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CHAPTER 1

PROBLEM

Fluid flows affect every part of life, from the water flowing from your tap to the weather outside.
Understanding these fluid flows at all scales is therefore an important goal of science. At the
Department for Industrial and Environmental Fluid Mechanics, based in the Università degli
Studi di Trieste, they perform a lot of research in understanding and modelling fluid flows.

To do this, the Navier-Stokes equations which describe the behaviour of fluids, have been
modelled using large eddy simulation (LES). This program works accurately and has been
applied to both theoretical and practical flows.

The outset of this thesis is to find if and how this LES model can be applied to simulating
the interaction between two fluids.

Previous research in this area will be discussed in Section 2, Literature. A theoretical
foundation is laid by solving the Navier-Stokes equations analytically in one dimension for one
and two fluids in Section 3, Analysis.

From this theory and the previous research, the boundary conditions at the interface are
adapted to work with the LES-model in Section 4. Finally, the boundary conditions are verified
by comparing the results of the LES-model in one dimension with the analytical solution in
Section 5.

To apply this model to a meaningful three-dimensional flow, more analysis is performed on
the characteristics of the desired flows in Section 6. The model is then applied to a flow of two
immiscible fluids, with the same relation between them as water and air, in a plane channel.
The results are available in Section 8.

There, the characteristics of this flow will be carefully described, as well as compared to
similar research. Special attention is given to the behaviour of the turbulence near the interface.

Details about the notation, statistics and formulas used for describing these characteristics
can be found in the Appendix.

Thesis 5





CHAPTER 2

LITERATURE

The present work has been done using an LES-model based on the fractional-step algorithm
proposed by Zang et. al, [10], which has been expanded and verified to be second-order
accurate in time and space by Armenio and Piomelli, [2].

The applicability of such a model to the simulation of complex two-dimensional and three-
dimensional flow fields has been well-documented. Two-dimensional flows like a lid-driven cav-
ity and a backward facing step (Kim and Moin, [5]) have been succesfully simulated by a model
which can be seen as a precursor to Zang et al, [10]. Also a three-dimensional plane channel
flow with one fluid has been simulated with the same model, by Kim, Moin and Moser, [6]. Their
results have been compared to previous researches, showing very good agreement between
both experimental and numerical findings. Therefore, this model is applicable in modelling the
viscous coupling of two fluids at low Reynolds numbers.

The modelling of two fluids started with single fluids with a free surface without much defor-
mation. These results did not significantly differ from viscous coupling without any deformation,
see Lam and Banerjee, [7]. Two-fluid simulations have then focused on low Reynolds number
flows, namely Lombardi et al, [8], similar to what has been done in this thesis, but with opposite
pressure gradients for both fluids. Their conclusion was that shear is the most important in de-
termining the dominant flow structure near the interface (Lam,Banerjee 1992 if I can find it) and
that these caused streaklike structures, especially sweeps in high-shear areas and ejections in
low-shear areas above the interface (Lombardi et al., [8]).

Experimental research by Ansari and Arzandi, [1], shows the behaviour of the interface
between air and water in a duct, a plane channel bounded by walls. One of these is stratified
flow, which has been assumed here for ease of simulation purposes.

More recently, deformable interfaces have also been incorporated into some models, like
Fulgosi et al., [3], and Yang and Shen, [9], but an extension of such methods to the used
LES-model is not yet available.
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CHAPTER 3

ANALYSIS

The task is to numerically solve the incompressible Navier-Stokes equations. These are given
by the continuity equation:

∂uj
∂xj

= 0 (3.1)

And the Navier-Stokes equations:

∂ui
∂t

+
∂ (ujui)

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂x2

j

(3.2)

In both cases, the Einstein summation convention applies. Indices i and j refer to the
direction. Simplifying these equations into one dimension yields:

∂u

∂x
= 0 (3.3)

∂u

∂t
+

∂

∂x
u2 = −∂p

∂x
+ ν

∂2u

∂x2
(3.4)

Now, the assumption is that the pressure gradient is constant. Also, due to the fact that
equation (3.3) only allows for constant solutions in the one-dimensional case, this equation is
reserved for multi-dimensional Navier-Stokes equations.

The discretisation is done using Adams-Bashforth on the convective term
(
∂
∂xu

2
)

and

Crank-Nicolson on the viscous term
(
ν ∂

2u
∂x2

)
. This leads to a semi-implicit time advancement

scheme. An alternative method available is also applying an explicit Adams-Bashforth scheme
to the viscous terms.

The discretisation for the fully explicit scheme then becomes:

un+1
k − unk

∆t
=

3

2

(
−
(
unk+1

)2 − (unk−1

)2
2∆x

− ∂p

∂x
+ ν

unk+1 − 2unk + unk−1

(∆x)2

)

− 1

2

(
−
(
un−1
k+1

)2 − (un−1
k−1

)2
2∆x

− ∂p

∂x
+ ν

un−1
k+1 − 2un−1

k + un−1
k−1

(∆x)2

)
(3.5)

And for the semi-implicit scheme:

un+1
k − unk

∆t
=

3

2

(
−
(
unk+1

)2 − (unk−1

)2
2∆x

− ∂p

∂x

)

− 1

2

(
−
(
un−1
k+1

)2 − (un−1
k−1

)2
2∆x

− ∂p

∂x

)

+
1

2
ν
unk+1 − 2unk + unk−1

(∆x)2 +
1

2
ν
un+1
k+1 − 2un+1

k + un+1
k−1

(∆x)2 (3.6)
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CHAPTER 3. ANALYSIS

Now, to apply a fractional-step algorithm, there is need for a predictor and a corrector.
Therefore, the off-diagonal terms will be treated explicitly, making from 3.6:

un+1
k − unk

∆t

(
1 +

ν∆t

(∆x)2

)
=

3

2

(
−
(
unk+1

)2 − (unk−1

)2
2∆x

− ∂p

∂x

)

− 1

2

(
−
(
un−1
k+1

)2 − (un−1
k−1

)2
2∆x

− ∂p

∂x

)

+ ν
unk+1 − 2unk + unk−1

(∆x)2 (3.7)

Which yields the prediction step:

u∗k − unk
∆t

(
1 +

ν∆t

(∆x)2

)
=

3

2

(
−
(
unk+1

)2 − (unk−1

)2
∆x

)

− 1

2

(
−
(
un−1
k+1

)2 − (un−1
k−1

)2
∆x

)

+ ν
unk+1 − 2unk + unk−1

(∆x)2 (3.8)

And the correction step:

un+1
k − u∗k

∆t
= −∂p

∂x

(
1 +

ν∆t

(∆x)2

)−1

(3.9)

The notable difference to the work in [10] is in the pressure gradient, for it is considered to
be a constant in the LES model.

Using these discretization methods, simulating one fluid is completely possible and done
succesfully, for example in [2]. The goal of simulating the behaviour of two fluids on top of each
other is within reach, by doubling all persistent variables in the model and programming it to
switch between calculating one fluid and the other. The next step is to make these two fluids
communicate at the interface.
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CHAPTER 4

INTERFACE BOUNDARY CONDITIONS

For modelling the behaviour at an interface, a boundary condition suggested by literature ( [8]
and [4] for example) is to have continuous velocity and continuous shear stress at the interface.
At the walls, the boundary condition is that the velocity is equal to zero. The interface is also
assumed to be flat and at a constant height, similar to [8]. If both fluids have length two in the
y-direction, then these are the boundary conditions at the interface:

u1 (2) = u2 (2) (4.1)

v1 (2) = v2 (2) = 0 (4.2)

w1 (2) = w2 (2) (4.3)

µ1
∂u1

∂y

∣∣∣∣
y=2

= µ2
∂u2

∂y

∣∣∣∣
y=2

(4.4)

µ1
∂w1

∂y

∣∣∣∣
y=2

= µ2
∂w2

∂y

∣∣∣∣
y=2

(4.5)

The implementation of the first three conditions is straightforward. However, the last two
require discretisation. Because the model used is second-order accurate, there is also the
requirement for a second-order forward discretisation. Things are further complicated by the
fact a stretched grid will be used in more complex simulations. Therefore, a general second-
order boundary condition is derived for an arbitrarily spaced grid.

It is known that a second-order forward boundary condition should be of the following form.

∂u

∂y

∣∣∣∣
y=2

= au (2) + bu
(
2 + ∆1y

)
+ cu

(
2 + ∆2y

)
+O

(
∆y3

)
(4.6)

With a, b and c the unknowns and ∆1y and ∆2y the distance between grid points. Taking the
Taylor expansions of the second and third term of the right part yields:

u
(
2 + ∆1y

)
= u(2) + ∆1y

∂u

∂y

∣∣∣∣
y=2

+

(
∆1y

)2
2

∂2u

∂y2

∣∣∣∣
y=2

+O
(
∆y3

)
u
(
2 + ∆2y

)
= u(2) + ∆2y

∂u

∂y

∣∣∣∣
y=2

+

(
∆2y

)2
2

∂2u

∂y2

∣∣∣∣
y=2

+O
(
∆y3

)
Filling this into (4.6) gives:

∂u

∂y

∣∣∣∣
y=2

= (a+ b+ c)u(2)+
(
∆1yb+ ∆2yc

) ∂u
∂y

∣∣∣∣
y=2

+

((
∆1y

)2
2

b+

(
∆2y

)2
2

c

)
∂2u

∂y2

∣∣∣∣
y=2

+O
(
∆y3

)
(4.7)
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CHAPTER 4. INTERFACE BOUNDARY CONDITIONS

This is a system of equations that will be second-order when:

a+ b+ c = 0

∆1yb+ ∆2yc = 1(
∆1y

)2
2

b+

(
∆2y

)2
2

c = 0

Solving this for a, b and c results in:

a = −∆1y + ∆2y

∆1y∆2y
(4.8)

b = − 1

∆1y
(

∆1y
∆2y
− 1
) (4.9)

c =
1

∆2y
(

1− ∆2y
∆1y

) (4.10)

Expanding this to two grids of different size and then implementing (4.10) and the continu-
ous velocity into the boundary condition for the shear stress (4.5), yields:

u1 (2) = u2 (2) =
µ2b2u

(
2 + ∆1

2y
)

+ µ2c2u
(
2 + ∆2

2y
)
− µ1b1u

(
2 + ∆1

1y
)
− µ1c1u

(
2 + ∆2

1y
)

µ1a1 − µ2a2
(4.11)

with ∆1
1y the distance for the top fluid at the first grid point from the interface, ∆2

1y the distance
for the top fluid at the second grid point from the interface. The distances ∆1

2y and ∆2
2 are

negative, as well as the coefficients, for example a2 = −a1 = a from (4.10).
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CHAPTER 5

ONE-DIMENSIONAL VERIFICATION

Verification of the one-dimensional model is paramount for increasing the scope of the model.
If the technique mentioned in Section 4 works in one dimension, the first step in applying
it to three dimensions is expanding this technique. Moreover, exact solutions are known for
one dimension, providing a good basis for verification. The most simple of these is Couette
flow. This is a shear-driven fluid motion, where two parallel plates are at a distance from each
other and moving relatively to one another. Pressure gradients are neglected, reducing the
one-dimensional Navier-Stokes equation to:

∂u

∂t
=
∂2u

∂y2
(5.1)

u (h0) = ub

u (h1) = ut

With h0 and h1 the height of the bottom and the top of the domain respectively. The steady-
state solution should have ∂u/∂t = 0, resulting in:

∂2u

∂y2
= 0 (5.2)

u (y) =
ut − ub
h1 − h0

y +
ubh1 − uth0

h1 − h0
(5.3)

Using the one-fluid model to simulate these conditions, with the height going from 0 to 4
and the upper plate velocity at 1 and the lower plate velocity at 0, the solution is the straight
line in Fig. 5.1.

Thesis 13



CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.1: Solution obtained by the one-fluid model for Couette flow
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.2: Solution obtained by the two-fluid model for Couette flow

Using the two-fluid model with two fluids of the same viscosity, the same solution is ob-
tained, as displayed in Fig. 5.2.

When one introduces a constant pressure gradient in this equation, the result is called
plane Poiseuille flow. No velocity is present at either of the boundaries, so the pressure is the
only thing driving the flow. The one-dimensional Navier-Stokes equations become:

∂u

∂t
=
∂2u

∂y2
− 1

µ

dp

dx
(5.4)

u (h0) = 0

u (h1) = 0

With µ the fluid viscosity. The steady-state solution is:

u (y) =
1

2µ

dp

dx

(
y2 − (h1 + h0) y + h1h0

)
(5.5)

Both the one-fluid model and the two-fluid model converge to this analytical solution, as
can be seen in Fig. 5.3.
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION

With these test cases, it is verified that the two-fluid model yields the same steady-state
solutions as the one-fluid model does. A natural choice for a third test case is a system with-
out a steady-state solution, for example the Stokes oscillating plate. This has a sinusoidal
boundary condition and as such only has a cyclic solution at a steady state. One can now also
observe whether the convergence to this cyclic state is affected by the boundary condition in
the two-fluid model. Again, the pressure gradient is neglected, resulting in the equation:

∂u

∂t
=
∂2u

∂y2
(5.6)

u (h0) = 0

u (h1) = A sin (ωt)

With A the amplitude of the oscillation and ω the frequency. For one fluid a steady cyclic
solution is obtained after a startup (Fig. 5.4).

There is convergence to a certain repeating state. The two-fluid model exhibits the same
behaviour. It is possible however, that the boundary conditions at the interface do not transmit
information fast enough to keep up with the oscillation. Therefore, the different models have
been compared at a height of y = 0.96875, just below the interface. The effects, Fig. 5.5, are
negligible, leading to the conclusion that the two-fluid model possesses the robustness of the
one-fluid model.
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION

With the verification that the two-fluid model works, the step to two-fluid flows is made. For
both Couette flow and Poiseuille flow, the analytical solution for two fluids is easily described
and derived. To keep the equations clean, h0 and h1 have been replaced by 0 and 4 respec-
tively. The interface is set at 2. For Couette flow, the equation now looks like:

∂u1

∂t
=
∂2u1

∂y2
, y ∈ (0, 2) (5.7)

∂u2

∂t
=
∂2u2

∂y2
, y ∈ (2, 4) (5.8)

u1 (0) = 0

u1 (2) = u2 (2)

u2 (4) = 1

µ1
∂u1

∂y

∣∣∣∣
y=2

= µ2
∂u2

∂y

∣∣∣∣
y=2

The steady-state solution to this equation is:

u1 (y) =
µ2

2 (µ1 + µ2)
y (5.9)

u2 (y) =
µ1

2 (µ1 + µ2)
y +

µ2 − µ1

µ1 + µ2
(5.10)

As such, the expectation is that two straight lines, connected but at an angle, will be the
steady-state solution of the program. In Fig. 5.6, this result is observed.
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION

The description for the most basic two-fluid Poiseuille flow is:

∂u1

∂t
=
∂2u1

∂y2
− 1

µ1

dp

dx
, y ∈ (0, 2) (5.11)

∂u2

∂t
=
∂2u2

∂y2
− 1

µ2

dp

dx
, y ∈ (2, 4) (5.12)

u1 (0) = 0

u1 (2) = u2 (2)

u2 (4) = 0

µ1
∂u1

∂y

∣∣∣∣
y=2

= µ2
∂u2

∂y

∣∣∣∣
y=2

Because dp/dx is a constant, replacing it by unity will not change the shape of the steady-
state solution, which reads:

u1 = − 1

2µ1
y2 +

3µ1 + µ2

µ2
1 + µ1µ2

y (5.13)

u2 = − 1

2µ2
y2 +

3µ1 + µ2

µ2
2 + µ1µ2

y +
4 (µ2 − µ1)

µ2
2 + µ1µ2

(5.14)

Analysis shows that both of these parabolas share the same location of their maximum, at
y = (3µ1 + µ2) / (µ1 + µ2). As such, the solution will always be of a shape similar to the one in
Fig. 5.7.

To verify that the two-fluid Poiseuille model works, the rate of convergence has been anal-
ysed. The results are in the following table.

Number of iterations 15000 20000 30000

8 grid points 19.48529607 19.84962771 19.98716522
16 grid points 19.48886924 19.8510184 19.98734291
32 grid points 19.48988285 19.85141221 19.98739307

2p 3.525192135 3.5313729971 3.5424641147
16 grid points 19.48886924 19.8510184 19.98734291
32 grid points 19.48988285 19.85141221 19.98739307
64 grid points 19.49015153 19.85151655 19.98740634

2p 3.772554712 3.7742955722 3.7799547852

The same calculations yield 2p ≈ 4 for the one-fluid model. This indicates that the cou-
pling does reduce convergence, but only slightly. By increasing the amount of grid points, the
convergence becomes remarkably better.
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.3: The different models and the analytical solution match
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.4: The motion of the fluid in time at different heights
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.5: The motion of the fluid at y = 0.96875
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.6: Couette flow with two different fluids
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CHAPTER 5. ONE-DIMENSIONAL VERIFICATION
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Fig. 5.7: Poiseuille flow with two different fluids
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CHAPTER 6

BOUNDARY REYNOLDS NUMBER

The distinguishing characteristic that separates one fluid from another in the LES-model is the
boundary Reynolds number. This is a dimensionless characteristic that generally indicates if a
fluid is laminar or turbulent.

Suppose one knows this value for the top fluid, Retop, then one can calculate the boundary
Reynolds number for the bottom fluid. The boundary Reynolds number is defined as:

Re =
ksuτ
ν

(6.1)

With uτ the shear velocity defined as:

uτ =

√
τ

ρ
(6.2)

And τ being the wall shear stress, defined by the density ρ and the kinematic viscosity ν:

τ = ρν
∂u

∂y

∣∣∣∣
wall

(6.3)

ks is the characteristic roughness length scale. While the characteristic roughness is not
of influence here, the characteristic length differs per fluid. The top fluid starts from a plane
poiseuille flow in a closed channel, which has a characteristic length of half the channel. The
characteristic length of the bottom fluid is that of an open channel, equal to the channel height.

This yields for the boundary Reynolds numbers:

Reτtop =
huτtop
νtop

(6.4)

Reτbottom =
2huτbottom
νbottom

(6.5)

At the interface there should hold:

µtop
∂u

∂y

∣∣∣∣
top=0

= µbot
∂u

∂y

∣∣∣∣
bot=2

⇔ ρtopνtop
∂u

∂y

∣∣∣∣
top=0

= ρbotνbot
∂u

∂y

∣∣∣∣
bot=2

(6.6)
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CHAPTER 6. BOUNDARY REYNOLDS NUMBER

Now, one can fill in (6.3) and (6.6) into (6.2) for the top fluid:

uτtop =

√
τtop
ρtop

=

√
νtop

∂u

∂y

∣∣∣∣
top=0

=

√
ρbottom
ρtop

√
νbottom

∂u

∂y

∣∣∣∣
bot=2

=

√
ρbottom
ρtop

uτbottom (6.7)

Algebra can then show the relation between the boundary Reynolds number for air and
water:

Reτbottom =
2huτbottom
νbottom

=
2uτtop

νbottom
√

ρbottom
ρtop

= 2
νtop
νbottom

√
ρtop
ρbottom

Reτtop

The densities and kinematic viscosities are assumed for standard atmospheric pressure at
twenty degrees centigrade, for dry air.

νtop = 10−5

ρtop = 1.2041

νbottom = 10−6

ρbottom = 0.998 · 103

Resulting in:

Reτwater ≈ 0.6975 ·Reτair (6.8)

In this case, the Reynolds number in the top fluid is chosen as 180. Then Rewater is 125.0.
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CHAPTER 7

THREE-DIMENSIONAL SETUP

The most interesting case available is simulating the behaviour of two fluids under a three-
dimensional flow. For this, a turbulent flow is taken as the top fluid. The type of turbulent
flow in this case is the plane channel flow, driven by a pressure gradient in one direction, but
clearly turbulent. The case has been well-documented as a test case for a long time, with good
documentation in [6].

The setup of this thesis is different, as a turbulent plane channel flow has been taken as the
initial condition for the top fluid, while the bottom fluid only has the input through the interface
as excitation. No pressure gradient or other force is applied.

A schematic sideview with the imposed conditions can be found in Fig. 7.1. The boundaries
in the z-direction are periodic as well.

The top fluid has a Reynolds number of 180, enough to guarantee a fully turbulent flow.
The bottom fluid has a Reynolds number of 125, making the fluids mathematically similar (see
Section 6) to the relation between air and water.
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CHAPTER 7. THREE-DIMENSIONAL SETUP
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Fig. 7.1: Schematic sideview
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CHAPTER 8

RESULTS

The LES model has been adapted to handle two fluids and has been coupled at the interface.
This verified model has then been set to simulate a fluid flow with Reynolds numbers of 180
and 125 for the top and bottom fluid respectively. The initial condition is a turbulent flow for the
top fluid and a motionless fluid for the bottom. The Courant number is kept constant to ensure
stability for the semi-implicit scheme.

To be able to create results, it is required that the flow reaches a steady state. This can be
discerned in multiple ways, the easiest of which are by analysing the wall shear stresses and
by analysing the total shear stress in the entire domain. The first method is from an equilibrium
consideration; the combined wall shear stress present in the gas system (where the pressure
gradient is applied) should be equal to two, to balance the pressure gradient. Mathematically,
2hΠ = τint+τwall. The pressure gradient is of size one, applied over a height of two. The shear
stress at the interface plus the shear stress at the wall added together are 1.987. The small
discrepancy is caused by variance and possibly imperfect measurement of the gradient at the
wall, using a forward derivative. Later, further confirmation of the steady state will be given by
looking at the shear stress present in the entire channel.

Just as important as the steady-state, is the fact that a turbulent flow is not random at all
times. To be able to apply statistical methods to analyse the results, it is required that the
snapshots of the turbulent flow are independent identically distributed events. The autocorrela-
tion has been calculated at three points, namely the viscous sublayer of the top fluid, the inner
region of the turbulent flow and the transitional region of the bottom fluid. From Fig. 8.1 it is
clear that flow fields can be considered independent if there is a temporal distance between
them of at least 0.5. It is also visible that in the viscous layer, the flow field is much slower to
change than in the inner regions. Also, despite the fact the flow did not contain turbulence at
first, the bottom flow is still very much influenced by turbulence in the steady state.

The other tool that correlation gives is the spatial correlation. A high spatial correlation
will indicate that the flow is very similar, while a spatial correlation close to zero indicates
that there is barely any similarity. For this analysis, four measuring points have been taken,
at y+ = −127.6, 1.058, 10.88, 149.7 in the gas. In Fig. 8.2, the correlation of the streamwise
velocity has been taken from these points. In this graph, the measuring is done in the direction
of the liquid. That means that for the point y+ = 1.058, which is the first grid point above the
interface, the first correlation will be with y+ = 0. It quickly becomes clear that what happens
near the interface is the most highly correlated with the flow in the liquid, never becoming
entirely uncorrelated. For the measuring point y+ = 10.88, the effect is even more drastic, with
almost no correlation left below the viscous boundary layer on the bottom side of the interface,
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Fig. 8.1: The autocorrelation for a turbulent flow
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Fig. 8.2: The spatial correlation for a turbulent flow, measuring towards the bottom of the
domain

but the decrease in correlation drops considerably. It is clear that most of the flow in the liquid
is highly correlated, as seen by the behaviour of the line y+ = −127.6.

Looking at the correlation to the other side in Fig. 8.3, it becomes apparent that this process
goes much more smoothly for the measuring points inside the gas, as one would expect in a
single fluid flow. Only the top measuring point, y+ = 149.7, doesn’t have enough spatial room
to reach zero correlation. However, the line y+ = −127.6 shows a sharp correlation drop
immediately after crossing the interface. From this, it is seen that what happens on the gas
side influences what happens on the liquid side much more than the other way around.

This lays the basis to get a grip on the flow behaviour. To start, the mean velocity profile
can be found in Fig. 8.4. The profile in the lower fluid (below the height of two) shows a
clear Couette flow: linearly decreasing the velocity in the inner region, while viscous effects
dominate in the boundary layers. The top layer would be a Poiseuille (plane channel) flow with
a maximum velocity in the middle, if the interface was a wall. Now it is seen that instead of a
symmetric parabolic profile, the maximum velocity is located closer to the interface. Note that
this profile and all others where it is applicable, have been normalised (NOTE: the axes will still
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Fig. 8.3: The spatial correlation for a turbulent flow, measuring towards the top of the domain
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have to be normalised in some cases).
The next interesting characteristic of the flow is the root mean square (rms) of the velocities,

in Fig. 8.5. Near the top wall, the behaviour of the flow is very similar to that of the behaviour
seen in plane channel flow (Fig. 6 of [6]). The difference becomes visible from the middle of the
channel. Here, the rms steadily decreases towards the interface and only starts to increase
again at the point where the mean velocity starts to decrease (see Fig. 8.4). Close to the
interface, the rms velocities decrease noticeably. This can be expected, as the coupling has
been done viscously and forces from one fluid as such do not easily transfer to the other fluid.
Therefore, the fluctuations will also be less.

In the liquid, the normal and spanwise rms-velocities are symmetric, as expected in a Cou-
ette flow. However, the streamwise rms-velocity is slightly asymmetric, with a lower rms near
the interface. The asymmetry is a direct result of the presence of this interface instead of a
wall. Thus this type of interface decreases the nearby turbulence in a flow. This is in good
agreement with the result of [3], where the same conclusion was reached for a deformable
interface.

Comparing these results to those of [8], there is an increase of rms on the liquid side.
However, for smaller differences between their Reynolds number, this effect is not observed,
leaving the conclusion that the nondimensional rms of the liquid side is higher than that of the
water side, which is also observed here.

A further analysis includes the Reynolds shear stress, u′v′ and the total shear stress, com-
prised of the Reynolds shear stress and the extra term (1/Re) ∂ū/∂y. These are found in Fig.
8.6. The straight line in the gas of the total stress, which is associated with a pressure-driven
channel flow, indicates that a steady state has been reached. Furthermore, the straight line
of the stresses in the liquid also indicate the stresses associated with a steady state Couette
flow. Also, the boundary condition of continuity of shear stress is clearly visible.
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Fig. 8.4: The mean velocity profile of the turbulent flow
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Fig. 8.5: The root mean square velocities of the turbulent flow
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8.1 Quadrant Analysis

In [8], the most interesting conclusions were obtained by looking at the behaviour of differ-
ent types of turbulence near the interface using quadrant analysis. A clear distinction could
be made between the behaviour on the gas side, the shear stress at the interface and the
behaviour on the liquid side. This was in a very comparable flow, with the only difference in
the setup of the simulation being a pressure gradient opposite to the pressure gradient in the
gas. In that article, the fluids were also comparatively like air and water. They found that on
the gas side, so-called sweeps dominate over high-shear regions and ejections dominate over
low-shear regions, while on the liquid side, there was no such relation.

Four types of turbulent events, called quadrants, are generally identified. The orientation
of these events is in the streamwise direction and away from the interface. They are classified
by the sign of u′ and v′, the deviation of the average of the streamwise and normal velocities.
For the gas, the definition is as follows. For the liquid, the vertical orientation is the other way
around. The first quadrant, when u′ > 0 and v′ > 0, is high-speed fluid motion, directed away
from the interface. The second quadrant is when u′ < 0 and v′ > 0. These are called ejections
and contain low-speed fluid moving away from the interface. The third quadrant, u′ < 0 and
v′ < 0, is comprised of low-speed fluid moving to the interface. Finally, the fourth quadrant
events, u′ > 0 and v′ < 0, are called sweeps and contain high-speed fluids directed towards
the interface.

A coherent event in the boundary layer is defined similarly to [8]. Measurements have been
done at five points below a distance y+ = 12 on both sides of the interface, inside the viscous
boundary layer. If at four of these five points, the same quadrant was present, it has been de-
fined to be a coherent event. The points above the interface are y+ = 1.06, 3.26, 5.62,8.16, 10.88.
Below the interface the points are different, due to different grids based on the viscosities,
y+ = 1.04, 3.18, 5.43, 7.79, 10.27. The difference in location is not expected to make a signifi-
cant difference, because the measurement locations are still very similar and the coherence
of events will be registered over the same non-dimensional boundary layer. In [8] the results
showed clear relations between the shear stress at the interface and the presence of different
types of events, as well as a distinction between the type of events inside the boundary layer
and outside.

A first indication of the behaviour of the turbulence is made by looking at the fractional
contribution of each quadrant to the total presence at each x, z-plane away from the interface
(Figs. 8.7 and 8.8). Because of the orientation, the first and third quadrant events are positive
in the gas, while they are negative in the liquid.

In Fig. 8.8, it is seen that sweeps are more common everywhere near the interface, with
the ejections only becoming dominant far away from the interface. In [8], they found that this
switch occurred much more near the interface. It seems that a pressure gradient has an effect
on the behaviour of ejections and sweeps.

On the other hand, the gas does contain a pressure gradient and Fig. 8.7 is very similar
near the interface to the ones in [8]. The real difference is in the strength of the turbulence in

Thesis 37



CHAPTER 8. RESULTS

0.05 0.1 0.15 0.2 0.25

−10

−5

0

5

10

Channel Height (y/δ)

 

 

First Quadrant
Second Quadrant
Third Quadrant
Fourth Quadrant

Fig. 8.7: The fractional contribution of quadrants in the gas

the region 0.15 < y/δ < 0.25, where the intensity of all events takes on huge proportions. This
is just below where the maximum velocity is found, showing there is increased turbulence in
specifically this area of a channel flow like this. The switch between prominence from ejections
near the interface to sweeps away from the interface happens around y/δ = 0.05. For the
prominence of first quadrant events, this happens in the region y/δ = 0.03 to y/δ = 0.11.
However, their behaviour is almost indistinguishable near the interface. This can be seen in
Fig. 8.9.

The conclusion is that the pressure gradient influences the behaviour of ejections and
sweeps near the interface, as well as that the turbulence intensity in the gas flow in the re-
gion 0.15 < y/δ < 0.25 is very large.

To find a relation between events and shear stress, the probability of an event occurring
dependent on the observed interfacial shear stress has been made visible in Figs. 8.10 and
8.11, for the gas and liquid respectively.

For the gas, the quadrants with their probabilities look very similar to those found in Fig.
22a of [8], with the second and fourth quadrants having the highest probabilities of occurring, in
addition to ejections tending to occur over regions with low stress and sweeps over regions of
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Fig. 8.8: The fractional contribution of quadrants in the liquid
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Fig. 8.9: The fractional contribution of quadrants in the gas, zoomed in
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Fig. 8.10: Probability functions based on the interfacial shear stress, gas side

high stress. The explanation that a high speed to the interface will also contribute the most to
the high stress regions, holds. In the liquid, however, the phenomenon is different. In Fig. 8.11
it is seen that events of the first and third quadrant, instead of the second and fourth quadrant,
contribute the most to the events and exhibit the observable shear-stress dependence. This
means that in the liquid, outward motion of high-speed fluid is largely associated with low shear,
while inward motion of low-speed fluid is associated with high shear stress.
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Fig. 8.11: Probability functions based on the interfacial shear stress, liquid side
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The next step in analysing this behaviour in the interface is to find the correlation between
simultaneous events on both sides of the interface. The only events considered here are
those when there is an event above the interface as well as one below the interface, so-called
coupled events, . The contribution of the combination of these events to and against the total
shear stress has been displayed as a cumulative distribution function in Fig. 8.12. This graph
contains the eight biggest contributors, which amount to 95% of the total shear stress. The
other eight combinations are significantly less, as can be seen in Fig. 8.13. The events are
named by two numbers, the first number being the event taking place in the gas and then the
second number the corresponding event in the liquid.

Of the eight biggest contributors, four of them are the same events coupled. Because the
interface is flat and transmits no information regarding vertical fluctuations, it is expected that
events with the same sign for u′ happen simultaneously. In addition to this, similar events occur
over the same kind of region. As such, it is far more likely, for example, that a sweep occurs
over a high shear region, where on the other side there is also a sweep corresponding to a
high shear region, than it is likely that a sweep occurs on one side and an ejection, associated
with low shear, occurs simultaneously.

The reasoning of events occurring over the same kind of region also explains the other two
large contributors. Over high stress regions, there is a good chance of a fourth quadrant event
above the interface and also of a third quadrant event below the interface, so their coupled
appearance is no surprise (4-3). The other is a second quadrant event above the interface with
a first quadrant event below the interface (2-1), which occurs over low-stress regions.

This explains six of the eight, but leaves two frequent combinations unexplained (2-3 and
4-1), both of which concern events with a tendency to a different kind of stress region. More
scrutiny is required in how events are recognized and measured.

Thesis 43



CHAPTER 8. RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Interfacial Shear Stress

 

 

1−1
2−1
2−2
2−3
3−3
4−1
4−3
4−4

Fig. 8.12: Cumulative distributive function of the coupled events with the highest relative con-
tribution

Thesis 44



CHAPTER 8. RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

−3

Interfacial Shear Stress

 

 

1−2
1−3
1−4
2−4
3−1
3−2
3−4
4−2

Fig. 8.13: Cumulative distributive function of the coupled events with the lowest relative contri-
bution

Thesis 45



CHAPTER 8. RESULTS

The currently used method has two clear disadvantages: all events are considered, but
there are is a lot of room for false positives. The only requirement for an event is based on
the sign and the coherence. The odds are significant (6.25%) that four out of five points are
randomly the same event, when there is no event happening. Furthermore, events occupy a
space, but the current analysis only analyses whether events happen in one grid cell. The
spatial presence of an event is uncertain.

To analyse this spatial presence, the different quadrants have been visualised (in colour
only) near the interface. In Fig. 8.14, light blue is quadrant one, green is quadrant two, yellow
is quadrant three and red is quadrant four. The vectors indicate the location of the calculated
velocities, as well their streamwise and normal direction. Dark blue is the interface and every-
thing outside the viscous layer, artificially put to zero. The green present between the interface
and the first grid point is because the drawing program expects a continuous flow field and
infers that the velocity must be average between the grid points, while it’s actually visualising
quadrants instead of velocity.

In Fig. 8.14 it becomes clear that these events also have a spatial presence, with this
snapshot showing events of three types clearly having a spatial presence. Other figures would
only reinforce this strong spatial presence of events, it has been observed everywhere.

The amend the second possible issue, a split has been made to remove the events with
very little contribution, those who actually deviate very little from the average. The treshold has
been put at

∑
u′v′ > 1.75

∑
u′v′. This removed roughly forty percent of the coupled events,

leaving only the strongly coupled events.
In Fig. 8.15 the eight biggest contributors are displayed when this treshold is used. These

eight now comprise of over 96 percent of the total shear stress contribution by strongly coupled
events. The highest contributor of the other eight is at 1.1 percent.

The results are not notably different, so the appearance of specifically these eight combi-
nations is no coincidence. Now, instead of reasoning from earlier graphs to explain this one, it
is more interesting to look at what this graph actually tells about turbulent behaviour near the
interface.

Looking at the combination 3-3, it becomes apparent that all other combinations with a type
3 turbulent event in the air rarely occur, if ever. Therefore, if there is an event of type 3 near the
interface and it is coupled (which is about sixty percent of the time, of which sixty percent again
is strongly coupled), it will be with the same type of event. That it is an event with a similar
streamwise speed is to be expected due to the coupling, but the fact that the event on the
other side is also oriented towards the interface is surprising. The lack of communication with
regards to the normal velocity between either side of the interface would lead one to expect that
3-3 events are as common as 3-2 events, but the turbulence clearly exhibits other behaviour.

Taking a look at other events, it becomes clear that all combinations between similar events
show this behaviour, with 1-1 also being the only combination present for type 1 turbulent
events at the gas interface. On the other hand, on the liquid side of the interface, 2-2 and 4-4
events are the only ones with a significant appearance for ejections and sweeps respectively.

The other four big contributors to coupled events, are the combinations between ejections
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Fig. 8.15: Cumulative distributive function of the strongly coupled events with the highest rela-
tive contribution

and sweeps on the gas side and first and third type turbulent events on the liquid side. These
are the events with the highest probability of occuring on both sides respectively (see Figs.
8.10 and 8.11). Where there was a significant difference in the probabilities of occurrence of
events on a side of the interface, the disparities were not so large as to make one suspect
that the differences in coupled events would be so big. Looking more specifically at these four
combinations 2-1, 2-3, 4-1 and 4-3, it becomes clear that there is again a disparity in the shear
regions. The combination 4-3 happens over high shear regions, as both events happen over
high shear regions with large frequency, but 4-1 is a combination between high and low shear
tendencies, leading to events occurring from τy = 0.2 to τy = 0.6. What this means is that
a sweep on the gas side will be coupled with a first quadrant event if it occurs over average
stress regions, while it will be coupled with a fourth quadrant event over high stress regions.
Conversely, ejections on the gas side will be coupled with a first quadrant event over low stress
regions, while it will be coupled with a third quadrant event over average stress regions.

Finally, the conclusions of [8] were that on the gas side, sweeps dominate over high shear
regions and ejections over low shear regions. The same can be seen here. They also found
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that on the liquid side, no such relation was visible. In this simulation, it is shown that there
is a strong relation between first quadrant and third quadrant events, for low and high shear
stress events respectively, on the liquid side. The difference between these two simulations is
that Lombardi et al., [8], had also imposed a pressure gradient on the liquid, which in the gas
has shown to increase the number and strength of sweeps and ejections. It is likely that the
same effect was present in the liquid then, obscuring the tendency for the more viscous liquid
to exhibit first and third quadrant events in reaction to the turbulence in the gas.

Furthermore, between coupled events it becomes clear that the two least common types of
events on a side are almost always coupled with the same type of event on the other side, if they
are coupled. The turbulence in the streamwise and spanwise directions has a direct influence
on the complete turbulent behaviour on either side and in that way also exerts influence on the
orientation of events on either side of the interface. In addition, it is seen that the combination
between events tending to the same shear regions will lead to coupled events in that shear
region, while events tending to different shear regions will meet in the middle.
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8.2 Turbulence

The turbulent energy budget has been calculated to further the understanding of this flow.
The formulas used are specified in Section D. The results are considered near the interface
(y+ < 100) in Figs. 8.16 and 8.17. Comparing the results to the turbulent energies described
by [8], the production is very similar in shape. Even the detail that the production on the gas
side becomes virtually zero slightly above the interface, while the production on the liquid side
only becomes zero at the interface itself, is in agreement. The turbulent diffusion is also very
similar, both in general shape and in the sign changes near the interface. Also the viscous
diffusion and the turbulent dissipation show good agreement. The only clear difference comes
from the pressure diffusion.

It is seen that the pressure diffusion is not present in the bottom fluid. This is not so strange,
there is no pressure gradient or other form of pressure influencing the flow, therefore there is
also no pressure diffusion. On the other hand, the gas shows a rather different pressure
diffusion than what has been described in [8]. There, the pressure diffusion was barely visible
near the interface and nowhere away from the interface, while in the gas in this simulation,
it’s larger than the magnitude of the production. An explanation has not been found and will
require further analysis.
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Fig. 8.16: Components of the turbulence on the liquid side of the interface
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Fig. 8.17: Components of the turbulence on the gas side of the interface
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CHAPTER 9

CONCLUSION

In this thesis, a viscous coupling has been succesfully applied to the LES model. This has been
verified through comparison to analytical flows and analysis of the accuracy of the model.

The application of this model to three dimensions has been done as the logical next step,
allowing for analysis of a turbulent channel flow with two fluids. The flow was similar to air over
water, where it was seen that the turbulence was strongest in the region 60 to 90 nondimen-
sional units above the interface.

The most thorough research has been applied to the turbulence near the interface. Here it
was found that in the gas, as expected, ejections and sweeps dominate over respectively low
and high shear stress regions, but that in the liquid, first and third quadrant events have this
same distinction.

An explanation is given by comparing these results to previous research, where there was
a pressure gradient in the liquid and no distinction was found. The liquid tends to these first
and third quadrant events, while a pressure gradient leads to ejections and sweeps.

In the simultaneous occurrence of events on both sides of the interface, an event was found
about sixty percent of the time. These coupled events showed a strong tendency for first and
third type of events on the gas side to be coupled with the same type on the liquid side. On the
other hand, events of the second and fourth type on the liquid side showed the same strong
tendency with the same type of events on the gas side. Therefore, the least common event
types are almost always associated with the same event type on the other side, despite the
normal direction being opposite.

These conclusions yield insight into the behaviour of turbulence near an interface, setting
expectations for further experiments and showing the importance of further research in this
area.
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DISCUSSION

There is still a lot of room for further research. The conclusions from the previous chapter are
tangible, but require more referencing results. In addition to these results, there is the suspicion
that due to the nature of coupled events near the interface, streamwise vortices are present. It
was found that the events are most often pointed in the opposite normal direction, something
which would also be the case if these streamwise vortices are indeed present.

To improve the current model, the assumption that the interface is flat should be reeval-
uated, as well as the accuracy of this coupling and the behaviour of the pressure. Making
the model more realistic, firmly second-order accurate again and in accordance with the ex-
pectancy for the pressure, will lead to the robustness needed for further application. Then,
there will be a lot of possibility for doing more analysis of two-fluid flows, both looking at more
theoretical flows with more disparate Reynolds numbers as well as flows with other different
properties, like the bounding walls and the pressure gradients. On the other hand, it can also
be applied to more realistic flows, looking more closely at the behaviour of, for example, open
sea.

Finally, the underlying code is still based on a single computer and needs to be adapted to
work with, for example, message passing interface (MPI), so it can be used on supercomputers.
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APPENDIX A

NOTATION

What is mentioned here is the same throughout the paper, unless mentioned otherwise. Sub-
scripts are indicated to differ between the top and the bottom fluids, usually with the numbers
1 and 2 respectively, though sometimes with t, b, top or bottom for clarity.

The grid is a non-staggered grid as described in [10]. A schematic view of such a 2d-grid,
stretched in the y-direction, is given in Fig. A.1. The dots are the locations where the velocities
and the pressure are defined. The contravariant velocities are defined on the cell faces.

1 − 1 A coupled event, the first number indicates the event in the top fluid,
the second number the bottom fluid

A Amplitude used in the Stokes oscillating plate
a Coefficient used in the interface boundary condition
b Coefficient used in the interface boundary condition
c Coefficient used in the interface boundary condition
cij A coupled event of type i− j
Dk The viscous diffusion, part of Dk/Dt
e An event
Fij Cumulative distribution function for a coupled event i− j
h Characteristic length of the flow in the y-direction
h0 y-value of the bottom boundary in a domain
h1 y-value of the top boundary in a domain
k Turbulent kinetic energy budget

Dk/Dt Material derivative of the turbulent kinetic energy budget
L The characteristic length of a flow
Nx Number of grid cells in the x-direction
N (t) Number of flow fields in the temporal direction
Pk The production, part of Dk/Dt
Pq Probability of an event of type q happening over a certain area of shear stress

∂p/∂x The pressure gradient, a constant
qi Event of type i
Ruu Spatial correlation between the two indicated velocities
Re The Reynolds number
Rew The boundary Reynolds number
Tk The turbulent diffusion, part of Dk/Dt
U (j) The mean velocity at a certain point in the y-direction
u′rms The root mean square of the velocity
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u′ The perturbation from the average velocity
uτ The shear velocity
u∗ Predictor for un+1 in the predictor-corrector scheme
u1 The velocity in the streamwise direction for the top fluid
u2 The velocity in the streamwise direction for the bottom fluid
v1 The velocity in the normal direction for the top fluid
v2 The velocity in the normal direction for the bottom fluid
w1 The velocity in the spanwise direction for the top fluid
w2 The velocity in the spanwise direction for the bottom fluid
x The streamwise direction
y The wall-normal direction
y+ Nondimensional wall distance
z The spanwise direction

∆t Time step in scheme discretization
∆x Spatial difference in scheme discretization
∆1y Distance between the grid point at the interface and the closest grid point

in the y-direction, relative to the first grid cell.
∆2y Distance between the grid point at the interface and the second closest

grid point in the y-direction, relative to the first grid cell.
δ Used for normalisation of the y-domain to [−1, 1]

εk The turbulent dissipation, part of Dk/Dt
κs Characteristic roughness length scale
µ The dynamic viscosity
ν The kinematic viscosity
Π The pressure gradient, a constant
Πk The pressure diffusion, part of Dk/Dt
ρ The density
σcij Total stress present in a coupled event cij
τ The shear stress
τw The wall shear stress
τy The interfacial shear stress
τxy Component of the interfacial shear stress
τyz Component of the interfacial shear stress
Φk The pressure strain, part of Dk/Dt
φτ Indicator used in the calculation of the cumulative distribution function Fij
ψ Weight used to account for the non-uniformity of the velocity locations
ω Frequency used in the Stokes oscillating plate
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ucv

u

p

x

y

Fig. A.1: Schematic grid

Normalisation of variables, indicated by a plus sign:

uτ =

√
τint
ρ

y+ =
uτy

ν
= Re · y

t+ = t
u2
τ

ν

u+ = u/uτ

u′+rms =

√
u′2

uτ

u′v′+ =
u′v′

u2
τ

Dk+

Dt
=
Dk+

Dt

ν

u4
τ
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APPENDIX B

SPATIAL AND TEMPORAL CORRELATION

Considering that instantaneous flow fields do not contain all available information in a turbu-
lent flow, statistics will need to be applied to get meaningful results. The first assumption in
these statistics is that one is dealing with identically distributed and independent events. These
events are the instantaneous flow fields. To guarantee the independence, the correlation be-
tween flow fields needs to be analysed, the so-called autocorrelation. Between subsequent
iterations there is a high correlation (near one), while, for a flow field far away temporally, the
sought correlation should be sufficiently close to zero. While the precise shape of the flow is
independent after a sufficiently long time, the form of the flow will still remain similar to the av-
erage form of the flow. In other words, the correlation between two flow fields will not converge
to zero in time. Therefore, to be able to say that there is no correlation between two flow fields,
math is required. The specific formula for autocorrelation of a temporal distance τ is:

E [(U(j, t)− U(j)) (U(j, t+ τ)− U(j))]

σ2
(B.1)

This formula is assuming that the process has a time-independent mean and variance,
which is satisfied if the process is in a steady state. Written out this becomes:

1
N(t−τ)

N(t−τ)∑
t=1

(U(j, t)− U(j)) (U(j, t+ τ)− U(j))

1
N(t)

N(t)∑
t=1

(U(j, t)− U(j))2

(B.2)

N is the number of flow fields evaluated in the time indicated by the argument. The velocity
u here is the velocity averaged over the streamwise and spanwise direction at a certain height.
Looking closely at this formula, one sees that the magnitude of the correlation considered, will
become less as the number of events increases. This is because the sum in the numerator will
not become significantly larger, as the terms added are equally positive and negative over the
long run. The count of the number of events does increase, making the numerator decrease
overall.

To get a good idea of the time distance at which the direct correlation from the previous
iteration is not of influence anymore, one needs to look at the system at a few critical points,
for behaviour varies in different parts of the flow. Therefore, the boundary layer and the inner
region of the top fluid are of interest. If the bottom fluid is very viscous, the lack of turbulence
will keep the autocorrelation high, which needs to be taken into account for the bottom fluid.
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The spatial correlation is a good tool to analyse the connectedness in the flow itself. For
that, the following formula has been used:

Ruu (y) =

(
u (y1)− u (y1)

)(
u (y)− u (y)

)
√(

u (y1)− u (y1)
)2 (

u (y)− u (y)
)2

(B.3)

With y1 the point of which the spatial correlation is considered.
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APPENDIX C

TURBULENCE STATISTICS

In processing the results, a lot of mathematics, especially from the field of probability and
statistics, need to be applied correctly.

To calculate the mean velocity profile over the height, the average is taken over the stream-
wise, spanwise and temporal direction, providing the average U(j) as a function of the height.

U(j) =
1

N(t)

1

Nx + 1

1

Nz

N(t)∑
t=1

Nx+1∑
i=0

Nz∑
k=1

ψ (i)u (i, j, k, t) , j ∈ (0, Ny + 2) (C.1)

ψ (i) =

1, i ∈ (1,Nx)
1
2 , i=0 or i=Nx+1

(C.2)

(C.3)

Here ψ is a weight introduced to incorporate the fact the grid is not equidistant at the
boundaries.

Using this average, the root mean square velocity can be calculated, which is basically the
variance of the variable.

u′rms (j) =

√√√√√
∣∣∣∣∣∣U(j)2 − 1

N(t)

1

Nx

1

Nz

N(t)∑
t=1

Nx∑
i=1

Nz∑
k=1

u (i, j, k, t)2

∣∣∣∣∣∣ (C.4)

The sums do not contain the boundary (which has variance zero), so there is no need for
weights to be applied. For the velocities v and w, the above equations are performed in the
same way. With this, the basic second-order statistics of a turbulent flow are known.

To analyse the behaviour of turbulence at the interface, events have been defined, as well
as the shear stress at the interface.

At five points above and below the interface, respectively y+ = 1.06, 3.26, 5.62, 8.16, 10.88

and y+ = 1.04, 3.18, 5.43, 7.79, 10.27, the values of u′ and v′ are determined. The definition in
these calculations of u′ is the difference between the value in the point and the average value
of u at that height in that timewindow, U(j, t). For v′ it’s the same, except v′ is oriented away
from the interface.
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u′(i, j, k, t) = u(i, j, k, t)− U(j, t) (C.5)

v′(i, j, k, t) =

v(i, j, k, t)− V (j, t), if j > Ny/2 + 1

V (j, t)− v(i, j, k, t), otherwise
(C.6)

Quadrants can then be defined properly. The first quadrant, when u′ > 0 and v′ > 0, is
high-speed fluid motion, directed away from the interface. The second quadrant is when u′ < 0

and v′ > 0 are called ejections and contains low-speed fluid moving away from the interface.
The third quadrant, u′ < 0 and v′ < 0, is comprised of low-speed fluid moving to the interface.
Finally, the fourth quadrant, u′ > 0 and v′ < 0, are called sweeps and contain high-speed fluids
directed towards the interface. For the liquid, it is important to keep in mind v′ is oriented away
from the interface.

If in four out of the five measurement points in one fluid, the same quadrant is present, it
is an event. For an event, three things are recorded: the type of event (q1, q2, q3, q4), the total
Reynolds stress in the event (

∑
u′v′) and the average Reynolds stress in the event (

∑
u′v′).

So, if at four of the five points there is a sweep event (q2) with an average Reynolds stress of
1 and an ejection (q4) with a value of -1 at the fifth point, the total strength (

∑
u′v′) is 4. The

average stress (
∑
u′v′) of this event is 1, the same as it would be if the ejection was a sweep

with value 1.
These events are then sorted by the shear stress at the interface at the corresponding

(x̂, ẑ)-coordinates. The total interfacial shear stress is defined as:

τy =
(
τ2
xy + τ2

yz

) 1
2 (C.7)

With

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
(C.8)

τyz = µ

(
∂w

∂y
+
∂v

∂z

)
(C.9)

This shear stress has then been normalised by the maximum interfacial shear stress found
in the simulation:

τy =
τy

max
x,z,t

τy
(C.10)

For the probability function in Figs. 8.10 and 8.11, the probability has been calculated
by classifying the normalised interfacial shear stress in bands of width 0.02. Additionally, the
probabilities are based on the number of events, not on the stress in those events. That means
that the probability P for an event of a certain type qi is dependent on the amount of events
that are present of that type in each band (e(τy; qi)), divided by the total number of events Ne.
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Pqi (τy) =
1

Ne

∑
Ne

e (τy; qi) (C.11)

The bands are indicated by τy. The full definition of whether there is an event is given by:

e (τy; qi) =

1 if the event corresponding to shear stress band τy is of type qi

0 otherwise
(C.12)

The cumulative distribution functions (Figs. 8.12 and 8.13), on the other hand, are based
on the total shear of the coupled event, cij . It is built up by sorting all the coupled events based
on their interfacial shear stress. For the value of the cumulative distribution function at shear
stress equal to 0, the cumulative distribution function for a certain coupled event i-j (Fij) is the
sum over all events with more stress than 0, of the total stress for that event, divided by the
total stress present in all the coupled events. Then, the same calculation is done for the next
smallest interfacial shear stress (xτ ). The numerator contains all coupled events which have
τc > xτ , with τc the stress corresponding to a coupled event. Written down as a formula, that
becomes:

Fij (xτ ) =

∑
Nc

σcij∑
Nc

τc
(C.13)

σcij is the total stress present in a coupled event of the combination i-j, where the interface
has more than or equal stress to xτ .

σcij =
∑
cij

φτ
∑
y+

u′v′ (C.14)

φτ =

1 if τc > xτ

0 otherwise
(C.15)

From coupled events, the analysis is extended to include only strong coupled events. These
are events which have a total Reynolds stress bigger than a certain treshold. This will remove
the very weak but plentiful events from the overall results.

∑
u′v′ > 1.75

∑
u′v′ (C.16)

In words, this formula says that an event in which in four of five points contains less stress
than 1.75 points do on average, they are not counted as events.
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APPENDIX D

TURBULENT KINETIC ENERGY

The definition of the turbulent kinetic energy budget, k, is defined by the fluctuations present in
the system.

k =
(
u′2 + v′2 + w′2

)
(D.1)

The energy can however be better described by looking at the material derivative of the
kinetic energy.

Dk

Dt
=
∂k

∂t
+ u

∂u

∂x
+ v

∂v

∂y
+ w

∂w

∂z
(D.2)

= Pk + Πk + Tk + Φk +Dk + εk (D.3)

With Pk the production,

Pk = −u′iu′j
∂ui
∂xj

(D.4)

Πk the pressure diffusion,

Πk = −1

ρ

∂p′u′i
∂xi

(D.5)

Tk the turbulent diffusion,

Tk = −1

2

∂u′iu
′
iu
′
j

∂xj
(D.6)

Φk the pressure strain,

Φk =
1

ρ
p′
∂u′i
∂xj

(D.7)

Dk the viscous diffusion,

Dk =
1

2Re

∂2u′iu
′
i

∂xj∂xj
(D.8)

Thesis XIII



APPENDIX D. TURBULENT KINETIC ENERGY

and εk the turbulent dissipation,

εk = − 1

Re

∂u′i
∂xj

∂u′i
∂xj

(D.9)

It should be noted that due to the incompressibility of the flow, Φk is equal to zero.
These different parts of the turbulence are relevant along the normal direction, so the aver-

ages indicated here need to be taken carefully. The method used is explained by the following
example.

Pk = −u′iu′j
∂ui
∂xj

= −
(
u′v′

∂u

∂y
+ u′w′

∂u

∂z
+ v′w′

∂v

∂z

+ v′u′
∂v

∂x
+ w′u′

∂w

∂x
+ w′v′

∂w

∂y

+u′u′
∂u

∂x
+ v′v′

∂v

∂y
+ w′w′

∂w

∂z

)
Then, a term is handled by averaging where it is required beforehand and averaging where

needed to give results along the normal direction.

u′w′
∂u

∂z
=

1

NxNzNt

∑
i,k,τ

(
u′w′

) 1

Nz

∑
k

 ∂

∂z

1/(NxNt)
∑
i,τ

u


The linearity of the derivative allows variations on this, as long as one takes the appropiate

derivative in a direction before averaging in that direction.
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