never been implemented for the system and that its concept has 
not been proven being able to work. 
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1.2.3 Problems current system 
 
First with regard of strategy, general problems, which previous project members 
observed, are considered. These problems have to be considered with regard of the 
design for the new strategy module. 
 

• Limited computational time [9] 
Due to the real-time nature of the system, which has to process camera images 
with approximately 33 fps, strategy has limited time to make strategic decisions. 
For example, this means that for strategy it is not practical to search for all 
possible states in the robot soccer game to calculate the ‘perfect’ decision.  

• Strategy has no recovery techniques  
Stuck robot detection is one part of resolving deadlock situations in the robot 
soccer game [1]. For example not recovering robots with regard of failure with 
shooting attempts [12], [9], [13] exists.  

 
Second, with regard of the implemented strategy of Seesink[1] some problems are 
considered. These problems are discussed because this one has been implemented and 
used by several people.  According to Petit [5], Maatman and Poelman [6] and van 
Amstel [14] there is a great disadvantage for this design: 
 

• Strategy design is complicated. 
The way to adapt strategy is nontransparent [5], therefore it is difficult to change 
team play [6]. Coordinated team play, with the use of resource claiming [1], is 
realized at a laborious way [6]. Furthermore, the evaluation function that is 
realized with a combination of different matrixes is difficult to adjust to let the 
team play well [14]. 

 
Third, problems in the current version for the Strategy with regard of input and output for 
this module are mentioned. 
 

• Unreliable World Data  
The State Estimators robot-tracking algorithm often fails during game play. As 
result, the State Estimator sends faulty World Data to the Strategy module. If 
tracking fails, the Strategy does not know where which robot is.  

• Inadequate transformation of Actions to Velocities  
Frequently changing the Actions results in slow control speeds being sent to the 
robots by the Motion module. This makes the execution of the Actions 
inadequate. Especially a moving ball causes the change of the attributes for 
these Actions.  

• No collision avoidance for practical use in the Motion Module 
The Motion module does not provide in collision avoidance. This also makes 
the execution of actions inadequate. 

 
The new design for the Strategy Module shall consider these problems. 

1.3 Problem definition 
 
Since 2002, MI20, the robot soccer team of the University Twente has participated in the 
MiroSot league. It was difficult to give demonstrations and to play games after a number 
of year’s development. This is caused by several problems. Among other things the 
strategic planned behavior of the robots was difficult matched with the developed 
Strategy and difficult to explain by the unclear communication with other modules. 
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The most important task includes designing a new Strategy, which can be used for 
playing games and giving demonstrations. An important requirement of the Strategy is 
that strategic planning takes place for the robots. Strategic observations and strategic 
positions based upon expert knowledge will be used. Second, it must be easy to translate 
strategy to behavior and the other way around. This can be reached by changing the set-
up of the Strategy and to simplify the decision process. 
 
For this task, the next research questions are found: 
RQ1: How can the Strategy module be designed in such way that it creates strategic 

Actions for robots to execute?  
 
RQ2: How can the strategy be designed that it is easily recognized in the observed 

behavior? 
 
Another task is to ensure that the requirements, which are necessary for the adequate 
execution of the Actions of a Strategy for MI20 the system, are met. The requirements 
for a good strategy are reliable information and adequate supervision of the robots. A 
good Strategy alone cannot ensure team play. For that there is looked first at the 
following components of the system of which the methods will be improved; Robot 
Identification, Collision Avoidance, Motion. 
 
For this task, the next questions to be answered are found: 
Q1: Which method can be used to provide strategy with consistent information? 

Q1.1: How can robot identification be designed in such way that identification 
can be performed at each moment during a robot soccer game, without 
the need for a tracking method? 

 
Q2: How can adequate supervision of the robots be achieved? 

Q2.1: Which techniques can be used to keep the robots pursuing the team 
goals while keeping the robots free from deadlock situations? 

Q2.2: Which techniques can be used to move the robots in such a way that 
they are able to respond adequately to frequently changing actions? 

1.4 Requirements for strategy 
 
Different requirements are distinguished. One is with regard to the design of the Strategy 
Module in which a strategy for team play can be defined. A set of metrics is chosen to 
measure the improvement of the new system and the new approach for the strategy 
should perform equal or better for these metrics than the previous methods. Pressman 
[11] writes more about the use of metrics to measure model quality. The selected metrics 
are partly inspired by Pressman and partly specific for the robot soccer application. The 
other requirement encapsulates the behavioral team goals for a strategy for team play.  
 
Metrics 
This section considers the metrics for the Strategy module. With this metrics, the 
different approaches for the Strategy module are compared. These metrics are focused 
at the problems mentioned in 1.2.3. The Strategy module has to create strategic 
Actions and it should facilitate the support of a strategy definition that is easily 
recognized in the observed behavior of the robots.  
 
M1: Support of time based behavior. 

To enable stuck robot recovery and provide solutions for failure in shooting 
attempts. Time based behavior is characterized by behavior that is 
parameterized by time. 
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M2: Computational complexity  
To keep the CPU load of the system in mind, the computational complexity for 
the strategy module should be kept low. 

 
M3: Understandability. 

The more information programmers can comprehend about the strategy module, 
the smarter a strategy for robot soccer play can be designed. The module should 
be well understood and dependencies between internal, external and shared 
components should be well understood. Team play should not be realized in a 
time-consuming way.  

 
M4: Reductive explainability. 

Important aspect of this metric is that, what one can see in the team play is the 
same as what has been defined for team play. System states and important 
variables should be visible during execution.  With good reductive explainability, 
incorrect output can be identified. It should not be difficult to see how the 
combination of different techniques leads to team play.  
 

M5: Adaptability. 
This metric is mainly driven by the effort one has to take to locate and fix an error 
in the system, or to change something to strategy which is needed as response 
to some specific weakness against opponents.  

 
M6: Extensibility. 

The degree in which the architectural data and procedural design of the strategy 
module can be extended. Furthermore, the degree in which one understands 
how they can extend the strategy module. 
  

The listed metrics will be used to evaluate the Strategy module. 
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Team goals 
In 1.2.1 it is already mentioned, that defining smart team play is the task of the designer 
of the Strategy module. Two important team goals focus the team play of the robots on 
winning the robot soccer game. 
 
TG1:  Scoring 
 
TG2: Prevent the opponent from scoring 
 
The listed team goals are guidelines for team play strategy development, in other words; 
guidelines for the strategy developers. 

1.5 Outline 
 
The purpose of this thesis is to describe ways to improve the Strategy module and 
strategic team play for the robots of the MI20 team. Chapter 2 describes the design of the 
Strategy module. The Strategy module facilitates in the selection of different strategies 
that can be used for game play and two different strategies are described in chapter 3. 
Chapter 4 describes the changes, which are necessary to supply the Strategy module 
with consistent information and the adequate execution of the Actions. Chapters 5 will 
state conclusions and recommendations. 
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2 A FSM approach to strategy design 
 
The Strategy Module is responsible for assigning an Action to each robot. These 
Actions are stored in the ActionSet. Strategy is provided with World Data to make 
adequate decisions. This chapter will discusses the possibility of if Action generating 
with a state machine (FSM) driven approach.  
 
The responsibility for the Strategy Module is to assign an Action to each robot. Then 
strategy uses distributed Player agents to get a PlanSet. In Strategy, the 
Action Creator converts each Plan in the PlanSet into an adequate Action to store in 
the ActionSet. In Figure 3 the architecture for the Strategy Module is shown. 
 

‘see’

Action Creator

World Data

ActionSet

Strategy Module

Player

‘think’
‘act’

PlanSet

‘see’
Player

‘think’
‘act’

‘see’
Player

‘think’
‘act’

 
Figure 3 Architecture for the Strategy Module 

 
The Player is created according to the (multi) agent paradigm. Therefore it can ‘see’, 
‘think’ and ‘act’: 
- ‘See’    : It sees strategic information (explained later) in the provided WorldData.   
- ‘Think’  : It thinks with the use of a state machine (FSM). 
- ‘Act’   : It acts with use of strategic Plans (explained later). 
 
The first section of this chapter discusses the Strategy, Players and the interaction 
between the Strategy and the Players. Furthermore, the first section discusses the use 
of the FSM to create the rationale for the Player. The second section explains how one 
can develop a FSM that creates a Role based player. The third section will give an 
example how one can develop a team strategy with use of Players with different FSM’s. 
The metrics used to evaluate the strategy approach are support of time based behavior, 
computational complexity, understandability, reductive explainability, adaptability and 
extensibility (also listed in § 1.4). The evaluation elaborates also upon coordination. 
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2.1 Introduction to FSM and Strategy  
 
In this section the function of the Strategy module shall be explained first. Second, the 
contribution of FSM in Strategy shall be elaborated. 
  
For a better understanding, the relevant modules and data or agent structures are 
discussed before the ordering of their messaging to each other is given. 
 
World Data 

World Data is a data structure which contains information, such as position, 
orientation and velocities, about robots and the ball. 

 
Strategy 

The Strategy Module is responsible for assigning an Action to each robot. These 
Actions has to be stored in the ActionSet. Strategy is provided with World Data to 
make adequate decisions. 

 
Player 

A Player represents a soccer player with a robotic body. This representation is created 
according to the (multi) agent paradigm. It can ‘see’ through Observations, it contains 
a state machine for ‘thinking’ and it ‘acts’ by means of Plans. 

 
Observation  

An Observation represents a state variable about the robot soccer game with a 
strategic meaning. Observations are named like “BALL_IN_DEFENSE” and can 
represent expert knowledge about (robotic) soccer. 

 
Action 

An action is a higher-order strategy decision, such as moving to a particular position or 
trying to score a goal. An Action has to be translated into adequate control signals by 
the Motion Module. 

 
ActionSet 

The ActionSet is shared by the Motion Module and the Strategy Module. 
Motion accesses the ActionSet to determine which functions have to be used for 
creating control signals and Strategy accesses the ActionSet to makes its decisions 
recognizable for Motion. 

 
Plan 

A Plan represents the means of the Player in which it can act ‘strategically’. Plans can 
also represent expert knowledge about (robotic) soccer and therefore the plans are 
named like “KICK” or “BACK_UP_ATTACKER” 

 
PlanSet 

The PlanSet contains the different Plans for each Player. Strategy accesses the 
PlanSet to store the Plans retrieved from the Players and when Actions are created. 

 
The process of assigning to each robot an Action is shown in Figure 4. The Strategy 
receives World Data from the StateEstimator. The Strategy has a number of 
Players and in Figure 4, there are two Players, named Goalie and Forward. The 
Strategy passes its World Data on to all Players. Then Strategy asks each Player 
to calculate a Plan. This Plan is stored in a PlanSet. When a Player is asked to 
calculate a Plan it takes 3 steps to do so. First, the Player determines the different 
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Observations by analyzing World Data. Second, the Observations are used as input 
for his own finite state machine (FSM), and the FSM produces a Plan. Third, for the 
selected Plan, attributes are determined. When a Plan has been calculated for each 
Player, the Strategy converts each Plan into a suitable Action. The last step of 
Strategy involves the storage of the Actions in the ActionSet. 
 

worldDataUpdate()

calculatePlan()
calculateActions()

[+] Convert each Plan

[+] Store Actions

worldDataUpdate()

worldDataUpdate()

      into a suitable Action

calculatePlan()

      for the selected Plan

      into his FSM and the

getObservations()

      sends Observations as input

      output is the selected Plan

[+] Plan Selection

[+] Set the right attributes

getObservations()

      into his FSM and the

[+] Plan Selection

      for the selected Plan
[+] Set the right attributes

      output is the selected Plan

      sends Observations as input

State Estimator Strategy Module Goalie:Player Forward:Player ActionSet

 
Figure 4 Sequence diagram for Strategy 

 
The new approach for the Strategy module contains state machines for roles such as 
goalkeeper. Other options are kept open for further research because simplicity is 
considered important. The Player represents our soccer player. Each Player has its own 
FSM for plan generation. Before plan generation by means of a FSM is explained, 
different core terms are discussed. 
 
StateMachine 

A StateMachine is a set of Transitions and a set of States. It represents the 
behavior of the Player and it is named by its Role, Formation and Tactic. 

 
State 

A State represents a memory element for the Player. This enables different output 
with the same positional input.   

 
Transition 

A Transition represents a state change. A Transition contains an exit and entry State, 
which represent which State the Player is currently in and which State the Player will 
be in when the Transition is selected, respectively. It has a Plan type as output. A 
Transition is enabled when its ConditionExpression is true and the State of the 
Player is the exit State from the Transition. 
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Condition 
A Condition represents whether an Observation is below (‘<’) or equal higher (‘>=’) 
some predefined value. A condition is true or false. A condition is represented like 
‘(BALL_IN_DEFENSE>=0.5)’ 

 
ConditionExpression 

A ConditionExpression is an expression with Conditions. A ConditionExpression is the 
conjunction of multiple conditions. A ConditionExpression can also represent expert 
knowledge or being used to hide all conditions in an abstracted view of the state 
machine. A ConditionExpression can be named like “Ball is Left Forward” to express 
the expert knowledge. An example ConditionExpression is 
(BALL_X>0.5)٨(BALL_Y>0.5). 

 
Preferability 

The Preferability of a Transition is used to determine which Transition is selected 
when multiple transitions are enabled; the one with the highest Preferability is 
selected. 
 

Role 
A Role represents expert knowledge about the intention of the single Player to 
dedicate itself to attack and/or defense, typical role names are “Attacker” and 
“Defender”. 

 
Formation 

A Formation represents expert knowledge about the positioning of the robotic body’s 
and Roles of the Players in the back or forward. Formations are named like ‘”1-3”, 
which means 1 defender and 3 attackers. 

 
Tactic 

A Tactic represents expert knowledge about how the positioning and shooting is 
coordinated for the different Players. Tactics are named like “Using Wings” and 
“Rotational” 

 
In Figure 5, the state machine for a Player is shown. The filled circle points to the initial 
state. The hollow circle containing a smaller filled circle represents a final state. A 
rounded rectangle represents an intermediate State. The arrow denotes a Transition 
and the ConditionExpression and Plan are divided with a “/”. The Player calculates 
from the World Data the Observations. Then the Transitions in the Players 
StateMachine are being evaluated. Each Transition has a Preferability value, and 
when multiple Transitions are allowed to happen, the Transition with the highest 
Preferability is executed; a Plan is determined and the State of the Player is being 
updated. When Preferability is not relevant, it is disregarded in the state diagram. 
 

Another State

Initial State: S0

Role name, formation name, tactic

(Preferability )
ConditionExpression / Plan

 
Figure 5 FSM of the Player 

 
The next section discusses two FSM’s for a single role. 
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2.2 A FSM for a single role 
 
This section describes a FSM, which is characterized by a certain role. Roles are meant 
to assign a specialized function to a certain Player. These specialized functions are 
related to the overall team goals: 
 
TG1:  Score 
 
TG2: Prevent the opponent from scoring 
 
When a player is dedicated to TG1, the role is often Attacker or Forward and when a 
player is dedicated to TG2, the role is often Keeper, Defender or Back. Another way to 
organize coordinated roles is by assuming that some defender operates in some area of 
the field. This results in roles like “Left Back” or “Right Forward”. Next, a Player that is 
dedicated to scoring, an Attacker, will be shown.  

2.2.1 A FSM for a role dedicated to scoring 
 
Figure 6 shows the state diagram of an Attacker. This section will give a conceptual 
overview of the different states and transitions to reach certain behavior for the robot. 
After that, more detailed Conditions and Plans of the informal descriptions are shown.  
 

0

Attacker

1

2

“Ball is ahead of  robot” /
“Intercept Ball”“Ball is behind robot”  /

“Go behind Ball”

“Ball is in front of robot” /
“Drive (with ball) to 
opponents Goal”

“Ball is not in front of robot”  /
“Go behind Ball ”

/ “Go behind Ball”

 
Figure 6 State diagram for an Attacker 

 
The attacker has several states, first the ideal trail through the states is discusses. It 
starts in state 0 and it first objective is to get behind the ball. As soon as the robot is 
behind the ball, the ball is in front of the robot, it succeeds to state 1. The robot is one 
step closer to scoring a goal, and starts to intercept the ball. As soon as the robot has 
arrived at the ball and it has the ball directly in front of him it succeeds to state 2. In State 
2 the robot can start driving towards the opponent’s goal to put the ball in the goal of the 
opponent. A goal for the MI20 team! 
 
Of course, things can go wrong during execution, when the robot is in state 2 and it starts 
driving toward the opponents goal it can loose the ball. If that happens the scoring 
attempt is considered having failed and the player falls back towards state 0. When the 
robot is in state 1, something similar can happen: the ball gets behind the robot again so 
the player falls back to state 0 and it has to get behind the ball again. 
 
Table 1 shows the descriptions with their detailed Plans and ConditionExpressions. 
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 Description Detailed 

Ball is in front of robot ( BALL_IN_FRONT > 0.5 ) 

Ball is not in front of 
robot 

( BALL_IN_FRONT <= 0.5 ) 

Ball is ahead of robot ( BALL_IS_FORWARD > 0.5 ) 

ConditionExpressions 

Ball is behind robot ( BALL_IS_BACKWARD > 0.5 ) 

Drive (with ball) to 
opponents Goal 

( REACTIVE_MOVE  
  { x=1.0 , y=0.5 } ) 

Intercept Ball INTERCEPT 

Plans 

Go behind Ball GO_BEHIND_BALL 

Table 1 Description with their details 

2.2.2 A FSM for a role dedicated to prevent scoring 
 
In Figure 7, the state diagram of the keeper is shown. The keeper has a defensive 
stance, translated into state Sactive and a passive state Spassive. When the ball is in the 
offense, the keeper stays back and is maximizing goal coverage. The keeper comes in 
the defensive stance when the ball is in the defense. When defending, the keeper has for 
solutions for 3 situations. The first situation is when the ball is in the clear area, the 
keeper will clear the ball. A clear area is defined as a region next to the goal, in this 
example this clear region does not depend on the position of other robots. Clearing the 
ball in (robot) soccer is an attempt to shoot the ball away from the goal. Sometimes, it 
happens that the ball is stuck between two robots or between the wall and a robot. The 
second situation, when the ball is stuck, the robot is commanded to spin, this command 
often resolves the stuck ball situation. Third, when the ball is not cleared or spinned 
away, the keeper will defend the goal line by staying at a line before the goal line and 
staying between the goal line and the ball, this action is called Block Ball.  
 

Sactive

Keeper, 1-3 formation, rotational tactic

(2) ball in clear area / Clear 
Ball

Spassive

(4) ball not in defense / 
Maximize goal coverage

(5) ball in defense / Block ball

(1) ball not in clear area / Block Ball (3) ball stuck near me / Spin

 
Figure 7 State diagram of the Keeper 

2.3 A FSM based strategy for a team 
 
The previous section illustrated two different roles; each of them was dedicated to one of 
the two team-goals. A combination of the two players already provides in a team existing 
of two players. Nevertheless, the MI20 robot team consists of five robots. This section will 
describe the principle of formation and tactic in which coordinated play can be 
categorized. At conceptual level a strategy for a 1-3 formation is given. 
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2.3.1 Relationship of strategy with formation and tactic 
 
This section gives more attention to what formations are and how tactics relate to 
strategies. The use of formations provides in some decomposition of the playfield into 
areas in which a limited number of players may stay. This decomposition simplifies the 
problem of solving negative interactions between robots. Instead of solving problems for 
an unknown number of robots, one can focus on solving negative interactions between 2 
or 3 robots.Negative interaction between attacking robots could for example cause many 
failed shoot attempts. A negative interaction is for example when a robot is moving the 
ball towards the opponent’s goal, and its team robot, which also wants to shoot the ball, 
is hitting this robot causing ball loss.  
 
Furthermore, the classification of different strategies for robot soccer into a formation with 
a certain tactic can support the system operator in choosing the right strategy against a 
certain opponent. Formation selection looks at the positioning of the players in the back 
or forward, this means the way players are distributed on the field.  
 
Tactic selection is focused at how players perform in the back or forward. For example in 
a 2-1-1 formation there are different state machines suitable for the robot playing in the 
middle of the field, and when choosing the tactic “long shot” that FSM is selected that let 
the robot shoot from the midfield, and not the FSM that let the robot pass the ball to the 
forward player. In the next section, a conceptual design for a 1-3 formation is illustrated. 

2.3.2 Conceptual strategy for a 1-3 formation 
 
This section gives a simple concept of a 1-3 formation. The playfield is divided in five 
different areas and each of the five players is given an exclusive area in which they may 
operate. First in the 1-3 formation, the field is divided in two parts; one for the defensive 
and one for the offensive. The offense contains three players, and the offensive part of 
the field is divided into 3 zones; left, central, right. This is shown in Figure 8. 
 

Mi20
Right 

Forward

Mi20
Central 
Forward

Mi20
Left 

Forward

Mi20
Ausputzer

Mi20
Keeper

 
Figure 8 A pure 1-3 formation 

If players are only allowed to take action in their areas, the situations in which their 
actions interact immediately with the other player actions is limited, especially negative 
interaction is decreased.   
 
The defender’s responsibility is to intercept the ball and kick it to the offensive. The 
attackers try to intercept the ball and drive the ball into the opponent’s goal. They only try 
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to shoot the ball when it is in their zone. Otherwise they return to their home position 
somewhere in their area, for example in Figure 8 shown by the drawn shirts.  
 

0

Attacker

(1) / “Move to my home 
position”

(2) “Ball is in my Area” / 
”Shoot”

/ “Move to my home position”

 
Figure 9 Conceptual FSM for the Attacker 

Figure 9 shows a conceptual FSM for the attackers. Table 2 shows the detailed plans for 
the left forward attacker. The other players have similar plans and conditions.  
 
 Description Detailed 
ConditionExpressions Ball is in my Area (BALL_X>0.33)٨(BALL_Y>0.33) 

Move to my home 
position 

( REACTIVE_MOVE  
  { x=0.6 , y=0.75 } ) 

Plans 

Shoot SCORE_DIRECT 

Table 2 Description with their details 

The other FSM’s and substitutions of detailed plans and detailed 
ConditionExpressions are left open for the reader’s imagination.  
 
In the next chapter, a more complex 1-3 formation is described which coordinates 
behavior between attackers that can operates in the same space.  

2.4 Evaluation 
 
This section compares the FSM Approach with the previously researched approaches for 
the MI20 system. Then it elaborates upon the coordination problem.  
 
Metrics 
Some metrics which have to be considered for the strategy module of the MI20 system 
are adaptability, extensibility, understandability, computational complexity, modeling of 
time based behavior and reductive explainability (listed in § 1.4). Two approaches have 
already been under taken for strategy in the MI20 system (summarized in § 1.3). These 
are the so-called Single Neuron Approach developed by Seesink [1], which has also 
been implemented and used in tournaments, and the Potential Field Approach by Petit 
[5]. The metrics used and how they relate to the research question are explained in 
section 1.4. The argumentation for of the values in Table 3 shall be given in this section. 
In the end, the FSM Approach shall be evaluated. The Single Neuron Approach, the 
Potential Field approach and FSM approach will be summarized here with regard to 
some metrics. After that, the metrics that concerns both methods, at the same way, will 
be emphasized. 
 
The concept of the Single Neuron Approach has been described in section 1.2.2. The 
design of the Single Neuron Approach is adaptable because reward and penalty values 
in the design can be changed. Furthermore, the features are parameterized. This means 
that the features have constants, which can be changed to tweak the features. The 
system is extensible because new features and logic plans can be added. Nevertheless, 



Strategy for a robot soccer team  
Roelof Heddema  
 

 20

a new logical plan could also need new functionality in the motion part to process a new 
logical plan.  
 
The concept of the Potential Field Approach has been described in 1.2.2. This design of 
the Potential Field Approach is adaptable because the weight factors of the sub functions 
can be changed. The design is extensible because new sub functions can be added. The 
computational complexity of this approach is an important drawback. How many 
calculations have to be made depends on the resolution one uses on the field, but this is 
subsequent greater than the number of calculations in the Single Neuron Approach.   
 
The Single Neuron Approach [1] and Potential Field Approach [5] can be considered as 
transformational systems. They lack support to time based behavior so these approaches 
could never be used when one would create behavior in which different actions have to 
be performed after some time. For example, timed-behavior can be used as a 
synchronization method in strategy. Timed behavior could also be useful in test set-ups.   
 
In addition, these methods perform worse in reductive explainability. When a robot 
performs a certain undesired behavior, it is very difficult what has to be changed because 
many parameters have its influence on the plan generation process. Especially when 
some parameters or weight is changed, some undesired behavior will disappear but can 
also cause unwanted behavior to appear. The connectivity between all features or sub-
functions with plan generating is too great to be totally overseen by a human. In addition, 
the used method cannot be decomposed further.  
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Adaptable + +
Extensible + +
Understandibility + +
Low Computational complexity + -
Time based behavior - -
Reductive explainability - -

 
Table 3 Decision systems of MI20 

A “+” means that this metric is being fulfilled, and “-” means that the approach performs 
worse at this metric.  
 
With the use of the FSM Approach, these last two drawbacks can be solved by the use of 
state machines. With state based behavior and identical robot soccer field configurations 
different planning can be performed. State machines can be part of other state machines 
or decomposed into smaller state machines, which gives humans a better way for 
explaining observed behavior. Furthermore, a state transition, which depends on one or 
more features or sub-functions, can easily be split into more states to change behavior 
for one particular situation. With parallel decomposition, also multi-collaborated behavior 
can be split into smaller and simpler parts. Also a state machine can be visualized with 
the use of UML, which will increase understandability. Therefore, this method has an 
advantage in comparison with the other methods with regard of reductive explainability. 
With adding temporal elements to the finite state machine one can create a so-called 
TFSM [16], timed finite state machine. With a TFSM, time based behavior can be 
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modeled. With the introduction of TFSM, an event-history can be designed. Upon an 
event-history, probabilistic analysis can be performed.   
 
The FSM approach defines a strategy consisting of finite state machines which are 
mapped to the robots, in appendix A.1 alternatives are listed and the reason for this 
choice is given. Examples of such state machines are shown in section 2.2.1 and 2.2.2. 
Each finite state machine consists of states and transitions. These states and transitions 
can be adapted and extended by the designer. But an algorithm to create changes to the 
finite state machines could also be developed. A transition has conditions, and can create 
actions. These conditions have to be fulfilled before a transition happens. A condition 
takes an observation, and this observation has to be above or below some threshold to 
become fulfilled. A number of these observations used in the system are listed in section 
3.1. The observations can also be adapted and extended as well. At strategy level a 
choice can be made between different finite state machines to compose a team to 
perform some type of play.  
 
The conclusion can be made that the FSM approach is adaptable and extendible as well. 
Because observation calculation, used to determine of a transition may happen, is done 
for each robot, instead of each position in the field, the computation complexity is being 
considered equal to the Single Neuron Approach and better than the Potential Field 
Approach. In Table 4, the results for the FSM approach are being summarized and it 
states that each metric is being fulfilled. 
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Adaptable +
Extensible +
Understandibility +
Low Computational complexity +
Time based behavior +
Reductive explainability +

 
Table 4 Evaluation for the FSM approach 

 
As can be seen from Table 3 and Table 4 the FSM approach is being considered the best 
in creating time based behavior and reductive explainability. 
 
Coordination 
 
For reaching coordination, different approaches are possible. Two important dimensions 
can be distinguished. One characteristic is about distributed or centralized coordination. 
The second characteristic is about implicit communication are explicit communication.  
 
Distributed coordination is achieved when the plan generating processes for themselves 
communicate with the other plan generating processes to create coordinated behavior. 
Centralized coordination is achieved when the plan generating processes uses a 
centralized mediator to which they send their desired plan and the mediator chooses 
which plan each plan generating process adopts.  
 
In appendix A.2, a centralized and a distributed algorithm for coordination at agent level 
are discussed. Neither one of these algorithms are implemented in the current system. 
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3 Design of different strategies for the MI20 team 
 
For our soccer team, the main objectives are preventing the opponent from scoring and 
maximizing our own scoring possibilities. When strategies (here we do not mean 
“strategy modules”) are developed, one should consider these to be team goals. This 
chapter will describe two strategies that have been useful in tournaments. It gives a 
blueprint of how strategies for a team can be composed of state machines.   
It is emphasized that one could create many different strategies and that these two are 
only particular examples of strategies. Before the two strategies are discussed, the 
available observations and plans are listed.  

3.1 Available observations and plans 
 
This section describes the observations of the MI20 system. The state machine uses the 
observations to determine the value of its conditions. In addition, the available plans that 
are used to manage the robots are listed. The state machine can use these plans. 
 
Observations 
In Table 6, the available observations are listed. These observations are calculated each 
time a new WordData arrives, and are used in the input for the state machine.  
 
Observations Informal description 
Ball_in_front 
Ball_is_forward 
Ball_is_backward 
Ball_in_clear_area 
Ball_close_to_own_goal 
Ball_moving_to_own_goal 
 
Has_direct_scoring_oppurtunity 
Ball_pressure 
Opponent_direct_scoring_oppurtunity 
 
Pass_team_mate 
 
Opponent_can_shoot_to_goal 
 
Ball_moving_to_own_side 
Ball_lying_still 
Ball_on_their_side 
Ball_on_our_side 
Ball_possession 
X_pos 
 
Should_spin 
In_goal_triangle 
Kick_away_from_our_side 
 
Ball_x 
Ball_y 
 
Intercept_x 
 
Intercept_y 
 
Elapsed_time 
Ball_in_triangle_with_own_goal 

Indicates if the ball is directly in the front of the robot 
Indicates if the ball is ahead of the robot 
Indicates if the ball is behind the robot 
Indicates if the ball is next to our goal area 
Indicates in which degree the ball is close to our goal 
Indicates to which degree the ball moves towards our 
goal 
Indicates to which degree the robot can score directly 
Indicates the threat from the ball 
Indicates to which degree the opponent can score 
directly 
Indicates to which degree the robot can pass to a 
teammate  directly 
Indicates to which degree the opponent can score 
directly 
Indicates to which degree the ball moves to our side 
Indicates to which degree the ball is lying still 
Indicates to which degree the ball is on their side 
Indicates to which degree the ball is on our side 
Indicates to which degree a robot can handle the ball 
Indicates to which degree the robot is in the back or 
forward 
Indicates if the robot should spin to shoot the ball 
Detects a chance to score 
Detects opportunities to kick the ball away while 
defending 
Indicates to which degree the ball is back or forward 
Indicates to which degree the ball is between the upper 
or lower bank 
Gives the x-coordinate from the estimated interception 
point of the robot with the ball. 
Gives the y-coordinate from the estimated interception 
point of the robot with the ball. 
Gives the progress of time 
Indicates if the ball is between the robot and their own 
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Ball_in_defender_area 
Ball_in_penalty_area 
Ball_in_goal_area 

goal 
Indicates if the ball is in the robot its defender area 
Indicates if the ball in the robot its penalty area 
Indicates if the ball in the robot its team goal area 

Table 5 Observations in the MI20 System 

 
Plans 
In Table 6, the available Plans for the MI20 system are listed. These plans represent the 
strategic means for the players to act in the robot soccer game. The state machine 
produces plans as output.  
 
Plan Informal description 
Go_behind_ball 
Keeper 
First_defender 
Panic_shoot 
Intercept 
Score_direct 
 
Block_ball 
Block_opponent 
Pong 
Offensive_position 
 
Kick 
Spin 
Move 
Pen_defender[1,2,3] 
Score_direct_persuit 
Central_attacker 
 
Halt 
Reactive_move 
Backup_attacker 
Run_up_attacker 
 
Simple_defender[1,2,3,4] 
 
Block_defender[1,2] 
 
Ray_shoot 
Secondpile_attacker 
 
Velocities 

Sends the robot behind the ball 
Lets the robot defend the goal 
Defend the goal area 
Shoots the ball and not to its own goal 
Intercepts a moving ball. 
Intercepts a moving ball and dribbles with the ball to a 
target point. 
Deflect a moving ball. 
Obstruct a moving opponent. 
Stay at the same y-coordinate on the middle line. 
Position before a static point before the opponent its 
goal 
Kicks a moving ball. 
Let the robot spin fast (counter) clockwise 
Positions a robot at a certain location 
Lets the robot defend the penalty area 
Pursuits the ball and with ball possession tries to score 
Lets the robot move on the centre line with respect to 
the balls x-coordinate. 
Stops the robot. 
Moves the robot to a certain location. 
Positions the robot between goal and ball.  
Positions the robot behind the ball to increase scoring 
opportunities. 
Positions defenders behind each other to cover the 
goal line. 
Positions defenders next to each other to cover the 
goal line. 
Shoots the ball to a place on the field. 
Lets the robot move in front of the second pile of the 
opponent’s goal with respect to the balls x-coordinate. 
Lets the robot move with provided linear and angular 
speeds. 

Table 6 Plans in the MI20 system 

3.2 Design of a 1-3 strategy 
 
This section describes the 1-3 strategy with rotational tactic. In the 1-3 strategy, the team 
is composed of players who perform the roles of keeper, defender or attackers. A 1-3 
formation will be described, thus a strategy with 1 defender 3 attackers and a keeper. 
Furthermore, the attackers will help the defense. Moreover, this type of behavior will bring 
cyclic (rotational) movement for the attackers. This strategy can be used in the MiRoSot 
5vs5 league. 
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3.2.1 The Keeper  
In Figure 7, the state diagram of the keeper is shown. The keeper has a defensive 
stance, translated into state Sactive and a passive stance, translated into state Spassive. 
When the ball is in the offense; the keeper stays behind and is maximizing the goal 
coverage. The keeper comes in the defensive stance when the ball is in the defense. In 
the defensive stance, the keeper has 3 solutions for 3 situations. The first situation is 
when the ball is in the clear area, the keeper will clear the ball. A clear area is defined as 
the region next to the goal, in this example this clear region does not depend on the 
position of other robots. In addition, clearing the ball in (robot) soccer is an attempt to 
shoot the ball away from the goal. Sometimes in robot soccer, it happens that the ball is 
stuck between two robots or between the walls and the robot. In the second situation, 
when the ball is stuck, the robot is commanded to spin, this command often resolves the 
stuck ball situation. In the third situation, when the ball is not cleared or spun away, the 
keeper will defend the goal line by staying at a line before the goal line and staying 
between the goal line and the ball. This is called the Block Ball action.  
 

Sactive

Keeper, 1-3 formation, rotational tactic

(2) ball in clear area / Clear 
Ball

Spassive

(4) ball not in defense / 
Maximize goal coverage

(5) ball in defense / Block ball

(1) ball not in clear area / Block Ball (3) ball stuck near me / Spin

 
Figure 10 State diagram of the Keeper 

 
In Table 7 the descriptions used in Figure 10 with their corresponding observations from 
Table 5 and their corresponding plans from Table 6 are shown.  
 
 Description Detailed 

ball in defense BALL_X > 0.4  

ball not in defense BALL_X <= 0.4 

ball stuck near me (( BALL_LYING_STILL >= 0.7 ) ٨
( BALL_POSSESSION >= 0.6 )) 

ball in clear area ELAPSED_TIME >= 0.006060 

ConditionExpressions 

ball not in clear area ELAPSED_TIME >= 0.003030 

Block Ball  BLOCK_BALL 
Spin SPIN 

Clear Ball KEEPER Plans 
Maximize goal 
coverage PEN_DEFENDER[1] 

Table 7 Descriptions with their details 

3.2.2 The Defender 
In Figure 11, the state diagram of the defender is shown. This defender has an even 
simpler behavior than shown for the keeper. It also has an active stance (state Sactive) and 
a passive stance (state Spassive). This defender operates in front of the keeper. The 
defender will maximize goal coverage when the ball is not in the defense. When the ball 
is stuck against the robot, the robot will spin to get rid of the ball. A spin plan could also 
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be created when, for example, the ball is directly approaching the robot and the spin plan 
is likely to cause the ball to move away from the goal, but finding the right conditions for 
this situation have not been investigated yet. In other situations, this defender is only 
meant to defend the goal area by staying at a line in front of the goal area and staying 
there between the goal area and the ball, this action is called Block Ball. The Block Ball 
action of the defender operates in the same way, the only difference is that it operates at 
a different position than the Block Ball of the Keeper. In Figure 11, the strategic plans 
Block Ball, Spin and Maximize goal coverage are descriptions. 
 

Sactive

Defender 1-3 formation, rotational tactic

Spassive

(2) ball not in defense / 
Maximize goal coverage

(1) ball in defense /
Block ball

(3) ball stuck near me / Spin

 
Figure 11 State diagram of the Defender 

 
In Table 8 the descriptions used in Figure 11 with their corresponding observations in 
Table 5 and their corresponding plans in Table 6 are shown.  
 
 Description Detailed 

ball in defense BALL_X > 0.4  

ball not in defense BALL_X <= 0.4 ConditionExpressions 
ball stuck near me (( BALL_LYING_STILL >= 0.7 ) ٨

( BALL_POSSESSION >= 0.6 )) 

Block Ball  SIMPLE_DEFENDER[2] 
Spin SPIN 

Plans Maximize goal 
coverage SIMPLE_DEFENDER[2] 

Table 8 Descriptions with their details 

In this section some considerations with regard to this defender are given. One could ask 
why this defender is never trying to clear the ball. Clearing the ball can be considered 
very risky for the defender. Clearing the ball is not always successful. This can be due to 
several reasons, but if it results in missing the ball, it immediately becomes a danger for 
the keeper. In Figure 12, such a situation is shown. The circled robot is the defender and 
it did not succeed in clearing the ball, which resulted in an undefended goal area, giving 
the team of Singapore a better opportunity to score. The risk of clearing also applies for 
the keeper, but the keeper is nevertheless protected by the boarding and by the defender 
when the keeper clears the ball.  
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Figure 12 Match against Singapore at 3m 46s, World Cup 2006 

 



Strategy for a robot soccer team  
Roelof Heddema  
 

 27

3.2.3 The Attackers 
 

Sd2

Attacker 1 , 1-3 Formation , rotational attack 

Sd1

Sd0

time > 1 sec / 
Panic Shoot

Sa2

Sa1

Sa0

time > 2 sec / Return

time > 3 sec / 
Defend , Restart time

time > 2 sec / Centre

time > 1 sec / 
Direct Score   

time > 3 sec / 
Back-up , Restart time

Ball In Defense / Return

Ball In Defense / Panic Shoot

Ball In Defense / Defend
Ball In Offense / Back-up

Ball In Offense / Direct Score

Ball In Offense / Central

Sd2

Attacker 2 , 1-3 Formation , rotational attack  

Sd1

Sd0

time > 1 sec / 
Return

Sa2

Sa1

Sa0

time > 2 sec / Defend

time > 3 sec / 
Panic shoot , 
Restart time

time > 2 sec / Back up

time > 1 sec / 
Centre   

time > 3 sec / 
Direct Score,
Restart timeBall In Defense / Return

Ball In Defense / Panic Shoot

Ball In Defense / Defend
Ball In Offense / Back-up

Ball In Offense / Direct Score

Ball In Offense / Central

Sd2

Attacker 3 , 1-3 Formation , rotational attack 

Sd1

Sd0

time > 1 sec / 
Defend

Sa2

Sa1

Sa0

time > 2 sec / 
Panic Shoot

time > 3 sec / 
Return , Restart time

time > 2 sec / 
Direct Score

time > 1 sec / 
Back-up   

time > 3 sec / 
Central , Restart time

Ball In Defense / Return

Ball In Defense / Direct Score

Ball In Defense / Defend
Ball In Offense / Back-up

Ball In Offense / Panic Shoot

Ball In Offense / Central

 
Figure 13 State diagrams of the attackers 

 
In Figure 13, the behavior models of the attackers are shown; the attackers use a 
rotational way of attacking. Rotation is normally meant as the movement of an object in a 
circular motion. A rotational way of attacking means that the (positional) target points of 
the attacker are designed in such way that circular movement for the attacker is 
commanded: such a movement is sketched in Figure 14, in Figure 13 the behavior 
models to achieve such motion is shown. Furthermore, it also shows a time-based 
behavior. The three models have the same structure but they perform different actions 
when they are for some time in the defense or offensive. This is also listed in Table 10. 
The time steps have to be at least long enough that the robots have time to travel from 
one point to another or enough time to intercept the ball and shoot. The distances 
between the different targets the attacker travels through, in attack or defense mode, are 
often in a quadrant of the field. It is assumed that the robot can reach an average speed 
of 1 m/s during team play and with a field that is a little more than 2 meters long, 1 sec 
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seems to be enough time to reach a next target point. It has some attacking states Sa, 
when the ball is outside the defense area, and some defending states Sd, when the ball is 
inside the defense area.  
 
In Table 9 the descriptions used in Figure 13 with their corresponding observations in 
Table 5 and their corresponding plans in Table 6 are shown.  
 
 Description Detailed 

Ball In Offense BALL_X > 0.25  

Ball In Defense BALL_X <= 0.25 

time > 3 sec ELAPSED_TIME >= 0.009090 

time > 2 sec ELAPSED_TIME >= 0.006060 
ConditionExpressions 

time > 1 sec ELAPSED_TIME >= 0.003030 

Central  CENTRAL_ATTACKER 
Shoot SCORE_DIRECT 

Back-up BACKUP_ATTACKER 

Defend PEN_DEFENDER[3] 

Panic shoot PANIC_SHOOT 

Plans 

Return SIMPLE_DEFENDER[4] 

Table 9 Description with their details 

 
When in the attacking mode, the player moves cyclically through three important points, 
which are shown in Figure 14, and Figure 15. The attacker tries to shoot. After the shoot 
attempt, it positions itself in front of the opponent’s goal, returns to the back and positions 
itself at a back-up point. After that, it begins a new attack cycle.  
 

Shoot

Central

Back-up

 
Figure 14 Circular targets for the rotational attacker 

When one wants to increase the number of attempts to score, one could decrease the 
time steps between the moments where a new target point is chosen. Another method is 
to increase the number of attempts by adding more robots. Due to the time-based 
behavior, one can keep the number of moments of collision between team-robots low, if 
the different attackers have different combinations of time with actions. An example is 
shown in Table 10. Synchronization events for the different attackers are moments when 
the ball enters or leaves the defense and a same time after which the timer will restart. 
The timer is based upon the system clock of the operating system, on which all state 
machines run.  
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 Attacker 1 Attacker 2 Attacker 3 

Time at 0 - 1 sec  Back-up Central Shoot 

Time at 1 - 2 sec  Shoot Back-up Central 

Time at 2 - 3 sec  Central Shoot Back-up 

Table 10 Different time-action combinations for different  
attackers, when the ball is in the offense 

 

 
Figure 15 Singapore playing with 3 attackers 

 
The attacking players can also help to clear the ball from the defense. In the defense, 
also a rotational behavior can be applied. Then the player moves cyclic through three 
important defensive points, which are shown in Figure 16.  
 

Panic Shoot

Defend

Returning

 
Figure 16 Targets for circular movement in defense 

 
In Table 11, the time-actions combinations for the defensive state of the attackers are 
listed.  
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 Attacker 1 Attacker 2 Attacker 3 

Time at 0 - 1 sec  Defend Return Panic shoot

Time at 1 - 2 sec  Panic shoot Defend Return 

Time at 2 - 3 sec  Return Panic shoot Defend 

Table 11 Different time-action combinations for different  
attackers, when the ball is in the defense 

 
With the time-action combinations for the offense states (Table 10) and defensive states 
(Table 11) of the player, one can observe two important properties. First, when an 
attacker in the defense has shot the ball outside the defense area, it will continue to shoot 
the ball. Second, when an attacker in the offensive performs the back-up action (the most 
back position in the attack cycle) and the ball enters the defense this attacker becomes 
the first helping defender. With these properties, a reasonably fast transition between 
offense and defense is being made. If one compares the plans that the attacker 
undertakes when the ball is in the defense, one can see a plan “Defend” which is also 
elaborated by the defender (section 3.2.2). Although the descriptions are the same, not 
exactly the same positioning is being realized for the different players.  
 
In the behavior diagram for the attackers, one can conclude that when the attacker is in 
the offensive state, strategic plan generation only depends on time. However, the player 
execution of a strategic plan can depend on the position and speed of the ball. An 
example of such plan is a “Shoot”, which results in the creation of control signals that 
should let the robot intercept a (moving) ball and kick it towards some desired point. 
When one wishes to create a formation with the rotational tactic for 2 or 4 attackers; for 2 
attackers, one could use other timing, but for 4 attackers one could add an additional plan 
to the behavior of the attackers, in order to prevent robot (players) producing the same 
plans at the same time.  

3.3 Design of a 2-2 strategy 
In the 2-2 strategy, the team is composed of players who perform the roles of keeper, 
defender or attacker. In this chapter, a 2-2 formation will be described, thus a strategy 
with 2 defenders, 2 attackers and a keeper.  
 
During the EC 2006, all matches were lost to high scores. The offense had no 
possession because the defense was hardly to stop the scoring attempts of the 
opponents. By increasing our defensive capabilities, the goal is to create more 
opportunities and time for creating offensive play. Therefore, a defensive approach after 
the EC 2006 was adopted focused primarily on performing saves on scoring attempts of 
the opponent’s teams. The defensive style of play is characterized as ‘low-pressure’. 
‘Low pressure’ defense results in passive positioning in the back focused to prevent 
penetration of the defense and minimize chances for the opponent to out-dribble 
defenders.  
 
The attackers will take a passive stance when the ball is in the defense, when the ball is 
in the offense one attacker will be moving at a supportive position while the other will 
operate as the on-ball player.  In the pictures (in this chapter) where robots are shown, 
the robots with a blue rectangle on top are opponent robots, the others are the robots of 
the MI20 team. 
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3.3.1 The Keeper  
 
The main task of the keeper is to stop the ball before the goal line. In addition, the main 
task for the defenders is to stop the ball before the keeper. Furthermore, the keeper tries 
sometimes to clear the ball away from the goal without losing the ability to return fast to 
its position in front of the goal line. The main idea behind the defensive approach was 
that it would be better to win with 0-1 than to loose with 21-10. 
 

 
Figure 17 Successful clearing 

In Figure 17, a filmstrip is shown when the keeper clears the ball. The keeper clears the 
ball only when the ball is next to the goal area. ‘Clear’-actions directed forward are not 
performed by the keeper to reduce situations in which the keeper is obstructed by own 
players. Because of the triangles in the corners of the field, a ‘clear’ action to the side can 
still cause the ball to move towards the offense. 
 

 
Figure 18 Successful save 

 
In Figure 18, the most important job for the keeper is shown: stopping a ball that would 
otherwise cross the goal line. Cruijff once said; "Football is simple. You are in time or too 
late. When you are too late, you should start sooner.", therefore the keeper does not 
always position himself exactly behind the ball but also drives directly to the interception 
point of the ball with the goal. In robot soccer sometimes an opponent player pushes the 
goalkeeper with the ball over the goal line. Such an action is considered a foul for the 
opponent and a goal kick is given to the keeper’s team.  
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Figure 19 Maximizing goal coverage 

 
In Figure 19, the defending robots are positioned such that the goal coverage is high. If 
the ball should suddenly move fast toward the goal, it is hoped that at least one of the 
robots will be on time to intercept the ball in front of the goal. 
 
The behavior for the keeper used in the 2-2 using wings is the same as used by the 1-3 
formation with the rotational tactic described in section 3.2.1.  

3.3.2 The Defenders  
 
In the 2-2 formation with ‘using wings’ tactic, the defenders adopt a low pressure style of 
defense. This means that the distances to the own goal are kept small. In a low-pressure 
style of defense, the distances to opponent players and ball are kept small. In Figure 20 
the positioning of the defenders (robots 2 and 3) are shown and their small distances to 
the own goal. This is the positioning of the defense when no actual threat is detected.  
 

 
Figure 20 Low pressure defense 

When the ball has entered the defense, the most forward defender can take action to 
shoot the ball toward the offense by means of the plan SCORE_DIRECT. This is 
planned when the ball is not moving too fast and when the ball is not between the own 
goal and the defender, as shown as transition T1 in Figure 22. This is because the ‘shoot 
plan’ execution becomes inaccurate when the ball speed increases, furthermore driving 
the robot around the ball seems to be very difficult. The rearmost defender takes only a 
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shoot action by means of a PANIC_SHOOT when the ball enters the penalty area and 
the ball is not between the goal and the defender.  
 

 
Figure 21 Defender taking offensive action 

 
When the defenders do not deliberate upon an on-ball plan, they intend to plan the 
PEN_DEFENDER, which drives the robot in straight lines around the goal area at some 
distance, whilst keeping space for the goalkeeper to clear the ball as can be seen in 
Figure 17. The calculation of the desired position for the robot is shown in section A.3.1.  
 

0

Forward Defender , 2-2 formation , “using wings” tactic

T2:(2) ( ( ( BALL_LYING_STILL >= 0.7 ) AND ( BALL_POSSESSION >= 0.6 ) )/( SPIN)
T1:(1) ( ( BALL_IN_DEFENDER_AREA >= 0.5 ) AND 
        ( BALL_IN_TRIANGLE_WITH_OWN_GOAL < 0.5 ) AND 
        ( BALL_LYING_STILL >= 0.1 ) ) / ( SCORE_DIRECT) 
T0:(0) ( ( )/(PEN_DEFENDER2) 

T2

T1

T0

 
Figure 22 State diagram for the forward defender 

In Table 12 the transitions in Figure 22 are listed with their rationale. The specific values 
in the conditions have been tuned during experiments and soccer play. 
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Transition name Rationale 

T2 If the ball lies still against the robot, which is often a stuck ball 
situation, the robot should spin. 

T1 If the ball is in the defense and not moving too fast and not 
between the robot and its goal, the robot will shoot. 

T0 Default, the robot positions as the defender, which, is most far 
positioned from the goal, but still within the penalty area. 

Table 12 Transitions with their rationale 

3.3.3 The Attackers 
 
The attacker’s behavior is based upon the ball position. The left forward player, which is 
shown as robot number 5 in Figure 24 and Figure 25, is considered first. The behavior of 
the right forward, shown as robot number 4, is the same but mirrored along the length of 
the field. For the left attacker the ball’s position is classified to be in one of 4 areas, as 
shown in Figure 23.  
 
 

Left Forward Right Forward

Left 
Back

Right 
Back

 
Figure 23 Quadrants for the  

left forward attacker 

 

 
 
One area is left back, when the ball is behind 25% of 
the field length and in the left part of the field, shown 
in Figure 24. The second area is left forward, when 
the ball is in front of 25% of the field length and in the 
left part, shown in the left situation of Figure 25. The 
third area is right back when the ball is behind 37,5% 
of the field length and in the right part of the field. The 
fourth area is the when the ball is in front 37,5% of 
the field length and in the right part of the field, the 
right forward situation is shown in the right situation in 
Figure 25. 
 

 

 
Figure 24 Attackers in passive stance 

In Figure 24, the passive stance of the attackers is shown, the attackers are passive 
when the ball is in the defense (left below is our goal). The attackers are positioned some 
distance before the penalty area and are waiting for the defense to get rid of the ball.  
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In Figure 24, the left forward attacker (robot 5) positions itself on 25% of the field length 
and 65% of the field width. If the ball is in the right back, the left forward attacker 
positions itself at 25% of the field length and 50% of the field width.  
 

 
Figure 25 Attackers in the active stance 

In Figure 25, two situations are shown. In the left situation, when the ball is in the left 
forward, the left forward attacker tries to shoot the ball by means of the plan 
SCORE_DIRECT. The right attacker, positions between the own goal and the ball at a 
distance of 600 mm behind the ball. This is done by means of the plan 
BACKUP_ATTACKER. 
In the right situation the roles are switched, the right forward attacker plans the 
SCORE_DIRECT and the left forward the BACKUP_ATTACKER. 
 

1

0

Left Forward Attacker, 2-2 formation , “using wings” tactic

T6:( 6 ) (( ( ELAPSED_TIME < 0.003030 ) ) / ( SCORE_DIRECT )
T5:( 5 ) ( ( ELAPSED_TIME >= 0.003030 ) ) / ( SCORE_DIRECT )
T4:( 4 ) ( ( BALL_LYING_STILL >= 0.4 ) AND ( BALL_POSSESSION >= 0.85 ) ) / ( SPIN )
T3:( 3 ) ( ( BALL_X < 0.25 ) AND ( BALL_Y >= 0.5 ) ) / ( REACTIVE_MOVE { x=0.25 , y=0.65 , theta=-3.14 } )
T2:( 2 ) ( ( BALL_X < 0.375 ) AND ( BALL_Y < 0.5 ) ) / ( REACTIVE_MOVE { x=0.25 , y=0.5 , theta=-3.14 } )
T1:( 1 ) ( ( BALL_X >= 0.375 ) AND ( BALL_Y < 0.5 ) ) / ( RUNUP_ATTACKER )
T0:( 0 ) ( ( BALL_X >= 0.25 ) AND ( BALL_Y >= 0.5 ) ) / ( SCORE_DIRECT )

T4

T3

T2

T1

T5

T6

T0

 
Figure 26 State diagram for the left forward attacker 

In Figure 26, the state diagram of the left wing attacker is shown. The structure of the 
state machine of the right wing attacker is similar to the left wing attacker. 
 
In Table 13, the transitions in Figure 26 are listed with their rationale. The specific values 
in the conditions are tuned with experiments and soccer play. 
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Transition name Rationale 

T6 

When the game is started, the attacker always starts with an 
attempt to score the ball. This is because an attacker is often 
positioned close to the ball during special game situations, for 
example a kick off. 

T5 This transition is only to change the state of the attacker to 
normal play.  

T4 If the ball lies still against the robot, the robot will spin. Such a 
situation is often a stuck ball situation. 

T3 
If the ball is left back, the defense has to get the ball to the 
offense and this robot positions itself in a position in front of the 
penalty area.  

T2 

If the ball is right back, the defense has to get the ball to the 
offense and this robot positions at a position in front of the 
penalty area. Notice the difference of conditions between T3 
and T2 with regard to the BALL_X observation. This difference 
exists because if the ball is right forward, this player adopts the 
BACKUP_ATTACKER plan, which positions the robot behind 
the ball and the planning is careful with regard to getting too 
many robots in the penalty area.  

T1 If the ball is right forward, the attacker takes a supportive role in 
the offense. 

T0 If the ball is left forward, the attacker takes an active role in the 
offense and tries to shoot the ball into the goal. 

Table 13 Transitions with their rationale 

3.4 Evaluation 
 
In the soccer game, offense and defense are separated by distinguishing two goals. The 
offense has as primary goal to move the ball into the goal of the opponent. The defense 
has as primary goal to prevent the ball entering their goal. When the ball is being moved 
from the own goal straight to the opponents goal it can be considered both offensively 
and as defensively beneficial.  
 
On the other hand, there are also plans available with low offensive and defensive value: 
an example of such action could be standing still at the border in the middle of the field.  
A trivial example in a 5vs5 game is that of a team with all players staying still at the side 
borders. This team should already in offensive and defensive aspect be beaten by a team 
of two players with one keeper and an attacker which only pursuits the ball and tries to 
shoot directly at the opponents goal.  
 
Next a look on how the 1-3 formation with the rotational tactic (§ 3.2) can be more 
offensive and more defensive than the 2-2 formation tactic (§ 3.3) is given. 
 
Two players form the offense of the 2-2 formation, the first player controls the left half in 
front of the opponent’s goal and the second player controls the right half in front of the 
opponent’s goal. The offensive operates in the following manner: first, when the ball is on 
the left part, the first player tries to shoot the ball toward the opponent’s goal. The second 
player is moving at a point behind the ball. Furthermore, the second player starts 
immediately starts a shoot attempt when the ball moves to the right half. Second, when 
the ball is on the right part, the second player tries to shoot the ball toward the opponent’s 
goal and the first player positions itself behind the ball.  
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With this strategy, always a player tries to shoot the ball when the ball is in front of the 
opponent’s goal.  
 
Unfortunately, shoot attempts can result in situations in which the player completely 
misses the ball. This is where the 1-3 formation with the rotational tactic (§ 3.2) becomes 
more offensive. The 1-3 formation is able to generate more shoot attempts per second 
than the 2-2 formation (§ 3.3). Furthermore, this strategy also returns robots that 
attempted to shoot, to positions behind the ball, which are supposed to be more favorable 
when shooting, toward the opponent’s goal, starts. For shooting in the defense the same 
argument holds, furthermore most of the time 3 robots are positioned in the penalty area 
while in the 2-2 formation most of the time 2 robots are positioned there because the 
other defender robot attempts to shoot the ball, misses and drives somewhere else. This 
is illustrated in Figure 27; robot 1 is the keeper, robots 2 and 3 are defenders and robot 4 
and 5 are the attackers.  
 

 
Figure 27 Defenders 2 and 3 missed the ball 

Both strategies have been used during the EC 2007. In matches played against VSB-
TUO from the Czech Republic, the 1-3 Formation was indeed more effective than the 2-2 
formation. In matches against TUKE robotics with the 1-3 formation more pressure to the 
ball could be kept, but our transition from offense too defense was to slow which caused 
a higher change of success for long dribbles (for the TUKE) because in our defense only 
one defender was present. This could be solved by adjusting the Back Up position more 
to the back. However, in matches against TUKE robotics the difference of effectiveness 
between the two strategies was not easily observable. Mainly, because the ball 
interception of TUKE robotics has a higher success rate and is faster. In Table 14, the 
main advantages and disadvantages for the discussed strategies are listed. 
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2-2 formation 
zone based offense 

1-3 formation 
rotational tactic 

Advantages 
 

Efficient against long 
dribbles. 

 

Able to recover from failed 
shoot attempts. 

Disadvantages 
 

Low pressure on the ball. 
 

 
Vulnerable for long dribbles 

from the opponent. 
 

Table 14 (Dis) advantages of the different strategies 

 
From the results of played matches, future work for a 2-2 formation with rotational attack 
is recommended. In addition, increasing the interception speed as interception accuracy 
is recommended. Nevertheless, matches against a weaker opponent also leaves room 
for the development for a 0-4 formation. 
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4 Underlying systems 
 
This chapter describes additional modification to the MI20 system, used to provide the 
Strategy module with consistent information and adequate control signal calculation.  

4.1 Robot identification 
 
Robot identification was improved by altering the Vision module. By using different color 
patches, as seen in Figure 28, direct identification of the robots on the field is possible.  
 

green

pink team
color    

green

pink team
color     

pink

green team
color   

pink

green team
color   

green pink

team
color  

Figure 28 Different color area arrangements for the color patches 

 
Before robot identification is explained, some terms are explained: 
 
Blob 

A blob is a data structure that contains the position information of the barycenter of a 
recognized color area on the soccer field. The color segmentation [20] in the vision 
module determinates the blobs that consist of clusters of adjacent pixels with similar 
color. 

 
Blob combination 

A blob combination is a tuple, with a green blob, pink blob and a team color blob.  
  
Match function 

The match function calculates a value that represents the correspondence of a given 
blob combination with a given color patch.  

 
To recognize a certain color patch two steps are taken: 
 
Step 1: 

For each blob combination, the matching, in terms of an error value, is calculated. The 
blob combination with the minimal error is selected. 
 

Step 2: 
From the selected blob combination, the centre and the orientation is determined.  
 

This approach has as disadvantage that wrong blob combinations can be associated with 
a certain color patch. Different patches positioned against each other can cause such a 
wrong association.  
 
Another method for patch recognition could use least squares fitting.   

4.2 Motion 
 
This section describes two additions to the motion module to improve robot control. 
For the new version of the system only a proactive motion planning was developed by 
Buth [9]. There was a problem with the proactive planning in combination with, for 
example, the collision avoidance or actions used to follow the ball. Collision avoidance 
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caused frequent request of re-planning for the motion module. The proactive motion 
module could not adequately handle re-planning and the robots showed slow speeds and 
response. 

4.2.1 Proportional Cosine control 
With proportional cosine control [17] the linear velocity is proportional to the distance 
error d. Also the angular velocity is proportional to the angular error θe. See Figure 29. 
 

 
Figure 29 Cosine control 

 
The following equations show the determination of the linear and angular velocities.  
 
Vlin = Kp · d · cos(θe) + vc 
 

Vang = Kθ · θe 
 
Kp and Kθ are called the proportional and angular gain, and are constant. vc is a small 
constant velocity which can be used when we want to move the robot through some point 
instead of stopping at the goal position. This can be the case when a robot is moving 
towards an intermediate point in a planned path.  
 
To help understand the working of these control law equations, consider the robot being 
oriented away from the target point g, with θe± ½π . In this situation, the linear velocity is 
limited by the cosine and a large angular velocity is calculated.  In contrast, when the 
target point is in front of the robot and the angular error θe is small, the linear speed can 
reach its maximum height. The values for the gain are set to Kp=0.3 and Kθ=8.0. 
Determination of proper values and also the influence of dead time to the use of a 
proportion cosine controller should be investigated further.  
 
The problem encountered with the proportional controller is that one has 2 options: 
• High gains:   

Results in fast speeds for short targets, but in case of for greater distances unrealistic 
control signals. 

• Low gains: 
Results is realistic control speeds for greater travel distances, but too slow speeds for 
short distances. 

 
One would have a controller which maximizes the acceleration of the robots and has fast 
speeds for short distances in combination of realistic speeds for great distances. 
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4.2.2 The pursuit move function 
 
In the pursuit approach [18] the main idea is to travel circle wise through the goal point 
gv, as seen in Figure 30. To accomplish this, the curvature of the circle is calculated and 
from the curvature the control signals (ω  and v ) are obtained. The curvature C of a 
circle is defined as the inverse of the radius r.  
 
 

gv

Robot

r=C-1

ygv

xgv

 
Figure 30 Pursuit approach 

 
The calculation of the control speeds involves different steps: 
 
Step 1: 

Transform the goal point to robot coordinates. The transformed target is called gv with 
coordinates (ygv, xgv) 

 
Step 2: 

An appropriate circle arc, with a certain radius r, is determined for the robot to travel. 
The aerial distance D from the robot to gv is given by: 

2 2
gv gvD y x= +   

The curvature C, which determines the ratio between ω  and v. C defines the desired 
circle arc, and is given by: 

2

2 gvx
C

v D
ω ⋅

= =  

 
Step 3: 

An adequate linear speed v is calculated. Default the maximal linear speed, geared by 
the system user, is used. However, when the robot has to stop at the given goal point, 
the linear speed is reduced as the robot comes closer to the goal point. This speed is 
limited by a factor s, which is made dependant on the squared distance as follows: 

2

2 2
a

Ds
c D

=
+

 

With ca=129 reasonable results have been obtained. When D2 is zero s becomes zero, 
and the robots stops. On the other hand, when D2 is great s approaches the value 1 
and the linear speed is almost not limited.  

 
Step 4: 
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An adequate angular speed ω is calculated. As long as the robot has not reached the 
goal point, the angular speed is calculated according to the linear speed and the radius 
of the circle. Otherwise, the angular speed is calculated to pose the robot to a given 
orientation. 

 
Step 5: 

The last step involves slippery prevention; this has also been investigated by 
Brandenburg [23]. In addition, the linear and angular speed is limited to prevent 
slippery of the robot. This means that for high curvature the linear and angular velocity 
has also to be reduced.  Slippery for a robot, with mass m, can be caused by the 
centrifugal force. The centrifugal force can be calculated with:  

2
c

c c
Fm vF m v a v

r m
ω ω⋅= = ⋅ ⋅ ⇒ = = ⋅  

The speeds have to be limited in such way that the centrifugal acceleration ac is not too 
great. A maximal allowed centrifugal acceleration amax should be determined 
experimentally.  Furthermore ac< amax should apply to the control speeds. If ac is greater 
than amax a limitation factor k can be calculated, in such way that the next equation 
holds: 

( ) ( )max ca k a k v k k vω ω= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅  

The limited speeds control speeds are calculated with: 

( ) ( ),l lk v k vω ω= ⋅ = ⋅
 

 
The problem encountered with the proportional controller arises mainly at strategy level. 
Sometimes, this pursuit method results in driving the robot along too small circle arcs, 
causing the robot in turning behavior. When this happens for the robot with the keeper 
role, the keeper loses its ability to react fast enough on a change of ball direction. The 
noise in the Vision system probably causes inconsistent radius calculation at close target 
distances.  

4.2.3 Evaluation 
 
This section compares the control methods. In Table 15, the main advantages and 
disadvantages of the methods are listed. 
 

 Proportianal  
Cosine Control Pursuit 

Advantages 
Can be used to reduce 

angular error and distance 
errors quickly. 

- Constant curvature 
- Exact calculation 
- Slip prevention 
- Stop profile 

Disadvantages 
The use of constant gains 

results in bad control 
signals if used for both far 

or close targets. 

Caused unwanted circular 
motion for the goal keeper 

Table 15 Comparision between proportional cosine and pursuit control 

 
In the Mi20 system, for reactive motion mainly the pursuit controller is used. For 
defensive plans, which tries the keep a robot moving on a single line, a proportional 
controller is uses. Therefore, the proportional controller is mostly used for close targets, 
and then it works fine. 
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4.3 State estimation 
 
This section describes two alterations to the state estimation process of the MI20 system. 
First, the change of robot association in the state estimator module is discussed. Second, 
the use of state prediction is discussed.  
 
Robot association 
Robot association is the association of a robot id with a robot pattern observed in the 
image having some location and orientation. Kooij [20] created the vision part of the MI20 
system that uses identical patches for each robot. To know where which robot is, Kooij 
created in the State Estimator a nearest neighbor algorithm for robot association.  
 
With the introduction of robot identification by means of the use of distinct individual 
patches as described in section 4.1, the nearest neighbor algorithm is not needed. When 
using the new patches, the Vision module incorporates the id of the detected patch into 
the Snapshot. The State Estimator maintains the association of position and 
orientation with the provided id when it creates the WorldData object.    
 
State prediction 
The smith predictor is mainly used to overcome the problems that arise with dead time. 
Dead time is in our system the time between the moments a control signal is send, and 
when the control effect is observed. Smith predication applied to robot soccer has been 
investigated by Koay and Bugmann [19].  
 

Controller Robot

Observation
Delay

Target(t) Control Signals
State

Sensed State
State Estimation

Predicted State

Control 
Delay

Control Signals

Control History

 
Figure 31 Smith prediction in MI20 

 
In Figure 31 smith prediction is shown for a single robot. To encounter for the delayed 
observation (of the send control signal), the control signals are stored in a Control 
History. The state estimation takes the sensed state of the robotsoccer field, and 
predicts kinematics behavior using the control signals from the Control History. This 
predicted state provides in a more accurate state, and is more useful for the motion 
controllers. 
 
Determination of the dead time is not done automatically yet. It is determined by the user 
with the aid of a real time monitoring diagram in which the predicted and the observed 
control signals are shown. When the two graphs coincide more or less, the delay is set 
appropriately.  
 
Kalman filtering 
The currently available Kalman filter in the system does not show any additional positive 
effect. It is likely that Kalman filtering improves when it is implemented using the control 
history. For the time being, the Kalman filter should be disabled during a soccer match.  
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4.4 Collision avoidance  
 
An important reason for a robot not reaching his target is that another robot obstructs the 
route to the target. Another reason is that a collision causes the robot to move at some 
unintended manner. For testing of strategies or for a free flowing game the recovery from 
collisions and collision avoidance are very important. A mechanism for collision recovery 
is described in appendix A.4. 
 
Also for automatic positioning, collision avoidance is needed. Obstacle avoidance is the 
task to reach a control objective without colliding. This is, most of the time, distinct from 
path planning, which involves control laws for driving. When a collision free path has 
been computed, but a path planner is not able to let for example drive a robot through 
that path, collisions may still occur. Nevertheless, this is considered as a path planner 
fault.  
 
Obstacle avoidance has to pre-compute a collision free path. When one has in the 
dynamic situation an idea of where obstacles are moving to, their trajectories can be 
taken into consideration (dynamic avoidance). When one has no idea of what an obstacle 
is going to do, only the location of the obstacle is being considered (static obstacle 
avoidance). Van der Linden [21] has performed research with regard to dynamic 
avoidance in the MI20 project. Next different methods are discussed and finally these 
methods will be evaluated. 

4.4.1 Role switching 
 
When starting with building a strategy and playing or positioning without an opponent 
team already collisions appear. So collisions between team robots happen.  
 
These collisions may even cause deadlock situations. Collisions sometimes occur when 
2 robots want to go to a position where the other robot is closer to. An easy way to 
prevent this collision is to switch the targets of the robots. Because the targets depend on 
the role of the robot (e.g. keeper) the same effect can be reached by switching the roles 
of the robots.  
 
An overall method for role switching was developed that minimizes the traveling distance 
between the different targets of the robots and the locations of all the robots.  
 
This method performs three steps.  
 
Step 1 

A distance table, from the robots to the different targets, is created.  
 
Step 2 

All different permutations of mappings from robots to targets are evaluated on the 
summated traveling distance.  

 
Step 3 

The third step involves selecting the mapping in which the summated distance is 
minimal.  
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4.4.2 Local vector field avoidance 
 
During the process of strategy engineering, matches with opponent robots caused also 
collisions. For these collisions, some form of resolution had to be created. First, risky 
situations had to be detected, and second the robot should avoid this risky situation.  
 
A robot g has a target to which it has to move and has to consider other robots to which it 
can collide. The avoidance technique of this method uses the following steps. 
 
Step 1 

Robots that are in some radius of robot g are considered candidates with which robot g 
could collide. For these robots, repelling vectors are calculated. 

 
Step 2  

For the target of the robot g, an appealing vector is calculated. 
 
Step 3 

The repelling vectors and the appealing vector is combined, and the combined vector is 
used to create the direction in which the robot has to move. 

4.4.3 Global vectorfield avoidance 
 
Another method to resolve risky situations, with regard of collisions, considers all robots 
and walls. A vector field can be created to calculate for each position on the field the 
direction of the repelling force of the robots and the attracting force of the target. In Figure 
32 a grid of positions is shown as dots with their corresponding vector represented as a 
line.  
 

 
Figure 32 Robot driving through a vector field 

 
Figure 32 shows a robot g that has to drive from its start position towards its target 
position. 
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Step 1 
For all other robots, besides robot g, are repelling vectors calculated. To prevent the 
robot to be directed through walls also repelling vectors for the walls are calculated. 
The repelling vectors have a weight wn that is proportional with the inverse squared 
distance dn of the other robot or wall to robot g. For w holds: 2

n nw d −∼ . 
 
Step 2  

For the target of the robot g, an appealing vector is calculated. 
The appealing vectors has a weight w. For w holds: 1.5w d −∼ . 

 
Step 3 

The repelling vectors and the appealing vector are combined, and the combined vector 
is used to create the direction to which the robot has to move. 
 

4.4.4 Single obstacle avoidance 
 
This method is straight forwarded. When the straight line from the robot to a target 
position is crossing obstacles, the closest obstacle is being avoided by calculating an 
intermediate target next to this obstacle, as shown in Figure 33.  
 

targetobstaclerobot
 

Figure 33 Robot driving around the obstacle to its target 

 
The intermediate target is positioned perpendicularly to the straight line from the robot to 
its target. If the obstacle, from the robot point of view, is on the left of the straight to its 
target, the intermediate point will be positioned right. If the obstacle, from the robot point 
of view, is on the right of the straight to its target, the intermediate point will be positioned 
left. The distance from the intermediate point to the obstacle has been chosen 120 mm 
(about one and a half robot’s width). 
 
For this method the opponent robots are considered as static obstacles. Nevertheless, for 
team robots their (intended) movement is taking into account. When the team robot that 
is crosses desired path of the robot is about to leave before a collision happen, there is 
no need for the robot to avoid the moving obstacle. Figure 34 shows this situation. 
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targetleaving
obstaclerobot

 
Figure 34 Robot driving straight to its target 

4.4.5 A* avoidance 
 
This method has been adopted by the current world champion Socrates from Singapore 
[17]. The robot is modeled as a hexagon. A collision free path is calculated with an A-star 
algorithm. This is done within each control cycle.  
 

 
Figure 35 A* path search trough hexagons 

 
The A*-search is based a visibility graph [22], which finds an shortest path (in the graph) 
if it exists. The basic principle is to expand nodes successively beginning at the start 
node until the goal is reached. Nodes are expanded by means of edges which connects 
the nodes. In this way additional reachable nodes are found. The expansion of the nodes 
can be directed by an evaluation function f(n). The node with the lowest value for the 
evaluation function is expanded first. Next, the key elements of this algorithm are 
discussed with regard of the application in the robot soccer domain. 
 
Nodes 

Nodes are created in several steps. First around each robot, 6 points are calculated 
considering a bounding circle for the robot. Second, we have to validate that the 
calculated points are located in the field and that the calculated points are not in the 
bounding circle of other robots, then the points can be considered as suitable nodes.  

 
Edges 

Straight lines between a reachable, so called opened node, and all the other nodes are 
created and when a line is not in the bounding circle of a robot, the line is considered 
as an edge. The other node connected, by this edge, is supposed to be a successor (or 
child) of the opened node, the latter being the parent node.  

 
Evaluation function f(n) 

When a successor node s is determined, the cost value f(s) is estimated. The total cost 
estimate from the start through parent node n and s to the goal point is calculated by 
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f(s)=g(s)+h(s). The cost estimation g(s), which estimates the cost from the start to s, is 
computed by g(s)=g(n)+distance(n,s). For calculating distance(s,n)  we use the 
Euclidean distance between n and s. The cost estimation h(s), from s to the goal, is the 
aerial distance between s and goal. 

 
The search terminates if there are no nodes to be expanded anymore or when a path to 
the goal has been found.  
 
To find the nodes of the path, the chain of parent nodes of the goal node is traversed 
backwards. When a found parent is the start node, the current node being investigated is 
the first node where the robot has to travel to.  

4.4.6 Evaluation 
 
In this section an overview of the main advantages and disadvantages of the methods is 
given. 
 
Role switching works fine to avoid collisions between team robots. Nevertheless, in the 
current implementation role switching can cause risky strategic situations (e.g. empty 
goal). It provides an outstanding way to prevent collisions between team robots but has 
undesired effects at strategy level. Further research of the benefits of role switching could 
be focused on as a mechanism for collision recovery. It could make sense to apply role 
switching only when a collision will happen in the near future. Role switching could also 
be used between the transition between offensive team play and defensive team play or 
to minimized time for ball interception.  
 
Radius based, local vector field avoidance works fine to avoid near robots, but progress 
towards its targets is often too slow. Some important flaws were visible such as, 
oscillating behavior. This behavior became visible when a robot, which was avoiding 
obstacles, stopped considering them when they became out of range. Then this robot 
drives directly again into the critical area. Another flaw was that robots could be 'scared 
away' from their target position. 
 
Global vector field avoidance works fine to avoid single obstacles in a fluent way and 
keeping progressing towards its target. Nevertheless, avoiding groups of obstacles can 
cause a circuitous route for the robot. When robots are closest to their target it rarely 
happens that a new direction is calculated that moves away from their target. This 
method worked very well with auto-positioning. A positive point of this method is that the 
robot avoids also groups of obstacles. Nevertheless, there are still field configurations 
possible, which tend to drive the robot away from his target. This problem arises due to a 
stronger effect of the repelling forces of the obstructing robots, not that it was 
impossibility to reach the target. This latter problem became important when our robot 
discarded some scoring situations where the ball is surrounded by enemy defenders. 
 
Single obstacle avoidance leads to an optimal path when only one obstacle has to be 
avoided. Nevertheless, in the robot soccer game sometimes multiple obstacles have to 
be taken into consideration to find a reachable path towards its target. The main 
disadvantage of this method is that the robot can get funneled by obstacles and will be 
unable to reach his target.  
 
A*-avoidance obtains an optimal path considering multiple obstacles. There is one 
disadvantage; this method does not take into account the movement of the obstacles so 
there are situations in which avoidance could have been more efficient.  
 
Table 16 shows the main advantages and disadvantages for the described methods. 
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 Advantage Disadvantage 

Role switching Minimized traveling-time for 
all the robots 

- Risky situations in the robot
  soccer game 
- Works only for team robots 

Local vector field Intuitive concept for 
obstacles avoidance 

  Repetitive behavior due to 
  ‘forgotten’ obstacles 

Global vector field Fluent movement 
  Repelling ‘force’ can  
  become to great for  
  reaching the robot target 

Single obstacle avoidance Can recognize irrelevant 
moving obstacles 

  Robot can be ‘trapped’ in  
  repetitive calculation of two  
  paths 

A*-search Finds optimal path   Does not take moving  
  obstacles into account 

Table 16 (Dis) advantages of the collision avoidance methods 

 
We can conclude that the best approach would be to use the A*-search which always 
gives a path if it exists. In addition, to tackle the disadvantage of the A*, when the A*-
search returns a path that only avoids a single obstacle, one could use the single 
obstacle avoidance technique to be able to neglect this obstacle if when the obstacle is 
leaving its obstructing position.  
 
A combination of methods has been applied by combining the vector field with the single 
obstacle avoidance (Appendix A.5). The A*-search with a moving obstacle exception 
should be researched further.  
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5 Conclusions and recommendations 
 

This chapter will conclude the work described in this thesis, which is part of the work 
done on the MI20 project since 2002. Furthermore, recommendations are given to further 
improve the robot soccer system.   

5.1 Conclusions 
A new design for the Strategy module has been made. This design is the so-called 
FSM approach because the used plan selection mechanism is based upon FSM’s.  
 
For each robot, a role based Player in Strategy exists. Each Player uses a FSM for 
plan selection. Goalie, Defender and Forwarder can be considered as roles. FSM’s for 
different roles are given. Multiple robots can act as a coordinated robot soccer team 
when Strategy assigns different Roles to the robots. Such combinations of Roles are 
the fundamentals for the use of formations and tactics. Switching of strategy is easier 
because it is possible to play with different formations and different tactics.  
 
The FSM approach is considered better than two previously developed strategies, the 
Single Neuron approach and the Potential Field approach, because it supports time 
based behavior, performs better at reductive explainablitity and does not have great 
disadvantages with regard to adaptability, extensibility, understandability and low 
computational complexity.  
 
For the robot soccer system different strategies with the FSM Approach have been 
developed. In this thesis, two strategies, based upon a 1-3 formation and 2-2 formation, 
are presented. The designed 1-3 formation has one keeper, one defender and three 
attackers that alternating, time based, adopt shoot attempts. The designed 2-2 formation 
has one keeper, two defenders behind each other and two attackers next to each other.  
 
The 1-3 formation and 2-2 formation based strategies have been tested in international 
tournaments. These strategies work well and are able to generate consisted planning 
while for each robot it is clear if it operates defending or attacking. If the two strategies 
are compared with each other, some differences are visible during game play. The 1-3 
formation is more vulnerable for long dribbles from opponent robots than the 2-2 
formation. This vulnerability becomes apparent when opponent robots are faster moving.   
On the other hand, the designed 1-3 formation is able to recover from failed shoot 
attempts while the 2-2 formation only assigns one particular robot to shoot when the ball 
is in some region, even when this robot stopped (undetected) his shoot attempt.  
 
With the 2nd place at the European Championship 2007 reached by using the 1-3 
formation and 2-2 formation, it can be stated that the FSM Approach can be used well to 
create strategic plans for robots. 
 
To provide the Strategy with consistent information a new robot identification algorithm 
has been introduced. This method uses different color patches to identify the robots. In 
the new method, wrong association is still possible, but appears considerable less then 
before.  
 
For adequate execution of the strategic plans also two motion functions are developed. 
The two motion functions, the Proportional Cosine Controller and the Pursuit, are used 
both in the system to use the advantages of each of them. The main advantages of the 
pursuit are constant curvature, exact calculation, slip prevention and the opportunity to 
use a stop profile. Unfortunately, the use of pursuit also caused unwanted circular motion 
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for robots that have as main objective to stay moving as fast as possible at a single line. 
The main advantage of the Proportional cosine control is that it can be used to reduce 
distance and angular error fast as long as slip and (de)acceleration of the robot is 
neglected, and is being used for defensive plans with close targets. These functions 
made execution of Plans possible.  
 
Smith prediction has been introduced to compensate dead time. With smith prediction, 
the performance of motion control algorithms and state estimation process has been 
improved. 
 
Collision avoidance techniques have been investigated because frozen situations in the 
robot soccer game have to be resolved.  Playing without opponent already caused stuck 
situations between team players. The observation was made that this occurred in 
situations in which two robots tried to advance to a point where each of those two robots 
robot was closer to than the other robot. Such a situation could arise due lack of 
coordination or due to change of ball direction or collisions with opponent robots. With a 
role switching technique the distances between targets and robot positions were 
minimized and therefore these stuck situations disappeared. However, this method did 
not prevented situations in which opponent robots were involved. Therefore, a more 
generalized approach had to be taken. A local vector field method to avoid collisions was 
developed, which worked with an appealing and repelling principle to generate a new 
sub-goal for the robot. In the local vector field method only objects near the robots were 
taking into account, this resulted in oscillating behavior. In the global vector field method, 
oscillating behavior faded away, because the appealing and repelling principle was used 
for all objects in the field. Nevertheless, another drawback became apparent. With some 
configurations, robots drove very inefficient paths, or the goal of the robot became 
unreachable. Therefore, a more straightforward collision avoidance method was added 
which only tried to pass the first obstruction, the single-obstacle avoidance method. The 
vector field method showed in overall more fluently movement and the pass-first method 
showed to keep pursuing its target and more collisions. Avoidance seemed not always to 
be needed, especially when the obstructing robot is moving away from its obstructing 
position. Sometimes a robot was trapped between other robots trying to avoid in turn 
these robots. Therefore an A*-search algorithm was developed to create a new sub goal 
for the robot. This A*-search gives always a path if such a path exists and is considered 
the most robust method to resolve stuck robot situations. Improvements for the A*-search 
does not involve in resolving exceptions in which the method does not work as solution 
for frozen situations, but in finding exceptions in which the method is considered to be 
unnecessary.  
 
With the developed Strategy module, strategies based upon the 1-3 formation and 2-2 
formation, new robot identification algorithm, motion functions and collision avoidance 
techniques the robot soccer system of MI20 has been improved as whole.  

5.2 Recommendations 
A lot of work has been performed, but still a number of aspects can be improved.  
 
In the Strategy module, one could start with creating an xml-language to describe the 
FSM. In addition, the development of an FSM editor for the system would be useful. 
Another more Artificial Intelligence direction would be the development of a decentralized 
coordination algorithm. With regard of communication between Players, situations in 
which communication is profitable and representing the communication, a lot of work can 
be performed. To explain why a finite state machine produces some strategic action more 
research could be done in tracing. Furthermore, more probabilistic analysis should be 
performed during game play 
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If it is chosen to continue the development of a new strategy for team play, a new 2-2 
formation could be developed that uses the same type of attackers of the developed 1-3 
formation. It is expected that it has the same defensive robustness and furthermore a 
stronger offensive strength than the current 2-2 formation based strategy. A more 
offensive approach is also recommended in creating a 1-1-2 or 0-4 formation in which a 
player also covers the line between the ball and own half. 
 
For robot identification, also different approaches are possible, like using least squares 
fitting for robot identification or background subtraction for robot detection. With regard of 
the color patch identification, an improvement could be added to check if an area that is 
supposed to be black is not some blob. In the current method there are situation possible 
in which multiple patches are composed together in such way that the system could not 
tell were some color patch is located. With such a black space check, multiple solutions 
could be distinguished. These situations did not occurred noticeably yet, likely because 
there are few situations in which such precise configurations are maintained for a long 
period of time.  
 
The new developed motion function improved the motion of the robots, nevertheless it is 
expected that faster speeds can be obtained. So more research can be performed toward 
accurate reactive motion that can be used at faster speeds than 1.5 m/s.  
 
When attention is given to state estimation, a real improvement to the system would be 
the development of a algorythm that can determine the dead time automatically. 
Furthermore adapting the kalman filter in such way that it uses the control signal history 
is expected to improve estimation.  
 
With regard of collision avoidance, optimizing the A*-search is recommended. An A*-
search which recognize obstacles which are not relevant should be researched further. 
With regard of role swithing only a global method has been developed, perhaps a local 
approach does not cause additional risky situations.  
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A Appendix  
 

A.1 Motivation for distributed plan generation 
State machine(s) can be used in the strategy module in different ways. First one could 
create one state machine for plan generating for all robots. A second method is that for 
each robot a state machine can be created and the third method is to create a state 
machine for each role. This can be seen as a means to perform a role as known in field 
soccer. Such roles have to be designed. A way to design strategies is to look at plays 
performed during tournaments of the FIRA.  
 
The first option is being disregarded because it was decided to create strategies as 
simple as possible. With creating a state machine for each role it is also possible to 
assign the these roles at a static way to the robots and that would exactly lead to the 
same result as the second option, because each role would then always have one state 
machine. Furthermore, when choosing for the third option one also has freedom to 
dynamic assign roles to robots, which can become useful when resolving problems with 
undetected or stuck team robots.  
 
Therefore, it is chosen to create state machines for the different roles we want for the 
team robots such as goalkeeper. Synchronization between the finite state machines is 
the problem for the FMS’s to operate in unison. In multi agent system, this problem is 
seen as a coordination problem. Synchronization in the FSM approach can be 
established with a shared clock and events. Moreover, communication between the 
behaviors can establish synchronization.  
 
One could think of some hybrid structure in which a state machine is being used for plan 
generation for more robots with state machines generating plans for single robots. This is 
option is kept open for further research because simplicity is considered important. 
 

A.2 Coordination between Players 
The benefits of coordinated planning are according to Seghrouchni [15]: 
• Harmful Plans are cancelled. 
• Advantage is taken of helpful interactions. 
 
First distributed coordination shall be discussed, second a previous developed 
centralized method shall be discussed. 
 
Distributed coordination 
If coordination between the Players is created with a distributed algorithm, 
communication channels between the Players are necessary.  
 
The main requirements for distributed coordination are: 
• Communication between Players.  
• Recognition of potential interactions between Plans. 
• Negotiation between Players in the case of conflictual situations. 
 
Seghrouchni [15] also proposed a coordination algorithm consisting of two phases. In 
analogy of this algorithm, a coordination algorithm for use in our system is described. The 
players are initialized with already coordinated plans. Furthermore, players can only 
adopt another plan when this is coordinated with the other players. Therefore, the plans 
of the players stay coordinated. 
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Phase 1: 
  

1. Player gn produces a new plan πn. 
2. gn sends his plan πn to the other Players. 
3. Each player gk (k≠n) receives πn and tries to coordinate it with plan πk. 
4. The other players return to gn the coordination results in a data structure which 

represents the possible synchronization between the different plans. 
 
Phase 2: 
 

1. Player gnproduces a coordinated plan Πn by taking into account the possible 
synchronizations with the other players and its own desired plan πn.  

2. gn send synchronization messages to all other players 
3. Player gn starts performing his plan Πn. 

 
Each Player should use this algorithm when it deliberates upon a new plan and these 
phases should be mutual exclusive with the plan generation process of the other players. 
 
Centralized coordination 
Above algorithm is a pure distributed coordination algorithm. The coordination algorithm 
used by Seesink [4] used a coach agent to solve the coordination problem centralized. It 
uses the principle of resource claiming [4]; a plan is seen as a resource that can only be 
used by a single player. In Seesinks approach, the coordination has two steps: 
 
Step 1: 

1. A Player calculates for each action a desirability score. 
2. The Player sends its desirability scores to the coach agent. 

 
Step 2: 

1. The coach agent compares the different scores of the player and decides which 
resource is most suitable for the player to claim. If another player already owns 
that resource, the player is not suitable to claim it.  

2. The coach agent assigns and sends the most claimable plan to the player. 
3. The Player starts performing the assigned plan.  

 
Each Player should use this algorithm when it deliberates upon a new plan and these 
phases should be mutual exclusive with the plan generation process of the other players. 
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A.3 Plan’s position calculation 
 
Some of the plans being used in the described strategy of this chapter are explained 
more in detail. In 3.1 an overview of plans in the system is given. In this section a more 
detailed view of how the plans PEN_DEFENDER and BACKUP_ATTACKER calculate 
positions is given. The plan REACTIVE_MOVE does not perform calculations but only 
passes on its (given) attributed. The plan SPIN only notifies motion to let the robot spin. 
The conversion of positions to control signals, for the robots, is done in the motion 
module. For the positioning and creation of the control signals for the plans 
SCORE_DIRECT and PANIC_SHOOT, one should read the work done by Buth[9]. The 
conversion of the plans calculated positions to control signals for the plans 
REACTIVE_MOVE, PEN_DEFENDER and BACKUP_ATTACKER is considered in 
chapter 4.2. 
 

A.3.1 PEN_DEFENDER[id] 
 
In this section,it is explain how the position for a robot with the PEN_DEFENDER plan is 
calculated. This plan is parameterized with a parameter id. How higher the id, how 
greater the distance is from the goal for this defensive positioning. An informal description 
for this plan was already given in 3.1, and it being recalled that the PEN_DEFENDER 
calculates positions for the robot, which should result in driving the robot in straight lines 
around the goal area at some distance, whilst keeping space for the goalkeeper to clear 
the ball. 
 

ball
ball

 
Figure 36 Positioning of  PEN_DEFENDER 

 
In Figure 36, the dotted lines between the dark points represent the straight lines where 
the robot has to travel over. If the direction of the ball crosses one of the dotted lines, the 
robot has to position there (left situation), otherwise the robot positions at the same 
height or width as the ball (right situation). 
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A.3.2 BACKUP_ATTACKER 
In this section, it is explained how the exact position for a robot with the 
BACKUP_ATTACKER plan is calculated. 

ball
back up

base

600 (mm)

 
Figure 37 Positioning of  BACKUP_ATTACKER 

The calculated position for the BACKUP_ATTACKER is between the own goal and the 
ball at a distance of 600 mm behind the ball, as shown in Figure 37. The robot should 
block the ball when it suddenly starts moving towards the goal while in the meantime the 
distance to the ball is small enough to take fast offensive action.  
 

A.4 Collision recovery 
Because avoiding collisions is very difficult, one should also implement a method to 
recover from collisions. A simple method to detect a collision is to take into account the 
lack of progress given a history of send control signals. Then applying a turn back and 
then moving to the original target provides already a deadlock free game. One could think 
of situations in which more efficient methods could be applied but it was chosen to tackle 
the problem with an overall solution that can be used to recover from frozen situations.  
 

  2 1 0      

     2 1 0   

Send signals

Observed signals

PointerDead time

 
Figure 38 Circular buffer for linear velocities 

First thing to do is to keep track of sent control signals and observed speed using a 
circular buffer as shown in Figure 38. Each time that new world data is being received the 
linear speed of the robot is stored at the pointers index in the buffer and the pointer is 
incremented. Each time a control signal is received this is stored at the pointers index. 
Second, it has to be determined if a robot is responsive. Dead time is also taken into 
consideration; dead time is the delay between signal send and being observed, in 
consideration. For the dead time 3 world data updates (99 ms) are assumed in Figure 38. 
Furthermore the last 3 signals observed are compared with there equivalent in the send 
signal history. When all these 3 observed speeds are less than 70% of the send signals, 
it is assumed that the robot is obstructed or stuck. To a stuck robot, for some time (13 
World Data updates) a turn back (when the robot was moving forward) or turn forward 
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(when the robot was moving backward) command with vl=±800 mm/s and vang=5.5 rad/s 
is send. 
 

A.5 Hybrid method for collision avoidance 
 
During the World cup 2006 a hybrid method was adopted for team play.  
A robot first evaluated the vector field method, but if from robots point of view the angle 
between the original goal and the sub-goal became greater than 0.4π the single obstacle 
avoidance was used. During the matches played in the world cup 2006, some goals 
scored by the opponents could be imputed to a robot which got trapped between other 
robots trying to avoid in turn different other robots, and hindering the other robots.  
Therefore an A*-search algorithm was developed to create a new sub goal for the robot.  
 
Avoidance seemed not always to be needed, especially when a team robot, which has to 
be passed, has a goal further away than the avoiding robot. This exception was also 
integrated in the hybrid method after the world cup 2006.  
 
The visibility graph method worked fine in the European cup 2007. The moving obstacle 
exception did also work fine in the European cup 2007 and improved the hybrid method. 
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