
Verifying functional requirements in multi-layer networks:
a case for formal description of computer networks

Maarten Aertsen
maarten@rtsn.nl 4096R/14789500

March 5, 2014

Master of Science thesis in Telematics
Committee: Pieter-Tjerk de Boer, Boudewijn Haverkort, (University of Twente)

Jeroen van der Ham, (University of Amsterdam)
Henri Hambartsumyan (Deloitte)

Chair: Design and Analysis of Communication Systems
Faculty: Electrical Engineering, Mathematics and Computer Science
Institution: University of Twente, The Netherlands

Abstract

Major outages and hacks in corporate networks show that the mounting complexity in
computer networks has a direct impact on business. Although users have an intuitive
understanding of how they would like the network to behave, network operators lack
tools to match these implicit requirements against actual infrastructure. Verification is
in the stone-age, with visual tracing of diagrams and drawings being the most common
method to check network topology for conformance with user expectations. It is both
tiresome and error-prone and does not scale beyond SME networks.

The main aim of this research is to examine the feasibility of automated property check-
ing of real world networks. We build on work on network topology descriptions and
multi-layer path selection and study the possibility of expressing expected behaviour on
top of existing technology-independent algorithms, answering the question:

“Is it possible to verify operational requirements in multi-layer networks via
algorithms for path selection in their topology descriptions?”

We have found that there are topology descriptions languages available that allow formal
description of networks for the purpose of reasoning. We have shown that it is possible
to formally define operational requirements using a graph definition obtained from such
descriptions. Using this formal definition we have synthesised verification algorithms to
test conformance to such a requirement. These algorithms have been deomonstrated to
decompose in multi-layer path selection and verification. And finally, we have shown a
working proof of concept which puts these ideas in practice in a real world network.

Our conclusion: it is possible to verify operational requirements in multi-layer networks
via algorithms for path selection in their topology descriptions.

2

Contents

1. Introduction 6
1.1. Problem description . 6
1.2. Research questions . 7

1.2.1. Main research question . 8
1.2.2. Sub questions . 8

1.3. Approach . 9
1.4. Outline of the thesis . 9

2. Literature 10
2.1. Topology description . 10

2.1.1. Topology information . 10
2.1.2. Topology description . 14
2.1.3. NML . 15

2.2. Multi-layer path selection . 16
2.2.1. Link-constrained versus path-constrained 18
2.2.2. Required properties . 18
2.2.3. Available algorithms . 19
2.2.4. Choice of algorithm and required changes 21

2.3. Summary . 22

3. Operational requirements 23
3.1. From expectation to requirement . 23

3.1.1. Motivating examples . 24
3.2. Relating operational requirements to topology descriptions 26

3.2.1. Unsuitable requirements . 26
3.2.2. Suitable requirements . 28

3.3. Selected requirements . 28
3.3.1. Segmentation . 28
3.3.2. Control . 29
3.3.3. Time to recovery . 29
3.3.4. Path diversity . 30

3.4. Summary . 30

4. Proposal: verification using path selection 32
4.1. Prerequisites . 32

4.1.1. Motivating the choice for path selection 32
4.1.2. Breaking down verification . 33
4.1.3. Topology graph . 35
4.1.4. Notation . 36

3

4.2. Segmentation . 39
4.2.1. formal definition . 39
4.2.2. proposed algorithm . 39

4.3. Control . 40
4.3.1. formal definition . 40
4.3.2. proposed algorithm . 41

4.4. Time to recovery . 42
4.4.1. formal definition . 42
4.4.2. proposed algorithm . 43

4.5. Path diversity . 44
4.5.1. formal definition . 44
4.5.2. proposed algorithm . 45

4.6. Conclusion . 46

5. Validation 48
5.1. Methodology . 48

5.1.1. Validation methodology . 48
5.1.2. Benchmark: manual verification of requirements 49
5.1.3. Proof of concept: automated verification of requirements using

netPropCheck . 49
5.1.4. Comparing results and reaching conclusions 49

5.2. Choice of network . 50
5.3. Sample network . 51

5.3.1. Campus network . 51
5.3.2. Fit with characteristics . 52
5.3.3. Manual generation of a network topology description 53

5.4. Sample requirements . 58
5.4.1. Segmentation . 58
5.4.2. Control . 58
5.4.3. Time to recovery . 58
5.4.4. Path diversity . 59
5.4.5. Conversion of the operational requirements 59

5.5. Results . 60
5.5.1. Segmentation . 61
5.5.2. Control . 61
5.5.3. Time to recovery . 62
5.5.4. Path diversity . 63

5.6. Validation summary . 63

6. Conclusions 65
6.1. Summary of results . 65
6.2. Future work . 66
6.3. Conclusion . 67

4

A. Literature review (research topics) 69

B. Additional validation of the formal description of requirements 80
B.1. Segmentation . 81

B.1.1. False positives . 81
B.1.2. False negatives . 81

B.2. Control . 82
B.2.1. False positives . 82
B.2.2. False negatives . 83

B.3. Time to recovery . 83
B.3.1. False positives . 83
B.3.2. False negatives . 84

B.4. Path diversity . 85
B.4.1. False positives . 87
B.4.2. False negatives . 88

C. Source code 89
C.1. NML . 89
C.2. path selection . 90
C.3. miscellaneous . 93

Bibliography 97

Acknowledgements 98

Copyright 99

5

Chapter 1.

Introduction

The unconnected computer is no more. We live in a world where communication and
sharing are killer applications, software is delivered as a service and data is stored far
away from its creators. In the midst of all associated advantages we tend to take the
enabler of these advantages for granted: fast, robust and omnipresent telecommunication
networks.

In the consumer sphere, networks have become a commodity. Everyone has several at
home: for telephony, for television, for alarm systems or energy control and obviously for
internet access. There are also plenty of networks in the mobile sphere: for phones, for
tablets and to connect multimedia appliances. Given that most of these are self-installed
by non-experts, networking is clearly no longer rocket science. Networks just work.

Meanwhile in the professional sphere, companies are having great trouble defining what
“just work” means for them. For the brave few who have defined the expected properties
of their networks, there appears to be no easy way to check their infrastructure for
consistency with their definitions – and this shows.

In the Netherlands alone, we have seen spectacular single points of failure with the
Vodafone fire [1] and far-reaching violation of security separation with the DigiNotar
breach [7]. Clearly the ease of design and operation of networks with the proper char-
acteristics has not kept step with plug and play style home networking.

1.1. Problem description

Technology stacks are getting more and more complex. Even though most develop-
ment focuses on abstracting away from the underlying technology, the underlying stack
does not magically disappear and strongly influences operation. Examples of this phe-
nomenon can be seen at Telecommunications companies implementing 4G on top of their
existing 2G and 3G infrastructure; in cluster and cloud environments that use network
virtualisation to overlay topologies; and in hybrid packet/circuit switched networks as
used in the research community.

Traditionally, this problem has been addressed with careful design, appropriate safety
margins, continuous monitoring and regular audits. But these approaches scale badly
with the addition of each technology layer unless they have been designed with multi-
layering in mind from the ground up.

6

The main aim of this research is to examine the feasibility of automated property check-
ing of real world networks. We will build on work on network topology descriptions and
multi-layer path selection and study the possibility of expressing expected behaviour on
top of existing technology-independent algorithms.

1.2. Research questions

In the next two subsections we detail our main research question and divide it into sub
questions to be answered directly. The main question will be answered by combining
their results. Before stating our research questions we will take the liberty of defining
some terms and clarify some prerequisites.

The term “operational requirement” is used as formalized counterpart to “expected
property”, i.e. a property that is not only expected but also intended. We choose “op-
erational requirement” and not merely “requirement” in order to emphasise our focus
on real world day-to-day issues in networking. Operational requirements will be defined
with more rigour in a subsequent chapter.

To reason about the requirements for real-world computer networks, this work explores
the possibility of building upon two existing areas of research: network topology descrip-
tion and multi-layer path selection. Building upon network descriptions seems a natural
fit, but the choice to involve path selection requires some justification, which we will
provide in the next paragraph.

In a nutshell, multi-layer path selection is chosen for three reasons. First, it is a deployed
technology which simplifies adoption of this research. Second, path selection is a core
primitive in networking and reusing it allows tight coupling between network operation
and property checking. Finally, utilizing path selection allows us to scope and focus this
research on property checking by abstracting away from some of the complexity inherent
in a multi-layered approach. More detailed justification will be provided in a subsequent
chapter.

We presuppose the availability of an accurate, machine readable description of our target
network. This description will be the foundation for our subsequent reasoning. This is
not a trivial requirement and one that few networks meet today. We argue that without
compelling reasons to engage in formal network description, this number will not be
increasing any time soon.

Our goal is then to increase insight into the advantages of formal network description as
a method to manage the mounting complexity in network stacks. We advance towards
this goal by exploring one compelling use for these descriptions: continuous, real-time
and automated verification of operational requirements in computer networks.

7

1.2.1. Main research question

With the introduction, problem description and prerequisites in mind, we now turn to
the question this research aims to answer.

“Is it possible to verify operational requirements in multi-layer networks via
algorithms for path selection in their topology descriptions?”

1.2.2. Sub questions

1. How do we describe multi-layer network topologies?

This question summarizes the current state of the art in academic literature with
respect to the description of networks. The aim is to identify a description format
for subsequent use throughout the research.

2. What operational requirements can we relate to using topology descriptions?

This question aims to get an overview of the possibilities and non-possibilities of
relating operational requirements to topology descriptions. An overview of possible
requirements is given and real world use-cases are identified.

3. Is it possible to formulate checks for operational requirements in terms of path
selection?

To equate a requirement with the actual topology, we need to establish a common
ground. This question tries to establish this common ground by reducing the
verification of operational requirements to path selection problems.

4. What multi-layer path selection algorithms are available?

Having established a method to formulate verification of operational requirements
as path selection problems, this question surveys the existing algorithms for multi-
layer path selection. In addition, we identify the changes required to these algo-
rithms in order to utilise them for verification.

5. How can the results be validated?

The aim of this question is to identify possible ways to validate any approach found
answering the previous questions. This validation is subsequently performed in
order to substantiate the real world value of a chosen approach.

8

Figure 1.1.: research flow

1.3. Approach

The flow of research is as indicated in Figure 1.1. The numbers indicate the different
sub questions while the arrows represent the approach taken to answering them.

The identification of a suitable topology format (sub question 1) and the overview of
available path selection algorithms (sub question 4) are answered directly. The other
question form part of a feedback loop, where work on identifying operational require-
ments (sub question 2) resumes if we fail to reduce it to a path selection problem (sub
question 3) or if validation proves our method unsound (sub question 5).

This non-sequential approach suits the experimental and incremental nature of this
research, as opposed to waterfall-style up front synthesis of theory followed by validation.
Using the feedback loop we can evaluate the suitability of operational requirements for
continuous, real-time and automated verification in an iterative way. Each requirement
is examined step-by-step, with the hope of yielding interesting results even in the failure
case.

On the contrary, the reader is not expected to trace the execution of the loop. Instead
this thesis follows a more traditional flow for the sake of readability. This is further
detailed in the next section.

1.4. Outline of the thesis

The remainder of this thesis is structured as follows. Chapter 2 covers existing work on
topology description and path selection, answering sub questions 1 and 4. Background
on and identification of operational requirements is the topic of Chapter 3, answering
sub question 2. In Chapter 4 we answer sub question 3 and propose a reduction to path
selection for each of the operational requirements selected. The proposal is validated
(sub question 5) in Chapter 5. Finally, Chapter 6 features conclusions and an outlook
on future work.

9

Chapter 2.

Literature

This chapter covers the two literature surveys which have been performed in prepara-
tion of our own work. The first part of this chapter covers topology description formats,
intended as input for requirement verification. The second part covers multi-layer path
selection algorithms, which will serve as the foundation of the actual verification. En-
suing chapters will build upon these topics to introduce requirements (Chapter 3) and
formulate our proposal (Chapter 4).

2.1. Topology description

This section is based on “The Architectural Description of Networks, a Survey” by
M. Aertsen, which is included in full in Appendix A.

This section summarizes the current state of the art in academic literature with respect
to the description of networks topologies. The actual survey is prefaced with a subsection
describing what we mean when we talk about topologies and define the term topology
information. In the second subsection we list the results, answering research question 1:
How do we describe multi-layer network topologies? This section is concluded with a
look at the description format chosen for this research, the Network Markup Language
version 1 (hereafter: NML).

2.1.1. Topology information

The Oxford dictionary defines the word topology as “the way in which constituent parts
are interrelated or arranged”. A network topology thus concerns the way elements in
a network are interrelated or arranged. In practice interrelation includes information
on physical items such as devices (routers, repeaters, switches, etc.) and links (aerial,
fiber, copper etc.), while arrangement might refer to their capability and configuration.
Topology is interesting in networking because it de facto defines the primary purpose of
networks, their connectivity, in terms of the components delivering this service.

10

Network layering

Throughout the introduction in Chapter 1, and continuing through the remainder of this
research, the term multi-layer will be used to indicate the presence of a specific network
model involving multiple network layers. But up until this point, the term layer has not
been explained. We will do so here.

There are many well-known works in networking which involve the notion of a network
layer, including the OSI reference model [6] (or ITU-T X.200) and the TCP/IP protocol
suite [2]. More informally, one can refer to a layer as the subset of a protocol using
services provided by a less specialised subset of a protocol and providing services to a
more specialised subset of a protocol.

The above informal definition gives rise to an almost infinite number of layers to be
modelled. However, layers of interest to be modelled in the context of a network topology
are usually only those layers which provide an independent service and are composable
into layer stacks. This bring us to the term multi-layer networks.

Although almost all networks in the real world comprise of multiple layers (and therefore
qualify for the name multi-layer network), a distinction can be made based on the level
of abstraction. A single-layer network is a network model where the focus lies with
the top layer and lower layers are abstracted away. A good example is the term “IP-
convergence”, the process of transitioning telecommunication networks to a network
layer based on the Internet Protocol.

A multi-layer network refers to a network model where multiple layers of the network
are in scope, for example because the network is configurable at multiple levels each
capable of delivering different services. In this research, when talking about property
verification in multi-layer networks, the intention is to convey that this verification is
possible not just for more than one, but for all layers available.

Example topologies

Before getting into formal topology description, we first take a look at the way knowl-
edge about topologies is commonly transferred in practice. Three network topologies
are briefly described here. Each example describes a topology using a different style,
although they have in common that they are graphical (the predominant format for
network topologies, as we will discover shortly). In the next paragraphs we will briefly
comment on these sample topologies and make some observations about them.

home network The simplest example of a topology could be the network at home,
connecting desktops, laptops and appliances to the internet. An example of such a
topology can be seen in Figure 2.1. This figure does not contain much information; it

11

(Excerpt of “The Lameazoid Home Network” by Josh Miller, CC-BY-NC https://secure.flickr.com/photos/lameazoid/3718433170/)

Figure 2.1.: Sample home network

is limited to the different elements in the topology and the way the are connected. All
other details are abstracted away.

campus network A second example of a topology is that of a campus network sup-
plying connectivity to a university. Figure 2.2 features an informal drawing of such a
topology. This drawing mixes information from different layers of the same network (as
can be seen by the terms “IP-link” and “L2-link”). Additionally, details are given about
the technology used by the links. Still, much of the detail is abstracted away (e.g. the
underlying physical layer).

backbone network The third example concerns the network of a national research
and education network. Figure 2.3 shows a single layer of this network, namely the fiber
plant. This example is different in the fact that it purely focusses on structure, there
are no devices, just the optical links and their cross connects.

With a feel for different expressions of topology in the real world, we now generalize
to establish a definition of topology information, which will be used throughout the
remainder of this research. We will refer back to the example topologies in greater detail
in Chapter 5.

Combining the textbook definition of topology, the insight in layering and having in mind
the type of information included in real world topology we define topology information
to mean: All information that is a function of the interrelation or arrangement of the
parts of a telecommunication network. Consequently, a topology description is a format

12

https://secure.flickr.com/photos/lameazoid/3718433170/

(Concept drawing of lightpath implementation on UTnet, used with permission.)

Figure 2.2.: Sample campus network

(Dark fibre plant of Ireland’s NREN HEAnet, used with permission.)

Figure 2.3.: Sample backbone network

language
single /
multi layer

internal /
exchangeable

scope technology-neutral

NDL single exchangeable network yes

NDLv2 multi exchangeable network yes

NML multi exchangeable network yes

INDL multi exchangeable (virtual) network & infrastructure yes

VXDL single exchangeable network no, IP-only

DEN-ng multi internal not defined yes

NNDL single exchangeable node, service & network no, IP-only

perfSONAR TS multi exchangeable interface statistics yes

Table 2.1.: summary of findings

to convey topology information. Finding real world topology descriptions is the topic of
the next subsection.

2.1.2. Topology description

The goal of the topology description survey was “to summarize the state of art in aca-
demic literature with respect to the architectural description of networks”. It answers
the question “How is a network architecture formally described?”. The terms network,
architecture, formally and described are defined as follows.

By network the survey denotes a computer or telecommunication network, in architec-
ture our focus is on physical topology, in particular OSI layer 1-3. With formally we
mean suitable for calculation or reasoning. Finally, when talking about described we are
looking for something which is exchangeable1 and machine-readable.

The survey concludes that formal network architecture description is a small area of
research, primarily driven by grid and cloud computing needs. There are a handful of
languages available, each serving different specific needs. There is no wide adoption of
any of the languages found, which leads to a selection based on our specific needs. For
the purpose of future research in reasoning about the characteristics of topology the
survey concludes that NML is most suitable as formal topology description language.

The results are summarized in Table 2.1. For a description of each of the description
formats found, we refer to the full paper in Appendix A. We now turn to NML, the most
promising of existing network description formats.

1Exchangeable in the sense that the description format allows for inter-operability, contrary to e.g. a
binary database format, which can technically be exchanged, but is certainly not designed for that
purpose.

14

2.1.3. NML

Quoting2 from the NMLv1 base schema [17]:

The Network Markup Language is designed to create a functional descrip-
tion of multi-layer networks and multi-domain networks. An example of a
multi-layered network can be a virtualised network, but also using different
technologies. The multi-domain network descriptions can include aggregated
or abstracted network topologies. NML can not only describe a primarily
static network topology, but also its potential capabilities (services) and its
configuration.

NML is aimed at logical connection-oriented network topologies, more pre-
cisely topologies where switching is performed on a label associated with a
flow, such as a VLAN, wavelength or time slot. NML can also be used to
describe physical networks or packet-oriented networks, although the current
base schema does not contain classes or properties to explicitly deal with sig-
nal degradation, or complex routing tables.

Having covered the rationale behind NML, we will now turn to its practical application.
Figure 2.4 provides a concise overview of its different elements. The most important
element in NML is the Network Object. A Node is a Network Object and so is a Port
or a Link (all found in the first column of the figure). A configurable part of a Network
Object is modelled by as a Service. A sample of an NML description of one Node, two
Ports and two Links can be found in Appendix C.1.

A common example of such a service is switching, to link ports within a device. A second
example of a service is adaptation, a term we will use repeatedly in the remainder of this
chapter. An adaptation marks the crossing from one technology to another, by means
of an adaptation function. An example of an adaptation function is an encapsulation
in a lower layer for the purpose of transportation, such as the encapsulation of IP in
Ethernet. Before reaching the destination, this encapsulation will have to be undone at
some point in the remainder of the path (deadaptation).

Groupings of Network Objects can be found in the third column and are also Network
Objects in themselves, allowing for abstraction by multi-level grouping.

Our coverage of NML is deliberately limited, because we will mainly deal with the
Network Object abstraction. As we will see in Chapter 4, this abstraction conveniently
hides much of the complexity, while providing sufficient structure to obtain the formal
underpinning for operational requirements. In keeping with this idea, the fourth column
covers miscellaneous information which will not be explicitly covered here. However,
for the interested reader, Figure 2.5 is included to get a feel for the relations between
the different elements and the general expressiveness of NML. In general, the NML

2Quote used in accordance with full copyright statement as detailed on p. 99.

15

encoding: URI
noReturnTraffic: boolean

Logical (virtual) directed
data transport between
Ports

Link

A device, or partition of
a device

Node

name: string
id: URI
version: timestamp

Network Object

encoding: URI

Logical (virtual) directed
interface at a certain
layer

Port

Group

encoding: URI
Bidirectional Link

encoding: URI
Bidirectional Port

Connected graph
Topology

encoding: URI
Collection of Links

Link Group

Service

name: string
id: URI
unlocode: UNLOCODE
lat: float
long: float
alt: float
address: vCard

Location

labeltype: URI
value: type dependant

Label
encoding: URI
Collection of Ports

Port Group

adaptationFunction: URI

Ability to create a given
adaptation

Adaptation Service

encoding: URI
labelSwapping: boolean

Ability to create a Link
(cross connect)

Switching Service start: timestamp
end: timestamp

Lifetime

Ordered list of Network
Objects

Ordered List

labeltype: URI
values: type dependant

Label Group

adaptationFunction: URI

Ability to create a given
deadaptation

Deadaptation
Service

(Figure 1 from GDF-R-P.206 and corresponding caption, used in accordance with full copyright statement as detailed on p. 99.)

Figure 2.4.: A UML class diagram of the classes in the NML-schema and their hierarchy

specification [17] is an excellent resource for those seeking to understand the mechanics
in detail3.

Having introduced the term topology information, answered research question 1 and
briefly described NML, we now turn to the second part of this chapter, covering path
selection.

2.2. Multi-layer path selection

In this section we survey existing algorithms for multi-layer path selection. In order to
present the survey, we first describe the difference between single-layer and multi-layer
path selection. This builds on the previous section on topology description. We then turn
to properties required for verification and subsequently present the actual algorithms.
Finally, we describe ways to adapt existing algorithms to fit these requirements.

3We feel obliged to mention that within the scope of this thesis, intimate knowledge is only necessary
for the implementation of path selection and for the formulation of a network description, both of
which are instrumental to but not subject of this research.

16

Port
port_X:out

Port
port_X.1501:in

hasService

AdaptationService
port_X:out:

adaptationService

providesPort

DeadaptationService
port_X:in:

deadaptationService

providesPort

hasService

Port
port_X:in

Link
LinkA:XY

Port
port_Y:out

isSource
isSink

PortGroup
portgroup_X:out Labelgroup

hasLabelGroup
ethernet#vlan

1480-1530

labeltype

values

Link
LinkB:YZ

Link
LinkC:ZW

Group

Link
link_XW

isSerialCompoundLink

Location
redcity

Red City 30.600 12.640

name lat long

Port
port_Y:in

Node
nodeA

hasOutboundPort
hasOutboundPort

hasInboundPort hasInboundPort

Group

BidirectionalPort
port_X.1501

hasPort

locatedAt

1501

hasLabel

Port
port_X.1501:out

Topology
org

20130521

version

Link
link_WX BidirectionalLink

link_XWX

hasLink

hasLink

SwitchingService
nodeA:switching

Service

hasOutboundPort
hasInboundPort

hasOutboundPort hasInboundPort

providesLink

isSource isSink

Port
port_Z:in

hasNode

hasPort

Label
ethernet#vlan

1501

labeltype

value

hasPort

(Figure 3 from GDF-R-P.206, used in accordance with full copyright statement as detailed on p. 99.)

Figure 2.5.: Graphical overview of example topology information in NML

(a) 2 layer network (b) infeasible path,
no deadaptation

(c) feasible path,
using (de)adaptations

Figure 2.6.: path constraints in multi-layer path selection

2.2.1. Link-constrained versus path-constrained

Path selection means dealing with constraints. Common examples of such constraints
are available capacity, latency or perhaps even monetary cost, all of which are so called
link constraints. The topic of constrained path selection is a widely researched area. A
good overview and performance comparisons are available in [12, 11].

A major difference between single layer path selection and multi layer path selection is
that link constraints are not sufficient to always yield feasible paths.

A path constraint is a constraint which comes into play by choosing a particular se-
quence of links (a path). A good example of a path constraint within the context of
multi-layer path selection is the use of adaptation functions (as explained earlier in the
context of NML). In the context of path selection between two endpoints on the same
layer (Figure 2.6a), a path constraint comes into play when using an adaptation some-
where along that path (Figure 2.6b), because deadaptation is required before arriving at
the destination (Figure 2.6c). Therefore, by choosing a path featuring adaptation, the
remainder is constrained to those paths allowing for deadaptation.

Dijkstra4 showed that a shortest path in a multi layer network can contain a loop and
that a segment of a shortest path in a multi layer network does not have to be the shortest
path by itself. These are the reasons why multi layer path selection is a path-constrained
problem, while single layer path selection is a link-constrained problem [5].

In conclusion, we need path-constrained path selection in order to express technology
adaptations, which are a common occurrence in multi-layer networks. Path-constrained
multi-layer path selection is an area less widely researched. The next subsection will
provide an overview of the available algorithms.

2.2.2. Required properties

This subsection covers the required properties for a path-constrained path selection al-
gorithm in order to be suitable in the context of this research. As indicated in Chapter 1,
this answers research question 4, which although answered after research questions 2 and

4Incidentally, this is not the same Dijkstra who invented the shortest path algorithm named after
him [3], a point the younger Dijkstra stresses in his dissertation [4], noting that the commonality
gave him doubts about pursuing his research in shortest path algorithms.

18

3 (subjects of respectively Chapters 3 and 4) is covered here in order to group together
the literature review of this thesis.

A path selection algorithm is required to return all paths that an actual path selection
algorithm in the network could return. With the obligation to check all paths, the
“shortest” metric is not of particular interest5. The ideal path selection algorithm is
one which is closest to the actual network behaviour. A secondary concern is that of
performance, which could prove to be vital when moving from proof of concept to real-
time verification of a production network.

Finally (and only applicable to this research), taking into account the finite time available
for a proof of concept, a path selection algorithm is most suitable when its input is closely
matched by the used topology description. With our choice of NML in the previous part
of this chapter, this means a close fit to NML.

2.2.3. Available algorithms

In this subsection we present an overview of current multi-layer path selection algorithms
as found in academic literature. The coverage is divided into multiple sections, each
covering a distinct approach. In order, we cover: breadth first search, layer by layer,
k-shortest path, integer programming and automata theory.

breadth first search

In [10], Kuipers and Dijkstra describe two graph-like representations for multi-layer
networks. Their first representation, denoted Gl evolves around devices on the same
layer, while the second, named Gs is concerned with the available technology stacks.
These choices represent two of the possible trade-offs involved in representing multi-
layer networks in a graph-like form. The first representation (Gl) is a good match for
a breadth first search (BFS) style algorithm, which the authors consequently present.
We will cover their second algorithm for the Gs representation in the “k-shortest path”
section.

In addition to the representation and algorithms, the authors show that multi-layer
path selection in general is NP-complete by demonstrating a polynomial time reduction
to the 3SAT problem. As a consequence, their exact algorithm and each of the other
approaches which will follow are exponential in running time (assuming P 6= NP).

An evaluation of a Python implementation of this algorithm for Gl can be found in [5],
which does this calculation on top of network descriptions in NDLv2. This approach is

5The exception to this statement is for non-exact verification by means of examining a subset of all
paths. We believe that when verifying a subset of all paths it makes sense to cover paths in their most
likely order of selection. This somewhat comparable to a heuristic, where one trades off exactness
for performance. The use of heuristics for verification is not covered in this research, although it is
an interesting direction for future research.

19

very suitable for the purpose of requirement verification due to the representation’s close
fit with NML-style description languages, although it uses the older NDLv2 standard
which is unlikely to see further adoption with the standardisation of NML.

layer by layer

In [20], Xu et al. present an alternative to BFS by reasoning about path selection on a
layer by layer basis. The authors present a bottom-up approach using a forward chaining
reasoning engine6. This is very much suitable to network description formats re-using
widespread formats for knowledge representation such as RDF. The authors use NDLv2,
but a similar approach is possible using the RDF format for NML. The authors describe
implementations both in the query language SPARQL7 and the general purpose logic
language Prolog.

k-shortest path

The second algorithm in [10] on the Gs representation is a k-shortest path approach.
K-shortest path (e.g. Yen [21]) extends a normal shortest path approach by returning
not just the shortest path, but k such paths, in increasing cost order. This in contrast
to Dijkstra’s algorithm [3].

In a number of algorithms, each node traversed from source to destination will store a
number of shortest path, in increasing cost order. A variant on k-shortest path is to
limit this storage to some upper bound (say kmax). This bound trades off exactness for
performance because the storage limitation has the potential to prevent consideration
of all possible paths. Note that such a variant need not return more than one path, the
multiple path stored per node are simply a way to deal with the path-constraints.

An approach like the one just described is taken for the Gs representation in [10]. The
more advanced TARA-family of algorithms in [8] use the same kind of optimisation.
The authors of the latter even named the different algorithms based on the choice of
kmax: ETARA is the exact algorithm without bound, while kTARA denotes the variant
bounded by k (for k ∈ N+).

integer programming

In [16], Shirazipour and Pierre describe a hybrid method of path selection, combining
Yen’s original k-shortest path approach [21] with a binary integer program to optimize
the constraints. A different network representation is used, based on GMPLS, which

6The use of bottom-up suggests the existence of a top-down approach, which we have been unable to
find.

7SPARQL is a SQL-like query language to explore information in RDF.

20

makes this approach less suitable for NML. While Yen’s algorithm has a polynomial
runtime, Karp proved integer programming to be NP-hard [9]. No direct comparison is
made with other algorithms.

automata theory

A radically different approach is taken in [13] by Lamali et al. who show that in a
topology description using push down automata there exist polynomial time algorithms
to find the shortest path if one disregards additional QoS parameters, either optimizing
for smallest number of hops or for smallest number of adaptations. With the earlier
proof by Kuipers and Dijkstra [10], though including bandwidth as a QoS constraint on
top of the path-constrained technology incompatibilities, this result is surprising.

Unfortunately, the representation of the topology information in the algorithm is quite
different from the available topology description formats (among them NML, used in this
research). Short of a transformation to the required format, this makes this algorithm
not very suitable for the purpose of this research. But the direction is promising, and
using Lamali’s algorithm for path selection does make for a suitable future extension of
this work.

2.2.4. Choice of algorithm and required changes

Before explaining which algorithm was used to create a proof of concept for property
verification, we want to stress that this research is essentially independent of this choice.
That is, our goal is to build verification on top of path selection, without regard for the
actual implementation. This holds as long as the algorithm conforms to the requirements
stated in Section 2.2.2 (either directly, or through adaptation). Finally, being able to
swap path selection algorithms with those actually used in the network under study is
a marked advantage for the purpose of verification.

Having said that, for the purpose of a proof of concept, it is only natural to focus
on one algorithm. In this research we choose to adapt the algorithm created for the Gl

representation described in [10]. Because the original algorithm only returns the shortest
path, whereas we need all paths, the algorithm was adapted to not terminate directly on
finding the destination, but only after the queue is empty. The full algorithm adapted
for the purpose of a proof of concept can be found in Appendix C.

With respect to future research, it should be possible to use the path selection algorithm
of each respective network layer instead of one multi-layer path selection algorithm as
done here. Such a choice would add network behaviour to our current approach based
on network topology at a relatively low cost (because the path selection algorithm is
swappable). Due to time constraints, this addition is out of scope for this research, but
it is most definitely a promising direction for future research.

21

2.3. Summary

This chapter served to answer research questions 1 and 4, which will be repeated be-
low. In the first half of the chapter a previous survey with this explicit purpose was
summarized, answering the question:

How do we describe multi-layer network topologies?

Moreover, the Network Markup Language was chosen as the topology description lan-
guage of choice in this research.

By listing the different approaches to multi-layer path selection, the second part of the
chapter answered the question:

What multi-layer path selection algorithms are available?

In addition, an algorithm was picked and adapted to be used in a proof of concept, which
is the topic of subsequent chapters.

This concludes the literature part of this thesis. In the next chapter, operational re-
quirements are explained and identified. Chapters 4 and 5 then respectively propose a
method for verification and validate this proposal.

22

Chapter 3.

Operational requirements

In this chapter we concern ourselves with the question “what operational requirement
can we relate to using topology descriptions?”. Answering this question is split up
in multiple parts. We start by defining operational requirements, expanding on the
introduction and including examples to illustrate the practical meaning of the term. We
continue, with the results of Chapter 1 in mind, to identify the suitability of certain
classes of requirements. Finally we select a number of requirements and motivate their
appropriateness for subsequent evaluation in later chapters. We conclude the chapter
with a summary of our findings.

3.1. From expectation to requirement

In the introduction we motivated the need to define expected properties when networks
get more complex. In the research questions we dubbed these expected properties “op-
erational requirements”. Before delving into examples, we will first attempt to define
this term here.

operational requirement We define an operational requirement to constitute the
intended and expected behaviour of a telecommunications network during its operation.
This expectation is ideally formally documented and used throughout the design process,
but the more realistic implicit expectation is equally reasonable to use as part of our
definition.

Different entities have different perspectives on operational requirements. Contrast the
office-worker accessing the network to get his job done, the network operator configur-
ing a redundant link for a new customer, a systems integrator deploying systems in a
trusted zone or even a telecom regulator mandating accessibility of emergency services.
Although these present distinct use-cases, the general observation is consistent: violating
the expectation of any of these users means the network fails to deliver1.

By formalizing each of these expectations as part of a set of operational requirements and
keeping these tightly coupled to the network, the network engineer can make informed

1Clearly, this does not hold for any unreasonable expectations on the part of a user with respect to
services a network is unable to facilitate (e.g. teleportation). In this research, when referring to
“expectation”, we intend to convey expectation within the realm of reason.

23

choices during the design and operations. In this research, we attempt to automate
checking of expectations as part of a set of operational requirements. This does not
immediately solve the problem of implicit requirements, but does allow for an iterative
approach by adding additional requirements as soon as they surface.

3.1.1. Motivating examples

To gain intuition for operational requirements we will proceed to cover two examples
motivating the need to move from expectation to requirement. For examples, we return
to the Dutch incidents referred to in the introduction. In each case we briefly summarize
and then extract a possible operational requirement.

Vodafone fire

“Vodafone Group Plc (VOD), the worlds largest mobile-phone operator, said
clients in the western part of the Netherlands arent receiving service after a
fire in a network center in Rotterdam.

Customers in cities including Rotterdam and The Hague, and in Kennemer-
land, a region around Amsterdam, cannot call or be called, Anniek de Ruijter,
a spokeswoman for Vodafone in the Netherlands, said by phone. About 700
transmission towers are out of service after the fire broke out this morning
at the Rotterdam site, affecting both mobile and fixed lines, she said. ”

– Bloomberg, April 4th, 2012 [1]

The stricken network center controlled a 2G and 3G network servicing 1.3 million cus-
tomers and additionally hosted voicemail systems and connections to other operators,
both local and abroad, impacting customers throughout multiple countries. Restoration
of the functionality was reported a week later2.

A disruption such as faced by Vodafone is a complex event. In our analysis, we choose
to start coverage from the user perspective, subsequently moving down to the service
delivered and associated requirements.

Every Vodafone customer expects to be able to call and (possibly) use network services at
his or her convenience. From Vodafone’s perspective, this translates into the availability
of the ‘call’ and ‘data’ services. The call service includes connectivity to and from
countries abroad through connections with partners. With the disruption of roaming

2Impact and time line were obtained from Vodafone’s concluding press release (http:
//over.vodafone.nl/nieuwscentrum/nieuws/statement-storing-vodafone-door-grote-brand-

bedrijfspand-rotterdam-0, retrieved on 22-10-2013), affected customers were obtained by com-
bining Vodafone’s annual fact sheet (http://over.vodafone.nl/vodafone-nederland/feiten-
en-cijfers/factsheet-vodafone-nederland using data points 30 June 2011 and 31 March 2013,
retrieved on 22-10-2013).

24

http://over.vodafone.nl/nieuwscentrum/nieuws/statement-storing-vodafone-door-grote-brand-bedrijfspand-rotterdam-0
http://over.vodafone.nl/nieuwscentrum/nieuws/statement-storing-vodafone-door-grote-brand-bedrijfspand-rotterdam-0
http://over.vodafone.nl/nieuwscentrum/nieuws/statement-storing-vodafone-door-grote-brand-bedrijfspand-rotterdam-0
http://over.vodafone.nl/vodafone-nederland/feiten-en-cijfers/factsheet-vodafone-nederland
http://over.vodafone.nl/vodafone-nederland/feiten-en-cijfers/factsheet-vodafone-nederland

and international calling, the call service and therefore the customer expectation was
violated.

Assuming fire and other (natural) disasters are unavoidable, it seems natural to reason
on the basis that outages of a network centre will happen. If Vodafone wants its services
to tolerate such an outage, it should provision its services so that they can continue
operating with the loss of a network centre. Returning to the international call service,
it seemed that the diversity of the international connectivity was lacking. An example
operational requirement for the international call service might be:

Connections between Vodafone NL and foreign telecommunications providers for the pur-
pose of roaming and international calling shall be diverse enough to suffer a path outage
without loss of service.

Similarly, with respect to the transmission tower outage, it appears that control was
centralised to such an extent that the outage of one switch location took a substantial
area out of service, with manual restoration of control on a site-by-site basis as the only
option.

Control of transmission towers and/or base stations shall be possible from more than one
remote location.

Vodafone makes a relevant statement in a later press release3, yielding another example
of a operational requirement:

“Thus we are working on separating the 2G and 3G systems, so that if one system
fails, the other system continues to work and vice versa, minimising the impact on our
customers.”

DigiNotar intrusion

“DigiNotar provided digital certificate services as a Trusted Third Party and
hosted a number of Certificate Authorities (CAs). [..] In June and July of
2011 DigiNotar suffered a breach, which resulted in rogue certificates being
issued that were subsequently abused in a large scale attack in August of
2011.”

– Fox-IT, August 13th, 2012 [7]

The investigators commissioned to investigate the breach note in their initial “state of
affairs” that “The construction of the network security zones corresponded with best
practices [..]” [7, p. 18]. Still, the attacker, by using a web server in the DMZ-ext-net,

3http://over.vodafone.nl/nieuwscentrum/nieuws/reactie-vodafone-op-onderzoek-

veiligheidsregio-rotterdam-rijnmond reacting to a safety inquery, retrieved on 23-10-2013.
Original text (Dutch): “Zo werken we aan het scheiden van de 2G- en 3G-systemen, zodat als het
ene systeem uitvalt, het andere systeem blijft werken en vice versa, waardoor de impact op onze
klanten zo klein mogelijk is.”

25

http://over.vodafone.nl/nieuwscentrum/nieuws/reactie-vodafone-op-onderzoek-veiligheidsregio-rotterdam-rijnmond
http://over.vodafone.nl/nieuwscentrum/nieuws/reactie-vodafone-op-onderzoek-veiligheidsregio-rotterdam-rijnmond

a database server in the Office-Net and escalated administrative access to the actual
certificate authorities in the Secure-Net4, managed to sign and exfiltrate rogue certifi-
cates. The investigators conclude in the investigative summary that “The zones were
not strictly described or enforced and the firewall contained many rules that specified
exceptions for network traffic between the various segments.” [7, p. 4].

The ”lessons learned” section provides some additional insight on what was amiss. Here
the investigators list a number of recommendations to Certificate Service Providers (i.e.
DigiNotar and competitors), possibly filling the gap between DigiNotar’s security zones
and actual segmentation. Two of their recommendations make for nice examples of
operational requirements for a CSP network:

- “Air gap vital systems as much as possible, to make sure that they are physically
separated on a network level from untrusted networks such as the Internet.” [7,
p. 68]

- “Separate vital logging services from the systems that perform other vital functions.
In an infrastructure where secure logging is vital, a logging server can be placed
behind a unidirectional security gateway.” [7, p. 69]

3.2. Relating operational requirements to topology
descriptions

In Chapter 1 we selected a suitable topology description language, answering research
question 1. Here, we apply our knowledge of its expressiveness to identify classes of
requirements which are a natural match for requirement verification based on topology
information. By discussing the characteristics of operational requirements we deem
unsuitable (Section 3.2.1), we arrive at the definition of a class of requirements suitable
for verification (Section 3.2.2). We subsequently derive generalised requirements in the
next section, using the same examples for inspiration, and show the applicability of the
entire class to automated verification in later chapters.

3.2.1. Unsuitable requirements

A number of the traditional properties of networking are concerned with real-time per-
formance. In particular, this includes latency, jitter, bandwidth, throughput and packet
loss5. Recall our previous definition of topology information as “all information that
is a function of the link-level implementation and configuration of a telecommunication

4This is postulated by the attacker [7, p. 51], but unverified by the investigator. The report notes
on the suspected source of access to Secure-Net that “Due to limitations on the investigation this
workstation was not examined”.

5We distinguish bandwidth and throughput by noting that bandwidth concerns data rates, while
throughput measures packet or connection rates.

26

network” (Section 2.1.1). All the properties listed above are a function of both topology
information and input (i.e. traffic).

The higher the number of information sources required for verification, the higher the bar
for actual verification. Consequently, by singling out topology information as information
sources, we put an upper bound on the required information for verification. We believe
this conservatism with respect to the number of information sources has real merit for real
world application of this work by reducing the initial complexity of an implementation.

In addition to the primary motivation listed above, our focus on topology information has
the advantage of clearly restricting our scope to topology information. We consequently
classify as unsuitable those requirements that can not be checked using only topology
information. Note that this choice does not preclude the “unsuitable” requirements from
being checked in general, it just requires using a secondary information source on top
of topology information. Reintroducing some of these “unsuitable” requirements could
consequently make for an interesting future extension of this work.

A second characteristic of requirements we deem unsuitable to include in this initial
research concerns connectionless network layers6. Although today’s Internet predom-
inantly uses the connectionless IP protocol to transport traffic on higher layers, the
underlying (physical) infrastructure is often connection-oriented (i.e. composed of nodes
connected by links7, or circuit-oriented transports such as 802.1q vlans, MPLS LSP’s or
SONET/SDH channels).

As a consequence of both our definition of topology information and our chosen descrip-
tion language NML, we work with a connection-oriented knowledge base. This has an
adverse effect on the requirements we can verify using topology information. For exam-
ple, we will not be able to check properties on IP-level connectivity unless a suitably
scalable extension is created for NML to capture complexity associated with (connec-
tionless) packet-switching, such as routing and forwarding tables. In order to keep the
scope of this research within bounds we choose not to tread outside the topology model
as present in the first version of the NML standard. Nonetheless, we stress that a current
lack of support in NML does not prove or disprove the general ability to do requirement
verification for connectionless layers in a topology.

In summary, our choice to exclusively focus on topology information using NML pre-
cludes requirements depending on secondary data sources or pertaining to connectionless
layers from being verified within the scope of this research. Having excluded two classes,
we will now characterize requirements suitable for verification.

6Note: we use the term connection in the same way the authors of NML do, as explained in Section 2.1.3.
7An interesting exception to this statement is wireless technology, where no physical link is required to

transfer information. Therefore monikers connection-oriented/connectionless are less clear here.

27

3.2.2. Suitable requirements

Suitable for verification are those requirements that relate to the structure of a topology
or its resulting behaviour. In particular, verifying connectedness or other graph theo-
retic properties of a telecommunications network seem a natural match for automated
verification based on topology information. Using the topology information to abstract
over or generalizes node or link specific properties without losing exactness is another
alley worth exploring.

Questions remain whether any of these bottom-up derived possibilities match with real
world requirements. In the next section we will find that quite a few real world expec-
tations about networks fit in suitable operational requirements.

Note that we make no attempt to prove or disprove that these classes are unique. It
so happens to be that they are a good match with real world needs. As such they are
suitable to show the advantages of formal network description, thus aligning with the
stated goals of this research.

3.3. Selected requirements

We previously gained intuition for the concept of operational requirements and have
established criteria for our ability to relate to operational requirements using topology
information. This section covers a selection of generalized operational requirements
which are abstract enough to cover the requirements distilled from the two examples
first used in the introduction.

For each of the requirements we define their meaning and explain their use. Subsequently,
every requirement is tied to one or more of the examples described in the first part of
this chapter.

In later chapters we will establish whether the verification of these specific operational
requirements is possible using path selection and determine if this yields a valid solution
for their verification.

3.3.1. Segmentation

In the DigiNotar case, we gave two specific examples of operational requirements related
to a more general operational requirement we will call a segmentation requirement. We
will define segmentation as the absence of connectivity between two endpoints (at some
layer in the network) or more generally as the absence of connectivity between two sub-
networks.

Our aim will be to use this segmentation requirement to prove administrative (no config-
ured path), logical (no available path) or full separation (no existing path or “airgapped”)

28

at the network level. With the limitations of NML in mind, particularly with respect to
connectionless network layers (e.g. IP), we realize that verification of administrative sep-
aration without false negatives is not attainable8. Our goal is to prove false positive-free
verification of administrative, logical and full separation.

Returning to our examples, the “air gap” is a trivial case of a segmentation requirement,
whereas the “unidirectional security gateway” can be viewed to unidirectional or one-way
segmentation, which nicely fits NML’s unidirectional model of networks.

3.3.2. Control

Knowledge of a network topology allows for the abstraction of a requirement on a single
network element to an entire network. We define control as the existence of a guarantee
about the connectivity between two endpoints (at some layer in the network). We thus
obtain a topology level verification of an arbitrary control criterion for individual nodes
and links, resulting in something we will call a control requirement.

To illustrate this rather high level definition we will provide a concrete example of using
a control requirement. Suppose a financial service provider wishes to strictly conform to
privacy regulations which require it to obtain explicit permission from a regulator before
allowing access to personal identifiable information to countries outside the European
Union.

In order to realize conformance to this regulation, the company formulates a control
requirement stating that all communication between a payment terminal and the pro-
cessing backend should be under EU jurisdiction. Here the control requirement would be
“under EU jurisdiction”, which might be simplified to “located on EU territory”9. This
in turn is part of topology information as a property of all physical equipment in that
topology.

Note that the abstraction from a specific control criterion means that a control require-
ment could easily involve a secondary information source as a future extension of this
work.

3.3.3. Time to recovery

Time to recovery abstracts over the individual recovery properties of nodes and links in
the network. Time to recovery in this context denotes the complete replacement of an
element after its (physical) failure. Although such a replacement could involve suppliers

8Not attainable in the sense that a network which is not administratively separated on any connection-
oriented layer might still be separated on a connectionless layer (e.g. on an IP layer using firewall
rules or router ACL’s).

9We could also simplify to “owned by a EU corporation”, but we have no intention to dive deeply into
legal matter just to illustrate a concept.

29

whose reaction time can be viewed as an additional data source, we view the recovery
time as a static property of an element and as such as a part of the topology information.

We define time to recovery as the maximum tolerable duration for the recovery of connec-
tity between two endpoints (at some layer in the network) assuming failure of the least
favorable element.

Abstracting time to recovery from individual network element to entire topologies allows
one to quantify the actual guarantees the network delivers, taking into account the char-
acteristics the topology provides. This enables bottom-up quantification, complementing
by nature in-exact risk based estimates of network robustness and resilience.

A time to recovery requirement can help to provide insight in the resilience of a net-
work, check for conformity to existing Service Level Agreements or even underpin the
formulation of new SLA’s.

3.3.4. Path diversity

The first two examples in the Vodafone case are operational requirements concerning
what we will call path diversity, or a minimum fault-tolerance for connectivity between
two endpoints (at some layer in the network) based on the number of distinct paths
available. It is possible to distinguish between distinct nodes and distinct links, and
choose to define path diversity accordingly. We choose to require both: distinct paths
imply both distinct nodes and distinct links.

The minimum mentioned in our definition allows for a quantified measure of diversity
by supplying the number of required distinct paths. For example, one could specify that
two endpoints need to be connected by at least three distinct paths.

In the first Vodafone example it appears that the available paths from Vodafone NL
to competitors, domestic and abroad, used some of the infrastructure in the Rotterdam
data center. For a path diversity requirement to hold, an additional, distinct path should
be provisioned to each competitor. The second example, the transmission tower control,
a path diversity requirement would be met if there existed fall-back connectivity to each
tower in the case of a primary link failure.

3.4. Summary

In this chapter, the term operational requirements was defined. The usefulness of opera-
tional requirements was illustrated by two real world examples, each showcasing several
instances of an operational requirement. The second part of the chapter considered
the suitability of certain classes of operational requirements for verification based on
topology information, tying in to the sub question this chapter meant to answer:

30

What operational requirements can we relate to using topology descriptions?

Requirements utilising multiple data sources and requirements relating to connectionless
network layers were classified as unsuitable for inclusion in this research, respectively
in order to keep focus on topology information and because the chosen (best available)
topology description format has no support for connectionless network layers. It was
then conjectured that requirements relating to graph theoretic properties or generalized
node and link specific properties would be a natural match for verification based solely
on network topology information.
The third part of this chapter saw the identification of four distinct generalized oper-
ational requirements, each covering one or more of the example requirements from the
first part.

In Chapter 4 we will propose a method of verification for the four selected generalised
operational requirements using path selection. Then in Chapter 5, we determine whether
this yields a valid solution.

31

Chapter 4.

Proposal: verification using path
selection

To equate a requirement with the actual topology, we need to establish a common
ground. This question tries to establish this common ground by reducing the verification
of operational requirements to path selection problems.

Figure 4.1.: verification as a two piece composition

Using this approach we replace verification by the composition of path selection and
some additional computation. This is illustrated in Figure 4.1. Before turning to the
individual requirements, we discuss prerequisites for this composition.

4.1. Prerequisites

There are three prerequisites to cover: the motivation to build upon path selection; an
explanation of the different parts involved in our proposed reductions and finally the
introduction of the notation used throughout this chapter.

4.1.1. Motivating the choice for path selection

Before proposing a way to verify operational requirement using path selection, we will
motivate why path selection is involved in the first place. This subsection expands on
the introduction, where three reasons were given to consider path selection. Each reason
will be covered separately.

deployed technology The first reason to involve path selection is to leverage existing
research and implementation, both to build upon and to ease adoption of our solution.
The primary use-case for the standardisation of NML and its predecessors was to to
enable path selection through multi-domain optical networks. By following this approach
and use path selection on top of NML, it is possible to learn from previous experience.

32

core network primitive The second reason follows from the fact that path selection
is a core network primitive. The target network for the verification of operational re-
quirements is directly influenced by its path selection algorithms at various layers. By
re-using path selection, we allow tight coupling of verification of properties in a network
to the path selection algorithm used in that same network.

When re-using the path selection capability of the network, it is possible to reduce the
computation required for verification. If the results of path selection can be shared, this
part of the computation essentially comes in for free.

The alternative to building upon path selection would be to do direct computation of
requirements from NML. This would most likely involve algorithms on graph or logic
representations of the full topology, which in the end would largely correspond to the
composition of path selection and our proposal. Network engineers are presumed to be
more familiar with path selection than with the underlying graph theory or advanced
logic. With the need to trust automatic verification performed, this increased familiarity
can only yield positive effects.

scope and focus The final reason to build upon path selection instead of working on
raw topology data is a matter of focus. It allows us to scope and focus this research
on property checking by abstracting away from some of the complexity inherent in the
multi-layered approach we take to networks.

We conjecture that, due to their inherent applicability to networks, the requirements we
want to verify are decomposable with at least one part depending on the outcome of path
selection. Consequently, we predict that the path selection part of the full computation
required can be abstracted and re-used. We will verify this conjecture in the remainder
of this chapter. Our choice gives rise to the question whether this composition of path
selection and some other computation is actually feasible. Although a prototype can
yield useful information in this respect, a full complexity analysis is out of scope for this
thesis.

4.1.2. Breaking down verification

We break down our reduction in two distinct ways. First, we split the reduction in com-
putation and validation and motivate this choice. Then we cover a requirement by NML
which allows us to focus on communication in a single direction. Both transformations
simplify the algorithms to be proposed.

33

Separating computation and validation

A effective method to break down the verification of operational requirements is to
separate the reasoning about the underlying property (computation) and comparing it
to the required result (validation). This idea is illustrated in Figure 4.2.

Figure 4.2.: verification as a three piece composition

We list two reasons for this choice:

annotation In some occasions, the results of the full computation can be used to
annotate the result of the validation. This way, the user is presented with more than
just a Boolean outcome of the verification process.

simplification Breaking down the verification in subcomponents makes it easier to
reason about the parts. In particular, validation usually comprises of a simple com-
parison performed sequentially on the result of the computation. Keeping validation
out of scope simplifies our coverage of the computation and also eases verification and
implementation of this work.

It is important to note that for some problems, full computation might actually be of
different complexity than mere validation. We will deal with this later.

Requirements imposed by NML

By using NML as format for topology information, we are bound to the constraints
it imposes as a format. Specifically, NML models communication as uni-directional.
Bidirectional communication between entities is modelled by paths in both ways.

In the real world, communication is rarely unidirectional. In line with the representation
chosen for NML we do not assume symmetric paths. Therefore, to perform verification
of bidirectional communication we compose the verification of the two directions, as
illustrated in Figure 4.3.

Figure 4.3.: verification as a parallel 3 piece composition

34

Although this choice in NML requires us to perform computation in both ways1, it comes
with the advantage of simplifying the reasoning involved. To this end, we will treat all
verification as unidirectional, unless indicated otherwise.

4.1.3. Topology graph

The final prerequisites before covering our actual proposal deal with the topology graph
used throughout the remainder of this chapter. In this section we define a topology
graph on top of the implicit graph in NML. The next section introduces notation on top
of this topology graph.

Figure 4.4 shows relations between the classes in NML. We define a topology graph over
a subset of these classes and relations, by using classes as vertices and relations as edges.
The classes and relations in black are those that are traversed by the multi-layer path
selection algorithm and have been previously explained2 in Chapter 2. The others, in
grey, can be used for other purposes within the algorithm, such as discerning between
different traversels of the same NML Link (Label) or to identify a port in the reverse
direction (Bidirectional Port), but are not traversed directly. As such, they are no
part of the topology graph defined here.

We proceed to formally define Topology graph T in multiple steps. Throughout the
definitions, it is helpful to recall that T is essentially a subset of NML, represented as a
graph.

Using the NML schema as defined in version 1 of the standard [17]:

C := the set of classes in the NML schema

R := the set of relations between classes in the NML schema

A relation of type Rt is of form (C1, Rt, C2) ∈ R : C1, C2 ∈ C

a topology graph is defined as follows:

T := (N,E)

T is a directed graph consisting of the set of vertices N and the set of edges E
N := {N | type(N) ∈ C \ {SwitchingService,Group}}

The set of types in N consists of {Node, Port, Link and (De)AdaptationService},
and consequently is a subset of C

E := {(N1, N2) | (N1, N2) ∈ RT}
E consists of seven possible (directional) relations between NetworkObjects in N,

defined as the set RT in the first two columns of Table 4.1

1In so far this was not already required by the behaviour of the network layer itself.
2We do not explicitly explain the relations between the NML classes covered. Their names should give

a good indication of their meaning.

35

RT := { (RT := {(N1, N2)} (C1, Rt, C2))}
Node Port Node hasOutBoundPort Port
Port AdaptationService AdaptationService providesPort Port
Port Link Port isSource Link
Port DeadaptationService Port hasService DeadaptationService
Link Port Port isSink Link

AdaptationService Port Port hasService AdaptationService
DeadaptationService Port DeadaptationService providesPort Port

Table 4.1.: Definitions of sets RT (first two columns) and RT (all five columns),
with the elements of RT defined over the elements of RT

Moreover, on a network described using NML:

D := (DObjects, DRelations) : ∀O ∈ DObjects . type(O) ∈ C, ∀R ∈ DRelations . type(R) ∈ R
A network description in NML, consisting of Objects and Relations3.

a specific topology graph T over D is defined as follows:

T := (ND,ED)

T is a directed graph consisting of the set of vertices ND and the set of edges ED

ND := N ∩DObjects

ND is the subset of DObjects that is also part of N
ED := {(N1, N2) | (N1, N2) ∈ ND . ∃(C1, Rt, C2) ∈ DRelations :

((type(N1), type(N2)), (C1, Rt, C2)) ∈ RT }
ED consists of seven possible (directional) relations between NetworkObjects in ND,

with the five-tuple connecting R and RT defined as the set RT in Table 4.1

4.1.4. Notation

Having previously defined the topology graph, we now introduce a notation used through-
out the remainder of this chapter. We first describe the notation for formal reasoning
about the requirements and then the notation used to describe the algorithms.

formal description

We previously covered NML in Section 2.1.3. Here we define a notation based on the
entities in NML used to describe the reasoning involved in and later prove the correctness

3Moreover, NML defines attributes per Class, which are not relevant nor covered here.

36

layerencoding: URI

logical (virtual) directed
data transport between
Ports

Link

Node

name: string
id: URI
version: serial

Network Object

layerencoding: URI

logical (virtual) directed
interface at a certain
layer

Port

Bidirectional Link

Bidirectional Port

version: <serial>
connected graph

Topology

layerencoding: URI
Collection of Links

Link Group

Location

labelencoding: URI
value: type dependant

Label

layerencoding: URI
Collection of Ports

Port Group

locatedAt

isAlias
sequence of (start,end)

Lifetime

ordered list of Network
Objects

Ordered List

0-1

*

hasLabel

labelencoding: URI
value: type dependant

Label Group

0-1

*

ha
sL

ab
el

G
ro

up

0-1

hasLabelG
roup

*

hasTopology

hasNode

implementedBy

hasService

← pro
vid

esP
ort

providesLink

←
 h

as
O
ut

bo
un

dP
or

t

hasIn
boundPort

is
S

o
u
rc

e
 →

←
 i
sS

in
k

is
So

ur
ce isSink

hasPort

hasLink

isSerialCompoundLink

providesPort

providesLink

0-1

*

ha
sL

ab
el

22

22

ha
sO

ut
bo

un
dP

or
t

ha
sI

nb
ou

nd
Po

rt

Ability to create a given
adaptation

Adaptation
Service

Ability to create a Link
(cross connect)

Switching Service

ha
sS

er
vi
ce

 →

hasLink

hasLink hasLink

hasLink

hasOutboundPort

hasInboundPort

hasOutboundPort

hasInboundPort

Ability to create a given
deadaptation

DeAdaptation
Service

← providesPort providesPort

hasService →

existsDuring

A device, or partition of
a device

(Annotated version of NML-relations.pdf from the source repository of GDF-R-P.206, used in accordance with full copyright

statement of GDF-R-P.206 as detailed on p. 99.)

Figure 4.4.: The full NML relation graph (partly greyed out) and the subset of relations
used to define the topology graph T (in black)

of our proposed algorithms. We heavily reuse common notation for set theory, which we
will not cover here.

(A→ B) := a path through T from A to B (zero or one)

(A⇒ B) := all paths through T from A to B (zero or more)

elements(·), paths(·) := NetworkObjects, paths contained in ·

A major choice made is the to abstract from the graph-oriented distinction between
edges and vertices (or more commonly links and devices). We choose to follow the
NetworkObject abstraction used in NML, where both links and nodes are an instance
of a NetworkObject.

This choice is natural when you consider the fact that from the perspective of our cho-
sen operational requirements, the distinction between nodes and links is meaningless.
After all, segmentation is equally influenced by the existence of relevant links and de-
vices and this same reasoning applies to the other requirements covered. Furthermore,
when describing multiple network layers, the question what exactly denotes a link (and
subsequently an edge) becomes subjective. We prefer not to deal with this question and
will deal with NetworkObjects from now on.

Note that it is not impossible to either define an operational requirement dealing with
actual links nor is it impossible to verify such an operational requirement. However, we
prefer to deal with the abstraction when possible, both to simplify and to generalize.

Algorithm description

To describing the algorithms, the goal is to keep as close as possible to the formal descrip-
tions used to synthesise them. At the same time we wanted to use some standardized
format and not invent another home-brew pseudo language.

Throughout the remainder of this research we will use the Haskell language for both
description and evaluation of our proposal. The Haskell syntax is very clean and, by
virtue of its referential transparency, very close to mathematics. Haskell satisfies our
two goals for a description format: it is very close to our formal description and it is
formally standardized [14].

By using Haskell for the description of our algorithms, we get two extras for free in
addition to our listed goals. First, we obtain executable specifications4, which will come
in handy when attempting empirical validation. Second, strong typing in Haskell works
in our favour when using a compiler to check our specifications.

4Complementing the algorithms is a tool written in Haskell to check operational requirements on a
NML topology. Excerpts of the most relevant pieces of source code of the this tool can be found in
Appendix C. All source is released under BSD 3 clause and available from https://rtsn.nl/thesis/.

38

https://rtsn.nl/thesis/

Although its popularity has been strongly increasing over the past few years, we feel that
the relative obscurity of Haskell necessitates additional explanation, especially where
constructs uncommon outside the functional paradigm are used. This is a slight disad-
vantage, but one we are prepared to bear in favour of the listed advantages. After all,
additional documentation never hurts.

4.2. Segmentation

Recall that our goal is to transform the problem of verifying operational requirements
into the composition of finding a path and a secondary algorithm. We start with the
most trivial of transformations: the identity transformation, which we will find to suite
the verification of a segmentation requirement.

Segmentation was defined in Section 3.3.1 as the absence of connectivity between two
endpoints (at some layer in the network). It directly follows from this definition that
segmentation is the dual of connectedness.

4.2.1. formal definition

Written formally, the dualism quickly becomes apparent:

properties

∃(A→ B) ⇐⇒ (A⇒ B) 6= ∅ connectedness

¬∃(A→ B) ⇐⇒ (A⇒ B) = ∅ segmentation

Splitting verification in computation and validation, we define the outcome of compu-
tation as the process of obtaining any paths violating the segmentation requirement.
Checking then becomes the check whether any such paths exist.

We mentioned the trivial transformation because the only thing we have to do in the
computation step is to produce the result of path selection. Validation is almost as
simple, featuring a simple check for the empty set. Both ‘algorithms’ can be directly
extracted from the formalisation above.

4.2.2. proposed algorithm

In every algorithm we present in this chapter, we define a computation function to
transform the output of path selection, a list of Path (written as [Path] in Haskell)
to the outcome of the computation, again as a list of Path5. Additionally we define

5More specifically the type signature notation preceding most functions, e.g. foo :: [Path] -> Bool

(which can be read as foo is a function from type list of Path to type Bool), is helpful to see this
transformation.

39

a validation function to transform the output of the computation to a boolean value
representing the outcome of the validation. Together, these two functions comprise the
proposed transformation on top of path selection to produce verification of the desired
property6.

Our earlier observation that segmentation can be seen as the trivial transformation is
reflected in both the computation and the validation part of the algorithm, both of which
are extremely simple:

module Reduction.Segmentation where
import NML (Path)

connectingPaths :: [Path] −> [Path]
connectingPaths = id −− Haskell’s identity function

−− | validateSegmentation returns True when ther are no connecting paths,
−− and False otherwise.
validateSegmentation :: [Path] −> Bool
validateSegmentation ps = null ps

Listing 4.1: Segmentation verification in Haskell

The computation features the identity function. After all, every path connecting A to B
is a violation of this property and thus a useful result of the computation. The validation
function features the check for the empty set (null in Haskell).

We will now turn to examples requiring more and more “additional computations”,
though the basic principle and structure stays the same.

4.3. Control

Control was defined in Section 3.3.2 as the existence of a guarantee about the connectivity
between two endpoints (at some layer in the network). In this section we formalize this
definition to obtain a method of verification.

4.3.1. formal definition

Formalizing our requirement, we obtain the following. Given A and B and control
criterion C, determine whether paths between A and B satisfy control criterion C. We

6The code for the actual composition can be found in Appendix C.3. Compositions are not listed in the
chapter because they add little to the algorithms themselves. Moreover, the reader is not assumed to
be familiar with the monadic plumbing required to make the composition work in a larger program.
For similar reasons, the code in this chapter is simplified not to use currying, lambdas or point-free
expressions.

40

start with a function φ defined in terms of C on a single node and abstract to the paths
from A to B in two steps.

additional notation:

φ(N) N ∈ N
Property φ holds if N is under control (wrt. to criterion C)

properties:

φ(A→ B) ⇐⇒ ∀N ∈ elements(A→ B) : φ(N)

A path from A to B is under control if all elements on the path are under control

φ(A⇒ B) ⇐⇒ ∀(S → F) ∈ paths(A⇒ B) : φ(S → F)

Communication from A to B is under control if all paths from A to B are under control

Using this reasoning in the reverse order, we obtain a formulation for control in terms
of path selection. That is, for all paths and for all elements of those paths, we check the
property φ, retaining those paths that fail to satisfy the control constraint in some way.
This process is the computation phase of verification. Validation is as simple as checking
whether computation yielded any unsafe paths. If such paths exist the verification fails,
and succeeds otherwise.

4.3.2. proposed algorithm

Algorithm 4.2 is a direct translation of the previous section to Haskell code. In the
algorithm, φ is represented by Criterion, which returns a result depending on (internal)
knowledge of C.

module Reduction.Control (Criterium, unsafePaths, validateControl) where
import NML (NetworkObject, Path)

type Criterium = NetworkObject −> Bool

−− | inControl abstracts a ’Criterium’ over a ’Path’
−− It yield True only if the entire ’Path’ is under control
inControl :: Criterium −> Path −> Bool
inControl f p = all f p

−− | unsafePaths returns a list of ’Path’ not satisfying the ’Criterium’
unsafePaths :: Criterium −> [Path] −> [Path]
unsafePaths f ps = filter (not . inControl f) ps

−− | validateControl return True if all Path’s are under control, False
−− otherwise.
validateControl :: [Path] −> Bool
validateControl ps = null ps

Listing 4.2: Control requirement verification in Haskell

41

The computation part of the verification is represented by the function unsafePaths,
while validation forms the standard name validateControl.

4.4. Time to recovery

Time to recovery was defined in Section 3.3.3 as the maximum tolerable duration for
the recovery of connectity between two endpoints (at some layer in the network) assum-
ing failure of the least favorable element. This definition again suggests a consecutive
compute and validate approach: first we compute the maximal duration and then we
compare it to the maximal tolerable duration to validate the requirement.

In a way, time to recovery resembles control as covered in the previous section. They
both are an abstraction over the property of a single element in a path to the entire path
or even all paths between two endpoints. But with time to recovery the abstraction
function is no accumulation of a binary yes/no result, but the accumulation of recovery
times. Specifically, we are interested in the maximal duration for recovery for each path
or set of paths.

With the resemblance in mind, we proceed to present a formal definition of time to
recovery, much in the same way as was done for control.

4.4.1. formal definition

additional notation:

Tr(N) N ∈ N
Function Tr(N) denotes the time to recovery of N .

maxTr(O)

minTr(O)

}
O ⊆ N, O 6= ∅

Functions maxTr and minTr compute the NetworkObject with the

maximum, respectively minimum time to recovery among a set O.

properties:

Tr(A→ B) := maxTr(elements(A→ B))

the worst case recovery time of a path

Tr(A⇒ B) := minTr({Tr(K → L) | (K → L) ∈ (A⇒ B)})
the worst case recovery time of set of paths

The generalisation from a single path to a set of paths (e.g. all paths from A to B) using
minTr merits some explanation. With the availability of multiple paths, we assume that
recovery only takes place once all paths are down. That is, bringing back only a subset

42

of the paths is not a recovery, because nothing failed in the first place. In the case that
all paths are down, it makes sense to recover the paths with the lowest recovery cost.
Therefore generalising the worst case time to recovery for a set of paths involves taking
the best (i.e. minimum cost) among the paths to be restored.

An implicit assumption made above is that recovery of elements on a given path can
happen in parallel. For a network, this seems to be reasonable. However, even in the case
that recovery would proceed in a sequential manner, the resulting change to our formal
definition of time to recovery is highly contained. The effect on the overall algorithm is
therefore very small: with an appropriate alternative definition of maxTr and minTr the
same algorithm applies.

Once again reasoning in the reverse order yields an algorithm to compute time to recovery
between endpoints A and B. That is, for all paths, we take the NetworkObject with the
worst recovery time and then select the best among those to yield the result.

Validation is then a simple comparison of the result of the computation against the
required value. A cost higher than specified violates the requirement, a cost lower or
equal to the requirement passes.

4.4.2. proposed algorithm

module Reduction.TimeToRecovery (
worstCaseRecoveryCost, validateTimeToRecovery
) where
import Data.List (maximumBy, minimumBy)

import NML

type RecoveryCost = NetworkObject −> Cost

−− | Compute the ’NetworkObject’ with the worst ’Cost’ among a list of
−− ’Path’s.
worstCaseRecoveryCost :: RecoveryCost −> [Path] −> (NetworkObject, Cost)
worstCaseRecoveryCost f [] = error ”no path supplied”
worstCaseRecoveryCost f paths = (pair . min . max) paths

where
−− find the bottleneck for each path
max :: [[NetworkObject]] −> [NetworkObject]
max nss = map (maximumBy (recoveryCompare f)) nss

−− find the optimum amongst the bottlenecks
min :: [NetworkObject] −> NetworkObject
min ns = minimumBy (recoveryCompare f) ns

pair :: NetworkObject −> (NetworkObject, Cost)
pair n = (n, f n)

43

−− | Specialised comparison function for ’NetworkObject’s in terms of
−− ’RecoveryCost’
recoveryCompare :: RecoveryCost −> NetworkObject −> NetworkObject −> Ordering
recoveryCompare f a b = f a ‘compare‘ f b

−− | validateTimeToRecovery returns True when there is a ’Path’ within the
−− worst case recovery time given, False otherwise.
validateTimeToRecovery :: Int −> (NetworkObject, Cost) −> Bool
validateTimeToRecovery n (,c) = n >= c

Listing 4.3: Time to recovery verification in Haskell

In Listing 4.3, worstCaseRecoveryCost represents the computation, while validateTimeToRecovery
allows validation. Helper function recoveryCompare can be seen as the subscript Tr in
the maxTr and minTr functions: it provides a way to do comparison based on the re-
covery cost of NetworkObjects.

4.5. Path diversity

Path diversity was defined in Section 3.3.4 as a minimum fault-tolerance for connectivity
between two endpoints (at some layer in the network) based on the number of distinct
paths available. Checking such a requirement requires the ability to count the number
of distinct paths between two endpoints, to subsequently compare this number to a
specified minimum. Once again a natural split between computation and validation.

4.5.1. formal definition

Given (A⇒ B) determine whether there are pairwise distinct paths.

Elaborating on the description given earlier, when talking about set of distinct paths
we mean that there is no overlap between any of the paths. Let G = (V,E) be a graph
where V represents the set of all paths and E represent a binary no-overlap relation (i.e.
((Pi, Pj) between paths. A set of distinct paths is a fully connected (sub)graph of G,
also called a clique. Figure 4.5 shows examples of cliques of increasing size, illustrating
the rapid increasing number of edges required (n

2−n
2 for n = |V|).

Figure 4.5.: Cliques of increasing size

Finding clique’s (more commonly, “the clique problem”) is a heavily studied subject in
Mathematics and Computer Science. Deciding whether a graph contains a clique larger

44

than a given size (the clique decision problem) was one of the original 21 problems Carp
showed to be NP-complete [9]. Finding the maximum clique is therefore NP-hard. Find-
ing cliques of fixed size k is significantly easier, with recent algorithms reaching running
time complexity of O(nk/(ε log n)k−1), polynomial if k is not part of the input [19].

With this formulation of G and the idea to search for cliques, we are only left with the
definition of the no-overlap relation resulting in E. This relation can formally specified
as follows:

(A→i B) does not overlap (A→j B) ⇐⇒ ∀Ni ∈ elements(A→i B),

∀Nj ∈ elements(A→j B) :

Ni 6= Nj (4.1)

⇐⇒ elements(A→i B) ∩ elements(A→j B) = ∅
(4.2)

Considering computation, we note that we are not interested in all cliques, but only in
the clique of the largest size. Incidentally the largest clique contains cliques of all lesser
sizes. But for mere validation, we are not interested in the largest (or more commonly
‘maximum’) but in the size equal to the required number of distinct paths.

4.5.2. proposed algorithm

With the previous statements on complexity in mind, this is an example where valida-
tion represents significantly less work than full computation of the underlying property.
This is reflected in the algorithm, which allows switching implementation for the clique
finding depending on the ultimate use: computation uses maximum clique finding, while
computation composed with validation uses k-clique finding.

In sequence, the algorithm pairs all path combinations together, filters them for distinct-
ness and finally uses clique finding to produce the result.

module Reduction.Diversity (distinctPaths, validateDiversity) where
import Data.List (delete, intersect, maximumBy)
import Data.Maybe (mapMaybe, fromMaybe)
import qualified Data.Map.Lazy as Map

import NML (Path)
import Util.Clique (getCliques)

−− | ’distinctPaths’ returns zero or more groups of the highest # of distinct
−− paths. Every group consists of pairwise distinct paths. An optional maximum
−− diversity can be supplied, which is used to switch to (polynomial) k−clique
−− algorithms.
distinctPaths :: Maybe Int −> [Path] −> [[Path]]
distinctPaths [] = error ”no path supplied”
distinctPaths max ps = (getCliques max . filter distinct . pairs) ps

45

where
distinct :: (Path, Path) −> Bool
distinct (a,b) = null (intersect a b)

pairs :: [Path] −> [(Path, Path)]
pairs [] = []
pairs (p:ps) = [(p,b)|b<−ps] ++ pairs ps

validateDiversity :: Int −> [[Path]] −> Bool
validateDiversity n pss = ((>=n) . length . head) pss

Listing 4.4: Path diversity verification in Haskell

We choose not to implement clique finding ourselves at this stage, instead using avail-
able specialized libraries. This presents a possible area for optimisation which is not
considered at this point.

4.6. Conclusion

In this chapter, an approach was presented to verify operational requirements using
multi layer path selection. After covering prerequisites; the motivation for the choice
of path selection; the choice for a compositional approach and an explanation of the
notation used throughout the chapter, algorithms were explained for all four operational
requirements. This chapter served to answer research question 3, which is repeated
below.

Is it possible to formulate checks for operational requirements in terms of
path selection?

Keeping in mind the limitations on operational requirements as formulated in Chapter 3,
the proposed composition with computation and validation in this chapter show that it
is possible to formulate checks for operational requirements in terms of path selection.
We illustrated this claim with the presented algorithms for four generic operational
requirements.

Due to the nature of our proposal, we get an implicit theoretical proof of correctness for
free. This is illustrated in Figure 4.6, which shows that the verification of operational
requirements in multi-layer networks follows naturally from a set of transformations on
operational requirements and network descriptions. First an operational requirement is
formally defined using a graph definition obtained from our chosen network description
format. From this definition a verification algorithm is synthesised, which in turn is
decomposable into path selection and some additional computation. Although we refrain
from formally writing out this implicit proof, the construction used provides an implicit
theoretical justification for the correctness of the proposed verification method.

46

Figure 4.6.: Proposal construction in terms of previous chapters (numbers encirceled)

The next chapter builds on this theoretical result supporting the main thesis that it
is possible to verify operational requirements using topology descriptions by showing
that verification as proposed in this chapter is possible in a real world network. These
combined results lead to our conclusions in Chapter 6.

47

Chapter 5.

Validation

This chapter examines ways to validate the proposal formulated in Chapter 4 in order
to show its feasibility in the real world. In the conclusion of the previous chapter we
established that our proposal, by construction, supplies us with an implicit formal proof
of correctness. In this chapter, we demonstrate a working proof of concept for require-
ment verification in real word computer networks. It brings together the theory from
Chapter 2, the selected operational requirements from Chapter 3 and the algorithms
from Chapter 4. We start by presenting the methodology.

5.1. Methodology

In this section, the methodology to test a proof of concept is outlined. The methodology
gives structure to this chapter. It describes how the different tests are prepared, how
they are to be conducted and how results are interpreted.

First we give an overview of the different steps required before tests can be conducted.
Then we cover the two methods to be compared: manual verification versus automated
verification. Finally, we describe how the results will be compared and how conclusions
will be derived from results.

5.1.1. Validation methodology

We start with very a brief overview of the methodology, with references to the different
parts of this chapter.

1. Determine the characteristics of a suitable network (Section 5.2)

2. Select a network (Section 5.3)

3. Select operational requirements (Section 5.4)

4. Conduct tests and detail results (Section 5.5)

5. Summarize and reach conclusions (Section 5.6)

48

5.1.2. Benchmark: manual verification of requirements

We start with the description of the benchmark the proof of concept’s results are eval-
uated against. As benchmark, we use manual verification of each requirement.

In particular, for each of the cases, available topology information (e.g. in available
network information systems) is used to manually trace and check the requirements. For
some of the requirements, this might involved tremendous amounts of work (e.g. path
diversity). This limits the possible complexity of any network involved in validation by
the sheer impossibility to conduct a manual verification to benchmark against. As we
will see later, a balance has been struck between required characteristics and feasibility
for manual verification.

5.1.3. Proof of concept: automated verification of requirements using
netPropCheck

As counterpart to the benchmark, a software implementation of the proposal presented
in Chapter 4 was created. The resulting binary, called netPropCheck is able to perform
computation and validation of properties using a network description in NML’s OWL
(or XML/RDF) format1.

netPropCheck is written in Haskell and includes the four algorithms presented in Chap-
ter 4. In addition, it features a Haskell implementation of the multi-layer breadth first
search algorithm chosen in Chapter 2, adapted to work on the topology graph defined
in Section 4.1.3. For verification, netPropCheck produces a boolean result, with the
option to inspect the results of computation or path selection. netPropCheck is open
source software, available under a BSD 3-clause license2. Key parts of netPropCheck
are included in Appendix C.

5.1.4. Comparing results and reaching conclusions

The final part to the description of our validation methodology deals with results. Our
working hypothesis is that automated verification of operational requirements is possible
in a real world network with netPropCheck. If manual verification yields the same results
for tests, we conclude that the hypothesis is true. If there are differences, we reject the
hypothesis. For results that are not identical, we attempt to analyse and describe the
reason for the difference. This should help constructing new working hypotheses and
attempts at validation in the future.

We continue with the first preparatory step to perform validation by identifying the
characteristics of a network suitable to serve as input.

1With respect to the cost function and control criterion it must be noted that only the cases described
in this chapter are currently available in the code base.

2netPropCheck is available from https://rtsn.nl/thesis/

49

https://rtsn.nl/thesis/

5.2. Choice of network

In order for the demonstration of netPropCheck to provide convincing evidence that our
proposal works in the real network, a network is needed that is representative for the
class of networks this research is aimed at. In this section, we list the different properties
such a network should possess.

To get a grip on the class of networks that benefit from automated property verification,
we provide a quick summary of network characterisation so far. Returning to Chapter 1,
the problem description stated the need for verification scalable up to multiple tech-
nology layers. In the literature survey covered in Chapter 2, the search was scoped to
cover “networks complex enough to warrant automated reasoning. A method needs to be
powerful enough to describe topologies at least the size of university campus networks”.
The characterisation of networks benefiting from this work was further reinforced by
the two examples used throughout Chapter 3, which covered two types of networks that
warrant automated as opposed to manual verification: networks complex enough (e.g., a
telecom operator, Vodafone) or critical enough (e.g. a certificate authority, DigiNotar).

We keep this latest distinction as our first characterisation of a network suitable as input
to our proof of concept: a network that is either complex enough or critical enough to
warrant automated as opposed to manual verification.

The second required characteristic of the class of networks benefiting from this work
is that they have clear real world requirements. Without defined requirements it is
impossible to do computation, let alone validation of the outcome. In Chapter 3 four
distinct requirements were identified. In particular, for the proof of concept it would be
most beneficial to have a network which had real world requirements corresponding to
all four identified types of requirements as covered in this work

Finally, in order to do verification of a network, the network needs to be described
in enough detail to do automated reasoning. Ideally, a network would have such a
description available, but in any case such a description should be obtainable. In both
cases it is highly preferable that this description is automatically generated from existing
network management systems, to guarantee a continuous and correct relation between
description and reality.

In summary, this section motivated the need for a representative choice of networks as
input to a convincing proof of concept. In order, the need for a network sufficiently
complex or critical; the definition of clear requirements and the availability of a network
description were listed as characteristics of a representative network. In the next section
the choice for a sample network is presented, selected to conform to these criteria.

50

population

connected working population 20 buildings, 12.000 people

connected residential population 12 locations, 2.800 people

technology

core network L3 routed core, 6 routers

L2 transports using MPLS

distribution network 32 distribution switches

wired access network 320 access switches

wireless access network 1250 access points

fiber plant 4 private fiber rings on campus

multiple leased circuits off campus

Table 5.1.: Campus network statistics (numbers are approximations)

5.3. Sample network

Selecting a sample network did not prove to be easy. As noted in the literature study
of Chapter 2, there are few networks in the world working on (let alone using) formal
network description. A search among networks and research institutions involved in the
standardisation of NML unfortunately did not lead to better results. In other words, we
were unable to find a network that had a formal description available.

Consequently, the only option available was to find a network operator that was willing
and able to create such a description from scratch and possibly assist in this endeavour.
The process of obtaining this description is described in its own subsection. We will
first proceed to describe the selected network and motivate why it fits the selection
characteristics formulated in the previous section.

5.3.1. Campus network

The network selected as input to our proof of concept is the network of a Dutch university
(hereafter “campus network”). It connects all the universities research and education
facilities and additionally supplies private internet access to residential buildings for
students and staff. Table 5.1 lists some approximate numbers to get a feel for the full
network scale.

The campus network uses technology from multiple vendors at different layers in the
stack. In turn, this means that none of the vendors involved is able to deliver their own
solution to manage the entire network. Instead, custom built information systems have
evolved over the years to fulfil management and reporting needs.

51

� L3 datagram protocols (IPv4 and IPv6)

secondary stack

�XEthernet

�MPLS pseudowires (one per vlan)

primary stack

�X802.1Q (vlans)

� spanning tree protocols or �Xmulti-chasis LACP

�XEthernet

�Xfiber or �XUTP or �Xmisc. physical layer transports

�Xfiber ring (ducts, hand holes)

Table 5.2.: Technology stack in use at campus network. Checkboxes indicate whether
the technology was described in the NML generated.

Table 5.2 lists the primary technology stack in use throughout most of the network.
To combine a routed core network with the need to provide end-to-end circuits, MPLS
pseudowires [15] are used to establish a layer 2 transport through the core. The devices
involved in these circuits consequently use a secondary stack, on top of the primary
stack. In the table, for each of the technologies in the stack a check denotes its inclusion
in the network description, whereas an empty box denotes its exclusion. More detail is
provided in the subsection on generation.

Although, there was no existing mechanism in place to document, monitor or reason
about the infrastructure3, the IT staff of the campus network were able to provide
machine-readable information on most of the layers. The missing information could be
obtained by inference. We will now turn to an explanation of the suitability of the
campus network in terms of the previously defined characteristics.

5.3.2. Fit with characteristics

As noted in Section 5.2, for a network to provide convincing evidence in a proof of
concept, it needs to adhere to three criteria. In this subsection we will explain how the
campus network meets these criteria.

The first required characteristic of a network was that it is either complex or critical
enough to warrant automatic verification. With over ten thousand people dependent on
the campus network to do their work or alternatively almost three thousand households
to keep connected to the Internet, it could be argued that the network has a critical

3I.e. apart from monitoring the upper layers and consequently assuming that the lower layers must be
working.

52

function4. Considering complexity, the multi-vendor technology making up the campus
network and the resulting custom management systems account for an above-average
complexity. In addition, the scale of the network (both in terms of infrastructure and
locations) make it difficult to reason about it in its entirety. Both are good arguments
to classify the campus network as sufficiently complex to serve as a representative case
for our proof of concept.

The second required characteristic of a network was the existence of clear real world
requirements about network behaviour. These requirements exist within the campus
network due to, amongst other things: separation of roles between student and IT
staff (segmentation), a healthy view on oversubscription (control) and a pursuit of low
impact downtime (time to recovery, path diversity). We will cover the specifics of each
requirement in Section 5.4. In general, the availability of clear requirements is more than
sufficient to make the campus network meet this requirement.

The final required characteristic is the availability of a sufficiently detailed description
to enable requirement verification. Although there was no pre-existing formal descrip-
tion available for the campus network, existing management systems providing partial
information were in place to provide partial topology information. It was the availability
of and ease of access to machine-readable information on most individual network layers
that guided the choice for the campus network over an available alternative: a national
research and education network. The generation of a topology description for the cam-
pus network is the subject of the next subsection. With all requirements covered, we
conclude that the campus network fits the required characteristics which make it suitable
for our proof of concept.

5.3.3. Manual generation of a network topology description

In this section we describe the process of formally describing the campus network. As
such, this section would not exist if the description would have been available.

To structure this subsection, we return to Table 5.2. Each of the technology layers
described (checkbox checked) was obtained from a separate management system and/or
information source, with the exception of Ethernet and 802.1Q (vlans) which came from
the same source. Subsequently, we will cover the description of each layer in a separate
subsection, moving up the stack from the lower to the higher layers.

Fiber ring

When talking about a fiber ring, we mean two things. First, there is a tube or duct,
tracing a ring across campus, either from and to one data centre location, or from one

4Naturally, the notion of criticality is relative, with a nuclear power plant likely having a more critical
network. In the end, critical is most likely defined in terms of loss, a subject we won’t get into here.

53

(Hand hole diagram from the campus network’s fiber ring documentation, used with permission.)

Figure 5.1.: Schematic for hand hole 22, on one of the campus network’s fiber rings

data centre to the other5. At set locations, the duct is accessible in a so-called hand
hole. Secondly, there is the actual fiber. On the campus network, all ducts contain a
bundle of 96 fibers. At hand hole locations, a (possible empty) subset of these 96 fibers
is branched of and subsequently returned to the ring. Consequently, every hand hole
has 0 to 192 “fiber patches” on the ring. Figure 5.1 illustrates the concept of a hand
hole using a real schematic from the campus network.

In practice, the data centres terminate 96 fibers, while each of the hand holes has zero or
more multiples of 12 fibers and double that amount of fiber patches. The configuration
per hand hole is more or less static, with a change requiring fiber splicing. However,
by connecting two fiber patches, the ring is once again continued. With multiple hand
holes branching of the same subset of fibers, this is a way to “patch through”. This fiber
patching is a more dynamic form of configuration, making the network topology partly
reconfigurable at its lowest layer. At this point of time, this reconfiguration happens
manually.

To keep track of the “static” and “dynamic” configuration of the four available fiber rings
on campus, the IT staff involved keeps a digital administration of the fiber plant. A de-
sign document was available on the static configuration, while the dynamic “patch” con-
figuration was essentially kept as the tuples ((location, patch port), (location,

patch port)) in a spreadsheet. Some of these pairs were annotated with a connected
device on each of the locations, enabling coupling with higher layers.

Although all four fiber rings used the same documentation style, only the ring connecting
the residential buildings was consistent enough in its description to make automated
parsing feasible within a two week development time frame6. For that reason, only one
ring is modelled, connecting 12 (mostly residential) locations on campus to the two data
centres.

The generated NML for the fiber ring, including hand holes, patch panels and patching
consists of 12 NML Nodes, 5,000 NML Ports, 2,700 NML Links for a total of 31,500
triples in an N-Triple representation of NML’s XML/RDF format. Each triple is a
three element tuple (subject, predicate, object) representing a labelled relation between
subject and object. Consequently, the number of triples provides an indication of the
amount of information contained in an NML description.

Physical layer transports

The next layer up from the fiber rings cover physical devices and links, other than
provided in the fiber rings. This translates to fiber patches, UTP cabling, switches,

5Although this technically would not correspond to a circle, the two data centres are close enough that
the resulting U-shape resembles a circle. With the two data centres connected by a direct fiber path,
the result is called a ring.

6With the complexity of the interconnections, manual modelling was essentially impossible. If not for
the amount of work, then due the lack of correctness.

55

routers and miscellaneous devices and links.

The IT staff manages this layer in an information system that collects its data directly
from the network using SNMP, configuration dumps and other management protocols.
Export was possible through the Graphviz dot format, a graph format used within the
information system to draw topology maps. Every device in the information system
(routers, switches, access points) is represented in this topology, as are the links between
them, including the associated port numbers. This export allows the generation of
NML for devices and physical links. Unfortunately it only includes a single link between
devices, even if there are multiple links in reality. This has implications for path diversity
verification, a fact we will get back to later.

Coupling with the fiber ring was possible by querying the NML generated previously to
identify devices connected through the fiber ring. For those connections, the fiber ring
was used instead of generating a new NML Link. Consequently, this means that new
information on additional fiber rings can be plugged into this generation step, and its
infrastructure automatically used by the physical layer. Distinction between fiber, copper
and miscellaneous technology used was not made at this point, but was retroactively
supplied in the Ethernet and 802.1Q layer by use of interface type (e.g. 1000BASE-LX
vs. 100/1000BASE-T).

The generated NML for the physical layer, including devices and patches on the res-
idential part of the campus network consists of 1,300 NML Nodes, 2,000 NML Ports,
1,000 NML Links for a total of 9,600 triples in an N-Triple representation of NML’s
XML/RDF format.

Ethernet and 802.1Q (vlans)

With all physical links and devices in place, the next step would be to model the con-
figuration of the switching fabric for each of these devices, including the use of 802.1Q
vlans.

For this purpose, a database export was made to provide tuples (device, port, vlans)

amongst other information. This allowed the creation of Ports for vlans and their in-
terconnection, as well as the correct interconnection of untagged (bare Ethernet) ports.
In addition, where applicable, logical ports (possibly including vlans) were created, to
be connected as LACP trunks in a later generation phase. The database export ad-
ditionally provided information on spanning tree state, a technology layer we decided
not to include to keep the generation work within bounds. Additionally, blocking ports,
courtesy of STP state, would only decrease the complexity of the network and thus yield
a weaker result for the proof of concept.

The generated NML for the Ethernet/802.1Q layer, including switching fabrics and vlans
consists of 3,000 NML Ports and 400 NML Links for a total of 27,000 triples in an N-
Triple representation of NML’s XML/RDF format.

56

LACP and multi-chasis LACP

At this point, large parts of the network were sufficiently modelled to allow path selec-
tion, with exception of the relatively new residential part of the campus network. There,
a technology most commonly known as multi-chasis LACP is used to provide intercon-
nections between each residential distribution and the two core distribution switches,
providing active-active loop-free redundant interconnection on Ethernet level. Without
modelling this technology, path selection would not find a path between the residential
access switches and the core.

Using exports of the physical-logical port mapping for each device, the logical port
created during the previous generation step were connected to the physical ports pro-
viding the actual connection. Although not strictly necessary, normal LACP trunks
were included in this process, because they essentially came for free with the current
implementation.

The generated NML for the LACP layer, connecting logical to physical ports, consists
of 90 NML Links for a total of 270 triples in an N-Triple representation of NML’s
XML/RDF format.

Summary and general observations

In summary, the generated NML for the campus network, including all previously de-
scribed and their interrelations consists of 1,300 NML Nodes, 10,000 NML Ports and
4,000 NML Links for a total of 68,000 triples in an N-Triple representation of NML’s XM-
L/RDF format. This network topology description is subsequently used throughout this
chapter. But before moving on to describe the campus network’s sample requirements,
we state some observations made during the generation process.

Modelling a real world network was not originally intended within the scope of this re-
search. However, lacking any real world network descriptions for use with netPropCheck,
no other option was available than to dive in and create one from scratch. Modelling layer
interactions, matching information and writing parsers took almost a month, making it
no trivial investment to enable research in this area.

Because we suspect that the lack of availability of real world datasets hampers research
in this area, we are proud to make the generated network topology available as an open
dataset. In addition, we intend to share a small wrapper-library around NML that is
not specific to the campus network but applicable to NML generation in general to help
simplify future research7.

The IT staff of the campus network have expressed interest in examining NML for
applicability as description format for a next generation network management system.
To this end, it is our intention to share back all software written explicitly for NML

7The available software and the open dataset can be found on https://rtsn.nl/thesis/

57

https://rtsn.nl/thesis/

generation of the campus network. This software will not be shared publicly at this point.
Naturally, the inclusion of the requirement verification described in this research would
become very practical once the network is natively described in a formal description
language.

5.4. Sample requirements

Having motivated and described the network chosen to serve as input to our proof of
concept, we now proceed to describe real world requirements that match each of the four
requirements described throughout this work.

The campus network has several implicit assumptions which lend themselves for formal-
isation as an operational requirement. In each of the next subsections we will translate
a real world assumption or expectation into an operational requirement. In order, we
cover segmentation, control, time to recovery, and path diversity.

5.4.1. Segmentation

A real world use-case for the segmentation property can be found in the separation of
production and management segments of the campus network. We take the example of a
residential building, equipped with an edge-switch and multiple access points. Although
residents have network access through both types of devices, the devices themselves are
also accessible from the network for management purposes. Our chosen segmentation
requirement states that a user connected to the switch cannot reach the management
network of the access point on the same floor.

5.4.2. Control

To show the versatility of the ability to lift element specific requirements to the abstrac-
tion level of a full topology, we choose a non-standard use-case for the control property.
Specifically, we define the requirement that traffic from a residential end user to the
core network only uses elements with a bandwidth capacity greater than or equal to the
bandwidth capacity of the edge port. In other words, we validate that a single edge-user
is unable to saturate the uplink, thereby blocking access for his fellow users.

5.4.3. Time to recovery

Table 5.3 shows recovery times for different device roles in the residential subset of
the campus network. Using these recovery times, we want to compute the worst case
downtime for a single device failure in the residential path to the internet. In particular,
we compute the time to recovery for the path between a host connected to a residential

58

devices

building level access switch 4 hours

quarter level distribution switch 3-4 days

campus level residential core switch 3-4 days

core router 5 days

links

patch/cable 1 hour

fiber ring 3 days

Table 5.3.: Recovery times per device role for residential subset of the campus network,
assuming full hardware failure, as estimated by the campus network’s IT staff
(numbers are approximate)

access switch and one of the core routers routing the residential subset of the campus
network.

We define a recovery time of one day acceptable for the type of outage which requires
full replacement of hardware, which will serve as our requirement to test against.

5.4.4. Path diversity

For the same residential to core connection, we check the number of redundant paths
available. Combined with the requirement for time to recovery this allows quantification
of failure modes.

The residential subset of the campus network has been designed with redundancy in
mind. Past the access switches, the entire infrastructure should be redundant. We
therefore check whether the infrastructure between a residential access switch and the
core network does indeed provide a minimum of two independent paths.

5.4.5. Conversion of the operational requirements

Having described the operational requirements selected for the campus network in gen-
eral terms, we will now specifically detail the conversion of each requirement for verifica-
tion with netPropCheck. To this end, we briefly return to each of the four requirements.

segmentation In the case of segmentation, the conversion is relatively straightfor-
ward. We have modelled a system and connected it to a residential edge switch manu-
ally to the campus network topology. Moreover, the wireless access point located closest
to the system is identified. To check the segmentation property, we verify segmentation
between the outbound interface of the system and inbound interface on the management
vlan of the wireless access point.

59

control To check the segmentation property, we again use the residential system used
before, this time with a core router as counterpart. Connection speeds are determined
by using the encoding property on NML Ports, information which is contained in the
topology description. The different encodings on the physical level are used as an esti-
mator for link speeds. The connection speed of the system’s interface is obtained and
subsequently compared to all NML ports on the physical layer on the path to the core,
forming the control criterion. Because we are only interested in the ability of the user
to directly hinder other residential users through direct link saturation, this property is
only checked in one direction.

time to recovery The time to recovery property is checked by using the information
contained in Table 5.3. We define a recovery cost function by assigning to every NML
Port and Link a recovery cost value. The mapping between a switch and its respective
device class is given as input to the computation. The devices involved are once again
the system connected to a residential edge switch and the core router. The required
worst case recovery time is specified as 24 hours.

path diversity Although we stated the intention to check the number of independent
paths between the residential system and a core router, this is not possible with the
generated topology description. As indicated in Section 5.3.3, the data provided on the
physical layer only includes a single connection per pair of devices. And although the
residential access switches are connected to the quarter level distribution switches using
two distinct links, this gap in the data does not allow us to verify their impact on the
overall path diversity. Consequently, we choose to verify the number of distinct paths
between the quarter level distribution switch and one of the core routers.

Moreover, to work around an implementation choice for the path selection algorithm
combined with the lack of an NML construct for trunking/bonding, the path The re-
quired path diversity is specified as 2 independent paths.

5.5. Results

In this section we list the results for each of the four requirements. For every requirement,
we present the results of manual verification and verification using the proof of concept.

Because the full output of netPropCheck would increase this thesis by 200 pages, only
the non-verbose output is shown. Full (verbose) output is available for download8. In
order to keep the naming scheme of the campus network’s topology confidential, both
the summary and the full version of the output have anonymized URIs and lack names
of network elements. Because NML defines URIs to be opaque and name attributes

8http://rtsn.nl/thesis/

60

http://rtsn.nl/thesis/

to be optional this does not influence the correctness of the topology description nor
the results in any way. Note that the naming of the non-anonymized version provides
a human with meaningful clues as to the network structure. An example of a naming
scheme can be seen in the sample NML included as Appendix C.1.

Execution time for netPropCheck varied between 7 to 10 seconds for each property. Most
of this time was spent reading and parsing the 5 megabyte topology description. These
numbers were constant over all performed test runs.

5.5.1. Segmentation

manual verification For both the residential system and the access point possible
paths were traced towards devices in the network where an interconnection between the
two was possible. These included the core routers and every switch on the way there.
No such interconnection was found, leading us to the conclusion that the segmentation
property holds.

netPropCheck Verification using netPropCheck yielded segmentation in both direc-
tions9.

SEGMENTATION
segmentation
netPropCheck /tmp/campusnetwork.nml segmentation −s urn:ogf:network:rtsn.nl:thesis:2014:7

cf018cd671f55e27f65 −d urn:ogf:network:rtsn.nl:thesis:2014:208b8d3485b906c25dfa

True
segmentation (reverse direction)
netPropCheck /tmp/campusnetwork.nml segmentation −s urn:ogf:network:rtsn.nl:thesis

:2014:89dc602d1e5e62228654 −d urn:ogf:network:rtsn.nl:thesis:2014:29ca57c71031eefedc94

True

5.5.2. Control

manual verification Manual verification was performed by tracing the path between
the residential system and the core router, checking the link speeds for each link along
the way. The manual verification was made easier by the knowledge that all equipment
from quarter level distribution up to core routers were connected by one or multiple
10 Gigabit links. The conclusion of manual verification was that the defined control
property holds.

9As noted in Section 4.1.2, both directions are verified independently and then combined to yield
bidirectional results.

61

netPropCheck Verification using netPropCheck yielded control in the single direction
verified.

CONTROL
control
netPropCheck /tmp/campusnetwork.nml control −s urn:ogf:network:rtsn.nl:thesis:2014:8555

d3fc19499a0d152f −d urn:ogf:network:rtsn.nl:thesis:2014:6cac7451a240ce3b787b
Please enter the required minimum speed
1000

True

5.5.3. Time to recovery

manual verification Manually verifying time to recovery would be extremely tedious
if it were not for the fact that the mostly hierarchical structure of the residential part
of the campus network and the rising recovery times closer to the core make it easy for
a human to draw conclusions. With a router as destination and no device or link class
with a higher recovery time, it is trivial to see that this requirement does not hold.

netPropCheck The verification of time to recovery by netPropCheck yielded two
failures. The output shows that the most costly element, one of the routers, takes five
times longer than the required 24 hours. This means that if redundancy were to fail,
the failure of the router in question would break the time to recovery requirement of 24
hours.

TIME TO RECOVERY
time to recovery
netPropCheck /tmp/campusnetwork.nml timetorecovery −s urn:ogf:network:rtsn.nl:thesis

:2014:8555d3fc19499a0d152f −d urn:ogf:network:rtsn.nl:thesis:2014:6cac7451a240ce3b787b
Please enter the required time to recovery as an integer
24

(”sample NetworkObject with worst recovery cost”,”(Single Port \”urn:ogf:network:rtsn.nl:
thesis:2014:0ed81df5fcf55b561de5\”,120)”)

False

time to recovery (reverse)
netPropCheck /tmp/campusnetwork.nml timetorecovery −s urn:ogf:network:rtsn.nl:thesis

:2014:c54fb2fc4fceac3cbcdd −d urn:ogf:network:rtsn.nl:thesis:2014:99946f53fa645a894297
Please enter the required time to recovery as an integer
24

(”sample NetworkObject with worst recovery cost”,”(Single Port \”urn:ogf:network:rtsn.nl:
thesis:2014:16b2053b7b01c42f997b\”,120)”)

62

False

5.5.4. Path diversity

manual verification Computing an upper bound for path diversity by hand is almost
impossible on the campus network, even access to topology maps and management
information. However, finding two independent paths proved to be relatively simple.
The conclusion of manual verification is that the path diversity requirement holds.

netPropCheck netPropCheck yielded two distinct paths for both directions.

PATH DIVERSITY
path diversity
netPropCheck /tmp/campusnetwork.nml diversity −s urn:ogf:network:rtsn.nl:thesis:2014:

e1bb9c1d50168cb828d0 −d urn:ogf:network:rtsn.nl:thesis:2014:6cac7451a240ce3b787b
Please enter the required path diversity as an integer
2

(”number of distinct paths”,”2”)

True

path diversity (reverse)
netPropCheck /tmp/campusnetwork.nml diversity −s urn:ogf:network:rtsn.nl:thesis:2014:

c54fb2fc4fceac3cbcdd −d urn:ogf:network:rtsn.nl:thesis:2014:1b6396ef10effb675789
Please enter the required path diversity as an integer
2

(”number of distinct paths”,”2”)

True

5.6. Validation summary

With four equal results between the manual verification and automated verification
using netPropCheck, following our methodology, we accept our working hypothesis. We
conclude that automated verification of operational requirements is possible in a real
world network with netPropCheck.

In summary, this chapter answered subquestion 5:

How can the results be validated?

63

Two methods were demonstrated to validate our proposal for verification of requirements
in multi-layer networks: a formal method and an empirical method. The formal method
was explained in Chapter 4 and follows implicitly from the construction of the proposal,
as was illustrated in Figure 4.6.

The empirical method was covered in this chapter. A proof of concept was built and
used to verify properties in a real world network. With the results matching those of
manual verification, we conclude that it is possible to verify operational requirements in
a multi-layer network via an algorithm for path selection in its topology description.

64

Chapter 6.

Conclusions

In this final chapter, we summarize the results of previous chapters, comment on future
work and conclude this work by answering the main research question.

6.1. Summary of results

This section summarizes the answers to the subquestions covered in Chapters 2 to 5.
The subquestions are covered in the ordering of Chapter 1, which does not correspond
fully to the chapter ordering. Therefore we will indicate the corresponding chapter for
each subquestion summarized.

1. How do we describe multi-layer network topologies?

In the first part of Chapter 2, a previous survey by the authors covering the state
of the art in academic literature with respect to the architectural description of
networks was recapitulated. The Network Markup Language was selected as the
topology description language of choice in this research.

2. What operational requirements can we relate to using topology descriptions?

Chapter 3 identified four distinct generalized operational requirements. Each of
these relate to either graph theoretic properties or generalized node or link specific
properties. In general, the chapter conjectured that these two classes of properties
are especially suitable for verification solely based on network topology informa-
tion.

3. Is it possible to formulate checks for operational requirements in terms of path
selection?

Barring some limitations, a proposed composition between computation and val-
idation presented in Chapter 4 shows that it is possible to formulate checks for
operational requirements in terms of path selection. This claim is illustrated with
the presentation of algorithms for four generic operational requirements.

4. What multi-layer path selection algorithms are available?

The second part of Chapter 2 listed the different approaches to multi-layer path
selection. A multi-layer variant to the Breadth first search algorithm was picked
and adapted for use in a proof of concept.

65

5. How can the results be validated?

Two methods were demonstrated to validate the proposal in multi-layer networks:
a formal method and an empirical method. The formal method was explained in
Chapter 4, while the empirical method was subject of Chapter 5. We conclude
that it is possible to verify operational requirements in a multi-layer network via
an algorithm for path selection in its topology description.

With all subquestions answered, we are now ready to answer the full research question.
But before we conclude, we first look at future work.

6.2. Future work

We have made references to limits in scope, possible improvements or future extensions
throughout this research. In this section, these references are collected and summarized,
serving as a basis for future work in this area.

NML and formal network description

From the perspective of requirement verification in networks, there are several possible
improvements to NML and the surrounding tooling to simplify network description in
general.

With respect to standardisation, the author deems it helpful to standardise technology
identifiers for use with the attributes encoding and adaptationFunction. Even better
would be the availability of entire Technology Schema’s as were available for NDLv2 [18]
to simplify description of common technology layers. Other helpful standardisation work
would include the ability to explicitly describe “trunking”, as already alluded to in the
NML standard as the experimental ParallelCompound extension. All three would help
towards simplifying the creation and exchange of network descriptions in NML, which
ultimately determines the success of verification checking based on such descriptions.

More generally, if formal network description is to succeed as a concept beyond specific
application areas such as optical light exchanges, there is a need for the development of
more use-cases for their application. This work provides one such use case, but more
examples (preferably including an exploration of the economic benefits) are needed before
there any chance of broader adoption.

In the area of tooling, interesting topics for further research are visualisation of formal
network descriptions and their use in interoperability between management systems.
The lack of research in both areas came up during development of our proof of concept,
respectively for use during debugging and demonstration; and to ease the export and
generation of NML from the campus network’s systems.

66

Requirement verification using topology descriptions

We see several interesting areas to continue research on the topic of requirement veri-
fication using topology descriptions. In order, we list improvements to the algorithms
described in this work; the extension of this work to more or different requirements; and
the promising idea of switching to per-layer path selection algorithms for verification.

The algorithms for computation and the customized path selection algorithm based
on [10] are all open for improvement. The authors have limited expertise in complexity
analysis of algorithms (in particular, as implemented in a functional language such as
Haskell) and have therefore not included such analysis. Formal complexity analysis
of the algorithms in this work and time and space profiling of their behaviour under
varying inputs is consequently an open topic. Moreover, the authors believe that the
implementation of the path selection algorithm is suitable to be parallelised, which would
make sense when doing verification on increasingly larger network topologies.

In Chapter 3, it was decided to only cover requirements that did not need secondary
information sources (i.e. information outside the topology description). However, this
work does not preclude the specification of requirements using such sources, which con-
sequently constitutes a possible future extension of this work. Another way to extend
our current set of requirements is to define ways of stacking their respective computa-
tions before performing one or more validations, effectively enabling the verification of
composite requirements, much like you would do with the combined information on e.g.
time to recovery and path diversity in practice.

Finally, we would have liked to swap out the generic multi-layer path selection algorithm,
used throughout this work, for a per-layer instance. These instances would be specific to
the technology layer, mimicking the way actual path selection is done in the protocols on
that layer. This also opens the way to technologies which are currently not very suitable
for description in NML due to their reliance on e.g. routing tables. The specific path
selection algorithm on the respective layers would use routing information (external to
NML) to determine a path through the graph, while the overall topology can still be
described as in NML itself.

This concludes our overview of future research. This chapter continues with conclusions.

6.3. Conclusion

This work was started with the goal of increasing insight into the advantages of for-
mal network description as a method to manage the mounting complexity in network
stacks. We advanced towards this goal by exploring one compelling use for these de-
scriptions: continuous, real-time and automated verification of operational requirements
in computer networks, answering the main research question:

67

“Is it possible to verify operational requirements in multi-layer networks via
algorithms for path selection in their topology descriptions?”

We have found that there are topology descriptions languages available that allow formal
description of networks for the purpose of reasoning. We have shown that it is possible
to formally define operational requirements using a graph definition obtained from such
descriptions. Using this formal definition we have synthesised verification algorithms to
test conformance to such a requirement. These algorithms have been demonstrated to
decompose in multi-layer path selection and verification. And finally, we have shown a
working proof of concept which puts these ideas in practice in a real world network.

Our conclusion: it is possible to verify operational requirements in multi-layer networks
via algorithms for path selection in their topology descriptions.

68

Appendix A.

Literature review (research topics)

69

The Architectural Description of Networks, a Survey

research topics in Telematics

Maarten Aertsen <maarten@rtsn.nl>

August 8, 2013

This research summarizes the current state
of the art in academic literature with re-
spect to the architectural description of net-
works. We find that formal network ar-
chitecture description is a small area of re-
search, primarily driven by grid and cloud
computing needs. There are a handful of lan-
guages available, each serving different spe-
cific needs. There is no wide adoption of
any of the languages found, which leads to
a selection based on our specific needs. For
the purpose of future research in reasoning
about the characteristics of topology we find
that NML is most suitable as formal topol-
ogy description language.

1 Introduction

Reasoning about the characteristics of a topology
in relation to its functional requirements calls for
a concise description of both. This research is the
first step towards this goal by reviewing existing ap-
proaches to the description of operational require-
ments and network architecture.

We present answers to research questions 1 and 2
posed in the author’s research proposal1:

1. How do we represent operational requirements
for networks?
(a) What are operational requirements?

(b) How are operational requirements for-
mally described?

2. How do we represent the architecture of net-
works?
(a) What characteristics contribute towards

their operational requirements?

(b) How is a network architecture formally
described?

1“Parity analysis in telecommunication networks: ar-
chitecture characteristics versus operational requirements”,
master thesis in Telematics, research proposal. Maarten
Aertsen, April 2013.

Two methods are used to answer these questions:
to satisfy questions 1 and 2a we identify real world
needs by clients of Deloitte. To answer question 2b
a literature survey is performed, which is the main
focus of this work2.

First, we narrow down the scope of question 2b by
defining its terms. By network we denote a com-
puter or telecommunication network, in architec-
ture our focus is on physical topology, in particular
OSI layer 1-3. With formally we mean suitable
for calculation or reasoning. Finally, when talking
about described we are looking for something which
is exchangeable and machine-readable.

This paper is organized as follows. In Section 2 we
describe the methodology used for the survey. Sec-
tion 3 presents its results, followed by an analysis
of the findings relevant for topology analysis in Sec-
tion 4. We conclude the survey with a discussion
in Section 5 and conclusions in Section 6.

2 Methodology

During initial informal exploration of literature it
became apparent that network topology description
is not a discipline on itself, but rather a foundation
to build on, signified by small (loosely connected)
islands of research. To perform a meaningful sur-
vey, the choice was made to select a big sample
without regard for connectedness and subsequently
filter down to a “multi-island” set from which to
proceed to discover related research.

The actual methodology used is loosely based on
the guidelines by Wolfswinkel et al. [13] and Web-
ster and Watson [12]. In particular, we follow the
process of Wolfswinkel et al. for conducting the
search and paper selection, reproduced in Table 1
for the convenience of the reader. In the following
paragraphs we will discuss the choices made during
the search and select phase, corresponding to tasks

2The survey falls within the domain of research topics.
Questions 1 and 2a are out of scope for this survey but are
nevertheless important to address and covered in the Ap-
pendix.

1

Task (sequential and partially iterative)

1 Define scope (including criteria for inclusion)
2 Identify fields of research
3 Find corresponding databases/outlets
4 Define search terms
5 Search
6 Filter out doubles
7 Cut down sample based on title + abstract
8 Cut down sample based on full text
9 Forward and backward citations
10 Verify final dataset

Table 1: SEARCH & SELECT phase by Wolfs-
winkel et al. [13]

one to four in Table 1.

scope The definition of scope is directly related
to the definition of terms in the question. The sur-
vey intends to summarize current methods to de-
scribe network architecture in a formal way. In ad-
dition to the limits established by our definition of
terms, we limit our search to methods that allow
for description of network complex enough to war-
rant automated reasoning. A method needs to be
powerful enough to describe topologies at least the
size of university campus networks.

fields of research In the beginning of this sec-
tion we identified topology description as a founda-
tion to build on. It could therefore be the case that
research is embedded in multiple fields, widening
the scope for the survey. We argue that publica-
tions on complex networks require specialised IT
staff. IT staff is in turn most likely to publish re-
sults in either computer science or telecommunica-
tion. We consequently assume that publications are
made in the fields of computer science and telecom-
munications.

databases/outlets To obtain a large sample of
papers, three separate databases were queried.
Without knowledge about the existence of spe-
cific journals or conference proceedings (outlets),
the selection of search engines was essentially ran-
dom. Two general purpose engines: Web of Science
(Reuters) and Scopus (Elsevier) were used, supple-
mented by a search engine focussing specifically on
computer science: DBLP. Google scholar was used
to obtain information on forward and backward ci-
tation.

search terms The chosen search terms corre-
spond to the definitions given in Section 1, with
the addition of synonyms to match different word-
ings. During preliminary inspection of the Web

of Science results, it was noticed that the search
terms matched numerous papers relating to neu-
ral networks. It was therefore decided to add ad-
ditional filtering for subsequent database queries.
Listings 1, 2 and 3 give the search terms used for
each search engine.

Search terms 1 Web of Science
SU=(telecommunication OR

computer science)

AND TI=network

AND TS=(topolog* OR

architect* OR

infrastruct*)

AND TI=(format OR

language OR

specification OR

description)

DocType=All document types;

Language=All languages;

Search terms 2 Scopus

SUBJAREA(comp) AND

TITLE("network") AND

(

TITLE-ABS-KEY(topolog*) OR

TITLE-ABS-KEY(architect*) OR

TITLE-ABS-KEY(infrastruct*)

) AND

(

TITLE("format") OR

TITLE("language") OR

TITLE("specification") OR

TITLE("description")

) AND

NOT TITLE("neural")

Search terms 3 DBLP
network

topolog~|architect~|infrastruct~

format|language|specification|description

-neural

-natural.language

query broken into multiple lines, newlines denote binary AND

filtering of doubles Both Web of Science and
Scopus support export of meta-data rich results in
(extended) bibtex format, including everything but
the paper itself. DBLP unfortunately offered no op-
tion to export meta-data rich results, its XML and
JSON(P) export formats only cover basic fields as
author, title and venue. Automated bibtex parsing

2

was performed on the results, followed by fuzzy title
comparison to rudimentarily filter residual doubles
from both samples3.

manual filtering steps To further cut down the
sample, selections on title, abstract and full text
were made. The first two filtering steps used sum-
mary output from the scripts; only the last step
involved actually fetching the papers itself. This
approach allowed a last-minute call on the useful-
ness of a paper; waiting with the rejection of mod-
erately interesting papers until it was beyond doubt
that they were no fit for the survey.

The reduced export capabilities of DBLP proved
troublesome: filtering on abstract required locat-
ing and downloading the paper itself, infeasible for
hundreds of results. To reduce the burden, a fur-
ther pre-selection was done on the DBLP dataset
by keyword scoring on their titles. Popular key-
words from the sample known not to be of interest
would be applied as filter, with this trick repeated
until there were no obvious unrelated keyword left.
We will return to this method and its consequences
in the discussion (Section 5).

final verification Wolfswinkel [13] assumes the
ability of a researcher to verify a final dataset by
discussing it with peers before proceeding into the
processing of results. This proved to become chal-
lenging without existing local experience in archi-
tectural description and a similar lack in contacts
in this area.

The reality was different. During the search, we
came in contact with van der Ham [2, 4, 8, 7, 9] who
kindly offered to comment on our findings. Later,
he shared his ongoing work on a more general sur-
vey paper [9], previously unknown to the author.
Although his survey greatly diminishes the value
of this work, their similarity in findings give strong
evidence for the validity of our resulting sample.

3 Results

We present the survey results in two parts. The
first part describes all the findings, while the second
discusses meta results such as the number of results,
their interconnectedness and general observations.
We start with descriptions of the research found.
In Section 4 we discuss the relevance of the main
findings in this section.

3To this end, some simple one-off scripts were written in
the Python language. These were later extended to perform
keyword scoring for DBLP (see next paragraph).

Findings

In this section we present all findings. The main
findings are covered in one paragraph per descrip-
tion format. The remainder, related but not fully
fitting our definitions, are summarized in a miscel-
laneous section. An attempt is made to link related
research, this is also reflected in the ordering.

NDLv1 NDL [10] started as an ontology to de-
scribe the interconnection of network elements in
the RDF language. Its goal was to establish a
distributed “topology knowledge database”, where
network operators shared their topology informa-
tion towards the common goal of provisioning grid
networks. The advantage of using RDF (i.e. the se-
mantic web) as foundation lies in its natural ability
to refer to distributed data as if part of the same
information structure. The original version of NDL
features a limited set of relations (“properties”
in RDF terms) to express topology: locatedAt,
hasInterface, connectedTo, description, name

and switchedTo.

NDLv2 In [8] the authors of NDLv1 describe ef-
forts to extend NDL to allow the expression of multi
transport layers, e.g. as used in hybrid optical/IP
networks. Using concepts from the ITU-T G.805
architecture standard for transport networks [2],
NDLv2 is a language capable of describing multi-
layer networks while avoiding explicit change to
the base language for each new technology. This
works by defining Technology Schemata capturing
technology details on top of a more abstract Layer
Schema and finally defining the topology in terms
of the Technology Schemata. This enables the cre-
ation of algorithms to use the Layer definitions un-
derlying each technology to trace paths, compute
connectedness etc. without having to actually un-
derstand the technology in itself, or worse embed
the technology in the NDLv2 design.

NML Following adoption of NDL in the con-
text of optical and grid networking, a working
group was formed to standardized a common lan-
guage backed by the research on NDL, perfSONAR
and other projects. This standardized language,
dubbed “Network Markup Language”, incorporates
work focussed on resource request and monitor-
ing. The resulting standard [7] is the preferred
NDL/NML-style language for real world use. It is
important to note that at the time of writing, the
NML specification is hot of the press. Therefore
some earlier work supplementing NDLv2, including
Technology Schemata, have not yet been ported to

3

NML. It is therefore not entirely trivial to immedi-
ately start topology mapping in NML.

INDL While NML was being standardized, a
parallel effort was ongoing to extend NML with ad-
ditional capabilities intended to describe comput-
ing resources and virtualisation technology. This
language, dubbed “Infrastructure and Network De-
scription Language” is tailored for the management
of grid and cloud technology [4]. The extensions
proposed in INDL are of little use given the scope
of this research.

VXDL The “Virtual Resources and Interconnec-
tion Networks Description Language” [5] is a spec-
ification language for virtual infrastructures. It al-
lows for the description of a complete computing
environment, including the topology that connects
the different nodes. As a resource request language
it abstracts from real topology and describes aggre-
gated characteristics.

DEN-ng DEN-ng [?] is an evolution of “direc-
tory enabled networking”, aiming to unify network
management using business rules. This goal makes
DEN-ng more a management model/paradigm than
a network description, although it is definitely ca-
pable of being use that way. Its name stems from
the use of (L)DAP-enabled backing stores. The use
of freely definable ontologies make it less suitable
as an exchange format and similarly the chosen ab-
straction is somewhat arbitrary, depending on the
amount of information stored in the paradigm.

NNDL In [?], Dobrilovic et al. describe a novel
XML based language to describe network nodes.
This “Network Node Description Language” is pri-
marily intended to describe virtual network test
beds and allows description of services and detailed
node configuration. The authors claim that NNDL
is also usable as a more general description language
for computer networks and its expressiveness for IP
layer networking (including routing) is remarkable.
However, there appears not to be any support for
non-IP network layers, which makes NNDL unfit
for our purposes.

perfSONAR “PERFormance Service Oriented
Network monitoring ARchitecture” or perfSONAR
is a service oriented architecture to standardize col-
laborative monitoring of networks [?]. Of interest is
its topology component called “Topology Service”.
This component makes the topology information
available for use throughout the service. The topol-
ogy itself is described using an XML format stan-

dardized by the OpenGridForum’s Network Man-
agement working group called nmwgtopo, describ-
ing interfaces, groups of interfaces (called links)
and groups of links4. It is readily apparent that
the topology service is considered to be a build-
ing block, with its own expressiveness severely lim-
ited to the grouping of interfaces for which statis-
tics are collected. perfSONAR has been deployed
in GEANT and connected National Research and
Educational Networks.

miscellaneous We conclude the findings section
with an overview of related work which did not fully
meet our search requirements, but is still useful as
related work. We describe an approach based on
a geographical information system (GIS); a graph-
ical format inspired by commercial drawing tools
by HP/IBM; the DataCenter Markup Language;
a description model for computational grids and
conclude with FleRD, a description language with
vagueness support.
Dumitrescu et al. [3] find that most ISPs and
telecommunication providers describe their net-
works using general purpose mapping tools to com-
bine topology information with geographical infor-
mation. They note that these general purpose tools
lack the ability to directly describe infrastructure,
instead relying on the operator to “draw” the cor-
rect symbols. To this end they propose to use an
ontology for network infrastructure to standardize,
validate and simplify information input and stor-
age. Unfortunately, no actual (base) ontology is
standardized for possible use as exchange format.
In [11] Wang et al. describe the need to standard-
ize a common format to enable interoperability be-
tween various proprietary network management ap-
plications. They present a prototype for such for-
mat based on XML and describe how to visualize
their format using Scalable Vector Graphics. Un-
fortunately, the format has not risen beyond proof
of concept and no subsequent work has been pub-
lished.
DCML was an effort to standardize a description
format for data center environments and their op-
erations. Although backed by significant industry
players, it has not evolved beyond an initial idea [1].
Lacour et al. [6] specifically target network de-
scription for computational grids, in order to fa-
cilitate automatic provisioning of the resources re-
quired to run user applications. The authors make
special effort to enable the description of non-
hierarchical networks and middleboxes (e.g. fire-

4Although this format appears not to have been stan-
dardized, the most recent (i.e. 2007) schemas can be find
at http://anonsvn.internet2.edu/svn/nmwg/trunk/nmwg/

schema/rnc/topo/.

4

walls, NAT translators), which makes their model
useful for non-heterogeneous grids. Unfortunately,
no real format is defined beyond some simple ex-
amples.
Schaffrath et al. take on the more general problem
of communicating resource requirements between
cloud providers, in order to provision such services
on top of federated networks [?]. For this purpose
they introduce FleRD, a flexible resource descrip-
tion language with support for “vagueness”. FleRD
has very generic network description support by
using so-called “NetworkElement” and “Network-
Interfaces” objects. This is very much suited to
requesting resources, but not so much for physical
description of actual network infrastructure. The
authors make the case for vagueness support in de-
scription languages as a way to scope information
sharing and interpretation, resulting in overall de-
creased complexity.

Meta results

136 144 14

Doubles

Web of Science Scopus DBLP

Title

233

53

Abstract

23

Full text

Citations

4

22

Figure 1: Decreasing and increasing the sample

Figure 1 presents numerical results on the search
and select phase. Our first observation is the small
number of papers resulting after full text reading.
The subsequent rise in papers by tracing forward
and reverse citations shows that keyword search
has its limitations. However, it must be noted that
most of the new papers found pertain to the same
technology (NDL/NML) and are written by a se-
lect group of authors. The final sample and its
inter-relations are shown in Figure 2, with papers
on NDL/NML highlighted5

5This diagram was originally created to track progress

Of particular note is the relatively small outcome
after the filter steps. This can best be explained by
our choice to last-minute filter the set like we de-
scribed in the paragraph on “manual filtering steps”
in Section 2.

The small number of papers produced by the search
query in DBLP can best be explained by its lack of
support for complex queries. We suspect that its
search facilities are better at interactive browsing
(e.g. finding papers for known authors or outlets)
than for a set of previously unconnected keywords.
Later inspection showed that none of the 14 results
output by DBLP survived the filter steps. We refer
to the discussion for further coverage of DBLP’s
shortcomings.

4 Relevant findings

Having discussed the full set of findings and the
existing relations therein, we now turn to the ques-
tion of relevance. Using the definitions of network,
architecture, formally and described as given in Sec-
tion 1, we contrast all main findings to determine
whether any of them is suitable for use in subse-
quent research.

Following these definitions, we contrast our findings
on their layeredness (i.e. single vs. multi), the ex-
changeability (internal system format or designed
for exchange), scope (what is being described) and
technology neutrality (fixed capabilities or technol-
ogy agnostic). Table 2 gives a compact summary
of the main findings.

There are three languages which are multi layer,
exchangeable, scoped to networks and technology
neutral, highlighted in grey in the table. Among
this family of languages, NML has been standard-
ized and is considered most suitable for real world
use. We conclude that NML is the most suitable
description format for use in future research, mod-
ulo the caveats mentioned in Section 3.

5 Discussion

To put our work in perspective we will point out
several caveats in our methodology and results be-
fore heading of to final conclusions. We cover our
methodology, search & select and results.

during step 9 of Table 1 and later to make sense of the inter-
connections in the resulting sample. It later proved useful
to integrate in the report due to the high connectedness of
the NDL/NML part of the sample. It was created using
the Graphviz suite of automatic graph drawing software, us-
ing data manually obtained from Google Scholar’s citation
indexes.

5

A Semantic Model for
Complex Computer Networks

nmlwg

Network Information Service
Schema Specification

nmlspec

Network topology descriptions
in hybrid networks

A Semantic-Web Approach for
Modeling Computing Infrastructures

Towards an infrastructure description language
for modeling computing infrastructures

Using RDF to describe networks

DEN-ng:
achieving business-driven

network management

VXDL:
Virtual Resources and Interconnection

Networks Description Language

Perfsonar:
A service oriented architecture

for multi-domain network monitoring

A multi-layer network model
based on ITU-T G.805

A distributed topology information system
 for optical networks

based on the semantic web

Using the network description language
in optical networks

dcml

Semantics for Hybrid Networks
Using the Network Description Language

Adaptable Network Management System
using GIS and network ontology

Using Network Node Description Language
for modeling networking scenarios

Data Exchange between
Network Monitoring Tools

A resource description language
with vagueness support for

multi-provider cloud networks

A Network Topology Description Model
for Grid Application Deployment

Network Topology Description
and Visualization

Figure 2: Citation network of results

6

language
single /
multi layer

internal /
exchangeable

scope technology-neutral

NDL single exchangeable network yes

NDLv2 multi exchangeable network yes

NML multi exchangeable network yes

INDL multi exchangeable (virtual) network & infrastructure yes

VXDL single exchangeable network no, IP-only

DEN-ng multi internal not defined yes

NNDL single exchangeable node, service & network no, IP-only

perfSONAR TS multi exchangeable interface statistics yes

Table 2: summary of findings

methodology Ideally one knows relevant key-
words in combination with conference proceedings
and/or periodicals before starting the research.
This allows the selection of search engines and key-
words for best coverage of these outlets. In this sur-
vey we did not have such up front knowledge and
a repetition of the survey with such information
might yield results without requiring the elaborate
methodology used here.

search & select During search and select there
were multiple factors negatively influencing the out-
put. First, the DBLP search engine proved to be
highly unsuitable for initial selection of a previously
unknown topic due to its lack for search in abstract,
keywords and subject area. Its support for complex
search queries also proved mediocre, with simple
queries giving huge results and simple incremental
filtering diminishing all but some remaining unre-
lated artefacts.

Our manual filtering work fell short of compensat-
ing these shortcomings due to its additional lack of
meta-data export: after scripting selection on ti-
tles, we found no feasible way to access data to fil-
ter down the resulting 400+ hits short of manually
downloading every single paper from its respective
academic publisher’s website. The resulting limited
output from DBLP can be seen in Figure 1, effec-
tively reducing our input to two search engines.

A second input related caveat is the seemingly
small overlap between Web of Science and Scopus.
This suggests the addition of a fourth search engine
might yield a significant number of new papers. We
think such an addition would reduce the increase
of papers found by citation tracing but would not
lead to significant new content. This assumption is
backed by our verification step as described in Sec-
tion 2. Nevertheless, a future repetition of this sur-
vey should include additional search engines, both
to verify our claim and to compensate for DBLP’s

shortcomings.

Finally, two papers were inaccessible due to their
common Chinese download site being pay-walled,
apparently too small to be included in the universi-
ties institutional access bundles. These papers did
not turn up again while tracing citations or during
verification.

results The limited output of the search phase of
our survey questions the coverage of academic lit-
erature for operational networking. We feel obliged
to note that there might be (commercial) unpub-
lished offerings beyond the scope of this survey.

6 Conclusions

This survey is an attempt to answer the ques-
tion “How is a network architecture formally de-
scribed?”. To this end, we surveyed the existing
academic literature on network topology descrip-
tion formats. After covering methodology in Sec-
tion 2 we presented survey results in Section 3. We
then analysed the relevance of our findings in Sec-
tion 4. Finally, Section 5 covered caveats related to
our work and its results.

We find that formal network architecture descrip-
tion is a small area of research, primarily driven
by grid and cloud computing needs. There are a
handful of languages available, each serving differ-
ent specific needs. There is no wide adoption of any
of the languages found, which leads to a selection
based on our specific needs. For the purpose of fu-
ture research in reasoning about the characteristics
of topology (using the definitions of Section 1) we
find that NML is most suitable as formal topology
description language.

7

References

[1] DCML. Data Center Markup Language
Framework Specification. Technical report,
2004. v0.11, retrieved from http://www.dcml.

org/technical_info/ on 2013-07-19.

[2] Freek Dijkstra, Bert Andree, Karst Koymans,
Jeroen Van Der Ham, Paola Grosso, and Cees
de Laat. A multi-layer network model based on
itu-t g. 805. Computer Networks, 52(10):1927–
1937, 2008.

[3] Stefan Daniel Dumitrescu, Alexandru Smeure-
anu, Andreea Diosteanu, and Liviu Adrian
Cotfas. Adaptable network management sys-
tem using gis and network ontology. In Roe-
dunet International Conference (RoEduNet),
2010 9th, pages 310–315. IEEE, 2010.

[4] Mattijs Ghijsen, Jeroen van der Ham, Paola
Grosso, Cosmin Dumitru, Hao Zhu, Zhiming
Zhao, and Cees de Laat. A semantic-web
approach for modeling computing infrastruc-
tures. Technical report.

[5] Guilherme Piegas Koslovski, Pascale Vicat-
Blanc Primet, and Andrea Schwertner Charao.
VXDL: Virtual Resources and Interconnection
Networks Descriptio Language. volume 2 of
Lecture Notes of the Institute for Computer
Sciences Social Informatics and Telecommuni-
cations Engineering, pages 138–154, 2009.

[6] S Lacour, C Perez, and T Priol. A network
topology description model for grid applica-
tion deployment. In Fifth IEEE/ACM Inter-
national Workshop on Grid Computing, pro-
ceedings, pages 61–68, 2004.

[7] J. van der Ham, F. Dijkstra, R. Lapacz, and
Zurawski J. Network markup language base
schema version 1. Technical report, Open Grid
Forum.

[8] Jeroen Van Der Ham, Freek Dijkstra, Paola
Grosso, Ronald Van Der Pol, Andree Toonk,
and Cees De Laat. A distributed topology in-
formation system for optical networks based
on the semantic web. Optical Switching and
Networking, 5(2):85–93, 2008.

[9] Jeroen van der Ham, Mattijs Ghijssen, Paola
Grosso, and Cees de Laat. Trends in Computer
Network Modelling towards Future Internet.

[10] Jeroen J Van der Ham, Freek Dijkstra, Franco
Travostino, Hubertus Andree, and Cees TAM
de Laat. Using rdf to describe networks. Future

Generation Computer Systems, 22(8):862–867,
2006.

[11] H. Wang and Y. Chen. Network topology
description and visualization. In ICACTE
2010 - 2010 3rd International Conference on
Advanced Computer Theory and Engineer-
ing, Proceedings, volume 6, pages V652–V656,
2010.

[12] Jane Webster and Richard T Watson. Analyz-
ing the past to prepare for the future: Writ-
ing a literature review. MIS Quarterly, 26(2),
2002.

[13] Joost F Wolfswinkel, Elfi Furtmueller, and Ce-
leste PM Wilderom. Using grounded theory
as a method for rigorously reviewing litera-
ture. European Journal of Information Sys-
tems, 22(1):45–55, 2011.

8

Appendix

The remainder of this paper covers research ques-
tions 1 and 2a. To keep the workload of the litera-
ture survey within bounds, it was decided to answer
these questions using real world experience based
on interviews and inquiries. Consequently, the fol-
lowing sections are no representation of the current
state in academia, instead providing a glimpse into
problems faced by clients of Deloitte.
A consequence of the choice to gather input from
the Security & Privacy team at Deloitte is that
the functional requirements are all oriented towards
security. The author intends to let the answers
steer further research towards practical application
within the overlapping fields of networking and se-
curity.
In the following three sections we will cover in order
research questions 1a, 1b and 2a.

1. How do we represent operational requirements
for networks?
(a) What are operational requirements?

(b) How are operational requirements for-
mally described?

2. How do we represent the architecture of net-
works?
(a) What characteristics contribute towards

their operational requirements?

Operational requirements

We cover three common functional requirements,
in order: availability, segregation and ownership.
We then move on to review existing methods to
formalize these requirements.

availability “making it work”, “keeping it work-
ing” and “make it usable”6 are by far the most
heard phrases to describe operational requirements
for networks. Only after further inquiry other re-
quirements are heard, supporting the popular view
that other requirements (e.g. security) are an af-
terthought. This is to be expected from a tech-
nology branch which primarily exists to connect;
without connection, there is no purpose. However,
we will see that our further requirements are some-
times directly opposite to this goal.
An example of an availability requirement is the
uptime requirement for a critical service, perhaps
in the view of required periodic maintenance. The
network connecting such services to their clients

6Strictly speaking this would be “accessibility”, but we
classify it as availability because a network failing to be ac-
cessible will often be perceived as not available. That makes
them equal for our purposes.

needs to deliver said uptime, even though the occa-
sional planned and unplanned maintenance is un-
avoidable. Checking the characteristics of the net-
works topology might yield information on the fea-
sibility of such requirements.

segregation Although we determined that avail-
ability is to most the top valued requirement, this
does not hold for all services. There are use-cases
abound which require the absence of availability,
at least in the sense that certain endpoints should
not be able to exchange information. This non-
connectedness property is often realised by physical
or logical segregation. The (continued) existence of
segregated network zones is worth checking, both
during design and operation.

Examples of segregation requirements in commer-
cial networks are abundant, situations where such
a requirement would be advisable even more plen-
tiful, though actual deployed segregation beyond
“internal, external, DMZ” rare. Use cases encoun-
tered were amongst others: medical device data
(e.g. MRI scanner to workstation), control plane
segregation (e.g. admin interfaces, out of band ac-
cess), high performance backend connections (e.g.
storage area networks, high availability synchroni-
sation links).

ownership The recent developments with re-
spect to blanket surveillance and traffic analysis7

have made it more and more important to under-
stand who has access to what information. This
carries over to networking. To assure the confiden-
tiality or integrity of critical information it becomes
prudent to determine ownership8 of the communi-
cation links, if only in an attempt to provide defence
in depth.

Examples of ownership requirements can be found
in the medical sector where the strict data protec-
tion laws concerning medical and biometric infor-
mation apply. So-called “critical infrastructure”,
e.g. water supply, energy networks, 911-like emer-
gency numbers also come to mind as candidates
that require the increased assurance provided by
ownership of infrastructure.

7I.e. documents uncovered by US whistle-blower Edward
Snowden indicate the existence of programs for mass surveil-
lance in most developed countries.

8Note that we use “ownership” in a somewhat loose sense:
e.g. a leased line could count as owned if there is reasonable
cause to believe that it will not be interfered with.

9

Formal description of operational re-
quirements

Throughout all conversations and interviews, the
author has been unable to identify any real world
application of formal (i.e. machine readable) de-
scription of operation requirements. The only,
partially related, descriptions are so-called Service
Level Agreements (SLA’s) containing numbers on
uptime requirements as part of a contract. In addi-
tion, it is questionable whether such numbers rep-
resent functional requirements or merely are the re-
sult of a service/cost trade-off, which would murk
calculations based on requirements with the inclu-
sion of premature cost optimized inputs.
This brings us to a quick conclusion. We have been
unable to find examples of formal descriptions for
operational requirements in the real world. We are
therefore unable to re-use existing description for-
mats to formalize functional requirements.

The contribution of characteristics to
operational requirements

Having presented an overview of common opera-
tional requirements, we now proceed to present pre-
liminary approaches to the identification of char-
acteristics that contribute toward operational re-
quirements. We follow the same structure as before,
listing our findings paragraph by paragraph in the
order availability, segregation and ownership.

availability We found two characteristics which
influence availability from a perspective of the
topology. First, the existence of multiple distinct
paths from source to destination. With multiple
paths available, failure of some might be tolerable,
indicating a degree of robustness in the topology.
Second, the reverse is also true: where (multiple)
paths intersect we find points whose failure have a
larger impact. These “choke points” (or taken to
the extreme “single points of failure”) represent a
negative degree of robustness for a topology.

segregation The intention of segregation is non-
connectedness between certain parts of the net-
work. In terms of topology (especially in the lower
layers) the opposite of segregation can be quanti-
fied in the number of ways to connect those parts.
The risk of violating segregation can therefore be
expressed in the number of ways to do so. A topol-
ogy allowing less such violations is better suited to
provide segregation9.

9Note that this includes possible, but not currently con-
figured paths.

ownership Connecting topology characteristics
to the functional requirement of ownership seems to
involve the same methods as previously described
for availability and segregation. Where availabil-
ity involved the existence of multiple paths and the
absence of choke points, ownership just excludes
non-owned paths in this metric. The failure mode
is therefore twofold: when there are no more paths
available which are not owned, we break the owner-
ship requirement, but availability might still hold.
The connection to segregation is similar, because
we can express the risk of violating ownership as
a violation of segregation between the part of a
network under our own control and the rest. A
topology with a low risk of segregation failure for
this ownership constraint would consequently be a
topology with low risk of violating ownership.

Discussion & Conclusion

It is important to note that all of the previous re-
quirements can only hold if there is full control over
the network. This in turn requires visibility and
insight over what is and what isn’t connected. Al-
though seemingly obvious, it appears that this in-
sight is a big problem in practice. Commercial enti-
ties and their IT staff often have no clear continuous
view of how their networks operate and evolve.
There is no clear business requirement to have this
insight and it is not a functional requirement on its
own, but it is a necessary precondition to support
the other three. Research in the automatic checking
of functional properties can help in this respect,
but not without accurate topology information up
front. This is a clear barrier to adoption for any
approach to reason using topology information.
To conclude the appendix, we have shown three
dominant operational requirements for networks:
availability, segregation and ownership. These op-
erational requirements are not formally described
in any known format. Finally, for each of the three
operational requirements we identified characteris-
tics which may indicate the degree to which they
are fulfilled.

10

Appendix B.

Additional validation of the formal
description of requirements

In this addendum to the main validation work, we use formal logic and proofs to increase
confidence in the construction proposed in Chapter 4. Before diving in, we present a
short overview of what has been proved and what remains to be shown.

Our proposal introduced a way to verify operational requirements using a composition
of path selection and an additional computation-validation step. For each of the four
requirements covered, this composition is synthesised directly from a formal description,
absolving us from the need to verify the composition itself. However, to show that the
formal description of the requirements itself is not flawed, it remains to be shown that
our proposal does not yield any results which are contrary to the expectations which
lead to the formal specification of the requirement in the first place.

We will show that our proposed composition does not allow for false positives and neg-
atives. This way, we confirm that the behaviour of the composition complies with the
expected meaning of each requirement. The terms false positive and false negative cor-
respond to their usual meaning, applied to verification:

- A false positive in the context of verification means that the composition incorrectly
produces a positive verification of a requirement although the requirement does not
hold in the network under review.

- Conversely, a false negative in the context of verification means that the compo-
sition incorrectly produces a negative verification of a requirement although the
requirement does hold in the network under review.

The approach is as follows. For each of the four requirements possible failure cases are
listed corresponding to either false positive or false negative results. We then prove
that the algorithm, by definition, contradicts the occurrence of these results. Using this
approach we prove conformance of the formal descriptions to the expectations they are
intended to capture.

In this section, we make a number of assumptions about a number of external parts
with respect to our work. Specifically, we assume the correctness of the path selection

80

algorithm; the network description1; and (for the path diversity requirement) the cor-
rectness of the clique checking algorithm(s). We believe these assumptions are reasonable
considering the scope of this work.

The requirements are covered in the now familiar order segmentation, control, time to
recovery and path diversity. As was the case previously, the complexity of the proofs
increases with each section, with the final proof requiring a completely different approach
to the other three.

B.1. Segmentation

Like the composition of Segmentation in Chapter 4, the proofs for the non-occurrence
of false positives for segmentation verification is very short and simple.

B.1.1. False positives

A false positive for segmentation would mean that the algorithm incorrectly reports
that a network is segmented, while it is not segmented in the description. To prove: the
proposed segmentation verification does not produce false positives.

Proof. (by contradiction)

We assume that algorithm S(A,B) to check the segmentation requirement of communica-
tion from A to B produces false positives. I.e. S(A,B) yields True, but communications
from A to B is possible, violating the segmentation requirement.

“A can communicate to B” ⇐⇒ ∃(A→ B) (B.1)

“S(A,B) yields True” ⇐⇒ (A⇒ B) = ∅ (B.2)

definition of ⇒ : ∀(P →i Q) . (P →i Q) ∈ (P ⇒ Q) (B.3)

B.1 ∧ B.2 ∧ B.3 ⇐⇒ (A→ B) ∈ ∅ (B.4)

××××

B.1.2. False negatives

A false negative for segmentation would mean that the algorithm fails to report segmen-
tation, while the network described is segmented. To prove: the proposed segmentation
verification does not produce false negatives.

1If the topology description is not correct, the results of requirement verification does not necessarily
correspond to the real network. It does not however detract from the correctness of the verification
of the requirements with respect to the description.

81

Proof. (by contradiction)

We assume that algorithm S(A,B) to check the segmentation requirement of communica-
tion from A to B produces false negatives. I.e. S(A,B) yields False, but communications
between A and B is impossible, satisfying the segmentation requirement.

“A cannot communicate to B” ⇐⇒ ¬∃(A→ B) (B.5)

“S(A,B) yields False” ⇐⇒ (A⇒ B) 6= ∅
⇐⇒ ∃(A→ B) ∈ (A⇒ B) (B.6)

×××× (by B.3 ∧ B.5 ∧ B.6)

We conclude that the formal description of segmentation and the proposal resulting from
a composition with path selection produces expected results.

B.2. Control

B.2.1. False positives

A false positive for control would mean that the algorithm reports control over paths,
while there exist paths in the network described which are not under control. To prove:
the proposed control verification does not produce false positives.

Proof. (by contradiction)

We assume that algorithm C(A,B) to check the control criterion of communication be-
tween A and B produces false positives. I.e. C(A,B) yields True, but communications
from A to B traverse a node Q which violates the control criterion.

“Q is traversed between A and B” ⇐⇒ ∃(A→ B) : Q ∈ elements(A→ B)

⇐⇒ ∃Q ∈ elements(A→ B)(⊆ elements(A⇒ B))

⇐⇒ ∃Q ∈ elements(A⇒ B) (B.7)

“Q violates the control criterion” ⇐⇒ ¬φ(Q) (B.8)

“C(A,B) yields True” ⇐⇒ φ(A⇒ B)

⇐⇒ ∀(A→i B) ∈ paths(A⇒ B) . φ(A→i B)

⇐⇒ ∀(A→i B) ∈ paths(A⇒ B),

∀R ∈ elements(A→i B) . φ(R) (B.9)

×××× (by B.7 ∧ B.8 ∧ B.9)

82

B.2.2. False negatives

A false negative for control would mean that the algorithm fails to report control over
paths, while all paths in the network described are under control. To prove: the proposed
control verification does not produce false negatives.

Proof. (by contradiction)

We assume that algorithm C(A,B) to check the control criterion of communication be-
tween A and B produces false negatives. I.e. C(A,B) yields False, but communications
from A to B can only use nodes which adhere to the control criterion.

“Comms. from A to B use controlled nodes” ⇐⇒ ∀Q ∈ elements(A⇒ B) . φ(Q)
(B.10)

let U := {(A→i B)|(A→i B) ∈ paths(A⇒ B),¬φ(A→i B)} (set of unsafe paths)

“C(A,B) yields False” ⇐⇒ U 6= ∅
⇐⇒ ∃(A→ B) ∈ U . ¬φ(A→ B)

⇐⇒ ∃R ∈ elements((A→ B) ∈ U) . ¬φ(R)

⇐⇒ ∃R ∈ elements(A⇒ B) . ¬φ(R)
(B.11)

×××× (by B.10 ∧ B.11)

We conclude that the formal description of control and the proposal resulting from a
composition with path selection produces expected results.

B.3. Time to recovery

B.3.1. False positives

A false positive for time to recovery would mean that the algorithm incorrectly reports
that a network has a certain time to recovery, while this recovery time would not be
truthful for the network described. To prove: the proposed segmentation verification
does not produce false positives.

Proof. (by contradiction)

Let Tr(x) denote the time to recovery of an element x.

We assume that algorithm T(A,B,k) to compute the time to recovery for communication
between A and B produces false positives. I.e. T(A,B,k) yields k, but communications

83

from A to B always traverse some element Qi with larger time to recovery Tr(Qi) > k
(e.g. k in seconds).

“Qi is always traversed” ⇐⇒ ∀(A→i B) ∈ (A⇒ B) . ∃Qi : Qi ∈ elements(A→i B)
(B.12)

“All Qi have recovery time > k” ⇐⇒ ∀Qi : Tr(Qi) > k (B.13)

let slowestPaths := {maxTr(elem(K → L)) | (K → L) ∈ (A⇒ B)}
B.12 ∧ B.13 ⇐⇒ ∀E ∈ slowestPaths : Tr(E) > k

let fastestPath := minTr(slowestPaths)

⇐⇒ Tr(fastestPath) > k (B.14)

“T (A,B, k) yields True” ⇐⇒ Tr(fastestPath) ≤ k (B.15)

××××by B.14 ∧ B.15

B.3.2. False negatives

A false negative for time to recovery would mean that the algorithm fails to verify a
certain time to recovery, while this recovery time would be truthful for the network
described. To prove: the proposed time to recovery verification does not produce false
negatives.

Proof. (by contradiction)

We assume that algorithm T(A,B,k) to compute the time to recovery for communication
between A and B produces false positives. I.e. T(A,B,k) yields False, but communica-
tions from A to B can traverse some path with a better worst case recovery (≤ k).

“A path with better worst case recovery” ⇐⇒ ∃(A→ B) : (∀E ∈ elems(A→ B) : Tr(E) < k)

let slowestPaths := {maxTr(elem(K → L)) | (K → L) ∈ (A⇒ B)}
⇐⇒ ∃E ∈ slowestPaths : Tr(E) < k

let fastestPath := minTr(slowestPaths)

⇐⇒ Tr(fastestPath) < k (B.16)

“T (A,B, k) yields False” ⇐⇒ Tr(fastestPath) ≥ k (B.17)

××××by B.17 ∧ B.16

We conclude that the formal description of time to recovery and the proposal resulting
from a composition with path selection produces expected results.

84

Figure B.1.: Schematic display of the computation component of the path diversity al-
gorithm

B.4. Path diversity

To find possible ways to obtain false {positives, negatives} we examine Listing 4.4. Here
we find a composition three separate steps: pair creation, distinctness filtering and clique
finding. Figure B.1 gives a schematic view of the different steps, corresponding to the
code in Listing 4.4. In order, pairing expands, while distinctness filtering and clique
finding steps reduce the number of outputs.

The notion of expansion and reduction are important, because the simplest way to
look at false {positives, negatives} is a off-by-one error2, which has to be introduced
somewhere if it occurs. A false positive is essentially an additional path(-pair) which
does not correspond to a real path(-pair) in the description. Likewise, a false negative
is essentially a missing path(-pair) which exists in the description, but is somehow lost
during computation.

The sketch of the full proof is the following. For both false positives and negatives, there
are five components which can be the cause of error. By proving the absence of errors in
each of these components, we prove their absence from the whole. The five components
are:

1. path selection

2. pair generation

3. distinctness filtering

4. clique finding

2This assumption can be made without loss of generality. We opt for the k, k− 1 and k + 1 purely for
ease of understanding.

85

5. validation

Path selection and clique finding are both excluded from this examination, conform our
assumptions listed earlier in this section. Validation (Listing B.1) is extremely trivial:
it is nothing more than a comparison with k. Moreover, the absence of side-effects in
pure Haskell code combined with the type signature absolves us from any need to prove
that validation changes the number of path.

validateDiversity :: Int −> [[Path]] −> Bool
validateDiversity n pss = ((>=n) . length . head) pss

Listing B.1: the definition of validation (excerpt from Listing 4.4)

This leaves pair generation and distinctness filtering to be verified. Before individu-
ally addressing false {positives, negatives} we first back up a claim made earlier. In
Figure B.1 and its accompanying explanation we claimed that pair generation and dis-
tinctness filtering are respectively expanding and reducing the number of paths. We
employ a simple induction proof on the (already inductive) definitions of both functions.

1 pairs :: [Path] −> [(Path, Path)]
2 pairs [] = []
3 pairs (p:ps) = [(p,b)|b<−ps] ++ pairs ps

Listing B.2: the definition of pair generation (excerpt from Listing 4.4)

Proof. Listing B.2 shows the pair generation. We define the property α to mean “does
not decrease” with respect to the number of pairs. For the base case, namely the pair
generation of the empty list (line 1), it produces the empty list as output and α holds.
Assuming α holds for a list of length n, we now prove that this is also the case for an
input of length n+ 1, completing the induction step.

On line 2, we see that there is a pattern match on the input list, splitting it up in the first
path and the remaining paths (n, for this specific example). The first path is expanded
to a list of n tuples, with the first path as the first member of this tuple and each of
the n different paths as second member of the tuple. This list of pairs an expansion,
so α holds. Finally, this list is concatenated to the result of pairs with an input size
of n paths, for which we assumed α to hold. This concatenation is therefore also an
expansion, α holds and we are done.

1 −− | ’filter’, applied to a predicate and a list, returns the list of
2 −− those elements that satisfy the predicate; i.e.,
3 −−
4 −− > filter p xs = [x | x <− xs, p x]
5 filter :: (a −> Bool) −> [a] −> [a]
6 filter pred [] = []
7 filter pred (x:xs)
8 | pred x = x : filter pred xs

86

9 | otherwise = filter pred xs
(Code excerpt from the Haskell Prelude (BSD 3-clause, http://hackage.haskell.org/package/base-4.6.0.1/src/LICENSE))

Listing B.3: the definition of filter in the Haskell standard library (Prelude)

Proof. Listing B.3 shows the definition of filter (pred is our distinctness test, imple-
mented as a check for an empty intersection). We define β to mean “does not increase”
with respect to the number of pairs. For the base case, namely the distinctness filtering
of the empty list (line 6), it produces the empty list and β holds. Assuming β holds for
a list of length n, we now prove that this is also the case for an input of length n + 1,
completing the induction step.

On line 7, there is a pattern match on the input list, splitting it up in the first path
and the remaining paths (n, for this specific example). The first pair is checked for
distinctness using pred. On lines 8 and 9, a recursive call is made to filter the remaining
n pairs, but success of the pred call (line 8) causes the algorithm to prepend that path
to the end result, while failure (line 9) discards it. Clearly, β holds for both retaining or
discarding a pair. We assumed that β holds for the recursive call on n pairs. Finally, β
also holds for the prepend operation and we are done.

Having sketched the structure of the full proof and covered the common parts, we now
cover the specifics in two sections.

B.4.1. False positives

A false positive for path diversity would mean that the algorithm incorrectly reports
that there exist multiple independent paths (say, k paths), while these exist in the
description (say, k − 1 paths exist). To prove: the proposed path diversity verification
does not produce false positives.

Assuming the path selection is correct, this means an invalid path(-pair) is introduced in
one of the consecutive steps. Therefore, we reduce the above to the following. To prove:
none of the computation steps introduces invalid path(-pairs). After using our assump-
tions, two remaining parts of the composition remaining to be checked. Additionally, we
have shown previously that distinctness filtering does not increase the number of pairs
(and as such is unable to introduce invalid pairs), therefore, the only remaining source
of possible invalid path(-pairs) is the pair generation step.

However pair generation, by definition (see Equation 4.1), is the process of creating

all possible no-overlap relations (modulo ordering, i.e. k(k−1)
2 pairs for k paths), to be

consecutively checked by the distinctness filter. With this definition, there is no such
thing as an invalid pair. The only thing left to show is that pair generation does not
create new paths before pairing them. This can be trivially seen to be true in Listing B.2,
thereby completing the proof.

87

http://hackage.haskell.org/package/base-4.6.0.1/src/LICENSE

B.4.2. False negatives

A false negative for path diversity would mean that the algorithm incorrectly reports that
there do not exist multiple independent paths (say, k paths), while this the case in the
description (say, k + 1 paths exist). To prove: the proposed path diversity verification
does not produce false negatives. We will use the same method used in the previous
section to show that there can not be false negatives.

Assuming the path selection is correct, this means a path(-pair) is removed in one of
the consecutive steps. Therefore, we reduce the above to the following. To prove: none
of the computation steps removes valid path(-pairs). After using our assumptions, two
remaining parts of the composition remaining to be checked. As before, we have shown
previously that pair generation does not decrease the number of pairs (and as such is
unable to remove valid pairs), therefore, the only remaining source of possible valid pair
removal is the distinctness filtering step.

The only way that the filtering step removes a pair is when the intersection of its member
paths is non-empty, i.e. they are partly overlapping (Listing 4.4). At the same time, the
definition of a distinct pair is exactly the opposite, that its members have a non-empty
intersection (conform Equation 4.2). In summary, the distinctness filter is unable to
remove any valid pairs.

We conclude that the formal description of path diversity and the proposal resulting
from a composition with path selection produces expected results.

88

Appendix C.

Source code

C.1. NML

<?xml version=”1.0” encoding=”utf−8”?>
<rdf:RDF

xmlns:nml=”http://schemas.ogf.org/nml/2013/05/base#”
xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”

>
<!−− system −−>
<nml:Node rdf:about=”urn:ogf:network:rtsn.nl:2014:system”>
<nml:hasInboundPort>
<nml:Port rdf:about=”urn:ogf:network:rtsn.nl:2014:system:in”>
<nml:isSink rdf:resource=”urn:ogf:network:rtsn.nl:2014:link:edgeswitch−system”/>
<nml:encoding>100/1000BASE−T</nml:encoding>

</nml:Port>
</nml:hasInboundPort>
<nml:hasOutboundPort>
<nml:Port rdf:about=”urn:ogf:network:rtsn.nl:2014:system:out”>
<nml:isSource rdf:resource=”urn:ogf:network:rtsn.nl:2014:link:system−edgeswitch”/>
<nml:encoding>100/1000BASE−T</nml:encoding>

</nml:Port>
</nml:hasOutboundPort>

</nml:Node>
<!−− edgeswitch:Port1 −−>
<rdf:Description rdf:about=”urn:ogf:network:rtsn.nl:2014:edgeswitch”>
<nml:hasOutboundPort>
<nml:Port rdf:about=”urn:ogf:network:rtsn.nl:2014:edgeswitch:Port1:out”>
<nml:isSource rdf:resource=”urn:ogf:network:rtsn.nl:2014:link:edgeswitch−system”/>
<nml:encoding>100/1000BASE−T</nml:encoding>

</nml:Port>
</nml:hasOutboundPort>
<nml:hasInboundPort>
<nml:Port rdf:about=”urn:ogf:network:rtsn.nl:2014:edgeswitch:Port1:in”>
<nml:isSink rdf:resource=”urn:ogf:network:rtsn.nl:2014:link:system−edgeswitch”/>
<nml:encoding>100/1000BASE−T</nml:encoding>

</nml:Port>
</nml:hasInboundPort>

</rdf:Description>
<!−− system <−> edgeswitch −−>
<nml:Link rdf:about=”urn:ogf:network:rtsn.nl:2014:link:edgeswitch−system”/>
<nml:Link rdf:about=”urn:ogf:network:rtsn.nl:2014:link:system−edgeswitch”/>

89

</rdf:RDF>

Listing C.1: Sample NML

C.2. path selection

{−# LANGUAGE TupleSections #−}
module PathSelection.MultiLayerBreadthFirst (
multiLayerBreadthFirst
)where
import Control.Monad
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Maybe (MaybeT(..), runMaybeT)
import qualified Data.Map.Strict as Map
import qualified Data.Heap as Heap
import Data.Set (Set)
import qualified Data.Set as Set

import NML
import NML.Relations (expandForward, getParentNode)
import NML.Attributes
import NML.Query (getNetworkObjects)
import Util

−− | ’PathObject’ used in MinHeap, using distance for comparison.
data PathObject = PathObject { visitedLinks :: [NetworkObject] −− ˆ sequence of visited

edges
, labelStack :: [Label] −− ˆ current technology stack
, technologyStack :: [AdaptationFunction] −− ˆ current

technology stack
, distance :: !Int −− ˆ distance covered
, loopSet :: Set (NetworkObject, Maybe AdaptationFunction,

Maybe Label)
} deriving (Eq, Show)

instance Ord PathObject where
PathObject{distance=d1} ‘compare‘ PathObject{distance=d2} = d1 ‘compare‘ d2

currentNode :: PathObject −> NetworkObject
currentNode PathObject{visitedLinks=ns} = head ns

previousNode :: PathObject −> Maybe NetworkObject
previousNode PathObject{visitedLinks=ns} = safeHead =<< safeTail ns

type Source = NetworkObject
type Destination = NetworkObject

−− | wrapper for ’multiLayerBreadthFirst’’ returning [Path]
multiLayerBreadthFirst :: Source −> Destination −> NMLReader [Path]

90

multiLayerBreadthFirst = (liftM $ map (tail . reverse . visitedLinks)) .:
multiLayerBreadthFirst’

−− | multiLayerBreadthFirst algorithm (path selection in G l)
−− as published in
−− ”Path selection in mult−layer networks” by Kuipers, Dijkstra, 2008
multiLayerBreadthFirst’ :: Source −> Destination −> NMLReader [PathObject]
multiLayerBreadthFirst’ src dst = go [] (Heap.singleton (PathObject [src] [] [] 0 ls)) src dst −−

enter main loop with empty result and minHeap
where

ls = Set.singleton (src, Nothing, Nothing)

−− | loop until either heap is exhausted or we arrive at our
−− destination with an empty technologystack
go :: [PathObject] −> Heap.MinHeap PathObject −> Source −> Destination −>

NMLReader [PathObject]
go result heap src dst = case Heap.view heap of

Nothing −> return result −− Heap exhausted
Just (minPO, heap’) −> (checkDestination (currentNode minPO) dst) >>=

\arrived −>
if (arrived && (null $ technologyStack minPO))
−− found a possible path, add it to the result list
then go (minPO:result) heap’ src dst
else do let cur = currentNode minPO

let prev = previousNode minPO
−− use topology to determine next hops
next <− expandForward prev cur
−− foreach: extendpath
heap’’ <− foldr (f minPO) (return heap’)

next
−− recurse using updated heap
go result heap’’ src dst

f :: PathObject −> NetworkObject −> NMLReader (Heap.MinHeap PathObject) −>
NMLReader (Heap.MinHeap PathObject)

f p n h = extendPath p n >>= \extension −>
case extension of

Nothing −> h
Just p’ −> liftM2 Heap.insert (return p’) h

−− used to be:
−− extendPath :: PathObject −> (Link, Node) −> Maybe PathObject
extendPath :: PathObject −> NetworkObject −> NMLReader (Maybe PathObject)
extendPath p n = runMaybeT $ do

let visitedLinks’ = n:(visitedLinks p)

let distance’ = distance p + 1 −− this can be swapped for a more realistic distance metric

−− perform adaptation / de−adaptation check

91

adaptationFunction <− lift $ adaptationFunction n
let tStack = technologyStack p
technologyStack’ <− maybeZero $ case n of

(Service Adaptation) −> Just $ maybe (error $ ”Adaptation without
adaptationFunction property: ”++show n)

(:tStack) adaptationFunction
−− ˆ grow the technology stack with the technology in this Adaptation
(Service Deadaptation) −> maybe (error $ ”Deadaptation without

adaptationFunction property: ” ++ show n)
(\t −> if ((not $ null tStack) && t == head

tStack)
−− pop the technology stack with the technology in this Adaptation

then Just $ tail tStack
−− or short circuit Maybe monad to reject Path due to incompatibility

else Nothing) adaptationFunction
−− if this is not an adaptation, the stack does not change
−> Just tStack

−− perform label check
currentLabel <− lift $ label $ currentNode p
nextLabel <− lift $ label n
let lStack = labelStack p

−− we add the label for the current node to the stack if the extension is an adaptation
labelStack’ <− maybeZero $ case n of

(Service Adaptation) −> Just $ maybe (error $ ”Adaptation from Port
without label: ”++(show $ currentNode p)) (:lStack) currentLabel

−− grow the label stack with the label in this Adaptation
−> Just lStack

−− we do an deadaptation check if the current node is an deadaptation
−− by checking whether the extension’s label is already on the label stack
labelStack’’ <− maybeZero $ case currentNode p of

(Service Deadaptation) −> maybe (error $ ”Deadaptation to Port
without label: ”++show n)

(\l −> if ((not $ null labelStack’) && l ==
head labelStack’)

−− pop the label stack with the label in this Adaptation
then Just $ tail labelStack’

−− or short circuit Maybe monad to reject Path due to incompatibility
else Nothing) nextLabel

−− if this is not an adaptation, the stack does not change
−> Just labelStack’

−− check whether the triple (NetworkObject, Technology, Label) is already present in our
loopSet,

−− if so, we just looped back to our own path and we will not continue.
let loopTriple = (n, adaptationFunction , nextLabel)
loopSet’ <− maybeZero $ if loopTriple ‘Set.member‘ loopSet p

92

then Nothing
else Just $ Set.insert loopTriple $ loopSet p

−− return new PathObject, extended by one hop
maybeZero $ Just $ PathObject visitedLinks’ labelStack’’ technologyStack’ distance’

loopSet’

checkDestination :: NetworkObject −− ˆ current location
−> NetworkObject −− ˆ destination
−> NMLReader Bool −− ˆ whether or not the destination has been

reached
checkDestination loc dest@(Single Node) = liftM (maybe False (== dest)) $

getParentNode loc −− if the destination is a Node, check whether the current location has
that node as a ’parent’

checkDestination loc dest@(Group) = error ”checkDestination is undefined for Group’s”
checkDestination loc dest@(Service) = error ”checkDestination is undefined for Services”
checkDestination loc dest = return $ loc == dest

Listing C.2: Path selection using k-shortest multi-layer BFS

C.3. miscellaneous

module PropertyChecker (

Compute, ComputeM,
Validate,
computeProperty, verifyProperty,

selectPaths, stripPath,

segmentation, control, diversity, timeToRecovery,
validateSegmentation, validateControl, validateDiversity, validateTimeToRecovery

) where

import Control.Monad
import Control.Monad.Loops (dropWhileM)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Writer (tell)
import Data.Maybe (isNothing)

import NML
import NML.RDFRep
import NML.Relations (getParentNode)
import PathSelection.MultiLayerBreadthFirst
import Reduction.Segmentation
import Reduction.Control
import Reduction.Diversity
import Reduction.TimeToRecovery

93

import Util

−− | a computation on top of path selection
type Compute a = [Path] −> a
−− | a computation on top of path selection,
−− using knowledge of the topology (’NMLReader’)
type ComputeM a = [Path] −> NMLReader a
−− | a validation of a computation
type Validate a = a −> Bool

−− | Computation of a property for a source and destination,
−− using knowledge of the topology (’NMLReader’)
computeProperty :: (Show a) => ComputeM a −> NetworkObject −> NetworkObject −>

NMLReader a
computeProperty p = (p <=<) . selectPaths

−− | Validation of a property for a source and destination,
−− using knowledge of the topology (’NMLReader’)
validateProperty :: Validate a −> a −> NMLReader Bool
validateProperty = (return .)

−− | Verification of a property for a source and destination,
−− using knowledge of the topology (’NMLReader’)
−− verification = computation + validation
verifyProperty :: (Show a) => ComputeM a −> Validate a −> NetworkObject −>

NetworkObject −> NMLReader Bool
verifyProperty c v n1 n2 = validateProperty v =<< computeProperty c n1 n2

selectPaths :: NetworkObject −> NetworkObject −> NMLReader [Path]
selectPaths = (paths =<<) .: multiLayerBreadthFirst

stripPath :: NetworkObject −> NetworkObject −> [Path] −> NMLReader [Path]
stripPath s d = stripSourcePrefixes s >=> stripDestinationPostfixes d

stripSourcePrefixes :: NetworkObject −> [Path] −> NMLReader [Path]
stripSourcePrefixes s = mapM removePrefix

where
removePrefix :: Path −> NMLReader Path
removePrefix p = getParentNode s >>= \sourceParent −>

dropWhileM (\n −> getParentNode n >>= \parent −> return $
isNothing parent || parent == sourceParent) p

stripDestinationPostfixes :: NetworkObject −> [Path] −> NMLReader [Path]
stripDestinationPostfixes d ps = return . map reverse =<< stripSourcePrefixes d (map

reverse ps)

segmentation :: ComputeM [Path]
segmentation = liftM connectingPaths . return

94

control :: ComputeM [Path]
control = (verboseM’M ”unsafe paths” $ liftM2 annotateUnsafePaths getControlCriterium .

return) . liftM2 unsafePaths getControlCriterium . return

annotateUnsafePaths :: Criterium −> [Path] −> [[Either NetworkObject NetworkObject]]
annotateUnsafePaths f = map (map (\n −> if not $ f n then Left n else Right n))

diversity :: ComputeM [[Path]]
diversity = (verboseM’ ”number of distinct paths” (length . head)) . liftM2 distinctPaths

getMaximumCliqueSize . return

timeToRecovery :: ComputeM (NetworkObject, Cost)
timeToRecovery = (verboseM ”sample NetworkObject with worst recovery cost”) . liftM2

worstCaseRecoveryCost getCostFunction . return

Listing C.3: Combining computation and validation into verification

95

Bibliography

[1] Bloomberg. Vodafone dutch clients lose service after rotterdam fire.
http://www.bloomberg.com/news/2012-04-04/vodafone-reports-fire-in-

rotterdam-network-equipment-site.html, April 2012. Accessed: 2013-09-19.

[2] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission Control
Program. RFC 675, December 1974.

[3] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[4] Freek Dijkstra. Framework for path finding in multi-layer transport networks. PhD
thesis, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (FNWI), Uni-
versiteit van Amsterdam (UvA), 2009.

[5] Freek Dijkstra, Jeroen van der Ham, Paola Grosso, and Cees de Laat. A path finding
implementation for multi-layer networks. Future Generation Computer Systems,
25(2):142–146, 2009.

[6] International Organization for Standardization ISO. ISO/IEC 7498-1Information
technology — open systems interconnection — basic reference model: The basic
model. Technical report, June 1994.

[7] Fox-IT. Black Tulip report of the investigation into the diginotar certificate
authority breach. Technical report, August 2012. http://www.rijksoverheid.

nl/ministeries/bzk/documenten-en-publicaties/rapporten/2012/08/13/

black-tulip-update.html, accessed: 2013-09-19.

[8] Farabi Iqbal, Jeroen van der Ham, and Fernando Kuipers. Technology-aware multi-
domain routing in optical networks. 2013. (under submission, for a copy please
contact the first author).

[9] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[10] Fernando Kuipers and Freek Dijkstra. Path selection in multi-layer networks. Com-
puter Communications, 32(1):78–85, 2009.

[11] Fernando Kuipers, Turgay Korkmaz, Marwan Krunz, and Piet Van Mieghem. Per-
formance evaluation of constraint-based path selection algorithms. Network, IEEE,
18(5):16–23, 2004.

[12] Fernando A Kuipers. An overview of algorithms for network survivability. ISRN
Communications and Networking, 2012:24, 2012.

96

http://www.bloomberg.com/news/2012-04-04/vodafone-reports-fire-in-rotterdam-network-equipment-site.html
http://www.bloomberg.com/news/2012-04-04/vodafone-reports-fire-in-rotterdam-network-equipment-site.html
http://www.rijksoverheid.nl/ministeries/bzk/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update.html
http://www.rijksoverheid.nl/ministeries/bzk/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update.html
http://www.rijksoverheid.nl/ministeries/bzk/documenten-en-publicaties/rapporten/2012/08/13/black-tulip-update.html

[13] Mohamed Lamine Lamali, HéLia Pouyllau, and Dominique Barth. Path computa-
tion in multi-layer multi-domain networks: A language theoretic approach. Com-
puter Communications, 36(5):589–599, 2013.

[14] Simon Marlow. Haskell 2010 language report. Technical report, April 2010. http:
//www.haskell.org/onlinereport/haskell2010/, accessed: 2013-11-07.

[15] L. Martini, E. Rosen, N. El-Aawar, T. Smith, and G. Heron. Pseudowire Setup and
Maintenance Using the Label Distribution Protocol (LDP). RFC 4447 (Proposed
Standard), April 2006. Updated by RFCs 6723, 6870.

[16] Meral Shirazipour and Samuel Pierre. Multi-layer/multi-region path computation
with adaptation capability constraints. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–5. IEEE, 2010.

[17] J. van der Ham, F. Dijkstra, R. Lapacz, and Zurawski J. Network markup language
base schema version 1. Technical report, Open Grid Forum.

[18] Jeroen Van Der Ham, Freek Dijkstra, Paola Grosso, Ronald Van Der Pol, Andree
Toonk, and Cees De Laat. A distributed topology information system for optical
networks based on the semantic web. Optical Switching and Networking, 5(2):85–93,
2008.

[19] Virginia Vassilevska. Efficient algorithms for clique problems. Information Process-
ing Letters, 109(4):254–257, 2009.

[20] Li Xu, Freek Dijkstra, Damien Marchal, Arie Taal, Paola Grosso, and Cees De Laat.
A declarative approach to multi-layer path finding based on semantic network de-
scriptions. In Optical Network Design and Modeling, 2009. ONDM 2009. Interna-
tional Conference on, pages 1–6. IEEE, 2009.

[21] Jin Y Yen. Finding the k shortest loopless paths in a network. management Science,
17(11):712–716, 1971.

97

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/

Acknowledgements

This research would not have been possible without help and support from a number of
people, some of which I will explicitly mention here1.

First, I would like to thank my supervisors for their feedback and guidance. Jeroen, I
enjoyed our conversations and the ability to discuss options just after I envisioned them.
Henri, thanks for keeping me on-track and your coaching during our weekly calls. Pieter-
Tjerk, I am thankful for your trust in my ability to work independently abroad, on a
subject of my choice. I realise that giving a student the freedom to graduate externally,
on his own topic, and with the involvement of an (unconnected) fourth supervisor, was
quite a leap. I am very happy that it worked out the way it did. Finally, Boudewijn,
thank you for your insights and feedback, especially since your time was understandably
limited.

Second, for the awesome time in Dublin and their help in arranging this stay abroad, I
would like thank the people at Deloitte. In Dublin, the collegues in ERS in general and
the members of the security/forensics team in particular, for including me in daily office
life, making me feel at home right from the start. Sean Wills, thank you for your help
and feedback on “stylistic issues” :-). In the Netherlands, I owe a great deal of thanks to
Tom Schuurmans, Derek Wieringa and Marko van Zwam for giving me the opportunity
to work abroad. Deloitte NL financially supported this research while fully respecting
my independence, and allowed me to publish my full work under open (access) licenses.
For all of this I am very grateful.

Finally, I would like to thank Jeroen van Ingen, Dave Wilson and Andrew Mackarel for
the opportunity to discuss the practical impact of this work and their insights into prac-
tical network topology description. This work would not have been nearly as practical
if not for their openness and interest in new research.

1And with respect to the others, you know who you are!

98

Copyright

Unless otherwise indicated, copyright c©2013-2014 Maarten Aertsen

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Source code

The Haskell source code listed in this document originates from the netPropCheck pack-
age, which is licensed under the BSD 3-Clause License. The full license can be found
in the LICENSE file in the source distribution. netPropCheck can be obtained from
https://rtsn.nl/thesis/.

Quotations and figures from GFD-R-P.206

In Chapters 2 and 4 quotations and figures are used sourced from GFD-R-P.206 “Network
Markup Language Base Schema version 1” [17]. The following copyright statement
applies to that content.

Copyright c©Open Grid Forum (2008-2013). Some Rights Reserved.

This document and translations of it may be copied and furnished to oth-
ers, and derivative works that comment on or otherwise explain it or assist
in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included as references to the derived
portions on all such copies and derivative works. The published OGF doc-
ument from which such works are derived, however, may not be modified in
any way, such as by removing the copyright notice or references to the OGF
or other organizations, except as needed for the purpose of developing new or
updated OGF documents in conformance with the procedures defined in the
OGF Document Process, or as required to translate it into languages other
than English. OGF, with the approval of its board, may remove this restric-
tion for inclusion of OGF document content for the purpose of producing
standards in cooperation with other international standards bodies.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

99

http://creativecommons.org/licenses/by/4.0/
https://rtsn.nl/thesis/

	Introduction
	Problem description
	Research questions
	Main research question
	Sub questions

	Approach
	Outline of the thesis

	Literature
	Topology description
	Topology information
	Topology description
	NML

	Multi-layer path selection
	Link-constrained versus path-constrained
	Required properties
	Available algorithms
	Choice of algorithm and required changes

	Summary

	Operational requirements
	From expectation to requirement
	Motivating examples

	Relating operational requirements to topology descriptions
	Unsuitable requirements
	Suitable requirements

	Selected requirements
	Segmentation
	Control
	Time to recovery
	Path diversity

	Summary

	Proposal: verification using path selection
	Prerequisites
	Motivating the choice for path selection
	Breaking down verification
	Topology graph
	Notation

	Segmentation
	formal definition
	proposed algorithm

	Control
	formal definition
	proposed algorithm

	Time to recovery
	formal definition
	proposed algorithm

	Path diversity
	formal definition
	proposed algorithm

	Conclusion

	Validation
	Methodology
	Validation methodology
	Benchmark: manual verification of requirements
	Proof of concept: automated verification of requirements using netPropCheck
	Comparing results and reaching conclusions

	Choice of network
	Sample network
	Campus network
	Fit with characteristics
	Manual generation of a network topology description

	Sample requirements
	Segmentation
	Control
	Time to recovery
	Path diversity
	Conversion of the operational requirements

	Results
	Segmentation
	Control
	Time to recovery
	Path diversity

	Validation summary

	Conclusions
	Summary of results
	Future work
	Conclusion

	Literature review (research topics)
	Additional validation of the formal description of requirements
	Segmentation
	False positives
	False negatives

	Control
	False positives
	False negatives

	Time to recovery
	False positives
	False negatives

	Path diversity
	False positives
	False negatives

	Source code
	NML
	path selection
	miscellaneous

	Bibliography
	Acknowledgements
	Copyright

