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Summary

Recent research (e.g. Bastola et al., 2011; Coron et al., 2012; Merz et al.,
2011; Vaze et al., 2010) has shown that the performance of calibrated concep-
tual models (measured as the value of an objective function) can deteriorate
when the models are used for periods with different climatic conditions than
were present during calibration of the model. This can decrease the confi-
dence in model functioning during climate change impact assessment, where
hydrological models might be applied to different climatic conditions than
were present during their calibration period. Merz et al. (2011) showed that
correlations exists between optimal parameter values and certain climate
characteristics. The goal of this study is to use these correlations to estab-
lish relationships between optimal model parameters and climate variables,
to quantify how well these relationships perform during validation and to
assess how these relationships perform during climate change impact assess-
ment, compared to a traditional hydrological approach towards calibrated
parameters.

The Hydrologiska Byrns Vattenbalansavdelning (HBV) model is used,
with the Polish We lna catchment as test case. According to the sensitivity
analysis, parameters FC, LP , α, Ks, PERC and TT have the most influence
on overall model output variance, and these parameters are used in further
analyses. The other HBV parameters are fixed at default values.

Parameters FC, α, Ks and PERC show significant linear correlations
with various precipitation related climate characteristics. Moreover, these
correlations are sensible from a hydrological point of view, and they are
thus possibly the result of an actual relationship between parameter values
and climatic conditions, rather the result of coincide. Parameter LP is
significantly correlated with a single climate characteristic, which is deemed
a coincidence. Parameter TT shows no significant correlations.

Linear regression analysis is used to establish regression equations that
estimate time-varying values of FC, α, Ks and PERC, depending on cli-
matic conditions that show significant and explainable correlation with the
individual parameters. The equations vary in their ability to capture the
variance in parameter values. Respective fits of the regression equations are:
R2
α = 0.54, R2

PERC = 0.42, R2
FC = 0.40 and R2

Ks
= 0.18. Given the com-

plexity of the problem, the equations for α, PERC and FC estimate their
respective parameter values fairly well and these equations are used to es-
tablish regression models. The equation for Ks is considered too inaccurate
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to be used.
Four regression models are established that estimate the value(s) of (1)

α, (2) α and PERC, (3) α and FC and (4) α, PERC and FC respectively.
Model functioning is compared to that of the base model, which uses only
calibrated parameters. Performance during calibration is similar for the base
and regression models, but validation performance is significantly better for
the base model (see table).

Base model Regression models
1 2 3 4

Calibration
Y [-] 0.73 0.73 0.71 0.73 0.71

NS [-] 0.73 0.73 0.71 0.73 0.71
RVE [-] 0.00 0.00 0.00 0.00 0.00

Validation
Y [-] 0.69 0.52 0.50 0.56 0.56

NS [-] 0.78 0.60 0.65 0.63 0.69
RVE [-] 0.13 0.15 0.27 0.12 0.23

Although the base model performs better during validation, one regres-
sion model is selected to explore the effects of using a regression model on
climate change impact assessment results. Regression model 1 is selected,
because parameter estimates of FC and PERC are affected by biases in
GCM-RCM input and lead to unrealistic model behaviour. With the same
input, the selected regression model has a tendency to simulate higher high
and low flows, whereas the base model simulates higher medium flows. The
base and regression model react similarly to GCM-RCM input, and both
models project an increase in future average runoff. Generally the base
model projects bigger changes than the regression model, except during
summer months where the regression model projects bigger changes.

Concluding, using a regression model rather than a base model affects
the outcomes of the climate change impact assessment. Since the base model
has better validation performance, it is infeasible to use a regression model
in this specific case. However, the methodology used in this study seems
promising but is hindered by several data quality issues. Judging from
validation performance, regression models might be a viable alternative to
using only calibrated parameters in a hydrological model.

However, this study assumes that a relationship exists between param-
eter values and climatic conditions but this is, as of yet, not certain and
this lowers confidence in the applicability of the regression model for future
conditions. Therefore several recommendations are made that might assist
in further clarifying the potential relationships between parameter values
and climatic conditions in future research.
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Chapter 1

Introduction

This chapter introduces the topic of parameter non-stationarity and gives
an overview of this study. Section 1.1 presents a summary of recent research
on climate change and explains the issue of parameter non-stationarity that
can occur when a hydrological model is used for climate change impact as-
sessment. Section 1.2 defines the research goal, which is broken down into
several research questions in section 1.3. Section 1.4 gives an overview of
the research strategy and a reading guide for this document.

1.1 Problem summary

1.1.1 Climate change

Observations show that recent years (2001-2011) are amongst the warmest
in recorded history (National Climatic Data Centre, 2011). Changes in
atmospheric concentrations of greenhouse gasses and aerosols (suspended
fine soil or liquid in a gas, e.g. clouds and smog) and changes in land cover
and solar radiation alter the energy balance of the climate system. It is
very likely that recent changes resulting from human activities have lead
to the net observed warming effect (International Panel on Climate Change
[IPCC]; 2007).

Projections of future climate change start with greenhouse gas emission
scenarios. These give possible scenarios of the development of human emis-
sions and are used as input for carbon cycle models (IPCC, 2001a). Projec-
tions of future radiative forcing from carbon cycle models are then used as
input for Global Climate Models [GCMs] (Coron et al., 2012), resulting in
projections of future climate variables (e.g. precipitation and temperature)
(IPCC, 2011).

Projections of global averaged surface warming for the year 2100 vary
per emission scenario and GCM, within the likely range of +1.1 to +6.4◦C,
relative to the period 1980-1999 (IPCC, 2007). Temperature increase leads
to higher evapotranspiration and an increase of water vapour input into
the atmosphere (Nakicenovic et al., 2000), which in turn affects precipita-
tion patterns around the globe. Precipitation changes include changes in
the total amount of rainfall, the intensity of rainfall events, or both. Ex-
pected changes in average precipitation for the period 2090-2099 vary per
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region, up to possible increases and decreases of 20% compared to 1980-1999
(based on averaged results of multiple GCMs). The amount of precipitation
is expected to change for many regions in this time frame, leading to more
extreme events in both the high and low extremes (i.e. potential for floods
and draughts) (IPCC, 2007).

1.1.2 Hydrological changes

Changes in precipitation patterns and average temperature both have im-
pacts on the hydrological cycle: examples include observations of increased
runoff and earlier spring peak discharges (IPCC, 2007). Future effects of
climate change on runoff are simulated with hydrological models (Anders-
son et al., 2006). GCM output is however not directly usable as input for
hydrological models, due to differences in their respective spatial scales (i.e.
global and catchment scale) (Bergström et al., 2001). Various downscaling
techniques exist to make GCM output usable as hydrological model input
(e.g. Jiang et al. (2007)).

It is a common assumption that a conceptual hydrological model, with
parameter values calibrated on historical data, is able to predict future runoff
from down-scaled GCM input (i.e. that the optimal parameter set for future
climatic conditions is not different from the optimal parameter set derived
from calibration). However, it is uncertain whether hydrological models are
able to perform well under climatic conditions that are different from the
climate conditions during their calibration period. Multiple studies have
been undertaken to evaluate model performances under contrasted climate
conditions (e.g. Bastola et al., 2011; Chiew et al., 2009; Coron et al., 2012;
Merz et al., 2011; Refsgaard and Knudsen, 1996; Seibert, 2003; Vaze et al.,
2010; Wilby, 2005; Xu, 1999). As a general conclusion, models perform
adequately when changes in average precipitation are small. However, the
exact definition of “small changes” varies per study. Merz et al. (2011)
present the widest range of precipitation changes for which the hydrological
model still performs adequately: -15% to +20%. Models generally show a
lower decline in performance when applied to drier conditions than present
during calibration, than when applied to conditions wetter than calibration
conditions.

Optimal model parameters can be different from calibrated parameters
when a hydrological model is used for a period different from its calibration
period, for two possible reasons. First, calibrated parameter sets tend to
compensate for problems in model structure and data sets. The optimal pa-
rameter sets might therefore change when different calibration periods are
used, because they compensate for different errors. Second, some parameters
might indeed be subject to changes in time, as a result of direct (e.g. changes
in land-use or river networks) and indirect (e.g. changes in climatic condi-
tions, such as air temperature and precipitation patterns) human-induced
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changes (Merz et al., 2011), that influence the hydrological processes that
the parameters represent. The effect of calibrated parameters changing due
to climate fluctuations is currently not well understood (Wagener et al.,
2010).

1.1.3 Parameter non-stationarity

Merz et al. (2011) presents strong evidence that a correlation exists between
calibrated parameter values and certain climate variables. Because climate
variables have changing values over time, and assuming that the observed
correlation is the result of an actual relationship between parameter val-
ues and climate variables, the common assumption that optimal values of
calibrated parameters do not change over time is therefore not always true.
These changes in optimal parameter values are here referred to as parameter
non-stationarity. That parameter non-stationarity exists lowers confidence
in model results when the model is used for predictions with climate vari-
ables that are different from those during calibration of the parameters.

Merz et al. (2011) suggest two different approaches: the first option
would be expanding the model structure to account for more catchment
processes (e.g. including the length of the growing season for plants in the
model, since an increase in temperature would lengthen the season and thus
increase the amount of evapotranspiration which influences runoff).

The second option would be to explicitly account for non-stationary
model parameters. Determined correlations between optimal parameter val-
ues and climate variables can be used to predict parameter values for various
climate conditions. This approach requires less to no changes in model struc-
ture, but might be complicated due to complex correlations.

1.1.4 Problem definition

Performance of conceptual hydrological models is shown to decline when the
models are used for predictions under climate conditions that are very dif-
ferent from calibration conditions. This effect seems more notable when the
change concerns a shift towards more wet conditions compared to calibra-
tion conditions. Long-term climate projections show an expected increase
in volume and intensity of precipitation towards the year 2100. This means
hydrological models will increasingly be used for projections under wetter
conditions than they were calibrated on, potentially leading to a decrease
in the accuracy of these projections. This has consequences in the field of
water management; long term planning (e.g. construction of new dams,
policies related to water use, flood prevention) will become more difficult.
It is therefore desirable to improve the long term accuracy of hydrological
models.

The decrease in hydrological model performance stems from parameter
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non-stationarity; the traditional assumption that calibrated parameters can
accurately predict future runoff is not in all cases valid. It has been shown
that certain calibrated parameters are correlated with climatic variables, and
that optimal parameter values change when changes in climatic variables
occur. This study attempts to account for parameter non-stationarity in
hydrological models, to increase confidence in future runoff predictions.

It is however difficult to determine when a long-term runoff projection
is more accurate than before. While calibration and validation procedures
are done based on historical observations, the future can only be predicted
and not known for certain. The added value of any approach concerning
parameter non-stationarity is therefore difficult to verify.

1.2 Research goal

The research goal is to establish relationships between optimal model pa-
rameters and climate variables, to quantify how well these relationships per-
form during validation and to assess how these relationships perform during
climate change impact assessment, compared to a traditional hydrological
approach towards calibrated parameters. The Polish We lna catchment is
used as a test case.

1.3 Research questions

The research goal is broken down into three research questions:

1. Which significant correlations are present between parameter values and
climate variables and can these significant correlations be explained from
a hydrological point of view?

2. For which parameters can these significant correlations be used to es-
tablish a significant regression equation, and what do these regression
equations look like?

3. What is the influence of estimating certain parameter values from their re-
lationship with climate variables on the changes predicted during climate
change impact assessment, when compared with a traditional hydrologi-
cal approach to climate change impact assessment?

1.4 Research strategy and reading guide

A test case with data, a hydrological model and a research set-up are re-
quired to fulfil the research goal. Chapter 2 describes the catchment and
model input data used in this research. Chapter 3 explains the choice for the
HBV model and gives a description of this model. Chapter 3 also includes
a sensitivity analysis that is used to prepare the HBV model for this study,
by reducing the number of calibration parameters. Chapter 4 explains the
methodology followed in this study.
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In short, the methodology leads to the establishing of a regression model,
which uses estimated, rather than calibrated, parameter values. First, the
HBV model is calibrated in two different ways, which leads to a base model
(calibrated on 20 years of data) and optimal parameter sets for multiple
5-year windows. Second, correlations between the optimal 5-year param-
eter values and certain climate characteristics during these 5-year periods
are determined. Significant correlation between two variables does not au-
tomatically imply a meaningful relation between these variables. Any sig-
nificant correlations are therefore also evaluated from a hydrological point
of view, to determine if a mathematical relationship based on this corre-
lation might reflect a physically meaningful relation between a parameter
value and climate. Third, single and multiple linear regression analysis are
used to establish a mathematical equation for parameter values, based on
meaningful correlations with climate characteristics. A trade-off is made be-
tween goodness-of-fit of the regression equation and the number of climate
characteristics it includes, to reduce the chance of over-fitting the regres-
sion. Fourth, the regression equations are implemented in the HBV model
and any parameters for which no regression equation can be established are
recalibrated. Recalibration is used as a way to partly account for inter-
action between the model parameters estimated with regression equations
and fixed parameters. Performance of the recalibrated regression models is
quantified during validation and compared to validation of the base model.
Last, a climate change impact assessment is performed with both the base
and regression model. Results are compared to determine the effect of using
a regression model on impact assessment outcome.

Chapter 5 present the results from the methodology described above,
with a similar structure of its sections. Discussion of results, research
methodology and general applicability is given in chapter 6. Conclusions
and recommendations can be found in chapter 7.
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Chapter 2

Study area and data

This chapter contains a description of the study area (section 2.1) and sum-
mary of the collected data (section 2.2).

2.1 Study area

The relatively small and flat We lna catchment is used as a test case in
this study. This catchment is used because of the strong preference for a
Polish catchment. Earlier modelling experience showed that, from the avail-
able Polish catchments, We lna generally provides the best modelling results
(personal communication with experts at IGF). The river We lna and its
tributaries are part of the natural Polish river network of the Wielkopol-
ska Lowland. The river network with its large valleys and narrow lakes
was formed in the late Pleistocene and Holocene due to the retracting and
melting of glaciers (Siniecki, 2009).

The river We lna originates in lake Wierzbiczańskie, 8 km east of the city
Gniezno. Its main tributaries are Ma la We lna, Flinta, Struga Go laniecka,
Struga Potulicka and Nielba. The We lna joins the river Warta at the city
Oborniki, having a total length of 117.8 km (figure 2.1). Warta itself is a
tributary from the river Oder, which empties into the Baltic Sea. Including
the various sub-catchments of its tributaries, the total catchment area of the
We lna river upstream from the flow measuring station is 2611 km2. 23% of
the area is covered by forests. The remaining space is mostly used for agri-
culture, with a few scattered urban areas (figure 2.2, European Environment
Agency [EEA], 2011).

Flow measurements are done at Kowanówko, 5.6 km away from the
mouth of the We lna. With the source of the We lna located at +97 m.a.s.l.,
and the flow measuring station at +51 m.a.s.l., the average slope is 0.0004.
Annual average flow is approximately 10 m3/s (Wira, 2011).

Ten lakes with controlled discharges are located in the catchment, cov-
ering approximately 0.4% of the total catchment area. The catchment also
includes 64 fish ponds and water storage systems. Located along the various
rivers are 127 water control structures. Operation regimes and total catch-
ment area upstream of the control structures are unknown. The catchment
has a storage capacity of approximately 17.5 millionm3 (approximately 5.5%
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of the average total annual runoff), divided over dammed lakes (5.9 million
m3), weirs and control structures (4.0 million m3) and fish ponds and water
storage (7.6 million m3) (Siniecki, 2009).

Figure 2.1: Location of the We lna catchment in Poland (small figure) and overview
of the catchment (large figure). The river We lna (dark blue) originates east of Gniezno
(lower right) and joins the river Warte at Oborniki (middle left) (image adjusted from various

sources: maps.google.com, http://www.geo.norwid24.waw.pl/index.php?strona=120 mapa polski

and the Polish Academy of Sciences, Institute of Geophysics)

2.2 Data collection

This section describes the data series used in this research. Both histori-
cal observations and predictions of the future climate were provided by the
Polish Academy of Sciences, Institute of Geophysics (IGF). Historical ob-
servations and projections of the future climate are given as daily values for
temperature, potential evapotranspiration and precipitation. Daily obser-
vations of runoff are also available.

2.2.1 Historical observations

Historical observations of precipitation (P ), temperature (T ) and runoff
(Qobs) are available for the period 01-01-1971 to 31-12-2000.

Precipitation values are measured at 22 stations in and near the catch-
ment. Thiessen polygons are used to generate a time series of catchment
averaged precipitation that can be used as model input (figure 2.3). Be-
cause the catchment is relatively small and flat, variation in precipitation
caused by characteristics in the landscape (e.g. mountains) is minimal. The
data reflect this, showing only small differences between the measured pre-
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cipitation at the various stations. Temperature values are measured outside
the catchment, at the town Szamotuly (figure 2.3, orange dot). This is
accepted because of the small catchment size and flat landscape, but it does
cast some doubt on the reliability of the data. Because a flat catchment is
used, no corrections for differences in altitude are required. Potential evap-
otranspiration (PET ) is derived from temperature with the Hamon method
(Hamon, 1961). Runoff is measured at Kowanówko (figure 2.3, yellow dot).

Figure 2.2: Land use in the We lna catchment (EEA, 2011)
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Figure 2.3: Overview of the We lna catchment (light green area) with Thiessen polygons
around precipitation measuring stations. Stations are used for averaging of precipitation
relative to the area of the catchment the polygon covers. Used stations are presented with
green dots (part of the catchment falls inside the polygon), unused stations in red (no part
of the catchment inside the polygon), flow measurement point in yellow and temperature
measurement point in orange

P , T and PET are used as model input, while runoff data are used to
calibrate and validate the model.

2.2.2 Climate change predictions

Predictions of future changes for precipitation and temperature in the We lna
catchment are available, based on results of five different combinations of
Global and Regional Climate Models (GCM and RCM respectively, table
2.1) from the ENSEMBLES experiment (van der Linden and Mitchell, 2009).
Five different combinations are used to capture the variability and uncer-
tainty associated with application of different GCMs and RCMs for climate
change projections (Déqué et al., 2007).vChanges in potential evapotran-
spiration are estimated from changes in temperature, wind-speed, radiation
and humidity by use of standard methods, such as the Penman-Monteith
equation (Romanowicz and Osuch, s.d.).

Estimates of the five GCM-RCM combinations are based on the A1B
scenario for future greenhouse gas concentrations, which has a time horizon
of 2100. The A1 scenarios describe a future with rapid economic growth and
introduction of new technologies, with a global population that peaks mid-
century (2050) and declines again afterwards. This specific scenario focusses
on a balanced (B) usage of fossil and non-fossil energy sources (Nakicenovic
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Table 2.1: Combinations of Global Climate Models (GCM) and Regional Climate Models
(RCMs) used in this study

GCM RCM Source GCM, RCM

ARPEGE DMI HIRHAM5 Déqué et al. (1994), Christensen et al. (2007)

ARPEGE RM5.1 Déqué et al. (1994), Radu et al. (2008)

ECHAM5 MPI M REMO Roeckner et al. (2003), Jacob (2001)

ECHAM5 KNMI RACMO 2 Roeckner et al. (2003), van Meijgaard et al. (2008)

BCM SMHIRCA Furevik et al. (2003), Kjellström et al. (2005)

et al., 2000).
Output of the GCM-RCM combinations is biased, and not directly us-

able as input for the hydrological model. Therefore bias-correction of the
GCM-RCM estimates is performed with a quantile mapping method. In this
method cumulative distribution functions of observed and simulated climate
variables are compared and used to determine a transformation function for
the simulated climate, such that its transformed distribution resembles the
observed distribution (Gudmundsson et al., 2012). Adjustments are based
on a re-analysis of climate data. This is a different data set from observed cli-
mate data, which leads to differences between average observed and average
GCM-RCM projected precipitation, temperature and potential evapotran-
spiration. GCM-RCM projected P is on average 11% lower than observed,
projected T is on average 0.2% lower than observed and projected PET is
on average 1.5% higher than observed (appendix D, tables D.1, D.2 and D.3).
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Chapter 3

Hydrological modelling

This chapter presents the considerations for using the Hydrologiska Byr̊ans
Vattenbalansavdelning (HBV) model (section 3.1). Section 3.2 describes
model structure, equations and parameters (section). A sensitivity analysis
is used to reduce the number of parameters for calibration from 14 to 6
(section 3.3) and thus prepare the model for use in this study.

3.1 Model choice

A hydrological model aims to simulate certain hydrological processes that
occur in a catchment and give an estimate of the total runoff out of the
catchment. A wide variety of models exists, each with its own strengths
and weaknesses (e.g. physically-based models, conceptual models, empiri-
cal models, Romanowicz et al., s.d.). A conceptual model represents those
hydrological processes that are considered to be important in determining
the relationship between input (temperature, potential evapotranspiration
and precipitation) and output (runoff). With conceptual models, not all
parameters have a direct physical interpretation but need to be calibrated
against observed data (Pechlivanidis et al., 2011).

Recent research based on conceptual rainfall-runoff models, shows that
calibrated parameter values are difficult to transpose to periods with differ-
ent climatic conditions than conditions present during the calibration period
(e.g. Bastola et al. (2011); Chiew et al. (2009); Coron et al. (2012); Merz
et al. (2011); Seibert (2003); Vaze et al. (2010); Wilby (2005); Xu (1999)).
Because the issue of transposing parameters to different climatic conditions
is addressed in this study, a conceptual model is used here as well.

The Hydrologiska Byr̊ans Vattenbalansavdelning (HBV) model (Lind-
ström et al., 1997) used in this study is a conceptual rainfall-runoff model.
The HBV model is chosen for several reasons. First, it is a proven model
and has been in use for a long time, with the first application dating from
early 1970. Since then, multiple revisions and adjustments have been made
resulting in the HBV-96 model (Lindström et al., 1997). After that, the
model has continuously been adapted to specific needs for different studies,
catchments, etc.

Second, the model output depends on the climate, since it uses climatic
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variables such as temperature, precipitation and evapotranspiration as in-
put, in order to estimate catchment runoff. This makes it suitable for this
study, which aims to clarify the potential relation between climatic variables
and model parameter values.

Third, the HBV model has been applied at both the University of Twente
and the Institute of Geophysics before. Experience with the model is thus
available at both institutes.

3.2 HBV model description

The HBV version used in this research is an adjusted version from the model
applied by Tillaart (2010), which is a Matlab implementation of the HBV-15
model developed in Fortran by Booij (2002). The HBV-15 model links 15
sub basins of the Meuse river. Individual sub basins are modelled with the
HBV-96 model (Booij, 2005). In this study a single basin is considered.

The adjustments to the model for this study are the inclusion of limits
to equations for several fluxes and storages, to stay within physical bounds.
Under certain conditions, some storages could reach negative values, lead-
ing to complications in the calculations for later time steps. This has been
corrected.

3.2.1 Model structure and equations

Figure 3.1 shows the HBV model structure as implemented in Matlab.
Model parameters are given on the left side of the figure.

The model consists of four active routines, concerning the accounting of
precipitation, soil moisture balance, quick runoff and slow runoff. Delays
in flood routing and flood wave attenuation are expected to fall within the
considered model time step of 1 day. Routing and transformation routines
for total runoff are therefore not required (personal communication with
experts at IGF).

The model uses five storage boxes, connected by various fluxes. Storages
and fluxes are described per routine in the following sections. Model input
are time series of daily precipitation P [mm], daily temperature T [◦C] and
daily potential evapotranspiration PET [mm]. Total catchment area and
the fraction of the catchment with forest cover are used as variables. The
model calculates all fluxes and storage terms in unit [mm] with a daily time
step, which allows the input series P , T , PET and parameters CFMAX
([mm ◦C−1 d−1]), CFLUX ([mm d−1]), Kf ([d−1]), and Ks ([d−1]) to be
used without difficulty. Model output is a time series of simulated discharge
Qsim [m3/s], converted from the daily total runoff flux [mm].
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3.2. HBV model description

Figure 3.1: Structure of the HBV model applied in this study. Model inputs (P , T and
PET ) are shown in grey rounded boxes, storages in regular boxes and fluxes as arrows.
Numbers correspond to equations in section 3.2.1
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Figure 3.2: Visualisation of the rain-snow interval, including parameters TT and TTI

Precipitation routine

The precipitation routine determines whether precipitation occurs as rain-
fall, snowfall, or a combination of both. Precipitation at a daily time step t,
P (t), is divided into rainfall Pr(t) and snowfall Ps(t) based on daily temper-
ature T (t). Parameters TT [◦C] and TTI [◦C] define an interval in which
precipitation is assumed to be a mix of snow and rain, decreasing linearly
from 100% snow at the lower end to 0% snow at the upper end. TT is the
threshold temperature where 50% of precipitation occurs as snow and 50%
as rain. TTI specifies the interval length (figure 3.2).

Snow and rain are directed into different storage boxes; snow pack Ssp
[mm] and melt water Smw [mm] respectively. Interaction between snow pack
and melt water boxes is given by snow melt qm [mm] (eq. 3.1) and refreezing
fluxes qr [mm] (eq. 3.2):

qm(t) = CFMAX ∗ (T (t)− TT ) (3.1)

qr(t) = CFR ∗ CFMAX ∗ (TT − T (t)) (3.2)

CFMAX = degree-day factor; rate of snow melt [mm ◦C−1 d−1]
CFR = refreezing factor of water released from melting snow [-]
TT = threshold temperature [◦C]

Soil moisture routine

Water enters the soil moisture routine from the precipitation and fast runoff
routines. Water from the precipitation routine is divided into infiltration
qin [mm] (eq. 3.3) into the soil moisture storage Ssm and direct runoff into
the fast runoff routine qd [mm] (eq. 3.4). In the coding, the infiltration
equation gives the total influx from the precipitation routine. The direct
runoff equation makes the distinction between infiltration and direct runoff,
where part of the melted water is temporarily retained in the snow pack (if
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present) through parameter WHC (simulating the water holding capacity of
snow). Retained water is assumed to infiltrate into the soil moisture routine
on t+ 1:

qin(t) = Smw(t) + qm(t) + Pr(t)− qr(t)−WHC ∗ Ssp(t) (3.3)

qd(t) = qin(t) + Ssm(t)− FC (3.4)

WHC = water holding capacity of snow [mm mm−1]
FC = field capacity, maximum storage in Ssm [mm]

Capillary rise qc [mm] (eq. 3.5) from the fast runoff routine replenishes
soil moisture storage, providing that soil moisture storage is not yet satu-
rated:

qc(t) = CFLUX ∗ FC − Ssm(t)

FC
(3.5)

CFLUX = rate of capillary rise [mm d−1]

Soil moisture storage releases water as seepage qseep [mm] (eq. 3.6) into
the fast runoff routine and actual evapotranspiration eta [mm] (eq. 3.7)
which leaves the model completely:

qseep(t) =

(
Ssm(t)

FC

)β
∗
(
qin(t)− qd(t)

)
(3.6)

eta(t) = etp(t) ∗
Ssm(t)

LP ∗ FC
if Ssm(t) < LP ∗ FC

eta(t) = etp(t) if Ssm(t) ≥ LP ∗ FC
(3.7)

β = non-linearity parameter [-]
etp = model input series PET, corrected for different

evapotranspiration rate in forests [mm]
LP = factor limiting potential evapotranspiration [-]

Fast runoff routine

The fast runoff reservoir Sfr [mm] receives water from direct runoff and
seepage. Three outflows exist; capillary transport to soil moisture qc [mm]
(eq. 3.5), percolation to the slow runoff routine (which is not expressed as
an equation, but rather calibrated as a model parameter PERC [mm d−1])
and fast runoff out of the model qf [mm] (eq. 3.8):

qf (t) = Kf ∗ Sfr(t)1+α (3.8)
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Kf = fast runoff parameter [d−1]
α = non-linearity parameter [-]

Slow runoff routine

The slow runoff reservoir Ssr [mm] has a single influx from percolation
(PERC) and a single outflow as slow runoff qs [mm] (eq. 3.9):

qs(t) = Ks ∗ Ssr(t) (3.9)

Ks = slow runoff parameter [d−1]

Slow and fast runoff are combined into total runoff qt [mm] (eq. 3.10):

qt(t) = qf (t) + qs(t) (3.10)

Changes in storage terms

The storage terms are updated based on daily fluxes. Safeguards are in-
cluded for cases where total outflow fluxes exceed the total of current stor-
age and inflow fluxes. In this case the storage term is set at zero, rather
than letting it reach physically impossible negative storage values, which
also prevents numerical issues in the model equations.

Snow pack storage:

Ssp(t+ 1) = Ssp(t) + Ps(t) + qr(t)− qm(t) (3.11)

Melt water storage:

Smw(t+ 1) = Smw(t) + Pr(t) + qm(t)− qr(t)− qin(t) (3.12)

Soil moisture storage:

Ssm(t+ 1) = Ssm(t) + qin(t)− qd(t)− qseep(t) + qc(t)− eta(t) (3.13)

Fast runoff reservoir storage:

Sfr(t+ 1) = Sfr(t) + qd(t) + qseep(t)− PERC − qf (t)− qc(t) (3.14)

Slow runoff reservoir storage:

Ssr(t+ 1) = Ssr(t) + PERC − qs(t) (3.15)
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3.2.2 Model parameters and ranges

The HBV model without routing and transformation routines includes eight
calibration parameters (FC, LP , α, β, Kf , Ks, PERC and CFLUX). For
this catchment however, certain parameters in the snow routine might need
to be calibrated for proper simulations as well. Following Kollat et al. (2012),
the following parameters in the snow routine are included as calibration pa-
rameters: TT , TTI, CFR, WHC and CFMAX. Parameter FOCFMAX
(CFMAX corrected for reduced snow melt rate in forests) is included as
well, because nearly a quarter of the catchment is covered by forests and the
reduced snow melt rate might be important for overall model functioning.
This gives a total of 14 calibration parameters.

Parameters are evaluated within pre-set ranges, based on literature and
practical experience with this specific combination of catchment and model
(table 3.1).

Table 3.1: Parameter ranges for the 14 parameters used in the sensitivity analysis.
Source: 1Deckers (2006), 2Romanowicz et al. (s.d.), 3Kollat et al. (2012)

Parameter Min Max Unit Description

1FC 0 500 [mm] Field capacity, maximum
soil moisture storage

1β 1 6 [-] Non-linearity parameter
1LP 0.1 1 [-] Factor limiting actual

evapotranspiration
1α 0 3 [-] Non-linearity parameter
1Kf 0.0005 0.3 [d−1] Fast runoff parameter
1Ks 0.0005 0.3 [d−1] Slow runoff parameter
1PERC 0 6 [mm d−1] Rate of percolation
2CFLUX 0 4 [mm d−1] Rate of capillary rise
3TT -3 3 [◦C] Threshold temperature

3TTI 0 7 [◦C] Threshold temperature
interval length

3CFMAX 0 20 [mm ◦C−1 d−1] Degree day factor, rate
of snow melt

FOCFMAX 0.1 1 [-] CFMAX corrected for
forests

3CFR 0 1 [-] Refreezing factor
3WHC 0 0.8 [mm mm−1] Water holding capacity

of snow
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3.3 Sensitivity analysis

Section 3.2.2 specifies 14 free parameters for the HBV model. Calibrating
14 parameters will take a very long time, because of the large number of
possible combinations of parameter values involved. A sensitivity analysis
is applied to reduce the number of calibration parameters and thus prepare
the model for use in this study.

Sensitivity analysis shows the influence of each parameter on a measure
of model performance, the so-called objective function (section 3.3.1). The
reaction of the objective function to sources apart from parameter values,
such as input data and model structure, is considered beyond the scope of
this study. Section 3.3.2 details the choice of the sensitivity analysis method
and gives a description of the method and its application in this study. Re-
sults are presented in section 3.3.3, conclusions in section 3.3.4.

3.3.1 Objective function

An objective function or target functions is a common approach to quan-
tify model performance, by calculating a certain measure for the difference
between observed and modelled discharge. An objective function focusses
on a specific aspect of the hydrograph and therefore for different modelling
goals, different objective functions should be used (Romanowicz et al., s.d.).

The Nash-Sutcliffe coefficient (NS) is commonly used as a goodness-of-
fit-indicator for hydrological modelling (Romanowicz et al., s.d.). However,
for researching model performance under changing catchment conditions,
many authors prefer a combination of goodness-of-fit indicator with a mea-
sure for the volume error produced by the model; examples include Refs-
gaard and Knudsen (1996, NS, flow duration index and water balance), Seib-
ert (2003, NS, groundwater coefficient, Rpeak), Chiew et al. (2009, NS and
Relative Volume Error), Xu (1999, NS and Relative Error), Wilby (2005,
NS and bias indicator relative absolute mean error E), Vaze et al. (2010,
weighted combination of NS and logarithmic bias function), Bastola et al.
(2011, NS and Volume Error), Merz et al. (2011, function based on NS of
runoff, NS of logarithmic runoff and Volume Error) and Coron et al. (2012,
function based on Root-Mean-Square-Error of runoff and bias).

Furthermore, calibration experiments in this study have shown that
when using only NS as objective function (which has an inherent bias to-
wards medium and high flows) large volume errors can result with relatively
good NS values (e.g. NS=0.83, 10% volume error for calibration, NS=0.70,
20% volume error for validation). Therefore an objective function is used
that combines goodness-of-fit from NS with a measure for the volume er-
ror in the simulated runoff (Relative Volume Error, RVE); referred to as Y
(Akhtar et al., 2009):
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Y =
NS

1 + |RV E|
(3.16)

With:

NS = 1−
∑i=N

i=1 [Qsim(i)−Qobs(i)]2∑i=N
i=1 [Qobs(i)− ¯Qobs]2

(3.17)

RV E =

∑i=N
i=1 [Qsim(i)−Qobs(i)]∑i=N

i=1 Qobs(i)
(3.18)

Qsim = discharge simulated by the HBV model
Qobs = observed discharge

¯Qobs = mean of observed discharge

Equation 3.17 shows that when Qsim = ¯Qobs, NS = 0. In this case the
simulated discharges perform the same as simply using the average discharge
for predictions. When Qsim = Qobs, meaning perfect simulation, NS = 1.
The numerator in Y can therefore have values from minus infinity to 1,
where only positive values indicate that using the model results in better
predictions than not using the model.

The optimal value for RVE = 0, meaning that no difference exists be-
tween observed and simulated volumes. Differences between observation and
simulation can be both positive and negative. However, since the absolute
value for RVE is used, the denominator of Y will always have a value equal
to, or greater than, 1.

Since optimal values for NS and RVE are NS = 1 and RV E = 0, the
optimal value for Y is equal to 1.

3.3.2 Sobol’ sensitivity analysis

Method selection

Multiple methods for sensitivity analysis exist and are typically based on
different assumptions on how to properly assess sensitivity. This can cause
different methods to produce different results and thus rank parameters in
a different order of importance (Frey and Patil, 2002). While the Sobol’
method (Saltelli et al., 2004) is considered quite robust (e.g. Pappenberger
et al. (2008); Tang et al. (2007)), it is generally advised to apply multi-
ple methods to increase confidence in the importance of the various model
parameters (Frey and Patil, 2002; Pappenberger et al., 2008).

An exploratory application of different methods, including the Sobol’
method, identifiability analysis (e.g. Abebe et al. (2010); Saltelli et al.
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(2004)), correlation coefficients and univariate sensitivity analysis (e.g. Tillaart
(2010)), pointed out that there are drawbacks to each method. Comparing
results of various sensitivity analyses is a subjective and time consuming
task. Therefore just the Sobol’ method is used, because of its robustness
compared to other methods, especially with regard to the interaction be-
tween model parameters.

Description of Sobol’ sensitivity index

The Sobol’ method uses variance-based sensitivity indices. The goal is to
determine the influence of each parameter on total variance in the model
output. The model can then be simplified by assigning the parameters with
low to no influence a fixed value and excluding them from calibration (Saltelli
et al., 2004). The influence of an arbitrary parameter Xi on the variance of
model output V (Y ) consists of the main effect . . .

Vi = V [E(Y |Xi)] (3.19)

. . . and total effect

VT i = V [E(Y |X−i)] (3.20)

which are respectively the amount of variance removed from the total output
variance if the true value of Xi were known, and the total amount of variance
left unexplained if only Xi is left to vary and the true values off all other
parameters, X−i, are known. Main and total effect can be normalized by
dividing them by total output variance:

Si =
V [E(Y |Xi)]

V (Y )
(3.21)

ST i =
V [E(Y |X−i)]

V (Y )
(3.22)

The normalized total sensitivity index ST i consists of the main effect and
the effect of the interaction of Xi with the other parameters:

ST i = Si + Sinteractions (3.23)

Sinteractions is a bucket term containing the 2number of parameters−1 sensi-
tivity terms for Xi that describe the relationships between all possible com-
binations of parameters. If no interaction occurs between the parameters,
Si = ST i for all Xi’s. This is called an additive model. In a non-additive
model Si < STi for at least one Xi (Ratto et al., 2007).

The Sobol’ method is model independent, meaning that it does not de-
pend on any assumptions between model input and output (such as linearity)
(Saltelli et al., 2000), making it suited for application with the HBV model.
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Application

A sensitivity package for Matlab was provided by the Polish Academy of
Sciences, Institute of Geophysics, which returns Si and ST i based on an
extensive sampling simulation (75000 samples are used, the computational
limit because of available RAM). The sensitivity analysis is performed for
the full 30 years of observed data, with the target function Y (section 3.3.1).

The interaction between a specific parameter and the others follows from
rewriting equation 3.23. In case of 14 free parameters, Sinteractions includes
16383 possible terms. It is not possible to determine which of all the possible
interactions between parameters are responsible for the value of Sinteractions
for any given parameter, because of the long computation times involved.

It is difficult to properly define a threshold above which a parameter is
considered to have an important influence on generation of model output.
Examples of thresholds of importance in literature are often not explained
(e.g. Pappenberger et al., 2008) or self-proclaimed as subjective (e.g. Tang
et al., 2007). The decision about which parameters to calibrate and which
to fix at default values is thus inherently a subjective one.

This study aims to clarify the possible relationships between climate
variables and optimal model parameter values. Interactions between pa-
rameters are not explicitly taken into account. Parameters that show a high
total effect ST i will be calibrated, with a preference for parameters that also
have a high main effect Si (i.e. parameters that independently from others
have a high influence on output variance). This preference stems from the
fact that interactions between parameters are not taken into account during
the establishing of relationships between individual parameters and climate
variables.

3.3.3 Results

Figure 3.3 shows resulting sensitivity indices for all 14 parameters. Blue
columns show the total sensitivity index ST i (eq. 3.22), while green and
red columns split this up in main effect Si (eq. 3.21) and interactions with
other parameters respectively Sinteractions (eq. 3.23). Table 3.2 shows the
quantitative results of the Sobol’ method. The first column presents the
total effect, while the second and third column split this in main effect and
interactions with other parameters respectively. Parameters are ranked per
column, in descending order of importance.

Figure 3.3 and the results quantified in table 3.2 show that the HBV
model is a non-additive model (i.e. interactions between parameters are
present, since

∑
Si < 1 and

∑
ST i > 1, Saltelli et al., 2004). Approxi-

mately 60% of the total output variance is explained by the main effects,
and approximately 40% is explained by interactions between parameters.

Several parameters show very small negative sensitivity indices, which
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should not exist. This is a known issue with the Sobol’ method; “readers
should note that the truncation and Monte Carlo approximations of the in-
tegrals required in Sobol’s method can lead to small numerical errors [. . . ]
such as slightly negative indices” (Tang et al., 2007). Negative indices en-
countered here do not influence results.

3.3.4 Discussion and parameter selection

Just five parameters have discernible main effects Si (table 3.2, first column):
FC, PERC, α, TT and LP . FC has the most influence by far, the other
four parameters only influence a marginal part of output variance through
their respective main effects. Combined, main effects of these five param-
eters explain approximately 60% of total output variance. The remaining
nine parameters all have negligible main effects.

Most parameters show larger interaction effects with other parameters
Sinteractions, than main effects (table 3.2, second column). While parameter
FC is again the most influential, the difference between FC and the other
parameters is less than when comparing their main effects. The five param-
eters with visible main effects (FC, α, PERC, TT and LP ) explain nearly
the entire effect of interactions on the total output variance.

The total influence of each parameter on the total output variance is
shown in the third column of table 3.2. This shows the great influence of
parameter FC, and the relative influence of parameters α, PERC, LP and

Figure 3.3: Results of variance decomposition for the HBV model applied to the We lna
catchment, based on 30 years of observed data
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Table 3.2: Results of variance decomposition for the HBV model of We lna,
based on 30 years of observed data. Results are ranked per category based
on unrounded values for sensitivity indices. Bold values show the selected
parameters. The negative indices result from numerical errors in the method
and do not influence the conclusions

Main effect Effect of interactions Total effect

1 FC 0.74 FC 0.20 FC 0.94
2 PERC 0.03 α 0.12 α 0.14
3 α 0.02 PERC 0.06 PERC 0.08
4 LP 0.02 Kf 0.05 Kf 0.05
5 TT 0.01 TT 0.04 LP 0.05
6 β 0.00 LP 0.03 TT 0.04
7 Kf 0.00 β 0.02 β 0.03
8 Ks 0.00 CFMAX 0.01 CFMAX 0.01
9 FOCFMAX 0.00 WHC 0.01 WHC 0.01

10 TTI 0.00 Ks 0.00 Ks 0.00
11 CFR 0.00 CFLUX 0.00 FOCFMAX 0.00
12 CFLUX -0.00 FOCFMAX 0.00 CFR 0.00
13 WHC -0.00 CFR 0.00 CFLUX 0.00
14 CFMAX -0.00 TTI 0.00 TTI 0.00

Sum (61%) 0.77 (39%) 0.50 (100%) 1.27

TT : these five parameter explain nearly all model output variance.
Because interactions between parameters are not explicitly accounted for

in the remainder of this research, the main effect of parameters is considered
more important for determining which parameters to calibrate. Initially, the
five parameters (FC, PERC, α, LP and TT were selected for calibration,
with the remaining parameters fixed at default values (influence of Kf , β,
CFMAX and WHC through interactions can be neglected, appendix A,
section A.1). However, the attempt to find suitable values at which to fix
Kf and Ks showed the importance of calibrating Ks when shorter time pe-
riods are considered than the 30-year period used for the sensitivity analysis
(appendix A, section A.2). Therefore six parameters are selected for cali-
bration, the remaining parameters are assigned fixed values (table 3.3).
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Table 3.3: Default values for parameters (Swedish Meteorological and Hydrological
Institute [SMHI] 2004) that can be fixed according to the sensitivity analysis. Value for
Kf is the result from earlier calibration of the HBV model for the We lna catchment, since
a default value is not available

Parameter Value Unit

β 2.00 [-]
Kf 0.0005 [d−1]
CFLUX 1.00 [mm d−1]
TTI 2.00 [◦C]
CFMAX 3.50 [mm ◦C−1 d−1]
FOCFMAX 0.60 [-]
CFR 0.050 [-]
WHC 0.1000 [mm mm−1]
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Chapter 4

Methodology

This chapter describes the various steps undertaken in this study. Section
4.1 describes the calibration procedure used to calibrate both the base model
and multiple 5-year periods. Section 4.2 explains the method for calculating
correlations and how it is used in this study. These results provide the
information to answer research question 1.

Section 4.3 describes linear regression analysis and its application in this
study. Results are regression equations for certain model parameters, that
estimate the parameter value based on climate variables. Section 4.4 then
details how these regression equations are implemented in the HBV code as
regression models, and how each regression equation is expected to perform
during climate change impact assessment. The regression model with the
best expected performance is selected for further use. Sections 4.3 and 4.4
combined give the necessary information to answer research question 2.

Section 4.5 explains how the difference between using the base and re-
gression model for climate change impact assessment is determined. These
results answer research question 3.

4.1 Calibration procedure

Calibration is the procedure of adjusting values of model parameters, until
output time-series are sufficiently similar to observed time-series in a catch-
ment (Wagener et al., 2003).

Calibration can be done manually, with automated routines or a com-
bination of both. Automatic calibration utilizes searching algorithms that
optimize one or several objective functions without interference of the mod-
eller. This provides increased objectivity and requires less experience of
the modeller compared to manual calibration and therefore an automatic
calibration procedure is used in this study.

Typical automatic calibration consists of four major elements: (1) an
objective function, (2) calibration data, (3) an optimisation algorithm and
(4) termination criteria for the algorithm (Sorooshian and Gupta, 1995).

The objective function is explained in section 3.3.1. Section 4.1.1 details
which data periods are used (data itself is shortly explained in section 2.2).
Section 4.1.2 details the calibration algorithm and its termination criterion.
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4.1. Calibration procedure

4.1.1 Calibration data

This section details how the available 30 years of observations are used dur-
ing calibration of the model. Model initialisation time is discussed, and
a distinction is made between calibration of the base model (which is the
baseline for later comparison) and calibration of multiple 5-year periods on
which the regression models will be based.

Model initialisation

In principle the HBV model can transform input (precipitation, temperature
and potential evapotranspiration data) into output (discharge series) from
the moment when input data is available. However, it is unlikely that storage
terms start at zero storage and actual storages are unknown. Initial values of
storage terms are therefore arbitrarily set by the modeller and this influences
simulation accuracy.

It is common practice to let the model “warm up”; allowing it to run
for a certain number of time steps until the effect of the initial conditions is
no longer noticeable and the model reaches a natural state. A period of at
least two months (with daily time steps) is recommended (e.g. Carpenter
and Georgakakos (2004); Vrugt et al. (2003a)) as warm-up time, depending
on the response time of catchment processes.

In this study, data are available from 01-01-1971 to 31-12-2000. Analyses
are based on hydrological years, starting November 1st and ending on Octo-
ber 31th. Hydrological years are used to capture winter runoff in a single year
and not split this over two calender years. This leaves ten unused months at
the start of the data series as warm-up time for the model, easily exceeding
the minimal recommended time. For computational ease, a warm-up period
of a full year is used for calculations that do not start in the first hydrologi-
cal year present in the data. The objective function is not evaluated during
model warm-up, because resulting Y-values would be inaccurate.

Base model

A common approach to model calibration is to use a large part of the avail-
able data for calibration (to use as much information as possible during the
calibration process), while keeping part of the data separate from calibra-
tion for validation purposes (table 4.1). There is no consensus whether the
model should be calibrated on the most recent part of data and validated
on older observations, or vice versa. Therefore the base model is calibrated
twice, the oldest and most recent 20 years of data (referred to as models A
and B, with 10 months and 1 year warm-up time respectively) and validated
on the remaining period (figure 4.1). The model with the best validation
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performance (i.e. the model with the best performance on data independent
from calibration) is selected as base model.

Table 4.1: Overview of calibration and validation periods in various studies. Calibration
and validation length and order differ between the various studies and seem to depend
largely on the availability of data and the study purpose

Source Calibration Validation Notes
length [y] length [y]

Lindström et al. (1997) 10 10 order unknown
Romanowicz et al. (s.d.) 10 10 order unknown
Booij and Krol (2010) 16 13 calibration first
Madsen (2003) 4 2 calibration first
Chiew et al. (2009) 31 112 calibration last
Görgen et al. (2010) 17 17 both ways
Booij et al. (2011) 19 20 calibration first

5-year periods

Following Coron et al. (2012), the entire data set is divided into overlapping
5-year periods, resulting in 25 periods with different climate characteristics
(figure 4.1). The HBV model is calibrated for each 5-year period (with a
1 year warm-up period preceding the calibration period), to find optimal
parameter sets for the climatic conditions during each period.

4.1.2 Calibration algorithm

The Shuffled Complex Evolution Metropolis algorithm (Vrugt et al., 2003b,
SCEM-UA) is used to optimize the objective function Y. SCEM-UA is an
automatic searching algorithm that converges to a global optimum in the
parameter space, based on the earlier SCE-UA algorithm (Duan et al., 1992).
It combines controlled random search, competitive evolution and complex
shuffling to find the optimum parameter set in the parameter space.

Calibration experiments in this study have shown that the parameter
space is quite complex, and extensive sampling is required for proper cali-
bration. Table 4.2 shows the settings used for the calibration runs. These
settings are based on the recommendations of Vrugt et al. (2003b) for com-
plex problems. The minimal recommended population size sscem = 250
proved sufficient to calibrate the base model on 20 years of observed data.
The calibration blocks of 5 hydrological years required a larger population
size sscem = 1000. This might be related to the fact that the 20 year cal-
ibration results in a more average parameter set (reasonably suited to a
variety of climatic conditions), while each 5-year period has a very specific
parameter set optimized for those specific climatic conditions.
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Figure 4.1: Overview of calibration periods for base model A and B, and overlapping
5-year periods. Model warm-up periods are shown with purple boxes, warm-up periods for
validation period of base model A and calibration period of base model B are not shown,
because they overlap with the end of the calibration and validation periods respectively

SCEM-UA sampling is capped at a user-defined maximum number of
iterations. It is not possible to use convergence criteria to end calibration.
Therefore convergence plots are made after each calibration run, that show
whether the used number of iterations was sufficient for the algorithm to
converge to a single value for each parameter. Calibration is repeated with
more iterations until the plots show sufficient convergence.

Table 4.2: Settings of SCEM-UA algorithm, based on recommendations for complex
problems (Vrugt et al., 2003b)

Variable Description Value

nscem # of parameters 6
qscem # of complexes 10
sscem population size 250 (base model) / 1000 (windows)
cn,scem jump rate 2.4/

√
nscem

Tscem likelihood ratio 1e6

4.2 Correlations

This section details how correlations between parameter values and climate
characteristics are determined and how these correlations are evaluated. Sec-
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tion 4.2.1 describes the applied correlation method. A short description of
climate characteristics is given in section 4.2.2. Section 4.2.3 specifies which
correlations are investigated and describes significant correlations between
parameter values and climate characteristics from a hydrological point of
view where possible.

4.2.1 Pearson correlation coefficient

The Pearson correlation coefficient (r; Davis, 2002) is used to determine the
linear correlations between parameter values and climate characteristics, us-
ing calibration results and climate characteristics from the 5-year windows
as data set. A linear approach is used because it is unknown which rela-
tionships exist between model parameters and climate variables. A linear
relation is the most simple option and there is no justification to attempt
more complex relationships (e.g. rank correlation).

The Pearson correlation coefficient is determined by dividing the co-
variance between two variables x and y by the product of their standard
deviations σ. r = 1 indicates a perfect positive correlation, r = −1 indicates
a perfect negative correlation:

r =
covx,y
σxσy

(4.1)

Correlation significance is determined with a T-test and a table of crit-
ical values depending on sample size (Davis, 2002). A significance level of
5%, or p < 0.05 is used as a threshold to determine which correlations are
statistically significant.

4.2.2 Climate characteristics

This study is limited to simple characteristics related to the climatic vari-
ables P (precipitation), T (temperature) and PET (potential evapotranspi-
ration). These variables serve as input for the HBV model and are thus
used to estimate the optimal values for the model parameters through cal-
ibration. Precipitation intensity on days with P>0.1 mm (Pwet) is also
considered. Runoff Q is not considered because this is model output and
the variable of interest in climate change impact assessment.

Climate characteristics are determined for each block of 5 hydrological
years. 5-year averages of daily values are denoted with subscript µ (e.g.
Pµ). Average daily observations during winter months (December, Jan-
uary, February, [DJF]) are denoted with µ,w (e.g. Tµ,w) and with µ, s (e.g.
Pwet,µ,s) during summer months (June, July, August, [JJA]). Last, average
aridity (arµ) is considered, which is average PET divided by average P.

Variability of various climate characteristics can be considered by look-
ing at their respective standard deviations. However, significant correlations
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between standard deviation and parameters are difficult to explain from a
hydrological point of view. Moreover, significant correlations with standard
deviations occur solely as a coincidental side effect of significant correlation
between the average value of a climate characteristic and a parameter, and
a strong correlation between average value and standard deviation of this
climate characteristic.

4.2.3 Application

This section details between which variables correlations are determined and
how these correlations are used to explain relationships between parameter
values and climate characteristics.

Interrelation climate characteristics

First, correlation between logical combinations of climate characteristics are
investigated. Correlations of summer and winter P, T, PET and Pwet with
their respective average values are determined. Correlations between T and
PET, correlations between P and Pwet and correlations between aridity and
P and PET are also calculated. This assists in stating which correlations be-
tween climate characteristics and model parameters have a hydrological ba-
sis, and which are simply the result of correlations between interdependent
climate characteristics. For instance, a parameter might show significant
correlations with Pµ and arµ. Assuming that a relationship exists between
the parameter and Pµ, the correlation with arµ might be a different rela-
tionship, or a result of the high correlation between Pµ and arµ.

Climate characteristics and runoff

Second, correlations between climate characteristics and runoff are deter-
mined. In the model, parameter values form the connection between climatic
input and runoff output. Knowledge about correlation between climate and
observed runoff gives insight in the result of the processes that the model
parameters try to simulate. This information assists in describing correla-
tions between climate and parameters from a hydrological point of view.

Climate characteristics and parameter values

Third, correlations between climate characteristics and parameter values
are calculated. Significant correlations form the basis of further regression
analysis, which ultimately leads to a regression equation that quantifies the
relationship between certain parameters and climate characteristics.

Given a significant correlation, a chance still exists that this correlation
is present by coincidence, rather than as a result of a physically meaningful
relationship between two variables. Therefore a hydrological explanation of
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significant correlations is given where possible, to increase the confidence
in later regression equations (i.e. to increase confidence that a regression
equation describes an actual relationship rather than coincidence). Any in-
dividual parameter is however not responsible for the correct modelling of
a single hydrological process, but rather for the combined effect of several
hydrological processes. This makes the relationship between climate indica-
tors and optimal parameter values a complex one, because a multitude of
physical processes might be involved in any potential relationship.

4.3 Linear regression analysis

Regression analysis is used to establish equations for parameter values, based
on the significant correlations a parameter has with climate characteristics.
This section describes two regression methods used in this study. Single
linear regression aims to explain the relationship between one independent
and one dependent variable with a linear equation. Multiple linear regres-
sion expands on this, using multiple independent variables to explain one
dependent variable in a linear way. In this case the six model parameters are
dependent variables or predictands, while the various climate characteristics
are the independent variables or predictors.

4.3.1 Single and multiple linear regression

The Matlab function “polyfit” is used in the regression analysis. The func-
tion finds the coefficients (c1,2,..) of a polynomial yr(x) of degree z that
provides the best relationship between the dependent and independent vari-
able(s):

yr = c1x
z + c2x

z−1 + . . .+ czx+ cz+1 (4.2)

An error term SSE is introduced in order to find the best fit for the
equation, by minimizing the sum of the squared difference between the ob-
served values (yr,i) and those estimated by the regression line (ŷr,i). This is
known as the least square approach (Davis, 2002):

SSE =
n∑
i=1

(ŷr,i − yr,i)2 = minimum (4.3)

It is unlikely that a perfect linear relationship will be found between a
certain climate characteristic and the optimal value for a model parameter,
given the complexity of the problem. However, what the actual relationship
looks like is unknown. Therefore the most simple option of a linear fit is used,
as to not overcomplicate matters. Higher order polynomial regression might
fit observed data better, but this fit will likely deteriorate quickly outside the
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fitted data range. This stays in line with the correlation approach (section
4.2).

For a single linear fit z = 1 (eq. 4.2):

yr = c1x+ c2 (4.4)

This equation uses a single independent variable to predict the dependent
variable, which in this case means that a single climate characteristic is used
to predict the optimal parameter value. Since it is possible that the optimal
parameter value is dependent on more than a single climate characteristic,
the regression analysis also includes multiple linear regression.

Multiple linear regression assess the influence of multiple independent
variables on the dependent variable, by assessing the contribution of the
individual variables. It expands on the single linear regression equation
(equation 4.4) by adding multiple linear terms to the regression equation:

yr = c1x1 + c2x2 + . . .+ czxz + cz+1 (4.5)

Adding more linear terms to the regression equation does not necessar-
ily lead to a better estimate of the independent variable. Methods exist
that selectively add terms (i.e. climate characteristics that are positively
correlated with the parameter under consideration) to the regression equa-
tion. However, due to the relatively low number of possible combinations
(2number of significant correlations − 1) it is in this study possible to simply
assess all possible regression equations for each parameter.

Regression strength

The strength or goodness of fit of the regression line is given by the R2 value,
found by dividing the sum of squares due to regression (SSR) by the total
sum of squares (SST ):

R2 =
SSR
SST

=

∑n
i=1(ŷr,i − ȳr,i)2∑n
i=1(yr,i − ȳr,i)2

(4.6)

SSR measures the sum of squares of the difference between the estimates
from the regression equation (ŷr,i) and the average of the observed values
(ȳr,i). SST gives the sum of squares of the difference between the observed
values (yr,i) and the average of these values. The fraction R2 becomes 1
when the regression equation provides a perfect fit with the observations,
i.e. when ŷr,i = yr,i (Davis, 2002).

In the case of single linear regression, where the dependent variable is
linked to a single independent variable, R2 is equal to the squared value of
the Pearson correlation coefficient r between both variables.
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Regression significance

This section details two different tests that help determine whether estab-
lished regressions are significant in a statistical sense. The F-test is a math-
ematical test, whereas confidence bands give a visual indication of signifi-
cance.

F-test: in principle, a significant Pearson correlation coefficient indi-
cates that significant single linear regression is present. The significance
of the regression shows, in the case of single linear regression, if the slope
coefficient c1 (eq. 4.4) is significantly different from zero. If this is not
the case, the scatter in values around the regression line is the same as the
scatter around the mean ȳr,i; i.e. the regression does not provide a better
relationship between the two variables than the mean value ȳr,i does.

In case of multiple linear regression, adding more individually significant
terms to the equation does not necessarily lead to a significant combined
equation. An F-test is used to determine regression significance, based on
the hypothesis and its alternative:

H0 : c1,2,..,z = 0

H1 : c1,2,..,z 6= 0 for at least 1 cz

The H0 hypothesis is rejected when F exceeds a certain value that varies
based on the desired significance level. It uses the mean sums of squares due
to regression MSR and error MSE , which are the sums of squares divided
by their respective degrees of freedom. The general equation for F depends
on the number of terms in the regression equation m:

F =
MSR
MSE

=
SSR
m
SSE

n−m−1

(4.7)

For single linear regression m = 1, whereas for multiple linear regression
the number of terms can be larger. Table 4.3 shows F-values for varying
degrees of freedom, with n = 25 from the data points that result from the
25 calibration blocks.

Confidence bands: a 95% confidence limit is constructed around the
regression line, as a visual control of the significance test. The true popu-
lation regression lies between the confidence bands with probability of 95%
(Davis, 2002). Therefore for 25 data points (following from the 25 cali-
bration blocks), approximately ((1 − 0.95) ∗ 25 =) 1.25 data points can be
expected to be outside the confidence interval. If more than 1.25 points are
outside the confidence interval, the regression is not statistically significant
at a 95% significance level.
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Table 4.3: F-values for varying degrees of freedom at a 95% significance level
(Davis, 2002, Table A.3a)

m F

1 4.28 single linear regression
2 3.44 Multiple linear regression
3 3.07 Multiple linear regression
4 2.87 Multiple linear regression
5 2.74 Multiple linear regression

4.3.2 Selection of regression equations

Regression equations are determined for each parameter that shows signifi-
cant and meaningful correlation with at least one of the climate characteris-
tics (called flexible parameters here). From all possible regression equations,
only those that fulfil the significance criterion will be considered for use in
the hydrological model. A single equation is selected for each parameter,
based on a trade-off is made between regression strength (goodness-of-fit
R2) and the complexity of the equation (adding more terms to the equation
will most likely increase the fit R2 but might be a case of data-fitting rather
than describing an actual relation).

4.4 Implementation of regression relations

Several different regression models are made that each estimate a differ-
ent combination of parameter values with the selected regression equations
(section 4.3.2). The first regression model estimates the value of the param-
eter that is best estimated by its regression equation (best goodness-of-fit
the selected regression equations). For following regression models, more
regression equations are included ranked on their respective goodness-of-fit.

The following sections explain the process of parameter estimation and
implementation of regression equations in HBV in more detail. The per-
formance of all models with GCM-RCM projections as input is shortly de-
scribed. Last, a short description is given about how from all established
regression models one is selected to be used for climate change impact as-
sessment.

4.4.1 Recalibration and validation performance

Parameters that can not properly be estimated with regression equations,
have fixed values in the HBV model (called fixed parameters here, these pa-
rameters come from the six calibration parameters that are the result of the
sensitivity analysis). To account for possible interactions between all model
parameters, the fixed parameters in each regression model are recalibrated.
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The goal is to calibrate these fixed parameters towards values that are com-
patible with a variety of estimated values for the flexible parameters. The
total amount of fixed parameters is 6 − flexible parameters. Parameters
that have been assigned a default value after the sensitivity analysis keep
this default value.

Recalibration and validation periods are the same periods as are used for
the base model (figure 4.2). Calibration spans year 11 to 30, while validation
uses years 1 to 10. Value estimates of flexible parameters are changed per
hydrological year during calibration and validation. The estimates are based
on 5-year averages of the required climate characteristics, with the year
under consideration as middle point (e.g. parameter estimates for year 13
are based on the average climate characteristics calculated over years 11
to 15). Figure 4.2 shows in coloured blocks the 5-year periods on which
parameter estimates for a specific year are based. These 5-year blocks consist
of 5 consecutive hydrological years, of which the first starts towards the end
of calender year 1.

This approach to parameter estimates has consequences for the periods
that can be used for calibration of the fixed parameters and validation of
the resulting regression models. Calibration and validation should be inde-
pendent periods, to provide objective testing of the calibrated model. Since
yearly parameter estimates are based on average climate statistics, some
overlap between calibration and validation can occur (i.e. figure 4.2, red
blocks).

While year 11 falls in the calibration period, its parameter estimates are
partly based on climate characteristics stemming from the validation period.
This compromises the independence of the validation period. Therefore cal-
culation of the objective function during calibration does not start until year
13, the year for which parameter estimates are solely based on years within
the calibration period. Year 28 is the last year included in calculation of the
objective function, since for years 29 and 30 only 4-year and 3-year climate
averages are available. Similarly, the objective function during validation is
calculated for years 4 to 8; the only years for which complete, independent
parameter estimates can be made. Warm-up times are included for calibra-
tion and validation. Warm-up periods use the same estimates for flexible
parameters as the first years of validation and calibration periods (years 4
and 13 respectively). For proper comparison, the base model is revalidated
on years 4-8 as well, to provide a baseline for evaluating the performance of
the regression models.

4.4.2 Regression model performance with GCM-RCM input

One of the regression models is used for climate change impact assessment.
The procedure for climate change impact assessment involves running the
hydrological model with flexible and recalibrated fixed parameters with in-
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Figure 4.2: Approach towards parameter estimation during recalibration of fixed param-
eters and validation of this recalibration. Purple: model warm-up time, green: validation
period, red: overlap between validation and calibration, blue: calibration period

put from GCM-RCM combinations. Before making the choice for a single
regression model, the performance of all regression models with GCM-RCM
input for both current and future conditions is evaluated.

A regression equation for an arbitrary parameter is based on calibrated
values for that parameter for multiple 5-year periods (section 4.1). These
calibrated values are based on observed values of P, T and PET. This is
also the case for estimated values for the parameter during recalibration
and validation of the regression models (section 4.4.1). Estimated values
are therefore quite close to the range of parameter values observed during
calibration of the 5-year periods.

It is possible that estimated values of flexible parameters will deviate
from this observed range. While interpolation within the range is unlikely
to lead to modelling issues, extrapolating values outside this range can cause
problems (e.g. 0 values for FC effectively remove soil moisture storage and
evapotranspiration from the model). Therefore all regression equations are
tested with GCM-RCM input, to determine if these issues occur.

4.4.3 Selection and evaluation of regression model

The final choice for the regression model is based on the combined assess-
ment of validation performance, and expected performance of the regression
model with GCM-RCM input.
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4.5 Influence on climate change impact assessment

This section describes the process of climate change impact assessment (sec-
tion 4.5.2) and how the final comparison between base and regression model
is made (section 4.5.3). Proper parameter estimates can only be made for
25 years out of the full 30 years in the data set (section 4.4.1). This lim-
its the period for which the regression model can be applied (figure 4.2) to
years 1974-1998. Similarly, future projections with the regression model can
only be made for period 2074-2098. All statistics discussed in the following
sections are calculated for these two time periods.

4.5.1 Projected climate change

GCM-RCM projections (section 2.2.2) are used as input for both base and
selected regression model, to project runoff for periods 1971-2000 and 2071-
2100. A short summary of expected changes per GCM-RCM is made, to
show which climatic changes are modelled with the base and regression mod-
els.

4.5.2 Climate change impact assessment method

Projections of future runoff can not be directly compared with historical
runoff observations, as this would discount the uncertainty stemming from
the use of GCM-RCM combinations and the hydrological model, several
steps constitute the climate change impact assessment. First, simulated
runoff based on observed P, T and PET data is compared with observed
runoff for both the base and regression model. This shows the accuracy of
both hydrological models. Second, simulated runoff based on GCM-RCM
projections for period 1971-2000 is compared with simulated runoff based on
observed P, T and PET data from base and regression model. This shows
the influence of the various GCM-RCM combinations on runoff predictions.

Third, simulated runoff based on GCM-RCM projections for period 2071-
2100 is compared with simulated discharge based on GCM-RCM projections
for period 1971-2000 from both base and regression model. This shows the
actual expected climate change.

Daily GCM-RCM predictions of P and T, resulting from simulated cli-
matology, include relevant variability and a random component. Climate
change impacts are therefore derived from changes in runoff statistics, since
simulated hydrographs for present and future periods can not be directly
compared, due to the inherent randomness of the GCM-RCM projections
used as hydrological model input. Flow-duration-curves are used to visualise
changes in frequency of simulated flows. Changes in overall and seasonal
flows are determined by comparing mean and average values of overall and
seasonal flows between both simulated periods.
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4.5.3 Comparison of predicted changes

The final step in this study is comparison of the predicted changes in runoff
by the base model with changes predicted by the regression model. Valida-
tion values of both models (section 4.4.1) give an indication of which model
is likely better suited for climate conditions that differ from calibration con-
ditions. However, ultimately a qualitative comparison of predicted changes
is the best that can be achieved, since it is impossible to know which of both
simulations of future runoff is more accurate.
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Chapter 5

Results

5.1 Calibration results

This section presents the results of calibration procedure (section 4.1). Sec-
tion 5.1.1 concerns calibration and selection of the base model, section 5.1.2
shows the results of calibration of the 5-year windows that form the basis
for correlation and regression analysis.

5.1.1 Base model

Two models A and B are calibrated and the model with best validation
performance is selected as base model (section 4.1). Calibration of both
models is capped at 5000 iterations. Parameter progression plots show that
this is sufficient to properly identify optimum values of all six parameters in
both cases. Table 5.1 shows calibration and validation results for models A
and B (calibrated on 20 years of data, validated on 9 years).

Model performance during validation is somewhat worse than calibration
for both models, mostly due to incorrect modelling of the water balance (seen
as an increase in Relative Volume Error during validation). Model B seems
better suited for use outside its calibration period, judging from Y-values
during validation. Model B is therefore selected as base model.

Figure 5.2 shows model performance of both model A and B when their
respective parameter sets are used to simulate runoff for all 5-year periods.
Model B has a higher Y-value than model A for 19 out of 25 periods, rein-
forcing the choice to use model B as base model.

Table 5.1: Calibration and validation results of base model. Base model A is calibrated
on the first 20 years of data and validated on the remaining 9, base model B is calibrated
on the last 20 years and validated on the first 9 years

Base model A Base model B
Calibration Validation Calibration Validation

Y [-] 0.74 0.64 0.73 0.68
NS [-] 0.74 0.70 0.73 0.73

RVE [%] 0.52 9.7 0.53 7.4
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5.1. Calibration results

5.1.2 5-year windows

Calibration of the 5-year blocks is capped at 50000 iterations. Parameter
convergence plots show that most parameters converge quickly in any time
period, although in some specific cases this large number of iterations is nec-
essary. The most influential parameter FC is properly identified in all cases,
and the same goes for α and PERC which are the next most important ones
(section 3.3.3). The algorithm sometimes struggles to find the optimal value
for LP and TT and keeps switching back and forth between several simi-
lar values. This shows that the objective function is relatively insensitive
to the values of these parameters in certain time periods. Parameter Ks

can be identified in all periods, although in some cases thorough sampling
is required. Overall, parameter identifiability for the 5-year periods seems
satisfactory.

However, initial calibration results of the 5-year windows were unsatis-
factory for the time periods 14, 16, 19 and 23 (appendix B, figure B.1, red
circles), where the calibration algorithm determined optimal parameters in
such a way that the roles of slow and fast runoff reservoirs were reversed.
This has been corrected with a recalibration of the specific periods with
restricted parameter ranges (appendix B, figure B.1, blue stars). Figure 5.1
shows the resulting Y-values of all 5-year periods, and a decomposition of
the objective function Y in specific parts related to NS and RVE (section
3.3.1). The calibrated parameters for each 5-year window are such that
the relative volume error is nearly zero and therefore variations in the NS
coefficient almost exclusively determine the final Y-value (figure 5.1).

Calibration period 18 shows a low Y-value compared to the pattern be-
fore and after this period. Gradual changes in Y-value might be expected
since each calibration period differs in only one of its 5 calibration years from
the period before. Period 18 consists of 5 years with very low and constant
runoff, without any clear runoff peaks; a situation that is not encountered
in any other 5-year period. Daily runoff varies little from the average runoff
in this period and therefore the lower part of the NS coefficient has a low
value (figure 5.1). Since the upper part of the NS equation also has a low
value compared to the other periods, the total fraction of the NS equation is
high. This leads to a lower Y-value for this period than would be expected
based on the pattern in Y-values.

Figure 5.2 compares Y-values of the 5-year periods with Y-values for
those periods determined with models A and B. This shows that parameter
sets calibrated for each 5-year period perform better than either model A or
B. The 5-year parameter sets thus simulate runoff closer to observed runoff
than either model A or B, based on climate input.
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Figure 5.1: Calibration results for blocks of 5 hydrological years specified as the individ-
ual components of Y (equation 3.16): the Nash-Sutcliffe coefficient (NS, equation 3.17),
consisting of modelling error (difference between daily simulated and observed discharge)
and natural discharge variability (variability in discharge measured as the sum of the dif-
ference between daily observed and average observed discharge), and the Relative Volume
Error (RVE, equation 3.18)

5.2 Correlation results

This section presents correlation results as described in section 4.2. Interre-
lation of climate characteristics is given and shortly discussed, as are corre-
lations between climate characteristics and observed runoff (section 5.2.1).
Following this, correlations between climate characteristics and optimal pa-
rameter values are presented and discussed (section 5.2.2).

5.2.1 Explanatory correlations

Table 5.2 shows Pearson correlation coefficients between dependent climate
characteristics and correlations between all climate characteristics and ob-
served discharge, used to give a hydrological explanation of correlations
between climate characteristics and parameter values (section 4.2).
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5.2. Correlation results

Figure 5.2: Calibration results for blocks of 5 hydrological years (black crosses) and
performance per calibration block of models A and B, that have been calibrated on the
first and last 20 years of data respectively

Interrelation climate characteristics

All investigated interrelations of climate characteristics show significant pos-
itive correlations (table 5.2).

This has some consequences for estimating parameter values with regres-
sion equations, because certain climate characteristics are not completely in-
dependent from each other. Estimating a parameter value from two climate
characteristics where one is dependent on the other, obscures the actual re-
lationship between the parameter value and the first climate characteristic.
A regression equation based on two climate characteristics with this type of
relationship between them would be a case of overfitting the data, rather
than describing an actual relationship. It is however difficult to determine
the difference between overfitting of the data, and a weak relation between
a specific characteristic and parameter value. Because in both cases adding
this characteristic to the regression equation only improves the fit slightly,
but for very different reasons.
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Correlation between climate and observed runoff

Average values of P, T, PET, Pwet show logical correlations with runoff
(table 5.2). Increased P leads to increased runoff due to overall availability
of water. Increased Pwet likely leads to increased runoff through earlier
saturation of soil moisture as a result of increased precipitation intensity.
Increased T and PET lead to increased evaporation and thus less runoff.

The lack of correlation between winter runoff and winter climate is likely
the influence of snow, which delays part of winter precipitation until snow
melt occurs in early spring. The positive correlation between winter Pwet
and runoff is difficult to explain from a hydrological sense. This might be
a meteorological effect, related to high precipitation combined with above
zero temperature, leading to high direct runoff instead of snow forming.

Summer characteristics and runoff show similar correlations as average
values of climate and runoff, apart from Pwet. This might be the result
of increased evapotranspiration during summer, which leaves more space in
the soil moisture reservoir. Therefore increased precipitation intensity does
not automatically lead to increased direct runoff (which is the result from
saturated soil moisture).

Winter (summer) climate and summer (winter) runoff are independent
events, and correlations are likely not a reflection of real relationships. Sim-
ilarly, correlations between average runoff and seasonal characteristics rep-
resent a damped effect of the respective seasonal correlation and thus do not
provide additional information.

Aridity is the combined effect of daily PET divided by daily P.

Table 5.2: Pearson correlation coefficients (r) and p-values between dependent cli-
mate characteristics, and correlation between climate characteristics and observed runoff.
Green: p ≤ 0.05 (significant at 95% level), red: p > 0.05 (not significant at 95% level),
white: unused
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5.2. Correlation results

5.2.2 Climate and parameter correlation

Table 5.3 shows Pearson correlation coefficients between calibrated parame-
ter values and climate characteristics. Correlations are considered significant
for p ≤ 0.05 (based on unrounded values, shown in green). Correlations in
red do not meet the significance criterion. In following subsections only
correlations significant at the 95% level are discussed, which are present for
parameters FC, LP , α, Ks and PERC. TT does not show any significant
correlations with climate characteristics.

Table 5.3: Pearson correlation coefficients (r) and p-values between climate characteris-
tics and model parameters. Green: p ≤ 0.05 (significant at 95% level), red: p > 0.05 (not
significant at 95% level)

FC

FC shows positive correlation with Pµ, Pwet,µ and Pµ,w, and negative cor-
relation with arµ.

Increased FC means more space in the soil moisture reservoir, which
for independent precipitation events means that a relatively bigger part of
the precipitation can be stored. Therefore when more space is available in
the soil moisture reservoir, less water from precipitation events is directly
available for runoff. For low and medium precipitation events, the increased
soil moisture storage can lead to lower runoff. For high precipitation the
soil moisture reservoir will be saturated at some point, and the effect of
increased FC on high flows is thus diminished.

Pµ has a positive correlation with both runoff and FC. Since higher FC
should lead to lower low to medium runoff peaks, FC could be expected to
have negative correlation with precipitation characteristics (since increased
P would lead to increased runoff and decreased FC ensures this). However,
correlation between Pµ and FC is positive. This might indicate that the
model is overly sensitive for changes in this characteristic (e.g. model over-
estimates runoff for increases Pµ) and the optimal FC value might increase
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to dampen this effect.
Correlation of FC with Pwet,µ might have a similar explanation (since

Pwet,µ also has a positive correlation with runoff): higher FC means more
storage in soil moisture, which is able to store a larger part of precipitation
events (leading to lower runoff) and so dampen the effect of increases in
Pwet,µ on runoff generation by the model. Alternatively, correlation with
Pwet,µ could be the result of high positive correlation between Pµ and Pwet,µ.

Pµ,w has a positive correlation with FC, but not a significant correlation
with average runoff. Therefore this correlation might be the result of the
positive correlation between Pµ,w and Pµ.

Correlation with arµ might follow from the evaporation controlling prop-
erties of FC. A decrease in FC would lead to an increase of actual evapo-
transpiration.

LP

LP is negatively correlated with Pwet,µ,w. No other significant correlations
are present.

An increase in LP leads to a decrease in actual evapotranspiration, given
constant values of FC, PET and soil moisture storage, up to a maximum of
all available soil moisture. This leads to a higher amount of water as runoff.
Pwet,µ,w has a significant positive correlation with runoff during the winter
months, indicating that with higher Pwet,µ,w, higher runoff occurs. Positive
correlation between LP and Pwet,µ,w simulates this effect.

The lack of other significant correlations between LP and other climate
characteristics is unexpected, given the high correlation between Pwet,µ,w
and Pµ,w and Pwet,µ. Furthermore, the increase in LP leading to lower ac-
tual evapotranspiration seems an artificial way in which the model reaches
acceptable runoff. From a physical point of view, it makes little sense that
a higher average precipitation intensity on wet days during winter would
go together with lower actual evapotranspiration. Therefore the correlation
between LP and Pwet,µ,w is a possible coincidence with no basis in a true
relationship between the two.

α

α is positively correlated with Pµ, Pwet,µ, Pµ,w and Pwet,µ,w. It shows nega-
tive correlation with arµ.

An increase in α leads to increased runoff from the fast runoff reservoir.
Since Pµ and Pwet,µ are both positively correlated with average runoff, it
is understandable that α assumes a higher value for higher values of both
climate characteristics.

Pwet,µ,w shows positive correlation with runoff during winter months, but
Pµ,w does not. Soil is generally saturated during winter, leading to more
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direct runoff from precipitation events. This is more so for high intensity
events (which would lead to runoff peaks) than for steady low precipitation
(which keeps the soil saturated). Since α controls the magnitude of peak
flows, it is understandable that α increases with increasing Pwet,µ,w. The
correlation between α and Pµ,w can not be directly related to correlation of
Pµ,w and winter runoff, and might be the result of high correlation between
Pµ,w and Pwet,µ,w.

arµ depends on Pµ and thus shows correlation with α as well. A higher
aridity index indicates more potential evapotranspiration compared to pre-
cipitation. This potentially leads to more actual evapotranspiration and
thus lower saturation of soil moisture. This means a decrease in fast runoff,
since more space is available in soil moisture storage. A negative correlation
between arµ and α would lead to lower fast runoff due to lower α occurring
with higher arµ and is thus understandable.

Ks

Ks is positively correlated with Pµ and has a negative correlation with arµ.
Ks controls runoff from the slow runoff reservoir, and slow runoff in-

creases as Ks increases. Since both Pµ is positively correlated with runoff,
it is understandable that the runoff controlling parameter Ks is positively
correlated with Pµ.

Negative correlation between Ks and arµ is understandable, since an in-
crease in arµ indicates less available water for runoff (either due to lower pre-
cipitation, increased potential evapotranspiration or both) and vice-versa.
Ks shows this effect in runoff from the slow runoff reservoir.

PERC

PERC shows positive correlations with Pµ, Pwet,µ and Pwet,µ,w, and negative
correlation with arµ.

The positive correlations indicate that when average precipitation in-
creases, part of this increase is directed to the groundwater reservoir and
thus slow runoff increases. Since Pµ and Pwet,µ are all positively correlated
with average runoff, and Pwet,µ,w with average runoff in winter, this is a
reasonable relation.

Negative correlation with the average aridity reinforces this relationship.
When less water is available, groundwater is recharged more slowly, as shown
by decreased flow to the groundwater reservoir through decreased PERC.

Intercorrelation of climate characteristics

The correlations discussed above can directly or indirectly be traced back to
intercorrelation with Pµ (table 5.2). Correlations between Pµ and Pwet,µ and
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arµ are very high. Pµ,w also shows high correlation with Pµ. Pwet,µ,w shows
high correlation with Pwet,µ and Pµ,w, which both are strongly correlated
with Pµ. This provides an alternative explanation for most correlations,
since there is still the possibility that these correlation do not result from
a relationship between the parameters and climate. This reflection is used
during the regression analysis, and aids in choosing whether to add another
term to the regression equation (trade-off between increased fit R2 and equa-
tion complexity).

5.3 Regression analysis

This section gives the results of the regression analysis used to describe the
relationships between parameter values and climate characteristics. Section
5.3.1 shortly describes single linear regression results, section 5.3.2 gives
more elaborate results from multiple linear regression and a conclusion about
the regression approach for each individual parameter.

5.3.1 Single linear regression

This section discusses the single linear regression of correlations between
model parameters and climate characteristics that were found significant at
the 95% level (table 5.3). The correlation between LP and Pwet,µ is excluded
because this was deemed to be the result of coincidence (section 5.2.2). All
single linear regressions of a significant linear correlations are significant as
well. Resulting fit (R2) of each single linear regression can be found in table
5.4. Regression plots can be found in appendix C.

α is estimated the best with single linear regression, with fits varying
from R2 = 0.28 to R2 = 0.46. PERC is next best, with fits varying from
R2 = 0.26 to R2 = 0.36. FC and Ks are not estimated particularly well
with single regression, with fits varying from R2 = 0.17 to R2 = 0.25, and
R2 = 0.17 or R2 = 0.18 respectively.

Table 5.4: Fit R2 of single linear regression of significant correlations be-
tween model parameters and climate characteristics

Climate characteristic
Parameter Pµ Pwet,µ Pµ,w Pwet,µ,w arµ

FC 0.25 0.17 0.24 - 0.18
α 0.33 0.3 0.28 0.46 0.32
Ks 0.17 - - - 0.18

PERC 0.27 0.27 - 0.36 0.26
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5.3.2 Multiple linear regression

Multiple linear regression is used in an attempt to improve the fits found
with single linear regression (table 5.4) and establish regression equations
that better estimate parameter values. Tables 5.5 to 5.8 show the significant
results of multiple linear regression analysis for parameters FC, α, Ks and
PERC respectively, summarized as the best fit (R2) per number of terms in
the regression equations (full results can be found in appendix C.2). Only
the climate characteristics that show significant correlation with the various
parameters are used in the multiple linear regression analysis.

FC

Table 5.5 shows the result of multiple linear regression analysis for FC, as
the equations with the best fit R2 per number of terms in the equation. The
best equation from single linear regression is based on Pµ and this charac-
teristic is present in all possible best equations. This fit can significantly be
improved by adding Pµ,w as term in the regression equation, and again by
adding Pwet,µ as well. Expanding the equation further to include four terms
improves overall fit only a little, and this might be a case of overfitting.
Since correlations between FC and Pµ, Pwet,µ and Pµ,w can be explained
from a hydrological point of view, the equation based on these three terms
is used to estimate FC values.

Table 5.5: Best multiple linear regression results for parameter FC, mea-
sured by the regression fit R2 per number of terms included in the regression
equation. Selected regression equation underlined

# of terms Included characteristic(s) R2 F p

1 Pµ 0.25 7.63 0.01
2 Pµ, Pµ,w 0.32 5.10 0.02
3 Pµ, Pwet,µ, Pµ,w 0.40 4.66 0.01

4 Pµ, Pwet,µ, Pµ,w, arµ 0.43 3.76 0.02

α

The best fit achieved with single linear regression for α occurs in the equation
that depends on Pwet,µ,w. The fit can be significantly improved by adding
the term Pµ in a multiple regression equation. This builds on the physical
interpretation of the correlations (section 5.2.2): the increase in α for periods
with high winter P (reflecting the increased direct runoff due to saturation
of the soil) is included in the regression equation through the term Pwet,µ,w.
The influence of increased aridity, more space for precipitation to add to soil
moisture, is included due to the term Pµ. This term is directly used in the
calculation of the aridity index arµ.
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Adding terms to the equation containing Pµ and Pwet,µ,w has very little
effect: the fit increases only marginally. While the additional terms can be
explained from a hydrological point of view, they can also be traced back
to their relation with Pµ and Pwet,µ,w. Therefore it makes little sense to
include more than two terms in the regression equation, because the added
complexity from additional terms likely offsets the marginal gains obtained
from a better fit.

Table 5.6: Best multiple linear regression results for parameter α, measured
by the regression fit R2 per number of terms included in the regression
equation. Selected regression equation underlined

# of terms Included characteristic(s) R2 F p

1 Pwet,µ,w 0.46 19.31 0.0002
2 Pµ, Pwet,µ,w 0.54 12.7 0.0002

3 Pµ, Pwet,µ, Pwet,µ,w 0.55 8.58 0.0007
Pµ, Pwet,µ,w, arµ 0.55 8.44 0.0007

4 Pµ, Pwet,µ, Pµ,w, Pwet,µ,w 0.56 6.33 0.0018
Pµ, Pwet,µ, Pµ,w, arµ 0.56 6.32 0.0019
Pµ, Pwet,µ, Pwet,µ,w, arµ 0.56 6.34 0.0018

5 Pµ, Pwet,µ, Pµ,w, Pwet,µ,w, arµ 0.57 5.04 0.0041

Ks

The best fit achieved with single linear regression for Ks occurs in the equa-
tion that depends on arµ, which is only marginally better than the equation
based on Pµ. The regression equation including both terms does not meet
the significance standard (Appendix C.2, table C.5). Since single linear
regression does not provide a convincing equation for estimating Ks, at-
tempting to estimate the proper value of Ks very likely only leads to more
uncertainty than calibrating this parameter. Ks is therefore not estimated
with a regression equation and recalibrated when the various regression mod-
els are established.

Table 5.7: Best multiple linear regression results for parameterKs, measured
by the regression fit R2 per number of terms included in the regression
equation. No regression equation selected

# of terms Included characteristic(s) R2 F p

1 arµ 0.18 4.93 0.04
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PERC

The best fit achieved with single linear regression for PERC occurs in the
equation that depends on Pwet,µ,w. This fit can significantly be improved by
adding either Pµ or Pwet,µ to the regression equation. Using more than two
terms in the regression does not provide a significantly better fit.

Both Pµ and Pwet,µ have a reasonable hydrological explanation (section
5.2.2). Regression with Pµ has a slightly higher F-statistic and is also similar
to the regression equation for α. Therefore this regression equation is chosen
to estimate PERC.

Table 5.8: Best multiple linear regression results for parameter PERC,
measured by the regression fit R2 per number of terms included in the
regression equation. Selected regression equation underlined

# of terms Included characteristic(s) R2 F p

1 Pwet,µ,w 0.36 12.98 0.00
2 Pµ, Pwet,µ,w 0.42 8.11 0.00

Pwet,µ, Pwet,µ,w 0.42 7.90 0.00
3 Pµ, Pwet,µ,w, arµ 0.43 5.23 0.01
4 Pµ, Pwet,µ, Pwet,µ,w, arµ 0.43 3.74 0.02

5.4 Establishment of regression model

This section explains the implementation of the multiple linear regression
relationships for FC, α and PERC in the HBV model and evaluates the new
models’ performance by validation (section 5.4.1) and for use with GCM-
RCM input (section 5.4.2). One regression model is then selected for climate
change impact assessment (section 4.3.2).

5.4.1 Recalibration and validation performance

Relationships for FC, α and PERC are implemented in the HBV code.
Four different regression models are established. The first model estimates
only the value of α, since the multiple linear regression for α has the high-
est fit of the three. In subsequent models, values for FC and PERC are
also estimated from their regression equations. Since FC and PERC have
similar fits for their respective regression equations, either is a good option
to estimate along with α. Therefore the second and third model estimate
values of α and PERC, and α and FC respectively. Finally, the fourth
model estimates values of α, FC and PERC all. Parameters that are not
estimated with a regression equation are recalibrated (section 4.4.1). Ta-
ble 5.9 summarizes multiple linear regression results (goodness-of-fit of the
selected regression equations) and which regression models are created.
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Table 5.9: Summary of multiple linear regression results and implementation
in the HBV model

Multiple regression results Implementation
Parameter R2 Model Included equations

α 0.54 1 α
PERC 0.42 2 α, PERC
FC 0.40 3 α, FC

4 α, PERC, FC

Table 5.10: Calibration and validation results of four models with multi-
ple linear regression equations (section 4.4.1), compared with base model.
Model (1): α, (2): α, PERC, (3): α, FC, (4): α, PERC, FC

Base model Regression models
1 2 3 4

Calibration
Y [-] 0.73 0.73 0.71 0.73 0.71

NS [-] 0.73 0.73 0.71 0.73 0.71
RVE [-] 0.00 0.00 0.00 0.00 0.00

Validation
Y [-] 0.69 0.52 0.50 0.56 0.56

NS [-] 0.78 0.60 0.65 0.63 0.69
RVE [-] 0.13 0.15 0.27 0.12 0.23

Calibration performance

The base model can be considered as the optimal model for the entire cali-
bration period, since the parameter set is optimized for this specific period
(Y = 0.73, based on NS = 0.73 and RV E = 0.0053). The regression models
have performance equal to, or very similar as, the base model. Regression
models 2 and 4 include estimates for PERC, and these show slightly lower
values for Y than either base model or regression models 1 and 3.

Validation performance

Validation performance of all regression models is lower than validation per-
formance of the base model. Differences between the regression models seem
to originate from whether PERC is calibrated or estimated. Models 1 and
3 use a calibrated value for PERC and have a better value for RVE. Models
2 and 4 estimate the values of PERC and have a somewhat better value for
NS.
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5.4.2 Regression model performance with GCM-RCM input

This section investigates expected regression model functioning with GCM-
RCM input, by using the regression equations for parameters FC, α and
PERC to estimate their values based on GCM-RCM climate projections.
Parameter values are estimated for periods 1971-2000 and 2071-2100 (ap-
pendix C.2, figures C.5, C.6 and C.7 show parameter values, figures C.8 and
C.9 show projections of used climate characteristics).

FC

FC values are not estimated within plausible ranges (compared to ranges
encountered during calibration of 5-year windows) with GCM-RCM input.
Values for the period 1971-2000 are generally negative, due to an overes-
timation of average precipitation intensity (Pwet,µ) and underestimation of
average winter precipitation (Pµ) by the GCM-RCM combinations. In con-
trast, estimated FC values for period 2071-2100 are very high, mainly due
to a projected decrease in precipitation intensity (Pwet,µ) and increase in
winter precipitation (Pµ).

With a value of zero for FC, the HBV model would effectively disable
the soil moisture reservoir. Using a lower limit higher than zero is not felt
to be a reasonable alternative because a value can not objectively be de-
termined. Moreover, this would effectively fix FC at this value for most
simulations, leading to a situation where FC is treated like a recalibrated
parameter most of the time, only with a worse-than-calibrated value.

α

α values are estimated within plausible ranges (compared to ranges encoun-
tered during calibration of 5-year windows) with GCM-RCM input. An
exception is future projections of GCM-RCM 1, which give very high esti-
mates of winter precipitation intensity (Pwet,µ,w) leading to relatively high
values of α.

Estimates of future values for α seem somewhat high with input from
GCM-RCM 1. The other estimates do not seem unreasonable.

PERC

PERC values are estimated within plausible ranges (compared to ranges
encountered during calibration of 5-year windows) for the period 1971-2000
with all GCM-RCM input. Most GCM-RCM combinations project a de-
crease in average winter precipitation intensity (Pwet,µ,w) for the period
2071-2100, which leads to negative values for PERC in many cases (capped
at a very low positive value in the regression equation, to prevent complete
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groundwater drainage). This leads to the infeasible situation of very low
groundwater recharge and thus a decrease in base flow. The low estimates
of PERC values coincide with low GCM-RCM projections of Pwet,µ,w. Low
precipitation intensity leads to lower runoff peaks and increased importance
of base flow (due to lower direct runoff). Therefore it seems unlikely that
PERC will assume very low values in these cases.

Estimates of future values for PERC are thus somewhat doubtful: drain-
ing of the slow runoff reservoir with little to no replenishment seems unlikely
to happen from a hydrological point of view.

5.4.3 Regression model selection and evaluation

Due to problems with FC estimates with GCM-RCM input, regression mod-
els 3 and 4 can not be used for climate change impact assessment. Regression
model 1 does not include PERC estimates (that have unlikely low values
for the future period) and has a slightly better validation value than model
2, and is thus selected to be used for climate change impact assessment.

5.5 Climate change impact assessment

This section shows the results of the climate change impact assessments per-
formed with base and regression models. Outcomes are compared to deter-
mine the difference between both modelling approaches. Section 5.5.1 gives
a short overview of changes in P and T projected by various GCM-RCM
combinations (full tables in appendix D). Section 5.5.2 gives the results of
climate change impact assessments with base and regression model. Section
5.5.3 compares the projected changes by both model types.

5.5.1 Projected climate change

Most GCM-RCM combinations project an increase in average precipitation,
coupled with a decrease in precipitation variability (averaged over the full
30 years of GCM-RCM projections). Projected precipitation changes vary
from 0% to +16.5% (appendix D, table D.1) with an increased frequency of
wet days (leading to a decrease in average precipitation intensity, table 6.1).
With GCM-RCM combinations 1 and 5, precipitation changes are such that
functioning of the base model might not be optimal (due to transposing the
calibrated parameter set to very different climatic conditions, section 1.1.2).

Temperature is expected to increase with at least 2◦C with slight varia-
tions in variability, averaged over the full 30 years of GCM-RCM projections
(appendix D, table D.2).

Potential evapotranspiration (estimated with Penman-Monteith method)
is expected to increase with minimal changes in variability, in most GCM-
RCM projections (averaged over the full 30 years of GCM-RCM projections).
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GCM-RCM 2 projects a slight decrease in PET (appendix D, table D.3). For
both period 1971-2000 and period 2071-2100, average PET is higher than
average P. However, in projections of GCM-RCM 1, 2 and 5, P increases
more (percentage-wise) than PET. In projections from GCM-RCM 3 and 4,
PET shows the higher percentage-wise increase.

The overall picture is that of a warmer climate, with less variability
in precipitation and temperature than before. Precipitation and potential
evapotranspiration are both expected to increase, but in different magni-
tudes which makes the net result of available water uncertain.

5.5.2 Climate change impact assessment

This section gives the results of climate change impact assessment with
base and regression models. First, simulated runoff based on observed P,
T and PET is compared with observed runoff to determine hydrological
model accuracy. Next, simulated runoff based on observed P, T and PET
is compared with simulated runoff based on GCM-RCM projections to de-
termine GCM-RCM influence. Last, simulated runoff based on GCM-RCM
projections for 1971-2000 is compared with runoff based on projections for
2071-2100, to determine the projected climate change impact. Runoff char-
acteristics are determined for winter (December, January, February; DJF),
spring (March, April, May; MAM), summer (June, July, August; JJA) and
autumn (September, October, November; SON).

Due to the way parameter estimates are based on 5-year average climate
characteristics, all calculated statistics and flow duration curves are made
for periods 1974-1998 and 2074-2098 (section 4.5).

Influence of hydrological models

Table 5.11 shows seasonal and annual statistics of observed discharge and
simulated discharges by base and regression models with observed P, T and
PET as input (full table in appendix D.2). Figure 5.3 shows flow duration
curves of these discharges.

Table 5.11 shows that the base model slightly overestimates average
runoff during the period 1974-1998, compared to observed values. The
regression model simulates very similar average runoff as what has been
observed. For both models this value is much lower than the RVE during
validation (table 5.10, base model 13%, regression model 15%), since this
period also includes a large part of their calibration period. Both base and
regression model however, underestimate winter (DJF) and spring (MAM)
flows, and overestimate summer (JJA) and autumn (SON) flows. Seasonal
distribution of discharge is thus different from observations, even if overall
discharge is similar to observations.

Figure 5.3 shows the lower variability simulated by both models: simu-
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Table 5.11: Overview of differences between observed discharge and simulated discharge
by base and regression model with observed P, T and PET as input, for period 1974-1998.
I: observed discharge [m3/s], II.a-I: difference between observed and simulated discharge by
base model [%], III.a-I: difference between observed and simulated discharge by regression
model [%]. Green: estimates are higher than I, red: estimates are lower than I

Figure 5.3: Flow duration curves of observed discharge, and discharge simulated with
observations of P, T and PET as model input, for period 1974-1998
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lated discharges from both base and regression model cover a smaller range
of flows than have been observed. Base and regression model simulate lower
peak flows than observed. The base model simulates flows with an ex-
ceedance frequency of 10% lower than have been observed. Flows with a
higher exceedance frequency than 10% are simulated higher than observa-
tions. The regression model is somewhat more accurate. Simulated flows
with an exceedance frequency of 15% are lower than observed, but generally
closer to observations than simulations from the base model. Flows with
exceedance frequencies between 15% and 60% are simulated very similar to
observations by the regression model. Flows with exceedance frequencies
higher than 60% are simulated higher than observed.

The base and regression models are not perfect in their simulation of
runoff statistics. The base model has a much higher value for validation
than the regression model (Y = 0.69 compared to Y = 0.52). However,
comparing runoff statistics and flow-duration curves, the regression model
performs slightly better than the base model with regard to average and
seasonal flows, and seems to give a closer approximation of the observed
flow duration curve for high flows. It has to be noted however, that these
values are the result of using both models over the full data set, which has
for a part been used to calibrate the base model and has in its entirety been
used to establish the regression model.

Influence of GCM-RCM input

Table 5.12 shows seasonal and annual statistics of simulated discharges by
base and regression models with observed P, T and PET as input. These
are compared to simulated discharges by base and regression models with
GCM-RCM projections of P, T and PET as input, for the period 1974-1998
(full table in appendix D.3). Figure 5.4 shows flow duration curves of these
discharges.

Table 5.12 shows that (with some exceptions) using GCM-RCM projec-
tions as model input leads to lower average and seasonal runoff than using
observations. This is reflected in the flow-duration curves in figure 5.4.

The base and regression model show similar reactions to GCM-RCM
input, in the sense that resulting differences in table 5.12 are generally in
the same direction (e.g. decrease in annual average runoff is visible in both
models. Exceptions are found in differences in standard deviations during
winter (DJF) and spring (MAM)). Both base and regression model show
the biggest differences during summer (JJA) and autumn (SON), where the
base model simulates bigger runoff differences then the regression model.
Differences in winter (DJF) and spring (MAM) are smaller for both models,
where the regression model generally simulates slightly bigger differences
then the base model. This might be caused by changes in α in the regression
model, which influences fast runoff, which in turn is more prevalent during
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Table 5.12: Overview of differences between simulated discharges by base and regression
model with observed P, T and PET and GCM-RCM projected P, T and PET as input,
for period 1974-1998. II.a: simulated discharge by base model with observations as input
[m3/s], II.b-II.a: differences between simulated discharge with observations and GCM-
RCM 1971-2000 input by base model [%], III.a: simulated discharge by regression model
with observations as input [m3/s], III.b-III.a: differences between simulated discharge with
observations and GCM-RCM 1971-2000 input by regression model [%]. Green: estimates
are higher than II.a and III.a respectively, red: estimates are lower than II.a and III.a
respectively

Figure 5.4: Flow duration curves of simulated discharge with observations of P, T and
PET and GCM-RCM projections as model input, for period 1974-1998
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winter and spring.
The flow duration curves show a tendency for both the base and re-

gression model to simulate lower flows with GCM-RCM input than with
observations as input. Of the two, the regression model simulates higher
flows for exceedance frequencies lower than approximately 10% and for ex-
ceedance frequencies higher than approximately 50%. The base model sim-
ulates higher flows for exceedance frequencies between 10% and 50%.

GCM-RCM precipitation projections are, even after bias-correction, quite
different from observations (projections are 11% lower than observations,
section 2.2). This is most likely the cause of the big differences between
simulated runoff with observed data and GCM-RCM projections by both
the base and regression model. Moreover, the choice of GCM-RCM affects
simulated discharges much more than the choice for either the base or re-
gression model (e.g. differences resulting from varying GCM-RCM input are
larger than differences resulting from using either base or regression model
with the same GCM-RCM projections as input).

Projected impact of climate change

Table 5.13 shows seasonal and annual statistics of simulated discharges by
base and regression models with GCM-RCM projections as input, for the
periods 1974-1998 and 2074-2098 (full table in appendix D.4). Figure 5.5
shows flow duration curves of these discharges.

Figure 5.5: Flow duration curves of simulated discharge with GCM-RCM projections
for period 1974-1998 and 2074-2098 as model input
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Table 5.13: Overview of differences between simulated discharges by base and regression
model with GCM-RCM projected P, T and PET for period 1974-1998 and 2074-2098 as
input. II.b: simulated discharge by base model with GCM-RCM 1974-1998 input [m3/s],
II.c-II.b: differences between simulated discharge with GCM-RCM 1974-1998 and GCM-
RCM 2074-2098 input by base model [%], III.b: simulated discharge by regression model
with GCM-RCM 1974-1998 input [m3/s], III.c-III.b: differences between simulated dis-
charge with GCM-RCM 1974-1998 and GCM-RCM 2074-2098 input by regression model
[%]. Green: estimates are higher than II.b and III.b respectively, red: estimates are lower
than II.b and III.b respectively

Table 5.13 shows a projected increase in average runoff for all GCM-
RCM combinations, and an increase for nearly all seasonal flows. With the
regression model, standard deviations do not show a uniform change: both
increases and decreases are visible. The base model generally foresees an
increase in standard deviation. For both models, spring (MAM) and to a
somewhat lesser extent winter (DJF), see a larger runoff increase than sum-
mer (JJA) and autumn (SON). This seems the result of increased projected
precipitation during winter (Pµ,w, appendix C.2, figure C.9).

Runoff changes are especially large when projections from GCM-RCM
1 are used as model input, which seems consistent with its large projected
increase in precipitation (appendix D, table D.1). GCM-RCM 1 also has
the highest projections of precipitation intensity during winter (Pwet,µ,w,
appendix C.2, figure C.9) which leads to high values for α in the regres-
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sion model. This occasionally results in very high simulated discharges, as
reflected in figure 5.5. Both base and regression model simulate very high
future flows compared to the present period, with input from this GCM-
RCM.

The base model projects an increase in flows for nearly all situations
with GCM-RCM projected input. Only with input from GCM-RCM 2, the
base model projects lower very high flows (exceedance frequency lower than
0.3%) than with projected present input. The regression model however,
only projects increased flows for GCM-RCM combinations 1, 4 and 5. For
GCM-RCM combinations 2 and 3, the regression model actually simulates
lower very high flows (with exceedance frequency lower than 2.5%), and
higher higher, medium and low flows (with exceedance frequency greater
than 2.5%) in future, compared to the present. This is likely related to
projections of future Pwet,µ,w which are lower than present projections of
Pwet,µ,w for most GCM-RCM combinations. This leads to lower α values
and more spread out runoff peaks.

5.5.3 Comparison of projected runoff changes

Table 5.14 shows the difference between changes projected by base and re-
gression model. Green values indicate that the regression model projected
the bigger change, red values show that the base model projected the bigger
change. Note that the colouring does not indicate the direction of projected
changes, which can be found in table 5.13.

Table 5.14: IV: differences in runoff changes projected by base and regression model [%]
(table 5.13). For example: with input from GCM-RCM 1, the regression model projects
a change in overall runoff that is 13.3% larger than the change in overall runoff projected
by the base model. Green: regression model projects higher change than base model, red:
regression model projects lower change than base model. Note: colouring does not reflect
direction of projected changes

On an annual average basis, simulated runoff is very similar for base and
regression model with GCM-RCM projections for the period 1974-1998 as
input (appendix D, table D.6). Differences between the base and regression
model range from -1.2% to +3.6% for this period. Differences in simulated
runoff for the period 2074-2098 are more pronounced, ranging from -12.2%
to +6.1%. Whether the base or regression model is used thus matters little
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for the period 1974-1998, but makes a significant difference for predictions
of future runoff.

Concerning projected changes, the regression model projects smaller
changes in average runoff than the base model, with input from four of
the GCM-RCMs. The exception is input from GCM-RCM 1, which leads
the regression model to project a larger change than the base model. This is
likely related to the very high flows simulated with future GCM-RCM input.
In almost all cases, the regression model projects smaller changes than the
base model during winter (DJF), spring (MAM) and autumn (SON), and
larger changes than the base model during summer (JJA).

While the regression model shows a tendency to simulate higher high
flows than the base model when simulating discharge for the period 1974-
1998 (with both observations and GCM-RCM projections as input), this
behaviour is not seen for projected future discharge with GCM-RCM 2-4 as
input (figure 5.5). With these three GCM-RCM combinations as input the
base model projects larger high flows than the regression model.

Earlier research into model performance under changing climate con-
ditions found that model performance deteriorates for periods with large
changes in average precipitation, compared to the calibration period (e.g.
(Bastola et al., 2011; Chiew et al., 2009; Coron et al., 2012; Merz et al., 2011;
Vaze et al., 2010)). Authors mention lower ranges varying from −7.5% to
−15%, and upper ranges from +7.5% to 20% for changes in precipitation
for which model performance is still acceptable. In this research, the base
model stays at acceptable performance (measured as a value for the objec-
tive function) during validation, for a +8.5% change in average precipitation
(comparing average precipitation during calibration with average precipita-
tion during validation). Average precipitation projected by the GCM-RCMs
of both present and future (table D.1) differs from average precipitation dur-
ing calibration between −10.4% and +6.7%. This is within, or close to, the
range specified by various authors. There is therefore little reason to assume
that base model functioning will be negatively affected by using GCM-RCM
projected precipitation input.

Concluding, differences exist between both models when they are used
for climate change impact assessment. Since the base model shows better
validation than the regression model, and estimated precipitation by GCM-
RCM combinations is not very different from precipitation during calibration
of the base model, projected changes by the base model seem more trustwor-
thy than changes projected by the regression model. However, differences in
projected changes are much bigger between the various GCM-RCM combi-
nations than between base and regression model for a specific GCM-RCM.
GCM-RCM input therefore appears to be an important source of projection
uncertainty.
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Chapter 6

Discussion

6.1 Place in recent developments

This study follows on recent research on parameter non-stationarity (e.g.
Coron et al. (2012); Merz et al. (2011), section 1.1.3). To the author’s best
knowledge, this study is new to explore the second option presented in Merz
et al. (2011): predicting parameter values based on their correlation with
climate characteristics. The first option of expanding the model structure to
include relevant catchment processes affected by climate change is outside
the scope of this study.

Much of this study’s value can be found in the general applicability
of the methodology. The methodology is independent of the model and
catchment used here, and can easily be applied to different catchments (with
the recommendation to select a catchment for which long and high-quality
data sets are available) and/or conceptual models, given that certain changes
to the methodology are recommended (further discussion).

HBV parameters aim to capture the result of various hydrological pro-
cesses occurring in the catchment. The methodology in this study assumes
that, from the location in the model and the numerical influence of param-
eter values, can be deduced which processes the parameter captures. For
example, parameter α is located in the fast runoff routine in the HBV model,
and influences the magnitude of peak flows. It is therefore assumed that α
simulates the effect of hydrological processes related to peak-flow genera-
tion. This explanation is used to select significant correlations on which
to base further regression analysis. However, in the HBV model this link
between parameter values and hydrological processes can be doubted (since
the model is conceptual rather than process-based) and this can be even
more so for different models (i.e. models with less parameters and thus
even less clear relations with hydrological processes). Therefore the way of
assessing which significant correlations to use for regression analysis might
have to be changed, when applying the methodology to different models.

6.2 Data

In this study, values for the objective function are not high for both cal-
ibration and validation, compared to other catchments (e.g. Ycal = 0.93,
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Yval = 0.84 for the Ourthe basin in the Meuse catchment, Tillaart, 2010).
This might be related to data quality of observed P, T, PET and Q.

Precipitation data have been constructed for this catchment using Thiessen
polygons based on multiple measuring stations in and near the catchment.
The catchment is relatively flat, so orographic effects are minimal. This
method does however rely on accurate measurements from 15 locations.

Temperature is measured at a station outside of the catchment. The
catchment is relatively small, so temperature differences are probably not
large, but this can not be confirmed.

Potential evapotranspiration is calculated based on the temperature time
series with the Hamon-method. This method is one of the simplest evap-
otranspiration estimates available, and generally used for monthly or an-
nual values. The method is used here to estimate daily PET values. It is
likely that the method underestimates PET during cold periods (e.g. win-
ter months) and overestimates PET during warm periods (e.g. summer).
Calibrated parameters might thus be compensating for structural bias in
the PET estimates. GCM-RCM projections of PET are however made with
the more advanced Penman-Monteith method, which should provide more
accurate PET estimates. It is therefore possible that the calibrated param-
eters are compensating for PET estimation errors that are not present when
using GCM-RCM input, thus reducing model accuracy.

The GCM-RCM projections are bias-corrected, but based on a reanalysis
of precipitation and temperature data. This leads to differences between
average observed and average GCM-RCM projected P, T and PET for the
period 1971-2000 (which, in the case of PET is also caused by different
estimation methods).

The catchment contains many control structures and storage systems.
This disrupts the natural catchment response to precipitation. Therefore
calibration is difficult, since the calibration algorithm tries to fit model pa-
rameters to account for unpredicted anthropogenic effects.

Calibration results of all 5-year periods are used as a basis for correlations
and regression equations. The fact that the data sets used for calibration
of this periods are not optimal, influences the accuracy of later analyses. In
a catchment with a more natural relation between climate input and runoff
and for which data of better quality is available, it will be easier to establish
accurate regression equations.

6.3 Sensitivity analysis

The sensitivity analysis marked FC as the most important parameter by
far. Compared to the main effect of FC, all other effects (both main and
interactions) are small. Parameters α and PERC are the next two most
important parameters, based on their total effect.

FC, α and PERC are the only parameters for which statistically sig-
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nificant regression equations with a reasonable fit R2 can be established.
However, only the equation for α can be used in combination with GCM-
RCM input. FC and PERC are fixed during the final climate change impact
assessment. Results would likely have been very different if the regression
equation for FC could be properly included during climate change impact
assessment.

The sensitivity analysis also indicates that for many parameters, inter-
actions with other parameters have more influence on overall model output
variance, than their respective main effects. These interactions are however
not included in the established regression equations, which only include
climate characteristics. Fixed parameters in the regression model are re-
calibrated to partly account for these interactions (recalibration is intended
to provide parameter values that perform reasonably well with a variety of
values of the estimated parameters). However, for the exact same period, a
fully calibrated model will always be equal as, or better than, a regression
model that can not account for parameter interactions.

The sensitivity analysis defined parameters FC, LP , α, PERC and TT
as the parameters with the most influence on model output variance, based
on sampling of the full 30 years of data (section 3.3.3). However, for certain
5-year periods, the model seems sensitive to Ks to an extent not shown by
the sensitivity analysis. This might be cause by the differences in climatic
variability between the 5-year periods, and resulting differences in relative
importance of baseflow simulation and thus Ks. It might therefore be worth-
while in future research to perform the sensitivity analysis multiple times:
once for the full period, and once for each 5-year period to ensure that no
“incidental” sensitivities (such as Ks in this case) are missed.

6.4 Methodology

6.4.1 Research background

Conceptual model parameters aim to capture the results of various hydro-
logical processes occurring in a catchment. Theoretically, parameters are
catchment dependent and should be independent from climate. In practice
however, optimal parameter values vary in time and are correlated with cer-
tain climate characteristics. This might reflect an actual relation between
parameter values and climatic conditions, or the parameters might compen-
sate for errors in model structures. The methodology in this study assumes
that a relationship exists (e.g. changes in average temperature might affect
vegetation in any number of ways, which in turn might change evapotran-
spiration, interception and runoff processes) and attempts to quantify this
relationship with regression analysis.

However, if the assumption of a relationship between parameter value
and climatic conditions were not true, this study is potentially an exercise in
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data-fitting of the 5-year variability in P. The correlations of parameters with
various climate characteristics could be the result of intercorrelation of those
characteristics with average P. This is not necessarily bad, since a regression
model might still improve model functioning for climatic conditions different
from those present during calibration. However, if the regression equations
do simulate an actual relationship, confidence in model performance for
different climatic conditions will be higher.

It is very difficult to determine the difference between a true relation-
ship and data-fitting. It might be possible to test this by selecting multiple
similar catchments (e.g. similar catchment characteristics and similar cli-
mate characteristics) and establishing regression equations for these catch-
ments.Similar catchments showing very different correlations between pa-
rameter values and climatic conditions might indicate that no relationship
is present between parameters and climate.

6.4.2 Calibration procedure

Three different calibration algorithms were investigated for this study, each
with its own pros and cons, with the final choice being the SCEM-UA al-
gorithm. During calibration, the algorithm is found not to be perfect. Re-
stricted parameter ranges are necessary for certain 5-year periods to ensure
proper model functioning with regard to fast and slow runoff reservoirs.
However, restricting the parameter ranges also leads to better values for
objective function Y for these periods, while the parameter space is simply
restricted and not expanded. This means that the algorithm was unable to
locate a better alternative parameter set during the first calibration attempt,
and thus does not always end up in the global optimum of the available pa-
rameter space. Convergence plots of parameter progression show that the
algorithm converges to the sub-optimal value, so this is not a case of using
too few iterations.

The entire 30-year data set is divided into 5-year periods for calibration.
This has the downside however, that truly independent validation of the
regression model is not possible, since regression equations are for a part
based on data points from the validation period. For further research, it
is recommended to use a catchment for which a long data set is available,
to both ensure enough (preferably more than used in this study) points for
correlation and regression analyses, and a completely independent validation
period.

Equifinality (the fact that different parameter sets might result in the
same value for the objective function) possibly presents a problem. It
is possible that, while parameter values might be correlated with climate
characteristics, a different, random parameter set performs equally well by
mere coincidence. This seems unlikely to influence the 5-year calibration re-
sults, since parameter progression throughout the 5-year windows is rather
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smooth. Knowing that each 5-year period is only 1 year different from the
year before, and assuming that calibrated parameter values are an average
value for the entire period, the smooth parameter progression would indi-
cate that equifinality is not an issue here. However, this assumption is not
in all cases true. For example, parameter α has an unexpected low value for
calibration period 18, which has only low flows and no runoff peaks. This is
likely caused by the objective function which is biased towards peak flows.
This directs calibration of α in the periods that do include pronounced peak
flows (e.g. period 17 and 19, where α is not an average value for the entire
period, but directly aimed at representing the single peak present in both
time periods). It is therefore difficult to be completely certain about equifi-
nality.

6.4.3 Suitability of objective function

The objective function follows a relatively smooth pattern during calibration
of all 5-year windows, with an unexpected value for period 18 (lower objec-
tive function value than would fit the pattern, section 5.1.2). The objective
function can be split up into three distinct parts (section 3.3.1): upper NS
(related to modelling error), lower NS (related to observed daily variability
in discharge) and RVE (related to difference between modelled and observed
discharge volume).

Runoff during period 18 has been very low and constant, without any
prominent discharge peaks (lowest natural variability of all periods). Ab-
solute modelling error during this period is the lowest of all 5-year periods
as well (figure 5.1). However, relative to the observed discharge variability,
modelling error is quite high, which results in a low value for NS and thus
Y.

In the objective function Y, RVE has a penalty function: an incorrect
volume error lowers the overall objective function value. RVE is nearly
zero for all 5-year periods and variations in NS therefore almost exclusively
determine the value of Y. However, NS is inherently biased towards correct
simulation of medium and high flows, because it uses the square of absolute
difference between daily modelled and observed discharge. This makes NS
not very well suited as a target function for periods without any peak flows.
The effect of peak flows on the NS coefficient can be seen for periods 17 and
19 (figure 5.1): these periods differ only one year from period 18, but the
variability component of NS is several factors larger, due to the occurrence
of clear runoff peaks in the single year that both periods differ from period
18.

Parameter values that result from calibration of period 18 are however
no outliers compared to calibrated values from all other periods. Therefore,
while the objective function might not be very well suited for this specific
period, this does not affect the further analyses much.
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6.4.4 Correlation procedure

Linear relations are assumed for all investigated correlations. It seems likely
that actual relationships are more complex, but there is little evidence to
enforce this via rank correlation coefficients. A longer data set with more
data points, might provide a clearer picture of the shape of potential rela-
tionships.

Correlation between various parameters is not investigated, and these
relations are ignored in the regression equations as well for sake of simplic-
ity (because it is not easily determined which parameter is dependent on
which others, as is required knowledge for the regression analysis. Most
likely parameter values are interdependent in an iterative way). The sen-
sitivity analysis shows however that interactions between parameters play
an important role in model outcome variability. Parameter interactions are
not easily defined in the HBV model, and the Sobol’ sensitivity method is
unable to define which specific interactions lead to the sensitivity results.
Either a model for which these interactions are explicitly described, or a
sensitivity analysis that can define parameter interactions, or a catchment
showing only (or mostly) sensitivity for a single parameter (that can prop-
erly be estimated with a regression equation) are therefore recommended for
further research.

6.4.5 Regression analysis

Linear regression equations are established for FC, α and PERC. The var-
ious regression fits are not optimal with values of R2

α = 0.54, R2
PERC = 0.42

and R2
FC = 0.40. This is partly related to data issues, and partly to the

overall length of the data set. A longer data set would give more points on
which to base correlation and regression analyses, and might give a better
description of the relationship between parameter and climate. This could
give a reason to change linear regression into a more complex regression,
possibly with asymptotes for parameter values (removing the extrapolation
issues encountered with FC and PERC estimates in this study).

6.4.6 Implementation of regression equations

With the current methodology, regression coefficients of regression equations
are determined based on the best fit R2 on the available data points. Alter-
natively, regression equations could be integrated in the model as changes
to the model structure, and the regression coefficients could be calibrated
along with other parameters. This will add several degrees of freedom to the
calibration procedure (e.g. in this study three coefficients for α, three for
PERC and four for FC) leading to a much larger parameter space. This
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has the downside of increasing calibration time, and decreasing the chances
of finding a global optimum with a calibration algorithm. It has the benefit
of directly calibrating the regression equation against the objective function,
rather than fitting the regression equation to multiple calibrated parameter
values with varying accompanying values for the objective function (i.e. the
values of the objective function for the various 5-year periods).

6.4.7 Climate change impact assessment

Due to the differences in average values between observed P, T and PET,
and bias-corrected GCM-RCM projections of P, T and PET, the model sim-
ulates lower flows with GCM-RCM input than with observations as input.
Therefore the climate change impact assessment in this study should only
be used as a tool to determine the differences between the base and regres-
sion model, and not as an accurate projection of possible changes in the
catchment.

Delta-method for estimating precipitation changes

An alternative to the climate change impact assessment approach used here
is the so-called “Delta-method” in which not the actual GCM-RCM projec-
tions are used for projections of present and future runoff. Rather the pro-
jected changes (“change fields”) are derived from present and future GCM-
RCM projections and applied to the observed data sets to give an estimate
of future climate conditions (IPCC, 2001b, ch. 4.3.6.2). This method gener-
ally uses absolute changes for temperature and relative changes for precip-
itation and potential evapotranspiration. It provides easier comparison of
runoff characteristics than directly using GCM-RCM projections as model
input, since with the Delta-method only climatic observations and estimated
changed observations are used as model input. This skips the step where
simulated runoff based on observations is compared with simulated runoff
based on GCM-RCM projections.

This method is difficult to apply in this research because of the difference
between frequency of wet days as observed and projected by the GCM-RCM
combinations (table 6.1). All GCM-RCM combinations foresee an increase
in wet days, that can not be taken into account with the Delta-method since
observations are multiplied with the derived projected change. This will
lead to differences between the average precipitation intensity on wet days as
projected by GCM-RCM combinations and as used in the hydrological model
from adjusted observations (e.g. a projected average increase in precipitation
will lead to an increased precipitation intensity in the adjusted observations,
while the GCM-RCM combinations actually project a decrease in intensity
due to the increased number of wet days).

Since precipitation intensity is used in the regression equations that es-
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timate future parameter values, inaccurate representation of this climate
characteristic is undesirable and the Delta-method is therefore not applied.
The consequence of this is that the regression equation for parameter FC can
not be used and FC is recalibrated (section 4.4.1). The sensitivity analysis
pointed FC as the most important parameter, so conclusions would be more
convincing if FC could have been estimated with a regression equation as
well.

Table 6.1: Observed and estimated frequency of wet days (P>0.1 mm)

Present Future

Observed 0.53
GCM-RCM

1 0.45 0.72
2 0.43 0.54
3 0.43 0.70
4 0.44 0.64
5 0.44 0.66
6 0.42 0.63

6.5 Results

The results in this research are arguably more important for further research,
than the practical applicability for the We lna catchment. It is impossible to
know for certain whether the base or regression model performs better for
future conditions, but validation results are better for the base model than
for the regression model. This indicates that the base model is potentially
better suited for climatic conditions outside the calibration period.

In hindsight, this catchment was not the ideal test case for a new mod-
elling approach, given data quality, anthropogenic effects obscuring the re-
lation between climate and runoff and the rather short available data series.
It is shown however, that the regression model performs similar to the base
model when modelling discharge for the entire period 1971-2000 (including
both calibration and validation periods). Furthermore, calibration results
for all regression models are similar to that of the base model, even in the
case that the three most sensitive parameters (FC, α and PERC) are esti-
mated and not calibrated. This gives confidence in the regression approach
as a whole.
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Chapter 7

Conclusions and recommendations

7.1 Conclusions

The goal of this study is to establish relationships between optimal model
parameters and climate variables, to quantify how well these relationships
perform during validation and to assess how these relationships perform
during climate change impact assessment, compared to a traditional hy-
drological approach towards calibrated parameters. To achieve this goal,
first linear correlations between calibrated parameter values and various cli-
mate characteristics are determined. Next, significant correlations that also
make sense from a hydrological point of view are used in a linear regres-
sion analysis. This results in regression equations that estimate the value
of certain parameters. The regression equations are then implemented in
the hydrological model and validated. Last, the performance of the new
regression model during climate change impact assessment is compared to
that of the base model.

Correlations between the six calibration parameters and various climate
characteristics are determined. Since this study looks for relationships be-
tween parameter values and climatic conditions, each significant correlation
is analysed to determine whether the correlation could be the result of an
actual relationship, or that it results from coincidence. LP is only correlated
with precipitation intensity during winter months. This seems a coincidence
and parameter LP is thus not used in the regression analysis. TT shows no
significant correlations with the investigated climate characteristics. Param-
eters FC, α, Ks and PERC show significant and explainable correlations
and these are used during the regression analysis.

Both single and multiple linear regression are used to establish regres-
sion equations for FC, α, Ks and PERC. Multiple regression shows an
improvement of the equation fit (R2) over single regression for FC, α, and
PERC. Ks only shows significant correlations with two climate characteris-
tics and these can not be combined in a single significant regression equation
for Ks. The best relationship for FC includes climate characteristics Pµ,
Pwet,µ and Pµ,w, with a fit of R2 = 0.40. The best relationship for α in-
cludes Pµ and Pwet,µ,w, with a fit of R2 = 0.54. The best relationship for Ks

uses arµ, with a fit of R2 = 0.18. The best relationship for PERC includes
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Pµ and Pwet,µ,w, with a fit of R2 = 0.42. None of the regression equations
estimate their respective parameter values particularly well (see R2 values).
However, in light of the complexity of the problem and the simplicity of the
regression approach, the equations still include a big part of the variabil-
ity in values of α, PERC and FC. The fit for Ks is too low to consider
using this equation; the resulting uncertainty will likely lead to much more
outcome uncertainty than simply recalibrating this parameter. Therefore
only the regression equations of α, PERC and FC are implemented in the
regression models.

Four regression models are established that estimate values of only α, of
α and PERC, of α and FC, and of α, PERC and FC. Each regression
model is tested with GCM-RCM projections as input. Due to biases in
GCM-RCM projections of precipitation, the regression equations of FC and
PERC do not perform satisfactory. Estimated values of FC are generally
negative (capped at zero in the equation) for the present period, effectively
disabling the soil moisture routine in the HBV model. Estimated values of
PERC are very low and often negative for the future period, which affects
the functioning of the groundwater routine and generation of base-flow. The
situations resulting from estimated FC and PERC values are considered
hydrologically unlikely. Therefore the regression model that estimates only
the value of α is selected for climate change impact assessment.

The base model is calibrated on the last 20 years of data (Y = 0.73).
Parameters in the regression model that are not estimated with regression
equations are recalibrated on this same period (Y = 0.73). The base and
regression model are validated using the remaining part of the data set,
with Y = 0.69 for the base model and Y = 0.52 for the regression model.
Measured over the entire data period however, the regression model simu-
lates average discharge closer to observed values than the base model does.
Again seen over the entire data period, both the base and regression model
underestimate winter and spring discharges, and overestimate summer and
autumn discharges. The regression model simulates high flows (exceedance
frequency <60%) more accurate than the base model, compared to obser-
vations. The base model is closer to observations for low flows (exceedance
frequency >60%).

Due to bias in GCM-RCM precipitation projections, both base and re-
gression model structurally simulate lower overall discharge, compared to
simulations with observed P, T and PET as input. Especially for sum-
mer and autumn, both models simulate lower discharges, although the base
model simulates larger differences than the regression model. Runoff simu-
lations are closer to simulations with observed P, T and PET as input for
winter and spring months, where the regression model seems to simulate
somewhat larger differences than the base model. The regression model has
a tendency to simulate higher peak (exceedance frequency approximately
<5%) and low flows (exceedance frequency approximately >50%). The base
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model simulates higher medium flows. Overall however, the base and regres-
sion model react similarly to GCM-RCM input, and differences between the
GCM-RCM projections create larger differences in runoff than the choice
for either base or regression model.

Comparing runoff simulations with GCM-RCM projections for the present
and future, both base and regression model simulate increased overall runoff.
With a few exceptions, this increase is also visible in all seasonal flows for
both the base and regression model. Again, different GCM-RCM projections
influence simulated runoff more than the choice for either base and regres-
sion model. The base model simulates higher future flows for all exceedance
frequencies, compared to simulated present flows (with the exception of the
top 0.3% flows with GCM-RCM 2 input, which are projected slightly lower
in future). The regression model shows this behaviour with input from
GCM-RCM 1, 4 and 5. With input from GCM-RCM 2 and 3 however, the
regression model simulates lower high flows (exceedance frequency <2%)
and higher medium and low flows (exceedance frequency >2%).

Comparing the projected changes by the base and regression model, the
base model projects larger changes for four of the five GCM-RCM combina-
tions. The exception is GCM-RCM 1, where the regression model projects
the bigger change. This is likely due to its projected high precipitation in-
tensity during winter, which causes the regression model to use high values
for α. This in turn leads to incidental very high runoff peaks simulated by
the regression model. For the other four GCM-RCM combinations, the re-
gression model projects changes that are between 10% and 45% lower than
the changes projected by the base model. In most cases, the regression
model predicts lower changes in winter, spring and autumn average dis-
charge, and higher change in summer discharge than the base model does.
Projected average variability measured over the entire period is generally
lower in regression model simulations as well. The regression model thus
simulates lower and more steady runoff (lower average variability) than the
base model for the future period.

Concluding, differences between both climate change impact assessments
are visible. However, the base model has better validation than the regres-
sion model and it is therefore uncertain how accurate the observations about
regression model functioning compared to base model functioning during cli-
mate change impact assessment are. The methodology applied in this study
seems promising however, and it could be worthwhile to investigate regres-
sion models further. A better functioning regression model (i.e. equal or
better validation than the base model) will give a clearer conclusions about
the differences in projected climate change impacts by both model types.
In this study however, the choice of GCM-RCM input influences climate
change impact assessment more than whether the base or regression model
is used.
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7.2 Recommendations

For further research into the use of regression models, five recommendations
are made that address the major issues encountered in this study:

1. This study assumes that a relationship between optimal parameter values
exists and the research methodology is applied according to this assump-
tion. It is however very difficult to differentiate between modelling an
actual relationship and curve-fitting of the available data. If it would
be certain that there is an actual relationship between parameter values
and climatic conditions, the established relations can be applied to future
periods with more confidence than is the case now.

It might be possible to test for actual relationships by applying this
methodology to multiple similar catchments (in terms of catchment and
climate characteristics) and comparing the results. This will most likely
not provide a conclusive answer, bur rather indicate if it is plausible that
these relationships might be true.

2. Test case(s) for later research should be selected with care. It is strongly
recommended to use one or more natural catchments with no to minimal
human interference, for which longer data sets are available. This leads to
a less obscured connection between runoff and climate, and thus between
parameter values used for simulating runoff and climate.

Furthermore, a longer data set provides more possible points for corre-
lation and regression analysis (potentially allowing selection of parameter
sets with an objective function value threshold, e.g. only use those param-
eter sets with Y > 0.90 for further analysis ) and allows to save a period
for completely independent validation, without reducing the number of
data points for correlation and regression analysis overly much.

Additionally, a longer data set might include climate variations that
can be used as an analogy for climate change. This would allow calibra-
tion and validation of a base model and establishing of a regression model
on those parts of data that represent current and future climate.

3. It seems unwise to neglect parameter interactions. If it can be determined
which interactions occur in the model, and which parameter depends on
which other parameter, these relations might be included in the regression
equations. This assumes however, that parameter interaction is a one-
way process and not the result of an iterative process during calibration,
which seems more likely.

An easier alternative would be to use a catchment with a very high sen-
sitivity for a single parameter (providing this parameter can be estimated
with a regression equation), which makes interaction effects relatively less
important.

4. The followed approach with regard to using GCM-RCM estimates for
climate change assessment is not optimal, because parameter estimates
are influenced by bias in the GCM-RCM estimates. The Delta-method
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for climate change impact assessment provides an alternative to using
actual GCM-RCM projections as model input, by changing the observed
data series of P, T and PET relative to changes predicted by the used
GCM-RCM combinations. However, limitations to the Delta-method are
that it does not alter the order of wet and dry days, nor the frequency
of days with precipitation. By extent, the average intensity of precipi-
tation events in the altered observation series will be different from the
GCM-RCM projections, given that the GCM-RCM combinations project
a change in the frequency of wet days. Given these limitations, the cor-
relation and regression methodology has to be adjusted to include only
those climate characteristics that are not affected by application of the
Delta-method.

5. Explicitly accounting for parameter changes by determining regression
coefficients from multiple regression analysis can be exchanged for chang-
ing the model structure to include parameter equations and calibration of
these coefficients. This potentially leads to long calibration times due to
the increased degrees of freedom, so it is recommended to keep the num-
ber of other calibrated parameters to a minimum. This would potentially
lead to a better model fit and performance during validation.

Experimental calibration (50000 iterations) of the regression coeffi-
cients is attempted for the four regression models established in this study
(table 7.1). Calibration results are slightly lower than the results obtained
from using the regression coefficients from regression analysis and vali-
dation values are clearly worse with calibrated coefficients. This shows
the need for much longer calibration (because a higher degree of freedom
during calibration should result in a better calibration fit), the need for
an algorithm suited for searching the increased solution space (since the
SCEM-UA algorithm was unable to find the regression coefficient as they
are established in the regression analysis, while these coefficients are in-
cluded in the calibration interval) and that equifinality is very likely to
influence results (since calibrated regression coefficients are very different
from coefficients found with regression analysis).
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Table 7.1: Results of calibrated regression coefficients (“Cal. coef.”) com-
pared to regression coefficients established with regression analysis (“Reg.
coef.”) for the four regression models

Model 1 Model 2
Reg. coeff. Cal. coeff. Reg. coeff. Cal. coeff.

Degrees of freedom 5 8 4 10
Calibration Y 0.73 0.66 0.71 0.67
Validation Y 0.52 0.01 0.50 0.22

Model 3 Model 4
Reg. coeff. Cal. coeff. Reg. coeff. Cal. coeff.

Degrees of freedom 4 11 3 14
Calibration Y 0.73 0.69 0.71 0.67
Validation Y 0.56 0.13 0.56 -7.35

90



Bibliography

Abebe, N.A., F.L. Ogden, and N.R. Pradhan (2010), “Sensitivity and un-
certainty analysis of the conceptual HBV rainfallrunoff model: Implica-
tions for parameter estimation.” Journal of Hydrology, 389, 301–310. doi:
10.1016/j.jhydrol.2010.06.007.

Akhtar, M., N. Ahmad, and M. J. Booij (2009), “Use of regional climate model
simulations as input for hydrological models for the Hindukush-Karakorum-
Himalaya region.” Hydrology and Earth System Sciences, 13, 1075–1089. doi:
10.5194/hess-13-1075-2009.

Andersson, L., J. Wilk, M.C. Todd, D.A. Hughes, A. Earle, D. Kniveton, R. Lay-
berry, and H.H.G. Savenije (2006), “Impact of climate change and development
scenarios on flow patterns in the Okavango River.” Journal of Hydrology, 331,
43–57. doi: 10.1016/j.jhydrol.2006.04.039.

Bastola, S., C. Murphy, and J. Sweeney (2011), “Evaluation of the transferability
of hydrological model parameters for simulations under changed climatic con-
ditions.” Hydrology and Earth System Sciences Discussions, 8, 5891–5915. doi:
10.5194/hessd-8-5891-2011.

Bergström, S., B. Carlsson, and M. Gardelin (2001), “Climate change impacts on
runoff in Sweden-assessments by global climate models, dynamical downscaling
and hydrological modelling.” Climate Research, 16, 101–112.

Booij, M.J. (2002), Appropriate modelling of climate change impacts on river flood-
ing. Ph.D. thesis, University of Twente, Enschede.

Booij, M.J. (2005), “Impact of climate change on river flooding assessed with
different spatial model resolutions.” Journal of Hydrology, 303, 176–198. doi:
10.1016/j.jhydrol.2004.07.013.

Booij, M.J. and M.S. Krol (2010), “Balance between calibration objectives in a
conceptual hydrological model.” Hydrological Sciences Journal, 55, 1017–1032.
doi: 10.1080/02626667.2010.505892.

Booij, M.J., D. Tollenaar, E. van Beek, and J.C.J. Kwadijk (2011), “Simulating im-
pacts of climate change on river discharges in the Nile basin.” Physics and Chem-
istry of the Earth, Parts A/B/C, 36, 696–709. doi: 10.1016/j.pce.2011.07.042.

Carpenter, T.M. and K.P. Georgakakos (2004), “Impacts of parametric and
radar rainfall uncertainty on the ensemble streamflow simulations of a dis-
tributed hydrologic model.” Journal of Hydrology, 298, 202–221. doi:
10.1016/j.jhydrol.2004.03.036.

Chiew, F.H.S., J. Teng, J. Vaze, D.A. Post, J.M. Perraud, D.G.C. Kirono, and
N.R. Viney (2009), “Estimating climate change impact on runoff across southeast
Australia: Method, results, and implications of the modeling method.” Water
Resources Research, 45, W10414. doi: 10.1029/2008WR007338.

Christensen, O.B., M. Drews, J.H. Chistensen, K. Dethloff, K. Ketelsen,
I. Hebestadt, and A. Rinke (2007), “The HIRHAM Regional Climate Model

91



Bibliography

Version 5 ( β ).” Technical report, Danish Meteorological Institute.
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Kollat, J. B., P. M. Reed, and T. Wagener (2012), “When are multiobjective cali-
bration trade-offs in hydrologic models meaningful?” Water Resources Research,
48. doi: 10.1029/2011WR011534.

Lindström, G., B. Johansson, M. Persson, M. Gardelin, and S. Bergström (1997),
“Development and test of the distributed HBV-96 hydrological model.” Journal
of hydrology, 201, 272–288.

Madsen, Henrik (2003), “Parameter estimation in distributed hydrological catch-
ment modelling using automatic calibration with multiple objectives.” Advances
in Water Resources, 26, 205–216. doi: 10.1016/S0309-1708(02)00092-1.
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Appendix A

Sensitivity analysis

This appendix provides more insight into the process around the sensitivity analysis.
Section A.1 explains why the influence of parameters CFMAX, WHC, β and Kf

on model output variance can be neglected. Section A.2 explores the influence of
parameters Kf and Ks on calibration performance per 5-year window.

A.1 Interaction between parameters

This appendix expands on the interaction effect of parameters CFMAX, WHC, β
and Kf (section 3.3.3). These parameters show a certain influence on model output
variance through their respective interactions with other parameters. These four
parameter are however not calibrated but kept at fixed values.

Parameters CFMAX and WHC can be safely fixed because both have only
minimal effect on total model output variance (table 3.2). Fixing their respective
values should therefore have little influence on model performance.

Monte Carlo sampling (200000 samples) of all parameters is used to determine
which parameters interact with β and Kf . Parameter values of the top 5% pa-
rameter sets (5% of the samples with highest model performance as measured with
objective function Y) are plotted against the values β and Kf , to see if any im-
portant relations between the parameters become apparent (figures A.1 and A.2
respectively).

β only shows a clear interaction with LP . High values for β seem to coincide
with high values for LP and the same goes for low values. This balances the actual
evapotranspiration and seepage terms.

Kf shows slight interaction with Ks and PERC. Kf is responsible for fast
runoff, while PERC and Ks regulate slow runoff. Higher values for PERC drain
the reservoir from which Kf simulates the fast runoff. Since fast runoff is based
on the current storage level in the fast runoff reservoir, Kf has to assumes higher
values to keep the fast runoff component at the same level. Ks and Kf are together
responsible for the total runoff due to addition of the fast and slow runoff compo-
nents. High values for Ks indicate high values for the slow runoff. This only occurs
at low values of Kf in order not to overestimate the total runoff.

The interaction of β is limited to LP , while the interactions of Kf is limited to
Ks. Since these are only weak interactions (table 3.2), the effects of fixing Kf and
β to a single value on overall model performance are assumed to be small.

A.2 Influence of Kf and Ks on calibration

This analysis was originally intended to define values on which to fix parameters
Kf and Ks, since the sensitivity analysis indicates that these parameters have low
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A.2. Influence of Kf and Ks on calibration

Figure A.1: Values of β plotted against the values of the other parameters for the top
5% parameter sets from Monte Carlo sampling

influence on total model output variance. The sensitivity analysis is however based
on the full 30-year period, and especially the influence of parameter Ks varies
throughout the years.

Figure A.3 shows Y values for calibration with three different parameter sets,
for different 5-year periods. The first set consists of the five parameters determined
by the sensitivity analysis (FC, LP , α, PERC and TT , section 3.3.4). The second
and third set contain these five parameters and Ks and Kf respectively.

As the figure shows, including Kf as a calibrated parameter improves model
performance somewhat during period 2 (Y +0.02) and hardly matters for the other
periods. Calibrating Ks has a more noticeable effect, especially for periods 21-24
(Y + 0.02− 0.07).

Since this study aims at clarifying the potential relationship between param-
eter values and climatic variables, it seems prudent to include parameter Ks as a
calibrated parameter. Kf can be assigned a fixed value without difficulty.
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A.2. Influence of Kf and Ks on calibration

Figure A.2: Values of Kf plotted against the values of the other parameters for the top
5% parameter sets from Monte Carlo sampling
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A.2. Influence of Kf and Ks on calibration

Figure A.3: Calibration results for parameters FC, LP , α, PERC and TT , with pa-
rameters Kf and Ks included in calibration as well
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Appendix B

Calibration process

Figure B.1: Calibration results for the periods of 5 consecutive hydrological years.
Upper figure shows the values for the objective function Y, the lower six figures show the
optimal parameter sets as determined by the SCEM-UA algorithm

Figure B.1 shows both the resulting objective function value and the optimal
parameter values from the first calibration run (circles). The red circles indicate
periods with unsatisfactory model behaviour (i.e. time periods 14, 16, 19 and 23).

The HBV model is based on the theory that the total runoff is comprised
of runoff from the fast runoff reservoir (peak flow after rain events) and runoff
from the slow runoff reservoir (steady base flow). Figure B.2 (top plot) shows
this principle for time period 20, with the parameter set calibrated for this period.
Figure B.2 (middle plot) shows the fast and slow runoff as simulated with the
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optimal parameter set for period 19; the total runoff is almost completely modelled
by the slow-runoff reservoir. The influence of the fast runoff reservoir is only visible
at some peaks (e.g. t = 1920).

However, when the performance of both parameter sets is measured against
the objective function Y, both parameter sets perform very similar: Y20 = 0.87 and
Y19 = 0.86. Clearly, good values for the objective function do not necessarily imply
proper model functioning.

Ks for period 20 is equal to 6e−3, while the fixed Kf = 5.4e−4. Intuitively it
feels strange that the slow runoff parameter Ks has a higher value than the fast
runoff parameter Kf . However, proper calibration ensures that the effective value
of Kf is higher than that of Ks and the model functions properly. The calibrated
parameter values for the periods 14, 16, 19 and 23 (figure B.1) show high values
for PERC, low values for LP and aberrant values for α, compared to calibrated
values for the other periods. Low LP values lead to lower evapotranspiration and
thus more water remaining in the model. The high PERC values make this water
flow directly into the slow runoff reservoir. The low values for α lead to lower runoff
from the fast runoff reservoir. The high value of α in period 19 should lead to a
high fast-runoff component, but there is simply not enough water present in the
fast runoff reservoir for this to occur. FC, Ks and TT show no diverging values
for these four time periods.

Since this study aims to clarify the relationship between optimal parameter
values and climatic variables, proper model functioning is essential. Therefore the
periods 14, 16, 19 and 23 were calibrated again with constricted parameter ranges
for LP , α and PERC (table B.1) that are based on the optimal values for the other
time periods. LP has an increased lower limit, to ensure that evapotranspiration
is not artificially lowered in order to keep more water in the model. α is limited on
both sides; the increased lower limit should ensure higher effective fast runoff. The
upper limit is decreased for more efficient sampling of the parameter space, since
the other calibrated values show no tendency for values above 1.5. PERC has a
lower upper limit in order to keep inflow into the slow runoff reservoir limited.

After recalibration with restricted parameter ranges, model performance for the
four periods is markedly better (figure B.2, bottom plot for example period 19).
Fast and slow runoff are properly represented by the two different reservoirs and
the optimal parameter values are more in line with those of the other periods.

It would be expected that model performance as measured by the objective
function would decline, since the SCEM-UA algorithm is supposed to find the
global optimum in the total parameter space. The restricted parameter space is
located inside the wider range. It therefore stands to reason that the “improper”
parameter set by coincidence simulates the discharge really well and that after re-
calibration the objective function for the four periods would be lower. Strangely,
the objective function values are actually better for the periods 14, 16 and 19 after
recalibration (figure B.1, blue stars). This points out a flaw in the usage of the
SCEM-UA algorithm, since this better performing parameter set was also present
in the parameter ranges used in the first calibration round. This might be related
to the sensitivity of the algorithm to boundaries set for parameter values (personal
communication with experts at IGF).
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Table B.1: Restricted parameters ranges for calibration

Parameter Old range New range
min max min max

LP 0.1 1 0.5 1
α 0 3 0.4 1.5
PERC 0 6 0 4

Figure B.2: Top plot: simulated runoff for period 20, which shows a clear distinction
between contributions from the fast and slow runoff reservoir. Middle plot: simulated
runoff for period 19 (Y = 0.86), where the slow runoff reservoir simulates peak flow
instead of base flow. Bottom plot: simulated flow for period 19 after recalibration (Y =
0.90) where the fast runoff reservoir simulates runoff peaks and the slow runoff reservoir
simulates base flow as intended
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Appendix C

Regression analysis

This appendix contains regression plots for single (section 5.3.1) and multiple linear
regression (section 5.3.2) respectively.

C.1 Single linear regression plots

This section includes single linear regression plots for parameters FC, α, Ks and
PERC. LP only shows correlations with Pwet,µ,w which is deemed a coincidence,
so this plot is not included here. TT shows no significant correlations with any
climate characteristic. Linear regression lines are drawn with their corresponding
R2 values, which are a measure of the goodness-of-fit of the regression equation
(for an optimal fit, R2 = 1) and F-values that show significance (for F > 4.28 the
relationship is statistically significant). 95% confidence bands give confirmation of
the significance given by F-values.

For FC, the data points are scattered widely around the regression line, ex-
plaining the poor fits. All points however are within the 95% confidence interval,
so the regressions are significant at this level.

For α, the relationship between α and Pwet,µ,w seems the most linear, while
points are more scattered around the other four regression lines. For Pwet,µ,w all
points are within the 95% confidence interval, for the other four relationships one
point falls outside the interval. Since 1.25 points can reasonably be expected to be
outside the interval, all regressions are significant at the 95% level.

For Ks, data points are scattered mainly for high values of Pµ and low values of
arµ. This might be related to the fact that Ks regulates base flow, which becomes
less important for higher precipitation (and thus higher runoff) events. Therefore
the value of Ks can fluctuate more during higher precipitation periods, without
influencing the objective function much, leading to low identifiability of the opti-
mal Ks value. All points however are within the 95% confidence interval, so the
regressions are significant at this level.

For PERC, the points are somewhat more scattered for high values for Pµ
and Pwet,µ and low arµ. This is similar to the scatter of points found for Ks.
Since PERC simulates recharge of the slow runoff reservoir, and Ks simulates the
discharge from this reservoir, similar reasoning applies for PERC as for Ks. During
low precipitation and thus runoff periods, correct modelling of base flow is more
important in the overall objective function. This increases the identifiability of
PERC during drier periods.

For PERC, one data point is outside the 95% confidence interval for Pwet,µ,w,
and two points are outside the interval for the other three relationships. Since 1.25
points can reasonably be expected to be outside the interval, and 0.25 points has
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C.2. Multiple regression results

no practical meaning, it is not unreasonable that two points can be outside the 95%
interval while still keeping a significant regression. It is however curious that out of
17 situations, this occurs three times for a regression involving PERC and not for
any other parameter. The regressions still have a significant F-statistic however, so
they are still considered to be significant.

Figure C.1: Single linear regression of the significant correlations between climate char-
acteristics and the optimal values for FC. Regressions are significant for F > 4.28

C.2 Multiple regression results

Only the climate characteristics that show significant linear correlation with model
parameters are included in the multi linear regression analysis (section 5.3.2). This
appendix includes the full results of the multiple regression analysis for parameters
FC, α, Ks and PERC (tables C.1, C.3, C.5 and C.7 respectively). The indices
refer to the various combinations of climate characteristics and are explained in
tables C.2, C.4, C.6 and C.8 for the respective parameters.

C.2.1 Regression equations

This section describes the three regression equations that are established in section
5.3.2. Equations for FC and α have a minimum value of 0 (lower boundary for both
parameters during calibration), since negative values will disrupt model functioning.
The equation for PERC has a lower value of 0.05, since a value of 0 will stop
groundwater recharge and this is unlikely to occur in reality.

FC = max
{
− 37.31 + 291.0 ∗ Pµ − 155.3 ∗ Pwet,µ + 108.2 ∗ Pµ,w, 0

}
(C.1)
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C.2. Multiple regression results

α = max
{
− 1.4010 + 0.5638 ∗ Pµ + 0.7268 ∗ Pwet,µ,w, 0

}
(C.2)

PERC = max
{
− 6.353 + 1.789 ∗ Pµ + 2.286 ∗ Pwet,µ,w, 0.05

}
(C.3)

Figure C.2: Single linear regression of the significant correlations between climate char-
acteristics and the optimal values for α. Regressions are significant for F > 4.28

Figure C.3: Single linear regression of the significant correlations between climate char-
acteristics and the optimal values for Ks. Regressions are significant for F > 4.28
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C.2. Multiple regression results

Figure C.4: Single linear regression of the significant correlations between climate char-
acteristics and the optimal values for PERC. Regressions are significant for F > 4.28
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C.2. Multiple regression results

Table C.1: Full multiple linear regression results for parameter FC, indices
explained in table C.2

Index Degrees of R2 F p Error Required F Significant?
freedom variance

1 1 0.25 7.63 0.01 405 4.28 yes
2 1 0.17 4.62 0.04 449 4.28 yes
3 1 0.24 7.33 0.01 409 4.28 yes
4 1 0.18 5.07 0.03 442 4.28 yes
5 2 0.31 4.87 0.02 391 3.44 yes
6 2 0.32 5.10 0.02 385 3.44 yes
7 2 0.29 4.54 0.02 399 3.44 yes
8 2 0.27 4.00 0.03 413 3.44 yes
9 2 0.18 2.44 0.11 461 3.44 no
10 2 0.28 4.22 0.03 407 3.44 yes
11 3 0.40 4.66 0.01 354 3.07 yes
12 3 0.33 3.52 0.03 393 3.07 yes
13 3 0.37 4.04 0.02 374 3.07 yes
14 3 0.28 2.70 0.07 426 3.07 no
15 4 0.43 3.76 0.02 354 2.87 yes

Table C.2: Indices of multiple linear regression FC

Index Climate characteristic(s)

1 Pµ
2 Pwet,µ
3 Pµ,w
4 arµ
5 Pµ Pwet,µ
6 Pµ Pµ,w
7 Pµ arµ
8 Pwet,µ Pµ,w
9 Pwet,µ arµ
10 Pµ,w arµ
11 Pµ Pwet,µ Pµ,w
12 Pµ Pwet,µ arµ
13 Pµ Pµ,w arµ
14 Pwet,µ Pµ,w arµ
15 Pµ Pwet,µ Pµ,w arµ
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C.2. Multiple regression results

Table C.3: Full multiple linear regression results for parameter α, indices
explained in table C.4

Index Degrees of R2 F p Error Required F Significant?
freedom variance

1 1 0.33 11.51 0.00 0.02 4.28 yes
2 1 0.30 9.99 0.00 0.02 4.28 yes
3 1 0.28 8.90 0.01 0.02 4.28 yes
4 1 0.46 19.31 0.00 0.02 4.28 yes
5 1 0.32 10.62 0.00 0.02 4.28 yes
6 2 0.33 5.51 0.01 0.02 3.44 yes
7 2 0.40 7.25 0.00 0.02 3.44 yes
8 2 0.54 12.70 0.00 0.02 3.44 yes
9 2 0.33 5.51 0.01 0.02 3.44 yes
10 2 0.37 6.51 0.01 0.02 3.44 yes
11 2 0.51 11.33 0.00 0.02 3.44 yes
12 2 0.32 5.19 0.01 0.02 3.44 yes
13 2 0.46 9.24 0.00 0.02 3.44 yes
14 2 0.39 6.94 0.00 0.02 3.44 yes
15 2 0.51 11.56 0.00 0.02 3.44 yes
16 3 0.40 4.67 0.01 0.02 3.07 yes
17 3 0.55 8.58 0.00 0.02 3.07 yes
18 3 0.33 3.51 0.03 0.02 3.07 yes
19 3 0.54 8.34 0.00 0.02 3.07 yes
20 3 0.40 4.61 0.01 0.02 3.07 yes
21 3 0.55 8.44 0.00 0.02 3.07 yes
22 3 0.51 7.34 0.00 0.02 3.07 yes
23 3 0.39 4.42 0.01 0.02 3.07 yes
24 3 0.51 7.37 0.00 0.02 3.07 yes
25 3 0.52 7.45 0.00 0.02 3.07 yes
26 4 0.56 6.33 0.00 0.02 2.87 yes
27 4 0.40 3.34 0.03 0.02 2.87 yes
28 4 0.56 6.32 0.00 0.02 2.87 yes
29 4 0.56 6.34 0.00 0.02 2.87 yes
30 4 0.52 5.35 0.00 0.02 2.87 yes
31 5 0.57 5.04 0.00 0.02 2.74 yes
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C.2. Multiple regression results

Table C.4: Indices of multiple linear regression α

Index Climate characteristic(s)

1 Pµ
2 Pwet,µ
3 Pµ,w
4 Pwet,µ,w
5 arµ
6 Pµ Pwet,µ
7 Pµ Pµ,w
8 Pµ Pwet,µ,w
9 Pµ arµ
10 Pwet,µ Pµ,w
11 Pwet,µ Pwet,µ,w
12 Pwet,µ arµ
13 Pµ,w Pwet,µ,w
14 Pµ,w arµ
15 Pwet,µ,w arµ
16 Pµ Pwet,µ Pµ,w
17 Pµ Pwet,µ Pwet,µ,w
18 Pµ Pwet,µ arµ
19 Pµ Pµ,w Pwet,µ,w
20 Pµ Pµ,w arµ
21 Pµ Pwet,µ,w arµ
22 Pwet,µ Pµ,w Pwet,µ,w
23 Pwet,µ Pµ,w arµ
24 Pwet,µ Pwet,µ,w arµ
25 Pµ,w Pwet,µ,w arµ
26 Pµ Pwet,µ Pµ,w Pwet,µ,w
27 Pµ Pwet,µ Pµ,w arµ
28 Pµ Pwet,µ Pwet,µ,w arµ
29 Pµ Pµ,w Pwet,µ,w arµ
30 Pwet,µ Pµ,w Pwet,µ,w arµ
31 Pµ Pwet,µ Pµ,w Pwet,µ,w arµ
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C.2. Multiple regression results

Table C.5: Full multiple linear regression results for parameter Ks, indices
explained in table C.6

Index Degrees of R2 F p Error Required F Significant?
freedom variance

1 1 0.17 4.58 0.04 0.00009 4.28 yes
2 1 0.18 4.93 0.04 0.00009 4.28 yes
3 2 0.18 2.36 0.12 0.00009 3.44 no

Table C.6: Indices of multiple linear regression Ks

Index Climate characteristic(s)

1 Pµ
2 arµ
3 Pµ arµ
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C.2. Multiple regression results

Table C.7: Full multiple linear regression results for parameter PERC,
indices explained in table C.8

Index Degrees of R2 F p Error Required F Significant?
freedom variance

1 1 0.27 8.30 0.01 0.29 4.28 yes
2 1 0.27 8.60 0.01 0.29 4.28 yes
3 1 0.36 12.98 0.00 0.25 4.28 yes
4 1 0.26 8.11 0.01 0.29 4.28 yes
5 2 0.27 4.17 0.03 0.30 3.44 yes
6 2 0.42 8.11 0.00 0.24 3.44 yes
7 2 0.27 4.03 0.03 0.30 3.44 yes
8 2 0.42 7.90 0.00 0.24 3.44 yes
9 2 0.28 4.19 0.03 0.30 3.44 yes
10 2 0.41 7.66 0.00 0.24 3.44 yes
11 3 0.42 5.16 0.01 0.25 3.07 yes
12 3 0.28 2.67 0.07 0.31 3.07 no
13 3 0.43 5.23 0.01 0.25 3.07 yes
14 3 0.42 5.03 0.01 0.25 3.07 yes
15 4 0.43 3.74 0.02 0.26 2.87 yes

Table C.8: Indices of multiple linear regression PERC

Index Climate characteristic(s)

1 Pµ
2 Pwet,µ
3 Pwet,µ,w
4 arµ
5 Pµ Pwet,µ
6 Pµ Pwet,µ,w
7 Pµ arµ
8 Pwet,µ Pwet,µ,w
9 Pwet,µ arµ
10 Pwet,µ,w arµ
11 Pµ Pwet,µ Pwet,µ,w
12 Pµ Pwet,µ arµ
13 Pµ Pwet,µ,w arµ
14 Pwet,µ Pwet,µ,w arµ
15 Pµ Pwet,µ Pwet,µ,w arµ
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C.3. Parameter estimates with GCM-RCM input

C.3 Parameter estimates with GCM-RCM input

This section shows estimated values for parameters FC, α and PERC, based on
GCM-RCM climate projections for periods 1971-2000 and 2071-2100. Parameter
estimates are compared to the range of values encountered for each parameter
during calibration of all 5-year periods (section 4.1). Parameter values are given
for 24 periods, due to missing data for the last year from GCM-RCM combinations.
Figures C.8 and C.9 show values for Pµ, Pwet,µ, Pµ,w and Pwet,µ,w as projected by
GCM-RCM combinations. Pµ, Pwet,µ and Pµ,w are used to estimate FC, Pµ and
Pwet,µ,w are used to estimate α and PERC.

Figure C.5: Estimates of FC values based on GCM-RCM input, compared to the range
of values for FC encountered during calibration of all 5-year periods
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C.3. Parameter estimates with GCM-RCM input

Figure C.6: Estimates of α values based on GCM-RCM input, compared to the range
of values for α encountered during calibration of all 5-year periods
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C.3. Parameter estimates with GCM-RCM input

Figure C.7: Estimates of PERC values based on GCM-RCM input, compared to the
range of values for PERC encountered during calibration of all 5-year periods
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C.3. Parameter estimates with GCM-RCM input

Figure C.8: Climate characteristics based on GCM-RCM estimates of P during period
1971-2000. Dotted horizontal lines represent the range of values found in observed values
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C.3. Parameter estimates with GCM-RCM input

Figure C.9: Climate characteristics based on GCM-RCM estimates of P during period
2071-2100. Dotted horizontal lines represent the range of values found in observed values
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Appendix D

Climate change impact assessment

This appendix contains tables related to climate change impact assessment (section
5.5.2). Section D.1 details projected changes in climate for all GCM-RCM combi-
nations. Section D.2 shows simulated runoff based on observed P, T and PET with
observed runoff, used to determine hydrological model accuracy. Section D.3 shows
simulated runoff based on observed P, T and PET with simulated runoff based
on GCM-RCM projections, used to determine GCM-RCM influence. Section D.4
shows simulated runoff based on GCM-RCM projections for 1971-2000 with runoff
based on projections for 2074-2098, used to determine expected climate change im-
pact (section 4.5). Seasonal statistics are calculated for winter (December, January,
February; DJF), spring (March, April, May; MAM), summer (June, July, August;
JJA) and autumn (September, October, November; SON).

D.1 Projected climate change

This section gives the projected changes in precipitation and temperature average
values and variability (tables D.1 and D.2 respectively).

Table D.1: Comparison of observed P and projected P by GCM-RCM com-
binations, mean and standard deviation of both period 1971-2000 and 2071-
2100 are given

1971-2000 2071-2100 Change
µ σ µ σ µ σ

[mm] [mm] [mm] [mm] [%] [%]

Observations 1.43 3.20
GCM-RCM

1 1.27 2.72 1.48 3.89 16.5 43.0
2 1.27 2.72 1.35 2.55 6.30 -6.25
3 1.27 2.72 1.27 2.52 0.00 -7.35
4 1.27 2.65 1.33 2.58 4.72 -2.64
5 1.27 2.73 1.39 2.80 9.45 2.56

D.2 Influence of hydrological models

Table D.4 shows seasonal and annual statistics of observed discharge, and simulated
discharges by base and regression models with observed P, T and PET as input,
for period 1974-1998.
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D.2. Influence of hydrological models

Table D.2: Comparison of observed T and projected T by GCM-RCM com-
binations, mean and standard deviation of both period 1971-2000 and 2071-
2100 are given

1971-2000 2071-2100 Change
µ σ µ σ µ σ

[oC] [oC] [oC] [oC] [oC] [oC]

Observations 8.29 7.90
GCM-RCM

1 8.31 7.94 10.5 7.81 2.19 -0.13
2 8.31 7.94 10.9 7.25 2.59 -0.69
3 8.31 7.94 11.3 8.3 2.99 0.36
4 8.31 7.94 11.4 7.18 3.09 -0.76
5 8.31 7.94 11.3 7.6 2.99 -0.34

Table D.3: Comparison of observed PET and projected PET by GCM-RCM
combinations, mean and standard deviation of both period 1971-2000 and
2071-2100 are given

1971-2000 2071-2100 Change
µ σ µ σ µ σ

[mm] [mm] [mm] [mm] [%] [%]

Observations 1.95 1.45
GCM-RCM

1 1.98 1.72 2.02 1.71 2.0 -0.6
2 1.98 1.74 1.94 1.64 -2.0 -5.7
3 1.97 1.74 2.08 1.76 5.6 1.1
4 1.97 1.64 2.09 1.67 6.1 -4.0
5 1.97 1.75 2.06 1.73 4.6 -1.1

Table D.4: Overview of observed discharge and simulated discharge by base and regres-
sion model with observed P, T and PET as input (µ and σ in [m3/s], for period 1974-1998.
I: observed discharge, II.a: simulated discharge by base model with observations as input,
III.a: simulated discharge by regression model with observations as input
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D.3. Influence of GCM-RCM input

D.3 Influence of GCM-RCM input

Table D.5 shows seasonal and annual statistics of simulated discharges by base and
regression models with observed P, T and PET as input and simulated discharges
by base and regression models with GCM-RCM projections as input, for period
1974-1998.

Table D.5: Overview of simulated discharges by base and regression model with observed
P, T and PET and GCM-RCM projections as input (µ and σ in [m3/s]. II.a: simulated dis-
charge by base model with observations as input, II.b: simulated discharge by base model
with GCM-RCM input, III.a: simulated discharge by regression model with observations
as input, III.b: simulated discharge by regression model with GCM-RCM input

D.4 Expected impact of climate change

Table D.6 shows seasonal and annual statistics of simulated discharges by base and
regression models with GCM-RCM projections as input, for period 1974-1998 and
2074-2098.
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D.4. Expected impact of climate change

Table D.6: Overview of simulated discharge by base and regression model with GCM-
RCM projections for period 1974-1998 and 2074-2098 as input (µ and σ in [m3/s]. II.b:
simulated discharge by base model with present GCM-RCM input, II.c: simulated dis-
charge by base model with future GCM-RCM input, III.b: simulated discharge by regres-
sion model with present GCM-RCM input, III.c: simulated discharge by regression model
with future GCM-RCM input
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