
Rotating the mesh near the boundaries

Haiko Rijkers, ∗

November 30, 2011

Introduction
This document is to explain the function of the file.

This is a modification to the file import cgns-grid.py. The original file had as function
to read the CGNS files in which the grid and the boundary conditions are defined and
write them to a more convenient form that can be used for the simulation of a turbo
machine. The original file worked good for the original mesh but to improve the results

a new mesh was created. The original file wasn’t able to deal with the new O-mesh the
modifications as described in this document have is function to resolve this problem.

∗Student Mechanical Engineering. University of Twente, Enschede, the Netherlands

1

Contents

I Project Description 3

1 Present situation 3
1.1 Code description . 3

2 Problem description 3

3 Possible solution 3

II Final solution 5

4 Check orientation 5

5 Rotate elements 6
5.1 Rotate indices and faces . 6
5.2 Examples . 6

III Project Testing 11

6 Geometry 11

7 Block sizes 11

8 Faces 12

9 Indices 13

10 Running a simulation 13

IV mlab 15

V Encountered problems 16

VI New file 17

VII output file 25

VIII VRML file 33

2

Part I

Project Description

The goal of this project is to modify the existing code for reading .CGNS files to make

the code able to deal with more versatile types of meshes.

1 Present situation

In the next sections the original code is shortly described.

1.1 Code description

In short the present code reads the .CGNS files. The .CGNS includes block id numbers

the locations of the nodes in x, y and z, the faces and the boundary conditions for every

block. The code saves this information in a structure and writes every structure to a .vtk

file. The .vtk file van later on be used to run the simulation.

2 Problem description

The previous code worked good for the original mesh but for a mesh in which the ori-

entation of the blocks isn’t constant this does not work. Since in the original code it is

assumed that a certain boundary condition is connected to a certain face. For example it

is assumed that the inlet block is always facing north. In the new mesh the blocks are not

necessarily orientated in this manner. Here for the code has to be modified so that the

boundary condition can be forced on the correct faces. If done so the rest of the existing

code can be used to run the simulation.

3 Possible solution

There are multiple possible solutions to enforce the boundary condition on the correct

faces. Possibilities are:

• Use the geometry of the entire block, take the outer nodes and match these with

the nodes and faces to find the required reorientation.

• View the mesh using for example Paraview to find the correct orientation, using

VRML

• Read the .CGNS file and reorientates using this information directly.

3

In this case is chosen to change the orientation of the mesh at the boundaries to the

original orientation as it was defined in the original mesh so the boundary condition can

be enforced, using the last method. After reorientation the original code can be used

without further modifications.

4

Part II

Final solution

The final code first reads the .CGNS files as in the original file. the next step is to check if

there are any boundary conditions on the block in which we are interested. The boundary

conditions we are interested in are the periodic-, inlet- and outlet boundary conditions.

If there are boundary conditions on the block of interest the next step is to check if

reorientation is needed. reorientation is needed is one of the boundary conditions is on a

face that does not correspond with the preferred orientation.

In this file there are three axis around which the block can rotate, the x’ axis y’-axis

and the z’ axis, Figure 1. With these three axis of rotation it is possible to reorientates

every block to the preferred orientation 1.

�
�
�

�
�
�

�
�
�

�
�
�

6

-

�
�
��x’-axis y’-axis

z’-axis

Figure 1: Block with the x’-axis and the z’-axis

4 Check orientation

The orientation is checked using the face names as saved in the .CGNS files and the

boundary condition on each face. For a certain boundary condition is a certain face

required. From the face and the boundary condition follows around which axis the block

has to be rotated and how many rotations steps are required. The boundary conditions

and the corresponding faces:

• BC: Inlet; Face: North

• BC: Outlet; Face: South

• BC: Periodic Pressure; Face: West

1In principle it is possible to reorientates the block with two axis

5

• BC: Periodic Suction; Face: East

5 Rotate elements

When the orientation is known the mesh can be rotated to the desired orientation. Here

for both the indices and the face names have to be changed. In this case the rotation

is done in multiple steps as will be described in the next section. The entire code is in

Section VI.

5.1 Rotate indices and faces

In the section the steps that are needed for the rotations are described. In short the

principle works as follows. When the block has to be orientated since there are boundary

conditions on the block that are not corresponding with the correct faces the first step is

to look if one of the periodic boundary conditions is on a a Top or Bottom face. If this

is the case the block is rotates around the y’-axis, till the periodic boundary condition is

on the correct face. The next step is to check if there are boundary conditions that are

on a North, East, South or West face but not the correct one. The final step is to rotate

the block around the x’-axis if there is an inlet or outlet boundary on a Top or Bottom

face. After these three steps the faces and boundaries should always correspond.

5.2 Examples

In this section the reorientation as described in the previous section is explained using

multiple examples. First the preferred orientation is given in Figure 2.

W BC:PSS N BC:IL E BC:PPS S BC:OL

B

T

- -

6 6

-

6

x-axis y-axis

z-axis z-axis

x-axis

y-axis

Figure 2: preferred orientation, with axis

This is the preferred orientation. Where the indices follow the axis, the i-indices the

x-axis, the j-indices the y-axis and the k-indices the z-axis.

6

The boundary conditions are Periodic Suction Side (PSS), Inlet (IL), Periodic Pressure

Side (PPS), Outlet (OL) for respectively West (W), North (N), East (E), South (S). There

are no boundary conditions for the TOP face (T), nor for the BOTTOM face (B).

N BC:PSS E BC:IL S BC:PPS W BC:OL

B

T

Figure 3: changed orientation 1

In this case the mesh has to be rotated once in the left direction, so a rotation around

the z’-axis, Figure 3. This means that the indices and the faces have to be changed. Index

operation:

• [(nj − j − 1), i, k] = [i, j, k]

Before After

-

6

-

?

i

j

i

j

Figure 4: rotating around the z’-axis

Face operation:

• North = West; East = North; South = East; West = South;

In this case the mesh has to be rotated twice in the left direction, around the z’-axis,

Figure 5. Index operation:

• [(nj − j − 1), i, k] = [i, j, k]

• And again: [(nj − j − 1), i, k] = [i, j, k]

Face operation:

• North = West; East = North; South = East; West = South;

7

E BC:PSS S BC:IL WBC:PPS N BC:OL

B

T

Figure 5: changed orientation 2

S BC:PSS W BC:IL N BC:PPS E BC:OL

B

T

Figure 6: changed orientation 3

• And again: North = West; East = North; South = East; West = South;

In this case the mesh has to be rotated three times in the left direction, or once in

the other direction, Figure 6. Since the code all ready exists for rotating to the left the

choice fall on rotating three times to the left. Index operation:

• [(nj − j − 1), i, k] = [i, j, k]

• And again: [(nj − j − 1), i, k] = [i, j, k]

• And again: [(nj − j − 1), i, k] = [i, j, k]

Face operation:

• North = West; East = North; South = East; West = South;

• And again: North = West; East = North; South = East; West = South;

8

• And again: North = West; East = North; South = East; West = South;

It is as well possible the mesh has to be rotated around the y’- or x’-axis. In that case

the mesh has first to be rotated once around the the y’- or x’-axis and afterwards the

rotated as described earlier. In case there is an periodic boundary condition on the Top

face or on the Bottom face the block is first rotated around the y’-axis.

N BC:IL T BC:PPS S BC:OL B BC:PSS

E

W

Figure 7: changed orientation 4

In this case the mesh has to be rotated once around the y’-axis, Figure 7. Index

operation:

• [(nk − k − 1), j, i] = [i, j, k]

Face operation:

• Top = East; East = South; North = North; Bottom = West; West = Top; South

= South;

It is as well possible that the inlet or outlet in at the Top or Bottom face, Figure 8.

In this case the mesh has to be rotated around the x’-axis. Index operation: [i, (nk− k−
1), j] = [i, j, k]. Face operation:

• Top = South; East = East; North = Top; West = West; South = Bottom; Bottom

= North;

9

B BC:PSS E BC:IL T BC:PPS W BC:OL

S

N

Figure 8: changed orientation 5

10

Part III

Project Testing

After the design the new code has to be tested. A first simple check is to check the

geometry. Secondly the rest can be checked,the indices, the faces and size of the blocks.

6 Geometry

A simple first check is the geometry, If the geometry isn’t correct any more after the

transformations, the code is not correct. The geometry is the same as it was before the

transformation as can be seen in the Figure 9, Figure 10 and Figure 11 from Paraview.

Figure 9: Screenshot of the Rotor and Stator from Paraview

7 Block sizes

The blocks on the periodic pressure (PPS) end periodic suction side (PSS) have to be of

the same size to make it possible to match the data of both sides.

To check whether this is the case a first indication can be found using Paraview. If

the blocks seem to match in Paraview. Secondly the exact coordinates can be checked

using Paraview. It seems that they match.

11

Figure 10: Screenshot of the Stator blocks from Paraview

Figure 11: Screenshot of the Rotor blocks from Paraview

8 Faces

The faces should match the preferred orientation, boundaries and the indices. A first

check is to check if the boundary conditions are facing the correct direction. The result is

given in Section VII. As can be seen in this section the faces match with the boundaries.

12

9 Indices

First the indices can be checked by rotating the mesh 4 times around the same axis. The

nodes should be on the same location again, as it turns out this part is working.Another

way to check the indices is by using the VRML script as given in Section VIII. The result

is given in Figure ?? and in Figure 13. The color red is for the periodic boundaries, green

for the inlet boundary and blue for the outlet boundary As can be seen the colored faces

are not all at the outer surfaces of the geometry this suggest that there is an mistake in

the code. The faces are colored using the indices that correspond to a certain boundary.

Since the faces and boundaries correspond there is a mistake in rotating the indices. I

assumed at first that the faces 0 and 2, 1 and 3 and the faces 4 and 5 would always be

opposite. But after a check if this assumptions it turns out that this is not the case. I

assume the mistake in rotating the indices is due to this false assumption.

Figure 12: Screenshot 1 from Paraview using VRML

10 Running a simulation

The final test would be to run a simulation, but since the indices are incorrect this is not

an option.

13

Figure 13: Screenshot 2 from Paraview using VRML

14

Part IV

mlab

Mlab is an option for 3D plotting in python a la Matlab. Personally I prefer this method

above using Paraview, but I’m more used to working with matlab, than I’m with Paraview.

Using mlab it’s possible to combine different visualizations, this makes it for example

possible to show at the same time a visualization of the pressure contours and a vector

field of the velocities. As well to make a cut plane.

To use mlab there have to made a few modifications in the code. First of all mlab

has to be imported from mayavi. Secondly for every visualization type there has to be

written a script that gets the required data and creates the visualization. Finally the

visualization has to be shown by using the command show. Example: % title: example

% variables x,y,z

from mayavi import mlab

s = mlab.mesh(x,y,z)

mlab.show()

15

Part V

Encountered problems

During this project I encountered a number of problems. I will try to give an short

overview so the next interm can benefit from my experience.

• Since the code consist of a lot of different part it takes a while to find out how the

different parts of the code are connected. I strongly advise the next person that

starts working on this code first to make an overview of how the different parts are

connected as I should have done when I started. On the longterm it will save time

for you and for the next one after you.

• It seemed at first like the code was working perfectly, the geometrie matched with

the original geometrie and the boundary conditions where facing in the correct

direction. But using the VRML code to check the results it appeared not to be

working as good as I thought.

• Finally it appeared that the faces where not ordered as I assumed. I thought that

the faces 0 and 2, the faces 1 and 3 and the faces 4 and 5 where always opposite.

But as it appears this is not the case.

16

17

Part VI

New file

File: /home/haiko/Desktop/importcgnsgrid Page 1 of 7

"""
import_cgns_grid.py
"""
Read structured grids from CGNS files.

Authors: Paul Petrie-Repar, QGECE, 15 Feb 2011
 Peter J, 23 Feb 2011
 Haiko Rijkers, 19 Nov 2011

This module makes use of Oliver Borm's CGNS package for Python 2.x
http://sourceforge.net/projects/python-cgns/

We have a copy of that package in cfcfd2/extern/python-cgns/.
"""

from CGNS import CGNS
import math
import sys, os
sys.path.append(os.path.expandvars("$HOME/e3bin"))
from e3_grid import StructuredGrid

def rotate_around_zaxis_periodic(BcPnt,face,g,g2, ni,nj, nk):
"""
"""
g2.x = {}
g2.y = {}
g2.z = {}
for k in range(nk):

for j in range(nj):
for i in range(ni):

#indx = k*nj*ni + j*ni + i
(1/2+(-1)^rotations*1/2)*(-1)*
g2.x[i,(nk-k-1),j] = g.x[i,j,k]
g2.y[i,(nk-k-1),j] = g.y[i,j,k]
g2.z[i,(nk-k-1),j] = g.z[i,j,k]

nja=nj
nj=nk
nk=nja

#print " rotations, x, y, z: ",g2.x[ni-1,nj-1,nk-1], g2.y[ni-1,nj-1,nk-1], g2.z[ni-1,nj-1,nk-1]
g.x = g2.x
g.y = g2.y
g.z = g2.z
g2.x = {}
g2.y = {}
g2.z = {}
The faces
for face in range(6):

if (BcPnt[face]=="TOP"):
BcPnttemp0="EAST"
temp0=face

elif (BcPnt[face]=="EAST"):
BcPnttemp1="BOTTOM"
temp1=face

elif (BcPnt[face]=="BOTTOM"):
BcPnttemp2="WEST"
temp2=face

elif (BcPnt[face]=="WEST"):
BcPnttemp3="TOP"
temp3=face

BcPnt[temp0]=BcPnttemp0
BcPnt[temp1]=BcPnttemp1
BcPnt[temp2]=BcPnttemp2
BcPnt[temp3]=BcPnttemp3
return BcPnt,g, ni,nj, nk

def rotate_around_zaxis_in_out_let(BcPnt,face,g,g2, ni,nj, nk):
"""
"""
g2.x = {}
g2.y = {}

18

File: /home/haiko/Desktop/importcgnsgrid Page 2 of 7

g2.z = {}
for k in range(nk):

for j in range(nj):
for i in range(ni):

#indx = k*nj*ni + j*ni + i
(1/2+(-1)^rotations*1/2)*(-1)*
g2.x[(nk-k-1),j,i] = g.x[i,j,k]
g2.y[(nk-k-1),j,i] = g.y[i,j,k]
g2.z[(nk-k-1),j,i] = g.z[i,j,k]

nia=ni
ni=nk
nk=nia

#print " rotations, x, y, z: ",g2.x[ni-1,nj-1,nk-1], g2.y[ni-1,nj-1,nk-1], g2.z[ni-1,nj-1,nk-1]
g.x = g2.x
g.y = g2.y
g.z = g2.z
g2.x = {}
g2.y = {}
g2.z = {}
The faces
for face in range(6):

if (BcPnt[face]=="TOP"):
BcPnttemp0="NORTH"
temp0=face

elif (BcPnt[face]=="NORTH"):
BcPnttemp1="BOTTOM"
temp1=face

elif (BcPnt[face]=="BOTTOM"):
BcPnttemp2="SOUTH"
temp2=face

elif (BcPnt[face]=="SOUTH"):
BcPnttemp3="TOP"
temp3=face

BcPnt[temp0]=BcPnttemp0
BcPnt[temp1]=BcPnttemp1
BcPnt[temp2]=BcPnttemp2
BcPnt[temp3]=BcPnttemp3
return BcPnt,g, ni,nj, nk

def check_CGNS_error_flag(errorFlag, messageText=""):
 """
 Give some information on CGNS failure.
 """
 if (errorFlag != 0):
 print "CGNS Error %d %s" % (errorFlag, messageText)
 CGNS.cg_error_exit()
 return

def getFaceName(face, bcPnts):
 """
 Returns the face name.
 """
 if (bcPnts[0] == bcPnts[3]):
 if (bcPnts[0] == 1):
 return "WEST"
 # Periodic BC 1
 else:
 return "EAST"
 # Periodic BC 2
 elif (bcPnts[1] == bcPnts[4]):
 if (bcPnts[1] == 1):
 return "SOUTH"
 else:
 return "NORTH"
 elif (bcPnts[2] == bcPnts[5]):
 if (bcPnts[2] == 1):
 return "BOTTOM"
 else:

19

File: /home/haiko/Desktop/importcgnsgrid Page 3 of 7

 return "TOP"
 else:
 print "Cannot determine Face"

 #print "this is BcPnts: ", BcPnts

def read_ICEM_CGNS_grids(cgnsFileName, labelStem="test" , gridScale=1.0):
 """
 Dip into the CGNS file and extract the structured grids from within.

 Returns a dictionary containing the interesting data.
 """
 labelStem = cgnsFileName

 cgnsData = dict() # a convenient place to collect everything

 print "open CGNS file: ", cgnsFileName, " scale: ", gridScale
 filePtr = CGNS.intp()
 ier = CGNS.cg_open(cgnsFileName, CGNS.CG_MODE_READ, filePtr)
 fileValue = filePtr.value()
 check_CGNS_error_flag(ier, "on opening file")

 basePtr = CGNS.intp()
 basePtr.assign(1)
 numberZonesPtr = CGNS.intp()
 ier = CGNS.cg_nzones(filePtr.value(), basePtr.value(), numberZonesPtr)
 check_CGNS_error_flag(ier, "on getting number of zones")
 numberZones = numberZonesPtr.value()
 cgnsData['nblock'] = numberZones
 cgnsData['grids'] = []
 cgnsData['bcs'] = []
 #print "cgnsData=", cgnsData

 zonePtr = CGNS.intp()
 zoneSizeArray = CGNS.intArray(9)
 range_min = CGNS.intArray(3)
 range_max = CGNS.intArray(3)

 faceList3D = ["NORTH", "EAST", "SOUTH", "WEST", "TOP", "BOTTOM"]

 for zone in range(numberZones):

 zonePtr.assign(zone+1)
 ier, zoneName = CGNS.cg_zone_read(filePtr.value(), basePtr.value(), zonePtr.value(),
 zoneSizeArray)
 check_CGNS_error_flag(ier, "on getting zone pointer")
 #
 ni = zoneSizeArray[0]; nj = zoneSizeArray[1]; nk = zoneSizeArray[2]
 # print "ni=", ni, "nj=", nj, "nk=", nk

 range_min[0] = 1; range_max[0] = ni
 range_min[1] = 1; range_max[1] = nj
 range_min[2] = 1; range_max[2] = nk
 # Read the coordinate arrays.
 numberNodes = ni * nj * nk
 coordX = CGNS.doubleArray(numberNodes)
 coordY = CGNS.doubleArray(numberNodes)
 coordZ = CGNS.doubleArray(numberNodes)

 ier, coordName = CGNS.cg_coord_read(filePtr.value(), basePtr.value(), zonePtr.value(),
 "CoordinateX", CGNS.RealDouble,
 range_min, range_max, coordX)
 check_CGNS_error_flag(ier, "on getting x-coordinates")
 ier, coordName = CGNS.cg_coord_read(filePtr.value(), basePtr.value(), zonePtr.value(),
 "CoordinateY", CGNS.RealDouble,
 range_min, range_max, coordY)
 check_CGNS_error_flag(ier, "on getting y-coordinates")
 ier, coordName = CGNS.cg_coord_read(filePtr.value(), basePtr.value(), zonePtr.value(),

20

File: /home/haiko/Desktop/importcgnsgrid Page 4 of 7

 "CoordinateZ", CGNS.RealDouble,
 range_min, range_max, coordZ)
 check_CGNS_error_flag(ier, "on getting z-coordinates")
 # Now that we've read the coordinates, repack them into Eilmer's data structure.
 g = StructuredGrid((ni,nj,nk), label='%s%04d'%(labelStem, zone))
 g2 = StructuredGrid((nj,ni,nk), label='%s%04d'%(labelStem, zone))
 g3 = StructuredGrid((ni,nj,nk), label='%s%04d'%(labelStem, zone))

to make sure the grid is only rotated once, after the rotation is set to zero
 bz=1

 for k in range(nk):
 for j in range(nj):
 for i in range(ni):
 indx = k*nj*ni + j*ni + i
 g.x[i,j,k] = coordX[indx] * gridScale
 g.y[i,j,k] = coordY[indx] * gridScale
 g.z[i,j,k] = coordZ[indx] * gridScale

 # Changes to yes if there is one.
 Is_there_a_BC_on_the_block="no"

 BcPnt = {}
 familyName = {}
 for face in range(6):
 ier = CGNS.cg_goto(fileValue, basePtr.value(), "Zone_t", (zone + 1), "ZoneBC_t", 1,
"BC_t", (face+1), "end")
 ier, familyName[face] = CGNS.cg_famname_read()

 print "familyName: ", familyName[face]

 bcPntsPointer = CGNS.intArray(6)
 normalListPointer = CGNS.intArray(3)
 CGNS.cg_boco_read(fileValue, basePtr.value(), (zone+1), (face+1), bcPntsPointer,
normalListPointer);

 # If rotate_top_bottom is zero do nothing.
 rotate_top_bottom=0
 bc = {}

 BcPnt[face] = getFaceName(face, bcPntsPointer)
 #print BcPnt[face]
 print "Before rotation: ", zone, face, familyName[face], BcPnt[face]

 nr_rotations=0
 for face in range(6):

if (familyName[face].find("OUTLET")>=0 or familyName[face].find
("PERIODIC_SUCTION")>=0 or familyName[face].find("PERIODIC_PRESSURE")>=0 or familyName[face].find
("INLET")>=0):

One of the face has a BC, so reorientation is needed
Is_there_a_BC_on_the_block="yes"
#print BcPnt[face]

if (BcPnt[face]=="TOP" or BcPnt[face]=="BOTTOM"):
if (familyName[face].find("PERIODIC_SUCTION")>=0):

nr_rotationsz=1
BcPnt,g, ni,nj, nk=rotate_around_zaxis_periodic

(nr_rotationsz,familyName[face],g,g2, ni,nj, nk)
elif (familyName[face].find("PERIODIC_PRESSURE")>=0):

nr_rotationsz=1
BcPnt,g, ni,nj, nk=rotate_around_zaxis_periodic

(nr_rotationsz,familyName[face],g,g2, ni,nj, nk)

if (BcPnt[face]=="NORTH"):#INLET
if (familyName[face].find("PERIODIC_PRESSURE")>=0):

nr_rotations=3
elif (familyName[face].find("PERIODIC_SUCTION")>=0):

nr_rotations=1
elif (familyName[face].find("OUTLET")>=0):

21

File: /home/haiko/Desktop/importcgnsgrid Page 5 of 7

nr_rotations=2
elif (familyName[face].find("INLET")>=0):

nr_rotations=0

if (BcPnt[face]=="EAST"):#PERIODIC_SUCTION

if (familyName[face].find("PERIODIC_PRESSURE")>=0):
nr_rotations=2

elif (familyName[face].find("PERIODIC_SUCTION")>=0):
nr_rotations=0

elif (familyName[face].find("OUTLET")>=0):
nr_rotations=1

elif (familyName[face].find("INLET")>=0):
nr_rotations=3

if (BcPnt[face]=="SOUTH"):#OUTLET

if (familyName[face].find("PERIODIC_PRESSURE")>=0):
nr_rotations=1

elif (familyName[face].find("PERIODIC_SUCTION")>=0):
nr_rotations=3

elif (familyName[face].find("OUTLET")>=0):
nr_rotations=0

elif (familyName[face].find("INLET")>=0):
nr_rotations=2

if (BcPnt[face]=="WEST"):#PERIODIC_PRESSURE

if (familyName[face].find("PERIODIC_PRESSURE")>=0):
nr_rotations=0

elif (familyName[face].find("PERIODIC_SUCTION")>=0):
nr_rotations=2

elif (familyName[face].find("OUTLET")>=0):
nr_rotations=3

elif (familyName[face].find("INLET")>=0):
nr_rotations=1

#print "Normal rotations, #of rotations: ", nr_rotations,"\n"

 rotations=0
 while (rotations < nr_rotations):

g2.x = {}
g2.y = {}
g2.z = {}
for k in range(nk):

for j in range(nj):
for i in range(ni):

#indx = k*nj*ni + j*ni + i

(1/2+(-1)^rotations*1/2)*(-1)*
g2.x[(nj-j-1),i,k] = g.x[i,j,k]
g2.y[(nj-j-1),i,k] = g.y[i,j,k]
g2.z[(nj-j-1),i,k] = g.z[i,j,k]

nia=nj
nj=ni
ni=nia
Number of rotations
rotations=rotations+1
print "#",rotations, " rotations, x, y, z: ",g2.x[ni-1,nj-1,nk-1], g2.y

[ni-1,nj-1,nk-1], g2.z[ni-1,nj-1,nk-1]
g.x = g2.x
g.y = g2.y
g.z = g2.z
g2.x = {}
g2.y = {}
g2.z = {}
The faces
for face in range(6):

if (BcPnt[face]=="NORTH"):
BcPnttemp0="EAST"

22

File: /home/haiko/Desktop/importcgnsgrid Page 6 of 7

temp0=face
elif (BcPnt[face]=="EAST"):

BcPnttemp1="SOUTH"
temp1=face

elif (BcPnt[face]=="SOUTH"):
BcPnttemp2="WEST"
temp2=face

elif (BcPnt[face]=="WEST"):
BcPnttemp3="NORTH"
temp3=face

BcPnt[temp0]=BcPnttemp0
BcPnt[temp1]=BcPnttemp1
BcPnt[temp2]=BcPnttemp2
BcPnt[temp3]=BcPnttemp3

 for face in range(6):

if (familyName[face].find("OUTLET")>=0 or familyName[face].find
("PERIODIC_SUCTION")>=0 or familyName[face].find("PERIODIC_PRESSURE")>=0 or familyName[face].find
("INLET")>=0):

One of the face has a BC, so reorientation is needed
Is_there_a_BC_on_the_block="yes"
#print BcPnt[face]

if (BcPnt[face]=="BOTTOM" or BcPnt[face]=="TOP"):
if (familyName[face].find("INLET")>=0):

nr_rotations=1
BcPnt,g, ni,nj, nk=rotate_around_zaxis_in_out_let

(BcPnt,face,g,g2, ni,nj, nk)
elif (familyName[face].find("OUTLET")>=0):

nr_rotations=1
BcPnt,g, ni,nj, nk=rotate_around_zaxis_in_out_let

(BcPnt,face,g,g2, ni,nj, nk)

 for face in range(6):

 print "Result: ", zone, face, familyName[face], BcPnt[face]

 bc = {}
 bc['block'] = zone
 bc['face'] = BcPnt[face]
 # do not add internal and wall boundaries

 familyName[face].capitalize()
 n=0

 if (familyName[face].find("OUTLET") >= 0):
 bc['type'] = "outlet"
 # cgnsData['bcs'].append(bc)
 elif (familyName[face].find("INLET") >= 0):
 bc['type'] = "inlet"
 # cgnsData['bcs'].append(bc)
 elif (familyName[face].find("PERIODIC") >= 0):
 bc['type'] = "periodic"
 # cgnsData['bcs'].append(bc)
 elif (familyName[face].find("BLADE") >= 0):
 bc['type'] = "wall"
 # cgnsData['bcs'].append(bc)
 elif (familyName[face].find("SHROUD") >= 0):
 bc['type'] = "wall"
 # cgnsData['bcs'].append(bc)
 elif (familyName[face].find("HUB") >= 0):
 bc['type'] = "wall"
 # cgnsData['bcs'].append(bc)
 elif (familyName[face].find("ORPHAN") >= 0):
 bc['type'] = "internal"
 # do not add
 else:
 #cgnsData['bcs'].append(bc)
 bc['type'] = familyName[face]
 print "WARNING: Unknown boundary condition: " , familyName[face]

23

File: /home/haiko/Desktop/importcgnsgrid Page 7 of 7

 # resetting the number of elements
 g.ni=ni
 g.nj=nj
 g.nk=nk

 # Append CGNS Data
 cgnsData['bcs'].append(bc)
 cgnsData['grids'].append(g)

print cgnsData['bcs']
print "nodes: ", ni, nj, nk, "blockn ", zone

End for zone...
 return cgnsData

if __name__ == '__main__':
Main code

 print "cgns_import.py Demonstration..."
 if len(sys.argv) < 2:
 print "Usage: python import_cgns_grid.py CGNS_filename"
 sys.exit()
 fileName = sys.argv[1]
 print "CGNS file name: ", fileName
 # Calling the function that reads the CGNS files, and reorientates the grid
 dataDict = read_ICEM_CGNS_grids(fileName)
 nb = dataDict['nblock']
 print "number of blocks found=", nb
 print "start writing the grid"
 for jb in range(nb):

Writing the VTK files with the grid
g = dataDict['grids'][jb]
print ' ', g.label, 'ni=', g.ni, 'nj=', g.nj, 'nk=', g.nk, "blockn: ", jb
f = open(g.label + ".vtk", 'w')
g.write_block_in_VTK_format(f)
f.close()

 print "Done."

"""

24

Part VII

output file

BC: periodic

0 0 , BC type: periodic , BC face: EAST

0 1 , BC type: wall , BC face: TOP

0 2 , BC type: wall , BC face: BOTTOM

0 3 , BC type: internal , BC face: NORTH

4 , BC: inlet

0 4 , BC type: inlet , BC face: SOUTH

0 5 , BC type: internal , BC face: WEST

VRML line for volume, block: 1

0 , BC: periodic

1 0 , BC type: periodic , BC face: EAST

1 1 , BC type: wall , BC face: NORTH

1 2 , BC type: internal , BC face: BOTTOM

1 3 , BC type: internal , BC face: WEST

1 4 , BC type: wall , BC face: SOUTH

1 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 2

0 , BC: periodic

2 0 , BC type: periodic , BC face: EAST

2 1 , BC type: wall , BC face: NORTH

2 2 , BC type: internal , BC face: BOTTOM

2 3 , BC type: internal , BC face: WEST

2 4 , BC type: wall , BC face: SOUTH

2 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 3

3 0 , BC type: wall , BC face: BOTTOM

3 1 , BC type: internal , BC face: NORTH

3 2 , BC type: internal , BC face: WEST

3 3 , BC type: wall , BC face: TOP

4 , BC: inlet

3 4 , BC type: inlet , BC face: SOUTH

3 5 , BC type: internal , BC face: EAST

VRML line for volume, block: 4

4 0 , BC type: internal , BC face: BOTTOM

4 1 , BC type: internal , BC face: WEST

25

4 2 , BC type: wall , BC face: SOUTH

4 3 , BC type: internal , BC face: EAST

4 4 , BC type: wall , BC face: NORTH

4 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 5

0 , BC: periodic

5 0 , BC type: periodic , BC face: WEST

5 1 , BC type: wall , BC face: BOTTOM

2 , BC: inlet

5 2 , BC type: inlet , BC face: SOUTH

5 3 , BC type: wall , BC face: TOP

5 4 , BC type: internal , BC face: NORTH

5 5 , BC type: internal , BC face: EAST

VRML line for volume, block: 6

6 0 , BC type: internal , BC face: EAST

1 , BC: periodic

6 1 , BC type: periodic , BC face: WEST

6 2 , BC type: wall , BC face: NORTH

6 3 , BC type: internal , BC face: BOTTOM

6 4 , BC type: wall , BC face: SOUTH

6 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 7

7 0 , BC type: internal , BC face: EAST

1 , BC: periodic

7 1 , BC type: periodic , BC face: WEST

7 2 , BC type: wall , BC face: NORTH

7 3 , BC type: internal , BC face: BOTTOM

7 4 , BC type: wall , BC face: SOUTH

7 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 8

8 0 , BC type: internal , BC face: SOUTH

8 1 , BC type: wall , BC face: WEST

8 2 , BC type: internal , BC face: BOTTOM

8 3 , BC type: wall , BC face: TOP

8 4 , BC type: wall , BC face: EAST

8 5 , BC type: internal , BC face: NORTH

VRML line for volume, block: 9

9 0 , BC type: wall , BC face: WEST

9 1 , BC type: internal , BC face: TOP

26

9 2 , BC type: internal , BC face: SOUTH

9 3 , BC type: wall , BC face: BOTTOM

9 4 , BC type: wall , BC face: EAST

9 5 , BC type: internal , BC face: NORTH

VRML line for volume, block: 10

10 0 , BC type: internal , BC face: WEST

10 1 , BC type: wall , BC face: SOUTH

10 2 , BC type: internal , BC face: BOTTOM

10 3 , BC type: wall , BC face: TOP

10 4 , BC type: internal , BC face: EAST

10 5 , BC type: wall , BC face: NORTH

VRML line for volume, block: 11

11 0 , BC type: wall , BC face: SOUTH

11 1 , BC type: internal , BC face: TOP

11 2 , BC type: internal , BC face: WEST

11 3 , BC type: wall , BC face: BOTTOM

11 4 , BC type: internal , BC face: EAST

11 5 , BC type: wall , BC face: NORTH

VRML line for volume, block: 12

0 , BC: periodic

12 0 , BC type: periodic , BC face: EAST

12 1 , BC type: wall , BC face: NORTH

12 2 , BC type: internal , BC face: BOTTOM

12 3 , BC type: internal , BC face: WEST

12 4 , BC type: wall , BC face: SOUTH

12 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 13

13 0 , BC type: wall , BC face: WEST

13 1 , BC type: internal , BC face: BOTTOM

13 2 , BC type: internal , BC face: SOUTH

13 3 , BC type: wall , BC face: TOP

13 4 , BC type: wall , BC face: EAST

13 5 , BC type: internal , BC face: NORTH

VRML line for volume, block: 14

14 0 , BC type: internal , BC face: EAST

14 1 , BC type: wall , BC face: NORTH

14 2 , BC type: internal , BC face: BOTTOM

3 , BC: periodic

14 3 , BC type: periodic , BC face: WEST

27

14 4 , BC type: wall , BC face: SOUTH

14 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 15

15 0 , BC type: wall , BC face: WEST

15 1 , BC type: internal , BC face: TOP

15 2 , BC type: internal , BC face: SOUTH

15 3 , BC type: wall , BC face: BOTTOM

15 4 , BC type: wall , BC face: EAST

15 5 , BC type: internal , BC face: NORTH

VRML line for volume, block: 16

16 0 , BC type: internal , BC face: BOTTOM

1 , BC: periodic

16 1 , BC type: periodic , BC face: EAST

16 2 , BC type: wall , BC face: NORTH

16 3 , BC type: internal , BC face: TOP

16 4 , BC type: internal , BC face: WEST

16 5 , BC type: wall , BC face: SOUTH

VRML line for volume, block: 17

17 0 , BC type: internal , BC face: SOUTH

17 1 , BC type: wall , BC face: WEST

17 2 , BC type: internal , BC face: NORTH

17 3 , BC type: internal , BC face: BOTTOM

17 4 , BC type: wall , BC face: TOP

17 5 , BC type: wall , BC face: EAST

VRML line for volume, block: 18

18 0 , BC type: internal , BC face: BOTTOM

18 1 , BC type: internal , BC face: EAST

18 2 , BC type: wall , BC face: NORTH

18 3 , BC type: internal , BC face: TOP

4 , BC: periodic

18 4 , BC type: periodic , BC face: WEST

18 5 , BC type: wall , BC face: SOUTH

VRML line for volume, block: 19

19 0 , BC type: internal , BC face: SOUTH

19 1 , BC type: wall , BC face: WEST

19 2 , BC type: internal , BC face: NORTH

19 3 , BC type: internal , BC face: TOP

19 4 , BC type: wall , BC face: BOTTOM

19 5 , BC type: wall , BC face: EAST

28

VRML line for volume, block: 20

0 , BC: periodic

20 0 , BC type: periodic , BC face: EAST

20 1 , BC type: wall , BC face: NORTH

20 2 , BC type: internal , BC face: BOTTOM

20 3 , BC type: internal , BC face: WEST

20 4 , BC type: wall , BC face: SOUTH

20 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 21

21 0 , BC type: internal , BC face: NORTH

21 1 , BC type: wall , BC face: WEST

21 2 , BC type: internal , BC face: SOUTH

21 3 , BC type: internal , BC face: BOTTOM

21 4 , BC type: wall , BC face: TOP

21 5 , BC type: wall , BC face: EAST

VRML line for volume, block: 22

22 0 , BC type: internal , BC face: TOP

22 1 , BC type: internal , BC face: EAST

22 2 , BC type: wall , BC face: NORTH

22 3 , BC type: internal , BC face: BOTTOM

4 , BC: periodic

22 4 , BC type: periodic , BC face: WEST

22 5 , BC type: wall , BC face: SOUTH

VRML line for volume, block: 23

23 0 , BC type: internal , BC face: NORTH

23 1 , BC type: wall , BC face: WEST

23 2 , BC type: internal , BC face: SOUTH

23 3 , BC type: internal , BC face: TOP

23 4 , BC type: wall , BC face: BOTTOM

23 5 , BC type: wall , BC face: EAST

VRML line for volume, block: 24

0 , BC: periodic

24 0 , BC type: periodic , BC face: EAST

24 1 , BC type: wall , BC face: NORTH

24 2 , BC type: internal , BC face: TOP

24 3 , BC type: internal , BC face: WEST

24 4 , BC type: wall , BC face: SOUTH

24 5 , BC type: internal , BC face: BOTTOM

VRML line for volume, block: 25

29

25 0 , BC type: internal , BC face: SOUTH

25 1 , BC type: wall , BC face: WEST

25 2 , BC type: internal , BC face: NORTH

25 3 , BC type: internal , BC face: BOTTOM

25 4 , BC type: wall , BC face: TOP

25 5 , BC type: wall , BC face: EAST

VRML line for volume, block: 26

26 0 , BC type: internal , BC face: SOUTH

26 1 , BC type: internal , BC face: NORTH

26 2 , BC type: wall , BC face: WEST

26 3 , BC type: internal , BC face: TOP

26 4 , BC type: wall , BC face: BOTTOM

26 5 , BC type: wall , BC face: EAST

VRML line for volume, block: 27

27 0 , BC type: internal , BC face: BOTTOM

27 1 , BC type: internal , BC face: EAST

2 , BC: periodic

27 2 , BC type: periodic , BC face: WEST

27 3 , BC type: wall , BC face: NORTH

27 4 , BC type: internal , BC face: TOP

27 5 , BC type: wall , BC face: SOUTH

VRML line for volume, block: 28

28 0 , BC type: internal , BC face: SOUTH

1 , BC: periodic

28 1 , BC type: periodic , BC face: EAST

28 2 , BC type: wall , BC face: BOTTOM

3 , BC: outlet

28 3 , BC type: outlet , BC face: NORTH

28 4 , BC type: internal , BC face: WEST

28 5 , BC type: wall , BC face: TOP

VRML line for volume, block: 29

29 0 , BC type: internal , BC face: SOUTH

29 1 , BC type: internal , BC face: EAST

29 2 , BC type: internal , BC face: WEST

29 3 , BC type: wall , BC face: TOP

4 , BC: outlet

29 4 , BC type: outlet , BC face: NORTH

29 5 , BC type: wall , BC face: BOTTOM

VRML line for volume, block: 30

30

30 0 , BC type: internal , BC face: SOUTH

30 1 , BC type: internal , BC face: EAST

2 , BC: periodic

30 2 , BC type: periodic , BC face: WEST

30 3 , BC type: wall , BC face: BOTTOM

4 , BC: outlet

30 4 , BC type: outlet , BC face: NORTH

30 5 , BC type: wall , BC face: TOP

VRML line for volume, block: 31

0 , BC: inlet

31 0 , BC type: inlet , BC face: SOUTH

31 1 , BC type: wall , BC face: BOTTOM

31 2 , BC type: internal , BC face: NORTH

31 3 , BC type: internal , BC face: WEST

31 4 , BC type: internal , BC face: EAST

31 5 , BC type: wall , BC face: TOP

VRML line for volume, block: 32

32 0 , BC type: internal , BC face: WEST

32 1 , BC type: internal , BC face: EAST

32 2 , BC type: wall , BC face: SOUTH

32 3 , BC type: internal , BC face: BOTTOM

32 4 , BC type: wall , BC face: TOP

32 5 , BC type: wall , BC face: NORTH

VRML line for volume, block: 33

33 0 , BC type: internal , BC face: WEST

33 1 , BC type: internal , BC face: BOTTOM

33 2 , BC type: internal , BC face: EAST

33 3 , BC type: wall , BC face: SOUTH

33 4 , BC type: wall , BC face: NORTH

33 5 , BC type: internal , BC face: TOP

VRML line for volume, block: 34

34 0 , BC type: internal , BC face: WEST

34 1 , BC type: internal , BC face: EAST

34 2 , BC type: wall , BC face: SOUTH

34 3 , BC type: internal , BC face: TOP

34 4 , BC type: wall , BC face: BOTTOM

34 5 , BC type: wall , BC face: NORTH

VRML line for volume, block: 35

35 0 , BC type: internal , BC face: WEST

31

35 1 , BC type: internal , BC face: SOUTH

35 2 , BC type: internal , BC face: EAST

35 3 , BC type: wall , BC face: TOP

4 , BC: outlet

35 4 , BC type: outlet , BC face: NORTH

35 5 , BC type: wall , BC face: BOTTOM

total number of lines: 216

done writing VRML script

32

33

Part VIII

VRML file

File: /home/haiko/Desktop/VRMLbctest Page 1 of 2

\file VRML_bc_test.py
\ingroup libgeom2
\brief Exercise the Surface classes.
\author Haiko Rijkers
\version 09-nov-2011

import sys
import os
sys.path.append(os.path.expandvars("$HOME/e3bin"))
from libprep3 import *
from import_cgns_grid import *
from math import pi

Conditions
###########################
def write_VRML_bc(g,bc,face, color, vol):

#BOTTOM
bf1= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf2= BilinearFunction(0.0,0.0,1.0,1.0) #j
bf3= BilinearFunction(0.0,0.0,0.0,0.0) #k

#TOP
bf4= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf5= BilinearFunction(0.0,0.0,1.0,1.0) #j
bf6= BilinearFunction(1.0,1.0,1.0,1.0) #k

#NORTH
bf7= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf8= BilinearFunction(0.0,0.0,0.0,0.0) #j
bf9= BilinearFunction(0.0,0.0,1.0,1.0) #k

#SOUTH
bf10= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf11= BilinearFunction(1.0,1.0,1.0,1.0) #j
bf12= BilinearFunction(0.0,0.0,1.0,1.0) #k

#WEST
bf13= BilinearFunction(0.0,0.0,0.0,0.0) #i
bf14= BilinearFunction(0.0,1.0,0.0,1.0) #j
bf15= BilinearFunction(0.0,0.0,1.0,1.0) #k

#EAST
bf16= BilinearFunction(1.0,1.0,1.0,1.0) #i
bf17= BilinearFunction(0.0,1.0,0.0,1.0) #j
bf18= BilinearFunction(0.0,0.0,1.0,1.0) #k

if (face==5):
surf = SurfaceThruVolume(vol, bf1, bf2, bf3)

elif (face==4):
surf = SurfaceThruVolume(vol, bf4, bf5, bf6)

elif (face==0):
surf = SurfaceThruVolume(vol, bf7, bf8, bf9)

elif (face==2):
surf = SurfaceThruVolume(vol, bf10, bf11, bf12)

elif (face==3):
surf = SurfaceThruVolume(vol, bf13, bf14, bf15)

elif (face==1):
surf = SurfaceThruVolume(vol, bf16, bf17, bf18)

outfile.write(surf.vrml_str(color) +"\n")
print face, ", BC:", bc['type']

def write_VRML(g,bc,face, jb):
"""
Starting by deving the volume.
Next step is to give a color to the faces with a periodic bc
Not jet in the file but the next step is giving a color to the inlet and outlet faces
"""
ni=g.ni-1
nj=g.nj-1
nk=g.nk-1

34

File: /home/haiko/Desktop/VRMLbctest Page 1 of 2

\file VRML_bc_test.py
\ingroup libgeom2
\brief Exercise the Surface classes.
\author Haiko Rijkers
\version 09-nov-2011

import sys
import os
sys.path.append(os.path.expandvars("$HOME/e3bin"))
from libprep3 import *
from import_cgns_grid import *
from math import pi

Conditions
###########################
def write_VRML_bc(g,bc,face, color, vol):

#BOTTOM
bf1= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf2= BilinearFunction(0.0,0.0,1.0,1.0) #j
bf3= BilinearFunction(0.0,0.0,0.0,0.0) #k

#TOP
bf4= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf5= BilinearFunction(0.0,0.0,1.0,1.0) #j
bf6= BilinearFunction(1.0,1.0,1.0,1.0) #k

#NORTH
bf7= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf8= BilinearFunction(0.0,0.0,0.0,0.0) #j
bf9= BilinearFunction(0.0,0.0,1.0,1.0) #k

#SOUTH
bf10= BilinearFunction(0.0,1.0,0.0,1.0) #i
bf11= BilinearFunction(1.0,1.0,1.0,1.0) #j
bf12= BilinearFunction(0.0,0.0,1.0,1.0) #k

#WEST
bf13= BilinearFunction(0.0,0.0,0.0,0.0) #i
bf14= BilinearFunction(0.0,1.0,0.0,1.0) #j
bf15= BilinearFunction(0.0,0.0,1.0,1.0) #k

#EAST
bf16= BilinearFunction(1.0,1.0,1.0,1.0) #i
bf17= BilinearFunction(0.0,1.0,0.0,1.0) #j
bf18= BilinearFunction(0.0,0.0,1.0,1.0) #k

if (face==5):
surf = SurfaceThruVolume(vol, bf1, bf2, bf3)

elif (face==4):
surf = SurfaceThruVolume(vol, bf4, bf5, bf6)

elif (face==0):
surf = SurfaceThruVolume(vol, bf7, bf8, bf9)

elif (face==2):
surf = SurfaceThruVolume(vol, bf10, bf11, bf12)

elif (face==3):
surf = SurfaceThruVolume(vol, bf13, bf14, bf15)

elif (face==1):
surf = SurfaceThruVolume(vol, bf16, bf17, bf18)

outfile.write(surf.vrml_str(color) +"\n")
print face, ", BC:", bc['type']

def write_VRML(g,bc,face, jb):
"""
Starting by deving the volume.
Next step is to give a color to the faces with a periodic bc
Not jet in the file but the next step is giving a color to the inlet and outlet faces
"""
ni=g.ni-1
nj=g.nj-1
nk=g.nk-1

35

	I Project Description
	Present situation
	Code description

	Problem description
	Possible solution

	II Final solution
	Check orientation
	Rotate elements
	Rotate indices and faces
	Examples

	III Project Testing
	Geometry
	Block sizes
	Faces
	Indices
	Running a simulation

	IV mlab
	V Encountered problems
	VI New file
	VII output file
	VIII VRML file

