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Abstract

This thesis describes a measurement of the time dependent decay rate asym-
metry in B0 → J/ψKS decays with the 2010 LHCb data sample. The found
value for S is 0.881+0.334

−0.301, which is compatible with the current world average.
A Monte Carlo study has been performed to investigate the lifetime resolution
model. Furthermore two Goodness-of-Fit tests applied to the analysis gave a
statistical significance of p = 0.477 and p = 0.812.
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CHAPTER 1
Introduction

Particle physics tries to answer the question what our world is fundamentally made
of. In the current view everything around us is a big ocean of tiny particles which are
interconnected through four fundamental forces, namely gravity, electromagnetism
and the weak and strong nuclear forces.

All matter is made out of 17 different elementary particles: 6 leptons, 6 quarks,
and 5 bosons1. They are schematically shown in figure 4 together with their inter-
actions. The model which describes the interactions that these particles undergo is
called the Standard Model. It is a local Lagrangian field theory that describes the
electromagnetic, weak and strong nuclear interactions [14].

Because gravity is not incorporated we know that the Standard Model is not
a complete picture. But since its finalization in the mid 1970s it has withstood
considerable experimental testing and accurately predicted the existence and prop-
erties of new particles that were not yet observed. Among others, it predicted the Z
and W boson particles, which were first observed at the UA1 and UA2 experiments
at CERN in 1983.

One of the big puzzles in particles physics is the question why there is such
a big asymmetry in matter and anti-matter. The whole visible universe seems
to be dominated by matter. To generate the current matter abundance, one of
the requirements is that the combined symmetry of charge conjugation and space
inversion, called CP, must be violated.

The LHCb experiment is one of the four main experiments situated at the Large
Hadron Collider at CERN, which is depicted in figure 1.2. Its main purpose is to
study this before mentioned CP-violation and weak interactions in the B-meson
system, and to measure the branching ratios of rare B-decays.

1Technically there are 51 different particles when counting antiparticles and color charge.
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Figure 1.1: Quarks carry electric charge, weak isospin, and color charge. Because
of this they interact respectively through the electromagnetic, the weak nuclear
force, and the strong nuclear force. The leptons don’t carry any color charge.
Furthermore the three neutrinos do not carry electric charge either, so their motion
is directly influenced only by the weak nuclear force, which makes them difficult to
detect. The W and Z bosons are the force carriers for the weak interaction, photons
for the electromagnetic, and gluons for the strong interaction. The Higgs boson
plays a unique role in the Standard Model, by explaining why the other elementary
particles, except the photon and gluon, are massive. The illustrious Higgs boson
has not been observed yet, at least at the moment of writing.

One of the decays that LHCb measures is B0 → J/ψKS . This channel is often
named the gold-plated mode for the measurement of time-dependent CP violation
in the B0 system. It has a relatively large branching fraction and readily accessible
final states with small backgrounds and is theoretically clean. My analysis on CP
violation will be done by investigating these decays.

1.1 Outline of thesis

The starting point of this analysis, chapter 2, will give a brief overview of the
formalism to describe CP violation in B0 → J/ψKS decays in the Standard Model.

In chapter 3 a short outline of the LHCb detector measured these decays is



1.1. OUTLINE OF THESIS 5

LINAC 2

Gran Sasso

North Area

LINAC 3
Ions

East Area

TI2
TI8

TT41TT40

CTF3

TT2

TT10

TT60

e–

ALICE

ATLAS

LHCb

CMS

CNGS

neutrinos

neutrons

pp

SPS

ISOLDEBOOSTER
AD

LEIR

n-ToF

LHC

PS

Figure 1.2: The Large Hadron Collider is the world’s largest and highest-energy
particle accelerator. The LHC lies in a tunnel 27 kilometers in circumference, as
deep as 175 metres beneath the Franco-Swiss border near Geneva, Switzerland.
This synchrotron is designed to collide opposing particle beams of either protons at
an energy of 7 TeV

given. Also the used reconstruction and simulation software is described.
To extract the relevant physical parameters from the data collected with the

LHCb detector, a maximum likelihood fit is performed. A detailed description of
the used model, a probability density function, is given in chapter 4.

In this thesis an emphasis is given on the time resolution of the detector. A
method was used to extract the resolution from the data. This method was validated



6 CHAPTER 1. INTRODUCTION

by applying this method to simulated events to estimate systematic uncertainties.
This can be found in chapter 5.

To check the consistency of the fit, studies of the pull and error distributions
have been done in chapter 6.

In chapter 7 a complete fit to the 2010 LHCb data has been performed. The
found value of the CP violating parameter turned out to be in agreement with the
current world average.

In the last chapter, two unbinned Goodness-of-Fit tests have been performed.
The found statistical significances of p = 0.477 and p = 0.812 suggest that applied
model does indeed correctly describe the data.



CHAPTER 2
B meson analysis

One of the most fundamental principles in physics is the connection between con-
servation laws and symmetries of nature. In particle physics certain discrete sym-
metries are found to be broken in physical interactions. The relevant discrete sym-
metries are:

� C : charge conjugation changes the sign of all additive quantum numbers.
With specific reference to the decay of a sub-atomic particle, charge conjuga-
tion consists of swapping every particle in the decay for its antiparticle.

� P : the parity operation is the same as space inversion. It is the operation of
reversing the direction of all three space coordinates.

� T : the time reversal operator reverses the direction of motion by reflection
in the time axis.

The combined CP-symmetry was proposed as the true symmetry between matter
and antimatter after the discovery of parity violation in the weak interaction. In
that scenario a process in which all particles are replaced by their antiparticles
would be the same as the mirror image of the original process. However, this
symmetry turned out to be violated as well and can be seen in the measurements
of B0 → J/ψKS .

Although each of these three discrete symmetries is broken in weak interactions,
the combined symmetry CPT is an exact symmetry in any local Lagrangian field
theory.

7
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2.1 The CKM matrix

The charged weak interaction is the only process in the standard model that does
not conserve flavour. It can transform one type of quark into another one. Further-
more, there is mixing between the quark families. This is caused by the interaction
eigenstates being different from the flavour eigenstates. The weak force couples to
the pairs (

u
d′

)
,

(
c
s′

)
and

(
t
b′

)
with d′, s′ and b′ linear combinations of mass eigenstates d, s and b.d′s′

b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b


The matrix above that holds the coupling for the nine quark transitions is called

the Cabibbo-Kobayashi-Maskawa matrix. From the unitarity of the CKM matrix,
it follows that it contains four free parameters: three real and one complex phase.

A popular representation is the Wolfenstein parametrization, in which the mag-
nitude of the couplings is readily seen. The parameter λ ≈ 0.23 and A, ρ, η are of
order unity.

VCKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

Another instructive way is to make use of the angles:

β ≡ arg

[
−
VtdV

∗
tb

VudV
∗
ub

]
, γ ≡ arg

[
−
VudV

∗
ub

VcdV
∗
cb

]
and βs ≡ arg

[
−
VtsV

∗
tb

VcsV ∗cb

]
.

Any phase added to a specific quark cancels out, which make these definitions
convention independent. Using the Wolfenstein phase convention the CKM can be
written as

VCKM =

 |Vud| |Vus| |Vub|e−iγ
−|Vcd| |Vcs| |Vcb|
|Vtd|e−iβ −|Vts|eiβs |Vtb|

+O(λ5)

Later on in this chapter it is shown that the angle β is responsible for CP violation
in B0 → J/ψKS .
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Figure 2.1: One of the flavour changing currents in the weak interaction, and its
CP mirror image. The transition from a bottom quark to an up quark yields the
factor Vub in computation of the Feynman diagram. For the CP conjugate process,
the factor is V ∗ub.

2.2 Mixing

The neutral B mesons are produced at the LHC in the flavour eigenstates

B0 = (b, d), and B0 = (b, d)

The B0 can turn into its antiparticle B
0
, and vice versa,

B0 ↔ B0

through a second-order weak interaction, as seen in figure 2.2. As a result, the

Figure 2.2: The dominant Feynman diagrams contributing to the mixing B0 ↔ B0.
The diagram with the top quark are the main contributors because of its high mass.

particles we observe in the laboratory are not B0 and B0, but rather some linear
combination of the two,

Ψ(t) = a(t)|B0〉+ b(t)|B0〉.
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The time evolution of this B0 system is described by an effective Hamiltonian,

i
∂

∂t
Ψ = HΨ.

The matrix H can be written as the sum of two Hermitian matrices M and Γ,

H = M − i

2
Γ.

CPT invariance implies
〈B0|H|B0〉 = 〈B0|H|B0〉,

which gives the extra constraints m11 = m22 and Γ11 = Γ22.

M =

[
m m12

m∗12 m

]
and Γ =

[
Γ Γ12

Γ∗12 Γ

]
.

The off-diagonal terms m12 and Γ12 couple the two quantum states of our system.
The term m12 describes B0 ↔ B0 via virtual states, from which the box diagram
in figure 2.2 is the dominant contributor. The term Γ12 describes the transition via
real states, e.g. B0 → π0π0 → B0, which turns out to be negligible.

Notice that H itself is not Hermitian. The non Hermitian part describes the
leaking out and into the subspace spanned by B0 and B0.

d

dt
(|a|2 + |b|2) =

∂|Ψ|2

∂t
=
∂Ψ�

∂t
Ψ + Ψ�∂Ψ

∂t
= iΨ�(H� −H)Ψ = −Ψ�ΓΨ

Calculating the eigenvalues of H gives

λH,L = m− i

2
Γ±

√
(m12 −

i

2
Γ12)(m∗12 −

i

2
Γ∗12)

If we define the real part of the root term above ∆m/2 and the imaginary part
∆Γ/4, the eigenvalues can be nicely written as

λH,L =

(
m± ∆m

2

)
− i

2

(
Γ± ∆Γ

2

)
.

So ∆m and ∆Γ are the mass and lifetime difference between the two interaction
eigenstates in the weak interaction. Writing the corresponding eigenstates as

|BL,H〉 = p|B0〉 ± q|B0〉

we find p and q by solving

H

[
p
±q

]
= λL,H

[
p
±q

]
,
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which gives

q

p
=

√
m∗12 − iΓ∗12/2

m12 − iΓ12/2

In the case that | qp | 6= 1 we would have what is called CP violation in mixing, which
has been observed in the neutral kaon system. It is a result of the mass eigenstates
being different from the CP eigenstates. Doing some algebra, one can find that∣∣∣∣qp

∣∣∣∣ = 4

√
1− r sinφ+ r2

1 + r sinφ+ r2
, r ≡

∣∣∣∣ Γ12

m12

∣∣∣∣ , φ ≡ arg (Γ12)− arg (m12)

From theoretical calculations it is known that r � 1, see [6]. The Taylor expansion
is given by ∣∣∣∣qp

∣∣∣∣ = 1− 1

2
r sinφ+O(r2) ≈ 1.

So CP violation in mixing is expected to be small in the B0 system. Furthermore
the measured lifetime difference is very small [5],

∆Γ

Γ
= −0.008± 0.037,

and it will be set to zero to simplify the equations. Now that we found the eigenstates
and eigenvectors, we know the time evolution of our system.

|BH(t)〉 = |BH〉e−i(m+ 1
2

∆m)te−
1
2

Γt

|BL(t)〉 = |BL〉e−i(m−
1
2

∆m)te−
1
2

Γt

2.3 Decay rate asymmetry

Because the neutral B mesons are produced in their flavour eigenstates, the time
evolution has to be written in terms of them. For a particle created as a B0 at
t = 0,

|B0(t)〉 =
1

2p
|BL〉e−iλLt +

1

2p
|BH〉e−iλH t

=
1

2p

(
p|B0〉+ q|B0〉

)
e−iλLt +

1

2p

(
p|B0〉 − q|B0〉

)
e−iλH t

=
1

2
|B0〉

(
e−iλLt + e−iλH t

)
+

q

2p
|B0〉

(
e−iλLt − e−iλH t

)
= e−imte−

Γ
2
t

{
|B0〉 cos (∆mt/2) + i

q

p
|B0〉 sin (∆mt/2)

}
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The amplitude for a decay to a state f , at time t is given by

AB0(t)→f (t) = 〈f |T |B0(t)〉

= e−imte−
Γ
2
t

{
〈f |T |B0〉 cos (∆mt/2) + i

q

p
〈f |T |B0〉 sin (∆mt/2)

}
= e−imte−

Γ
2
t

{
AB0→f cos (∆mt/2) + i

q

p
A
B0→f sin (∆mt/2)

}
= e−imte−

Γ
2
tAB0→f {cos (∆mt/2) + iλ sin (∆mt/2)}

In the last step we introduced the convenient parameter

λ ≡ q

p

A
B0→f

AB0→f
.

We find the time dependent decay rate by squaring the above expression

ΓB0(t)→f = |AB0(t)→f |2

= eΓt
∣∣AB0→f

∣∣2 |cos (∆mt/2) + iλ sin (∆mt/2)|2

= eΓt
∣∣AB0→f

∣∣2 {cos2 (∆mt/2) + |λ|2 sin2 (∆mt/2) + i(λ− λ∗) sin (∆mt)}

=
eΓt

2

∣∣AB0→f
∣∣2 {1 + |λ|2 + (1− |λ|2) cos (∆mt)− 2=λ sin (∆mt)

}
=
eΓt

2
(1 + |λ|2)

∣∣AB0→f
∣∣2 {1 + C cos (∆mt)− S sin (∆mt)}

In the last step we introduced two other convenient parameters,

C ≡ 1− |λ|2

1 + |λ|2
and S ≡ 2=(λ)

1 + |λ|2
.

Doing the same calculation for the B0 yields

|B0(t)〉 =
1

2q
|BL〉e−iλLt −

1

2q
|BH〉e−iλH t

=
1

2q

(
p|B0〉+ q|B0〉

)
e−iλLt − 1

2q

(
p|B0〉 − q|B0〉

)
e−iλH t

=
1

2
|B0〉

(
e−iλLt + e−iλH t

)
+

p

2q
|B0〉

(
e−iλLt − e−iλH t

)
= e−imte−

Γ
2
t

{
|B0〉 cos (∆mt/2) + i

p

q
|B0〉 sin (∆mt/2)

}
.
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The time dependent amplitude to the same state f as before is given by

A
B0(t)→f = 〈f |T |B0(t)〉

= e−imte−
Γ
2
t

{
〈f |T |B0〉 cos (∆mt/2) + i

p

q
〈f |T |B0〉 sin (∆mt/2)

}
= e−imte−

Γ
2
t p

q
AB0→f {λ cos (∆mt/2) + i sin (∆mt/2)} .

By again squaring the amplitude we find the decay rate,

Γ
B0(t)→f = eΓt

∣∣∣∣pq
∣∣∣∣2 ∣∣AB0→f

∣∣2 |λ cos (∆mt/2) + i sin (∆mt/2)|2

= eΓt

∣∣∣∣pq
∣∣∣∣2 ∣∣AB0→f

∣∣2 (|λ|2 cos2 (∆mt/2) + sin2 (∆mt/2) + i(λ∗ − λ) sin (∆mt/2)
)

=
eΓt

2

∣∣∣∣pq
∣∣∣∣2 ∣∣AB0→f

∣∣2 (1 + |λ|2 − (1− |λ|2) cos ∆mt+ 2=λ sin ∆mt
)

=
eΓt

2

∣∣∣∣pq
∣∣∣∣2 (1 + |λ|2)

∣∣AB0→f
∣∣2 (1− C cos ∆mt+ S sin ∆mt) .

If we take into account that |p| ≈ |q|, the time dependent decay rate asymmetry is
given by:

ACP (t) =
Γ
B0(t)→f − ΓB0(t)→f

Γ
B0(t)→f + ΓB0(t)→f

= S sin (∆mt)− C cos (∆mt).

So the problem of finding CP violation in the decay modes of the B0 system is now
reduced to determining the characteristic variable λ.
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2.4 B0 → J/ψKS

A well known case is the asymmetry in the decay B0 → J/ψKS where the B0 can
either directly decay to J/ψKS or oscillate to B0 and then decay to J/ψKS . This
interference between the mixed and unmixed decay amplitudes causes a CP violating
asymmetry, the measurement of which was the first observation of CP violation in
the B meson system.

Figure 2.3: The dominant Feynman diagrams for B0 → J/ψK0 and B
0 → J/ψK

0
.

The produced kaons oscillate between K0 ↔ K
0
. The weak eigenstates are KL and

KS , in analogy with BH and BL.

The B0 → J/ψKS mode is often named the gold-plated mode. It has a relatively
large branching fraction and readily accessible final states with small backgrounds
and is theoretically clean.

Figure 2.4: The dominant Penguin diagrams.

If we take the Penguin diagrams of figure 2.4 into consideration, the total am-
plitude is given by

A
B

0→J/ψK0
= VcbV

∗
csT + VtbV

∗
tsPs + VcbV

∗
csPc + VubV

∗
usPu,

where T and Pj stands for the three and Penguin amplitudes. Using the unitarity
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condition of the CKM matrix, this can be written as

A
B

0→J/ψK0
= VcbV

∗
cs(T + Pc − Pt)︸ ︷︷ ︸
O(λ2)

+VubV
∗
us(Pu − Pt)︸ ︷︷ ︸
O(λ4)

So the Penguin diagrams with a different weak phase than the tree diagrams are sup-
pressed. This implies that there is no direct CP violation in decay, e.g. |AB0→f | =
|A

B0→f |. It simplifies the decay rate asymmetry even further by making |λ| = 1
and consequently C = 0.

ACP(t) = S sin (∆mt).

So this leaves us with determining the characteristic parameter λ. According to [7]
it is given:

λ =
q

p

A
B0→J/ψKS

AB0→J/ψKS
= −

(
q

p

)
B0

(
A
B0→J/ψK0

AB0→J/ψK0

)(
p

q

)
K0

The factor −1 accounts for the the final state J/ψKS being CP-odd and the addi-
tional (pq ) for the mixing of the kaons. From the box diagram of the B0 mixing we
can see that m12 ∝ V ∗tbVtdV ∗tbVtd and thus(

q

p

)
B0

=
V ∗tbVtd
VtbV

∗
td

.

Doing the same thing for the K0 mixing gives(
p

q

)
K0

=
VcsV

∗
cd

V ∗csVcd
.

By inspecting the Feynman diagrams of figure 2.3, we see that the ratio of the decay
amplitudes is given by (

A
B0→J/ψK0

AB0→J/ψK0

)
=
VcbV

∗
cs

V ∗cbVcs

Multiplying everything gives

λ = −V tbVtdVcbV cd

VtbV tdV cbVcd
= −e−2iβ

with β the angle defined in section 2.1. This gives

S = =(λ) = −={cos (2β)− i sin (2β)} = sin (2β).

The standard model value of S = 0.830+0.013
−0.033, according to a global analysis of

measurements [15] which excludes its direct measurement.
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In order to measure this asymmetry, two important ingredients are needed.
Namely the resolution of the decay-time and the original flavour of the B meson.
The uncertainties of these quantities will introduce a dilution on our signal, which
will be discussed in section 3.1 and 5.2. It is given by

Aobserved
CP (t) = Dflavour ·Dresolution · sin (2β) sin (∆mt)

= (1− 2ω) · e−
1
2

∆m2σ2
t · sin (2β) sin (∆mt),

with ω the mistag prediction and σt the width of the time resolution.
So in order to measure sin (2β) correctly, these two contributions need to be

taken into consideration. In this thesis special attention is given to the dilution
from the time resolution, although its effect is actually small in B0 → J/ψKS .
In the Bs-system, where the mixing frequency ∆m is much larger, it will play an
important role.

In figure 2.5 this asymmetry in a 2010 Monte Carlo data-sample is shown.

t (ps)
0 1 2 3 4 5 6 7 8 9 10

C
P

A

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2.5: The time dependent CP asymmetry in B0 → J/ψKS from a MC10
sample with 72041 signal events. The dashed red curve is the p.d.f. overlaid to the
data points. The blue bland corresponds to the one standard deviation statistical
error. The observed amplitude is much smaller than S. This is caused by the
dilution from incorrect tagging and the finite time resolution.



CHAPTER 3
LHCb detector and data set

The B0’s are produced at the interaction point of the proton collision, the primary
vertex. A small fraction of these B mesons decay to J/ψK0. These daughter
particles themselves also decay. The branching modes that are of interest are J/ψ →
µ+µ− and Ks → π+π−. It are the tracks of these pions and muons that are
actually measured in the LHCb detector and from them the B0, Ks and J/ψ are
reconstructed, see figure 3.3.

Figure 3.1: An artist impression of the topology of J/ψKS . The typical decay
lengths are given by l = vt = vγτ = p

mτ .

The LHCb detector, which is shown in figure 3.2, is a forward spectrometer. It
has a polar angle coverage with respect to the beam line of approximately 15 to
300 mrad in the horizontal bending plane, and 15 to 250 mrad in the vertical non

17
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bending plane. It has the following features:

VELO
The vertex locator is built around the proton interaction region. It is used to mea-
sure the particle trajectories close to the interaction point in order to precisely
separate primary and secondary vertices.

RICH-1
The ring imaging Cherenkov detector is located directly after the vertex detector.
It is used for particle identification of low-momentum tracks by measuring their
velocity.

Main Tracker
The Main tracker consists of three parts.

� The Tracker Turicensis, a silicon strip detector located before the LHCb dipole
magnet.

� The Outer Tracker. A straw-tube based detector located after the dipole
magnet covering the outer part of the detector

� The Inner Tracker, silicon strip based detector located after the dipole magnet
covering the inner part of the detector acceptance

RICH-2
Following the tracking system is RICH-2. It allows the identification of the particle
type of high-momentum tracks.

ECAL
The electromagnetic and hadronic calorimeters provide measurement of the energy
of electrons, photons, and hadrons. These measurements are used at trigger level
to identify the particles with high transverse momentum.

Muon System
The muon system is used to identify and trigger on muons in the events.

Further details of the LHCb detector can be found in [2]. The used data sample
from 2010 has an integrated luminosity of L = 37pb−1, an estimate of the yield N
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of B0 → J/ψ(µ+µ−)Ks(π
+π) is given by

NB0→J/ψ(µ+µ−)Ks(π+π) = L × 2× σbb × fb→B0

× BRB0→J/ψK0 ××BRK0→KSBRJ/ψ→µ+µ− × BRKs→π+π

= 37 pb−1 · 2 · 280µb · 0.4 · 9� · 1

2
· 6% · 70%

= 0.16M.

The overall efficiency of detecting these particles is around 1 %, so we expect the
number of signal events to be of the order 1000.

Figure 3.2: The LHCb detector and its components.

By cutting on measurement variables, the background is reduced to make the
size of the data-sample manageable. These cuts are listed in table 3.1 and 3.2.

3.1 Flavour tagging

Flavour tagging determines whether the selected neutral B meson was born with
a b or a b quark. It is an essential part of the analysis. Without it one could
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Figure 3.3: The invariant mass distribution of the reconstructed J/ψ and Ks can-
didate.

variable cut value

χ2 of both µ tracks <5
χ2 of the J/ψ vertex <16
window around J/ψ mass <80 MeV
DLL of both µ >0

Table 3.1: Stripping cuts to select the J/ψ. DLL is the difference in the log likeli-
hoods of the particle being muon or a pion.

variable cut value

pT of the Ks >1 GeV
Decay length significance of the Ks > 5
Momentum of both reconstructed π’s >2 GeV
IP significance of the downstream π with respect to the PV >4
IP significance of the long π with respect to the PV >9
χ2 of the Ks vertex <20
mass window around Ks formed with downstream π <64 MeV
mass window around Ks formed with long π <35 MeV

Table 3.2: Stripping cuts to select the Ks. A long π’s track starts at VELO. A
downstream π’s track originates from the TT and thus less accurate.
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not distinguish between their decay rates and thus not observe any CP asymmetry
altogether.

The observed CP asymmetry is diluted by the fraction of events that is wrongly
tagged ω.

ACP,obs(t) =
Γ
B0,obs

− ΓB0,obs

Γ
B0obs

+ ΓB0,obs

=
(1− ω)Γ

B0 + ωΓB0 − ωΓ
B0 − (1− ω)ΓB0

(1− ω)Γ
B0 + ωΓB0 + ωΓ

B0 + (1− ω)ΓB0

= (1− 2ω)ACP

There are two strategies to determine the flavour of the B meson: opposite-side
and same-side tagging.

In same-side tagging the flavour of the signal B meson is measured directly.
When a B0(bd) is created in a pp collision an d becomes available in the fragmenta-
tion process. In case the d hadronises into a π+(du), the positive charge of the pion
reveals the flavour of the B0 meson. This method suffer from the high abundance
of pions in the detector, and is not used for this analysis.

In opposite-tagging the flavour of the other B meson is measured to determine
the flavour of the signal B meson. This can be done by measuring the charge of the
lepton in semileptonic decays, the charge of the kaon in b → c → s transitions or
the charge of the inclusive secondary vertex reconstructed from b decay products.
This method suffers from the problem that opposite meson also oscillates, and the
wrong initial flavour can be determined.

To calibrate the mistag probabilities the B+ → J/ψK+ control channel is used.
Because the charge of B meson reveals its flavour, the measured and calculated
mistag prediction can be compared to extract a correction function. More informa-
tion on the flavour tagging can be found in [3].

3.2 Reconstruction software.

The analysis in this thesis is done with two types of data, simulated data based
on Monte Carlo techniques and real data measured in the LHCb detector. Both
these samples are treated equivalently. The same reconstruction program used to
reconstruct particles in real data will be used for the MC data.

The LHCb software makes use of the C++ framework of Gaudi [9]. Within this
framework there are several applications that take care of the different tasks such
as event generation, detector simulation, and reconstruction.

Generation of particles.
The collision of the protons is simulated by the the external program Pythia [10].
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As output it gives the four-momentum of the created particles. For the handling of
the physics of B decays another external program called EvtGen [11] is used. Both
programs are steered by the Gaudi application known as Gauss.

Interaction with the detector.
The next part of the simulation deals with the generated particles passing through
the LHCb detector. This step is done by Geant4 toolkit [12], from which an event
display can be seen in figure 3.4. It takes care of the interaction with the matter of
the detector, the bending of charged particles in the magnetic field, and the decay
of the remaining particles.

VELO

RICH 1 TT

T1 T2 T3

Magnet

Figure 3.4: Geant event display showing the trajectories of the charged particles in
the tracking system of LHCb.

Digitization of the data.
The next step is simulating the signal response of the sensors in the detector. This
part of the simulation is done by the program Boole [13]. This response depends
on physical processes like the production of electrons in a drift tube, or the specific
behavior of the electronics. After this step there isn’t a difference between the real
raw data and the Monte Carlo simulated one.
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Track reconstruction.
The last part is the track reconstruction. The hits from different sub-detectors are
combined to find the trajectories of charged (meta-) stable particles namely pions,
kaons, protons, muons, and electrons. Because there are a large amount of tracks
in a typical event, statistical methods are used to obtain the best estimates for the
track parameters. These are then used in the physics analysis to locate the primary
and secondary vertices, and to calculate the invariant mass of particle combinations.





CHAPTER 4
Description of the used model

Statistical methods are needed in order to extract meaningful information from
experimental data. A useful and often employed tool is a maximum likelihood
fit. In this case a probability density function (pdf) is fitted to a distribution of
observables which it is suppose to describe.

Given a sample space that holds the possible values that x can have, the prob-
ability to observe a value within the interval [a, b] is given by the pdf P is

Pr (a ≤ x ≤ b) =

b∫
a

P(x)dx.

The objective is to model the distribution of a set of observables {~xi} in terms of a
number of parameters ~α. These parameters can originate from the standard model,
like sin(2β), or they can describe detector effects like the mass resolution σm.

4.1 Extended likelihood fit

A pdf has a probability density for each data-point ~xi and parameter values ~α,

Pi(xi; ~α).

The likelihood function gives a measure of the likelihood of the data-points by taking
the product of these values,

L ≡
N∏
i

Pi(~xi; ~α).

In a maximum likelihood fit, the values of the parameters ~α are chosen to obtain
the highest value for L and thus best describing the data-set given a certain P.

25
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Because it is generally easier in algorithms to add than to multiply, lnL is often
used.

lnL = ln
N∑
i

Pi(~xi; ~α)

Often in data analysis one wants to determine the amount of signal and background
in a data sample through a fit. The easiest approach is to define the composite pdf
P made from a signal component S and a background component B:

P(x) = fS(x) + (1− f)B(x)

Here f is the signal fraction, so P is automatically normalized to one.
Often one is interested in the number of signal and background events, not the

fraction. In that case it is easier to construct the pdf as

P(x) = µSS(x) + µBB(x).

Now we use µS and µB, the expected number of signal and background events. By
treating the number of observed events N as an observable, its error is automatically
propagated. This is done by adding a Poisson term.

L =
e−(µS+µB)(µS + µB)N

N !

N∏
i

[
µS

µS + µB
S(xi) +

µB
µS + µB

B(xi)

]

=
e−(µS+µB)

N !

N∏
i

[µSS(xi) + µBB(xi)]

Giving rise to the log likelihood function

lnL = −µS − µB − lnN ! +
N∑
i

[µSS(xi) + µBB(xi)]

The term lnN ! is irrelevant because it will not change by varying the values of the
parameters.

4.2 Parametrization

Our B0 candidate is characterized by five observables,

~x = {m, t, σt, d, ω},

namely a mass m, a lifetime t, a lifetime error σt, a discrete initial flavour d and a
mistag prediction ω.
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The probability density function which has to predict the distribution of these
observables, consists of four parts. It has a part for tagged and untagged events,
which each a signal and background component.

Mass
The measured mass for signal events is modeled as a Gaussian with mean mm and
width σm,

Msig(m;mm, σm) ∝ e
−(m−mm)2

2σ2
m .

The mass distribution for the background events is modeled as an exponential func-
tion with slope αm,

Mbkg(m;αm) ∝ eαmm.

Lifetime
The lifetime of a B0 is reconstructed as

t =
ml

p

with m the mass of the meson, p its momentum and l the distance between the
primary and secondary vertex. The model that describes the distribution of these
measured lifetimes t is made out of three components.

First the actual distribution of the lifetimes is needed. For this the decay rates
from section 1 are taken, with the lifetime τ = 1

Γ and initial flavour d = 1 for a

B0 and d = −1 for a B
0
. Furthermore the conditional observable ω is introduced,

which is the per event mistag probability.

Tsig,tagged(t, d; τ,∆m|ω) ∝ e−t/τ {1− d[1− 2ω]S sin (∆mt) + d[1− 2ω]C cos (∆mt)} .

A large component of the data-set consist of untagged events that have no informa-

tion whether our meson is more likely to be born as a B0 or as a B
0
. In this case

d = 0 and ω = 1
2 and the signal component of the pdf reduces to

Tsig,untagged(t; τ) ∝ e−t/τ .

Second there is a part that needs to account for the background in the measured
signal. Most of the background contribution is coming from prompt events. These
are random combinations of reconstructed particles originating from the primary
vertex. Often a B0 candidate was actually a J/ψ and a KS that were created at the
proton interaction point who happen to have the invariant mass of a B0. Because
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there is no secondary vertex in this case t = l = 0. This contribution is modeled as
delta function δ(t).

A substantial fraction of the background events come from long-lived decays.
Since the tracks from J/ψ are recreated from muons, semi-leptonic B and D decays
contribute to the ’long-lived’ background, and so do incompletely reconstructed
B0 → J/ψ decays.

Tbkg(t; τml, τll, fml, fll) ∝ (1− fml − fll)δ(t) + fmle
−t/τml + flle

−t/τll

Third, a resolution model is needed. It accounts for the difference of the actual
lifetime (which can be signal or background) and the reconstructed value. It is
being modeled as a triple Gaussian, which uses a predicted error on the lifetime σt
as a conditional observable.

R(t; tm, s1, s2, f1, f2|σt) =

3∑
i=1

fiG(t, tm, si · σt),

with the fractions adding up to 1,

3∑
i=1

fi = 1.

The resolution model is convolved with the true proper time distribution to obtain
the observed proper time distribution, which will be discussed further next section.

Total pdf
Assuming that the mass and lifetime pdfs factorize, the two total pdfs that will be
simultaneously fitted can be written as

Ptagged(~x; ~α) = Nsig,tMsigTsig,tagged ⊗R+Nbkg,tMbkgTbkg ⊗R
Puntagged(~x; ~α) = Nsig,uMsigTsig,untagged ⊗R+Nbkg,uMbkgTbkg ⊗R

with the the five observables

~x = {m, t, d, σt, ω}

and the twenty one parameters

~α = {mm, σm, αm, τ,∆m,ω, S,C, τml, τll, fml, tm, σ1, σ2, σ3, f1, f2, Nsig,t, Nbkg,t, Nsig,u, Nbkg,u}.

Of these parameters, the actual physics parameters are abstracted aremm, τ, S and C.
The mixing frequency ∆m is put constant at 0.507ps−1 because it can be measured
better in other decays.



CHAPTER 5
Calibration of the resolution

model

The measured decay time t differs from the true time t′, due to the finite experi-
mental resolution of the detector. The distribution of these errors is described by
the so-called resolution model and denoted by

R(t− t′).

It is assumed that t′ and t− t′ are independent, e.g. knowing the lifetime does not
change the probability for a certain error and vice versa. Their corresponding pdf’s
then factorize,

P(t′|t− t′) = T (t′) · R(t− t′).

Because the experimenter has no direct access to t′, this variable has to be integrated
out. Leaving the pdf P that solely depends on the observed time t.

P(t) =

∞∫
∞

T (t′) · R(t− t′) dt′

= (T ⊗R)(t).

So the lifetime pdf turns out to be a convolution of the true lifetime distribution
T (t) and the resolution model R(t). The finite resolution leads to a dilution on the
measured asymmetry. So consequently, accurate knowledge of R(t) is required.

The effect of the resolution model on the signal part of the pdf can be seen in
figure 5.2. As can be seen, the region where the resolution model can be extracted
from data lies around zero lifetimes. This region however is totally dominated by

29
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Figure 5.1: The effect of the resolution model on Tsig(t)

prompt events. So the model is effectively being calibrated on these prompt events.
The shape of the prompt peak actually reveals the resolution function,

TP(t)⊗R(t) =

∞∫
∞

δ(t′) · R(t− t′) dt′ = R(t).

A Monte Carlo study, reported in section 5.3, will shed light on the question if the
resolution model is indeed comparable for the prompt and signal component.

5.1 Parametrization

A Gaussian measurement uncertainty on each lifetime t is modeled by

P(t) = T (t)⊗ G(t, µ, σ).

The width σ stands for the experimental resolution and the mean µ for the average
bias.

The uncertainties in the vertex reconstruction and the momentum measurement
give an error in the lifetime that differs from event to event. In first order it is given
by

σt(t) ≈

√(
∆l
∂t

∂l

)2

+

(
∆p

∂t

∂p

)2

= t

√(
∆l

l

)2

+

(
∆p

p

)2
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Through assigning an experimental error σt to every measured value t, the statistical
power of the model can be improved by

P(t) = T (t)⊗ G(t, µ, s · σt).

Events with the same t but a smaller σt will carry more information, because it will
contribute more the total likelihood value.

The parameter s serves as a scale factor. If the error estimate σt is correct on
average, a fit on data will return s = 1.

(ps)
t
σ

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

200

400
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800

1000

Figure 5.2: The distribution of the per event error σt in the 2010 LHCb data.

It turns out that to correctly describe the resolution model for B0 → J/ψKS ,
three Gaussians are needed

R(t) =
3∑
i=1

fiG(t, tm, siσt),

The parameters of the resolution model are strongly correlated, e.g. a wider Gaus-
sian can be accomplished a higher fx or sx. To compare the fitted values, the overall
scale factor of the two smallest Gaussians are taken,

score(f1, f2, s1, s2) =

√
f1s1

2 + f2s2
2

f1 + f2
.

Which can be written in easier notation as

score(~x) =

√
x1x3

2 + x2x4
2

x1 + x2
.
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The standard deviation of score, which will denote the error, is given by

serr =

√√√√ 4∑
i,j=1

[
∂score

∂xi

∂score

∂xj

]
Vij .

with Vij the covariance matrix of the parameters f1, f2, s1 and s2.

5.2 Dilution

The convolution theorem states that Fourier Transform (FT) of the convolution of
two functions equals the products of the FT of these functions. So

FT{T ⊗R}(ν) =
√

2π FT{T }(ν)× FT{R}(ν)

The Fourier transform of the resolution model is given by

FT{R}(ν) =
1√
2π

3∑
i=1

fie
− 1

2
(siσt)

2ν2
.

So the dilution to the amplitude of oscillation of frequency ∆m, which is S in our
analysis, is given by

Dres =

3∑
i=1

fie
− 1

2
(siσt)

2∆m2
.

5.3 Monte Carlo study.

To verify that the resolution function extracted from the prompt background is
applicable to signal events, we compare the resolution on simulated data. The MC
samples used is of type MC10.

For the signal component a B0 → J/ψKS sample is taken that underwent the
same selection criteria as on the real data.

For the prompt component an inclusive J/ψ sample is used, with additional
requirements on the reconstructed J/ψ’s and KS ’s. We want them to be correctly
identified, they should not originate from a B0 and their vertici originate from the
same point.

In figure 5.3 the samples are compared by their error t − t′ and pull p = t−t′
σt

.
As can be seen the resolution models are in good correspondence with each other.

In figure 5.4 the predicted lifetime error σt dependency on the width of the time
resolution is shown. The assumption of a linear relation is quite reasonable. The
points that seem to deviate a bit have very low statistics and have a high lifetime
error to begin with.
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Figure 5.3: Comparison of the resolution of prompt MC (6074 events) and signal
MC (79090 events). The distributions have been scaled by their integrals to compare
their shapes. The two plots on the right show the width of the resolution model
and the pull as a function of their true time t′.

Furthermore, other various variables have been investigated1, three of which are
seen in figure 5.5. Although the distribution of these variables differ for the prompt
and signal component, their dependence on the width of the resolution is the same.

1see appendix B for more



34 CHAPTER 5. CALIBRATION OF THE RESOLUTION MODEL

 (ps)
t

σ
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

500

1000

1500

2000

2500

3000

3500
signal MC

prompt MC

 (ps)
t

σ
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

w
id

th
 o

f 
p

u
ll 

d
is

tr
ib

u
ti

o
n

0

0.5

1

1.5

2

2.5
signal MC

prompt MC

Figure 5.4: Resolution dependency of σt for prompt MC (6074 events) and signal
MC (79090 events).
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Figure 5.5: Comparison of the resolution dependencies of prompt MC (6074 events)
and signal MC (79090 events).
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To get a qualitative comparison, the root mean squared is calculated for the pull
distribution of signal and prompt MC of figure 5.3 on the interval −4 < p < 4. This
corresponds with 98.8 % of the signal events and 99.0% of the background events.
The found values are

score,sig = 1.2575± 0.0040

score,bkg = 1.2178± 0.014

Using the width of the core, the dilution is roughly given by

Dres,MC ≈ e−
1
2

(score·σt,avg)2∆m2
= e−

1
2

(1.258·0.035·0.507)2
= 1.00

So the time resolution is good enough that it doesn’t play a role in determining the
CP violation parameters in B0 → J/ψKS .

In other channels the resolution is of importance. In the analysis of Bs → J/ψφ
which has a similar resolution model, the dilution is estimated to be 0.68. This is
caused by the higher mixing frequency 17.8 ps−1 of the Bs system. Here the time
resolution limits the accuracy at which the oscillation can be measured.



CHAPTER 6
Validation of the fit.

As a test of the consistency of the fit, studies of the pull and error distributions
have been done. To do this toy samples have been generated with the the central
values of the parameters extracted from the fit to the full data sample, which are
reported in chapter 7.

The pull of S and C are compatible with a standard normal distribution1, as
can be seen figure 6.1 and 6.3.
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Figure 6.1: The pull distribution of S and C are compatible with a standard normal
distribution.

1The other parameters can be found in appendix B
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The distribution of the errors can be seen in figure 6.1 and 6.3. The found values
for the errors on S and C in the data (reported in chapter 7) are a bit on the low
end of the spectrum. They are within one standard deviation, so it is reasonable to
regard this a lucky statistical fluctuation.
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Figure 6.2: The error distribution of S and C. The vertical line indicates value of
the fit to real data, reported in section 7.
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Figure 6.3: The pull and error distribution of S, but this time with C fixed.

Note that the spread in the error is large. This is due the small number of
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tagged events which are consequently subjected to large fluctuations.





CHAPTER 7
Fit to 2010 data

The complete fit, described in section 2, was run on the 2010 data. It was done
both done with and without C fixed to zero. The

The fit results for the physics parameters are summarized in table 7.1.
Figure 7.1, 7.2 and 7.3 show the data and pdf projections on the reconstructed

mass and proper time. By using a logarithmic scale, the distribution over the entire
lifetime range is revealed. The prompt component of the data is displayed by using
a linear scale over the range t ∈ [−0.2; 0.2].

As can be seen, the data seems to be well described by our model. In section 8,
we will quantify this observation with the use of Goodness-of-Fit tests.
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Parameter Unit Floating C Fixed C

C 0.279+0.340
−0.337 0

S 0.720+0.394
−0.368 0.881+0.334

−0.301

mm MeV 5278.11± 0.34 5278.11± 0.34
ms MeV 8.77± 0.28 8.77± 0.28
τ ps 1.516± 0.056 1.517± 0.056

msl 1/MeV −0.0006256± 0.000089 −0.0006256± 0.000089
τll ps 1.01± 0.20 1.01± 0.19
τml ps 0.220± 0.034 0.220± 0.032
fll 0.0071± 0.0027 0.0071± 0.0026
fml 0.0369± 0.0031 0.0369± 0.0031
tm ps −0.000981± 0.00028 −0.000981± 0.00028
s1 0.732± 0.030 0.732± 0.029
s2 1.621± 0.046 1.621± 0.045
s3 6.38± 0.56 6.38± 0.55
f2 0.532± 0.034 0.532± 0.032
f3 0.0162± 0.0032 0.0162± 0.0031

Nbkg,t 2907± 54 2907± 54
Nbkg,u 21610± 148 21611± 148
Nsig,t 198± 16 198± 16
Nsig,u 761± 32 761± 32

Table 7.1: Fit results
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Figure 7.1: The distribution of the measured B lifetimes in 2010 data. The various
components of P are projected over it
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Figure 7.2: The distribution of the prompt component in the B lifetimes.
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Figure 7.3: The distribution of measured B masses.
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7.1 Systematic errors

In this section we investigate what qualitative effect the resolution model has on
the other fitted parameters. A second fit is done with the width of the resolution
model for the signal component scaled by the ratio found in the MC study α =
1.3512/1.275.

Rsig(t) =
3∑
i=1

fiG(t, tm, α · σidt)

As can be seen in table 7.2 this has no measurable effect. So therefore we can safely
conclude that using the same resolution model for signal and background events is
justified.

Parameter Unit Value

S −0.880± 0.32
mm MeV 5278.11± 0.34
ms MeV 8.77± 0.29
τ ps 762± 32

msl 1/MeV −0.0006256± 0.000089
τll ps 1.01± 0.20
τml ps 0.220± 0.035
fll 0.0071± 0.0028
fml 0.0368± 0.0031
tm ps −0.000994± 0.00029
s1 0.731± 0.026
s2 1.619± 0.037
s3 6.36± 0.52
f2 0.533± 0.028
f3 0.0163± 0.0029

Nbkg,t 2908± 54
Nbkg,u 21610± 148
Nsig,t 197± 15
Nsig,u 762± 32

Table 7.2: Fit result of using the scaled Rsig.

The third Gaussian of the resolution is there to justify the more unlikely events
in the data. As an alternative, a so-called ’garbage collector’ could be used. This
is a small constant component in the lifetime distribution, as can be seen in figure
7.4.
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Figure 7.4: Using a garbage collector in the lifetime pdf

The fit results of table 7.3 shows that this renders the third Gaussian obsolete,
without changing the values of the other fitted parameters. The physical argument
for such a function can be debated however.

Parameter Unit Value

tm ps −0.001122± 0.00037
s1 0.705± 0.052
s2 1.55± 0.12
s3 5± 10
f2 0.561± 0.057
f3 0.024± 0.019

Table 7.3: Fit results using a a garbage collector. The other fitted parameters did
not change from table 7.1.

Other systematic uncertainties have studied in detail in [4]. The total systematic
uncertainty on S is calculated to be 0.054. The correct initial flavour identification
of the neutral B meson gives the highest systematic error. It leads to additional
uncertainty on S of about 10 %. This uncertainty is dominated by the statistics in
the flavour tagging calibration channel.



CHAPTER 8
Goodness-of-Fit

In this analysis we want to determine the level of agreement between the fitted pdf
P and the 2010 LHCb data it should describe.

The plots of the previous section gave us an visual indication. In this section
we investigate two quantitative Goodness-of-Fit methods.

In both cases a test statistic T quantifies the agreement, where a larger value
means a bigger disagreement. By generating data-sets with P and running the
goodness-of-fit on them, the distribution of the test statistic g(T ) is determined.

From this distribution we find the probability p of obtaining a test statistic at
least as extreme as the one that was actually observed,

p =

∞∫
T

g(T ′)dT ′,

assuming that P describes the data. We reject P when p is less than a certain
significance level α, which in literature is often chosen to be 0.05 or 0.01.

In both methods we need to define distance in a multivariate space. The option
used is normalized Euclidean distance,

|~xi − ~xj |2 =

D∑
v=1

(
xi
v − xjv

wv

)2

,

with wv the appropriate normalization for the given dimension. The mass and time
are the only two continuous unconditional observables, so we are dealing with the
two dimensional case. The normalizations are chosen to be of the order of their
respective resolution widths, wm = 10 MeV and wt = 0.05 ps.
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8.1 Distance to Nearest Neighbor

In a region where P is larger, the events will be closer together on average. This
can be used to test the goodness of our fit. The uniformity Ui for the ith event in
the data consisting of n events is defined as

lnUi = −n
∫
Ai

P(~x) d~x.

The area of integration Ai is the circle given by

Ai = |~x− ~xi| < ri,

with ri the distance from the ith event to its nearest neighbor.
If we assume that the circle is sufficiently small so that P is approximately

constant in it, we can avoid having to do the integral. Then

lnUi ≈ −nπr2
i · P(~xi),

In case P is the parent of the data, the distribution of U is approximately
uniform.1 In figure 8.1 the uniformity distribution is shown.
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Figure 8.1: The uniformity distribution from the 2010 LHCb data is show in the
plot on the left. On the right the distribution from a generated toy.

1See Appendix A
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The test statistic T is chosen to be

T =
n∑
i

(U ′i − i/n)2

where {U ′i} is the ordered set of uniformity.
The distance to nearest neighbor method applied to the data gave a p = 0.812,

which suggests that P is correctly parametrized.
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Figure 8.2: With the distance to nearest neighbor method the test statistic T =
0.325. The number of toys that had worse agreement with this test are 812 out of
a 1000, giving p = 0.812.
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8.2 Local-Density Method

The local density of data-points in the data can be compared to the number pre-
dicted by P as a goodness of fit test.

The expected number of data-points ei in a circle of radius R centered at a
data-point with coordinates (ri, φi) is given by

ei = n

2π∫
0

R∫
0

f(r, φ)r drdφ

≈ πNR2f(ri, φi),

if we again assume that the region is small enough to consider P constant.
In the scatter plot of figure 8.3 we see that the discrepancy between the observed

and expected number of events becomes bigger for higher values of e. This is to
be expected because in regions where P is higher it also fluctuates more. The
assumption that P is constant is thus less accurate.

One way to damp this effect is to take e constant and vary the size of the circle
accordingly. Then in a region where the P changes more rapidly a smaller area is
taken. From the plot e = 40 seems to be reasonable, the smaller it is chosen the
bigger the bias on the observed events.

The test statistic is chosen to be the average normalized error,

T =
1

n

n∑
i=1

|oi − e|
e

.

An unlikely event can blow up the area and make a very big contribution to the
test statistic. By taking an upper limit on Ri, we choose to be more sensitive for
overall discrepancy than local ones, see figure 8.4.

The local density method applied to the data gave a p = 0.477, which again
suggests that P is correctly parametrized.
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Figure 8.3: A scatter plot of the observed versus the expected events. The radius
of the circle for the local density method was taken to be R = 0.003
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Figure 8.5: With the local density method the test statistic T = 0.298. The number
of generated toys that had worse agreement with this test are 477 out of a 1000,
giving p = 0.477.



CHAPTER 9
Conclusion & Outlook

The fit on the 2010 LHCb data found an time dependent asymmetry amplitude of

S = 0.881+0.334
−0.301.

This is compatible with the current world average of S = 0.673± 0.023 [5], but not
yet competitive. Another fit has been performed with floating C. The fitted values
of the CP parameters then turn out to be

S = 0.720+0.394
−0.368

C = 0.279+0.340
−0.337 .

The value of C is compatible with the Standard Model prediction, which is zero.
Furthermore it agrees with the latest results of the BaBar and Belle experiments,
see [8] and [7]. It is pleasing to see, not to mention crucial for the collaboration,
that analysis is in a mature state at LHCb and that it is in agreement with other
experiments.

An important aim of the research presented in this thesis was to show that the
resolution function obtained from the background events is representative for signal
events. The Monte Carlo study did reveal this. What also was shown, is that
resolution function is not really of importance in this particular analysis. However
in similar decay modes of the Bs, a good time resolution is needed, because of the
higher mixing frequency. Here it needs to be justified that the resolution model is
calibrated on prompt events, which we now can.

Finally, the Goodness-of-Fits tested indicated that the used model indeed de-
scribes the data. It would be worthwhile to perform studies similar to this on other
analysis. The distance to nearest neighbor method requires very little processing
time and gives a quick visual diagnostic tool. The local density method is excellent
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in giving an quantifiable level of agreement between between the model and the
data.

It is expected that at the end of 2012 the integrated luminosity will be around
2 fbarn−1. This entails roughly 54 times more data in comparison to this analysis,
and it reduces the statistical error on S to about 0.04. Also the incorporaton of
biased lifetime events, will increase the data volume of about 20%. Furthermore
the uncertainty of the flavour tagging, which dominates the systematic uncertainty
on S, will then be greatly reduced.



APPENDIX A
Uniformity of U

The probability that an event lies within distance R from event i is given by∫
|~x−~xi|<R

P(~x)d~x.

The probability that none of the other n− 1 events lie closer is

Pr[Rnn ≥ R] =

1−
∫

|~x−~xi|<R

P(~x)d~x


n−1

.

The function

y(R) ≡
∫

|~x−~xi|<R

P(~x)d~x

is monotonically non-decreasing with R. Thus we can write

Pr[Rnn ≥ R] = Pr[y(Rnn) ≥ y(R)] = (1− y)n

making the two substitutions lnUi = −ny(Rnn) and ln z = −ny(R) yields

Pr[Ui ≤ z] =

(
1 +

1

n
ln z

)n−1

.

The pdf for U is thus given by

U(z) =
d

dz
Pr[Ui ≤ z] =

n− 1

nz

(
1 +

1

n
ln z

)n−2

≈ 1

for e−n < z ≤ 1.
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Figure B.1: The pull distributions of the fitted parameters.
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Figure B.2: The pull distributions of the fitted parameters.
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Figure B.3: The error distributions of the fitted parameters.
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Figure B.4: The error distributions of the fitted parameters.
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Figure C.1: The resolution dependence of several parameters
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Figure C.2: The resolution dependence of several parameters
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Figure C.3: The resolution dependence of the pion pz
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