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Preface 
During my study Industrial Engineering and Management I worked on the optimization of supply 

chains and production processes. I never thought about police helicopters and that planning could 

improve the performance of a public service like the police force. Now I know better. Optimization of 

public services does not only save money, it also improves the quality of life for the people who 

benefit from it, in this case Dutch citizens. This component makes research on public resources 

interesting but also requires different viewpoints. For example, is the optimal distribution of the 

public resource a fair one?  

This research focuses on the tactical, or medium-term, planning of surveillance flights by police 

helicopters. It has kept me busy and interested for ten months. Creating crime forecasts and 

directing police forces is an incredible field of research and I feel that I’m just discovering its 

potential. I wrote this report to share my current ideas about the tactical planning of police 

helicopters, and I hope to convince you of its future possibilities. 

This report would not be here today without the help of all my supervisors. I am grateful for the 

amount of support I received. Most of all, I thank Edo van den Brink and Arjen Stobbe, my daily 

supervisors at the Aviation Police, for their continuous support and our interesting and enthusiastic 

discussions. Rick van Urk, my predecessor and advisor in this research, was always available for 

creative ideas, motivation, and feedback. Thank you Rick. I also thank Rutger Rienks, my supervisor of 

the National Police, for making the research possible. I thank Floris Korteweg and Daniel Bulten, 

analysts of the National Police, who provided me with data and ideas about helicopter effectiveness, 

and started interesting discussions.  

I thank Martijn Mes and Marco Schutten, my university supervisors, for their valuable feedback and 

scientific insights, it certainly improved the quality of this thesis. 

Finally, I thank my girlfriend Emma, my family, and friends for their continuous support and patience.  
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Management summary 
 

Motivation 
The Dutch Air Support and Aviation Police (LVP) currently has two disconnected decision support 

systems (DSS) that support strategic and operational decision making. The strategic DSS quantifies 

the long-term effect of different allocations of police helicopters over bases. The operational DSS 

supports short-term decisions such as the timing and route of the surveillance flights for the next 

day, given that the number of flights per day is determined at the tactical (medium-term) level. 

However, the distribution of helicopter capacity over the year is currently made without support. The 

LVP likes to bridge the gap between the strategic and operational decisions by using the operational 

crime forecast to support tactical decisions as well. 

Research goals 
The goal of this research is to integrate the strategic and operational decision support tools and 

create a prototype tool that combines crime data and police resources into a complete tactical plan. 

Furthermore, we want to create a simulation model to validate the current and prior research, and to 

provide insight for the LVP into the effect of different tactical decisions. Finally, we aim to implement 

the validated tactical planning methods into the procedures of the LVP. 

Forecasting and routing 
We extend the current forecasting tool of the LVP to a scope of one year and introduce seasonal and 

weekly crime patterns. To enable realistic computation times we propose a method that drastically 

increases the forecasting speed, without losing forecast accuracy. Furthermore, we propose a new 

heuristic to determine the best start time of a flight and evaluate the current route optimization 

method. 

Tactical planning 
We set up a tactical planning model to solve the planning problem under the assumption that there 

is at most one helicopter airborne at the same time. This model simultaneously schedules 

surveillance flights and helicopter crews. To relax this assumption without increasing the 

computation time, we propose a heuristic in which we sequentially schedule flights and crews. The 

heuristic determines at the tactical level the available resource capacity, and at the operational level 

the start times and routes of the surveillance flights. 

Next to the tactical planning heuristic that optimizes performance, we propose a heuristic that 

considers the trade-off between performance and an equitable distribution of helicopter capacity 

over the Netherlands.  

To determine the quality of the forecast methods, and the performance and fairness of tactical plans, 

we propose a set of performance measures for the LVP. For example, we propose to measure the 

average proximity of helicopters to criminal incidents to determine the quality of surveillance routes. 

Results 
Based on the simulation results, we conclude that the current operational DSS improves performance 

by approximately 20%. Furthermore, when the LVP is able to perform a variable number of flights per 

day and uses tactical planning, we find a performance improvement of at least 3.5%. Finally, we 

expect that the new estimator to determine start times and procedures to take incident priorities 

and night time effectiveness into account result in additional performance improvements. 
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Implementation 
The simulation tool that we use to validate all proposed methods and extensions is useful for further 

analysis of the LVP processes and policies. However, it is not user-friendly enough and thus not ready 

for direct implementation. However, in cooperation with the LVP we made it possible to implement 

the resulting tactical plan and inform pilots about the optimal surveillance route during their flight. 

Recommendations 
We recommend the LVP to professionalize the current prototype decision support system. 

Furthermore, the system is currently based on an assumption that relates the arrival time of a 

helicopter to the probability that the helicopter successfully supports police officers on the ground. 

We suggest that the LVP starts measuring the actual relation between the arrival time and the 

success probability. This makes the system more reliable. Furthermore, we propose to share the 

insights from the simulation model and the forecast methods with other police departments. 

Geographical information systems (GIS) are very useful for this application. Finally, we propose to 

provide helicopter pilots with an existing rerouting tool to determine the optimal continuation of 

their surveillance route after they have handled an incident. 

Future research 
Based on our results and experiences, we find several new research directions. We propose to 

further investigate more advanced forecast methods and the simultaneous optimization of stand-by 

crew and flight scheduling. Furthermore, the model could be extended to include other helicopter 

types and police resources, like patrol cars and officers on foot. In this research we also shortly 

address the concept of equity. Since equity is crucial in the distribution of public resources, it 

requires more attention. Finally, since the added value of the police helicopters depends on the 

incidents that they are deployed to, we further recommend to investigate intelligent deployment 

strategies.  
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1 Introduction 
Videos of criminals on the run, made out of police helicopters, are shown regularly on TV. Next to 

pursuing criminals, police helicopters also support police officers on the ground in their search for 

missing citizens or during the protection of the royal family. The Air Support department of the 

National Police (the LVP or ‘Luchtvaartpolitie”) has 8 helicopters to provide support with. Since flying 

these helicopters is expensive, an annual budget allows only a limited number of flight hours per 

year. Therefore, the deployment of helicopters for duties such as patrolling deserves attention. 

Furthermore, the added value of a helicopter at an incident decreases rapidly with the time it takes 

the helicopter to get to the incident. Therefore, the LVP developed, in earlier research, decision 

support systems (DSS) based on mathematical models to optimize the positioning of helicopters at 

airfields and to determine the routes helicopters should fly in anticipation of possible future 

incidents. 

The aim of this research is to determine the effectiveness of the models that the LVP currently uses 

and to improve their performance. The added value of this research is an integrated decision support 

system that helps the police make operational and tactical decisions for the distribution of helicopter 

flight hours over the year. 

This first chapter consists of the research plan: we introduce the Dutch Air Support organization and 

the current planning process (Section 1.1), followed by the motivation for this research (Section 1.2), 

the problem statement and research questions (Section 1.3), and the research plan (Section 1.4). 

1.1 Organization 
The introduction of the LVP starts with an outline of the organization of the aviation police (Section 

1.1.1) a brief description of the current helicopter planning process (Section 1.1.2), and previously 

performed research by the LVP (Section 1.1.3). The introduction helps to understand the motivation 

as discussed in Section 1.2. 

1.1.1 Organization 
This research takes place at the Dutch Air Support & Aviation Police division of the Dutch National 

Police (NP). Currently, the police reorganizes its structure from 25 regional police divisions and one 

national division to an integrated national police with 10 regional units and one national unit. The 

national unit coordinates and supports regional departments’ efforts. Figure 1.1 shows a summary of 

the planned organizational diagram of the national police. Appendix A contains the complete 

diagram. 

 

Figure 1.1: Summary of organizational chart of the new national Dutch police organization (Appendix A). 
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Within the National Police organization, the LVP performs two main tasks: it supports regional police 

departments in the air (Air Support) and it supervises aviation in the form of, e.g., airport supervision 

(Aviation Police). This research focusses on the air support task. The LVP consists of the following five 

air support functionalities: 

 The planning office schedules flights and creates the monthly and yearly base plan. 

 Flight dispatch is responsible for flight preparation, support, and completion. 

 The pilot controls the helicopter during the flight. 

 The tactical flight officer (TFO) controls the sensors of the helicopter. 

 Maintenance is responsible to keep the air fleet available for use. 

The aim of this research is to support the planning office in its planning activities, since the timing of 

helicopter flights has an influence on the performance of the flights. 

The LVP has six Eurocopter helicopters (EC135) and two Agusta Westland helicopters (AW139), 

normally located at Schiphol. Although the LVP owns six Eurocopters, there are only five EC135s 

operational, since there is always one EC135 in maintenance. The EC135 has a cruising speed of 218 

km/h, a top speed of 254 km/h, and has a maximum flight duration of two hours (at cruising speed). 

The AW139 has a cruising speed of 254 km/h, a top speed of 303 km/h, and is able to fly for four 

hours (at cruising speed). Figure 1.2 shows both helicopter types. The AW139 is better suited for 

police support in the eastern part of the Netherlands because of its speed and range, while the 

EC135 is less expensive and thus favourable in police work around Schiphol.  

 

Figure 1.2: Photos of the Eurocopter EC135 (left) and the Agusta Westland AW139 (right). 

1.1.2 Helicopter planning process. 
The planning office is the part of the organization that aligns maintenance, personnel, and flights. 

The planning office determines the number of flights per day, the helicopters to use, and which 

crews need to be present at the base to fly the helicopters.  The planning process has the yearly total 

flight hour budget as input, and results in a daily flight schedule with crews and helicopters assigned 

to flights, as output. This planning process is according to the hierarchical structure of Hans et al. 

(2007). This hierarchical structure consists of four levels: 

1. Strategic planning: long term decisions such as the number and type of helicopters to use. 

2. Tactical planning: medium-term decisions such as the selection of bases to station 

helicopters on, the scheduling of helicopter crews, and the planning of major maintenance. 

3. Operational offline planning:  short term decisions before the actual flight, such as the route 

that the helicopter is going to fly. 

4. Operational online scheduling: short term decisions during the flight such as the decision to 

provide air support at an incident or not.  
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The decision levels indicate the degree of freedom in the decisions and the impact they have on 

other decisions. For example, on the tactical level the LVP determines the number of flights per day. 

This restricts the options for the operational offline schedule, since for that schedule the number of 

flights is known. We now simultaneously discuss the hierarchical planning structure and the LVP 

planning process to indicate to which hierarchical level the planning activities belong. Figure 1.3 

shows the planning process and planning hierarchy. 

 

Figure 1.3: Planning process hierarchy. 

For the LVP, the strategic planning process has two parts: the total budget that is available for flights 

and the decision on which bases to use. The LVP has a support contract with their helicopter 

suppliers to provide them parts for a fixed cost per flight hour. The LVP then has a fixed budget that 

enables a fixed number of flight hours per year (including maintenance). The budget is not 

completely available for surveillance flights; it includes also flight hours for training, airplane flights, 

and special assignments. For the location decision there are several options: the LVP has a hangar 

and office space on Schiphol and is able to hire the same facilities on Rotterdam and Volkel. Other 

Dutch airfields can be used to refuel and rest, but the LVP has no facilities there. 

On the tactical planning level, the LVP makes three decisions. First, the maintenance department 

determines an annual maintenance plan, based on the total number of available operational flight 

hours. The planning office then determines the number of flights per period of 4 weeks, of which 

there are 13 per year, and finally determines how many crews should be available. The decisions on 

this planning level are constrained by the flight hour budget from the strategic level and constrain 

the scheduling on the operational level. The advantage of the tactical planning over the operational 

scheduling is the increased flexibility of crews and the maintenance department. 

On the operational offline level, the number of flights hours per period is known. The planning office 

then makes a “period planning” in which they take the personnel constraints into account: crews can 

be unavailable due to scheduled training exercises (the training instructors are active pilots), 

simulator training trips, paid leave, and general meetings. Finally, the planning office assigns 

helicopters to flights while taking the maintenance activities into account. 

Flight dispatch and helicopter crews make the operational online decisions. For example, flight 

dispatch cancels flights when the weather conditions are not good enough and helicopter crews 

decide when they start their flight. When helicopters are airborne, the Operations Centre of the 

National Police deploys them to incidents to provide support. The online decisions have an impact on 

the offline scheduling and tactical planning: the planning office can reschedule cancelled flights 

within the current period or move them to a different month. 
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1.1.3 Previous research 
Previously, the LVP worked together with the University of Twente to develop tools to support 

decision making based on historical data. The research focused on different planning levels.  

The research of Buiteveld (2011) focuses on the strategic planning level. Buiteveld presents a tool 

that supports the planning department in the decision which bases to put helicopters on, to cover as 

much incidents as possible. The tool has a positive effect on the performance. 

The following research by Van Urk (2012) focuses on the operational planning level and proposes a 

tool that covers both offline and online scheduling. The tool is programmed in AIMMS (a modelling 

system for mathematical optimization) and makes a forecast for one day ahead, based on all 

historical data available, on which it bases the offline and online decisions. For offline scheduling, the 

tool helps planners to estimate the optimal start time of a flight within a crew schedule, and to 

determine the route of the flight. For online scheduling, the tool allows planners to optimally reroute 

a helicopter to an incident during its flight. 

1.2 Motivation 
The LVP now has one decision support tool to help allocate helicopters to bases and a second 

decision support tool to determine the optimal route to fly on a given time and from a given location. 

However, it is not clear how to connect the systems and there is no support on decisions such as how 

many helicopters to use or how many flights to perform on a given day. Therefore, the LVP now uses 

the model by Van Urk (2012) with four simple planning rules in general: 

1. The flight budget is evenly distributed over all periods (flat planning). 

2. Every day has three shifts of which the late shift is manned by two crews. The rest of the 

shifts are manned by one crew. 

3. Every crew makes at least one flight during the shift. 

4. The crews all fly from Schiphol. 

The flat distribution of helicopter time over the days of the year does not seem appropriate when we 

compare it with Figure 1.4, which shows that the number of criminal incidents per day is relatively 

low in the summer when compared to the winter. This effect is commonly explained by the period 

between sunset and sunrise, which is longer in the winter period. More dark hours result in 

decreased sight and less possible witnesses on the street. Furthermore, Van Urk (2012) notes that 

besides the seasonal pattern between months, there is also a weekly pattern between days of the 

week. 

 

Figure 1.4: Number of incidents per day for every month in 2012. 
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The flat planning results in several problems and inefficiencies. First, it seems inefficient that the LVP 

flies the same number of hours during all periods, while there are less criminal incidents in summer 

time than in the winter period. By shifting more hours to the winter, the number of successful assists 

is likely to rise. Second, there are fewer pilots available during the summer period than during the 

winter period due to holidays, resulting in capacity problems. 

The LVP uses three overlapping 9-hour shifts to provide 24/7 helicopter coverage from Schiphol. On 

every shift, all crews fly at least once. However, as Figure 1.5 shows, the intensity of incidents varies 

during the day. This figure raises the question whether it is efficient to fly during every shift and to 

have 24/7 availability of air support. 

 

Figure 1.5: Number of incidents in 2012 per hour of the day. 

Finally, there is also a discrepancy in incidents over the country. Figure 1.6 shows that crime is 

concentrated in the west and south-west of the Netherlands and there are fewer incidents per year 

in the rural areas in the east and north. The distribution of crime in Figure 1.6 is consistent with the 

theory by Sherman et al. (1989) of “hotspots”, of which the main point is that crime clumps in 

relatively small places (that usually generate more than half of all criminal incidents) and is totally 

absent in others. 

 

Figure 1.6: Geographical distribution of incidents in 2011 and 2012. 
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There are two clear hotspots, Amsterdam and Rotterdam. Optimal helicopter routing is not the only 

possibility to cope with this geographical distribution of incidents. The LVP has access to multiple 

airfields to land on and start from. Since the LVP has several helicopters, it is able to distribute its 

helicopters over multiple locations. The start and end locations of the surveillance helicopters thus 

deserve attention in the operational scheduling of flights. This shows the necessity of the link 

between the tactical helicopter positioning model and the operational routing model.  

The LVP has an annual budget that limits the number of helicopter flight hours. Furthermore, the use 

of helicopters is also limited by the availability of helicopter crews with pilots and tactical flight 

officers (TFO’s) and by the regular maintenance that helicopters require. With the limited budget, the 

LVP wants to maximize its performance. Therefore, The LVP would like to use an instrument that 

helps them to make tactical decisions, which are: 

1. How to distribute helicopter flight capacity over the days of the next year? 

2. How long should the flights be? 

3. Where should the flights start and end? 

4. Where should the LVP station the helicopters (per month)? 

5. How to handle cancelled flights? 

6. When should shifts start and how many crews should be available per shift? 

1.2.1 Targets 
The LVP has several targets. As part of the national police organization, it shares the common police 

goal to lower the overall crime rate. The LVP focusses on two types of High Impact Crimes (HIC): 

burglaries and (street) robberies. Since the time it takes to fly to an incident is a factor in the 

expected added value of the helicopter, the LVP aims to increase its proximity to these crimes. 

However, there is need for a balance between proximity and costs:  since flying is expensive, the LVP 

aims to respond to as many incidents as possible from their stand-by situation. Surveillance flights 

should aim to cover the maximum number of incidents that cannot be covered from stand-by. 

When we use the maximization of incidents covered as the goal of the tactical planning model, we 

focus on the places where most criminal incidents happen. This can lead to a situation where the 

entire helicopter capacity is divided over a small number of cities. However, fair allocation of public 

services, or “equity”, is a critical and controversial factor when deciding how to allocate public 

resources (Stone, 2002). Currently, there is no definition of a fair or equitable distribution of 

helicopter capacity over the Netherlands. Therefore, the LVP wants to know how to translate equity 

to the tactical planning of helicopters, what the effect of optimization is on the equality of the 

helicopter support distribution, and how the LVP can influence the equality. 

Furthermore, the planning department has a secondary objective. The LVP wants to minimize the 

number of flights that start in one shift and end in the next shift, since these flights require crews to 

fly in overtime.  

1.2.2 Scope 
Since there is limited time available for our research, we define a strict scope. This research adopts 

the forecasting and routing techniques as suggested by Van Urk (2012) and extends them to enable 

tactical planning. We use the existing AIMMS tool and adapt the software to make forecasts and plan 

multiple days ahead. We use the program to determine optimal flight times, durations, origin and 

destination, and routes for the surveillance flights. We also perform an analysis on the effect of the 

shift schedule on the expected overtime. Finally, we analyse the trade-off between performance and 

fairness of the distribution of helicopter support over the Netherlands. 
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1.2.3 Research goals 
The first goal of this research is to validate earlier research results and the existing tools. The second 

goal of this research is to develop a prototype instrument that supports the LVP in its tactical 

decision making process based on historical data. The improved distribution of flights over months 

and days should lead to an increase of the number of incidents that the helicopter can reach in time. 

Furthermore, the instrument should provide insight into the effect of tactical decisions on the 

performance of the LVP. Finally, we implement the decision support system in the LVP organization. 

1.3 Problem statement and research questions 
The main problem of the LVP planning department is the lack of an integrated decision support 

system that determines the daily number of flights and their departure times on a tactical level. The 

main problem leads to the following problem statement: 

What is the performance of the operational decision support tool and how can the LVP improve its 

performance by tactical planning? 

To find a solution to the described problem, we answer the following research questions: 

1. What is the current planning process at the LVP? (Chapter 2) 

Chapter 2 describes and analyses the current planning process and the tactical planning at 

the LVP in detail. Furthermore, it discusses the operational planning tool and draws 

conclusions on requirements for the final prototype tool of this research. 

2. What literature is available related to the decisions of the LVP (Chapter 3) 

Chapter 3 positions this research in the existing literature and describes research fields that 

are relevant. By answering this question, we want to find techniques and models to improve 

the current system. 

3. How can we extend the scope of the decision support systems and improve their 

performance? (Chapter 4) 

Chapter 4 discusses how we propose to adapt the current decision support system to provide 

input for the tactical planning. 

4. What is the best approach to tactical planning for the LVP? (Chapter 5) 

Chapter 5 defines the tactical planning problem and explains several approaches to handle 

the problem. Furthermore, we discuss how we can incorporate fairness into the tactical 

planning method. 

5. What are appropriate measures for the performance of the decision support systems of the 

LVP? (Chapter 6) 

Chapter 6 discusses measures for the quality of a forecast and the performance and fairness 

of a tactical plan. 

6. What is the effect of different settings of the decision support system and what is the 

expected impact of the system on the LVP performance? (Chapter 7) 

Chapter 7 determines the added performance by the previous research. Furthermore, we 

determine the added value of tactical planning and the effect of several extensions on the 

tactical plan. 

7. How to implement the tactical planning model in the LVP organization (Chapter 8)? 

Chapter 8 discusses the implementation process of the prototype tactical planning tool in the 

LVP organization. 
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1.4 Research plan 
We start the research with interviews with planners and pilots to determine 

the current planning process. We then perform literature research to 

identify techniques and models to improve the current decision support 

system. Next, we extend the scope of the application and apply the 

techniques from literature to improve the system. We then use simulation 

to test and compare several tactical and operational planning policies for the 

LVP. Finally, we cooperate with the planning office and pilots to integrate 

the decision support system in the current planning process and to use the 

results in practice. 

To be able to draw conclusions from the simulation results, the simulation 

model should represent reality well. Law (2007) notes that model 

programming is just part of the overall effort to design or analyse a complex 

system by simulation, and proposes steps that will “compose a typical, 

sound simulation study”. Figure 1.7 shows these numbered steps and this 

research organizes the simulation study accordingly. 

Chapter 2 discusses the problem and study plan of step 1. For step 2, the LVP 

collects the data that is required as input for the simulation model that we 

propose. To construct a simulation model we then perform literature 

research in Chapter 3, discuss forecasting techniques in Chapter 4, create a 

tactical planning model in Chapter 5, and propose performance measures in 

Chapter 6.  

Steps 3 to 6 are about verification and validation. Verification is the process 

to make sure that the computer program works well. Validation makes sure 

that the simulation model is an accurate representation of the system that 

we model. Chapter 7 discusses steps 7 to 10. We set up a simulation plan 

that defines the experiments we need to perform to underpin all choices in 

this research, and make the production runs. In step 9 we analyse the output 

data with the performance measures as discussed in Chapter 6. Finally, we 

present the results and conclude on the implications of the results for the 

LVP.  

1. 
Formulate problem 
and plan the study

2. 
Collect data and 
define a model

3. 
Assumptions 

document 
valid?

4. 
Construct a 

computer program 
and verify

yes

5. 
Make pilot Runs

6. 
Programmed 
model valid?

7. 
Design experiments

yes

8.
Make production 

runs

9. 
Analyze output data

10.
Document, present, 

and use results

No

No

Figure 1.7: Steps in a simulation study (Law, 2007) 



R. Vromans Current situation 
 

  

Page 9 

 

  

2  Current situation 
This chapter describes the current planning process. The description of the planning process is 

necessary to understand the use and requirements of the decision support systems. As Chapter 1 

explains, the tactical planning process consists of several steps and procedures. This section explains 

how the planning office performs these steps. Since the LVP budget is fixed, we consider the strategic 

planning of the LVP as fixed and thus start with an analysis of the tactical planning level in Section 

2.1. Section 2.2 explains the operational scheduling process, Section 2.3 introduces the operational 

scheduling and positioning tool, and Section 2.4 discusses how the LVP measures its performance. 

Section 2.5 describes the desired planning situation by the LVP. Finally, Section 2.6 provides 

conclusions on the current situation. 

2.1 Tactical planning 
This section discusses the tactical planning process. First, we explain how the maintenance planning 

is set up and kept. Second, we discuss how the helicopter flight hour budget is used as input for the 

flights per period planning. Third, we discuss the crew scheduling characteristics. 

2.1.1 Maintenance planning 
The maintenance department makes an annual maintenance planning around October the year 

before. This planning consists of two types of maintenance: calendar based maintenance and flight 

activity based maintenance. Calendar based maintenance happens independent of the state of the 

helicopter and includes for example yearly maintenance: every year several parts are replaced. Flight 

activity based maintenance is performed after the helicopter has made a given number of flight 

hours after its last maintenance activity. 

The maintenance department uses the flight hour budget as input and plans flight activity based 

maintenance as if it is calendar based maintenance: they determine a fixed date to perform the 

maintenance on. To make sure that the maintenance capacity is used efficiently, the planning office 

tries to make sure the helicopters are ready for maintenance in time. This means that when a 

helicopter is scheduled for its 100 hour flight time maintenance within one week, they make sure 

that the helicopter makes enough hours this week to reach the 100 hours, even when the helicopter 

has to fly on a Sunday morning, where the probability of a successful helicopter deployment is 

minimal. This means that the flight planning is currently maintenance driven, although maintenance 

in general is a support function. 

2.1.2 Flights per period planning 
Currently, the LVP has no system to support the planning office with the analysis of the optimal 

number of flights per period. Therefore, the planning office distributes the flight hours uniformly 

over the periods: every period gets the same number of flights. The advantage of this method is that 

personnel planning is very predictable and that, e.g., maintenance is also able to use a flat planning. 

2.1.3 Crew planning 
Helicopter personnel capacity is the main bottleneck in the tactical planning of the LVP: there is 

enough helicopter capacity to cover the budget and there are enough helicopters to cope with 

material breakdowns, but it is hard to find enough pilots to man all shifts. 

The planning office uses manually updated excel sheets to determine the number of available pilots 

and TFOs per day. It then fills up the shifts along their priorities. Table 2.1 shows the current shift 

schedule. The crew composition changes between shifts and seasons: between sunset and sunrise, 

the crew should consist of 2 pilots. When the entire flight is during daylight, one pilot is enough. 

Furthermore, a crew always consists of a TFO to operate the on-board camera. 
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Since 2010, the LVP has agreed with the Ministry of Security and Justice to supply 24/7 coverage of 

emergencies from Schiphol. Therefore, the first priority of the planning office is to make sure that 

Schiphol has a crew available for emergency response 24/7. With 3 shifts, the planning office needs 3 

crews per day to meet this requirement, or approximately 1,095 crews per year. We note that there 

is no crew stand-by on Schiphol, when the crew from Schiphol makes a surveillance flight. Since the 

LVP has personnel for approximately 1,500 crews, there are crews left. The LVP currently stations the 

extra crews on Schiphol to be able to simultaneously react to multiple incidents, but Rotterdam and 

Volkel are also possible stand-by locations. 

The distribution of crews over the three LVP locations is based on the research of Buiteveld (2011). 

Buiteveld (2011) provides a static analysis of where incidents take place in the Netherlands and on 

which location a stand-by helicopter can reach most of these incidents. Buiteveld concludes, based 

on a limited dataset, that out of the available helicopter fields in the Netherlands, Rotterdam Airport 

is the best location to provide stand-by coverage from. The second location is a heliport near 

Amsterdam, third is Hilversum Airport, and fourth is Air Base Volkel. However, the LVP currently has 

its main facilities at Schiphol, and complementary facilities on Rotterdam and Volkel. Since the 

research was based on a limited dataset, the main base of the LVP is currently still Schiphol. 

Furthermore, since the LVP has no facilities on Hilversum Airport, Rotterdam and Volkel are the 

second and third choice to position stand-by helicopters on respectively.  

Therefore, when there is personnel capacity left after scheduling 24/7 coverage on Schiphol, the 

planning office first schedules the shifts with the second priority: a crew that flies from Schiphol to 

Rotterdam, makes a surveillance flight from Rotterdam, and returns to Schiphol at the end of the 

shift. When there is still a crew left, then the 3rd priority is to schedule a crew on a flight to, around, 

and from Volkel. Table 1 gives an overview of the current shift schedule and the priorities. 

Shift Start time of shift End of shift Priority 

Early 07:00 16:00 1 
Late 15:00 23:00 1 
2nd late crew to Rotterdam 17:00 02:00 2 
3rd late crew to Volkel 17:00 02:00 3 
Night 22:30 07:30 1 

Table 2.1: Current shift schedule of the LVP. 

Because most of the crews available to the LVP are mandatory scheduled on Schiphol to create 24/7 

coverage, the LVP wants to optimize the allocation of the crews that are left, over all shifts and 

locations. There is one constraint: the LVP cannot schedule more crews than there are helicopters 

available during the shift.  

When a crew is allocated to a shift on a different location than Schiphol, e.g., Rotterdam, there are 

two possibilities to get there. When there are only sporadic flights from Rotterdam, then the LVP 

keeps the helicopters at Schiphol. Crews then start at Schiphol and fly to Rotterdam at the start of 

their shift. From Rotterdam, they then make one or more surveillance flights. At the end of the shift, 

they fly back from Rotterdam to Schiphol. However, when flights from Rotterdam or Volkel become 

frequent, then the LVP is able to station a helicopter there. The helicopter can stay for weeks at 

Rotterdam or Volkel, before it is flown to Schiphol for maintenance. It is then possible to schedule 

crews at Rotterdam or Volkel that start and end on that location and can be stand-by during their 

entire shift. 
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2.2 Operational helicopter scheduling 
This section explains how the planning office makes the operational helicopter schedule and how the 

planning office determines when, how long, and where to fly. Due to a lack of up-to-date data to 

provide input for the tool, and the lack of knowledge on the working of the tool, the tool is not yet 

used in a daily routine at the planning office. Therefore, the planning office is only able to tell crews 

how many flights they have to make during their shift and with which helicopter.  

2.2.1 Crew scheduling 
The planning office makes a final crew schedule at the start of a period and registers the flights with 

the designated crew and helicopter in its planning software. A crew can fly a maximum of 5 hours per 

shift and is allowed to rest for ¼th of the flight duration between flights. Furthermore, crews need 

the first hour of their shift to collect information and the last hour of their shift to enter their 

experiences during the flights into a log. These practical issues limit the number of flights per crew. 

2.2.2 Flight duration 
Currently, the planning office does not advice the pilots on the optimal duration of their flights. Since 

pilots want to catch as many criminals as possible every time they fly, pilots tend to fly as long as 

possible. However, this is sometimes inefficient and can lead to problems: when there is an 

emergency request just before the end of the flight and the helicopter has to land first to refuel, this 

will cost the LVP a successful assist. Furthermore, when the helicopter flies shorter flights in the low-

season of criminal incidents, then there is more time left for the high-season. 

2.2.3 Offline: timing and routing 
Without the helicopter positioning tool, there is little guidance for crews on when to start their 

flights within the limits of their shift, and how to determine the flight route. Flight dispatch briefs the 

crews on weather conditions and some police intelligence. The crews that are allocated to Rotterdam 

or Volkel start their shift by flying to that location. The LVP has determined the general daily crime 

pattern and schedules routes on the expected peak times. When crews are at their start location, 

they start their surveillance flight at these peak times, and fly a route over the Netherlands guided by 

their personal knowledge on crime patterns and hotspots. 

2.2.4 Online: rerouting 
There are several reasons to change the offline made schedules during the day. Flights are 

sometimes cancelled due to weather conditions (fog, snow, hail) that limit the pilot’s visibility or 

influence the safety of the helicopter. This happens more often in the winter period, when there is 

more criminal activity, than in the summer period. These flights are currently added later on in the 

period to make sure that maintenance budgets are kept. 

Currently there are no in-flight route changes because pilots do not fly a predefined route. When the 

LVP starts flying optimal routes in 2014, in-flight route changes are the goal of the LVP surveillance 

flights: routes are interrupted by reactions to incidents. Since the LVP wants to be able to respond to 

as many incidents as possible, we could therefore say that the optimal route is the route that is 

interrupted as soon and as often as possible.  

In-flight route changes are to be made by the central operations room in Driebergen that handles all 

emergency calls of the Netherlands. When a call requires police attention and includes a high impact 

crime, then the helicopter deployment protocol determines whether a helicopter is useful at the 

scene or not. Helicopters are useful when there is a description of the criminal or getaway vehicle 

and when the direction of travel is known. When a helicopter is useful at the crime scene then 

Operations contacts the LVP to check whether a helicopter is available (airborne or stand-by). When 
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there is a helicopter available at a close enough distance to the incident, then the Operations room 

authorizes deployment.  

When Operations deploys the helicopter to an emergency, the helicopter commonly flies straight to 

the incident location. However, in certain cases such as robberies near the Dutch borders, crews 

know from experience that the criminals will probably try to cross the border, and thus are able to 

anticipate by flying directly to the nearest border crossing. 

Although the tool is not in current use, from now on we assume that the planning office does use the 

tool on a daily bases, and that pilots fly the routes at the times given by the tool. This enables us to 

compute the performance of the current situation and compare it with the performance after the 

improvements by this research and thus determine the added value of this research. The next 

section discusses how the tool currently works. 

2.3 The helicopter positioning and routing tool 
The helicopter positioning tool by Van Urk (2012) helps the planning office to determine the time to 

deploy a helicopter and where to send it. Section 2.3.1 discusses the first step: making a criminal 

intensity forecast. Section 2.3.2 explains how the tool estimates the best start time for a flight, and 

Section 2.3.3 describes how the program calculates the optimal route. 

2.3.1 Forecasting 
The forecasting module of the planning tool uses historical data on criminal incidents to create a 

forecast. This forecast shows the expected criminal intensity for every part of the Netherlands for 

one day in advance. Figure 2.1 is an example of the expected geographical distribution of incidents at 

a given time, where a dark red colour indicates a higher intensity than at the yellow parts of the 

Netherlands. 

 
Figure 2.1: Visualization of geographical forecast of incidents at a given time. 

As input for the forecast, the tool uses data on criminal incidents in the Netherlands. The tool 

currently requires four types of data per incident: 

 Date of the incident: to determine the weekday and month of the incident. 

 Time of the incident. 

 Zip code of the incident: to determine the location of the incident. 

 Priority of the incident: to distinguish between multiple types of incidents. 
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Van Urk (2012) notes that “a forecast based on fewer incidents has a higher forecast error”. Since the 

forecast is made for every 2 minute interval of the day ahead and there are thousands of locations in 

the Netherlands, Van Urk (2012) introduces several levels of data aggregation to produce a reliable 

forecast. Appendix C discusses the alterations to the tool we had to make to make the tool create the 

required output.  

Geographical data aggregation: Hexagon grid 

Van Urk (2012) proposes a grid of hexagons to combine incidents in multiple streets or districts. 

Figure 2.2 shows the hexagonal grid laid over the Netherlands. The forecast is thus made for multiple 

locations 𝑙 ∈ 𝐿 and over two-minute time intervals 𝑡 ∈ 𝑇.  

Van Urk (2012) then summates all incidents per hexagon and discounts old data with a forget factor. 

The forget factor 𝛼 determines the number of months between the incident and the forecasted time 

interval and discounts the data by the factor (1 − 𝛼)𝑚𝑜𝑛𝑡ℎ𝑠. The result of the aggregation per 

hexagon is a geographical pattern of incidents over time. 

 

Figure 2.2: The hexagonal grid over the Netherlands by Van Urk (2012). 

Yearly data aggregation: Weekday and month distribution factor 

The forecasting model currently uses all available historical incident data to determine the forecast 
for 24 hours ahead. As said, for every hexagon it summates all historical incidents, multiplied by their 
priority. Van Urk (2012) shows that the timing of criminal peaks depends on the day of the week and 
the month of the year. Figure 2.3 shows the differences in distribution of incidents over the day for 
different months. 
 

 
Figure 2.3: Average hourly incident distribution per month in 2010, 2011, and 2012. 
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Van Urk (2012) proposes to use weekday and month distribution factors to convert data from 
different months and weekdays to fit the distribution of incidents over the day of the target weekday 
and month. The month factor converts the distribution of incidents from another month than the 
target month to the distribution of incidents over time of the target month. The same works for the 
weekday factor. Figure 2.4 shows the method with which we convert a forecast of a Saturday to a 
forecast for a Monday. For every hour of the day, we determine the percentage of the incidents of 
that weekday or month that happens in that hour. We then multiply per hour-block all incidents by 
the conversion factor per hour ℎ as in Equation 2.1.  The conversion factor converts in this case the 
distribution of incidents over an average Saturday to the distribution of incidents over an average 
Monday. 
 

𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟ℎ =  
𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑎𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟ℎ

𝑑𝑎𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟ℎ
 Equation 2.1 

In the fifth hour-block (5:00 AM to 5:59 AM) one percent of the incidents on Saturdays take place, 

while on Mondays 1.54 percent of the incidents takes place between 5 and 6 A.M.  Therefore, we 

multiply the incidents that happened on Saturdays between 5 and 6 A.M. by the conversion factor 

1.54. For hour-block 17 we multiply the incidents from Saturdays by the conversion factor 0.46.  

 

Figure 2.4: Example of conversion of forecast for a Saturday to a forecast for a Monday. 

For the month factor, Van Urk (2012) uses the formulation as in Equation 2.2:  
 

𝑓𝑎𝑐𝑡𝑜𝑟 𝑚𝑜𝑛𝑡ℎ𝑚𝑡,𝑚𝑖,ℎ𝑖
=  

(
𝑁𝑚𝑡,ℎ𝑖

∑ (𝑁𝑚𝑡,ℎ)ℎ
)

(
𝑁𝑚𝑖,ℎ𝑖

∑ (𝑁𝑚𝑖,ℎ)ℎ
)

, 

 
 

Equation 2.2 

with the following notation: 

 𝑚𝑡 Month for which the forecast is made (target month) 

 𝑚𝑖 Month of the incident to be converted 

 ℎ𝑖 Hour of the incident to be converted 

 𝑁𝑚𝑡,ℎ𝑖
 Number of incidents in month 𝑚𝑡 during hour ℎ𝑖 

 𝑁𝑚𝑖,ℎ𝑖
 Number of incidents in month 𝑚𝑖 during hour ℎ𝑖 

Equation 2.2 has the same form as Equation 2.1, since the target day distribution factor is divided by 

the distribution factor of the day that is to be converted. The formula for the factor weekday is 

similar to the formula for the factor month, by replacing month with weekday in the description and 

notation above. Van Urk (2012) proposes to multiply every incident with its month and weekday 

factor. An incident from a Tuesday in June could thus be transformed to an incident on a Monday in 

January.  
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Spatial aggregation 

To be able to create a forecast for all locations in the Netherlands, Van Urk (2012) assumes that the 

number of incidents in a location, or hexagon, have a predictive value for the number of incidents to 

happen in the surrounding hexagons. Therefore, Van Urk (2012) determines the values of 

neighbouring hexagons by adding to them a fraction of the value of the hexagon the incident is in. 

For the fractions, Van Urk (2012) proposes to use a quadratic function based on the distance to the 

surrounding hexagons. Equation 2.3 shows the formulation of the spatial aggregation fraction, where 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙 is the number of steps from the hexagon where the actual incident is in and hexagon 𝑙. 

 
𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

1

(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙 + 1)2
 Equation 2.3 

The formula results in rings of hexagons with the same fraction around the centre hexagon. Van Urk 

(2012) limits the number of rings to five. Figure 2.5 shows an approximation of the proposed values. 

 

Figure 2.5: Approximate effect of an incident on its neighbouring area (Van Urk, 2012). 

Temporal aggregation 

Analogous to the assumption that incidents in a hexagon have a predictive value for incidents in 

surrounding hexagons, Van Urk (2012) assumes that incidents also have predictive value for the 

times around the time in which they actually happened. He proposes to represent all forecasted 

incidents in the previous spatial aggregation by normal distributions, with a likelihood of 95% that 

the incident will happen within thirty minutes before and after the forecasted incident time. Figure 

2.6 shows the total forecast value of all locations in the Netherlands for one day of forecast, before 

and after the time aggregation step. We conclude that the temporal aggregation procedure results in 

a smoothened forecast over time. 

 

Figure 2.6: Total value of forecast over the Netherlands per time interval, with the new temporal aggregation factors. 
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Output 

The output of the forecasting module is a forecast for one day ahead. The forecast consists of a unit-

less forecast value 𝑓𝑙,𝑡 for every hexagon 𝑙 ∈ 𝐿 for every two minute time interval 𝑡 ∈ 𝑇. The value is 

unit-less because of the aggregation steps but is determined only by the size of the dataset that we 

use as input. Since it is unit-less, the relative height of the value in comparison with other times and 

hexagons determines whether it is part of a hotspot or not. 

The current limitation of the forecast procedure to 24 hours ahead has a drawback in the estimation 

of the route quality. For example, since the forecast stops at 23:59 it is never beneficial for a 

helicopter to start at 23:30 with a 1.5 hour flight since 1 hour of the flight will be outside the forecast 

and thus will yield no result. Therefore, the tool will not schedule helicopters during the last 1 to 1.5 

hours of the day.  

2.3.2 Routing 
With a forecast and start time available, the tool determines the optimal surveillance flight route. 

The central concept in the optimization of surveillance routes is coverage. An incidents is covered by 

the LVP when the arrival time of the closest helicopter to that incident is short enough for the 

helicopter to provide support. When it would not matter how long police helicopters take to get to 

an incident, then there would be no use of route optimization or even flying. Helicopters could react 

from stand-by and be at every incident in time. However, to aid the ground forces in finding and 

following criminals, arrival time is critical. Buiteveld (2011) determines the relation between arrival 

time and the probability that the police helicopter can successfully support ground forces by 

interviewing LVP experts. She finds that helicopters are considered always successful when they are 

within 10 minutes at the location of the incident. When helicopters take between 10 and 15 minutes 

to arrive to the incident location, then the probability of success decreases. Helicopters that arrive 

after 15 minutes are never successful. In this case, we call 15 minutes the maximal coverage 

distance. Equation 2.4 shows the success function as formulated by Van Urk (2012), based on this 

description, where 𝑥 is the arrival time in minutes. 

 

𝑓(𝑥) = {

1

1.2 − 0.2 ∗ 2
𝑥−10

2

0

      
0 ≤ 𝑥 ≤ 10

10 ≤ 𝑥 ≤ 15
𝑥 > 15

 Equation 2.4 

We note that this function is continuous at 𝑥 = 10 but discontinuous at 𝑥 = 15 since 1.2 − 0.2 ∗

2
15−10

2 ≈ 0.069. Figure 2.7 shows a graphical representation of the success function. 

 

Figure 2.7: Graphical representation of the relation between arrival time and the estimated success function of a helicopter 
(Van Urk, 2012). 
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helicopter would have the shape of a circle. In the case of the hexagonal grid we determine that 

incidents are covered in all hexagons of which the centre can be reached within 15 minutes. We can 

thus determine the coverage 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 of a helicopter on a location 𝑙 ∈ 𝐿 at a given time 𝑡 ∈ 𝑇 by 

first determining which locations are (partly) covered by the helicopter. When the probability of 

successful support at a location by a helicopter is 80% then we assume that every incident at that 

time and location is covered for 80%. The coverage of that location by the helicopter is then the sum 

over all incidents, of the coverage of the incidents. For every location we thus multiply the number of 

incidents at the given time interval with the probability of a successful support at that location. The 

helicopter coverage is then the total of the coverage of all (partly) covered hexagons. Since a route is 

a combination of helicopter locations in time, the total route coverage of a route is the sum over the 

flight duration of the helicopter coverage.  

The helicopter routing tool uses a Mixed Integer Linear Program (MILP) that maximizes the number 

of forecasted incidents in the hexagons that the helicopter can reach in time to provide support, 

during a surveillance flight. Equation 2.5 shows the objective function of the proposed MILP. 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑓𝑙,𝑡 ∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡

𝑙,𝑡

 Equation 2.5 

Since hotspots move over time and have a restricted lifespan, the result of the MILP is often a route 

that visits multiple hotspots after each other. Figure 2.8 shows an example of a helicopter that moves 

through time and space to visit forecasted hotspots. When the hotspots do not move during a flight, 

the optimal route can include time periods in which the helicopter visits the same location multiple 

times after each other. This implies that the helicopter should hover above a hexagon for multiple 

minutes. Since this creates noise problems for residents in that area and hovering is uncomfortable 

for pilots, Van Urk (2012) introduced a constraint that limits the number of times that a helicopter 

may visit a hexagon during one flight. We note that the maximum number of visits should always be 

more than one, when the helicopter has to start and land at the same location (e.g. Schiphol). 

 

Figure 2.8: Graphical representation of a helicopter moving through time and space (Van Urk, 2012). 

Before the tool determines the optimal route, it must first find the best start time, within the start 

and end of the shift in which the flight should take place. There are two ways to determine the 

optimal start time. First, the exact method: determine the optimal route for every possible two-

minute time interval as start time and calculate the total route coverage of that route. Then we take 
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the start time with the highest total forecast coverage as the optimal start time. It takes 

approximately 3 seconds to find the optimal route and calculate its forecast coverage. This results in 

a computation time of 36 minutes for the 720 time intervals per day.  

Second, the tool enables the user to estimate the optimal start time “based on the assumption that it 

is more likely to have a successful assist when more accidents happen” (Van Urk, 2012). Van Urk 

(2012) proposes an estimator for the total coverage of a flight on a given start time. We call this 

estimator method the “flight value estimator”. The flight value estimator takes the summation over 

all hexagons that the helicopter can reach in the time since it started and from which the helicopter 

can still reach the end location in the remaining time.  After adjustments, this estimator now takes 1 

second to compute the estimated flight value for approximately 400 time intervals and thus results in 

a computation time of 2 seconds per day or 12 minutes per year. The tool then determines the start 

time with the highest estimated flight value. Both techniques, the exact method and the flight value 

estimator, do not correct for the fact that the helicopter also covers incidents when it stays stand-by 

on the ground. 

During the flight, the helicopter covers part of the forecasted incidents, as defined in the probability 

of success factor. Similar to the coverage of incidents we assume that when the probability of 

successful support at a certain location is 80%, 80% of the forecast value at that location is covered. 

For the next flight the flight value estimator should thus be updated to exclude the (percentage of 

the) incidents that is covered by the previous flight. Figure 2.9 shows the estimated value of flight for 

every time interval in a two day period. Flight one is scheduled at the highest peak and thus 

decreases the added value of future flights at the same point in time. 

 

Figure 2.9: The route quality estimation is updated after every flight. 

The number of time intervals that are affected depends on the duration of the flights. When the 

standard flight duration is 60 minutes, then a flight that starts 59 minutes before the start of the 

current flight will be influenced in its last minute. Every flight that starts after the start time of the 

current flight plus the current flight duration is not affected by the current flight. 

2.3.3 Rescheduling 
The tool also provides rescheduling support. When there is intelligence available about an incident, 

the user can input it into the tool. The tool then provides a new start time and route for the 

helicopter that makes sure the helicopter visits the intelligence location in time.  
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2.4 Performance management 
The LVP currently measures performance by keeping track of the number of assists and arrests by 

the helicopters. When there is a helicopter available at a close enough distance to an incident where 

a criminal is caught in the act, then the Operations room authorizes deployment. This deployment is 

labelled as an “assist” of the helicopter. Furthermore, helicopter pilots never arrest criminals in 

person but are able to guide the police on the ground. Instead, in the case that a helicopter then 

enables the police on the ground to catch the criminal, the flight is registered as an “arrest”. Figure 

2.10 visualizes how a large number of emergency calls result in a smaller number of assists/arrest per 

year by the LVP. We conclude that we cannot assume that the helicopter has an added value to every 

HIC incident that happens within the area that is covered by the helicopter.  

 

Figure 2.10: Visualization of incident filtering by the Central Operations Room. 

Earlier experiments designed to determine the performance of the operational planning tool, ran for 

small time periods and assumed that the 100% coverage of an incident by a helicopter route equals 

an expected arrest in practice. When a helicopter covered the incident, it would fly to the incident, 

handle the incident, and fly back to its start location. However, as Figure 2.10 shows, not all incidents 

lead to an actual helicopter deployment. Furthermore, although a helicopter may arrive within 10 

minutes at the crime scene, helicopters do not always provide crucial support at crime scenes and 

helicopter deployment thus does not always lead to an “arrest”. Therefore, we conclude that 

conclusions on the proximity of helicopters cannot be directly translated to the number of expected 

arrests. Furthermore, we find that the performance of the operational helicopter scheduling tool has 

not been sufficiently validated on the performance measures of the LVP, by simulation or practice 

tests. 

2.5 Desired situation 
As noted by Van Urk (2012), the LVP wants to be able to “make a plan in such a way, that the 

expected number of arrests where a police helicopter makes a difference is maximized. A system 

should generate a plan for each helicopter showing when it has to be where. This system should 

operate with minimal required human intervention, however, it should allow for human input”. We 

enlarge this goal by making the system ready to plan, schedule, and reschedule flights for up to a 

year ahead in time, taking into account crew scheduling and maintenance constraints.  
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Furthermore, we recognize the importance of validation and aim to provide the LVP with a 

simulation model that is able to test different settings of the decision support system and determine 

the added value of forecasting, routing, and tactical planning. 

2.6 Conclusion 
The planning office currently uses a uniform distribution of flight hours over the year, although the 

criminal intensity is not uniformly distributed over the year. Furthermore, the planning office has no 

tools to support its tactical decision making, while the current forecasting and routing tool needs 

refinement and validation. Since the output of a tactical decision support system is the optimal input 

for the operational planning tool, the planning office thus requires an integrated tactical and 

operational planning system.  
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3 Literature research 
This chapter describes the relevant scientific literature on forecasting in Section 3.1. Section 3.2 

discusses the calculation of forecast accuracy and Section 3.3 describes literature on routing. Section 

3.4 presents related problems from literature and discusses tactical planning. Section 3.5 discusses 

the concept of fairness and how to measure it. Section 3.6 draws conclusions on the literature 

research for this research. 

3.1 Crime forecasting 
This research aims to create a medium-term forecast of crime. Gorr and Harries (2003) note that, 

while “conventional forecast methods are of little use in predicting the behaviour of individual serial 

criminals”, there are patterns in crime. Furthermore, they argue that crime forecasting became 

relevant when police began mapping crime using geographic information systems (GIS), and the 

criminality of places was established, based on routine activities  and hot spots (Sherman et al., 

1989). Hot spots are areas that have a relatively high level of criminal activity. There are two types of 

techniques to find hot spots. First, drawing hot spot circles, ellipses, or isopleths (lines through points 

on a map with the same crime density) (Block, 1995). Second, a fixed polygon grid as Van Urk (2012) 

uses.  

Gorr and Harries (2003) state that forecast methods for fixed geographic units can easily draw on 

traditional time series methods of forecasting. Furthermore, they note that forecast methods for 

fixed boundary and ad hoc spatial cluster areas (i.e., hot spots) are complementary. After the use of 

fixed boundary forecasts to narrow down the search for problem areas, clustering methods are of 

use to diagnose and focus on specific targets. Gorr et al. (2003) provide evidence that geographic 

scale is the predominant factor influencing short-term crime forecast accuracy. They conclude that 

the average crime count in a forecast grid cell should be at least 25-35 per time period to achieve an 

acceptable forecast accuracy. Furthermore, Gorr et al. (2003) find that the Holt-Winters double 

exponential smoothing method with monthly seasonality is the most accurate time series forecast 

model for precinct-level crime series, in comparison with naïve forecasting methods and other types 

of exponential smoothing. Chen et al. (2008) compare the AutoRegressive Integrated Moving 

Average (ARIMA) model with Simple Exponential Smoothing (SES) and Hyperbolic Exponential 

Smoothing (HES) to make short-term forecasts for one city. They conclude that the use of ARIMA 

results in a higher forecast accuracy than the use of HES or SES. Felson and Poulsen (2003) find that 

crime varies per day and that the distribution of crime over the day varies per city and within cities. 

Next to retrospective models, also prospective models are in development, although mainly for 

short-term forecasting. Caplan et al. (2011) propose Risk Terrain Modelling (RTM) to forecast 

shootings. The method uses risk terrain maps, based on a range of contextual information relevant to 

the opportunity structure of shootings. Liu and Brown (2003) model a transition probability of crime 

across a police jurisdiction. Cohen et al. (2004) specify a leading indicator model for a one-month-

ahead forecast on the micro-level scale, that takes specific characteristics of areas or neighbouring 

areas (e.g., the number of shots fired in the month), to create future values for the expected crime 

level. Bowers et al. (2004) observe that a burglary in a household increases the probability of a 

burglary for houses within 400 meters of the household, especially on the same side of the street. 

This effect is apparent for up to two months. They use this observation to create prospective maps 

for burglaries. This section shows that there are several explanatory variables for criminal incident 

patterns in literature. However, we do not find an indication for which variables are most important. 

To take multiple explanatory variables for crime like poverty and the unemployment rate into 

account while analysing aggregate crime rates, Osgood (2000) proposes Poisson regression. We can 
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use Poisson regression when we assume that the number of crimes per time interval has a Poisson 

distribution. The Poisson distribution is a discrete probability distribution that gives the probability 

that a number of events occurs in a fixed time interval, given that these events occur with a known 

mean rate and the timing of the events is random and independent. Since crimes are discrete events 

and can be assumed to be independent, the Poisson distribution is suitable for investigating crime 

rates. Next, we should create a model that relates the expected crime rate to the explanatory 

variables, in which every variable gets its own weight. To determine the set of weights for the 

different explanatory variables that makes the model fit best to the historical data, we then use 

regression. The resulting weighted log-linear model can then be used to create the expected number 

of crimes in the next time interval, given that the future values for the explanatory variables are 

known. 

3.2 Forecast accuracy 
To determine the quality of a forecast we need to determine its accuracy. There are several forecast 

error measures available in literature. To determine whether we forecast the seasonal pattern of 

criminality well, the Mean Squared Error (MSE) is a common error measure. Equation 3.1 shows the 

formulation of the MSE, with the following notation: 

 𝑌𝑡 the actual number of incidents at time 𝑡 

 𝐹𝑡 the forecasted number of incidents at time 𝑡 

 
𝑀𝑆𝐸 =  

1

𝑛
∑(𝑌𝑡 − 𝐹𝑡)2

𝑛

𝑡=1

 
 

Equation 3.1 

Since we deal with intermittent occurrences of criminal incidents and since the forecast values are 

generally very small, the MSE does not provide clear results. Hyndman (2006) proposes a forecast 

error measure for intermittent occurrences: the Mean Absolute Scaled Error (MASE). The MASE 

compares the mean absolute error of the forecast, with the mean absolute error of a naïve forecast. 

The naïve forecast uses the actual value of the current period as the forecasted value of the next 

period. The division of the actual forecast performance by the naïve forecast performance scales the 

result. Equation 3.2 gives the formulation of the MASE: 

 

𝑀𝐴𝑆𝐸 =

∑ |𝑌𝑡 − 𝐹𝑡|𝑛
𝑡=1

𝑛
∑ |𝑌𝑖 − 𝑌𝑖−1|𝑛

𝑖=2
𝑛 − 1

  

 
Equation 3.2 

To determine the forecast quality in two dimensions, time and space, we need a different forecast 

error measure. Willis (2002) discusses a measure called “spatial frequency analysis” to determine the 

spatial forecast error in geographical demand for electrical power. Spatial frequency analysis divides 

an area into regions and determines the frequency with which the forecast errors per area switch 

between negative and positive. Figure 3.1 shows two exemplary “error maps”, with an indication on 

every grid area whether the forecast is over or underestimated. Both error maps have the same 

mean error, the same average absolute error and the same root mean square error. However, map A 

will probably lead to serious underestimation of required capacity in the eastern areas and 

overcapacity in the western areas, while map B will lead to no problems as power stations cover 

around 40 areas at the same time. 

The discussed forecast error measures are designed to determine the accuracy of forecasts that 

determine the amount of, e.g., future demand. However, the forecasting procedures by Van Urk 

(2012) create a relative forecast in which the numerical value of the forecast at a given time and 

location is no indication of crime intensity. Only by comparing the forecast value with the forecast 
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value at other times and locations we can determine where hotspots of crime intensity are. We did 

not find any specific forecast error measures for a relative forecast in literature. 

 

Figure 3.1 cross-sections through area error maps A and B reveal a difference in how fast the errors “oscillate” as a function 
of distance (Willis, 2002). 

3.3 Emergency vehicle routing 
Since the locations of hotspots of crime vary during the time of the day, it is not optimal to 

determine only fixed helicopter positions. By making surveillance flights with routes that follow the 

geographical pattern of hotspots, it is possible to decrease average arrival times to incidents. Van Urk 

(2012) found that the problem solved by the routing module in this research is a special case of both 

the Location Covering Problem (LCP) and the Dynamic Vehicle Routing Problem (DVRP). 

The LCP is a combinatorial optimization problem in which the static location of resources is optimized 

to maximize the coverage of demand. There are several versions of the Location Covering Problem. 

Toregas et al. (1971) propose a model for the Location Set Covering Problem (LSCP) in which a set of 

locations is given where a resource may be positioned. The LSCP model then minimizes the number 

of locations required to cover all demand points. A demand location is covered by a resource when 

the distance between them is less than a predefined distance. Church & Revelle (1974) proposed the 

Maximal Covering Location Problem (MCLP). In the MCLP, a fixed number of resources and a set of 

possible locations is given. The objective function is then to maximize the number of demand points 

covered by the set of resources. Schilling et al. (1979) extend the MCLP to incorporate multiple 

resource types. Li et al. (2011) provide an overview of extensions for emergency response facility 

location models. The LSCP and MCLP are both static models. Owen & Daskin (1998) provide a review 

of probabilistic models that model emergency services as queues and determine availability of these 

services and waiting times. Kolesar & Walker (2012) developed a relocation model in order to take 

the effect of dispatches into account. 

The DVRP is also a combinatorial optimization problem, where current and unknown future service 

requests are filled by multiple vehicles. Laporte (1992) notes that the Vehicle Routing Problem (VRP) 

is a special case of the DVRP, where all requests are known in advance. Eksioglu et al. (2009) provide 

an overview and taxonomy of the vehicle routing field. 

Since we use the routing module as a fixed input in this research, we do not describe the literature 

on the LCP and DVRP in further detail. Van Urk (2012) concludes that the problem of positioning 

helicopters to maximize the number of arrests can be described as a DVRP with only delivery (of air 

support) with hard and soft constraints. However, Van Urk (2012) concludes that the problem is 

better described as a LCP due to the short time between incoming requests and the end of the hard 

time window. The focus of this research is to use the current routing functionality as proposed by 

Van Urk (2012) to create efficient long-term plans. 
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3.4 Tactical planning and related problems 
Spatial and temporal forecasting, routing, and tactical planning methods are applicable to multiple 

problems besides police resource planning and scheduling. Davidson et al. (2009) mention that ocean 

current forecasting and routing is used to estimate the minimum cost ship route for freight ships and 

to determine the best route for icebreakers. Furthermore, Moreira-Matias et al. (2012) discuss the 

short-term prediction of taxi-passenger demand to real-time guide taxi drivers to areas where there 

is less congestion and more demand. Other examples include the temporal and geographic clustering 

of residential fires for targeted fire prevention by Wuschke et al. (2013), and the forecasting of 

medical demand to allocate medical facilities by Knight et al. (2012).  

Next to police helicopter patrol routes, the forecasting and routing combination is also applicable to 

patrol routes for police cars and officers on foot. Chawathe (2007) proposes a patrol planning 

method to optimize coverage of important locations at minimum cost. However, he does not discuss 

where the importance of locations is based on. Reis et al. (2006) propose a genetic algorithm that 

determines optimal patrol routes given a set of simulated criminals that try to rob a number of 

targets. We did not find any patrol route optimization based on a forecast in literature. 

Ambulance planning is related closely to police helicopter planning, as arrival time is the crucial 

factor for success and resources are expensive. Van Essen (2013) describes ambulance planning 

models on the strategic and tactical level. On the strategic level she discusses the problem of locating 

ambulance bases and on the tactical level she identifies the problem of the number of ambulances to 

allocate to a base to cover all demand. These problems are similar to the helicopter allocation 

problem of Buiteveld (2011), which we consider on the strategic level since the allocation to bases is 

permanent.  

In Section 3.3 we discuss three types of ambulance planning models: deterministic, probabilistic, and 

dynamic models. Deterministic models determine the optimal static location of ambulances to 

maximize coverage. Probabilistic models model ambulances as servers and use queuing theory to 

model availability and waiting times. Dynamic models relocate ambulances after one or more 

ambulances are dispatched to emergencies. An example of a dynamic model is proposed by Reuter & 

Michalk (2012). We refer to Brotcorne et al. (2003) for a detailed discussion and classification of 

deterministic, probabilistic, and dynamic models for ambulance location and relocation. We identify 

several levels of accuracy with which the availability of ambulances is and can be modelled. For 

example, Van Essen (2013) uses a deterministic model with  Euclidian distances between ambulances 

and patients. The probabilistic models is more accurate and takes into account that ambulances can 

be occupied, while the dynamic models allow the relocation of ambulances. To the best of our 

knowledge, there is no literature on the routing of emergency vehicles based on forecasts. We 

conclude that tactical planning problems can be solved with different degrees of detail. 

3.5 Fairness 
Fair allocation of public services, or “equity”, is a critical and controversial factor when deciding how 

to allocate public resources (Stone, 2002). During location optimization, it is often appropriate to 

combine equity and efficiency measures, as equity measures alone can produce undesirable results 

(Smith, Harper, & Potts, 2012). Figure 3.2 shows an example with customers C1 to C6 and Location L1 

and L2. Location L1 at the approximate centre of the circular pattern of customers C1 to C6 equalizes 

the distance travelled by the customers and is therefore more equitable then L2, although L2 has a 

shorter distance to all customers.  
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Figure 3.2: Example showing the possible inefficiency of equitable locations (Smith et al., 2012). 

Since there are numerous different equity measures, Marsh and Schilling (1994) review the literature 

on equity measurement in Location Theory to create a common notation and framework to organize 

the measures. They use the following definitions: 

 Equity: when each group receives its fair share of the effect of the facility siting decision. 

 Effect: a change in the status quo of a value of interest caused by influences from the 

location and size of facilities being sited. 

 Group: an aggregation of individuals on which effects are measured. A group can consist of 

one individual. 

Marsh and Schilling (1994) then discuss 20 measures and organize them in a framework. It is 

important to point out that the measures actually measure inequity, which means that a bigger value 

indicates a less equal distribution. Equity would be maximized by minimizing the resulting value of 

the measure. Table 3.1 shows a summary of the framework with an example measure for every cell. 

They use the following notation: 

 𝑖, ℎ:  Index of group being compared. 

 𝐸𝑖: Effect on group 𝑖.  

 𝐸̅: Arithmetic mean of the effect over all groups. 

 𝐴𝑖:  An attribute of group 𝑖. 

The measures are organized by the type of scaling and the reference distribution that the measures 

use, of which we now discuss the possible types. Scaling is used when the size or another attribute of 

group differs between groups. General scaling is the division of the effect on a group by the value of 

some attribute of that group. Normalization is a method of scaling by dividing the effects by the 

mean effect. Additionally, it is possible to divide the measure by the number of groups (N). Since the 

number of groups does not change during this research, this has no added benefits. The reference 

distribution can be described as the target solution. There are three types of reference distributions. 

When all groups should be treated equal, the quality of a solution is the difference between the 

effect on each group and the mean effect on all groups. When a group should receive an effect 

according to an attribute, the quality of the solution is the difference between the actual effect and 

the attributed effect on a group. Finally, it is also possible to compare all groups with a chosen group. 

Since choosing a group as the reference standard is not realistic, it is probably better to compare all 

groups to all other groups. This is called the peer reference distribution. 
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Scaling 

Reference distribution 

Peer Mean Attribute 

None |𝐸𝑖 − 𝐸ℎ|𝑝 |𝐸𝑖 − 𝐸̅|𝑝 |𝐸𝑖 − 𝐴𝑖|𝑝 

Normalized 
1

𝑁2

|𝐸𝑖 − 𝐸ℎ|𝑝

𝐸̅
 

1

𝑁

|𝐸𝑖 − 𝐸̅|𝑝

𝐸̅
 

1

𝑁
|
𝐸𝑖

𝐸̅
−

𝐴𝑖

𝐴̅
|

𝑝

 

General |
𝐸𝑖

𝐴𝑖
−

𝐸ℎ

𝐴ℎ
|
𝑝

 |
𝐸𝑖

𝐴𝑖
−

𝐸̅

𝐴̅
|

𝑝

 |
𝐸𝑖 − 𝐴𝑖

𝐴𝑖
|

𝑝

 

Table 3.1: Framework for equity measures (Marsh & Schilling, 1994). 

Implementation of the equity measures in location optimization problems is commonly done with 

multi-criteria mathematical programs. For example, for MCLP problems it is possible to incorporate 

the equity function into the objective function or in a constraint (Church and Revelle (1974), Chanta 

et al. (2011), Smith et al. (2012)). 

3.6 Conclusion 
This chapter discusses relevant literature on hotspot forecasting, forecast error measures, 

emergency vehicle routing problems, tactical planning, and fairness. In Section 3.1 we find that hot 

spot forecasting of crime in literature is mostly retrospective and prospective models are only used 

for short-term forecasts. Section 3.2 shows that literature contains forecast measures for temporal 

and spatial forecast, but the measures do not adequately measure the accuracy of the timing and 

location of hotspots in hotspot forecast. Section 3.3 describes literature regarding emergency service 

location, relocation, and routing, and we find that the routing model by Van Urk (2012) satisfies the 

requirements of this research. In Section 3.4 we discuss forecasting, routing, and tactical planning for 

other resources like ambulances, fire trucks, taxi’s, and icebreakers, and conclude that tactical 

planning problems can be solved with different degrees of detail. Finally, Section 3.5 discusses the 

concept of equity and equity measures from literature. 
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4 Forecasting and routing 
This chapter describes the improvements and extensions of the operational planning tool. Section 

4.1 introduces a method to make the input data suitable for the tool, Section 4.2 discusses the 

adjustments to the forecasting technique to include weekly and seasonal patterns, and Section 4.3 

explains the alterations to the flight value estimator to improve its accuracy. Section 4.4 identifies 

improvement options for the routing method and Section 4.5 provides the conclusion of this chapter. 

4.1 Forecast data input 
After the research of Van Urk (2012), the LVP increased the scope of the incident data to include not 

only robberies of commercial locations, but also burglaries and street robberies. Currently, a dataset 

is available of approximately 300,000 incidents from 1-7-2010 to 30-6-2013. Of these incidents we 

know the location (zip code), date and time, and type. We round up the incident times to the next 

two minute interval (e.g., 08:03:15 becomes 08:04, etc.), as the forecast tool works with two minutes 

intervals. Figure 4.1 shows the average distribution of incidents over the day, by adding the number 

of incidents in every time interval. We expect a gradual pattern of criminal intensity over the day but 

find a pattern with sudden peaks. We conclude that the distribution of incidents over the day does 

not seem natural. We expect that police officers, who report incidents to the police data system, 

round the time of incidents to hours, half hours, and quarter hours, as the peaks are at those times. 

 

Figure 4.1: Distribution of incidents over time (initial data). 

The incident pattern has an impact on the outcomes of this research. Based on this pattern, optimal 

flights would probably start just before full hours. The optimal flight duration would then be the 

shortest possible time it takes to get to a hotspot at the full hour, and fly back to a base. Since this 

would lead to inefficient routes in real-life, we want to restore a realistic pattern by correcting the 

timing of incidents for the rounding errors made earlier. Furthermore, we want to keep the 

geographical properties of the original data. We identify three methods to correct the timing of the 

incident data. 

First, we can smooth the number of incidents per time interval with techniques such as exponential 

smoothing or the moving average. After we determine the number of incidents per time interval, we 

then have to determine the incidents to change the timing of, and how to adjust the timing. For 

example, when at 08:32 we only had 5 incidents but should have 30 according to the smoothing 

result, we should find 25 incidents from times with too many incidents to fill the shortage.  

Second, we can aggregate the incidents into time buckets. For example, we can determine the 

number of incidents per hour and then distribute these incidents over the 30 time intervals in that 
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hour. The redistribution of the incidents over the time intervals within the bucket can be done by, 

e.g., a uniform or normal distribution. As we do not want to create a bias, we recommend using a 

random number generator that generates time adjustments according to the chosen distribution. 

Third, we can assume that incidents with specific times such as 08:39 are recorded correctly, and 

spread out only the peaks in the number of incidents. For every incident in a peak we then have to 

determine how much to adjust it. Again, we can use a random number generator with a distribution 

(e.g., normal or uniform) to spread a peak over the surrounding times.  

Every described method has disadvantages. The resulting distribution of all methods depends mostly 

on the parameter setting, and we cannot choose between different parameter settings as we do not 

have a measure for the quality of the resulting distribution. Furthermore, the method that shuffles 

incidents around to fill up shortages after smoothing the distribution may be biased. Finally, the 

aggregation per time bucket creates unrealistic jumps in criminal activity at the cut-off point 

between two buckets.  

Since the method to spread peaks is easy to understand and the underlying logic is clear to the LVP, 

we apply it. As we do not have any data to underpin the settings for a normal distribution, we use a 

uniform distribution. We let the bounds to the uniform distribution depend on the type of peak. The 

incidents that are booked on 8:00 could probably have happened between 7:30 and 8:30. Therefore, 

we use a random number generator with a uniform distribution to distribute the incidents over this 

time period. We use the same procedure for incidents on half hours (distribute uniformly over 

interval from a quarter hour before the incidents to a quarter hour after the incidents), and for 

incidents on quarter hours (spread over interval from 5 minutes before to 5 minutes after the 

incident time). Figure 4.2 shows a new distribution of incidents over the day after redistributing the 

incidents. 

 

Figure 4.2: Distribution of incidents over time after redistribution of incidents. 

From Figure 4.2 we conclude that the peaks have been decreased in size, and that the distribution of 

incidents over time is improved (more gradual) in relation to Figure 4.1. However, we do find a 

disadvantage of the uniform distribution with the current settings. Time intervals that are close 

enough to multiple peaks such as 08:18 (within 30 minutes of 08:00 peak, within 15 minutes from 

08:30 peak, and within 5 minutes of 08:16 peak) become new peaks. Furthermore, time intervals at 

times such as 08:00 are underestimated because they only get their part of the spread, but do not 

have additional incidents that a time such as 08:02 already had. Therefore, we recommend for future 

research to determine the difference between the uniform distribution and, e.g., a normal 

distribution.  
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4.2 Forecasting 
The goal of this section is to extend the current forecasting method to create the required data for 

tactical planning. As the tactical planning should distribute the flights over a one year period, we 

need to extend the scope of the forecasting method to one year. Section 4.2.1 extends the current 

forecasting method to a planning horizon of multiple months. Section 4.2.2 introduces a less complex 

alternative method and Section 4.2.3 proposes an adjustment to the geographical aggregation 

method to increase the forecast quality. Section 4.2.4 introduces methods to enable the LVP to 

adjust the forecast to include incident priorities and the difference in effectiveness of helicopters 

during the day and night. 

4.2.1 Extend scope and increase speed of forecasting method 
This section describes how we propose to extend the scope of the forecasting method from one day 

to multiple months and how we introduce weekly and seasonal patterns into the forecast. 

Furthermore, we discuss a technique to increase the forecast speed. Finally, we discuss the effect of 

the forget factor and propose an improvement for it. 

Seasonal pattern 

As discussed in Chapter 2, the forecasting method currently forecasts one day ahead. The total value 

of the one-day forecast is unit-less, and depends on the number of incidents in the input data set and 

the data aggregation settings. Since it is unit-less, only the height of the forecast at a given time and 

location in comparison with the forecast value at other times and hexagons is indicative.  

We now want to extend the scope of this relative forecast to multiple months. The forecast output 

should not only forecast peaks in criminal intensity in place and time within one day, but also 

distinguish between different weekdays and months. For example, the forecast should show the 

relative difference in expected criminal intensity between a Tuesday morning in January and a 

Thursday night in September. 

To extend the scope of the forecast we can create a new forecasting method that forecasts for a 

multiple day scope in one calculation, or create a multiple day forecast by combining several one-day 

forecasts. Since the current forecast method creates a daily pattern based on the month and 

weekday crime distribution characteristics, the multiple use of the method is straightforward. 

Furthermore, since forecasting is not the main goal of this research and we are limited to the 

available AIMMS software, we choose to apply the current method multiple times, instead of 

creating a new forecast method. 

When we use the current forecasting method multiple times, the resulting forecast does not show a 

seasonal pattern. Since the total forecast value per day depends only on the number of incidents in 

the data set, we only see different daily patterns. Therefore, we note that the terms “weekday 

factor” and “month factor” are a bit deceiving, as the factors do not correct the forecast for the 

relative criminal intensity of the weekday and month that we forecast for. We propose to rename 

the current weekday and month factors the “weekday distribution factor” and “month distribution 

factor”. The factors provide a conversion factor to transform data from a different weekday or month 

to the distribution of the target weekday/month. 

The main influencing factors of criminal intensity are the day of the week and the number of non-

daylight hours. We related the influence of non-daylight hours to months in Chapter 1. Figure 1.4 

shows the monthly pattern and Figure 4.3 shows the average weekly pattern in 2012. From data 

analysis we found that this average weekly pattern holds for all months.  
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Figure 4.3: the average weekly crime pattern in 2012. 

We propose to use a technique similar to the weekday and month distribution factors to convert 

data from days with a different total criminal intensity to the target day. We use the terms weekday 

and month factor as the relative criminal intensity of that weekday or month, related to the busiest 

weekday/month combination. Equation 4.1 shows the new formulation for the month factor with 

the same notation as Equation 2.2.  

 
𝑚𝑜𝑛𝑡ℎ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑚𝑡,𝑚𝑖

=  
∑ (𝑁𝑚𝑡,ℎ)ℎ

∑ (𝑁𝑚𝑖,ℎ)ℎ

, 
 

Equation 4.1 

   

Where ∑ (𝑁𝑚𝑡,ℎ)ℎ  is the total number of incidents of the target month, and ∑ (𝑁𝑚𝑖,ℎ)ℎ  is the total 

number of incidents in the month of the data we transform. We perform the same type of 

calculation for the weekday factor where we relate all weekdays to each other. Before we determine 

these factors, we note that we correct for the number of days per month and weekday, since we 

would otherwise constantly underestimate February and months with 30 days. 

To convert data from months with higher criminal intensity to a forecast for a target month with a 

lower criminal intensity, we should alter the current weekday and month distribution factor by 

combining it with the month and weekday factor. Equation 4.2 shows the combined formulation: 

 

𝑚𝑜𝑛𝑡ℎ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑚𝑡,𝑚𝑖,ℎ𝑖
=  

(
𝑁𝑚𝑡,ℎ𝑖

∑ (𝑁𝑚𝑡,ℎ)ℎ
)

(
𝑁𝑚𝑖,ℎ𝑖

∑ (𝑁𝑚𝑖,ℎ)ℎ
)

∗  
∑ (𝑁𝑚𝑡,ℎ)ℎ

∑ (𝑁𝑚𝑖,ℎ)ℎ

  

 
 

Equation 4.2 

   
We then combine the month and week distribution factor to create the day distribution factor for a 

certain target day as in Van Urk (2012). 

𝑑𝑎𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑚𝑡,𝑤𝑡,ℎ𝑖
= 

𝑚𝑜𝑛𝑡ℎ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑚𝑡,ℎ𝑖
 ∗ 𝑤𝑒𝑒𝑘𝑑𝑎𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑤𝑡,ℎ𝑖

 
Equation 4.3 

 

Figure 4.4 shows the result of the seasonal and weekly pattern extension. We scaled the total 

forecast value of the year by dividing it by the actual total number of incidents in that year, to 

compare both distributions of crime over time. The seasonal pattern does not take into account 

influencing factors like holidays, which shows clearly on the 31st of December. However, overall we 
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see that the pattern is a combination of the week and month patterns and follows the actual 

seasonal pattern closely. 

 

Figure 4.4: Seasonal pattern in both the forecast and the actual incident data of July 1st 2012 to July 1st 2013. 

Fast forecasting for extended forecast scope 

To extend the forecast to a year, we can use the original procedure, as described in Van Urk (2012) 

with the adjusted weekday and month factors, multiple times. For every day in the scope, we use all 

incidents in the dataset. We then use spatial aggregation and aggregation over time, which takes 

approximately half a minute and three minutes per day respectively. For a forecast of a year, this 

results in an estimated forecasting time of 20 hours and thus a smarter method is required.  

Since we use all available data for every day of the forecast, the only difference between forecasts 

for different days is the applied month and weekday distribution factors. Therefore, we can convert a 

whole day of forecast into another day by these distribution factors. For an explanation of the 

procedure, we refer to Section 2.3.1. 

We find that the average absolute difference between a forecast made with the faster method and 

with the original method is approximately 3% of the mean forecast value. Appendix D describes the 

causes for the inaccuracy. We conclude that the forecast error is minor and can be decreased by 

reducing the size of the blocks to half-hour blocks or even two-minute blocks. The fast forecasting 

method decreases the computation time by 97% to less than half an hour for a one-year forecast. 

Finally, we find that this technique is useful for forecasts with a scope of more than two days, since it 

requires the slower forecasting method to create the forecast for the first two days. 

Forget factor 

Van Urk (2012) uses a monthly forget factor to increase the speed of adaptation of the forecast to 

changes in the incident data. Every month, the forecasting method forgets a fraction 𝛼 of the old 

data, which means that old data is multiplied by the factor (1 − 𝛼). This forget factor calculation has 

two undesirable effects. 

First, when we make a two-month forecast in January 2014, the historic data is one month older in 

comparison with February 2014 than with January 2014. For the February 2014 forecast we would 

thus forget the fraction 𝛼 of the data and the expected criminal intensity would thus be a fraction 𝛼 
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lower. This leads to a significant underestimation of criminal intensity in the last months of a one-

year forecast.  

Second, a forget factor that is based only on the number of months between the date of the incident 

and the date of forecast does not distinguish between different types of months. For example, when 

we forecast for a day in January, one-year old data from a day in January is a better indicator than 

data from a day in June that is six months old, but is discounted by a higher factor.  

Table 4.1 shows both effects for a forget factor of 0.01. The discount factors are higher for target 

months that are further in the future. Data from the same month as the target month is discounted 

by a higher factor than data that is less old, but from a completely different month. This first effect 

does not occur when we apply the fast forecasting method as described before, since we apply the 

forget factor once to create the first day of the forecast, that we then convert to create the rest of 

the forecast. 

Discount factor Target month January 2014 Target month February 2014 

June 2013 (1 − 0.01)7 = 0.932  (1 − 0.01)8 = 0.922  

January 2013 (1 − 0.01)12 = 0.886 (1 − 0.01)13 = 0.877 
Table 4.1: example of current forget factor calculation 

Therefore, we propose to replace the monthly forget factor by a yearly forget factor or to use a 

formulation to determine the relative quality of the data to the target forecast day (e.g., based on 

the month and weekday of the data). 

4.2.2 New forecasting method without factors 
As discussed in Section 4.2.1, Van Urk (2012) proposes to determine the daily crime distribution of a 

Monday in January by multiplying for every hour the average crime distribution factor for that hour 

in January by the corresponding factor for an average Monday. However, when we multiply the 

January factors with the Monday factors, we do not necessarily get the distribution of a Monday in 

January. Figure 4.5 shows that the result of the multiplication of the January and Monday factors 

over- and underestimate the actual distribution of incidents on a Monday in January.  

 

Figure 4.5: Distributions of an average day in January, an average Monday, the expected Monday in January, and the actual 
Monday in January. 
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We find that this over- and underestimation is due to the multiplication of the hourly weekday and 

month distribution factors. Figure 4.6 shows an example for the case where the average daily 

distribution is the same for days in January as for Mondays in general. The average distribution of 

crimes over a Monday in January should then be exactly the same as both distributions. However, we 

find that the multiplication leads to increased fluctuations, and thus overestimates peaks and 

underestimates relatively calm periods.  

 

Figure 4.6: Expected distribution of a Monday in January, in case of an equal distribution of incidents over the average 
January and Monday. 

There are several alternative methods possible to forecast the daily distribution of crime. Instead of 

multiplying the hourly weekday and month factors by each other, we can also take the average of 

both factors per hour. Alternatively, we can stop using weekday and month distribution factors. 

Instead, we can determine the distribution of criminal intensity over, or the entire forecast of, a 

Monday in January by using only data of historical Mondays in January. We call this the “weekday per 

month” forecasting method. This results in a forecast that is based on less data points, but has the 

added benefit of a geographical distribution of incidents that changes between weekdays and 

months. Since there is enough data available, and implementation at the LVP requires a simple 

procedure that can be automated in the current software tool, we choose to test the “weekday per 

month” factor method. 

4.2.3 Spatial aggregation 
Section 2.3.1 discusses the use of spatial aggregation to create a forecast for every location in the 

Netherlands, at any time. Spatial aggregation uses the assumption that when a historic incident 

happened in a certain hexagonal, then this data point is useful to predict the future crime level and 

pattern in that location, but also in surrounding locations. Figure 2.5 shows the factors that Van Urk 

(2012) proposed to spread incidents over rings of surrounding hexagons. Spatial aggregation was 

required because of the limited size of the dataset in earlier research.  Figure 4.7 shows that the 

effect of the spatial aggregation is useful to create a forecast that covers most places in the 

Netherlands. However, it also shows that the approximation method fills the western area of the 

Netherlands with a high intensity forecast. When we compare this with the actual incident pattern, 

we see that the forecast looks less like the actual pattern than the initial geographical distribution. 
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Figure 4.7: the forecasted geographical distribution for 2013 before spatial aggregation (left) vs. the forecasted 
geographical distribution after spatial aggregation (middle), and the actual distribution of forecasted incidents (right). 

We conclude that the average distribution of crime over the Netherlands changes little between 

years and that spatial aggregation decreases the accuracy of the forecast. Because of the decrease in 

forecast accuracy, we propose to compare the accuracy and performance of a forecast with five rings 

around each incident’s hexagon, with forecasts with one and no rings. The performance of a forecast 

is the performance of the set of routes that results from making a tactical planning with the forecast. 

We give exact definitions of forecast accuracy and performance in Section 6. We expect that less 

spatial aggregation increases the forecast accuracy and the forecast performance. 

4.2.4 Forecast corrections for effectiveness and priority 
This section discusses how we can take the effectiveness of helicopters into account in Section 

4.2.4.1. Furthermore, Section 4.2.4.2 explains how to model different types of incidents. 

4.2.4.1 Location population density and daylight 

The LVP performed an analysis of the effectiveness of historical helicopter deployments. Table 4.2 

shows the result of the LVP effectiveness and daylight analysis. The analysis shows that the 

effectiveness of helicopter deployment after sunset is higher than for deployment during daylight 

hours. Furthermore, the table shows (non-linear) differences between different levels of 

urbanization. Criminals tend to be harder to find in high density city areas and in low density rural 

areas, than in average density areas such as suburbs. In the case of high density areas this is probably 

because there are many buildings a criminal can enter, and because there are more civilians on the 

street. In low density rural areas, criminals can escape at higher speeds than in low density urban 

areas, and rural areas are commonly further away from the helicopter locations. Thus, incidents in 

the centre of Amsterdam are less interesting for helicopters than incidents in the suburbs. However, 

since the effectiveness of the helicopter per population density is based on a small dataset, the LVP 

concludes that there is only a significant difference between day time and night time effectiveness. 

Population density Effectiveness during daylight Effectiveness after sunset 

Non-urban municipality 5,2% 10,8% 

Little urbanized municipality 5,8% 10,0% 

Moderately urbanized municipality 1,4% 6,9% 

Highly urbanized municipality 3,7% 11,2% 

Very Highly urbanized municipality 3,9% 5,9% 

Average effectiveness 4,1% 8,3% 
Table 4.2: effectiveness of helicopter deployment per population density and light conditions. 
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We now want to adjust the forecasting and routing method to incorporate the effectiveness of 

helicopter flights. The timing of helicopter flights depends on the results of the flight value estimator, 

which depend on its input: the underlying forecast. Therefore, we have to adjust the input of the 

estimator to incorporate daytime and night time effectiveness. There are two ways to correct the 

input for extra information. We can correct for effectiveness during the calculation of the forecast, or 

use a filter to correct the forecast afterwards. For clarity, we choose to disconnect the forecasting 

method from the effectiveness corrections. We first create a forecast and then correct it with 

Equation 4.4, where 𝑒𝑡 is the expected effectiveness at time 𝑡 ∈ 𝑇. 

 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑓𝑙,𝑡 = 𝑓𝑙,𝑡 ∗ 𝑒𝑡 Equation 4.4 
Figure 4.8 shows the effect of taking into account the effectiveness on the temporal pattern of the 

forecast. We note that the transition from daytime effectiveness to night time effectiveness (around 

22:00) and vice-versa creates a rather abrupt shift in the corrected forecast values. 

 

Figure 4.8: effect of the daylight effectiveness factor on the temporal forecast of 1-6-2012 on Schiphol.  

4.2.4.2 Priorities 

Next to the location and date/time of the incidents in the data set, we know of which type (robbery 

of commercial location, burglary, or street robbery) the incidents are. Since the police may find some 

types of incidents more important than others, the decision support system should enable the LVP to 

determine a priority value per incident. Furthermore, the LVP determined that the forecast should 

not be influenced more by types of crimes that happen more often. The LVP therefore uses the 

priority value to compensate for the difference in the number of incidents and proposes a priority 

value based on the relative difference between the number of incidents of different types of crimes. 

Table 4.3 shows the number of incidents and priority value per type of crime. 

Type of crime Number of incidents (2009-2012) Priority value of Incidents 

Burglary 335,595 1 
Mugging 33,366 10.06 
Robbery 10,592 31.68 

Table 4.3: Number of incidents and priority value per type of crime (Korteweg, 2014). 

To take priorities into account we have the same possibilities as for taking effectiveness into account. 

Priorities can influence timing and routes, and the forecast should thus be corrected for priorities. 

Since priorities depend on specific incidents instead of times and locations, we have to correct the 

forecast already in the forecasting process, before spatial and temporal aggregation. In Chapter 6 we 

investigate the effect of effectiveness and priorities on the results of the forecasting and routing 

method. 
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4.3 Optimal start time estimation 
With the forecast available, we now want to determine the optimal start time. As discussed in 

Chapter 2, the tool by Van Urk (2012) uses an estimation method, because it takes too long to 

calculate a route for every time interval and choose the best one. The correct timing of flights is the 

most important step in creating a tactical planning and thus sets an upper bound to performance. 

Therefore, Section 4.3.1 evaluates the quality of the flight value estimator by Van Urk (2012). Section 

4.3.2 then proposes a new flight value estimator.  

4.3.1 Quality of the current flight value estimator 
We determine the quality of the flight value estimator by comparing for 720 time intervals (one day) 

the difference between the expected and the actual coverage of the optimal route of that time 

interval. We determine the optimal flight value, or route quality, by calculating the optimal route at a 

start time and take the total forecast coverage by a helicopter on that route. Figure 4.9 shows the 

expected flight value according to the flight value estimator against the actual total coverage by the 

optimal route, for a 1.5 hour flight that starts and ends on Schiphol. 

 

Figure 4.9: The estimated route quality does not behave like the actual route quality but correctly predicts the peak. 

From Figure 4.9 we conclude that the maximum of the function of the flight value estimator is at 

approximately the same point in time as the actual maximum route quality. The flight value 

estimator thus seems able to find the optimal start time. However, when we compare the expected 

flight value of the best 1,460 peak times of an annual forecast with the actual forecast coverage of 

flights at these times, see Figure 4.10, we find that a higher expected forecast coverage not always 

results in a higher actual forecast coverage.  

 

Figure 4.10: comparison of the expected forecast coverage and the actual forecast coverage for 1460 peak times. 
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Furthermore, since the estimator is independent of the coverage function of the helicopter and 

constraints to the possible route of a helicopter, it produces inaccurate results when we, e.g., want 

to compare route qualities from different start locations. Figure 4.11 shows that when the coverage 

function of the helicopter is set smaller, the actual coverage decreases but the estimated coverage 

stays the same. Thus, the estimated route quality is overestimated. Furthermore, analysis showed 

that this level of overestimation differs per location. This implies that we cannot use the original 

flight value estimator directly to find the optimal start location. 

 

Figure 4.11: Comparison of the estimated and actual route quality of Schiphol for a helicopter with a smaller coverage area. 

The heuristic currently determines the best start time by looking at the intensity of criminal incidents 

during the expected flight time. We cannot adjust it for the total coverage distance or success 

function, without determining where the coverage area is at a given time. To take all route 

constraints into account, we have to create an actual route. We want to use a more accurate 

estimator and thus create a new flight value estimator in Section 4.3.2. 

4.3.2 New flight value estimator 
We want to develop a new flight value estimator that has an increased accuracy, but is fast enough 

to be feasible to use in practice. The estimator should take into account the origin and destination of 

a flight, the size of the helicopter coverage area, and the maximum number of visits per location. To 

take into account the limited speed of a helicopter that restricts it to fly only to neighbouring 

hexagons in one time interval, we conclude that we need to construct an actual feasible route. 

Since it takes too much time to create feasible routes with an exact method, we need a heuristic. The 

heuristic should create a feasible route between the given start and end location. We thus propose 

to use a heuristic that starts at the start location and stepwise determines the next best location to 

fly to, given the current location. We identify several restrictions to the route. The heuristic should 

make sure that the route finishes at the end location. The possible locations where the helicopter can 

fly to should thus be limited to make sure that the helicopter can always get to the destination in 

time. The heuristic should also count the visits of the route to different hexagons and be able to limit 

the possible next hexagons to the hexagons with less visits than the maximum number of visits. We 

propose to make the last constraint a soft constraint, since we rather have a feasible route with 

some hexagons visited more often than allowed, than an infeasible route. We identify two options to 

determine the helicopter location in the next time interval, given the current location: 

1. The helicopter flies to the location that has the highest incident coverage in the next time 

interval, and is allowed given the restrictions. 

2. The helicopter flies in the direction of the biggest hotspot in the Netherlands, when this is 

allowed by the route restrictions. 
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The first option is a greedy heuristic that looks only one time interval ahead. The heuristic first 

determines the locations 𝑚 ∈ 𝐿 that the helicopter can go to from its current location, according to 

several criteria. First, the helicopter should be able to reach the locations in one time interval. 

Second, the locations should enable the helicopter to reach the destination in time, which means 

that the distance to the destination should be equal or less than the remaining time in the flight. 

Finally, locations are only allowed when the helicopter has not visited the location for the maximum 

number of times in earlier time intervals. For every allowed location, the greedy heuristic determines 

the forecast that the helicopter would cover on that location given the coverage function, by 

Equation 4.5. We use 𝑓𝑙,𝑡 to denote the value of the forecast at a given location 𝑙 ∈ 𝐿 and time 𝑡 ∈ 𝑇. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙′,𝑡 is the coverage of a location 𝑙′ ∈ 𝐿 at time 𝑡 ∈ 𝑇 by next possible location 𝑙 ∈ 𝐿. 

 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙 =  ∑ 𝑓𝑙′,𝑡 ∗

𝑙′∈𝐿,𝑡∈𝑇

 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙′,𝑡 Equation 4.5 

Next, a greedy approach is used which sends the helicopter to the location with the highest forecast 

coverage. The greedy heuristic commonly creates a route in which a helicopter flies straight to the 

centre of a hotspot, when part of the hotspot is within the coverage area of the helicopter. This 

works particularly well when we use several aggregation rings in the spatial aggregation step. 

However, this option does not know where to go when all its options have zero forecast coverage or 

when all possible locations to fly to are already visited the maximum number of times. 

The second option determines the location of the biggest hotspot in the next time interval, and flies 

in the direction of that hotspot, regardless of the coverage of the location it flies to. Since the policy 

recognizes a hotspot only after it grows bigger than all other hotspots, at which point it is probably 

close to its peak time after which it will diminish again, we expect that the helicopter commonly 

arrives (too) late. The speed with which hot spots grow and shrink is based mainly on the settings of 

the temporal aggregation step. 

We recommend to combine both options. The flight value estimator thus uses a greedy approach, 

but when all allowed neighbouring locations provide no forecast coverage, the helicopter flies in the 

direction of the biggest hotspot in the Netherlands. 

Figure 4.12 shows that the new flight value estimator almost perfectly estimates the actual value of a 

1.5 hour flight with a total coverage distance of 4 minutes at a given start time: the value of the 

estimator is commonly within 1% of the value of the optimal route.  

 

Figure 4.12: performance of the new and original flight value estimators. 
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We find that the new estimator is slower than the previous flight value estimator by Van Urk (2012): 

it takes half a second to determine the route quality of one time interval. Two estimations per 

second is fast enough for tactical planning as well as operational use, since it takes approximately 6 

minutes and 40 hours to create a one-day and annual forecast respectively. Additionally, Appendix E 

describes a method to decrease the computation time. Since the quality of the solutions given by the 

flight value estimator approaches the optimal solution given by the MILP, it is in this case also 

possible to use the greedy heuristic to determine the actual flight routes. However, currently we are 

not sure whether this accuracy also holds for all forecasting methods. 

4.4 Allocation of stand-by and airborne helicopters 
This section discusses the current method to determine optimal routes and the effect of standing by. 

The performance of the routing method depends highly on the success function that is given as 

input, which thus requires evaluation. Section 4.4.1 discusses the current definition of the forecast 

area, Section 4.4.2 evaluates the current success function, and Section 4.4.3 proposes a success 

function for standing by. 

4.4.1 Airborne helicopter coverage and scoring 
The relation between the arrival time of a police helicopter to an incident and the probability of a 

successful intervention by that helicopter is unknown. Therefore, the area covered by a helicopter is 

uncertain. By increasing or decreasing the helicopter coverage function we can thus determine the 

number of incidents covered by the helicopter. Furthermore, the estimation of the probability of a 

successful assist has an impact on the routing model since it is the main influence on the behaviour 

of the helicopter. For example, the current function of the success factor by Buiteveld (2011) implies 

a 100% success factor for all incidents within 10 minutes flying of the helicopter location. Since the 

helicopter can fly in every direction, the coverage area of the helicopter has the shape of a circle. 

Figure 4.13 shows that a helicopter, e.g., hovering between Amsterdam and Rotterdam is thus 

theoretically able to perfectly cover all incidents in Rotterdam, Amsterdam, Den Haag, and Utrecht.  

 

Figure 4.13: graphical representation of the 100% successful coverage area (arrival time ≤ 10 minutes) of a helicopter flying 
between Rotterdam and Amsterdam. 

To cover incidents in multiple cities, the helicopter is best positioned between the cities. Therefore, 

the average distance to the incidents is larger than when the helicopter would be positioned above 

the biggest hotspot. The probability to catch criminals in the act thus decreases. The function for the 

probability of a successful assist thus influences the average proximity of the helicopter route to the 

criminal hotspots. A more pessimistic function would result in a smaller radius of the helicopter’s 

coverage and would thus result in helicopters staying closer to hotspots. 
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4.4.2 Successful deployment function 
During this research we found that the original function of the success factor of a helicopter 

deployment by Buiteveld (2011), which depends on the arrival time of the helicopter, has several 

flaws when we apply it to flying helicopters to determine optimal surveillance routes.  

First, the success function ignores the preventive effect of the helicopter: criminals do not rob a bank 

with a helicopter hanging overhead. Since intended criminal activities right below a helicopter are 

delayed or relocated it is not always best to fly directly above a hotspot to maximize the incident 

coverage. 

Second, helicopters are never 100% effective and cannot handle multiple incidents at the same time. 

The helicopter effectiveness is thus related to the criminal intensity on the ground (when there are 2 

incidents at the same time, the maximum possible performance is 50%) and the performance of 

ground forces in cordoning off an area in which the suspect must be. However, the model currently 

assumes that all incidents within 10 minutes of the helicopter are completely covered.  

Third, when the police officers on the ground have effectively cordoned off an area in which they 

know there is a criminal, then the arrival time of the helicopter is not decisive for the success of the 

helicopter: police helicopters have found criminals in closed down areas after hours of extensive 

search. However, the current function assumes that incidents more than 15 minutes flying from the 

closest helicopter positioning will never lead to an arrest. 

Fourth, since it is independent from the time that the helicopter is airborne already, we ignore the 

probability that a helicopter is occupied by an earlier criminal incident (further explained in Appendix 

F), or that the maximum distance for which the helicopter can provide coverage depends on the fuel 

that is left in the helicopter. 

To determine the effect of the success function on the behaviour of the system, we propose to test 

alternative definitions and compare the differences. As a function for comparison, we propose an 

exponential decay for the success function. Equation 4.6 shows an alternative function that is based 

on the underlying logic that when the LVP has to fly two times as long to get to an incident, then they 

are probably two times less successful. 

 
 

𝑓(𝑥) =  min(1,
1

𝑥
) Equation 4.6 

   
We can implement a preventive effect into Equation 4.6 by adding a constraint. Equation 4.7 is an 

example of the assumption that of all incidents within 2 minutes of the helicopters, 90% is cancelled. 

 𝑓(𝑥) = 0.1      𝑥 ≤ 1 Equation 4.7 
   
Figure 4.14 shows the probability of successful deployment to an incident to which the arrival time in 

minutes is on the x-axis, for the three identified functions for helicopter deployment success. In 

Chapter 7 we investigate the effect of these different success functions on the resulting set of routes. 
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Figure 4.14: Graphical representation of original and proposed estimated success functions of a police helicopter. 

4.4.3 Stand-by helicopter allocation 
The original success function as discussed in Section 4.4.2 was proposed by Buiteveld (2011) to 

determine the value of stand-by locations and used by Van Urk (2012) to determine the optimal 

route of airborne helicopters. The success function defines that incidents in locations with a maximal 

flight distance of 15 minutes are covered by helicopters that are already airborne. We call 15 minutes 

the maximal coverage distance and 10 minutes the total coverage distance. Since starting from 

stand-by from, e.g., Schiphol takes the first 6 minutes, we create a stand-by coverage function by 

subtracting the first six minutes of the in-flight success function. The maximal coverage distance from 

stand-by is thus 9 minutes. 

 

Figure 4.15: relation between the in-flight and stand-by success functions 

When the total coverage distance is less than the start-up time from stand-by, then the total 

coverage distance of the stand-by location becomes negative. This means that there are no locations 

that are completely covered by a helicopter on stand-by. In Chapter 5 we use the stand-by success 

function to determine when and where to plan stand-by shifts. 

 

Figure 4.16: effect on total coverage distance when the start-up time from standby is longer than the total coverage 
distance. 
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Standing by versus flying surveillance flights 

Knowing the coverage from stand-by and from being airborne, we can determine the added value of 

starting a flight at every point in time. For every time interval we can determine the expected added 

value of a flight that starts at that time interval, and we can determine the total coverage from stand-

by during the flight duration at the start location. 

The current flight value estimator determines the optimal start time of a flight based on the number 

of incidents in the neighbourhood of the start location. However, incidents close to the start location 

can also be covered by a helicopter on stand-by. Therefore, we propose to adjust the estimations for 

the possible stand-by coverage and determine the time interval with the maximum added value of 

being airborne over standing by. Equation 4.8 shows the correction formula, where 𝑓𝑣𝑙,𝑡 is the total 

coverage of a flight that starts at location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇, 𝑓𝑑 is the flight duration, and 𝑠𝑣𝑙,𝑡 is the 

coverage value of standing-by at location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇. 

 

𝑓𝑣𝑙,𝑡 = 𝑓𝑣𝑙,𝑡 − ∑ 𝑠𝑣𝑙,𝑡

𝑡+𝑓𝑑

𝑡

 Equation 4.8 

4.5 Conclusion 
This chapter discusses the current forecasting and routing methods and proposes additions and 

improvements. We extend the scope of the forecasting model and include seasonal and weekly 

incident patterns. Additionally, we introduce methods to take into account time based helicopter 

effectiveness and different priorities for incident types. To improve the timing of flights we discuss a 

greedy heuristic as a flight value estimator. Finally, we discuss the impact of the success function on 

the helicopter routing behaviour and alternative success functions, to compare both in Chapter 7. 
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5 Tactical planning 
This chapter describes the tactical planning problem of the LVP and provides methods to create a 

tactical plan. Figure 5.1 provides an overview of this chapter. Section 5.1 describes the tactical 

planning problem and provides notation. As discussed in Chapter 3, we can solve the tactical 

planning problem at different levels of accuracy. Section 5.2 discusses two approaches to tactical 

planning we consider: the rough-cut and integrated tactical planning approaches. In Section 5.2 we 

conclude that the integrated tactical planning and operational scheduling approach provides enough 

advantages over the rough-cut approach to justify the added complexity.  

 

Figure 5.1: overview of the structure of Chapter 5. 

Section 5.3 presents an exact method for the integrated approach, to solve the tactical planning 

model under the assumption that there is only one helicopter airborne at the same time. Section 5.4 

proposes a tactical planning heuristic that enables the planning of multiple simultaneously airborne 

helicopters, but does not guarantee an optimal solution. Section 5.5 draws conclusions on the 

findings in this chapter. 

5.1 Tactical planning of police helicopters 
Tactical planning of police helicopters is the allocation of surveillance flights and stand-by shifts over 

multiple days. To create an appropriate tactical planning method, we first extend the notation and 

provide a formal description of the tactical planning problem. The LVP has a set of helicopters 𝐻, and 

each helicopter ℎ ∈ 𝐻 is on a location 𝑙 ∈ 𝐿 at every time interval 𝑡 ∈ 𝑇. Every location 𝑙 ∈ 𝐿 can 

handle multiple helicopters. The scope of a forecast is divided into days 𝑑 ∈ 𝐷, and every day 

consists of multiple shifts 𝑠 ∈ 𝑆. Every shift is manned by at least one crew 𝑐 ∈ 𝐶 at one of the 

locations 𝐿. Shift starts at 𝑡𝑠𝑠 and end at 𝑡𝑒𝑠. A crew can fly for at most 𝑘 hours; in the Netherlands 

this is 5 hours. The LVP uses the same fixed flight duration 𝑓𝑑 for all flights and the number of flights 

thus depends on the surveillance flight hour budget 𝑓𝑏 and the fixed flight duration 𝑓𝑑 . The number 

of crews is set by the crew budget 𝑐𝑏. The LVP cannot make flights during a shift from a location, 

when there is no crew scheduled on that location for that shift. 

The objective function of the tactical planning problem is the same as the objective function by Van 

Urk (2012) as given in Equation 2.5. However, coverage is now given by a combination of surveillance 
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routes and crews on stand-by. There are some practical constraints that limit the maximization of the 

objective function. Currently the LVP commonly uses a single location to start and end surveillance 

flights (Schiphol), but in the future it could be able to use multiple locations (Schiphol, Rotterdam, 

and Volkel). We assume that the LVP makes only “single flights”, where the origin and destination of 

flights are equal. When a crew would fly a multiple-flight route, it would for example fly from 

Schiphol to Volkel, and from Volkel back to Schiphol. We assume that the LVP currently flies a 

standard route that starts at Schiphol and flies over Amsterdam, Utrecht, Rotterdam, Den Haag, 

Leiden, and finishes at Schiphol again. The LVP is obliged to provide 24/7 stand-by coverage from 

Schiphol. Crews that are scheduled on a location during a shift are available for deployment from the 

start time of the shift. When there are two crews stand-by on a location at the same time, there is no 

added value for the second crew. When one of the crews makes a flight, then the other crew takes 

over the stand-by coverage.  

This research considers two types of tactical planning. Variable tactical planning determines the 

distribution of resources over the scope of the planning problem, without constraints. Flat tactical 

planning creates a uniform distribution of resources over the scope. In the case of the LVP, we flatten 

the number of flights per day as much as possible. 

Next to the incident data, the decision support system will need information regarding the number of 

crews to schedule, the shift schedule, the maintenance plan for the helicopters, and the bases that 

are available to land or fuel helicopters on. We assume that the helicopter bases in the model are 

always available to start and end flights at. For every helicopter, the LVP should be able to determine 

per day whether the helicopter is available or not. 

5.2 Tactical planning approach 
This section discusses the approach to tactical planning we take. We identify two possible 

approaches to tactical planning: the rough-cut tactical planning approach and the integrated 

operational and tactical planning approach. Section 5.2.1 discusses the rough-cut tactical planning 

approach and Section 5.2.2 describes the integrated tactical planning approach. Section 5.2.3 

concludes on the choice between both approaches. 

5.2.1 Rough-cut tactical planning approach 
On the tactical planning level, there is a higher level of uncertainty than on the operational planning 

level. Therefore, it is common that a tactical planning is made on an aggregate level. Detailed 

scheduling is often avoided at this level, since it can lead to countless adjustments when detailed 

information becomes available. 

An aggregated capacity planning requires an aggregated forecast of demand. Since we already have 

weekday and month factors on an hourly basis, we propose to use these factors to make an 

aggregate forecast per day of the scope. We can then determine, e.g., the 1300 hours in the year 

with the highest expected criminal intensity. This provides insight into the distribution of criminal 

intensity over the year and on which moments in the year the LVP should focus. Furthermore, it can 

provide insight into the effect of taking into account the difference between effectiveness in daylight 

hours and non-daylight hours. Figure 5.2 shows the number of flight hours per day for two examples 

of a tactical plan where we fly one hour with one helicopter on the 1300 most criminal hours of 2014, 

according to the aggregated forecast. It shows clear weekly and seasonal patterns, and is thus an 

indication of the added value of tactical planning. The figure contains two flight hour distributions, 

one without a correction for daytime and night time effectiveness as discussed in Section 4.2.4.1, and 

one with the correction. It shows that the correction for daytime effectiveness leads to more flights 
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in July, although we expect flights to shift from the summer to the winter. Instead, we find that day-

time flights in the winter are replaced by night-time flights in the summer. 

 

Figure 5.2: rough-cut capacity plan, based on the forecasted 1300 most criminal hours of 2014. 

Although the rough-cut capacity planning gives valuable insight into the distribution of criminal 

intensity over days, weeks, and months, and provides feedback on how the LVP could improve the 

tactical planning, we identify the following disadvantages of this rough tactical planning approach: 

 It does not provide an indication for how many airborne helicopters are useful at the same 

time during the hour.  

 It does not provide feedback on the use of different locations. 

 It does not distinguish between geographical patterns. A flight over one moderate hot spot in 

criminal intensity can be more beneficial than a flight in an hour where the total criminal 

intensity is higher but the criminal intensity is spread out and not all hot spots can be 

covered. 

5.2.2 Integrated tactical planning and operational scheduling approach 
Instead of making a tactical planning on an aggregate level, we can also make a more precise tactical 

planning that takes operational decisions into account, by extending the operational planning tool. 

Instead of making optimal schedules for one day forward, we can use the same methods to make an 

optimal planning for a whole year in advance. This is a more complex approach that will result in 

more rescheduling during the year due to factors such as the weather, but it enables the LVP to 

determine the optimal planning with the possibility of multiple simultaneously airborne helicopters 

and locations. Furthermore, the flight value estimators and routing module can distinguish between 

geographical patterns, where the rough-cut capacity approach cannot. Finally, it allows the LVP to 

take constraints from crew scheduling and maintenance scheduling into account. 

5.2.3 Conclusion 
We conclude that a rough-cut approach to tactical planning provides some insight into the added 

value of tactical planning for the LVP. However, based on the advantages of the integrated tactical 

planning approach, we propose to create a decision support system that creates a complete annual 

operational plan. 
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5.3 Exact tactical planning method 
Van Urk (2012) proposed a Mixed Integer Linear Program to solve the helicopter routing problem, 

but found that this problem is too big to solve practical sized problems, based on a scope of one day 

and without taking shifts and crews into account. We find that, with some pre-processing to know 

the total coverage value of a flight and the value of standing by at a location at a given time in 

advance, we can determine the best set of flights with an Integer Linear Programming (ILP) 

formulation. We use the following notation: 

 𝐴𝑙,𝑠,𝑐  Availability of crew 𝑐 ∈ 𝐶 at location 𝑙 ∈ 𝐿 during shift 𝑠 ∈ 𝑆 

 𝐹𝑙,𝑡,𝑐  Whether crew 𝑐 ∈ 𝐶 starts a flight from location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 

 𝑆𝑙,𝑡,𝑐  Whether crew 𝑐 ∈ 𝐶 is stand-by on location 𝑙 ∈ 𝐿 

 𝑠𝑣𝑙,𝑡  The value of standing-by on location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 

 𝑓𝑣𝑙,𝑡  The value of starting a flight from location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 

 𝑓𝑏   Flight hour budget 

 𝑐𝑏  Crew budget 

 𝑓𝑑  Standard flight duration 

 𝑘  maximum number of flight hours by a crew during one shift 

 𝑡𝑠𝑡𝑎𝑟𝑡𝑠  start time of shift 𝑠 ∈ 𝑆 

 𝑡𝑒𝑛𝑑𝑠  end time of shift 𝑠 ∈ 𝑆 
 
And we use the following objective function of the optimization problem: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ (𝑓𝑣𝑙,𝑡 ∗ 𝐹𝑙,𝑡,𝑐 + 𝑠𝑣𝑙,𝑡 ∗ 𝑆𝑙,𝑡,𝑐  )

𝑙∈𝐿,𝑡∈𝑇,𝑐∈𝐶

 

Subject to the following constraints:  

1. When a crew starts a flight from a location then they should be scheduled on that location 

during the corresponding shift. Every shift has a start and end time and when a flight starts 

between these times, the crew should be available for that shift. 

 𝐴𝑙,𝑠,𝑐 ≥ 𝐹𝑙,𝑡,𝑐   ∀ 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, tstart𝑠 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑𝑠 
2. When a crew is stand-by on a location then they should be scheduled on that location during 

the shift in which they are stand-by. 

 𝐴𝑙,𝑠,𝑐 ≥ 𝑆𝑙,𝑡,𝑐   ∀ 𝑙 ∈ 𝐿, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶, tstart𝑠 ≤ 𝑡 ≤ 𝑡𝑒𝑛𝑑𝑠 
3. There is only one helicopter airborne at the same time. 

 

∑ ∑ 𝐹𝑙,𝑡′,𝑐

𝑙∈𝐿,𝑐∈𝐶

𝑡+𝑓𝑑−1

𝑡′=𝑡

≤ 1 ∀ 𝑡 ∈ 𝑇 

4. There is a limited crew budget. 

 ∑ 𝐴𝑙,𝑠,𝑐

𝑙∈𝐿,𝑠∈𝑆,𝑐∈𝐶

≤ 𝑐𝑏  

5. There is a limited flight budget. 

 ∑ 𝐹𝑙,𝑡,𝑐

𝑙∈𝐿,𝑡∈𝑇,𝑐∈𝐶

≤ 𝑓𝑏  

6. Every crew 𝑐 can fly or be on stand-by on one location, not both at the same time. 

 ∑(𝐹𝑙,𝑡,𝑐 + 𝑆𝑙,𝑡,𝑐)

𝑙∈𝐿

≤ 1 ∀ 𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 
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7. Crews can only fly 𝑘 hours per shift. 

 ∑ 𝐹𝑙,𝑡,𝑐

𝑙∈𝐿,𝑡∈𝑇

∗ 𝑓𝑑 ≤ 𝑘 ∀ 𝑐 ∈ 𝐶 

8. There can only be one crew on stand-by at a location at a given time. 

 ∑ 𝑆𝑙,𝑡,𝑐

𝑐∈𝐶

≤ 1 ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 

9. Crews are scheduled on at most one location and shift combination. 

 ∑ 𝐴𝑙,𝑠,𝑐

𝑙∈𝐿,𝑠∈𝑆

≤ 1 ∀ 𝑐 ∈ 𝐶 

10. Constraints on the values of variables. 

 𝐹𝑙,𝑡,𝑐 , 𝑆𝑙,𝑡,𝑐 , 𝐴𝑙,𝑠,𝑐 ∈ {0,1} ∀ 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆, 𝑐 ∈ 𝐶 
This ILP formulation simultaneously determines when and where crews should be stand-by and from 

when and where flights should start. The ILP requires the value of flying and standing by at every 

location and time combination. We assume that the value of standing-by at a location does not 

depend on a flight that another crew can make at the same time from another location, or a second 

crew can make from the same location.  

Furthermore, we assume that we know the added value of a flight in advance. This implies that there 

is only one helicopter airborne at the same time. When the optimal routes of multiple flights that 

overlap in time are determined independent, the coverage areas of the helicopters can overlap. The 

extent to which routes can overlap depends on the overlap in time of the flights and the start and 

end locations. We thus find that the value of 𝑓𝑣𝑙,𝑡 becomes uncertain when multiple helicopters can 

be airborne simultaneously. To determine the flight value 𝑓𝑣𝑙,𝑡 under the assumption of at most one 

airborne helicopter at any given time, we can use several techniques. We can determine for every 

location and time combination the optimal route and the forecast coverage of this flight. However, 

this takes too much computation time. Alternatively, we can use the faster flight value estimator as 

discussed in Section 2.3.2. When we create the forecast with month and weekday factors (see 

Section 2.3.1), we can use a third technique. The forecast technique with weekday and month factors 

uses all available data to forecast the first day of the forecast, and all data again to forecast for the 

second day of the forecast. The weekday and month distribution factors then correct the forecast to 

create the specific distribution over time of criminal intensity, but do not influence the geographical 

distribution. Since the geographical pattern per time interval is thus the same for different days, the 

optimal route is also the same for the same start time at different days. Therefore, when we find the 

optimal route for any given start time from every possible location for one day, we know the optimal 

route for the entire year. Currently, we consider 2-minute time intervals and 3 locations. We thus 

have to calculate for 720 possible start times and for 3 locations a total of 2160 routes. We then use 

these routes to determine the added value of making a flight or standing-by at every time interval 

during the scope. The calculation of the forecast coverage is faster than the calculation of the 

optimal route, and we thus provide exact flight values in a feasible computation time. 

Finally, we assume that helicopters start and end flights at the same location and are stand-by during 

all times that they are not flying. We thus ignore refuelling times and consider crews available to 

respond to emergencies also when they have already flown their maximum number of hours for that 

shift. This kind of practical restrictions can be introduced into the ILP with extra constraints, which 

we do not discuss here. 
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We want to relax the assumption that there can be only one helicopter airborne at any given time. 

Since 𝑓𝑣𝑙,𝑡 then becomes uncertain, this exact formulation is not sufficient for the tactical planning 

problem. To create feasible solutions to this problem, Van Urk (2012) describes a sequential flight 

planning heuristic. In Section 5.4 we extend this heuristic. 

5.4 Iterative heuristic method for tactical planning 
We have a forecast method that is able to create a forecast with a scope of one year. Furthermore, 

we have a flight value estimator that is able to find the optimal start time of a helicopter flight, given 

a forecast. Finally, we have a routing module that determines the optimal route, given the forecast 

and a start time. We now use a heuristic to determine the best allocation of the budget over the 

scope of one year. 

Figure 5.3 shows an overview of the heuristic we propose to create a tactical planning with the 

possibility of multiple simultaneously airborne helicopters. Before the heuristic starts, the LVP has to 

determine the start date and scope of the planning, the number of flights to be planned, the number 

of crews available, and the availability of helicopters due to maintenance. In Step 1 of the heuristic 

we create a forecast for the entire tactical planning scope. Since providing 24/7 coverage from stand-

by is obligated, Step 2 makes sure that there is 24/7 coverage at Schiphol, by scheduling for every 

shift one crew at Schiphol. We cannot schedule the rest of the crews yet to the optimal stand-by 

shift/location combinations, since these crews can be necessary at other locations or shifts to 

simultaneously make multiple flights. Therefore, we first use an iterative process to determine the 

next best flight until the budget is fully used. For every cycle of the iterative process, we perform 

steps 3 to 9. 

 

Figure 5.3: Graphical representation of the multi-location tactical planning heuristic with crew constraints. 

To create a feasible tactical planning, we take into account crew and helicopter constraints while we 

determine in Step 3 the optimal start time and location of the next flight, and the corresponding 

optimal route. As Section 5.1 discusses, there are two approaches to tactical planning: flat and 

variable. When we create a variable tactical planning, there is no restriction on the number of flights 

per day. However, when we create a flat tactical planning, then the number of flights per day should 
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be as equal as possible for all days. This is an interesting tactical planning restriction for the LVP, 

since it flattens the workload of, e.g., the maintenance department over the year. The maintenance 

department can thus handle the workload with a fixed number of employees. To create a flat tactical 

planning we use the following steps: 

1. Before the iterative flight scheduling we determine the maximum number of flights per day. 

When we can distribute the number of flights equally over the number of days (e.g., 40 

flights over 10 days), we use Equation 5.1 and skip step 3: 

 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 =  

𝑓𝑏

𝑓𝑑
 Equation 5.1 

 

When we cannot distribute the number of flights equally over the days (e.g., 46 flights in 10 

days or 𝑚𝑜𝑑(|𝐹|, |𝐷|) > 0) we round up the maximum number of flights per day as in 

Equation 5.2: 

 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 =  ⌈

𝑓𝑏

𝑓𝑑
⌉ Equation 5.2 

 

When we round up the maximum flights per day, we also determine the number of days that 

can have the rounded up maximum number of flights (“rounded up days”). We use Equation 

5.3 in which we distributing as many flights equally over the number of days and count the 

flights that are left (we have 6 flights left when we equally schedule 46 flights over 10 days):  

 𝑟𝑜𝑢𝑛𝑑𝑒𝑑 𝑢𝑝 𝑑𝑎𝑦𝑠 = 𝑚𝑜𝑑(|𝐹|, |𝐷|) Equation 5.3 
2. Before every flight we count the number of full days: days that have the maximum number 

of flights per day. 

3. When the number of full days is equal to the number of rounded up days then we decrease 

the maximum flights per day by 1. We only once decrease the maximum number of flights by 

1. 

4. Days that are full are excluded from the possible start times. 

To create a flat tactical planning of 46 flights over 10 days we thus find a maximum number of flights 

per day of 5 and 6 “rounded up days”. When there are 6 “full days” with 5 flights, we decrease the 

maximum number of flights per day by 1 and fill the other 4 days to a maximum of 4 flights. When 

we instead create a variable planning, then the maximum number of flights per day is the number of 

flights that we can make in the entire tactical planning scope. We now know whether we restrict the 

number of flights per day and determine the corresponding set of flights. 

As the optimal start time and route depend on the start location of the flight, we start by calculating 

the optimal start time out of the available set of start times for every location. Since the crew-

helicopter combination that performs the flight cannot be stand-by on the start location during the 

flight, we decrease the expected route quality at a time-interval by the expected stand-by coverage 

during the flight, as in Equation 4.8. We then find the optimal start time not based on the moment 

that a helicopter flight covers the most forecast, but at the moment that the benefit of flying over 

standing by is highest. 

Since the value of the estimated route quality is not accurate enough to determine the best location 

(see Section 4.3), we then calculate the optimal route for every location, given the location-specific 
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best start time. Next, we determine the total forecast coverage of the route for the locations by 

Equation 5.4. We then choose the best start location. 

 𝑡𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑓𝑙,𝑡 ∗

𝑙∈𝐿,𝑡∈𝑇

 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 Equation 5.4 

Step 4 determines in which shift the flight takes place and which crew and helicopter should make 

the flight. Step 5 checks for the best start location and start time when there is a helicopter and crew 

available at that location/time. When there is no crew scheduled at that location/time or when the 

available crews are at their maximum flight hours 𝑘, then we check whether there is budget left to 

schedule another crew (Step 6). When there is crew budget left, we know we are able to make a 

crew available. Next we check whether there is a helicopter ℎ ∈ 𝐻 available. When there is no crew 

or helicopter, we cannot start a flight at the optimal start time and location and look for the next 

best start time and location combination. 

When both a crew and a helicopter are available, Step 7 determines the optimal route and schedules 

the helicopter and crew. When the flight starts at Schiphol and the crew during the shift of the flight 

has time left to make the flight, we make the corresponding crew and helicopter unavailable for the 

entire flight duration. When the flight starts at Rotterdam and Volkel or when the crew on Schiphol is 

already at its maximal flight hours, we schedule a crew at that location for the entire length of the 

shift the flight starts in, and make the crew unavailable during the flight 

In step 8 we update the forecast to take into account that the route covers part of the forecast, by 

decreasing every combination of time and location that is covered by a helicopter on the route, by 

the probability that the nearest helicopter is able to arrive in time and support the police officers on 

the ground. Equation 5.5 shows the formulation we use to update the forecast values. 

 𝑓𝑙,𝑡 =  𝑓𝑙,𝑡 ∗ (1 − 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡) Equation 5.5 

We are now ready to create the next flight. In Step 9 we check whether there is flight budget left. 

When this is the case then we go back to step 3 and schedule the next flight. When the flight budget 

is used, we proceed to step 10. After we scheduled all routes, we determine in step 10 for every 

location all the times that there is at least one crew and a helicopter available, and determine the 

forecast covered by this stand-by availability. Finally, Step 11 is the performance measurement step. 

We determine the performance of the routes by the performance measures as discussed in Chapter 

6. 

5.4.1 Tactical planning output 
The tactical planning heuristic results in a set of flights for which we know the start time, start and 

end location, and optimal route. Furthermore, the tactical planning determines per shift per location 

how many crews and helicopters are required and which crews and helicopters should make the 

flights. 

5.4.2 Discussion 
As discussed, the heuristic takes only the coverage of earlier routes of flying helicopters into account, 

while flying the designated route. This could result in a situation where a helicopter from Amsterdam 

flies to Rotterdam while there is a helicopter stand-by at the Rotterdam airport that covers the 

Rotterdam area already.  

Furthermore, the heuristic does not take into account the impact on the stand-by performance while 

scheduling crews on shifts and locations. For example, when the heuristic chooses between 

scheduling a crew on Volkel to perform a flight with a forecast coverage of 5,000 and a stand-by 

coverage of 1,000, and scheduling a crew on Rotterdam to perform a flight with a forecast coverage 
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of 4,800 and a stand-by coverage of 2,000, it schedules a crew on Volkel. This ensures that the 

tactical planning results in the best possible forecast coverage by the flights. Since a crew cannot be 

stand-by while it is flying, the final stand-by coverage of that crew is not known when the crew is 

scheduled on a location to make its first flight. Flights are scheduled sequentially and later flights by 

the same crew influence the time that the crew is stand-by and even the stand-by coverage of a 

possible second crew on the same location and shift. 

As long as we are scheduling flights, we do not know for sure whether a crew that is available on a 

base, will stay available for stand-by (except when the crew is already scheduled for its maximum of 

5 flights hours). Therefore, we cannot take the coverage of the stand-by crews into account while 

calculating the optimal flight routes. 

5.5 Fairness 
In this section we discuss how we propose to create a tactical planning that takes equity into 

account. For the sequential planning of simultaneous surveillance flights it is not possible to use a 

multi-criteria mathematical program as is common in literature. The first flight at a given time covers 

a part of the forecast of a number of areas and thus influences the route of later flights that 

(partially) overlap. Therefore, the focus and contribution of this section is the combination of equity 

objectives with a sequential routing model. As it is of no use to incorporate the equity objectives in 

the optimization of single routes, we adapt the sequential heuristic to introduce some level of equity 

over a set of flight routes. 

We want to modify the iterative multi-route heuristic to be able to set the level of equity. As the 

calculation of routes depends on the forecast, we propose to adjust the forecast between flights to 

take into account the route of the previous flight. Furthermore, we want to visit locations at times 

with relative high criminal intensity. Therefore, we want to keep the temporal forecast pattern of the 

locations intact, while discounting the forecast of visited locations. Figure 5.4 shows how we propose 

to adjust the multi-route heuristic. After every flight we determine the coverage of every location by 

the last flight and update the forecast of the covered locations according to the total coverage of the 

flight (step 9). When all flights have been scheduled, we determine the level of inequity of the 

resulting route (step 13). 

 

Figure 5.4: adjusted multi-route heuristic that incorporates a level of equity. 
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After every flight we know the optimal start time and route of that flight. We then use the success 

function, as discussed in Section 2.3.2, to determine to what extend the locations have been covered 

by the route. 𝑓𝑙𝑖𝑔ℎ𝑡𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 is the coverage of location 𝑙 ∈ 𝐿 by the last flight, during time 

interval 𝑡 ∈ 𝑇. Based on 𝑓𝑙𝑖𝑔ℎ𝑡𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡, we can determine the coverage per location 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙, 

as defined in Equation 5.6. 

 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙 = ∑(𝑓𝑙𝑖𝑔ℎ𝑡𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡)

𝑡∈𝑇

 Equation 5.6 

To set the level of equity in step 9, we introduce the equity parameter 𝑞. Locations that have been 

covered should receive less attention in the next flight. Therefore, we decrease the forecast value of 

any location 𝑙 that is covered by the last flight by the update factor (1 − (𝑞 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙)). Locations 

that have been covered more or better by the last flight are thus discounted more. For all locations 

that are covered to some extent, we decrease the value of the forecast for the entire year, according 

to Equation 5.7: 

 𝑓𝑙,𝑡 = 𝑓𝑙,𝑡 ∗ (1 − (𝑞 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙)) Equation 5.7 
After updating the forecast values, we determine whether there is flight budget left. When there is 

enough flight budget for another flight, we go back to step 3 of the heuristic and determine the best 

start time of the next flight. 

Since the update factor should not become negative, we note that the values that 𝑞 can take are 

limited by the possible values of 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙. Since a flight can cover a location multiple times, 

influenced by the flight duration, the value of the equity parameter should take into account the 

length of the routes. Equation 5.8 gives the exact formulation of this constraint. 

 (𝑞 ∗ 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙) < 1 Equation 5.8 

5.6 Conclusion 
This chapter discusses the police helicopter tactical planning problem. We introduce the required 

notation, explain the applicable constraints, and find that there are two approaches to the problem. 

First, we can use a rough-cut capacity planning approach that determines the expected criminal 

intensity for every hour in the scope of the planning and choose to fly at the best number of hours 

that are available for a given budget. Since this approach does not take into account the geographical 

distribution of crime, we choose to take a more complex approach, in which we combine operational 

scheduling and routing with the tactical planning problem. We provide an Integer Linear 

Programming (ILP) formulation of the problem under the assumption that there can be only one 

helicopter airborne at any given time. Since this is not a realistic assumption and we find that the 

problem cannot solved for realistic problem sizes when this assumption is relaxed, we propose a 

heuristic. The heuristic creates a complete tactical plan for helicopters and crews, and results in a set 

of operational surveillance routes for the entire tactical planning scope.  
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6 Performance measurements 
This chapter discusses the performance measurements we use to evaluate the forecasting methods 

(Section 6.1), the flight value estimators (Section 6.2), and the tactical planning outputs (Section 6.3), 

based on the targets of the LVP. Section 6.4 explains how we propose to measure overtime and 

Section 6.5 translates the concept of equity to a measure of equity for a set of helicopter routes and 

crews scheduled on stand-by shifts. Section 6.6 draws conclusions on the findings in this chapters. 

6.1 Forecast accuracy and performance 
Since we make forecasts of periods for which we also have actual incident data, we can find the 

actual difference between forecast and reality, and determine the predictive value of the forecast. 

Recall that an annual forecast consists of a forecast value for 808 locations 𝐿 during 262,800 time 

intervals 𝑇. Since the forecast is a hotspot forecast (see Section 2.3.1), the forecast value is not the 

expected number of incidents at that time and location, but rather an indication for crime intensity. 

The distribution of expected crime intensity over the Netherlands during a time interval indicates 

where we expect the most criminal incidents. We use 𝑓𝑙,𝑡 to denote the value of the forecast at a 

given location 𝑙 ∈ 𝐿 and time 𝑡 ∈ 𝑇. 

The forecast error calculation methods, as discussed in the literature research in Chapter 0, measure 

the accuracy of a forecast technique in determining the actual number of incidents (priorities) at a 

given time and location. Recall that the forecasting methods in this research do not determine the 

expected number of incidents, but instead determine the expected distribution of crime over time 

and space. However, we can compare the distribution over time of several forecasts with the actual 

distribution of crime over time. To compare the forecast with the actual incident pattern we use the 

MSE (see Equation 3.1), since there are more than 150 incidents per day and thus no intermittent 

pattern. The mean squared error then determines the average squared difference between the total 

forecast value per day and the number of incidents per day. Since the total forecast value between 

forecasts with different levels of spatial aggregation differs, while the distribution of forecast value 

over time is equal, we first scale the forecasts. We scale the forecasts back to the total number of 

incidents in the scope of the forecast. We use 𝑖𝑙,𝑡 to denote the number of incidents at a given 

location 𝑙 ∈ 𝐿 and time 𝑡 ∈ 𝑇. We determine the factor required to scale the total forecast value to 

the total number of incidents. We then multiply the entire forecast by the factor as in Equation 6.1, 

and thus keep the temporal and spatial distribution intact. 

 
𝑓𝑙,𝑡 = 𝑓𝑙,𝑡 ∗

∑ 𝑖𝑙′,𝑡′𝑙′,𝑡′

∑ 𝑓𝑙′,𝑡′𝑙′,𝑡′
 Equation 6.1 

We then apply Equation 3.1 to compare the forecasted criminal intensity with the actual criminal 

intensity, in which we compare the forecasted crime intensity with the actual crime intensity. We 

calculate the actual crime intensity with Equation 6.2 and use a comparable formula with 𝑓𝑙,𝑡 for the 

forecasted crime intensity. 

 𝑌𝑡 = ∑ 𝑖𝑙,𝑡

𝑙∈𝐿

 Equation 6.2 

Since the MSE is sensitive for the total number of incidents, we note that we cannot compare the 

values for the MSE between datasets or for different scopes. 

These measures are useful to determine the quality of a forecast that is aggregated to the day level.  

However, when we use them on the individual time interval and location level, these measures do 

not perform well. Figure 6.1 shows both a scaled forecast in the time dimension and a set of 

incidents. Since there are relatively few incidents in relation to the number of locations and time 
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combinations, the discussed measures do not properly indicate the forecast quality. For example, the 

accuracy of a forecast that forecasts 0 incidents for every time and location combination is often 

better than any reasonable forecast.  

 

Figure 6.1: Comparison of two days of scaled forecast and the actual incidents for the hexagon over Schiphol 

Furthermore, this research works with a relative forecast value: the actual value of the forecast is 

unit-less but when the value of the forecast is higher at time/location x than at time/location y, then 

we expect more incidents at time/location x than at time/location y. Therefore, we need a forecast 

error calculation method that determines whether incidents happen around peak moments and 

locations in the forecast. 

Forecast timing and allocation estimation method 

In this section we develop a new forecast error calculation method, which estimates whether the 

forecasted crime hotspots and peak times match the actual crime patterns. The assumption behind 

the accuracy measure is that how higher the forecast value is, the more probable is the forecast 

value to be part of a peak. Therefore, the higher the corresponding forecast value for an actual crime 

is, the higher is the probability that there is a peak in the forecast during the actual criminal incident.  

We determine per historical incident within the forecast scope the value of the forecast at that time 

and location. The higher the forecast is at the moment and location of the incident, the higher the 

probability is that we would allocate capacity to that location and time. We already denoted the 

value of the forecast and the number of incidents at a given location 𝑙 ∈ 𝐿 and time 𝑡 ∈ 𝑇 as 𝑓𝑙,𝑡 and 

𝑖𝑙,𝑡 respectively.  

We now discuss several formulations that we can use to determine the forecast accuracy. The most 

basic formulation is given in Equation 6.3. We extend this formulation in Equation 6.4 and Equation 

6.5. 

 
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑ (𝑓𝑙,𝑡 ∗ 𝑖𝑙,𝑡)𝑙,𝑡

𝑁
 Equation 6.3 

Equation 6.3 sums the forecast value at times and locations where actual incidents have happened. 

When there are 2 incidents at the same time and location, then the equation counts the forecast 

value twice. We divide the sum of the relevant forecast values by the number of incidents to find the 

average forecast value per incident. 

Figure 6.2 shows that this measure depends on the variability of the forecast (in this case influenced 

by the level of temporal aggregation). The figure compares the score of two incidents for two types 

of forecasts. Both forecast show a peak around time 20. The left incident scores 0.8 on both forecast. 

However, scaled forecast 1 has a narrow peak and forecast 2 has a wide peak. When we score the 
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right incident on both forecasts, then it scores better on forecast 2 than on forecast 1. When we 

extend this concept then a totally flat forecast would score better than a forecast that only shows a 

peak at (almost) the right time. 

 

Figure 6.2: example of impact of temporal aggregation on forecast accuracy 

The effect as in Figure 6.2 is also applicable to spatial aggregation. Therefore, we want to correct for 

the general shape of the forecast and thus propose to divide the total forecast value during incidents 

by the total forecast value over space and time. Equation 6.4 shows the corrected formulation. 

 
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑ (𝑓𝑙,𝑡 ∗ 𝑖𝑙,𝑡)𝑙,𝑡

∑ 𝑓𝑙,𝑡𝑙,𝑡
 

 

Equation 6.4 

The denominator of the equation is the sum over all locations and times of the forecast value 𝑓𝑙,𝑡. To 

take incident priorities into account we propose to adjust the equation by replacing the number of 

incidents by the total priority of the incidents 𝑝𝑙,𝑡 at a given location 𝑙 ∈ 𝐿 and time 𝑡 ∈ 𝑇. Equation 

6.5 shows the extended formulation for priorities. 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ (𝑓𝑙,𝑡 ∗ 𝑝𝑙,𝑡)𝑙,𝑡

∑ 𝑓𝑙,𝑡𝑙,𝑡
 Equation 6.5 

For incidents with a priority of 5, we thus count the forecast value 5 times. This implies that the value 

of the forecast accuracy not only measures whether incidents happen at times and locations that 

have a peak in the forecast, but also puts more emphasis on the forecast accuracy of incidents with a 

high priority, than on the forecast accuracy of incidents with a lower priority. 

Use performance of planning policy for forecast accuracy estimation 

Finally, we can also measure the quality of a forecast by the performance of a tactical plan (a set of 

surveillance flights) based on the forecast. In Section 6.3 we discuss how to determine the 

performance of a tactical plan. 

6.2 Flight value estimator quality 
To determine the quality of the flight value estimator, we determine the relation between the 

estimated forecast coverage of a flight at a certain time, and the actual forecast coverage of a flight 

at that time. Therefore, we calculate the correlation coefficient between set 𝑋 with the estimated 
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forecast coverage values, and set 𝑌 with the actual forecast coverage values. Equation 6.6 shows the 

formulation of the correlation coefficient. 

 
𝜌(𝑋, 𝑌) =

𝑐𝑜𝑣(𝑋, 𝑌)

𝜎(𝑋)𝜎(𝑌)
 Equation 6.6 

We can use the same correlation coefficient calculation to determine the predictive effect of the 

total forecast coverage on the actual incident coverage of flights. Furthermore, we compare the 

performance of the resulting set of routes of the original and the new flight value estimator, as 

described in the next section. 

6.3 Route and stand-by performance 
This section discusses measures to determine the expected performance of the output of the tactical 

planning procedures. Section 6.3.1 discusses how we calculate the coverage of a set of helicopter 

routes and the stand-by schedule. Section 6.3.2 explains how we determine the expected proximity 

of helicopters to incidents. Section 6.3.3 evaluates how the LVP can combine both measures to 

create a fair performance measure. 

6.3.1 Incident coverage 
The output of the tactical planning is a set of routes with their respective start times and locations. 

To determine the quality of the set of routes we can compare them with the actual incident pattern 

of the period for which the routes are made. We note that we should use a different set of data to 

create a forecast and routes with, than the data set that we use to determine the quality of the 

routes with. Since the routes are based on the forecast, the timing of the routes depends on the 

flight value estimations, and the routes are made by the routing module, we determine the quality of 

all these elements at the same time. When we use the measures in Section 6.1 and 6.2 to find that 

the forecast methods and flight value estimators work correctly, and we find that the incident 

coverage does not perform well, then this is an indication that the tactical planning heuristic or route 

optimization method does not perform well. We identify multiple options to determine the 

performance of the set of helicopter routes. 

1. We count all incidents that are covered to some extent by a helicopter on the route. 

Equation 6.7 shows the corresponding formula, where 𝑖𝑙,𝑡 is the number of incidents at a 

location and time combination, and 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑙,𝑡 is a binary variable that indicates whether 

the location and time combination is to some extent covered by a route. Since a helicopter 

cannot cover multiple incidents at the same time, this is an overestimation of performance.  

 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 =  ∑ 𝑖𝑙,𝑡 ∗

𝑙∈𝐿,𝑡∈𝑇

 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑙,𝑡 Equation 6.7 

2. Per incident that is covered, we determine the probability that the helicopter that is closest 

by is successful. Equation 6.8 shows the corresponding formulation, where 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 is 

the best coverage of a location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 by the set of routes, as discussed in 

Section 2.3.2. Since this measure uses the success function based on arrival time to 

determine the quality of a solution, it determines the average proximity of helicopters to 

incidents. 

 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑖𝑙,𝑡 ∗

𝑙∈𝐿,𝑡∈𝑇

 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 Equation 6.8 

3. Since a helicopter cannot cover multiple incidents at the same time, both formulation above 

are overestimations. To create a real estimation we can simulate reality. A simulation model 

could model the reaction to incidents. For example, when there are one or more helicopters 
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on surveillance routes available to respond to an incident, the helicopter that is closest by 

and is not handling any other incidents, responds to the incident. The helicopter is then 

unavailable for other incidents for some time. After handling the incident, the helicopter 

determines the optimal route for the rest of the surveillance flight duration, from the 

location of the incident, and becomes available again. Since the handling duration is 

currently not sufficiently measured, we have no data to base this process on, which makes 

this measure not yet useful. 

Since the LVP aims to increase its proximity to crimes and the second option measures just that, we 

propose to use the second measure when we can compare routes on only one measure. However, 

the combination of the first and second measure gives a more complete picture and is thus 

suggested. We find the third option interesting for future research. 

For experiments with different priorities per incident type, or where the effectiveness per time is 

taken into account, we can adjust the second formulation to include priorities and/or effectiveness. 

Equation 6.9 shows the total coverage function where the number of incidents is replaces by the sum 

of the priorities of the incidents at a location and time.  

 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑝𝑙,𝑡 ∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡

𝑙∈𝐿,𝑡∈𝑇

 Equation 6.9 

Equation 6.10 extends the total priority coverage function by multiplying the expected coverage with 

the expected effectiveness of the time at which the incident happens 𝑒𝑡, as discussed in Section 

4.2.4. We determine the expected effectiveness at time 𝑡 ∈ 𝑇 by using the official sunrise and sunset 

times per date and the expected night time and day time effectiveness (see Table 4.2). 

 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑝𝑙,𝑡 ∗ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 ∗ 𝑒𝑡

𝑙∈𝐿,𝑡∈𝑇

 Equation 6.10 

6.3.2 Average arrival time 
The proximity of helicopters to incidents is one of the main aims of flying surveillance routes. 

Therefore, we propose to measure the expected arrival time to incidents. We assume that 

helicopters are only deployed to incidents that they (partly) cover. When an incident is more than 15 

minutes from the closest helicopter, then, according to the current success function, the probability 

of successful support is zero. For every time interval we know for every location the number of 

incidents 𝑖𝑙,𝑡. Furthermore, we know for every location at that time interval when there is a 

helicopter available: 𝐿𝑙,𝑡,ℎ. Finally we know the shortest distance (in minutes flight time) between any 

set of locations: 𝑑𝑙,𝑚. We can thus determine the average arrival time for the entire set of covered 

incidents. 

6.3.3 Combined performance measure 
The total incident coverage measure and the average arrival time measure both depend on the 

success function. Recall that for the current success function the maximal coverage distance is 15 

minutes: after 15 minutes helicopters are always too late to successfully provide support. In Section 

4.4 we state that the results of the route optimization model depend on the maximal coverage 

distance: helicopters should choose positions closer to hotspots when we decrease the maximal 

coverage distance. When we determine the average distance for a smaller maximal coverage 

distance, it will improve since only incidents that are within the maximum distance are taken into 

account. However, with a smaller maximal distance the number of incidents covered and the total 

incident coverage will decrease. 
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To make a fair comparison between different maximal coverage distances or completely different 

success functions, we suggest to score the outcome of experiments with different coverage functions 

by Equation 6.11. 

 𝑆𝑐𝑜𝑟𝑒 =  
𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 ∗ 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 Equation 6.11 

This scoring function rewards a helicopter position with more covered incidents, as well as a 

helicopter position that results in a short average arrival time. When we increase the maximal 

coverage distance, then the helicopter covers more incidents, but probably also takes longer to reach 

them. However, when we double the maximal coverage distance, then the total coverage area 

increases by a factor four. In return, the average arrival time will probably also just double. 

Therefore, we propose to divide the total incident coverage by the product of the average arrival 

time and the maximal coverage distance. When we now double the maximal coverage distance, the 

nominator will on average increase by a factor four and the denominator in Equation 6.11 will on 

average decrease by a factor 4. 

6.4 Overtime 
We want to determine the impact of shift schedules on the amount of overtime that crews make. 

After every flight, crews have to record their experiences during the flight. This takes on average 

approximately one hour. Therefore, crews work in overtime when a surveillance flight ends in the 

last hour of their shift or even after the end of the shift. A one-hour flight that starts one and a half 

hours before the end of the shift will thus probably result in a half hour of overtime while none of the 

flight time is in overtime. We propose two measures of overtime. Equation 6.12 shows the first 

measure that determines the percentage of total time that is worked in overtime, taking into account 

the registration process after flights. The expected minutes in overtime is thus the number of 

minutes of the hour after the last flight that happen after the end of the shift. 

 
% 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 =  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑤𝑜𝑟𝑘 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒
 

Equation 6.12 

The second measure does not take into account the registration hour since we assume that this time 

can be decreased when overtime proves to be dramatically increased by tactical planning. Therefore, 

Equation 6.13 calculates only the percentage of actual flight time in overtime. For every flight we 

determine the number of minutes that a flight finishes after the end time of the shift it started in. We 

then divide the total of all overtime minutes by the total minutes of flight to determine the 

percentage of flight time crews make in overtime.  

 
% 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒 𝑓𝑙𝑖𝑔ℎ𝑡 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 =  

𝑓𝑙𝑖𝑔ℎ𝑡 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 𝑖𝑛 𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑖𝑔ℎ𝑡 𝑚𝑖𝑛𝑢𝑡𝑒𝑠
 

Equation 6.13 

We can use these measures to determine the impact of shift schedules on overtime by comparing 

the expected overtime of tactical plans made with different shift schedules. 

6.5 Fairness 
In this section we translate the concept of equity to the police helicopter problem. The result of the 

tactical planning heuristic is a set of routes and stand-by shifts that defines the presence of a 

helicopter at a time and location. The set of routes can be summarized by the number of visits of a 

helicopter to a location. However, this is no indication of the timing of the helicopter and the impact 

that the helicopter has on the crime in a visited location. Therefore, we propose to summarize the 

set of routes as the forecast coverage of every location by the flying and stand-by helicopters. 
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To determine the equity of the tactical planning, we first translate the aspects of equity as discussed 

in Chapter 3 (groups, effect, and attribute) to the police helicopter problem. Recall that the LVP 

divided the Netherlands in 808 locations based on a hexagonal grid. We use the hexagons to define 

groups: every hexagon/location is a group. In the case of a flying helicopter, the effect of a helicopter 

route on a group is only distance-dependent: helicopters can fly in a straight line at a constant speed 

and are not slowed down by traffic jams. For stand-by helicopters this is the same, although the 

minimal arrival time to a group is affected by the response time from stand-by (see Section 4.4.3). 

When there are multiple helicopters available at the same time, the effect of the helicopters on 

location 𝑙 is the coverage by the closest helicopter. The effect on a group/location at a given time 𝐸𝑙,𝑡 

is the largest coverage by the set of flying and stand-by helicopters. The total effect 𝐸𝑙  on a group is 

the sum of the effect over all time intervals within the scope: 𝐸𝑙 =  ∑ 𝐸𝑙,𝑡𝑡 . 𝐴𝑙  is an attribute of group 

𝑙 against which a function of the effects can be compared or by which the effects can be weighted or 

scaled. In the LVP case, this can be the number of crimes that have happened in group 𝑙. For 

example, The LVP can determine that all locations should be covered an equal number of times 

(mean reference distribution) or according to their relative criminal intensity (attribute reference 

distribution). 

We now determine how to calculate the equity of the tactical planning. Therefore, we need to select 

an equity measure. We assume that all groups have the right at the same percentage decrease in the 

overall crime level. When groups receive a higher or lower percentage decrease of crime level, this is 

considered unfair. We thus want to minimize the deviations from the mean. We translate these 

choices into the following measure of inequity: 

 The deviations from the mean percentage of forecast covered per group. 

Since we already scaled the measure by the number of HIC through the use of a percentage, we do 

not use additional scaling. Marsh and Schilling (1994) discuss multiple formulations for an equity 

measure without scaling and with a mean reference distribution: the absolute deviations, the 

variance in the deviations, the max deviation, and a combination of the log function with the 

variance of the deviations. Since we cannot simultaneously optimize for efficiency and equity, the 

calculation of the equity happens only after full completion of the heuristic and the formulation thus 

has no influence on the results. We thus choose the least complex calculation and sum the absolute 

deviations from the mean. 

Since the LVP allocates its flights over a one-year scope, we calculate the equity measure over a 

scope of one year, without taking possible historical inequities into account. Furthermore, we find it 

impermissible that a location in the Netherlands is not covered at least once per year. Therefore, 

although the level of equity can change between tactical plans, there is one hard constraint for which 

we test solutions afterwards: every location/group should be covered at least once per year.  

To determine the level of equity or inequity of a solution, we take into account the resulting set of 

routes and the stand-by availability. Since we can have multiple helicopters airborne at the same 

time and helicopter on stand-by also cover some locations, we determine per location and time 

combination which helicopter has the shortest arrival time to the location during that time interval. 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒ℎ,𝑙,𝑡 contains the coverage of location 𝑙 ∈ L by helicopter ℎ ∈ 𝐻 on time 𝑡 ∈ 𝑇.  Equation 

6.14 is the definition of the effect on location 𝑙 ∈ L, in which we multiply the best coverage of the 

forecast values with the forecast values to determine the total forecast coverage. We divide the total 

forecast coverage on a location 𝑙 ∈ L by the total forecast value of location 𝑙 ∈ L to get the 

percentage of the forecast that is covered on location 𝑙 ∈ L. 
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𝑒𝑓𝑓𝑒𝑐𝑡𝑙 =  
∑ (𝑓𝑙,𝑡 ∗ max

ℎ
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒ℎ,𝑙,𝑡)𝑡

∑ (𝑓𝑙,𝑡)𝑡

 Equation 6.14 

 

Equation 6.15 shows the corresponding definition of the level of inequity. We want to minimize the 

deviations from the mean percentage of forecast coverage and thus determine the mean effect 

𝑒𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ (percentage of forecast covered per location) and the effect per location 𝑒𝑓𝑓𝑒𝑐𝑡𝑙. The level 

of inequity is then the sum of the deviations of the individual effects from the mean effect. 

 𝑖𝑛𝑒𝑞𝑢𝑖𝑡𝑦 =  ∑|𝑒𝑓𝑓𝑒𝑐𝑡𝑙 − 𝑒𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅|

𝑙

 Equation 6.15 

We propose to create several tactical plans with different degrees of inequity and performance, 

which we can measure by Equation 6.15 and Equation 6.8. The LVP can then determine which 

solutions has the best combination of inequity performance. 

6.6 Conclusion 
This chapter discusses performance measures to determine the accuracy of hotspot forecasts, the 

quality of the flight value estimator, and the performance of a set of routes that is the output of the 

tactical planning model. We find that measures like the Mean Squared Error are only applicable to 

aggregated hotspot forecasts and do not provide a useful measure for the accuracy of the forecasted 

geographic distribution of crime. Therefore, we develop an alternative measure that determines 

whether actual incidents correspond with the hotspot pattern of the proposed forecast methods. 

Furthermore, we conclude that the performance of surveillance routes is determined by their 

proximity to incidents and propose several measures. Finally, we discuss how overtime is measured 

by the LVP and how we determine the impact of shift schedules on overtime. 
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7 Simulation 
This chapter describes our simulation study in which we use a simulation model to determine the 

quality of several proposed methods and the expected impact of tactical decisions on the 

performance of the LVP. To compare different methods, we perform multiple experiments with 

different settings, and compare the outcomes. 

Section 7.1 describes the simulation plan, consisting of the goals, experiments, and parameter 

settings. Section 7.2 explains the verification procedure of the simulation model. Section 7.3 presents 

the results from simulation. Finally, in Section 7.4 we discuss the limitations of the simulation model 

and draw conclusions on the simulation results. 

7.1 Simulation plan 
This section describes the approach to simulation that we propose. We discuss how we use the 

available data to create input for the simulation and validate the results in Section 7.1.1 , describe 

the goals we want to reach by simulation (Section 7.1.2), create the necessary planning policies 

(Section 7.1.3) and set up a set of experiments to accomplish these goals (Section 7.1.4).  

7.1.1 Simulation steps 
The simulation process starts with forecasting. We determine a forecast value for every location in 

the hexagonal grid over the Netherlands over the scope of the experiment. For every experiment we 

use a scope of one year (365 days), to create a complete year plan. 

We then apply a planning policy, which is a heuristic like the tactical planning heuristic as discussed in 

Chapter 5, in which we model a possible approach to tactical planning by the LVP. For example, in 

Section 7.1.4 we suggest a planning policy for flat tactical planning, and a planning policy for variable 

tactical planning.  

To be able to validate the results of the forecasting procedures and the helicopter timing and routes 

that result from the planning policy, we want to compare actual incidents against the forecast and 

the planned routes. Therefore, we use a validation period: we exclude the last year of the available 

data. Figure 7.1 shows how we use part of the data to create a forecast, that we use during the 

simulated planning process, and use the rest of the data to determine the performance of the 

planning results. 

Since the LVP has four years of incident data (from 1-1-2010 until 31-12-2013), it is possible to make 

a forecast and route planning one year ahead on 1-1-2013, based on three years of data. As Figure 

7.1 shows, we can then compare the forecast and route planning over 2013 with the actual incident 

data of 2013 in the simulation module and determine the performance. We thus do not use the data 

of 2013 to create the forecast of 2013, to be able to objectively compare the forecast with the actual 

incidents in 2013. To determine whether the effects that we see are significant or due to random 

errors, we want to perform multiple measurements. Therefore, we also create simulations with one-

year forecasts based on two years of data that start at 1-1-2012 and 1-7-2012. 

 

 Figure 7.1: Visualization of simulation steps and validation period. 
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7.1.2 Simulation goals 
We identify multiple goals to achieve with the simulation model. The first goal is:  

1. To determine the effect of different forecast methods on the forecasting speed and the 

quality and performance of the resulting forecast. Furthermore, we vary the level of spatial 

and temporal aggregation, and the forget factor. The forecast methods, as discussed in 

Chapter 4, are: 

a. The extended daily forecast with monthly and weekly trends, for every day of the 

one-year scope. 

b. The fast forecasting method with month and weekday factors (Section 4.2.1). 

c. The forecast method without month and weekday factors, which uses only data of 

corresponding weekday and month combinations (Section 4.2.2). 

Second, we determine the effect of different stand-by and tactical planning policies on the expected 

performance of the LVP (goals 2 to 10): 

2. The effect of different stand-by tactics, as discussed in Section 7.1.3. 

3. The added value of flying standard surveillance routes versus only standing by. 

4. The added value of timing surveillance flights versus using a standard departure time. 

5. The added value of the optimal route calculation versus the current standard route. 

6. The added value of variable tactical planning versus flat tactical planning. 

7. The cost of personnel and maintenance constraints (crew budget and helicopter availability). 

8. The added value of using Rotterdam and Volkel as start and end locations of flights. 

9. The effect of different total coverage distances for the current success function on the 

allocation of flights on bases and surveillance routes (Section 4.4.1). 

10. The added value and performance of the new flight value estimator (Section 4.3). 

Third, we determine the effect of adjustments to the current forecasting, routing, and tactical 

planning methods (goals 11 to 16): 

11. The effect of different fixed flight durations. 

12. The effect of a different type of helicopter coverage formulation (Section 4.4.2). 

13. The impact of priorities on the forecast and route quality (Section 4.2.4). 

14. The impact of taking day and night effectiveness into account (Section 4.2.4). 

15. The impact of constraining surveillance routes to prevent hovering (Section 2.3.2). 

16. The impact of several degrees of fairness in tactical planning on performance (Section 5.5) . 

To achieve all goals we perform multiple experiments in which we make combinations of the 

forecasting, start time estimation, routing, and planning techniques. Since it takes between 8 and 20 

hours to run one experiment, we cannot perform a full factorial analysis in which we perform 

experiments for every possible combination. Therefore, we propose a sequential approach with 3 

steps. In this approach, we first determine the best forecasting method, which we then use to 

determine the best tactical planning policy, which we then use to determine the effect of, e.g., 

incident priorities. By using a sequential approach we cannot guarantee to find the best combination 

of techniques and we, e.g., ignore the effects of different forecasting techniques on the added value 

of tactical planning, but are still able to estimate the effect of different techniques on the tactical 

planning results. 

Figure 7.2 shows the combinations of methods and policies we perform experiments with. For 

example, to determine the added value of the route optimization MILP by Van Urk (2012) we 

perform experiment 19 in which all flights follow a standard route as set by the LVP (planning policy 
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2), and experiment 20 in which we use the MILP to determine the optimal route for every flight 

(planning policy 3), and determine the difference in performance. We keep all other settings and 

methods equal to find only the effect of the routing method. Section 7.1.4 provides a complete 

overview of the experiments and their settings. 

 

Figure 7.2: Overview of goals, planning policies, and methods. 

For experiments 13 to 25 we compare the impact of different possible tactical planning strategies 

and thus create several stand-by policies in Section 7.1.3 and overall planning policies in Section 

7.1.4. Stand-by policies are part of the overall planning policies. For every experiment we thus 

choose a combination of the stand-by and overall planning policies. 
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7.1.3 Stand-by policies 
To determine the relative quality of the current stand-by policy, we introduce six stand-by policies. 

We use the stand-by policies to determine the added value of more stand-by time and standing by 

on other locations than Schiphol. Policy 1 is the basic policy in which the LVP provides 24/7 stand-by 

coverage from Schiphol. The difference between policy 1 and 2 shows the added value of stand-by 

shifts on other locations while the LVP already provides 24/7 stand-by coverage from Schiphol. The 

comparison of policy 2 with policy 3 shows the added value of enabling more flexibility in the 

location of the 24/7 stand-by coverage. Policy 4 then enables the LVP to plan without the obligation 

of 24/7 stand-by coverage. Policy 5 schedules stand-by time instead of shifts and shows the cost of 

the inflexibility due to shift blocks. Finally, policy 6 provides the maximal stand-by coverage the LVP 

can provide given the current three locations, and thus provides a reference point to determine the 

performance of the other stand-by policies.  

1. The LVP is 24/7 stand-by on Schiphol only. 

2. The LVP provides 24/7 coverage from Schiphol and provides additional optimal coverage 

from Rotterdam and Volkel as long as the crew budget allows it to. 

3. The LVP optimally allocates stand-by crews over shifts and locations, with guaranteed 24/7 

coverage from a location. 

4. The LVP uses the optimal allocation of stand-by crews, without any constraints. 

5. The LVP optimally allocates the available time for stand-by, without taking shift blocks into 

account. It is thus possible to be only 2 minutes stand-by on Volkel on a particular Sunday.  

6. 24/7 coverage from Schiphol, Rotterdam, and Volkel. This is the best possible stand-by 

performance given the current set of locations. 

For every stand-by policy we define a heuristic that determines the best possible allocation of stand-

by time. In these heuristics, we do not schedule flights. We now discuss the heuristic of stand-by 

policy 2 as an example. To determine the added value of having a crew stand-by during a shift on a 

location, we first create a forecast. Since, for stand-by policy 2, there is always a crew available at 

Schiphol, we immediately schedule a crew on every shift on Schiphol. In step 3 we check whether 

there is budget left after step 2. When there is budget left, we determine in step 4 for the other 

locations (in this case Rotterdam and Volkel) for every shift the forecast coverage by a crew on stand-

by for the entire shift 𝑠𝑣𝑙,𝑡. In step 5 we distribute the crews that are left in the budget over the 

shift/location combinations with the highest values through an iterative procedure: we determine 

the shift/location combination with the highest stand-by coverage and schedule a crew during that 

shift on that location. When there is still crew budget left, we do the same for the next crew. After 

having allocated all crews, we determine the performance of the stand-by crews by comparing the 

stand-by availability with the actual incident pattern in step 6. Figure 7.3 shows a graphical 

representation of this policy. 

 

Figure 7.3: Graphical representation of the planning policy 1 heuristic. 

For the tactical planning policies in the next section we commonly use stand-by policy 2, since this 

policy is most similar to the current practice at the LVP. Since the 24/7 coverage from Schiphol is 
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required, we first schedule these crews. We then iteratively schedule flights, for which we need extra 

crews when they start at other locations than Schiphol, or when there is no crew available at 

Schiphol to perform the flight. After scheduling all flights, we determine the number of crews that is 

left in the budget and schedule them on shifts with the objective to cover as much forecast as 

possible that is not covered by the surveillance flights. 

7.1.4 Planning policies 
To compare different planning processes and methods, we define a set of planning policies. A 

planning policy consists of a set of tactical decisions such as the stand-by policy, what kinds of flights 

to make from which bases, and which practical constraints to take into account. Planning policies 

represent the possible interventions that the management of the LVP can make. Recall from Section 

2.1.3 that a crew is in-flight or stand-by. A crew that makes a flight is thus not stand-by. 

Planning Policy 1: 24/7 stand-by at Schiphol and optimal (variable) allocation of extra crews. 

The first planning policy is the base policy in which we only take stand-by availability into account. 

With this policy we determine the effect on the performance when the LVP would not make 

surveillance flights. We use stand-by policy 2 to determine the allocation of the crew budget, in 

which all available crews are stand-by on the ground for emergency incidents and the LVP makes no 

surveillance flights. There is always a crew available at Schiphol and the rest of the crew budget is 

divided over the shifts on Rotterdam and Volkel with the highest forecast coverage. 

Planning Policy 2: Current planning of single flights from Schiphol with a standard route 

The second planning policy is an estimation of the current practice within the LVP. The LVP flies 

standard routes that start and end at Schiphol at fixed moments of the day, irrespective of the 

weekday or month. Since the route and start times are fixed, we do not use the flight value estimator 

and the route optimization MILP. Again we use stand-by policy 2 to allocate the crews to shifts. 

Planning Policy 3: Flat tactical planning of single flights from Schiphol with a standard route 

In the third planning policy, we add the timing of the surveillance flights based on a forecast. We 

create a tactical planning and distribute the available flight hours as equal as possible over the days 

in the planning horizon. Since the route is fixed and the calculation of the exact value of a known 

route at any time is fast, we determine the exact value of starting a flight at that time for every time 

interval in the scope of the policy. Since it can occur that flights overlap in this policy, we sequentially 

schedule the flights. The flights start at the optimal time and follow a standard one and a half hour 

route over from Schiphol via Utrecht, Rotterdam, The Hague, and Amsterdam, back to Schiphol. 

Figure 7.4 visualizes the steps in the planning policy. In steps 1 and 2, we determine the maximum 

number of flights per day and create a forecast for one year ahead. Given stand-by policy 1 or 2, we 

then schedule one crew on Schiphol during every shift to create 24/7 stand-by coverage in step 3. 

When we use stand-by policy 3 or 4, we do not schedule crews yet. In steps 4 to 9 we sequentially 

schedule flights. For every flight we determine the best start time (step 4) and check whether the day 

of the optimal start time is not full yet (step 5). If there is room for a flight left in the flat tactical 

planning and when there is a crew and helicopter available (step 6), we schedule the flight in step 7, 

and update the forecast in step 8 with Equation 5.5. We make the crew unavailable for stand-by 

during its flight. if there is no crew or helicopter available, we exclude the start time from future 

analysis and find the next best start time. After scheduling all flights, we schedule the remaining 

crews for stand-by, according to the stand-by policy. Finally, we determine the performance of the 

set of routes and stand-by crews in step 11, by comparing the availability of helicopter support with 

actual incident patterns, as discussed in Section 6.3. 
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Figure 7.4: Graphical representation of the third planning policy heuristic. 

Planning Policy 4: Flat tactical planning of single flights with optimal routes 

The fourth planning policy introduces the MILP by Van Urk (2012), as discussed in Section 2.3.2, to 

determine the optimal route. The heuristic is almost the same as the heuristic for planning policy 3, 

except that we replace the standard route in planning policy 3 for the optimal route as calculated by 

the routing module of the operational planning tool. Since we do not know the optimal route per 

time interval in advance, we use the flight time estimator, as discussed in Section 2.3.2, to estimate 

the added value of a flight at every time interval to find the optimal start time. 

Planning Policy 5: Variable tactical planning of single flights without constraints 

The fifth policy introduces variable tactical planning. We relax the constraint on the maximum 

number of flights per day and the planning policy is free to variably allocate the flight budget over 

the year and calculates the best set of flights that is possible within the hour budget, without taking 

crew scheduling and maintenance into account. Since we do not take crew scheduling into account, 

we can increase the crew budget as long as it is necessary to create a better flight plan. 

Planning Policy 6: Variable tactical planning of single flights from Schiphol with constraints 

Figure 7.5 shows the sixth policy, which is more realistic than the fifth policy and introduces crew and 

helicopter constraints. When there is no crew available, we check if the budget allows another crew. 

When there is no helicopter or crew available, and there is no crew budget left, then we look for the 

next best flight. This planning policy should result in a feasible flight schedule and the comparison of 

the expected performance with policy 4 shows the performance cost of the added constraints. 

Planning Policy 7: Variable tactical planning of single flights from multiple bases 

This policy considers all known locations to start flights from and is discussed in Section 5.4. When 

we use the original flight value estimator, we cannot rely on the estimated flight value to determine 

the best location to start from. Therefore, we determine the best start time of the year for every 

location and calculate the corresponding coverage value of one single flight route (to and from the 

same location). We then compare the routes for the different start locations, schedule the route 

from the best location, and update the forecast. Figure 5.3 visualizes the seventh planning policy 

heuristic. 
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Figure 7.5: Graphical representation of the sixth planning policy heuristic. 

7.1.5 Experimental setup 
Since it takes between 8 and 20 hours to do one experiment, we cannot perform experiments for 

every combination of the forecasting methods, flight value estimators, planning policies, etc. 

Therefore, we propose a sequential approach. We follow the sequence of the goals and determine 

the corresponding required experiments. An important factor in the setup of experiments is that we 

do not change more than one settings between two experiments that we compare, to make sure 

that the difference between the results is due to the one change only. 

Step 1: determine optimal forecast method (goal 1) 

In Chapter 4, we identify several forecasting methods. First, the original forecasting method of Van 

Urk (2012) that uses all available historic data to create a forecast for every day in the scope. Second, 

the fast forecasting procedure transforms one day of forecast by the weekday and month factors to 

create forecasts for other weekday/month combinations. Finally, there is the forecasting method 

that only uses historical data from incidents that happened on a Monday in January to create a 

forecast for a Monday in January. We call it the “weekday per month” forecasting method. 

For every forecasting method there are three possible settings. First, we can adjust the forget factor. 

Second, we can determine the level of spatial aggregation by choosing the number of hexagon rings 

that we spread the incidents over, see Figure 2.5. Finally, we can switch the aggregation in time on 

and off. To compare between different forecasting methods and levels of temporal and spatial 

aggregation, we use an initial constant forget factor of 0.03. We compare the results experiments 1 

and 2 to determine the effect of fast forecasting. We then use different levels of spatial aggregation 

to determine the added value or cost of spatial aggregation in experiments 3 and 4. In experiment 5 

we stop using temporal aggregation to determine its effect on the forecast. Experiments 6, 7, and 8 

indicate the added value or cost of the weekday per month method, and we test again the effect of 

spatial and temporal aggregation. We perform all experiments for three time periods of a year, 

starting at 1-1-2012, 1-7-2012, and 1-1-2013, to determine whether the results are consistent for 

different datasets and monthly patterns. 
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Experiment 1 2 3 4 5 6 7 8 

Fast Forecasting No Yes Yes Yes Yes Yes Yes Yes 

Temporal aggregation Yes Yes Yes Yes No No Yes Yes 

Spatial aggregation 5 rings 5 rings 1 ring 0 rings 0 rings 0 rings 0 rings 1 ring 

Data All All All All All Weekday
/month 

Weekday
/month 

Weekday
/month 

Table 7.1: Experimental setup to determine the effect of different forecast technique. 

We use several measures to determine the impact of different forecasting methods on the resulting 

forecast. We record the time it takes to create the forecast (forecasting speed). We determine the 

seasonal and weekly distribution of the forecast by calculating the MSE for the aggregated forecast 

per day. We then determine the spatial and temporal accuracy by the measure as described in 

Section 6.1. To determine the impact on routes and the performance of routes that are based on the 

forecasts, we then apply planning policy 5 to the forecast, to see the effect of the forecast on the 

optimal route MILP. We give the experiments a budget of 100 flight hours to limit computation times 

and create one and a half hour flights. We set total coverage distance of the success function to 4 

minutes to create routes close to hotspots, which generally results in extensive routes. Since the LVP 

currently provides 24/7 coverage from Schiphol, we use stand-by policy 2. Furthermore, the LVP 

currently has a budget for 1,500 crews and we use this budget in all experiments. Finally, we 

compare the tactical plan with the actual incident pattern and measure the incident coverage and 

the number of incidents covered when the LVP would have precisely followed the tactical plan in 

reality. 

From the results of experiment 1 to 8 we choose the forecasting method that best fits the LVP 

requirements, and determine the influence of different forget factors for this method. We try several 

different values for the forget factor to determine the effect of the forget factor. We test two higher 

and two lower forget factors that should give an indication whether a higher forget factor leads to 

better results or not. We do not zoom in on the best forget factor, since finding the optimal forget 

factor is not the focus of this research. Table 7.2 shows the experiments and corresponding forget 

factors. As we already know the performance for the forget factor 0.03, we do not have to run a new 

experiment for that factor. 

Experiment 9 10  11 12 

Forget factor 0.005 0.01 0.03 0.1 0.5 
Table 7.2: Experimental setup to determine the effect of different forget factors. 

We use the same planning policy settings and performance measures as for experiments 1 to 8. 

Based on the computation time and performance measures, we choose the forecast method and 

forget factor that gives the best results in a feasible computation time. 

Step 2: determine benefits of different planning policies (goals 2 to 10) 
With the best forecast from Step 1, we now determine the cost or benefit of different (stand-by) 

planning policies that use this forecast as input. We start with measuring the effect of the stand-by 

policies as described in Section 7.1.3 by the experiments in Table 7.3. We assume that it takes a 

helicopter 6 minutes to depart from Schiphol and Rotterdam, and 4 minutes from Volkel. We 

perform every experiment for a total coverage distance of 4, 6, and 10 minutes and a crew budget of 

1,500 shifts. As discussed in Section 4.4.1 the LVP currently assumes that a helicopter has a total 

coverage distance of 10 minutes, and that an airborne helicopter thus is able to cover Amsterdam, 

Rotterdam, Den Haag, and Utrecht at the same time. We compare this assumption with a total 

coverage distance of 6 minutes that enables an airborne helicopter to cover at most 2 of the big 
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cities at the same time, and a total coverage distance of 4 minutes that restricts the coverage area of 

a helicopter to at most one of Netherlands biggest cities. 

Experiment 13 14 15 16 17 18 

Stand-by planning policy 1 2 3 4 5 6 
Table 7.3: experimental setup to determine the effect of different stand-by policies. 

We measure the performance of the various stand-by policies by the number of incidents covered 

and the incident coverage. Based on these results, we now know the performance of only standing-

by and determine the effect of flying, according to different planning policies. 

1. We determine the benefit of flying over standing-by, by comparing planning policies 1 and 2. 

2. We determine the benefit of timing surveillance flights, by comparing policies 2 and 3. 

3. We find the benefit of optimal routing over a standard route by comparing policies 3 and 4. 

4. We identify the potential benefit of tactical planning by comparing policies 4 and 5. 

5. We calculate the cost of crew scheduling constraints by comparing policies 5 and 6. 

6. We estimate the benefit of using Rotterdam and Volkel as start locations of flights by 

comparing policies 6 and 7. 

We already determined the performance policy 1, since it is equal to stand-by policy 2, and can thus 

start with tactical planning policy 2. Table 7.4 shows that we run six experiments, one for every 

planning policy.  

Experiment 19 20 21 22 23 24 

Tactical planning policy 2 3 4 5 6 7 
Table 7.4: experimental setup for tactical planning policies. 

To enable objective comparison of the policies, we use for every planning policy 5 helicopters, stand-

by policy 2, a crew budget for 1,500 crews, 1:30 hour flights, a 2,190 flight hour budget (1,460 

flights), and no limitations on the maximum number of visits per location. We determine the 

performance of the different planning policies through the same measures as we used for the stand-

by policies: incident coverage and number of incidents covered. 

Step 3: determine effect of the new flight value estimator and routing settings (goals 11 to 16)  

We then use planning policy 7, since it is the most complete, in experiments to determine the impact 

on the performance of the improved flight value estimator (experiment 25) and different average 

flight durations (experiment 26 and 27). In experiment 28 we determine the impact on surveillance 

routes of the negative exponential success function with the preventive effect, followed by the effect 

of taking priorities and effectiveness into account in experiment 29, 30, and 31. Furthermore, we 

perform two experiments with different crew schedules to determine their impact on the expected 

overtime, two experiments with different levels for the maximum number of visits constraint, and 

five experiments to determine the trade-off between equity and efficiency. We thus perform a total 

of 40 experiments. 

We measure the performance of the resulting set of routes and stand-by crews for all experiments by 

the number of incidents covered and the incident coverage. Furthermore, we determine the 

correlation between the expected performance of flights and the actual forecast coverage of flights 

(see Section 6.2) for experiments 24 and 25 to determine the effect of the new flight value estimator. 
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7.2 Verification 
Verification is the step in the development of a simulation model that ensures that the model works 

correctly. We perform several checks to see whether the model works as it should. First, we have 

created several visual checks of forecasts and routes:  

a. We compare every forecast with its input data and check whether it is spatially and 

temporally correct.  

b. For every flight we check whether the route starts and ends at the right location and 

whether the route does not skip hexagons (since it can only fly to neighbouring 

hexagons in one time step). 

Second, we have run the entire code step by step and ran several debugging procedures. 

c. Every line of code in the simulation model has run for thousands of times without 

giving errors. Furthermore, the code contains parts that check whether the input and 

output are correct (for example, whether the tactical plan provides 24/7 coverage).  

Finally, we have presented the outputs of the model to the LVP experts to verify whether the results 

match reality. The LVP experts concluded that the results match reality sufficiently. 

7.3 Simulation results 
This section discusses the results from simulation experiments. We first discuss the effect on the 

quality of different forecast methods and settings and choose the best method (Section 7.3.1). 

Second, we use the best forecast to test the effect of different planning policies (Section 7.3.2). 

Section 7.3.3 then discusses the effects of several extensions. 

7.3.1 Step 1: the effect of forecast methods and settings 
To compare the different forecast methods, we perform the experiments as defined in Table 7.1. 

Table 7.5 is a copy of Table 7.1 to enable quick comparison between experiments. We use the first 

two experiments to determine the impact of fast forecasting. Experiment 2 to 5 show the impact of 

different degrees of spatial and temporal forecasting. Experiments 6 and 7 are examples of the 

weekday per month forecast method. 

Experiment 1 2 3 4 5 6 7 8 

Fast forecasting No Yes Yes Yes Yes Yes Yes Yes 

Forget factor 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Temporal aggregation Yes Yes Yes Yes No No Yes Yes 

Spatial aggregation 5 rings 5 rings 1 ring 0 rings 0 rings 0 rings 0 rings 1 ring 

Data All All All All All Weekday
/month 

Weekday
/month 

Weekday
/month 

Table 7.5: forecast method experiments. 

Table 7.6 shows the results of the experiments with a scope of one year. To check whether the 

results hold for different datasets, we perform all experiments except the first three times, for the 

start dates 1-1-2012, 1-7-2012, and 1-1-2013. We use colours to indicate the relative quality of a 

measure compared to other forecasts. For example, we want to minimize the MSE and maximize the 

hotspot accuracy. We note that we can only compare results in the same row to determine the effect 

of forecasts. Since there is no difference between the results of experiments 1 and 2 for the start 

date 1-1-2013, we conclude that it does not cost accuracy or incident coverage to use the fast 

forecasting method (experiment 2), and we do not create forecasts with the slower method for the 

other start dates. 
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Experiment 1 2 3 4 5 6 7 8 

Forecast speed (minutes) 1,800 30 30 24 15 15 20 30 

Route optimization time for 1,460 
flights (hours) 6 6 6 10 30 30 8 6 

Quality 

MSE 

1-1-2012 
 

2,391 2,389 2,388 2,131 3,352 3,353 3,360 

1-7-2012 
 

2,851 2,850 2,873 3,041 3,530 3,524 3,510 

1-1-2013 1,747 1,747 1,747 1,747 1,750 3,703 3,703 3,722 

Hotspot  
accuracy  

(%) 

1-1-2012 
 

0.208 0.376 0.716 0.750 0.773 0.732 0.387 

1-7-2012 
 

0.206 0.384 0.732 0.707 0.747 0.731 0.385 

1-1-2013 0.196 0.196 0.358 0.694 0.737 0.749 0.696 0.363 

Perfor-
mance 

Total  
incident  
coverage 

1-1-2012 
 

4,128 4,523 4,455 4,862 4,848 4,705 4,665 

1-7-2012 
 

4,271 4,768 4,634 4,931 4,889 4,926 4,893 

1-1-2013 4,188 4,188 4,548 4,510 4,550 4,603 4,523 4,288 

flying 
coverage 

1-1-2012 
 

580 635 611 669 650 584 591 

1-7-2012 
 

577 615 610 522 510 689 658 

1-1-2013 475 475 525 493 509 522 476 466 

Stand-by  
coverage 

1-1-2012 
 

3,548 3,888 3,844 4,194 4,198 4,120 4,074 

1-7-2012 
 

3,694 4,153 4,024 4,410 4,378 4,238 4,235 

1-1-2013 3,713 3,713 4,022 4,017 4,041 4,081 4,048 3,822 
Table 7.6: Results of the forecast method experiments. 

Second, we see that the level of spatial aggregation does not the influence the MSE (compare 

experiments 2, 3, and 4), which is as expected since spatial aggregation multiplies the total forecast 

value at every time interval by the same value. However, less spatial aggregation does result in a 

higher forecast accuracy and a better incident coverage from stand-by as well as from surveillance 

routes. We see that the performance of a forecast with one ring of spatial aggregation (experiment 

3) performs better than the forecast without spatial aggregation (experiment 4), and find that spatial 

aggregation makes it easier for the route optimization MILP to detect hotspots. 

Third, from experiment 4 to 5 (with and without temporal aggregation) we see that the accuracy of 

the forecast improves, and that the incident coverage from flying the optimal routes increases. This 

indicates that forecasting without temporal aggregation increases the quality of the forecast. 

Fourth, when comparing experiments 5 and 6, we find that the use of weekday/month forecasting 

method, instead of month and weekday factors, increases the hotspot accuracy and performance, 

but decreases the MSE. Figure 7.6 shows the forecast of experiment 6 and compares it with the 

actual incident pattern of the data from the validation period. We see that the forecast of 

experiment 6 overestimates criminal intensity of November and December, while underestimating 

January and February, thus leading to a higher MSE.  

Fifth, experiments 7 and 8 show that the effect of temporal and spatial aggregation is the same for 

the forecast without weekday and month factors as for the forecast with these factors. We conclude 

that the forecasting method of experiment 6 provides the best results. However, it is not feasible to 

perform all following experiments with the forecasting method of experiment 6 due to its extensive 

computation time. Therefore, we perform the remaining experiments with the forecast of 

experiment 7.  
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Figure 7.6: comparison of weekly and seasonal patterns in experimental forecasts and the actual pattern. 

Overall, Table 7.6 shows quite consistent patterns between experiments for the different start dates. 

Only the flying incident coverage for start date 1-7-2012 deviates significantly, for which we did not 

find an explanation. 

For the forecast method of experiment 7 we now determine the effect of the forget factor. Table 7.7 

shows the resulting forecast accuracy and incident coverage for the experiments. We conclude that a 

forget factor of 0.03 results in the best performance, although we see no clear pattern or reason. 

From now on, we use the forecasting method of experiment 7, without spatial aggregation but with 

temporal aggregation and a forget factor of 0.03, for all following experiments. 

 

Experiment 9 10 11 12 13 

 
Forget factor 0.005 0.01 0.03 0.1 0.5 

Quality 

1-1-2012 0.730 0.730 0.732 0.746 0.883 

1-7-2012 0.732 0.732 0.731 0.721 0.633 

1-1-2013 0.694 0.694 0.696 0.711 0.824 

Performance 

1-1-2012 4,728 4,736 4,705 4,401 3,473 

1-7-2012 4,925 4,928 4,926 4,673 3,074 

1-1-2013 4,514 4,491 4,523 4,010 3,176 
Table 7.7: results for experiments with forget factors. 

Conclusions step 1 

In this section we find that the fast forecasting method does not result in a decrease of performance.  

The best forecasting method is the method without weekday and month factors and without 

temporal and spatial aggregation. Furthermore, we find that the computation time of flights depends 

on the level of spatial and temporal aggregation. Since computation time  is limited, we use the 

forecast without weekday and month factors but with temporal aggregation for the next 

experiments. For this forecasting method, the forget factor of 0.03 results in the best quality and 

performance. 
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7.3.2 Step 2: performance for the stand-by and planning policies. 
We now test the different stand-by and planning policies and determine their effect on the 

performance of the LVP. We start with experiment 14 to 19, as discussed in Table 7.3. 

Stand-by policies 

Table 7.8 shows the resulting incident coverage per planning policy for different total coverage 

distance (see Section 2.3.2) and Figure 7.7 shows the performance per stand-by policy when we 

compare it with the maximum performance of experiment 18. 

Incident coverage Experiment 14 15 16 17 18 19 

  Stand-by Policy 1 2 3 4 5 6 

Total coverage 
distance (minutes) 
  

4 1,500 4,105 5,720 5,711 6,297 7,677 

6 7,962 12,491 12,654 13,371 15,113 20,709 

10 17,042 25,836 25,944 27,865 33,712 47,657 
Table 7.8: results for experiment with different stand-by policies. 

When we compare experiments 15 and 14 we see that the 400 crews on top of the 1,100 crews on 

Schiphol increase the performance by at least 50%. Furthermore, we see that keeping the 24/7 

stand-by coverage obligation but creating flexibility in the location from where this coverage is given 

(experiment 16), enables an expected performance improvement of 1% and 40% for a total coverage 

distance of 6 and 4 minutes respectively. 

When the LVP is not obliged to provide 24/7 coverage (experiment 17), the performance increase is 

minimal. Figure 7.8 shows the forecast we can optimally cover with a number of crews, 100% being 

the forecast covered by having a crew on every location during every shift. It shows that with 1,500 

crews, the LVP can cover approximately 80% of the maximum coverage for a total coverage distance 

of 4 minutes. We assume that stand-by policy 2 (experiment 15) is the current practice, and conclude 

that given the current tactical planning decisions, the LVP is able to perform between 50% and 60% 

of the maximum possible stand-by performance (experiment 19). 

From the comparison of experiment 18 with experiment 17 we find that the scheduling of entire 

shifts (experiment 17) instead of the optimal set of times (experiment 18), costs at most 18% of 

performance. Figure 7.9 shows the distribution of crews (or stand-by time for policy 5) over the three 

locations for different policies and different total coverage distances. It shows that for different 

distances, the importance of, for example, Volkel changes. Furthermore, the ratio between crews on 

Schiphol and Rotterdam changes between policies and total coverage distances. Rotterdam is the 

best base when the total coverage distance is 4 minutes, probably since a helicopter at Rotterdam 

airport can then cover both Rotterdam and The Hague, while Schiphol only covers Amsterdam.  

When we do not schedule full stand-by shifts (policy 5 versus policy 4), we see that Volkel becomes 

more attractive. It is thus interesting to be at Volkel at peak times, although full shifts are commonly 

less interesting than full shifts at Rotterdam. When the peak times at Volkel differ from the peak 

times at Rotterdam and Schiphol, combinations could be interesting. Future analysis of these peak 

times should reveal whether it is beneficial to stand by at multiple bases during one shift, and to use 

the surveillance flights to travel between the bases. 

Overall, we find that the more advanced stand-by policies result in the biggest performance 

improvement for a total coverage distance of 4 minutes. Furthermore, Figure 7.8 shows that the 

expected forecast coverage per shift has a lower variation for higher coverage distances. This 

explains why the benefit of stand-by policy 6 depends on the coverage distance. 
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Figure 7.7: stand-by performance relative to the maximal performance, for several total coverage distances. 

 

Figure 7.8: Expected forecast coverage per crew budget. 

 

Figure 7.9: The number of crews at the stand-by locations for stand-by policies 2 to 6 and total coverage distance equal to 4 
(left), 6 (middle), and 10 (right). 
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Planning policies 

Recall that, since it is most similar to the actual stand-by planning, we use stand-by policy 2 as the 

default stand-by policy. We now discuss the results from experiments 19 to 24 with different 

planning policies, as explained in Table 7.4, and stand-by policy 2. Table 7.9 shows the total number 

of incidents covered, and incident coverage per planning policy, for different start dates (datasets) 

and total coverage distances. We did not perform experiment 23, since we found that the tactical 

planning with planning policy 5 is currently not restricted by the number of crews or helicopters. 

Total incidents 
covered Experiment 15 19 20 21 22 23 24 

Total coverage 
distance (minutes) Policy 1 2 3 4 5 6 7 

4 01/01/2012 7,772 13,851 14,747 15,916 15,296   15,007 

4 01/07/2012 8,153 14,125 15,106 16,481 15,067 
 

16,269 

4 01/01/2013 7,616 13,126 14,140 15,489 14,710 
 

13,883 

6 01/01/2013 19,039 22,841 23,665 26,973 24,300 
 

25,524 

10 01/01/2013 34,381 38,018 38,585 40,837 37,272   39,012 
 

Total incident 
coverage Experiment 15 19 20 21 22 23 24 

Total coverage 
distance (minutes) 

Planning 
policy 1 2 3 4 5 6 7 

4 01/01/2012 4,260 8,995 9,737 10,460 10,461  10,201 

4 01/07/2012 4,416 9,139 9,934 10,917 10,508  11,253 

4 01/01/2013 4,105 8,406 9,300 10,186 8,249  9,598 

6 01/01/2013 12,491 16,293 17,112 19,286 17,215  18,064 

10 01/01/2013 25,836 29,911 30,778 33,177 30,065  31,614 
 

Flying incident 
coverage Experiment 15 19 20 21 22 23 24 

Total coverage 
distance (minutes) 

Planning 
policy 1 2 3 4 5 6 7 

4 01/01/2012 0 5,569 6,393 7,094 8,511  8,291 

4 01/07/2012 0 5,596 6,522 7,430 9,069  8,884 

4 01/01/2013 0 5,080 6,140 6,959 7,804  7,699 

6 01/01/2013 0 6,751 8,218 10,292 11,404  10,853 

10 01/01/2013 0 10,396 12,830 15,790 15,972  15,960 
 

Stand-by incident 
coverage Experiment 15 19 20 21 22 23 24 

Total coverage 
distance (minutes) 

Planning 
policy 1 2 3 4 5 6 7 

4 01/01/2012 4,260 3,426 3,344 3,366 1,950   1,910 

4 01/07/2012 4,416 3,543 3,412 3,487 1,439   2,369 

4 01/01/2013 4,105 3,326 3,160 3,227 1,120   1,899 

6 01/01/2013 12,491 9,542 8,894 8,994 5,811   7,211 

10 01/01/2013 25,836 19,515 17,948 17,387 14,093   15,654 
Table 7.9: Total incidents covered, total incident coverage, flying incident coverage, and stand-by coverage per planning 

policy. 
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When we compare the incident coverage with the number of incidents covered per experiment, as  

Table 7.9 shows, we find that an increase in the number of covered incidents not necessarily leads to 

an increase of incident coverage. Since the incident coverage provides more information on the 

proximity of helicopters to criminal incidents than the number of incidents covered, we use the 

incident coverage for the rest of the analysis. Furthermore, we find that the trends in differences 

between planning policies are consistent for different planning periods, as defined by the start date, 

and for different total coverage distances. We now evaluate step by step the differences between 

consecutive planning policies. 

First, we note that the benefit of flying surveillance flights is substantial for a total coverage distance 

of 4 minutes. 2,190 hours of standard surveillance flights (experiment 19, flying incident coverage) 

deliver more performance than standing by 24/7 (± 8,760 hours) on Schiphol (experiment 15, stand-

by incident coverage). This effect is less for larger total coverage distances, which indicates that the 

standard routes perform less for larger total coverage distances, or that standing by profits more 

from a larger total coverage distance than flying. We note that there is no flying incident coverage for 

experiment 15 since this experiment includes only stand-by scheduling. 

Second, we see that the timing of standard surveillance routes based on the forecast (policy 2, 

experiment 20) increases the added value of surveillance flights by approximately 20% in comparison 

to experiment 19 with policy 1. The best start time is based on the flight value estimator. Figure 7.10 

shows the flight value per time interval as estimated by the original flight value estimator. We clearly 

recognize the weekly and monthly patterns as shown in the forecast pattern in Figure 7.6. Figure 7.11 

shows that the timing of flights becomes spread out over the day in experiment 20, probably since 

the best start time changes between weekdays and months due to the different daily crime patterns. 

 

Figure 7.10: estimated added value of a surveillance flight from Schiphol to Schiphol per time interval for one year. 

 

Figure 7.11: the number of flights that starts per time interval. 
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Third, we find that calculating the optimal route (experiment 21, policy 4) instead of using a standard 

route (experiment 20) increases performance for a total coverage distance of 4 minutes by 

approximately 13%. However, for a total coverage distance of 6 minutes this is 27% and for a total 

coverage distance of 10 minutes it becomes 24%. Figure 7.12 shows the difference in the routes for 

different policies, given a total coverage distance of 4 minutes. We find that the optimal routes focus 

on the centre of the “Randstad”, a group of cities in the West of the Netherlands. From within the 

Randstad, the helicopters can reach multiple large cities in time. However, the standard route passes 

directly over cities, which makes it cover in general one city at a time.  

   

Figure 7.12: Accumulated routes for policy 1 and 2 (left), policy 4 (middle), and policy 7 (right). 

Figure 7.13 shows the accumulated routes for different total coverage distances (in this case for 

policy 7). We find that for a total coverage distance of 4 minutes, the helicopter routes focus on 

areas where the helicopter can cover multiple hotspots. For example, these areas lie between 

Rotterdam and The Hague, and between Amsterdam and Utrecht. With a total coverage distance of 6 

minutes helicopters are able to cover more than two cities at the same time and the routes focus on 

the area where one helicopter can cover Leiden, as well as Amsterdam and Utrecht. Furthermore, 

the blue shaded areas show that some of the routes start at Rotterdam, but most of the routes start 

at Schiphol. The total coverage distance of 10 minutes implies that one helicopter can cover the 

entire “Randstad”. We thus see a clear path from Schiphol to a location where the helicopter covers 

all major western cities at the same time.   

   

 Figure 7.13: Accumulated routes for routes from policy 7 with total coverage distance of 4 minutes (left), 6 minutes 
(middle), and 10 minutes (right). 

The total incident coverage thus has an impact on the positioning of the helicopters. Figure 7.14 

shows the coverage per location for a given helicopter position. It shows that a helicopter in the 

centre of the “Randstad” with a total coverage distance of 4 minutes and the corresponding maximal 

coverage distance of 9 minutes, is able to (partially) cover multiple cities. 
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Figure 7.14: overview of the “Randstad” area with the coverage per hexagon (green), given a helicopter location (red) and a 
total coverage distance of 4 minutes and maximal coverage distance of 9 minutes. 

 To evaluate the effect of the different total coverage distances we compare the flying incident 

coverage of the resulting routes, with the average distance to the covered locations and calculate the 

corresponding score according to Equation 6.11. Table 7.10 shows the results for experiment 21 with 

policy 4. 

Total coverage 
distance (minutes) 

Flying incident 
coverage 

Average arrival 
time (minutes) 

Score 

4 6,959 5.6 311 

6 10,292 7.5 229 

10 15,790 9.3 170 
Table 7.10: the flying incident coverage, average distance to covered incidents and the combined score per total coverage 

distance. 

Since one helicopter cannot cover simultaneous incidents in different cities and the LVP aims to 

increase its proximity, we find that the total coverage distances of 6 and 10 minutes are unrealistic. 

Furthermore, long total coverage distances result in an undesirable positioning of the helicopters, far 

away from every city in the “Randstad”. We thus recommend the LVP to use a total coverage 

distance of 4 minutes for the current success function. 

Experiments 19 to 21 consider a flat tactical planning. In experiment 22 we make this variable with 

planning policy 5. Table 7.9 shows that the incident coverage from surveillance flights increases, 

while the stand-by incident coverage decreases. This is due to the assumption that a second stand-by 

crew on a base has no added value during times that the first stand-by crew is not making 

surveillance flights. Variable tactical planning on Schiphol results in shifts with more flights than one 

crew can handle, or overlapping flights on times when there are multiple big hotspots. Then, multiple 

crews are available during the same shift, such that the incident coverage from flights increases, 

while the stand-by coverage decreases. Figure 7.15 shows that there are even shifts with more crews 

available on Schiphol than there are helicopters available. We find that in this case helicopters are 

used sequentially by multiple crews (due to the restriction on the number of flight hours per shift for 

crews). 
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Figure 7.15: number of crews scheduled per shift in the variable tactical planning for 2013.  

From Table 7.9 we thus conclude that variable tactical planning (experiment 22) results in an increase 

in the incident coverage during surveillance flights. However, due to the simultaneous availability of 

multiple crews on Schiphol, it leads to a decrease in the total incident coverage of approximately 4% 

for a total coverage distance of 4 minutes, 11% for 6 minutes, and 9% for 10 minutes. We now 

examine the effect of variable tactical planning on the number of flights per day and evaluate the 

quality of the estimator. For this analysis we use Experiment 22 with start date 1-1-2013 and a total 

coverage distance of 4 minutes. Figure 7.16 shows the number of flights per day for policy 4 (with the 

same start date and total coverage distance) and 5. We conclude that for variable tactical planning, 

the number of flights decreases significantly in the summer, and that these flights instead are made 

in the autumn and winter. Furthermore, we clearly see weekly patterns. 

 

Figure 7.16: The number of flights per day for policy 4 (flat tactical planning) and 5 (variable tactical planning). 

To determine the distribution of flights over the year and the timing during the day, we use the 

results of the flight value estimator. Figure 7.17 shows the expected flight value (forecast coverage), 

as determined by the estimator. Based on the left side of the graph we conclude that the estimator 

seems able to find times on which flights cover more than average. On the right side of the graph we 

conclude that the added value of timing flights decreases as the flight budget increases. After about 
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half of the flights, the peak times have been covered by flights, and the difference between flights 

decreases. This is an explanation for the limited added value of variable tactical planning with the 

current LVP budget: when the peak times are covered, there is a limited benefit of comparing for 

example a flight on a winter morning, with a flight on a summer evening. We thus expect that the 

added value of variable tactical planning decreases when the flight budget increases. 

 

Figure 7.17: Expected and actual forecast coverage for the policy 5 flights. 

Next to the quality of the estimator, we also want to determine the predictive value of the 

underlying forecast. Figure 7.18 shows per flight the actual forecast coverage and the incident 

coverage. We see no clear relation between both the forecast and incident coverage. With Equation 

6.6 we find a correlation coefficient of 0.125. With a sample size of 1460 flights, we find that there is 

with 99.77% probability a correlation between the actual forecast coverage and the incident 

coverage. 

 

Figure 7.18: The actual forecast coverage and incident coverage for the policy 5 flights with original estimator. 

In experiment 23 we aimed to introduce crew and helicopter constraints. However, we found that 

these factors do not have an impact on the performance, since the variable flight planning does not 

require more than 1,500 crews and 5 helicopters at the same time. 
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Finally, from experiment 24 we find that the use of multiple start locations does not increase 

performance. We note that the heuristic currently determines the optimal start location, based on 

the coverage of the flight only. We see that this works since the incident coverage from flights 

increases between experiments 23 and 24. However, when a crew and helicopter fly from Volkel, 

they are standing-by at Volkel for the entire flight, while otherwise they would have been standing-

by at Rotterdam. Since standing by at Rotterdam is much more valuable (in the case of a total 

coverage distance of 4 minutes) than standing by at Volkel, flights from Volkel cost overall 

performance. 

We performed two unscheduled extra experiments (22.A and 24.A) to test whether we can decrease 

this effect by first scheduling all stand-by crews on shifts and locations, according to stand-by policy 

2, after which we schedule the flights with planning policy 6 and 7 (which do not use anymore crews 

than already scheduled). We used the forecast that starts at 1-1-2013 and a total coverage distance 

of 4 minutes. Table 7.11 shows the results of the extra experiments and the differences between the 

coverage values of flat tactical planning in experiment 21 and variable tactical planning in experiment 

22.A, and using multiple start locations in experiment 24.A. 

Experiment 21 22.A Difference 24.A Difference 

Planning policy 4 6  7  

Total incident coverage 10,186 10,605 +4.11% 10,547 +3.54% 

Flying incident coverage 6,959 7,349 +5.60% 7,993 +14.86% 

Stand-by incident coverage 3,227 3,256 +0.90% 2,554 -20.86% 
Table 7.11: effect on incident coverage of scheduling all crews before scheduling flights. 

We conclude that the increase of performance by scheduling crews before scheduling flights is 

substantial and that the total performance of these experiments is at least 3.5% higher than the best 

possible performance of the flat tactical planning heuristic. We expect that the use of stand-by policy 

4 will further increase both the performance from flying and standing by. The simultaneous 

scheduling of stand-by shifts and surveillance flights thus deserves attention. 

When we compare the number of flights per day for experiments 21 and 22.A in Figure 7.19, we 

conclude that having at most one crew available on a location reduces the effect of variable planning. 

The maximum number of flights decreases from 24 to 8 and more flights are made in the summer. 

 

Figure 7.19: number of flights per day for policy 5 and policy 6 in which we schedule crews before flights. 
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New flight value estimator 

In this section we compare the performance of the original flight value estimator with the new 

greedy flight value estimator. Due to a lack of computation time, Table 7.12 shows the flying incident 

coverage and correlation coefficient between the expected forecast value and the actual forecast 

value, for two experiments with a different forecast and total coverage distance. Figure 7.20 shows 

per flight the flying incident coverage and the forecast coverage, which we used to calculate the 

correlation coefficient with. 

Estimator Original New 

Total incident coverage 18,502 19,762 (+6.8%) 

Correlation coefficient 0.134 0.54 
Table 7.12: effect of the new estimator on the total incident coverage and correlation coefficient between the expected 

flight coverage and the actual incident coverage. 

We conclude that the new estimator seems to result in an improvement of the total incident 

coverage as well as the correlation coefficient. Furthermore, the new method estimates the actual 

forecast coverage well. We thus recommend to use the new flight value estimator. 

 

Figure 7.20: The actual forecast coverage and incident coverage for the policy 5 flights with new estimator. 

Conclusions step 2 

Overall, we find in step 2 that the added value of the previous research by Van Urk (2012) on the 

timing and route optimization of surveillance flights results in an expected performance 

improvement between 20%. Furthermore, we find that the total coverage distance is an important 

influencing factor on the surveillance routes and proximity of the helicopters to criminal incidents. 

We recommend to use a total coverage distance of 4 minutes from now on. With the tactical 

planning heuristics that we propose in Chapter 5 we find that variable tactical planning decreases the 

performance of the LVP. However, when we allocate all crews before we schedule flights, variable 

tactical planning of surveillance flights improves the performance by approximately 4% and the use 

of multiple locations increases performance by another %. We thus find that the simultaneous 

scheduling stand-by crews and flights deserves extra attention. Finally, the use of the new estimator 

improves the performance of the tactical planning heuristics substantially and is thus recommended. 

7.3.3 Step 3: effect of extensions 
In step 3 we examine the effects of the proposed extensions. First, we test the new estimator. We 

then experiment with different flight durations, a new success function, taking into account priorities 

and effectiveness, limits to the maximum number of visits to a location during a route, and the effect 

of shifts on overtime. For every experiment we use the forecast method from step 1, the 

corresponding forecast from 1-1-2013 to 31-12-2013, and a total coverage distance of 4 minutes. 
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Fixed flight duration 

In this section we evaluate the impact of different flight duration settings on the total incident 

coverage. We compare the performance of 1,460 flights of 1.5 hours (from Experiment 24) with 

2,190 flights of 1 hour and 1,095 flights of 2 hour (the maximum flight duration for the EC135). We 

compare both the total and flying incident coverage per experiment. 

Experiment 24 26 27 

Flight duration 01:30 01:00 02:00 

Total incident coverage 9,598 9,583 9,592 

Flying incident coverage 7,699 7,689 7,676 

Stand-by incident coverage 1,899 1,894 1,916 

Number of flying crews 674 759 645 
Table 7.13: total incident coverage for different flight duration. 

We conclude that a flight duration of 1:30 hours provides the best coverage. However, we also note 

that given this flight duration, not all locations in the Netherlands can be reached by the EC135. For 

2-hour flights, the number of crews that makes at least one flight decreases, and the stand-by 

coverage increases, since less flights are made from Rotterdam and crews fly at least two hours. 

Alternative success function 

In this section we discuss experiments 28. In this experiment we replace the original success function 

by the negative exponential functions with the preventive effect (as discussed in Section 4.4.2). 

Figure 7.21 shows that this success function results in routes that focus on locations just outside 

major cities. On these locations the balance between the loss of coverage due to the preventive 

effect and the coverage of the hotspots is best. 

 

Figure 7.21: Accumulated routes for the new success function. 
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Priorities and effectiveness 

In this section we discuss the effect of incident priorities and the effectiveness of helicopters during 

day and night. Table 7.14 shows the results per experiment. The calculation of the performance 

measures that we use is discussed in Section 6.3.1. 

Experiment  24 29 30 31 

Priorities No Yes No Yes 

Effectiveness No No Yes Yes 

Flying Incident coverage 7,699 6,622 6,981  

Priority coverage 13,699 14,125 (+3.1%) 14,749  

Effectiveness coverage 484 462 536 (+10.7%)  
Table 7.14:  the effect of priorities and effectiveness on the performance measures. 

We find that the overall incident coverage decreases when we take priorities and effectiveness into 

account, while the priority and effectiveness coverage increase in comparison with experiment 24. 

Furthermore, we note that taking effectiveness into account also increases the priority coverage. 

Figure 7.22 shows the distribution of start times of surveillance flights over the day for policy 7 with 

and without effectiveness taken into account. It clearly shows that flights on average start later on 

the day, or just before sunrise, when we take the helicopter effectiveness into account. The LVP 

could use Figure 7.22 to determine a shift schedule that minimizes the number of flights that start in 

the last hour of the shift, to decrease overtime.  

 

Figure 7.22: effect of taking effectiveness into account on the timing of surveillance flights. 

Figure 7.23 shows the distribution of flights over days in the year. We find that taking effectiveness 

into account does not lead to more flights in the winter (in which there are more dark hours). On the 

contrary, it leads to more flights during summer nights and less flights during daylight in the winter. 

This is consistent with our conclusion in Section 5.2.1, based on the rough-cut tactical planning. 

 

Figure 7.23: number of flights per day for policy 5 with and without priorities and effectiveness. 
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Overtime 

This section describes the effect of different shift schedules on the percentage of work time in 

overtime. Table 7.15 shows the percentage in overtime for the current shift schedule, and two 

alternative shift schedules that start an hour earlier or later. We conclude that different shift 

schedules can decrease the percentage of work in overtime.  

Experiment 32  24 33 

start early shift 06:00 07:00 08:00 

start late shift 14:00 15:00 16:00 

start night shift 22:00 23:00 00:00 

Percentage in overtime 7.1% 9.0% 12% 
Table 7.15: effect of different shift schedules on percentage work time in overtime. 

Maximum number of visits 

In this section we examine the effect of constraining routes with a maximum number of visits per 

location during one flight. We determine the resulting flying incident coverage with the original 

success function and a total coverage distance of 4 minutes. 

Experiment 24 34 35 

Maximum number of visits 100 10 2 

Flying incident coverage 7,699 7,519 (-2.3%) 7,454 (-3%) 
Table 7.16: Flying incident coverage for different values of the maximum number of visits. 

We find that the performance of the flights decreases significantly when we do not allow helicopters 

to hover above a location as long as is required for optimality. However, the resulting routes are also 

not attractive for helicopter pilots. Figure 7.24 shows exemplary flight routes for a maximum number 

of visits of 2, for the original success function (left) and the new success function (right). 

 

Figure 7.24: Exemplary routes for a maximum number of visits per location of two. 

We conclude that the maximum number of visits constraints creates acceptable routes when we use 

it in conjunction with the new success function. With the original success function, it commonly 

results in an unclear mesh above the area between the major cities. We conclude that creating 

attractive surveillance routes requires more attention in future research. 
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Fairness 

To investigate the trade-off between equity and efficiency, we perform five experiments with 

different values for the equity parameter 𝑞 (as discussed in Section 5.5), stand-by policy 2, and the 

tactical planning heuristic that takes the equity parameter into account. We use the original success 

function with a total coverage distance of 4 minutes. Due to a lack of computation time, we create 

only 100 flights with a duration of 2 hours per flight, which may start on Schiphol, Rotterdam, and 

Volkel. As we currently assume that helicopters cannot refuel during their flight, a flight duration of 

two hours is required to be able to cover the North-East of the Netherlands. The goal of these 

experiments is to determine the trade-off between minimizing inequity and maximizing efficiency. 

Figure 7.25 demonstrates the trade-off effects of equity versus efficiency. 

 

Figure 7.25: the equity/efficiency trade-off. 

From Figure 7.25 we conclude that a larger value for the equity parameter leads to solutions that are 

less unequal. Furthermore, we see that an increase in equity requires a considerable decrease in 

efficiency. A solution that is half as unequal, is approximately 17% less efficient than the most 

efficient solution. To reduce the inequity by 80%, the incident coverage would reduce by 

approximately 23%. Table 7.17 shows that the decrease in efficiency is the case for both the set of 

routes and the timing of stand-by crews. We suspect that this is due to differences in timing of 

criminal hotspots in the big cities and the more rural areas of the Netherlands. Flights to the rural 

areas are thus scheduled at times that it is relatively quiet in the big cities, where the bases lie on 

which the crews are scheduled for the rest of their shift. 

Experiment 36 37 38 39 40 

Equity factor 0 0.002 0.005 0.01 0.015 

Incident coverage from flight 1,903 1,036 871 760 695 

Incident coverage from stand-by 4,116 4,035 3,926 3,909 3,894 

Total incident coverage 6,019 5,071 4,794 4,669 4,589 
Table 7.17: breakdown of total number of incidents covered into covered incidents from stand-by and from flight. 

Figure 7.26 shows that the decrease in expected incidents covered by the surveillance flights 

corresponds with the decrease in the forecast covered by the surveillance flights as in Table 7.17. 

This indicates that there is a relation between the level of forecast covered and the actual incident 

coverage, and thus that the forecast is related to reality. Furthermore, we conclude that while the 

inequity and thus the deviations from the average percentage forecast covered decreases, the 

average forecast covered also decreases. A less unequal distribution thus leads to a decrease in 

average performance. 
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Figure 7.26: Comparison of average and total percentage of forecast covered for different values of the equity parameter. 

We also check whether the solutions comply to the constraint that every location should be covered 

at least once every year. Figure 7.27 shows the percentage of forecast that is covered and the 

number of visits of helicopters during surveillance per location, for a set of routes created with 𝑞 set 

to zero. We conclude that the constraint does not hold for the experiment with zero equity. 

Furthermore, we find that almost every flight flies directly to Alphen a/d Rijn, a city in the middle 

between Amsterdam, Rotterdam, and Utrecht. As described before, from here a helicopter covers all 

three big cities.  

   

Figure 7.27: forecast coverage (left) and number of visits (right) per location, for equity parameter = 0. 

Figure 7.28 shows the same effects, but then for an experiment with 𝑞 set to 0.01. We compare 

Figure 7.27 with Figure 7.28 and see that the forecast coverage is more spread out in the experiment 

with a higher value for the equity parameter. When we exclude the north sea islands, which receive a 

minimal amount of coverage, we find that the coverage 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑤 of the least covered location is 

7, which means that the location is covered by one or more flights during at least 7 time intervals. 

Furthermore, we found that with the equity parameter set to 0.01, the minimum number of flights to 

cover all locations is 87. Figure 7.28 also clearly shows the effect of standing-by on the coverage of 

locations. The three areas with the darkest shade of red are all located around the helicopter bases 

at Schiphol, Rotterdam, and Volkel.  
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Figure 7.28: coverage of locations, equity parameter = 0.01. 

Figure 7.29 shows per location the number of visits by a helicopter during the set of surveillance 

routes, through a heat map. Red hot areas are often visited. We conclude that Volkel is of strategic 

importance to cover the Eastern areas of the Netherlands. Since the LVP helicopters should not fly 

over water for safety reasons, helicopters from Schiphol that fly to the north eastern parts of the 

Netherlands have to cross the Ijsselmeer over the Afsluitdijk or fly around it on the southern side, 

which takes a lot of time. 

 

Figure 7.29: Location visits, equity parameter = 0.01 

To determine the equity of the solution, we should relate the coverage of a location by the criminal 

intensity of the location. Therefore, we divide the covered forecast per location by the total forecast 

value per location as in Equation 6.14, to find the percentage of forecast covered by the helicopter 

capacity. Figure 7.30 shows the percentage of forecast covered per location. We see that the 

distribution of coverage is more equally distributed than in Figure 7.27. 
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Figure 7.30: percentage of total forecast covered by solution, equity parameter = 0.01 

We conclude that the use of the equity parameter 𝑞 can create a more equal distribution of police 

helicopter capacity. The value of 𝑞 determines the level of equity introduced and is thus useful for 

decision makers to investigate the impact of several levels of equity, and find the appropriate level. 

Conclusions step 3 

With the experiments in step 3 we show that 1.5 hour flights produce better results than 1 or 2 hour 

flights. Furthermore, we show the effect of an alternative success function. We introduce priorities 

into the forecast and adjust the forecast to take helicopter effectiveness into account and find that 

both adjustments have the desired effect. We quantify the effect of limiting the maximum number of 

visits to a location during one surveillance flights, determine the impact of different shift schedules 

on the expected overtime by helicopter crews, and find that the heuristic we propose to take fairness 

into account works as desired. 

7.4 Conclusion and discussion of simulations 
This section discusses the results of the simulation model that we use to determine the effect of 

different forecast methods and planning policies. Section 7.4.1 draws conclusions based on the 

results of Section 7.3. Section 7.4.2 discusses the limitations of the simulation model and the 

assumptions that were required to create the model. 

7.4.1 Conclusion 
This chapter discusses the goals we set and the simulation plan we follow to achieve them. We 

combine forecast methods, flight value estimators, and planning heuristics to determine the quality 

of the current way of working of the LVP and to determine in which ways the LVP can improve its 

performance. We perform the set of experiments in three steps for which we now give a short 

overview of the results. 

In Step 1 we find that the forecast method without weekday and month factors results in the best 

performance. Furthermore, we find that the computation time of routes depends on the temporal 

and spatial aggregation steps in the forecast on which the routes are based. Due to a lack of 

computation time we use the second-best forecast for further experiments, for which a forget factor 

of 0.03 provides the best results. 
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In step 2 we simulate multiple stand-by policies and find that the current stand-by scheduling 

method of the LVP results in at most 60% of the possible  performance (when there is always a crew 

stand-by on Schiphol, Rotterdam, and Volkel). When we compare the stand-by coverage between 

bases, we find that Rotterdam is on average a better stand-by location than Schiphol, and that Volkel 

is the worst base to provide stand-by from. Based on a total coverage distance of 4 minutes, making 

Rotterdam the prime stand-by location increases the performance by 40%. We thus recommend to 

provide 24/7 stand-by coverage while making the stand-by location variable between shifts.  

We then compare the coverage from standing by with the coverage by surveillance flights. We find 

that currently one hour of flying surveillance flights creates on average as much incident coverage as 

4 hours of standing by. We expect that timing and routing surveillance flights increases the 

performance by approximately 20% and find that variable tactical planning increases the 

performance by at least another 3.5%. Finally, we expect that the use of the new estimator will result 

in a performance increase of approximately 7%. 

In step 3 we determine the effect of several adjustments. We find that a fixed flight duration of 1:30 

hours results in the best performance, and that a negative exponential function with a preventive 

effect locates helicopters just outside the  major Dutch cities. Taking incident priorities into account, 

the total incident coverage decreases but the total priority coverage increases by 3%. The same 

happens for effectiveness, where the total effectiveness coverage increases by more than 10%. 

Furthermore, we show the effect of different shift schedules on overtime and of the maximum 

number of visits constraint on performance and routes. Finally, we determine the trade-off between 

equity and performance and find that it costs about 20% of performance to reduce the inequity of 

the tactical plan by 50%. 

7.4.2 Discussion 
This section evaluates the proposed forecast methods, tactical planning policies, and simulation 

methods. We identify the following options for improvement: 

 The effect of variable tactical planning strongly depends on the heuristic that we use. We 

experiment with two heuristics; in the first, crews are scheduled before we iteratively 

schedule flights, and in the second we schedule crews after we scheduled flights. We find 

that this sequential approach shows a negative or small positive added benefit for variable 

tactical planning. We thus consider the benefit of variable tactical planning that we find as a 

lower bound for the possible added value. 

 The simulation results as discussed in this chapter are based on Dutch crime patterns. The 

simulation results are thus not representative for other geographical or temporal patterns of 

crime. We conclude that the added value of route optimization and variable tactical planning 

differ per country and region. 

 We find that the total coverage distance determines where and when helicopters should be 

stand-by or fly surveillance routes. However, there is no source for the total coverage 

distance other than expert opinion.  

 Based on comparison of the results of flat and variable tactical planning we find that the 

added value of variable tactical planning depends on the flight budget. With the current 

budget of 2,190 hours, the LVP is able to have multiple helicopters airborne during every 

major peak in crime. Extra flights would cover lower peaks and level out the variability in the 

number of flights per day. Based on this observation, we expect that a smaller budget on 

average results in a higher added value of variable tactical planning. 
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 The routing model does not take coverage of stand-by helicopters into account while routing. 

We first schedule the optimal flights and afterwards determine the moments on which a 

helicopter and a crew is still available for stand-by. Therefore, a crew can turn out to be 

stand-by on Rotterdam, while a part of the surveillance route of a crew from Schiphol goes 

over Rotterdam. 

 We currently use the “incident time” as provided by the LVP to create temporal patterns. 

This data contains information about victim behaviour rather than about criminal behaviour, 

since it shows when criminals are spotted or when the act is discovered afterwards. Ratcliffe 

(2002) proposes to use the start and end time of criminal events, and spread incidents evenly 

over the time between these times to determine temporal patterns. The start time is then 

the last moment in time that the incident had not happened for sure, and the end time is the 

time at which it was over for sure. To us this seems more accurate than the current single 

time for incidents. A further benefit of using the start and end times is that we do not have 

to correct the input data and that we do not have to perform temporal aggregation. 

 The simulation results currently do not consider cancellations and reschedules due to 

weather influences. We assume that all helicopter routes are actually flown. We thus 

overestimate the actual coverage of incidents in all scenarios. 

 The planning policies do not take into account that a set of helicopter routes might lead to 

noise problems in case a location is visited too often. However, we expect that an increase in 

fairness also results in a decrease of noise problems.  
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8 Implementation 
This chapter discusses the implications of the results on the tactical and operational planning 

procedures of the LVP. Section 8.1 discusses how the LVP can implement the current functionality 

into the tactical planning of police helicopters. Section 8.2 shows how we communicate the optimal 

surveillance routes to police pilots. Section 8.3 discusses how we implemented new performance 

measures. Finally, Section 8.4 draws conclusions on the implementation of tactical planning at the 

LVP. 

8.1 Prototype tool 
To perform the simulations of Chapter 7, we extended the current operational scheduling and 

routing tool by Van Urk (2012) to a complete simulation tool. Appendix B describes the functions of 

the simulation tool. As discussed in Chapter 1, one of the goals of this research is to create a 

prototype decision support tool to support tactical planning in the LVP organization. The current 

simulation tool is just that: it is a prototype that we use to test the effect of tactical planning and 

several (stand-by) planning policies. Based on the results of the simulations, the LVP can now 

determine which bases to use and which type of tactical planning to use. 

The simulation tool is very useful for further analysis. The tool only requires criminal incident data 

and the organizational settings like the number of helicopters, shift hours, crew budget etc. All 

discussed algorithms, policies, and effects are implemented and the user can set the required 

combination of methods in one table. The tool then performs the entire simulation and with one 

click the user can export the resulting routes. The resulting tactical planning is shown on a separate 

page, but the tool is not yet able to synchronize the planning with the planning software as used by 

the planning office. However, the tool is not yet user-friendly or well documented enough for 

implementation. Furthermore, the underlying code is too complex for LVP employees without 

knowledge of programming. Therefore, we identify three options for the LVP to implement the 

current prototype tool into the organization: 

1. The LVP can use the current version of the tool to test different scenarios and create more 

insight in the effect of tactical and strategic decisions. However, this requires the use of the 

tool by an experienced analyst with programming and IT skills. 

2. The LVP can determine the forecast method, estimator, and tactical planning policy they 

want to use from now on, based on the results of this research, and fix them in the current 

tool. The tool then becomes less complex and probably more stable. However, we expect 

that the tool is still not stable enough to implement it in the current planning office, where 

there is no IT expertise. 

3. Based on the results of this research, the LVP can also develop or outsource the development 

of a complete strategic, tactical, and operational scheduling tool. We would recommend the 

LVP to combine GIS functionality with the statistical functionality of programs like SPSS and 

R. Furthermore, we currently use a solver to determine the optimal route. However, with the 

current performance of the greedy estimator, we could also use the greedy routes. 

Both the first and second option implicate the use of AIMMS as the platform for the decision support 

tool. However, there are several disadvantages of using AIMMS. First, it limits the possible forecast 

methods since it does not yet provide advanced statistical methods like Poisson regression. Second, 

the current graphical representation of the results by AIMMS is not able to meet the LVP 

requirements. Finally, the current problem with 6 helicopter and aggregated areas is small in 

comparison with the number of police cars in cities and the possible routes they can make. We 

expect that when the National Police expands the current program to optimize other police forces, 
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the program will not be able to handle the problem size. Therefore, we recommend the LVP and the 

National Police to create a list of requirements for the final police force optimization software and 

determine which software package or supplier can match these requirements. 

8.2 Flight route display 
Since the tactical planning method creates a tactical plan at the operational level, with corresponding 

optimal routes, we can use these routes to direct police helicopter pilots to hotspot areas. As the 

police helicopter hardware cannot display pre-defined routes and the LVP cannot attach anything to 

a helicopter without certification, the LVP procured tablet computers that pilots can strap to their 

legs to display routes on. 

The LVP chose the software package Skydemon1 to display routes with. The program allows for 

planning routes in advance and provides information on the expected weather and relevant NOTAMs 

(short for Notice To Airmen). Furthermore, it constantly tracks the location of the device it runs on by 

GPS. In the prototype tool we created the possibility to export all routes as GPX files, which can be 

directly loaded by Skydemon. Figure 8.1 shows an artist’s impression of how the LVP is currently able 

to display routes.  

 

Figure 8.1: Artist’s impression of in-flight display functionality of routes. 

The LVP is currently implementing the hardware and software in the daily procedures of the pilots. 

We note that it is important that all pilots are taken into account during the implementation process. 

Guillemette et al. (2008) discuss the implementation of a RFID system to track security officers during 

                                                           

1 www.skydemon.aero 
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their work. They note that it is important to have clear organizational directives, before 

implementing location tracking of employees. The superior’s intentions regarding the use of the 

system appear to weigh heavily in the decision of employees to adopt the system. 

We note that the routes that the tool currently creates often require the pilots to hover above one 

hexagon for an extended period of time. Since hovering helicopters create noise problems and 

hovering is very uncomfortable for helicopter crews, this is not desirable. The proposed solution by 

Van Urk (2012) to constrain the route optimization model to make helicopter routes that visit 

locations a limited number of time does not seem to work, since this leads to unclear routes with 

constant sharp turns, as shown in Figure C.4 in Appendix C. Furthermore, the routes consist of line 

between midpoints of hexagons, without taking the underlying geography into account. When pilots 

follow those lines consistently, the villages under these lines will experience more noise problems 

than villages outside these lines. Small adjustments by helicopter pilots to fly around villages to get 

to the next waypoint could thus be better.  

Since we find that it is important to let pilots have some degree of autonomy and use their specific 

expertise in their work, we recommend the LVP to provide their pilots with the optimal route and 

enough information to let pilots determine how they want to make the route in practice. In addition 

to the optimal route we recommend to provide pilots with hot spot crime forecast maps and maps 

that show the pilots their expected added value at a certain time and location. The second map is a 

combination of the hot spot forecast and the coverage function of the helicopter. For example, the 

flight map could show that being at the optimal route at a given time results in the best possible 

performance for that time interval (100%), and that flying in a neighbouring hexagon results in an 

expected performance of 90%. The pilots can then choose between hovering at the best location and 

flying over a less optimal location. Figure 8.2 shows an exemplary hot spot forecast map (left) and 

the corresponding flight map (right) which indicates where the added value of a flying helicopter is 

maximal, based on the success function as illustrated in the middle. The success function shows the 

probability of success that a helicopter on the position of the red column has on the location of the 

green columns, where the height of the red column represents 100%. 

   

Figure 8.2: a hotspot forecast (left), coverage area of helicopter based on total coverage distance (middle), and resulting 
flight map (right). 

In general, we find that is important to show decision makers and pilots the underlying reasons for 

tactical planning and helicopter routing. Therefore, we created functionality in the prototype tool to 

export forecasts, flight maps based on the forecasts and the success function, and routes to a format 

that can be used by the “Powermap” add-in for Microsoft Excel. The add-in is then able to make 

pictures such as Figure 8.2 and videos. Videos are especially useful to visualize forecasts, flight maps, 

and routes in time. 
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8.3 Actual performance measurement 
To create visibility of real-time helicopter locations in the Central Operations Room in Driebergen, 

the LVP recently implemented hardware to track the police helicopters. We created an application 

that uses the position data that is recorded by this hardware to determine the performance of 

helicopters routes afterwards by comparing it with the actual incident data. Over a period of time the 

LVP can compare the actual proximity of police helicopters with the proximity of the planned routes 

at the planned times and determine the difference in performance. The LVP can use this information 

to build trust in the tactical planning methods amongst pilots. 

8.4 Conclusion 
This chapter discusses the prototype tool and how the LVP already implemented the results of the 

simulations. We find that the prototype tool is not yet ready for complete implementation and that 

the LVP and National Police have different options for implementation of the results of this research. 

Furthermore, we recommend and support the LVP to use the available hardware in the helicopters to 

measure its performance and provide feedback to its pilots.  
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9 Conclusion and recommendations 
Section 9.1 contains the conclusions of this report. Section 9.2 discusses the limitations of this 

research and in Section 9.3 we provide recommendations for the LVP based on this research. In 

Section 9.4 we give suggestions for future research. 

9.1 Conclusions 
Before this research, the LVP had two disconnected decision support systems (DSS) that supported 

strategic and operational decision making. On the strategic level, the DSS showed the impact of 

locating stand-by crews on bases. The operational DSS determined optimal start times and routes of 

surveillance flights for one day ahead. The main problem of this research is the missing link in the 

support of the decision making process: the tactical planning, or the decision on when and where to 

allocate resources. This problem leads to the following problem statement: 

What is the performance of the operational decision support tool and how can the LVP improve its 

performance by tactical planning? 

To determine the long-term performance of the current DSS, we first extend the operational tool to a 

tactical tool. The tactical DSS requires input from a forecast method that takes into account seasonal 

and weekly trends, and is able to provide an annual forecast within a reasonable computation time. 

We thus extend the current forecast method and introduce crime patterns. 

We propose a heuristic that is able to create a detailed tactical planning of surveillance flights for a 

year ahead in less than a day. The heuristic takes strategic and operational decisions into account, as 

well as spatial and temporal crime patterns on the operational level. Among others, the heuristic is 

able to use the flight value estimator and the route optimization model by Van Urk (2012) to 

determine the optimal timing and route of the surveillance flights. 

We use simulation to determine the performance of the tactical planning with and without the 

methods by Van Urk (2012). We find that the expected performance improvement by the current 

operational decision support tools is approximately 20%. These results are limited by several 

constraints on the strategic and tactical level. For example, the LVP must provide 24/7 stand-by 

coverage from Schiphol, performs the same number of flights per day, and starts surveillance flights 

always from Schiphol. To determine the effect of loosening these constraints on the performance of 

the tactical planning, we create additional heuristics without these constraints.  

By comparing the constrained with the unconstrained heuristics we find that being able to provide 

24/7 stand-by coverage from other locations next to Schiphol can increase the incident coverage 

from stand-by by 40%. Furthermore, when the LVP allows a variable number of flights per day, we 

expect performance to increase by 6%. Finally, using multiple locations to start surveillance flights 

from enables another 12% of performance improvement. 

During this research we found several other factors that influence tactical planning. The operational 

DSS tool by Van Urk (2012) was able to take incident priorities into account and restrict the number 

of times a route visits the same location. We find that taking priorities into account results in an 

increase in priority coverage by tactical planning of 3%. Constraining the route module leads to a 

decrease in performance and impractical flight routes. Furthermore, the LVP found that helicopters 

are more effective during the night. Taking effectiveness into account results in an increase of 

effectiveness coverage by more than 10%. Additionally, we find that shift schedules have an effect on 

the amount of overtime by helicopter crews, and based on the tactical planning we can thus optimize 

the shift schedules for overtime. Finally, since the optimal tactical planning is made to perform as 
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efficiently as possible, the helicopter capacity is mainly allocated to the overall hotspots: big cities. As 

this can be considered unfair by other regions that also pay for the helicopter capacity, we propose a 

method to set the level of equity while creating a tactical planning. We find that we can reduce the 

resulting inequity by efficient planning by 50%, at a cost of 20% of performance. 

The result of this research is a prototype decision support tool that integrates strategic, tactical, and 

operational decisions to create a complete one-year plan. The DSS is not yet user-friendly enough for 

direct implementation, but the results are already used by the LVP. 

9.2 Limitations 
This research has several limitations that we discuss in this section. 

 The solutions that we propose in this research are limited by the available software at the 

LVP. Previous prototypes of decision support systems were developed in AIMMS and in this 

research we extend these techniques to enable tactical planning. While AIMMS is to the best 

of our knowledge not able to do, e.g., Poisson regression analysis, more advanced forecast 

methods were outside the scope of this research.  

 The main assumption of this research is that helicopters are always in time for incidents that 

they can reach within 10 minutes. This research identifies that this is not accurate, and that 

the impact of the success function influences the tactical planning and operational routes 

significantly. 

 We were not able to perform a full factorial analysis of all methods and settings due to the 

extensive computation time per experiment. Also, we use a limited sample size for our 

simulations since we base our performance measurement on historical data. 

 We did not take operational constraints as detailed as refuelling times between flights and 

rest times for crews into account. Furthermore, we consider only Schiphol, Rotterdam, and 

Volkel as bases to start flights on and assume that flights start and end at the same location. 

However, it is also possible to combine multiple flights between locations into a round tour. 

Next to that, it would be possible to consider helicopters staying overnight on Rotterdam and 

Volkel.  

 This research applies only to the EC135 helicopters of the LVP and creates flight routes that 

focus on the major Dutch cities when we do not take fairness into account. Since the AW139 

helicopters are faster and have a longer range, they would be the ideal addition to the model 

to cover the more remote areas of the Netherlands with. 

9.3 Recommendations 
In this section we give recommendations that do not require further research. Our main 

recommendation is to professionalise the current prototype tool, since the current prototype tool is 

not user-friendly enough for implementation without support.  

Second, we advise the LVP to use freely available GIS software to visualize the patterns in the 

available criminal incident data. We found that these visualizations have great educational value for 

police helicopter pilots. 

Third, since helicopter routes and the allocation of crews to stand-by locations depend strongly on 

the relation between arrival time and the success of helicopter deployments, we propose to extend 

the current performance measurement by defining arrival time and measuring the arrival time to 

incidents. 
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Fourth, we recommend the LVP to communicate the crime forecasts and helicopter routes to other 

police departments. The crime forecasts and decision heuristics create insight into the LVP decision 

process, and are valuable for other police departments to evaluate their own decision processes. 

Furthermore, when the timing and routes of surveillance routes are known to police districts, the 

districts expect the helicopter and can prepare for the helicopter capacity they receive by increasing 

the number of police officers on the street. This can increase the success rate of the helicopter 

deployments.  

Fifth, we suggest the LVP to measure the effectiveness of police officers on the ground in different 

regions and provide feedback. The LVP could even sent the helicopter less often to regions with less 

than average effectiveness, after which the regions will hopefully request helicopter support only 

when there is an actual probability to find or catch a criminal, and regions will work harder to make 

the deployment of helicopters worthwhile. 

Finally, we recommend the LVP to increase the intelligence available to pilots during the surveillance 

flight. For example, the LVP could provide the real-time rerouting functionality of the prototype tool 

of Van Urk (2012) for helicopters that have been deployed to incidents and become available again. 

9.4 Future research 
To improve the usefulness of tactical planning for police helicopters, we suggest to perform future 

research to simultaneously optimize the allocation of stand-by crews and timing of surveillance 

flights. To facilitate the implementation process of tactical planning of public resources, future 

research directions could extend and validate the equity introduction to the multi-route heuristic. 

Furthermore, the (equal) routing of police helicopters can be translated to other police forces, but 

also to ambulances and other mobile public services. Not only is it possible to apply the same 

principles to other police forces, it is even more interesting to let them work together. We thus 

propose to extend the forecasting and routing methods to include police officers on foot or in cars. 

Furthermore, we expect that more advanced forecasting methods can create more accurate 

forecasts. In this regard, we propose to determine the effect of holidays and other special dates on 

the criminal intensity at those dates. 

Specific for the LVP, we recommend to extend the current methods to include a heterogeneous fleet. 

For the LVP this is useful, as they have two helicopter types with completely different specifications, 

which can handle different tasks. EC 135 helicopters are not able to perform a surveillance flight and 

handle incidents in the eastern parts of the Netherlands due to their limited range. Therefore, AW 

helicopters can be used to cover the areas that are too far away of the LVP helicopter bases. We 

expect that this is also the case for other air support departments and other emergency services. 

Unique for police resources is the preventive effect they seem to have. Future research is required to 

determine whether and how this effect works, and how the police can use this effect to maximize the 

performance of its resources. 

As we did not test the ILP formulation as discussed in Section 5.3, we recommend the LVP to build 

and validate it. After validation, it is possible to extent the formulation with practical constraints like 

refuelling times and rest times for crews. Furthermore, it would be interesting to compare the results 

from rough-cut capacity planning with the results from the current integrated tactical planning 

heuristics. Also, we suggest to determine the effect of the flight and crew budget on the added value 

of variable tactical planning and the trade-off between the crew and flight budget. Furthermore, 

since flights are cancelled due to, e.g., weather influences, we recommend to support the planning 

office in making the decision when to schedule replacement flights. 
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During surveillance flights, commonly multiple incidents happen and the Central Operations Room 

has to decide whether to deploy a helicopter to an incident. Deployment to an incident far away 

from the current helicopter position results in a longer handling duration than deployment to 

incidents that are closer by. Other factors that the Central Operations Room can take into account 

are incident priorities and the expected effectiveness of the helicopter at the incident location. Since 

helicopters are sometimes deployed to low priority incidents, during which more important incidents 

happen, we see potential in the optimization of the deployment strategy. The deployment strategy 

for the helicopter could also be combined with deployment strategies for police officers on foot and 

in cars.  
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Overview of mathematical notation 
 

Sets 

 𝐻 Helicopters 

 𝐿 Locations 

 𝑇 Times 
 𝐷 Days 

 𝑆 Shifts 

 𝐶 Crews 

 𝐹 Flights 

 N Incidents 

Parameters 
𝑓𝑙,𝑡  Forecast value at location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 
𝑖𝑙,𝑡  The number of incidents at location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 
ℎ𝑑  Availability of helicopter ℎ ∈ 𝐻 at day 𝑑 ∈ 𝐷 
𝑠𝑣𝑙,𝑡  The value of standing-by on location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 
𝑓𝑣𝑙,𝑡  The value of starting a flight from location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 

𝑓𝑏   Flight hour budget 
𝑐𝑏  Crew budget 
𝑓𝑑  Standard flight duration 
𝑞  Parameter that sets the level of equity 
𝑑𝑙,𝑚  Distance between location 𝑙 ∈ 𝐿 and location 𝑚 ∈ 𝐿 
𝑐𝑙,𝑚  Coverage of location 𝑙 ∈ 𝐿 by location 𝑚 ∈ 𝐿 
𝑒𝑙,𝑡  Effectiveness of helicopter deployment at time 𝑡 ∈ 𝑇 

𝑘   
 

Variables 
𝐶𝑠  Availability of crew 𝑐 ∈ 𝐶 during shift 𝑠 ∈ 𝑆 

𝐹𝑙,𝑡  Whether a flight starts from location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 

𝑆𝑙,𝑡  Whether there is a crew stand-by on location 𝑙 ∈ 𝐿 c 

𝐿𝑙,𝑡,ℎ  1 when helicopter ℎ ∈ 𝐻 is at location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇, otherwise 0. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑙,𝑡 Maximal coverage of location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 by the helicopters 
𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑙,𝑡 1 when location 𝑙 ∈ 𝐿 at time 𝑡 ∈ 𝑇 is covered by a helicopter, otherwise 0. 
𝐸𝑙   Effect of a set of routes on location 𝑙 ∈ 𝐿 
𝐴𝑙   Attribute of location 𝑙 ∈ 𝐿    
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Appendices 

Appendix A: complete organizational diagram National Police 

 

Figure A.0.1: Complete Organization Diagram of the National Police (inrichtingsplan-nationale-politie.pdf, 
http://www.rijksoverheid.nl/documenten-en-publicaties/kamerstukken/2012/12/07/inrichtingsplan-nationale-politie.html). 
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Appendix B: simulation tool functionalities 
This appendix describes the current functionality of the simulation tool that we use in Chapter 7. 

Section B.1 discusses the user interface. Section B.2 explains which types of input the tool requires. 

Finally, Section B.3 discusses how we store and retrieve data for later use. 

B.1 User Interface 
This section describes the user interface of the simulation model. The goal of the user interface is to 

make it easy for users to perform multiple experiments in one run and to provide a clear overview of 

the differences in input and output per experiment. Section B.1.1 describes the possibilities for users 

to manipulate the settings per experiment. Section B.1.2 explains the workings of the main controls 

and Section B.1.3 discusses how the simulation model displays the results of the experiments.  

B.1.1 Input 

The main page of the simulation model is the input/output page where we determine the simulation 

settings and get a first glance at the results after the simulations are finished. Figure B.1 shows the 

user interface. 

 

Figure B.1: User interface of the input page of the simulation model. 

Per experiment (of which the number is set in the top left of the interface), we can determine the 

scope and type of the forecast, how we are going to plan and route (with stand-by and planning 

policies), and how much crew and flight capacity the LVP wants to use during the scope.  

We start with the scope of the experiment. We enter the start date of the experiment and the 

number of days we want to look forward.  The start date requires a date and the number of days to 

look forward should contain an integer value. When we would make a forecast for exactly one year 

in advance, the added value of flight routes in the last hour of the year would decrease since part of 

the route would take place in the next, not-forecasted, year. To prevent this, we always forecast for 

the scope of the experiment plus one day. 
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Most of the settings for the experiments concern the forecasting method. We base the forecast on 

historical data and since the model already contains several incidents sets, we choose which one to 

use. We then set the forget factor: This factor influences the impact of old data on forecasts. It 

should be a value between 0 and 1. Example: when the forget factor is 0.01 then data that is 12 

months old will be taken into account with a factor 0,99^12≈0,887. Furthermore, we can switch the 

fast forecasting technique on and off, as well as the spatial and temporal aggregation and the 

number of rings to use in the spatial aggregation, to compare all combinations off settings during 

validation. Finally, we can set whether the model takes into account priorities, day and night time 

effectiveness, and fairness.  

With the scope and forecasting method known, we determine the number of helicopters we would 

like to use for the experiment, the number of flight hours that are available in the budget, and the 

duration of the flights. 

The next settings determine how and where we allocate the helicopter and crew capacity to the 

forecast: the stand-by policy, planning policy, and the start and end location of all flights. We already 

explained the different planning policies in sections 7.1.3 and 7.1.4. The effect of the start and end 

location settings on the model depends on the planning policy. For planning policy one the start 

location is the location of the 24/7 stand-by crew, for stand-by policies 1 to 3. For planning policy two 

and three the start and end locations do not matter, since we use a standard flight from and to 

Schiphol. For planning policy four to six, the start and end location determine the actual origin and 

destination of all flights. Planning policy seven does not require a start or end location, since this 

policy determines the optimal allocation of flights by itself. 

Finally, we have two settings for the routing model. We can set the coverage of the helicopter by 

entering the total coverage distance, and we can set the maximum number of times a helicopter may 

visit a location during one flight. This last setting makes sure that routes do not include periods 

where helicopters hover above a hotspot. The value should be > 1 since otherwise the helicopter 

cannot visit its starting location again and thus cannot land at its starting location (commonly 

Schiphol).  

B.1.2 Main Simulation Controls 

The input page contains several buttons to control the simulation (data) with: 

 Save simulation setup: This button allows users to save the current simulation setup. 

 Load simulation setup: This button allows users to open an existing simulation setup, 

reducing time required to enter setups. 

 Run simulations: This button activates the simulation process.  The model will now 

sequentially run the experiments. 

 Maintenance planning: this button opens a page with a maintenance planning Gantt chart, 

with which helicopters can be blocked for maintenance per entire day for the entire scope. 

 Manage locations: this button opens a pop-up page on which we can enter new locations 

and determine the response time per location. 

 Output analysis: This button opens a page where the simulation outputs are visualized. 

 Save simulation results: This button saves simulation results (and the associated settings) to 

enable the user to look back to the data later without having to run the simulations again. 

 Load previous simulation results: This button loads previous simulation results for analysis 

afterwards. 
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B.1.3 Outputs and analysis 

When the simulations are finished, we use the button “Output Analysis” to go to a page on which we 

show the experiment results. Figure B.2 shows the user interface of the output analysis page. 

The page is designed to analyse the information in two stages. First, the user is able to evaluate and 

compare the performance of different planning policies and other parameter settings. For this 

purpose there is a table with the outcomes per experiment and five bar charts with the most 

important data points. For example, the graphs show the incident coverage per experiment. With 

this last value we can compare experiments with different quantities of flight hours. 

In the second step, the user is able to evaluate the output per experiment. The user can select the 

experiment to analyse and the bottom five charts are updated with the experiment specific data. The 

charts show the expected forecast coverage per flight, the actual incident coverage per flight, the 

number of crews and flights per location, and the number of flights per day. 

 

Figure B.2: User interface of output analysis page. 

Finally, the individual routes and the annual tactical plan are available through use of the button 

“visualize flights”. 

B.1.4 Visualizations of flights and flight planning 

Figure B.3 shows the page at which we visualize flight routes and combine flight routes with the 

underlying forecast. This page also contains a Gantt chart functionality that shows the flight schedule 

over time, together with the shifts, the crews that are assigned to the flights, and the helicopter that 

is scheduled for the flight. Users can select for which experiment they want to see the Gantt chart 

and routes, and can choose which flight they want to see the route of. Users can automatically 

export the routes per experiment to files in the .kml or .gpx format, which can be used in Google 

Maps (functionality made by Van Urk (2012)) and Skydemon (as discussed in Section 8.2) 

respectively. 
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Figure B.3: User interface of the simulation visualization page. 

B.2 Input requirements 
The model requires two sets of inputs: crime data and capacity information. The tool has  

We extended the LVP capacity settings by introducing shift and crew settings. We can enter the 

number of shifts and their respective start and end times and the model then creates the number of 

shifts that is required for the scope of the incident. Per shift we can then enter the minimum number 

of crews that should be present. After we have then set the number of crews that is available to fly 

during the scope of the experiment, the model plans the minimally required number of crews to fill 

all the shifts and leaves the rest open for later deployment. Before the model runs the simulation it 

checks whether there are enough crews to fill all shifts, and asks for more capacity when this is not 

the case. 

B.4 Data manager 
Since we do not want to make forecasts again for every experiment, we developed a module that 

saves new forecasts and checks for saved forecasts that are useful for experiments before it makes a 

new forecast. When the model contains a compatible forecast that has enough or more data than 

required, then the model takes the data that is required from the forecast and does not need any 

forecast calculations. When the model finds a partly compatible forecast than it takes the available 

data and only determines the extra forecast data that is required. This module saves forecasting 

time. For example, there is a forecast available that starts at 1-6-2013 and has a scope of one year. 

When the user then asks for a forecast that starts at 1-6-2013 and forecasts a half year ahead, then 

the module loads the yearly forecasts and cuts the last half year off. 
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Appendix C: AIMMS fixes 
In this appendix we discuss two of the alterations we have made to the original AIMMS tool to solve 

earlier bugs. Section C.1 discusses the factors originally used for temporal aggregation, and Section 

C.2 explains how spatial aggregation led to undesirable results. 

C.1 Temporal aggregation 
Figure C.1 shows the factors Van Urk (2012) used to spread the forecast over time. 

 

Figure C.1: Temporal aggregation factors in model from Van Urk (2012). 

Figure C.2 shows the result of the temporal aggregation step on the total forecasted incident value of 

all time intervals in one day (720 intervals of 2 minutes). 

 

Figure C.2: Total value of forecast over the Netherlands per time interval over one day. 

We propose to use the bell-shaped curve from a normal distribution with standard deviation 7.5 as 

described in Van Urk (2012). Figure C.3 shows both curves. 

 

Figure C.3: Comparison of temporal aggregation factors from previous and current research. 
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C.2 Spatial aggregation outside the Netherlands 
During the spatial aggregation step, incidents near the sea or the borders were spread out over the 

sea and outside the Netherlands. Figure C.4 shows that this has resulted in routes over water. We 

also noticed that the tool created routes across the Dutch borders. By constraining the program to 

forecast and route only for hexagons in the Netherlands we improve helicopter routes and decrease 

computation time. 

 

Figure C.4: Helicopter routes over the sea due to unrestricted spatial aggregation. 
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Appendix D: fast forecasting procedure inaccuracy 
There are two causes for inaccuracy in the fast forecasting method: the precision of the hour-blocks 

and the temporal aggregation effect between days. Figure D.1 shows that we create cut-off points at 

whole hours when we multiply the entire hour-block with a conversion factor. This commonly 

creates an inaccuracy that increases from the centre of the hour to the start and end of the hour. 

 

Figure D.1: Illustrative example of inaccuracy due to hour-blocks. 

The second problem is the effect that days have on each other due to the temporal aggregation step. 

Since incidents in the last quarter hour of day 1 have an impact on the incidents in the first quarter of 

day 2, we observed inaccuracies. Figure D.2 shows the solution of this problem: we create a forecast 

for day 1, with its effect on day 2 and save it. We then create a forecast for day 2 with its effect on 

day 1 and 3 and save it. To create the complete forecast for day 1 and 2 we combine both forecasts. 

To create a forecast for day 1 to 3 we convert the forecast of day 2 to the distribution of day 3 and 

combine all forecasts. This means that we only perform the spatial and temporal aggregation steps 

for day 1 and 2 and create day 3 and further by converting day 2 and its time effects.  

Day 4Day 2Day 1

original

Day 2

Original + Complete Day 2

Day 3

Conversion of 
complete day 2

Original + + day 2 
+ conversion of 
Complete day 2

Conclusion: for a complete day 1 to 3 we need a separate day 1 and 2

 

Figure D.2: Visualization of combination of forecast of day 1 and 2 to create a forecast for days 1 to 3. 
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Appendix E: fast estimation heuristic 
We develop a simple heuristic that only calculates the most promising estimations at points that 

seem to be near a peak. We determine a step size n and calculate the estimation for every nth time 

interval. When the next estimation is lower than its predecessor, while its predecessor was bigger 

than the estimation before it, then we just missed a peak. We then start calculating estimates from 

the predecessor until we find the peak.  

To determine the optimal step size we perform an experiment. We determine the number of 

calculations required per step size and the % of peaks that we miss for several step sizes. We use an 

estimation result for flights with a duration of 2 hours for one week of forecast (5040 time intervals). 

The step size should always be smaller than the flight duration, since the flight duration determines 

the width of the peaks (when the flight duration is 20 minutes, then all start times that are less than 

20 minutes before a peak in the forecast are influenced by the peak). Since we estimate the 

minimum flight time as 40 minutes we take 20 time intervals (of 2 minutes) as the maximum step 

size. From Figure E.1 we conclude that the optimal step size is around 10 with an expected saving of 

80% of calculation time. Smaller step sizes lead to more samples and bigger step sizes require more 

calculations for the exact peak and increase the risk that we miss a peak. 

 

Figure E.1: Overview of the analysis on savings per step size for the most promising start size estimation system. 

Figure E.2 shows the result of the heuristic in red against the full estimation graph in blue for a step 

size of 20. It shows that the heuristic misses some local maxima but covers all interesting peaks. 

 

Figure E.2: Comparison of complete estimation of route quality and the fast heuristic.  
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Appendix F: coverage of helicopter degrades over the flight duration 
In Section 4.4.2 we note that the success function may depend on the number of minutes. Since 

helicopter routes commonly cover multiple incidents, we assume that helicopters are deployed to an 

incident during every flight. Therefore, we assume that helicopters do not finish their route. When a 

helicopter is deployed to an incident it leaves its optimal route and goes the location of the incident. 

It then takes some time to handle the accident, after which the helicopter is available for deployment 

again. The helicopter then determines a new optimal route for the remaining flight duration from the 

new location, based on the flight routes of any other airborne helicopters. This optimal route will 

probably differ from the initial route, as areas visited in the initial route can be too far away for the 

remaining flight duration, or hot spots cannot be reached in time and thus are not interesting 

anymore. 

We currently schedule flights sequentially and update the forecast after every flight. When two 

flights are scheduled around the same time, then the second flight is influenced by the first flight, 

since part of the forecast is already covered by the first flight. When the probability that the 

helicopter is on its optimal route decreases over time, then the end of the flight should have less 

influence on the next flight route than the start of the flight.  

We assume that flights are not cancelled beforehand and thus know for sure that the helicopter flies 

the very first part of the route. Furthermore, we assume that the helicopter never finishes the flight. 

We then need a function for how the probability that the helicopter is on its initial route decreases, 

given the number of minutes that the helicopter is airborne. We identify two options: 

1. Linear decrease: every time interval, the probability decreases by the same fraction. 

2. Based on the underlying forecast: the probability that a helicopter is still on route decreases 

faster when the helicopter is above a hotspot, than when the helicopter flies between 

hotspots. 

We conclude that it is most plausible and realistic to use the second option. Figure F.1 shows an 

example of the method we propose to use, for a helicopter flight that has a duration of 60 time 

intervals of 2 minutes (2 hours). We scale the total value of the forecast covered by the helicopter 

flight to the value of 1 and then decrease the probability of the helicopter availability per time 

interval by the covered forecast value of that time interval. 

 

Figure F.1: Example of probability that helicopter is on route, decreasing over time 
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