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Abstract

In this thesis a design methodology based on mathematical transformations and Haskell was
investigated with a case study. The topic of the case study was the cochlea model, for which the
goal was to design a working implementation of the cochlea model on an FPGA. The case study
showed that the mathematical design methodology has advantages like faster development and
less error-prone transformations, because the transformations are in mathematical form and
can be verified. The CλaSH compiler which takes a subset of Haskell and compiles it into
VHDL is very useful in this design methodology as it automates the last step from Haskell to
VHDL. The cochlea model in its original form proved to be too large to fit on the selected
FPGA. However, a less complex and less precise version of the model, with a reduced number
of slices, led to an implementation which could fit on the FPGA.
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CHAPTER 1. INTRODUCTION

1 Introduction

Hardware design has always been a complex task considering the tradeoffs that have to be
made between speed, area and development time. Because the size of transistors has been
decreasing for a long time, thereby making larger designs possible, it is becoming an even
more complex task to design hardware correctly. Furthermore, the advent of FPGAs have
made hardware design more widespread, because they provide a low-cost solution for many
problems where a high-performance design is required. Therefore, it is vital to have a design
process with support for these tradeoff factors efficiency and development time.

In the field of hardware design the design problem often consists of a specification which is
written in a mathematical form. In order to end up with a synthesizable design the following
methodology is often used: generally, a model of this specification is created in, for example,
Matlab for validation, after which an implementation in a low-level language like C is created.
As a last step, the C code is made suitable for implementation on hardware, for example by
using it to write VHDL. This last step is usually done manually, but a lot of research currently
focuses on automating this C to hardware conversion [1]. Also, SystemC is often used to
translate the C code to as it provides slightly higher abstraction levels [2].

In order to see the possible advantages of a new design methodology, it is important to notice
the flaws of the current design methodology. Most importantly, in the translation between the
mathematical form and Matlab/C, a lot of important information is lost. Data dependencies,
essential information for parallelisation, are clearly present in a mathematical form, but cannot
be easily extracted from Matlab/C code [3]. Tools which automatically try to transform C
code to VHDL are often restricted to a small subset of C for which it is possible for the tools to
infer the data dependencies [1]. In other cases, the tool will generate either inefficient VHDL
or it will not be able to process it at all. When engineers work on manually translating the
C implementation in VHDL, they often have to infer these data dependencies from Matlab/C
code themselves. This is a cumbersome and error-prone task which can easily lead to the
introduction of bugs.

In this thesis we present a case study of a new design methodology which stays closer to
the mathematical realm and therefore preserves data dependencies from the beginning. We
discuss the complete design process starting from the mathematical description and ending
at the implementation on an FPGA and note the advantages and disadvantages that were
encountered. The fundamental idea behind the methodology is that the step to an imperative
language like Matlab/C is removed or at least postponed as long as possible. By staying in
the mathematical domain and doing transformations on mathematical formulas, it is possible
to validate every transformation and therefore to preserve proven correctness of the design as
long as possible. During the last step, the mathematical formulas are translated to Haskell,
a functional programming language, and CλaSH, a library and compiler on top of Haskell
to allow hardware descriptions and generation to VHDL [4]. Haskell has a large similarity
to mathematics because it is a functional language. Therefore, the transformation between
mathematics and Haskell/CλaSH is not very difficult, which further reduces the possibility of
introducing unwanted bugs in the implementation.

5



CHAPTER 1. INTRODUCTION

The specific case study that is presented is about the implementation of a model of the
cochlea. The cochlea is the auditory portion of the inner ear and a lot of research has previously
been done on obtaining accurate mathematical models of the cochlea. Several models exist,
some more complex than others, and in this case study we have chosen to focus on the one-
dimensional cochlea model with linear damping distribution [5]. INCAS3 is doing research on
the cochlea model itself as well as on the implementation on several different platforms and
on the use of the model for sound recognition. Investigating the implementation of the model
on an FPGA was a natural next step as the model has a large potential for parallel execution
and this is one of the areas in which FPGAs are strong. On top of that, because all processing
is done locally on the FPGA instead of processed in a data centre, there are less privacy issues
as not all data needs to be transmitted to a central server. Last, FPGAs are generally more
energy efficient than software and they provide a first step to an ASIC design which are even
more energy efficient. INCAS3 generally does hardware design using the traditional approach
with Matlab, C and VHDL, but is interested in the new approach as they have also observed
problems with the traditional approach.

Therefore, the purpose of this research is two-fold. First, a new design methodology using
CλaSH is tested with a case study to determine its strong and weak points. Second, by doing
this case study valuable information about the implementation of the cochlea model on an
FPGA is obtained. This allows us to formulate the reserach questions as follows:

• How well is the new design methodology and CλaSH suited for a large design project
like the cochlea model?

• Is the FPGA a suitable platform for implementation of the linear cochlea model in terms
of performance?

Factors that play a role in the first research question include the difficulties that arise when
doing the mathematical transformations, how well the speed/area tradeoff can be considered in
the early design stages with the mathematical formulas and if the current state of the CλaSH
implementation is stable enough for a case study this size. For the second research question,
the main factors are whether or not there is enough parallelism to exploit and whether the
algorithm is not too complex to fit on an FPGA. As this is largely dependent on conditions
like the type of FPGA and settings of the algorithm, we have formulated several specific
implementation conditions which can be found in chapter 6.

This thesis is divided into several chapters. In the next chapter, an introduction and reason-
ing will be given to the mathematically based design methodology and hardware description
language CλaSH. Chapter 3 gives an introduction to the cochlea and the linear model as
described in literature. Chapter 4 is dedicated to one part of the algorithm where a tridiagonal
system of equations needs to be solved. This chapter investigates different methods of solving
the system. After a method to solve the system of equations has been chosen, it is possible
to formulate the complete algorithm with recurrence relations and apply transformations to
make it suitable for implementation on an FPGA. The transformations are described in chap-
ter 5. Implementation specific issues are discussed in chapter 6 and results of simulations and
synthesis are given in chapter 7. The thesis is concluded with a discussion of the results and
a conclusion in chapter 8 and chapter 9.
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CHAPTER 2. CλASH AND FUNCTIONAL HARDWARE DESIGN

2 CλaSH and functional hardware design

This chapter provides an introduction to the functional hardware design methodology using
CλaSH. The first two sections focus on the design methodology and the theoretical advantages
while the third section introduces CλaSH as a hardware description language.

2.1 Flaws in current design methodology

Traditionally, the hardware design methodology, especially in the signal processing domain,
consists of several steps from specification to VHDL. Several improvements and abstraction
layers have been suggested over the years, but the concept remains the same [2]. A graphical
representation of this design methodology can be found in figure 2.1. The process always starts
with a specification that needs to be implemented on hardware. The specification is often
written down in a purely mathematical way. As a first step, this mathematical specification is
converted to sequential code in a language like C. The main problem with this conversion is that
the semantics of a C-like language do not match the semantics of the original mathematical
specification. Because of this, a translation between the two is not straightforward. The largest
difference between the two is called referential transparancy versus referential opaqueness [6].
In mathematics, expressions with the same parameters always yield the same result. Therefore,
it is possible to replace an expression with its value. It is said to be referentially transparent.
This is not the case in C, as expressions can have side-effects and they can yield different results
each time they are evaluated. It is said to be referentially opaque. To validate correctness of
the translation between mathematics and C, extensive verification is required. After the design
has been verified, the second step is to translate the C-like language to RTL-style VHDL or
Verilog code. Again, the semantics of VHDL and C-like code do not match, which leads to
more time-consuming verification and the possible introduction of unwanted design faults.

Mathema�cal 

specifica�on

Sequen�al 

Matlab or C 

code

VHDL code

Change of seman�c domain twice!

Not a straigh"orward 

transforma�on

Figure 2.1: The traditional design methodology
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CHAPTER 2. CλASH AND FUNCTIONAL HARDWARE DESIGN

Thus, the main flaw in the current design methodology is the need to change semantic domain
twice: first from mathematics to sequential C-like code, then from C-like code to RTL-style
VHDL or Verilog. Because the translation between these domains is not straightforward,
extensive verification has to be performed. Also, the intermediate sequential C-like code is
not strictly needed in the design process. This intermediate step mostly exists due to the fact
that generally some implementation of the algorithm in software is required for verification,
and that the most-used languages for software are sequential C-like languages. This generally
makes it the first choice for implementation in software. However, these kind of languages are
not suited for translation to hardware, because, as mentioned in the previous paragraph, there
is a semantic mismatch between C-like languages and VHDL.

Therefore, we would like to have a methodology which includes the possibility to verify a
software version of the algorithm, but not with a sequential C-like language. We would like
to avoid the semantic mismatch, as discussed in the previous paragraphs, to reduce the effort
required for verification and to reduce the possibility of introducing design faults.

2.2 Functional hardware design

The design methodology that is tested in this thesis is based on the functional programming
language Haskell and the CλaSH compiler [7] [4]. A graphical representation of this method-
ology can be found in figure 2.2. It allows for software testing of the algorithm, but does
not have the disadvantage of having to manually switch semantic domain twice. Instead, the
mathematical specification can be rather straightforwardly converted to a Haskell program.
The conversion between the mathematical specification and Haskell is less error-prone than
the conversion between the specification and a C-like language, because the semantics of
Haskell and mathematics largely match. Haskell has referential transparancy and functions in
Haskell only specificy true data-dependencies, just like mathematical functions, which means
that parallelism remains exposed. This is important, as in the transformation to hardware this
parallelism needs to be exploited. In programs written in C, the designer needs to manually
introduce parallelism again.

Mathema�cal 

specifica�on

Haskell / CλaSH 

code
VHDL codecompiler

Apply transforma�ons

Either automa�c or fairly 

straigh"orward conversions

Figure 2.2: The functional design methodology

Of course, an evaluation model is needed in order to execute Haskell functions on a processor.
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CHAPTER 2. CλASH AND FUNCTIONAL HARDWARE DESIGN

A processor is sequential in nature and the GHC compiler (Glasgow Haskell Compiler), the
most widely used compiler for Haskell, can be used to compile Haskell programs to code which
runs on a processor. This step is thus done automatically instead of manually in the case of
translating the mathematical model to C.

When the mathematical specification has been translated to Haskell, the next step is to find
transformations on the specification for optimizations. These transformations can be written
down mathematically, allowing us to prove the correctness of the transformations at any point
in the design process. Transformations can be as simple as operand interchangement of
associative functions, but more complex transformations can also be done some of which
are used and described in chapter 5.

The resulting specification in Haskell can then be given to the CλaSH compiler, which takes
a subset of Haskell as input and produces VHDL-code of that design as output. Once the
VHDL-code is obtained, it can be used with standard synthesis tooling. The choice for VHDL
as output is solely made, because of the large number of existing synthesis tools.

As can be seen in figure 2.2, the big advantage of this methodology is that every step in the
process is either performed by the compiler, mathematically provable or fairly straightforward.
This is a huge advantage over the old methodology in figure 2.1, where both steps need to be
done manually and are not straightforward at all.

2.3 CλaSH

CλaSH is the compiler which takes a Haskell program and translates it to VHDL. Not every
Haskell program can be translated to VHDL though. Only a subset of Haskell is supported in
the current CλaSH version. Restrictions include fixed-point calculations only, no recursion and
vectors are used instead of lists. This section aims to introduce CλaSH with a small example
of a FIR-filter as also described in [3].

2.3.1 The functions map, zipWith and fold

In the functional programming language Haskell there are three functions which are used very
often. These three functions operate on lists and all of them also take a function as one of their
arguments, which means they are higher order functions. The functions are: map, zipWith
and fold.

The function map takes a function f as input and a list of elements xs and applies the function
f to every element in xs. The function f takes one input of type a and outputs a value of
type b (possibly a equals b). Thus, the type of map is:

1 map :: (a -> b) -> [a] -> [b]

x0 x1 · · · xn−1

f f · · · f

w0 w1 · · · wn−1

9
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The function zipWith is similar to map, except that it takes a binary function f as input and
two lists, xs and ys, instead of one. It then applies the function f pairwise to every element
in xs and ys: it zips them together. The type of zipWith is:

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

x0 x1 · · · xn−1y0 y1 yn−1

∗ ∗ · · · ∗

w0 w1 · · · wn−1

The function fold reduces a list of elements to a single value. In order to that, it takes a
list of elements xs to reduce, a starting value z and a function f which takes two inputs and
produces one output. Reduction will start at on end of the list and at each step the result of
the last element and the next element will be the input to the function f. The type of fold
is:

fold :: (a -> b -> a) -> a -> [b] -> a

w0 w1 · · · wn−1

+ + · · · +0 z

2.3.2 The filter

A FIR-filter is defined mathematically as follows:

yt =
∑

N−1
i=0 xt−i · hi

Figure 2.3: Structure of a FIR-filter

Essentially, the filter takes the dot-product of a coefficients vector h and a vector of the
same size containing consecutive samples of the input stream x. We can use the fold and
zipWith to define a function for the dot-product (note the v in front of the functions to
indicate that they are CλaSH functions):
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CHAPTER 2. CλASH AND FUNCTIONAL HARDWARE DESIGN

dotp xs hs = vfoldl (+) 0 (vzipWith (*) xs hs)

The FIR-filter can then be defined as:

fir coeffs xs = ys
where
ys = dotp coeffs wxs
wxs = window xs

The window function takes sufficient values from the input stream xs to match the size of
coeffs. It then applies to dot-product function to produce the result of the filter.
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CHAPTER 3. THE COCHLEA

3 The cochlea

3.1 The real cochlea

The word cochlea is the classical Latin word for inner ear. The human ear, or any mammalian
ear for that matter, can be divided into three parts: the outer ear, the middle ear and the inner
ear. A schematic of the complete human ear can be found in figure 3.1. Sound waves travel
through air into the external auditory canal, which is part of the outer ear. The middle ear,
with the malleus and incus acts as a conversion between the sound pressure in air in the outer
ear and fluid displacement in the inner ear. The cochlea then converts this fluid displacement
into signals that travel to the brain.

Figure 3.1: Schematic of the human ear [8]

3.1.1 Structure

The cochlea has the form of a spiral in which waves propagate from the base, located near
the middle ear, to the apex at the center of the spiral. At the base there are two openings, of
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CHAPTER 3. THE COCHLEA

which the upper one is oval and the lower one round. The main parts of the cochlea include
(see figure 3.2):

• The scala vestibuli, the scala which lies superior to the cochlear duct. This has the oval
window at the base.

• The scala tympani, the scala which lies inferior to the cochlear duct. This has the round
window at the base.

• The scala media, also called cochlear duct, which lies in between the scala vestibuli and
scala tympani. It has a high potassium ion concentration.

• The helicotrema, the location where the scala vestibuli and scala tympani merge at the
apex.

• The basilar membrane, the membrane that seperates the scala media from the scala
tympani.

• The Reissner’s membrane, the membrane that seperates the scala media from the scala
vestibuli.

• The Organ of Corti, the part taking care of the transduction mechanism. It is located
on the basilar membrane. The mechanics of this are complex and not relevant for this
thesis and will thus not be discussed further.

Figure 3.2: Structure of the cochlea [5]

For the model that is described in the next section, the important part of the cochlea is the
basilar membrane together with the Organ of Corti. These two together are called the cochlear
partition.

It is important to understand the general concept of the cochlea. Figure 3.3 illustrates that the
basilar membrane is sensitive to different frequencies at different locations of the membrane.
When a high frequency serves as input, the basilar membrane will react close to the base,
while for low frequencies it will react close to the apex. Thus, the speed and displacement of
the basilar membrane at a certain point can serve as an interpretation of the frequency of the
input signal.

13



CHAPTER 3. THE COCHLEA

Figure 3.3: Structure and frequency response of the cochlea

3.2 The cochlea model

Several models of the cochlea exist [5] [9] [10]. In this section, a visual approach will be given
for the models with linear and non-linear damping distribution as described by Duifhuis [9].

Both models are a drastical simplification of the real cochlea, because the real cochlea is a
very complex organ. A drawing of the model can be found in figure 3.4. Simplifications of the
real cochlea compared to the model include:

• The cochlea is rolled out. Instead of a spiral form, it is now stretched out in one
dimension.

• The scala media and scala vestibuli are lumped together. The exact reason why this is
possible is out of the scope of this thesis, but is based on the properties of the Reissner’s
membrane and the hydromechanical properties of the different fluids.

• The cochlea ducts have rigid walls. Communication can only happen through its oval
and round windows.

• The cross-sectional areas of the ducts are assumed to be constant over length and are
approximated by rectangles.

• The fluid is assumed to be inviscid and linear.

• The cochlear partition is assumed to be split up in small sections. Every section can
be modelled as a mass-spring-damper system with different parameters. Thus, every
section has a different resonance frequency.

Until here, the linear and non-linear version of the model are equivalent. The difference between
the two arises with the damping distribution. The damping distribution can be modelled linearly
or non-linearly. The linear and non-linear distribution can be found in figure 3.5. It specifies
the velocity of the membrane on the x-axis versus the damping force on the y-axis. The model
that is implemented in this thesis has linear damping distribution.

14



CHAPTER 3. THE COCHLEA

Figure 3.4: The simplified linear cochlea model [5]

One part that has been left unspecified yet is the input to the model. Sound waves first travel
through the outer ear and middle ear before arriving at the cochlea. Therefore, even though
the model only treats the cochlea, it is still important to have an idea of what happens to
the sound waves before they reach the cochlea. The effect of the outer ear is assumed to be
negligible and is thus ignored in the model. The middle ear has a simple mechanical transfer
and is thus assumed to be linear in this model. Within INCAS3, there is currently research
on the effects of the middle ear on the input, because it can be modelled more precisely than
a linear transfer. However, for simplicity the model described here uses the linear transfer
function.

3.2.1 Mathematical approach to the model

This section describes the model with mathematical equations in terms of an electrical circuit.
The previous section stated that the cochlea can be split in partitions where every partition
can be modelled as a mass-spring-damper system. Mathematically, this is equivalent to an
RLC-circuit: an electrical circuit containing of a resistor, inductor and a capacitor. As most
of the audience of this thesis will be more familiar with electrical circuits, the model will be
described in terms of an RLC-circuit.

15



CHAPTER 3. THE COCHLEA

Figure 3.5: Example of damping distributions for both the non-linear model (a) and linear
model (b) [10]

Examining this circuit leads to equations for the pressure at different points of the membrane.
These equations are made dimensionless in order to bring all values within a small range to
facilitate calculation in fixed point. Then, the equations for calculating the speed and distance
of the membrane when the pressure is known are given. These are also made dimensionless.
These equations still have a partial differential, thus they have to be discretized. The result of
this discretization is a set of discretized recurrence relations for the speed and distance of the
membrane.

Electrical equivalent

Van den Raadt describes the model as an RLC-circuit with N+1 oscillators [5]. Every oscillator
corresponds to one of the small sections of the cochlear partition. An oscillator has a current
through it. The current defines the speed of the membrane at that point. The charge (integral
of the current/speed) defines the relative distance of one point of the membrane to position
zero. We are interested in these two values for every oscillator in the membrane. The positions
n = 0 (input signal) and n = N (last oscillator) are handled somewhat differently, thus in this
section we only focus on the oscillators between the first and last position, which means that
0 < n < N . For the mathematical derivation for n = 0 and n = N we refer to Van den Raadt
[5].

One such oscillator can be described by the network in figure 3.6. With some circuit equations
this can be rewritten to the simplified version in figure 3.7. While the figure suggests an
electrical network, the names in the figure correspond to values in the actual model. Note that
even though we use electric-domain analogy, we retain the mechanical-domain variable names.
The following are used in the figures:

Note that the only thing that couples two oscillators is the fluid movement. Writing Kirchhoff
Voltage Law (KVL) and Ohms law equations for point n in figure 3.7, using the definition of
an inductor, gives us the voltage over two of the inductors:

pn−1 − pn = 2mc
∂U+

n−1

∂t
(3.1)

pn − pn+1 = 2mc
∂U+

n

∂t
(3.2)
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Name Electrical equivalent Mechanical definition
Un current through point n

downwards
speed of the membrane at

Yn charge at point n position of the membrane at oscillator n
U+
n−1, U

+
n electrical current fluid flowing to point n from the left and current

flowing to point n+ 1 from the left respectively
pn−1, pn, pn+1 voltage at said points membrane pressure at said points
mc induction acoustic mass of the cochlea fluid between two os-

cillators
m induction acoustic mass of oscillator n of the membrane
dn resistance damping at oscillator n
sn capacitance area of oscillator n

Table 3.1: Variable names and their electrical-domain equivalents

mc mc

mc

m

dn

sn

mc

U-
nU-

n-1

Un

U+
n-1 U+

n
p+

n
p+

n+1p+
n-1

p-
n-1 p-

n+1

p-
n

Cochlear Partition

Scala Vestibuli

Scala Tympani

Figure 3.6: Oscillator for 0 < n < N

Subtracting equation (3.2) from equation (3.1) and using Kirchoff Current Law, which states
that the sum of the currents flowing from/to a node needs to be zero, leads to:

pn−1 − 2pn + pn+1 = 2mc
∂Un

∂t
(3.3)

This can be simplified further by first writing the voltage at point pn as the sum of the voltage
over the capacitor, resistor and inductor with inductance m:

pn = m
∂Un

∂t
+ dnUn + sn

∫
Un dt (3.4)

Here we define the last part of this equation as Gn, because it will make the final expression
of the formulas more neat. Therefore, Gn becomes:

17



CHAPTER 3. THE COCHLEA

2mc 2mc

m

dn

sn

Un

U+
n-1 U+

n
pn

pn+1pn-1

Figure 3.7: Simplified oscillator for 0 < n < N

Gn = dnUn + sn

∫
Un dt (3.5)

= dnUn + snYn (3.6)

And Gn is substituted in equation (3.4):

pn = m
∂Un

∂t
+Gn (3.7)

Slightly rewriting this with basic algebra leads to an equation for ∂Un
∂t :

∂Un

∂t
=

pn −Gn

m
(3.8)

Equation (3.8) can be substituted into our previous equation (3.3):

pn−1 − 2pn + pn+1 = 2mc
pn −Gn

m
(3.9)

pn−1 − 2pn + pn+1 = 2
mc

m
pn − 2

mc

m
Gn (3.10)

pn−1 − 2(1 +
mc

m
)pn + pn+1 = −2

mc

m
Gn (3.11)

Equation (3.11) is the main equation that needs to be solved in order to calculate pn. There is
one such equation for every oscillator in the model, thus for every 0 < n < N . The structure
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of the computation is already becoming clearer at this point. First, Gn can be calculated
using state variables Un and Yn for every 0 < n < N . Then, the right hand side can be
calculated completely by multiping with −2mc

m . Once this is known, we have to solve all these
equations as a system of linear equations. The result of this computation yields all values pn.
As mentioned before, there is also an oscillator at n = N and an input signal at n = 0. These
are handled a little bit differently, but the principle is the same. It results in one large system
of equations for 0 ≤ n ≤ N for a total of n+ 1 equations.

Dimensionless equations

These equations contain values with a large range. Some, like the time step for example have
a value of 10−3, while others have much lower values. In order to perform the calculations
more precise it is essential that the dynamic range of all values is as small as possible. This
can be done by dividing the equations by some predefined constants with the same dimension.
Afterwards, the equations are said to be dimensionless. Van den Raadt defines the following
variables and chose a suitable value by using experimental data [5]. We use the tilde on top
of a parameter to indicate that it is dimensionless. For example, ϕ̃n is the dimensionless
counterpart of ϕn. Parameters with a hat are used to indicate that these are used to make
equations dimensionless.

t̂0 = 1 · 10−3s (3.12)

x̂0 = 35 · 10−3m (3.13)

ŷ0 = 1 · 10−9m (3.14)

The t̂0 is used to make the quantity of time dimensionless. The x̂0 is used to make the static
quantities for the length of the basilar membrane dimensionless, like the ∆X which arises
when discretizing the cochlea. To make the dynamic quantities dimensionless, like speed and
pressure of the membrane, ŷ0 is used. For the full derivation, we refer to Van den Raadt [5].
In this document we present their main findings with a short derivation.

First, we define ϕ as:

ϕn =
pn
ms

(3.15)

ϕn has unit m
s2
, because mc is a model parameter with unit m and pn is in Pascal (see Van

den Raadt for derivation), thus in order to make it dimensionless it needs to be multiplied with
t̂20 and divided by ŷ0. Defining ϕ̃ as the dimensionless ϕ, we get:

ϕn =
ŷ0

t̂20
ϕ̃n (3.16)

Now we expand our previous definition of Gn (equation (3.6)):

Gn = dnUn + snYn (3.17)

= dn · bBM ·∆X · un + sn · bBM ·∆X · yn (3.18)
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In this formula, bBM is the width of the basilar membrane, ∆X the distance between two
oscillators and un (unit m

s ) and yn (unit m) respectively the speed and distance per area of
the basilar membrane.

We can make equation (3.18) dimensionless by making the following terms in the equation
dimensionless:

yn = ŷ0ỹn (3.19)

∆X = x̂0∆X̃ (3.20)

t = t̂0t̃ (3.21)

d

dt
=

1

t̂0

d

dt̃
(3.22)

And using equation (3.19) and equation (3.22), un can also be made dimensionless:

un =
dyn
dt

=
ŷ0

t̂0

d

dt̃
ỹn (3.23)

=
ŷ0

t̂0
ũn

These can be substituted into equation (3.18) to obtain a new equation for Gn:

Gn = bBM · x̂0 · ŷ0 ·∆X̃(
dn

t̂0
ũn + snỹn) (3.24)

Using this new definition of Gn (unit m2

s2
), we define the dimensionless gn:

gn =
t̂20
ŷ0

· Gn

ms
(3.25)

As a last step before introducing our final equation for the normalized pressure ϕ̃n, we note
that 2mc

m can be normalized to:

2mc

m
= α2

xn
∆X̃2 (3.26)

We refer to Van den Raadt voor de full derivation for this step. The important part is that
αxn is a parameter which depends on several other parameters in the model, like membrane
width, density of the cochlear liquid and the area of one oscillator.

It is now possible to substitute equations (3.15), (3.16), (3.25) and (3.26) into equation (3.11)
to obtain the dimensionless equation for ϕ̃n for 0 < n < N :

ϕ̃n−1 − (2 + α2
xn
∆X̃2)ϕ̃n + ϕ̃n+1 = −α2

xn
∆X̃2gn (3.27)

With gn defined as:

gn =
bBM · x̂0 ·∆X̃

ms
· (dnt̂0ũn + snt̂

2
0ỹn) (3.28)
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System of equations

Just like equation (3.11), equation (3.27) results in a system of N + 1 equations (with n = 0
and n = N slightly different than shown here, but similar in principle) that can be solved
by any method of solving systems of equations. Van den Raadt proved that the system is
diagonally dominant. Furthermore, because every equation in the system only depends on its
neighbours, it is a tridiagonal matrix system which can be solved efficiently. The resulting
matrix-vector equation can be written as:

A · ϕ̃ϕϕ = rrr (3.29)

Here, the right-hand side rn and the main diagonal an of A (for 0 < n < N) are defined as:

rn = −α2
xn
∆X̃2gn (3.30)

an = −(2 + α2
xn
∆X̃2) (3.31)

The matrix A is defined as:

A =



−(1 + α0∆X̃01) 1 0 0 0
1 a1 1 0 0

. . .
. . .

. . .

0 1 an 1 0
. . .

. . .
. . .

0 0 1 aN−1 1

0 0 0 1 −(1 + α2
xN

∆X̃2 + 4x̂0∆X̃
πh+4x̂0∆X̃


(3.32)

The two diagonals next to the main diagonal of A are filled with 1, which shows the dependency
on the neighbour oscillator, while the rest of the matrix is 0. Different methods to solve this
system of equations are discussed in chapter 4.

Equations to integrate

The result of solving the system of equations will be the dimensionless pressure for every
oscillator, ϕ̃n. Now, this result can be used to calculate the speed Un and distance Yn. Recall
equation (3.7):

pn = m
∂Un

∂t
+Gn (3.33)

This equation can be rewritten to:

∂Un

∂t
=

pn −Gn

m
(3.34)

(3.35)
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Also, as Yn is defined as the integral of Un, we have:

∂Yn
∂t

= Un (3.36)

Equations (3.34) and (3.36) need to be made dimensionless again. Again, for full details of
this step see the document by Van den Raadt.

Equation (3.34) can be made dimensionless by substituting equations (3.16), (3.22), (3.23)
and (3.25) and simplifying the resulting expression. This results in:

∂ũn

∂t̃
= ϕ̃n − gn (3.37)

Equation (3.36) for Yn can be made dimensionless by substituting equations (3.19), (3.22)
and (3.23) and simplifying the resulting expression. This results in:

∂ỹn

∂t̃
= ũn (3.38)

Thus, now we have the two dimensionless equations which need to be integrated over time.
These equations are for oscillators at position 0 < n < N . The equations for n = 0 and
n = N are slightly different, but have a similar form. For these equations we refer to Van den
Raadt.

3.2.2 Discretized recurrence relations

The current model is already discretized for space: the basilar membrane is divided into sections
where every section is modelled by an RLC-circuit as described in the previous section. However,
the model is not discretized for time yet. Equations (3.37) and (3.38) contain integrals over
time which need to be discretized in order to compute them.

To discretize these equations, we first recall the definition of the partial differential operator:

∂f(t)

∂t
= lim

∆t→0

f(t+∆t)− f(t)

∆t
(3.39)

A simple method of discretizing this partial differential operator is by taking a sufficiently small
value for ∆t to obtain an estimate of above equation without the limit. This method can be
applied to equation (3.37) and (3.38) to eliminate the partial differential. As values like ũn
and ỹn also depend on the time, t̃, we write ũt̃,n and ỹt̃,n from now on to make it explicit:

∂ũt,n

∂t̃
= ϕ̃t̃,n − gt̃,n =⇒

lim
∆t̃→0

ũt̃+∆t̃,n − ũt̃,n

∆t̃
= ϕ̃t̃,n − gt̃,n (3.40)
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∂ỹt,n

∂t̃
= ũt̃,n =⇒

lim
∆t̃→0

ỹt̃+∆t̃,n − ỹt̃,n

∆t̃
= ũt̃,n (3.41)

By choosing ∆t̃ small enough, we can obtain the discretization of time. This leads to a
sequence of time steps. To simplify notation further, we now use the t as an integer indicating
the time step. Thus, timestep t and t + 1, to consecutive timesteps, differ by ∆t̃ in actual
dimensionless time. This leads to:

ũt+1,n − ũt,n

∆t̃
= ϕ̃t,n − gt,n =⇒ (3.42)

ũt+1,n = ũt,n +∆t̃ · (ϕ̃t,n − gt,n)

ỹt+1,n − ỹt,n

∆t̃
= ũt,n =⇒ (3.43)

ỹt+1,n = ỹt,n +∆t̃ · ũt,n

These two equations are the discretization of equation (3.37) and (3.38), which means that
we now have a fully discretized model for the cochlea. For completeness, let us recap all
recurrence relations now. Note that all recurrence relations are now indexed both for time, t,
and space, n. The boundaries for t and n are specified for all recurrence relations. Wherever
the equations for n = 0 and n = N are equal to those for 0 < n < N , the boundaries reflect
that. The boundary is set to 0 < n < N wherever the equations are not equal. In this case,
we specify the relation for n = 0 and n = N , but do not give a formal derivation. We refer to
Van den Raadt for the derivation of the equations for n = 0 and n = N .

Note that we have equations for gt,n, rt,n, ˜ϕt, n, ut,n and yt,n. The dependencies between
these different equations is visualized in figure 3.8.

calc gt calc ϕtcalc rt rt
calc ytcalc utgt ϕt

ut-1

yt-1

ut

yt

Figure 3.8: The data dependencies for different time steps between the equations

At timestep t = 0, all values are zero. For the electrical equivalent: current and charge are
zero everywhere.
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ũ0,n = 0 0 ≤ n ≤ N (3.44)

ỹ0,n = 0 0 ≤ n ≤ N (3.45)

The values for the next step are then given by the following recurrence relations:

The relationship for gt,n

Recall equation (3.28):

gn =
bBM · x̂0 ·∆X̃

ms
· (dnt̂0ũn + snt̂

2
0ỹn) (3.46)

In order to simplify the equations, we define:

Un =
bBM · x̂0 ·∆X̃

ms
· dnt̂0 0 < n ≤ N (3.47)

Yn =
bBM · x̂0 ·∆X̃

ms
· snt̂20 0 < n ≤ N (3.48)

Both Un and Yn are only dependent on n and are constant over time, which is why they are
only indexed with n. The equation for n = 0 is not shown, but is similar. Substituting this in
(3.28) and adding the index over time for g, we get:

gt,n = Un · ũt−1,n + Yn · ỹt−1,n t ≥ 1 ∧ 0 ≤ n ≤ N (3.49)

The relationship for rt,n

We define rt,n to be the right-hand side of the system of equations that needs to be solved at
a given timestep. Recall equation (3.27):

ϕ̃n−1 − (2 + α2
xn
∆X̃2)ϕ̃n + ϕ̃n+1 = −α2

xn
∆X̃2gn (3.50)

First, we define Rn for simplicity, just like Un and Yn were defined. See Van den Raadt for
the calculation of Rn for n = 0 and n = N . For now, we assume that these values exist.

Rn = −α2
xn
∆X̃2 0 < n < N (3.51)

The first oscillator n = 0 is handled differently than the other elements here, because it takes
into account the current input it. Substituting Rn into (3.27):

rt,0 = R0 · (it + gt,0) t ≥ 1 (3.52)

rt,n = Rn · gt,n t ≥ 1 ∧ 0 < n ≤ N (3.53)
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Solving the equation

With the relation for the right-hand side given, it is now necessary to solve the system of linear
equations. Several methods exist which are discussed and compared in chapter 4. For now, it
is important to understand that the following equation needs to be solved for ϕ̃t (see equation
(3.29)), where A is a tridiagonal matrix, rrrt a vector for all values of rt,n at a certain timestep

and ϕ̃ϕϕt a vector for all values of ϕ̃t,n which need to be calculated.

A · ϕ̃ϕϕt = rrrt t ≥ 1 (3.54)

The relationship for ut,n

The discretized equations for ut,n is already given in equation (3.43). Recall that ut,n represents
the speed of the membrane at point n. One minor adjustement is made to the equation for
ut,n. Vn is defined (ms and msm are parameters of the model):

V0 =
ms

msm
·∆t̃ (3.55)

Vn = ∆t̃ 0 < n ≤ N (3.56)

This is substituted into equation (3.43). Note that the the case for n = 0 is different, as it
also takes into account the input.

ũt,0 = ũt−1,0 + V0 · (ϕ̃t,0 − gt,0 − it) t ≥ 1 (3.57)

ũt,n = ũt−1,n + Vn · (ϕ̃t,n − gt,n) t ≥ 1 ∧ 0 < n ≤ N (3.58)

The relationship for yt,n

The equation for yt,n, the displacement of the membrane at point n, remains equal to equation
(3.44):

ỹt,n = ỹt−1,n +∆t̃ · ũt,n t ≥ 1 (3.59)

The complete set of equations has now been described. Note that all equations consist of simple
operations which can be calculated indendently of each other in parallel, except the calculation
of ϕ̃t,n. The next chapter will discuss efficient ways to solve the system of equations in order
to calculate ϕ̃t,n.
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4 Solving a tridiagonal system

In the previous chapter we discussed the cochlea and the linear model of the cochlea as
described by Van den Raadt [5]. One part of the model involved solving a system of equations.
This system of equations can be written as a matrix-vector equation:

A · ϕ̃ϕϕt = rrrt (4.1)

Three important properties of the matrix A are:

• The matrix is square and diagonally dominant

• The matrix is tridiagonal: only the main diagonal and the two diagonals next to it have
non-zero values

• The matrix is not dependent on timestep t or any other dynamic variable

The first property ensures that the inverse of A and a solution to the equation exists. The
second property allows us to use efficient algorithms to solve the system which specifically
make use of the fact that most of the elements in the matrix are zero. The third property also
allows for specific optimizations, because all steps of an algorithm that only use the matrix A
can be calculated offline.

This chapter discusses methods for solving the system and investigates their use for implemen-
tation on an FPGA. Important factors here are the ability to parallelize the operations that
are needed and the number of operations that are needed. First, a straightforward method is
discussed which calculates the inverse of matrix A and then does a matrix-vector multiplication
to obtain the unknown vector. Second, the TDMA algorithm is discussed. This is a special-
ized version of Gaussian elimination, specifically designed for tridiagonal matrices. Last, the
method of cyclic reduction is described. Cyclic reduction can be seen as a more parallel version
of TDMA. A fourth method which has similar properties to cyclic reduction exists which is
called Bondeli’s algorithm. However, it is not discussed here because previous research has
found that it is more complex to implement than cyclic reduction and therefore better suited
for CPUs [11].

4.1 Matrix inverse

A simple and straightforward method of determining the solution of a matrix-vector equation
is to rewrite the equation with a matrix inverse. When we have a matrix A, a known vector rrr
and an unknown vector ϕϕϕ, this can be written as:

A ·ϕϕϕ = rrr (4.2)

ϕϕϕ = A−1 · rrr (4.3)
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Effectively, this method consists of determining the inverse of matrix A and then performing
a matrix-vector multiplication. Moreover, the matrix A is constant over time, and can be
calculated offline. Therefore, the inverse of A can also be calculated offline. This reduces the
steps needed to solve the system to one matrix-vector multiplication.

One advantage of this method is that it is highly parallelizable: a matrix-vector multiplication
with n rows and columns consists of n2 multiplications and n · (n−1) additions. Given enough
resources, all of the multiplications can be done in parallel, while the additions can be done in
⌈log n⌉ sequential steps when an addition tree is used. Let us consider an example of a four
by four matrix to see why these formulas hold:

A−1 =


a0 a1 a2 a3
b0 d1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3

 (4.4)

rrr =


x0
x1
x2
x3

 (4.5)

ϕϕϕ = A−1 · rrr =


a0 · x0 + a1 · x1 + a2 · x2 + a3 · x3
b0 · x0 + d1 · x1 + b2 · x2 + b3 · x3
c0 · x0 + c1 · x1 + c2 · x2 + c3 · x3
d0 · x0 + d1 · x1 + d2 · x2 + d3 · x3

 (4.6)

The example clearly shows no data dependencies between any of the multiplications. Thus,
these can be done in parallel. The additions do have some dependencies on each other, because
they have to sum up n terms. A summation of n terms requires at least ⌈log n⌉ sequential steps
with a standard divide and conquer approach. Therefore, ⌈log n⌉ is the number of sequential
addition steps required for the matrix-vector multiplication.

There is one problem with the matrix-vector multiplication approach. This problem is due to
the properties of the inverse matrix. As said before, one of the important properties of matrix
A is that it is tridiagonal: only 3n− 2 elements of the matrix are non-zero. It turns out that
the inverse, A−1 does not have this property. Instead, all elements in the inverse matrix are
non-zero (although they do have the largest values on the main diagonal and exponentially
decays to zero towards the top-right and down-left corners of the matrix). Still, the property
that A is tridiagonal is not used at all in this approach. Another downside to this approach is
that the elements of the inverse matrix become very small towards the corners of the matrix.
In fixed-point calculations, this will lead to poor precision as the small numbers cannot be
represented accurately.

The total number of operations of this approach has complexity O(N2) , because of the
multiplications. There are specific implementation optimizations possible here, because one
of the two operands of the multiplication are always constant. However, in general, this has
worst-case complexity of n2. The number of sequential steps of this approach has complexity
O(logN), because of the additions.
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4.2 TDMA and Gaussian elimination

4.2.1 Gaussian elimination for arbitrary matrices

A sequential algorithm that is often used for solving a system of linear equations is Gaussian
elimination. It can be used for various other problems too, for example to calculate the
determinant of a matrix, find the rank of a matrix or calculate the inverse of an invertible
square matrix. As a first step, the known vector is usually added as the right-most column
of the known matrix. This is called an augmented matrix. Gaussian elimination works by
performing elementary row operations on rows of the augmented matrix until the matrix is in
reduced row echelon form. A matrix is in reduced row echelon form when the lower left-hand
corner of the matrix is filled with zeros as much as possible, every leading coefficient (non-zero)
in a row equals 1 and every column containing a leading coefficient contains only zeroes except
for the leading coefficient itself. An example of an augmented matrix in reduced row echelon
form is:

1 0 0 4
0 1 0 3
0 0 1 7


It can be seen that this system of equations is trivial to solve. Every 1 represents an element
of the vector that needed to be solved and its value equals the value in the rightmost column
on that row.

For Gaussian elimination, there are three elementary row operations that can be systematically
applied to convert the augmented matrix to reduced row echelon form:

1. Swap the positions of two rows

2. Multiply a row by a nonzero scalar

3. Add to one row a scalar multiple of another

Gaussian elimination is numerically stable for diagonally dominant matrices, thus it can be
applied to our matrix. However, Gaussian elimination works for any matrix which means that
it does not exploit the fact that our matrix is tridiagonal. There exists a specialized form of
Gaussian elimination which does exploit this property.

4.2.2 TDMA

A tridiagonal matrix already consists of mostly zeroes, because only three diagonals have non-
zero elements. This can save us a lot of steps, because the matrix is already close to reduced
row echelon form. A specialized form of Gaussian elimination called TDMA (Tridiagonal Matrix
Algorithm) or Thomas algorithm exists which exploits this property [12].

Consider the three by three tridiagonal system of equations given by:

b0 c0 0
a1 b1 c1
0 a2 b2

 ·

x0x1
x2

 =

d0d1
d2
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The strategy to solve this system is to first eliminate the ai starting with a1 and ending with a2.
Next, the ci can be eliminated starting with c1 and ending with c0. Elimination can be done
by using rule three of Gaussian elimination: to add to one row a scalar multiple of another.
This is an iterative process which updates the matrix in every step.

Suppose we define:

m1 =
a1
b0

We can multiply the first row with m1 and subtract it from the second row to obtain the
following updated matrix where a1 is eliminated:

b0 c0 0
0 b1 −m1c0 c1
0 a2 b2

 ·

x0x1
x2

 =

 d0
d1 −m1d0

d2


This process can be repeated for the other rows until all a have been eliminated. This is
called the forward reduction stage. Note that first a1 has to be eliminated before a2 can be
eliminated. There are data dependencies between these two consecutive steps which means
that these steps cannot run in parallel. The algorithm can be written in an iterative way as
follows (in each step overwriting the previous matrix, n is the number of rows in the matrix):

for k = 1 to n− 1 do

m =
ak
bk−1

bk = bk −mck−1

dk = dk −mdk−1

end loop

After the forward reduction step, the backward substitution step is used to compute the values
of x. It is done similarly as forward reduction: in each step a scalar multiple of one row is
added to another. However, the backward reduction step starts at the last row and works its
way up to the first row. Because after forward reduction all a have been eliminated, the last
row is trivial to solve. It only depends on itself. Thus:

xn−1 =
dn−1

bn−1

The rest of the values can be computed iteratively:

for k = n− 2 downto 0 do

xk =
dk − ckxk+1

bk
end loop

Obviously, the complexity of both the number of sequential steps and total number of opera-
tions is in O(N). To be more precise, forward reduction takes 2N − 2 multiplications, N − 1
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divisions and 2N−2 additions. Backward substitution takes N−1 multiplications, N divisions
and N − 1 additions. This makes for a total of 3N − 3 multiplications, 2N − 1 divisions and
3N − 3 additions.

The data dependencies are clearer if they are not specified in an iterative loop as above, but
with recurrence relations instead. This is also more in tradition with the functional approach
proposed in this thesis. For this, we add an extra index to the parameters. an,0, bn,0, cn,0,
dn,0 represent the values of the matrix-vector equation before applying TDMA where n is the
row index and N is the number of rows. These values are the input to the algorithm. an,1,
bn,1, cn,1 and dn,1 are the values after forward reduction. an,2, bn,2, cn,2, dn,2 and xn are the
values after backward substitution.

mn =
an,0
bn−1,1

1 ≤ n < N

an,1 = 0 1 ≤ n < N

b0,1 = b0,0

bn,1 = bn,0 −mncn−1,0 1 ≤ n < N

cn,1 = cn,0 0 ≤ n < N − 1

d0,1 = d0,0

dn,1 = dn,0 −mndn−1,1 1 ≤ n < N

an,2 = 0 1 ≤ n < N

bn,2 = 1 0 ≤ n < N

cn,2 = 0 0 ≤ n < N − 1

dN−1,2 =
dN−1,1

bN−1,1

dn,2 =
dn,1 − cn,1xn+1,2

bn,1
0 ≤ n < N − 1

xn = dn,2 0 ≤ n < N

However, some optimizations are possible in the case where the matrix is known beforehand.
In this case, all expressions consisting only of ak, bk and ck can be precalculated (at the cost of
using extra memory during execution to store the precalculated values). This can also convert
all divisions into multiplications by calculating the multiplicative inverse of bk beforehand.
This reduces the number of multiplications to 3N − 2, the number of additions to 2N − 2
and completely eliminates all divisions. The only calculations that remain are the calculation
of dn,1 and dn,2 in which the expressions for mn, cn,1 and 1

bn,1
are precalculated.

The obvious advantage in comparison to the simple matrix-vector product computation is the
lower number of total operations: O(N) instead of O(N2). However, they cannot all be
done in parallel. The number of sequential steps required for matrix-vector multiplication is
O(logN), while TDMA has order O(N).
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4.3 Cyclic reduction

Cyclic reduction is a more parallel version of TDMA. It is described by Hockney and Jesshope
and has interesting properties [13]. Instead of iteratively eliminating all a and then all c, the
matrix is divided into two parts: row and column combinations with even indices form one
part, while the odd indices form the second part. This process is repeated recursively on one
part of the divided matrix, thereby splitting the matrix in half at every step. The system can be
solved trivially once it has been reduced to one by one. The result of this can then be used in
back substitution to recursively solve the other halves of the matrix at every step. There is also
an even more parallel form of cyclic reduction which does not need the back substitution step.
Both versions are described in this section, starting with the version with back substitution.

4.3.1 Cyclic reduction with back substitution

Algebraically, cyclic reduction can be derived as follows. The tridiagonal system of size N has
an equation for every 0 ≤ n < N (we define a0 = 0 and cN−1 = 0):

anxn−1 + bnxn + cnxn+1 = dn

Now we define two new variables:

wn = x2n

un = x2n+1

By taking three successive equations and substituting above variables in it, we obtain:

a2nun−1 + b2nwn + c2nui = d2n

a2n+1wn + b2n+1un + c2n+1wn+1 = d2n+1

a2n+2un + b2n+2wn+1 + c2n+2un+1 = d2n+2

The w’s can be eliminated from the middle equation by substitution of the first and third
equation. This leads to:

(
−a2n+1a2n

b2n

)
un−1 +

(
b2n+1 −

a2n+1c2n
b2n

− c2n+1a2n+2

b2n+2

)
un +

(
−c2n+1c2n+2

b2n+2

)
un+1 =

d2n+1 −
a2n+1d2n

b2n
− c2n+1d2n+2

b2n+2

This is again a tridiagonal system, but now in the u’s only. It can be solved by applying the
same formula again if the system is not yet one by one or it can be solved directly for a one
by one system. Once it is solved, the remaining unknowns can be solved by rearranging the
third formula to:

wn =
d2n+2

b2n+2
− a2n+2

b2n+2
un − c2n+2

b2n+2
un+1
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A numerical example is now given for clarification. Suppose we start with the tridiagonal
system of five equations given by:


1.5 −0.5 0 0 0
−0.5 1.0 −0.5 0 0
0 −0.5 1.0 −0.5 0
0 0 −0.5 1.0 −0.5
0 0 0 −0.5 1.0



0.5
1.5
0.0
2.5
4.0


Eliminating the odd-indexed variables from the even-numbered equations leads to:


1.25 0 −0.25 0 0
0.5 −1.0 0.5 0 0

−0.25 0 0.5 0 −0.25
0 0 0.5 −1.0 0.5
0 0 −0.25 0 0.75



1.25
−1.5
2.0
−2.5
5.25


From this the three by three tridiagonal system can be extracted. It contains the columns 0,
2 and 4 from rows 0, 2 and 4:

 1.25 −0.25 0
−0.25 0.5 −0.25

0 −0.25 0.75

1.252.0
5.25


Repeating the reduction step for this matrix yields:

 1.125 0 −0.125
0.5 −1.0 0.5

−0.125 0 0.625

2.25
−4.0
6.25


Extracting the even row and colums again:

[
1.125 −0.125
−0.125 0.625

] [
2.25
6.25

]
This in turn can be reduced to:

[
1.1 0
0.2 −1.0

] [
3.5

−10.0

]
From which the single equation can be extracted:

[
1.1

] [
3.5

]
This single equation can be solved directly: its solution is 35

11 . This result can be used for
substitution in the previous equations to obtain the other values.

This process of reduction and backsubstution can also be visualized. Figure 4.1 shows the
different steps. From left to right, it can be seen that during the reduction phase the number
of rows decreases by a factor two each time. The new values depend on the previous row at
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Figure 4.1: A visualization of cyclic reduction with back substitution for a vector of size eight

the index and the two neighbours. When a one by one system is left, it is solved directly and
then the back substitution begins where the number of solved rows increases by a factor of
two every step.

The total number of operations has order O(N), because the number of rows to work with
decrease with a factor two each step. The number of sequential steps has order O(logN),
because of the divide and conquer approach. There are O(logN) reduction steps, 1 direct
solve step and O(logN) back substitution steps.

As with TDMA, the exact number of multiplications and additions can be reduced, because
the matrix is known beforehand. Thus, all expressions consisting only of known values can
be calculated offline at the cost of some extra memory at runtime. This optimization will be
discussed after an even more parallel method of cyclic reduction has been discussed in the next
subsection.

4.3.2 Cyclic reduction without back substitution

In the previous subsection cyclic reduction with back substitution was discussed. This method
of cyclic reduction needed 1 + 2 log n sequential steps. A more parallel version exists which
only needs 1 + log n sequential steps. However, this comes at the cost of a larger number of
total operations, which increases from O(N) to O(N logN).

The main difference between the two methods is that in the more parallel method, the reduction
step is applied to all indices of the matrix, instead of just the even or odd indices. Thus, one
reduction step of a matrix of size n results in another set of n three-term equations, half of
which are equal to the equations that would have been obtained if cyclic reduction with back
substitution was applied. Now another reduction step is applied independently to both the half
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Figure 4.2: A visualization of cyclic reduction without back substitution for a vector of size
eight

that was equal to normal cyclic reduction as well as to the other half. Repeating this log n
times results in n equations which only depend on themselves and thus can be solved directly.

A visualization of this algorithm can be found in figure 4.2. In this figure, it is easy to see
that the total number of steps has increased to n log n, while the number of sequential steps
decreased to 1 + log n.

It is important to note that it is possible to mix the two methods of cyclic reduction. For
example, it is possible to first do one step with back substitution and the remaining without.
An example of this can be found in figure 4.3.

4.3.3 Optimizations

As with TDMA, the exact number of multiplications and additions that are needed for both
methods of cyclic reduction can be reduced, because the matrix is known beforehand. Thus, all
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Figure 4.3: A visualization of hybrid cyclic reduction for a vector of size eight. There is one
reduction step with back substitution, the other steps are done without back sub-
stitution.
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steps that operate on the matrix only can be calculated offline. This means that all expressions
except those containing di or xi can be calculated beforehand.

For now, it is assumed that the matrix to be solved has a number of rows and columns equal
to some power of 2. This means that it can be solved in exactly 1 + logN steps using cyclic
reduction without back substitution and in exactly 1 + log 2N steps with back substitution.
These are the recurrence relations that result for cyclic reduction without back substitution.

The initial condition:

an,0 = an

bn,0 = bn

cn,0 = cn

dn,0 = dn

The recurrences:

an,k = −
an,k−1an−2k−1,k−1

bn−2k−1,k−1

bn,k = bn,k−1 −
an,k−1cn−2k−1,k−1

bn−2k−1,k−1

−
cn,k−1an+2k−1,k−1

bn+2k−1,k−1

cn,k = −
cn,k−1cn+2k−1,k−1

bn+2k−1,k−1

dn,k = dn,k−1 −
an,k−1dn−2k−1,k−1

bn−2k−1,k−1

−
cn,k−1dn+2k−1,k−1

bn+2k−1,k−1

The final result:

xn =
dn,log2 N

bn,log2 N

Of these recurrence relations, only dn,k and xn need to be calculated for every step. The other
relationships depend only on parameters which are constant over time and only need to be
calculated once. Therefore, the number of multiplications reduces to two per element per step
for dn,k and one multiplication per element for the final calculation of xn. There are also two
additions per element during the calculation of dn,k. This sums up to a total of N(1+2 logN)
multiplications and 2N logN additions. To make it more clear which calculations can be done
offline, we define:

Fn,k =
an,k−1

bn−2k−1,k−1

Gn,k =
cn,k−1

bn+2k−1,k−1

Hn =
1

bn,log2 N
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With these, it is possible to rewrite the relationships for dn,k and xn to:

dn,0 = dn

dn,k = dn,k−1 −Fn,kdn−2k−1,k−1 − Gn,kdn+2k−1,k−1

xn = Hn,kdn,log2 N

These are the only calculations that need to be done online. The relationships for Fn,k, Gn,k

and Hn,k can all be calculated offline.

4.4 Conclusion

The methods that have been discussed in this section all have their advantages and disadvan-
tages. Matrix-vector multiplication can be very fast, because of the limited number of data
dependencies, but it also requires a lot of resources to get these results, because the total
number of operations has worst-case complexity O(N2). Also, this method does not take
advantage of the fact that the matrix is tridiagonal. On the other hand, TDMA requires a
smaller number of total operations, but a larger number of sequential steps. Both these factors
have worst-case complexity of O(N).

Algorithm #Operations #Sequential steps
Matrix-vector multiplication O(N2) O(logN)
TDMA O(N) O(N)
Cyclic reduction with backsubstitution O(N) O(logN)
Cyclic reduction without backsubstitution O(N logN) O(logN)

Table 4.1: Comparison of worst-case complexity of the different algorithms

Cyclic reduction seems to be better suited for an FPGA, because it seeks a balance between par-
allelism and resource usage. The total number of operations has worst-case complexity O(N),
just as TDMA, but the number of sequential steps has worst-case complexity of O(logN),
a large improvement compared to TDMA. It is also not that much worse than matrix-vector
multiplication, because full parallelism with matrix-vector multiplication for a reasonable sized
matrix is not possible, as it would use too much resources. Cyclic reduction without back
substitution has a factor two less steps than cyclic reduction with back substitution, thus it is
still in the complexity class O(logN). However, its total number of operations increases to
O(N logN). Which of these two is best depends on the resources that are available.

Therefore, cyclic reduction is best suited for an implementation of this problem on an FPGA.
For implementation, a mixture of cyclic reduction with back substitution and without back
substitution can be used, depending on the resources that are available on the FPGA.
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5 Transformations

This chapter discusses some of the possible transformations that can be applied to the recur-
rence relations. These transformations are applied with a possible hardware implementation in
mind. The goal is to transform the recurrence relations in such a way that an efficient imple-
mentation on hardware becomes possible. Applying a transformation to a recurrence relation
leads to a new recurrence relation which is mathematically equal to the first one, but could
lead to a different, perhaps more efficient, implementation on hardware.

5.1 Recurrence relations

Recall the original recurrence relations as found in chapter 3 for the cochlea and chapter 4
for cyclic reduction in section 4.3.3. For the rest of this chapter, we assume cyclic reduction
without back substitution to be used as method for solving the system of equations. The
transformations can be applied similarly to cyclic reduction with back substitution or a hybrid
version, because this is just a different method of solving the system of equations.

The initial conditions of the speed and displacement of the membrane are set to zero:

ũ0,n = 0 0 ≤ n ≤ N

ỹ0,n = 0 0 ≤ n ≤ N

To calculate the speed and displacement of the membrane for the next timestep, the values of
the previous timestep are taken and combined to form gt,n and then combined with the input
it to form rt,n.

gt,n = Un · ũt−1,n + Yn · ỹt−1,n t ≥ 1 ∧ 0 ≤ n ≤ N

rt,0 = R0 · (it + gt,0) t ≥ 1

rt,n = Rn · gt,n t ≥ 1 ∧ 0 < n ≤ N

The values for rt,n are the right-hand side of the set of linear equations which need to be
solved. The recurrence relations for cyclic reduction are as follows:

dt,n,0 = rt,n

dt,n,k = dt,n,k−1 −Fn,kdt,n−2k−1,k−1 − Gn,kdt,n+2k−1,k−1

ϕ̃t,n = Hn,kdt,n,log2 N
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The solved system can then be used to calculate the new speed and displacement of the
membrane:

ũt,0 = ũt−1,0 + V0 · (ϕ̃t,0 − gt,0 − it) t ≥ 1

ũt,n = ũt−1,n + Vn · (ϕ̃t,n − gt,n) t ≥ 1 ∧ 0 < n ≤ N

ỹt,n = ỹt−1,n +∆t̃ · ũt,n t ≥ 1

This is the complete set of equations that needs to be transformed and implementated on
hardware. In the rest of this chapter, we will apply the transformations on these equations.

5.2 Lifting

We define lifting as an aggregate operation: it takes some function f which expects some
inputs and transforms it into another function which expects a vector of inputs and applies
the original function f to every element in the vector. Thus, instead of applying the function
only once to one input, it is applied multiple times to different inputs. Lifting is an important
transformation, because it allows grouping similar computations together.

As can be seen in the recurrence relations, the first segment of the cochlea is treated differently
than the rest of the segments, because this is where the input is applied. However, the other
segments are treated identically. Therefore, we can lift the functions for segments of the
cochlea. The lifted functions that we specify here only hold for segments with index 1 and
above, because the first was treated a little differently, but we will later show how to include
the first segment. It is not very difficult, because the structure of the computation does not
differ much from the other segments. The recurrence relations here are indexed with t only,
because the function implicitly works on all n. All relationships are vectors of length N + 1.
Names in bold indicate that we are dealing with vectors instead of scalars. The normal addition
and multiplication functions are also defined to operate elementwise on two vectors. The shift
function (<< and >>) takes a vector as left operand and an integer i as right operand. It shifts
the vector i places to the left or right and inserts zeros in the empty places. Last, the tildes
on names are now omitted to make the relationships easier to read.

The initial conditions of the membrane are still zero for speed and displacement, but now they
are defined as a vector (bold).

uuu0 = 000

yyy0 = 000

The relations for gt,n and rt,n are also defined as vectors after the lifting operation.

gggt = UUU · uuut−1 +YYY · yyyt−1 t ≥ 1
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rrrt =RRR · gggt t ≥ 1

The cyclic reduction relations have also been lifted. In the non-lifted equations for cyclic
reduction, some slices were indexed like dt,n−2k−1 or dt,n+2k−1 . This can be represented in
vector notation by shifting the vector to the right or to the left.

dddt,0 = rrrt

dddt,k = dddt,k−1 −FFFk(dddt,k−1 >> 2k−1)−GGGk(dddt,k−1 << 2k−1)

ϕϕϕt =HHHkdddt,log2 N

The relations for ut,n and yt,n are also lifted:

uuut = uuut−1 +VVV · (ϕϕϕt − gggt) t ≥ 1

yyyt = yyyt−1 +∆t∆t∆t · uuut t ≥ 1

5.3 Folding

Folding is a transformation for minimizing the number of functional blocks in a design. The
transformation allows similar operations to be scheduled on a single component. For example,
suppose we first have N identical functional units, without data dependencies between any
of them, which can process input in 1 time step. If folding is used N times, this can be
transformed into 1 functional unit where the processing takes N time steps. Alternatively, it
can be folded N

2 times, which results in N
2 functional units and N

2 processing time.

The dataflow graph that results from the equations above can be found in figure 5.1. It is
clear that this dataflow graph cannot be implemented for real-time processing as it is infinitely
large: for every instance of the computation (even for every time step) a different functional
unit is used. To fit this on a device, the dataflow graph first needs to be folded.

Even though folding can be used to minimize the number of functional blocks, it also has
several drawbacks. Mainly, the introduction of folding can increase the number of multiplexers
and registers in the design. Registers need to be introduced to store intermediate results and
multiplexers are required for switching different operation paths. Therefore, when folding there
should be a consideration between number of functional units and register/multiplexer usage.

5.3.1 Folding over time

Folding over timestep t is straightforward and is used implicitly for all FPGA designs. It
does not increase the number of timesteps that the calculation takes, because there is a data
dependency between timestep t and t+ 1. It does decrease the size of the design though. By
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Figure 5.1: The unfolded data dependency graph

introducing a delay element after the calculation of ut and yt, the functional units can be used
in the next time step for calculation of the next output.

The folded dataflow graph can be found in figure 5.2. This transformation reduces the number
of functional units and does not increase the number of multiplexers. It does however increase
the number of registers, because the vectors ut and yt need to be stored. Thus, the increase
in registers is 2MN where N is the number of partitions of the cochlea and M is the number
of bits of one element.

5.3.2 Folding equations

The folded design does the following calculations each time step for a model of the cochlea
with N partitions:

• Calculation of gggt: 2N multiplications, N additions

• Calculation of rrrt: N multiplications

• Calculation of dddt: log2N steps with 2N multiplications, 3N additions per step

• Calculation of ϕϕϕt: N multiplications

• Calculation of uuut: N multiplications, 2N additions (or 2N multiplications and 3N
additions when expanding the expression in parentheses)
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Figure 5.2: The data dependency graph when folded over time

• Calculation of yyyt: N multiplications, N additions

Thus, the total number of multiplications sums up to 6N+2N log2N and the total number of
additions sums up to 4N +3N log2N . For a realistic number of slices, for example N = 128,
the total number of computations is very large. If these are all performed by different functional
units, the design will fit on most FPGAs.

Therefore, we would like to be able to fold the design further. Another possible way of folding
is to break the calculation of uuut and yyyt for one timestep apart in substeps of calculating gt,
rt, ϕt,i and then finally ũ and ỹ. The first step to make folding possible is to ensure that the
calculation of all these steps use some common function. This will then become the functional
unit that is shared among the computations.

From the recurrence relations it can be observed that the calculation in every step can be done
with two multiplications and three additions, when these are used in such a way that every
recurrence relation can be written in the form of:

f(u, v, w, x, y) = u · v + w · x+ y (5.1)

This general structure is chosen, because all calculations that need to be done can be writ-
ten in such a way that they fit in this structure. Another possible structure would be
f(u, v, w, x, y, z) = u · v +w · x+ y · z, which is more regular. However, it would require one
more multiplication. Therefore, f(u, v, w, x, y) = u · v + w · x + y is chosen as structure. In
its lifted form, this is written as:

f̂(uuu,vvv,www,xxx,yyy) = uuu · vvv +www · xxx+ yyy (5.2)

Now, the recurrence relations can be rewritten to use this function f instead of their normal
multiplications and additions. When one step does not use all operations, for example the
calculation of rrrt which only uses one multiplication per element, the remaining parameters of
the function f can be set to zero.
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uuu0 = 000

yyy0 = 000

gggt = f̂(UUU ,uuut−1,YYY, yyyt−1,000)

rrrt = f̂(RRR, gggt,000,000,000)

dddt,0 = rrrt

dddt,k = f̂(−FFFk, dddt,k−1 >> 2k−1,−GGGk, dddt,k−1 << 2k−1, dddt,k−1)

ϕϕϕt = f̂(HHHk, dddt,log2 N ,000,000,000)

uuut = f̂(VVV,ϕϕϕt,−VVV, gggt,uuut−1)

yyyt = f̂(∆t∆t∆t,uuut,000,000, yyyt−1)

This folding technique does have additional complexity to select the right input for the function
f and storing the output in the correct place. Thus, the number of multiplexers and the
number of memory elements increases. However, the number of functional units decreases
greatly, because what used to be done with N · (1+1+ log2N +1+1+1) = N · (5+ log2N)
functional units (1 for gt, rt, ϕt, ut and yt and log2N for dt,k) can now be done with N
functional units if the function f is reused. Figure 5.3 shows this folding technique graphically.

5.3.3 Folding over n

Calculating the result of the function f̂ can be done in parallel for every n, because there are
no data dependencies between elements. Therefore, when there is enough area it is generally
not desirable to fold over n. However, for large values of N , it may be useful to fold over n
as well, because there are not enough multipliers available to do everything in parallel.

For example, the calculation of function f̂ for N = 128 can be folded into two steps: the first
step calculating n = 0..63 and the second step calculating n = 64..127. Similarly, for larger
values of N , it can be broken down into 4, 8 or more blocks of equal size. Again, this folding
procedure comes at the cost of extra multiplexers, but reduces the number of functional units
that are required.
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Figure 5.3: The data dependency graph when folding the equations

5.3.4 Hybrid cyclic reduction

When the number of functional units required is greater than the number of functional units
available, folding over n is needed. Folding over n is possible for all steps in the process.
However, for calculating ϕt a better method is available. It is not a transformation to the
current equations, but it is noted in this chapter anyway, because it corresponds with folding
over n. Recall our discussion of cyclic reduction in chapter 4. In all previous equations
we assumed that cyclic reduction without back substitution was used to solve the system of
equations. Cyclic reduction without back substitution is superior to cyclic reduction with back
substitution whenever one step can be done completely in parallel, because it requires fewer
number of steps.

However, when one step cannot be done completely in parallel, as is the case when folding over
n is used, then it is better to use cyclic reduction with back substitution. More specifically,
cyclic reduction with back substitution can be used up until the point that the matrix is reduced
to a size that can be handled competely in parallel. From that point, the reduced matrix can
be solved using cyclic reduction without back substitution. This hybrid form of cyclic reduction
is described in chapter 4 and will minimize the number of steps that are needed to solve the
system of equations.

Suppose that N = 128 and that 32 elements can be processed in parallel. Cyclic reduction
without back substitution normally takes 1 + log2N = 8 sequential steps when 128 elements
can be processed in parallel (see chapter 4). However, because every step has to be split in
four it now takes 8 · 4 = 32 steps.
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Suppose that instead of using cyclic reduction without back substitution, hybrid cyclic reduction
is used. An illustration of hybrid cyclic reduction can be found in chapter 4 in figure 4.3. First
the matrix is reduced to 64 and subsequently to 32. Next, the remaining matrix of 32 is
solved with cyclic reduction without back substitution in 1+ log2 32 = 6 steps. Last, the back
substitution step is used to obtain first a matrix of 64 and then 128. The first reduction and
last back substitution step have to be split in two, because only 32 elements can be processed
at a time. The second reduction and first back substitution only take one step. Thus, the
total number of steps when hybrid cyclic reduction is used sums up to 2+ 1+6+1+2 = 12:
a big reduction compared to the 32 required for cyclic reduction without back substitution.
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6 Implementation

This chapter will discuss the implementation of the algorithm on an FPGA. The last chapter
ended with the transformed recurrence relations which can be translated quite straightforwardly
to CλaSH. However, there are still several issues depending on the exact implementation re-
quirements. In this chapter the implementation requirements are described. Also, the problems
that arise when converting the mathematical model to fixed-point are described. The math-
ematics assume infinite precision which is not possible in hardware. There are either floating
point or fixed point computations. This section will discuss the possibilities and choose a
suitable fixed point range. Last, the actual conversion to CλaSH is discussed.

6.1 Implementation requirements

There are several implementation requirements. Not only requirements like the type of FPGA
that it needs to be implemented on, but also model parameters like the number of sections of
the cochlea. The requirements consist of:

• The parameter N , the number of sections of the cochlea minus one (the input)

• The type of FPGA that the algorithm needs to run on. This determines the number of
multipliers, M , that are available and also the are that is available for logic elements.

• The range of the input

• The frequency of the input

• The range of the output

• The frequency of the output

The number of sections of the cochlea determines to a large extent the size of the implemen-
tation: doubling the number of sections more than doubles the total number of operations.
Furthermore, the larger the parameter N , the more the design needs to be folded to fit with
the available number of hardware multipliers. Simulations at INCAS3 have shown that sound
recognition would still be possible for 128 sections, thus N = 127, so this is what is chosen
for N . A smaller number of sections would make the signal too imprecise for recognition. A
greater number of sections would not make the signal that much better to justify the greater
number of computations required.

The algorithm has to run on the Xilinx ZYNQ-7000 board, which contains a XC7Z020 Artix-7
FPGA. This board was chosen, because it also contains an ARM CPU on the chip, which can
be used to analyze the output of the cochlea algorithm for sound recognition. Furthermore, it
is not very expensive and has a decent FPGA with 220 18x25 multipliers.

The input comes from a soundboard which delivers samples of 24 bits. The sample frequency
is set to be 192 kHz as simulations at INCAS3 have shown that this is a reasonable sample
frequency. It is oversampled, because this makes the numerical integration methods more
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stable. The output of the model is the speed and displacement of the membrane in a precision
equal to the precision that the calculations are done in. The output frequency is equal to the
input frequency.

6.2 Fixed point

All calculations in the mathematics are assumed to be done with infinite precision. Unfor-
tunately, when implementing such algorithm on real hardware or software, there is always a
limitation to the precision. Software generally uses 32-bit or 64-bit floating point precision,
which is enough for almost all tasks. However, in hardware, fixed-point is much more com-
mon due to the larger area costs of the implementation of floating point calculations. Making
full-blown floating point multipliers is therefore not a suitable option. Then, two options
remain:

• Fixed-point calculations with one fixed-point domain

• Fixed-point calculations with multiple fixed-point domains

An advantage of the first approach is that multipliers can be easily shared between different
calculations, because all calculations are in the same domain. After each multiplication, the
results needs to be shifted back by the same number of bits. A disadvantage is that all
calculations need to be in the same range. If this is not the case and different calculations
have different ranges, then the number of bits required needs to increase to fit all calculations
in the same fixed-point range.

The second approach makes it more difficult to share multipliers, because there is extra logic
involved to shift back the result by the correct number of bits. However, a smaller number
of bits is required in total, because calculations with different ranges can be done in different
fixed-point domains.

Becaue it is necessary to share multipliers, fixed-point with only one domain is chosen for
this algorithm. In order to find the correct number of integer bits and fractional bits that
are necessary, simulations have been done with an existing Matlab script. This Matlab script
was written at INCAS3 and simulates the model. It would also have been possible to write
this script in, for example, Haskell, but because a Matlab script already existed this was the
preferred option. Also, Matlab has excellent easy-to-use plotting libraries.

Plots were created using the Matlab script which show the effect of several fixed-point options
for different input signals. These plots are shown in figure 6.1 through figure 6.4. The input
signals are all sine waves at 1 KHz but with different amplitudes. The fixed-point format has
to be able to handle both small and large signals with a small error. Whether or not the error
is small enough is determined qualitatively by examining the plots. If two lines do not deviate
much, then the error is small enough.

One step in the calculation of the algorithm in Matlab is still done in floating point: this is
the calculation of ϕ. For the implementation on the FPGA, cyclic reduction will be used in
fixed-point. However, the Matlab script uses simple matrix-vector multiplication in floating
point. Converting the matrix-vector multiplication to fixed-point yields results much worse
than cyclic reduction, because the inverse of the tridiagonal matrix has a lot of small elements.
These small elements contribute to the final result in floating-point, but are all rounded to
zero in fixed-point. Therefore, it is chosen to do the matrix-vector multiplication in floating
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point and use the results as a best-case scenario for fixed-point results: cyclic reduction will
also introduce a small error, but this will be smaller than the errors in the other calculations.

A comparison of the Matlab fixed point and floating point implementations for several sine
input signals is found in the figures below. The figures show plots for the speed of the
membrane, ut, and one for the displacement, yt. Simulations have shown that in order to
simulate very small as well as very large input signals, a word length of 25.15 is needed: 25
for the integer part (twos complement) and 15 for the fractional part. Because this is a very
large word length, the choice has been made to restrict the amplitude of the input signal to
reduce resource usage. If the word length is restricted to 17.15, signals between 25 dB SPL
and 85 dB SPL can be processed accurately.
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Figure 6.1: Comparison between fixed-point and floating-point of a 20 dB SPL input signal

48



CHAPTER 6. IMPLEMENTATION

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

frequency

sp
ee

d 
/ d

is
pl

ac
em

en
t

16.15 word length and 40 dB input

 

 
u_tilde (float)
y_tilde (float)
u_tilde (fixed)
y_tilde (fixed)

Figure 6.2: Comparison between fixed-point and floating-point of a 40 dB SPL input signal
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Figure 6.3: Comparison between fixed-point and floating-point of a 60 dB SPL input signal
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Figure 6.4: Comparison between fixed-point and floating-point of a 85 dB SPL input signal

6.3 Conversion to CλaSH

Using the the word length and the FPGA requirements, it is possible to make an implementation
in CλaSH based on the equations from chapter 5. Recall that the transformations were applied
in order to obtain a more efficient implementation on hardware. The level of folding that is
required depends on the number of functional units that are available. Thus, first we need to
determine how many multipliers our design would require and how many are available.

The FPGA has 220 25x18 bits multipliers. Because of our large choice of word length, every
multiplication is 32x32 bits wide. In order to use hardware multipliers, four 25x18 bits multi-
pliers are needed for one 32x32 bits calculation. There are 220 multipliers available and the
function f needs two multiplications of which every multiplication takes four multipliers. Thus,
the maximum number of elements that can be processed in parallel is 220

2·4 = 27.5. Rounding
down to a number that is divisible by 128, the total number of elements of the cochlea, we
get 16 elements in parallel at a time. With this, it takes eight steps for one calculation of f̂
over 128 elements.

Thus, the transformations that are needed to reduce the number of functional units required
are as follows:

• Folding over t

• Folding the equations

• Folding over n by a factor 8

Also, hybrid cyclic reduction needs to be used with three steps back substitution (the reduction
from 128 to 16).
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It should be clear that it requires quite a lot of folding to make it fit for the number of multipliers
on the FPGA. The number of functional units available is one of the major limitations, because
the algorithm requires a lot of functional units. The aggresive folding strategy will lead to a
large increase of multiplexers. This could make the number of logic elements or the wiring
during place and route a limitation. However, an exact estimation cannot be given at this
point in the design process.

The resulting CλaSH design is similar to figure 5.3, except that it is further folded over n
by a factor of 8. The CλaSH code corresponds almost one on one with this design and
is straightforward to implement. The function f is taken as a basic block. It takes five
arguments which it multiplies and adds together. For every clock cycle, the correct inputs
to the function f are selected depending on which computation we want to do that clock
cycle. The computation is done by mapping the function f over all the inputs. After the
computation, the results are written to the corresponding registers.

6.3.1 Generalization for M and N

Suppose there are M functional units available each of which can perform function f with
two multiplications and three additions and the cochlea is divided into N partitions. Which
transformations need to be applied to reduce the number of functional units required to the
number that are available?

Folding over time needs to be applied anyway, as we noted in the previous chapter that this is
a transformation that all FPGA designs implicitly use. Furthermore, if M < N · (5 + log2N)
some form of folding the equations needs to be used, because there are not enough functional
units to dedicate one functional unit to one calculation in the process. Also, if M < N then
folding over n needs to be applied as well and it becomes beneficial to use one or more steps
of cyclic reduction with back substitution.

Ideally, we would like to be able to define a function in CλaSH that takes M and N as
arguments and synthesizes the best implementation with the least amount of folding that still
fits with the given number of functional units. This is preferred to manually writing the CλaSH
code for one specific M and N for two reasons. First, when synthesizing for a different FPGA
with a different number of multipliers, or for a different N , the code would need to be rewritten
competely. Second, in writing this manually, it is easy to introduce subtle errors which are
hard to detect and this is exactly what we would like to avoid. Unfortunately, because it is
quite a complex function it is not possible to write such function in CλaSH itself, because of
type restriction. Therefore, a script was written that generates CλaSH code that is needed
for a given M and N . The script generates all the precalculated constants and logic that are
needed by the algorithm. The resulting CλaSH code can be fed to the CλaSH compiler to
produce synthesizeable VHDL.

With this script, all that needs to be done is to input the variables M and N and then it
will generate the CλaSH code. This code can be tweaked manually if needed after which the
CλaSH compiler converts it to VHDL.

6.3.2 The CλaSH code

This section discusses the structure of the generated CλaSH code. This section will take parts
of the code and explain it.

The script generates 5 files:
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• Cochlear128.hs, the main file. It contains the function that describes the top entity
of the CλaSH design.

• Types.hs, contains the type definitions that are used in the CλaSH code.

• CoeffsCochlear.hs, a file containing vectors of constants used in the calculation
of g, r, u and y.

• CoeffsFull.hs, a file containing vectors of constants used in the cyclic reduction
steps for cyclic reduction without back substitution.

• CoeffsHalf.hs, a file containing vectors of constants used in the cyclic reduction
steps for cyclic reduction with back substitution.

Because the latter three files only contain constants, these are for the most part self-explanatory.
The file Types.hs defines the types that are used in the design. It contains the following
important type definitions:

• CountType, defined as an unsigned number consisting of enough bits to count up
to the maximum number of clock cycles needed for calculation one time step of the
algorithm

• Sample, a signed 32-bits number. This type is used for all calculations.

• SampleVect, a vector of N Samples. This type is used for storing for example the
vector ut and yt.

• CoeffVect, a vector of Samples which has a size equal to the maximum number of
calculations of f that can be done in parallel. The generated vectors of constants have
this type.

The interesting file is Cochlear128.hs which contains the actual design. Just like any
CλaSH clocked design, it is defined as a Mealy machine taking an input and state and producing
an output and new state. The definition of the top entity is:

arch :: (SampleVect, SampleVect, SampleVect, SampleVect, CountType,
Sample, Bit, SampleVect) -> (Sample, Bit) -> ((SampleVect, SampleVect,
SampleVect, SampleVect, CountType, Sample, Bit, SampleVect), (Sample,
Bit))

arch ((u, y, g, rphi, i, inp, prevInpReady, result)) (input, inpReady) =
((u’, y’, g’, rphi’, i’, inp’, inpReady, result’), (output, ready))

The important types here are the four leading SampleVects in the state which store the g,
r and ϕ (shared), u and y. It is a vector of size N . The CountType stores a simple counter
to control which calculations are performed. The input consists of a Sampleand Bit which
are the input sample and a bit to indicate whether the offered input is currently valid.

The implementation is just as figure 5.3 suggests. There is a block of functional units which
compute the result of function f . Function f , named calc here, is defined as:

calc :: (Sample, Sample, Sample, Sample, Sample) -> Sample
calc (a,b,c,d,e) = fpmult a b + fpmult c d + e

It takes a tuple of five values as input and multiplies and adds them together to produce one
output. Depending on variable i, the current step in the computation, different inputs to the
function f have to be selected. The input can consist of one of the precalculated vectors of
constants which are defined in the other files or (part) of one of the state vectors. Selection
of the inputs are done with a simple guard expression in Haskell. The inputs i1 through i5
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are defined. An example of function i1 is shown next. It can be seen that for different values
of i, different inputs are selected.

i1
| i == 0 = u -- calculation of new g

3 | i == 1 = ((inp + vhead g) :> vdrop d1 g)
-- calculation of new r

| i == 2 = vshiftR rphi d1 -- start cyclic reduction
| i == 3 = vshiftR rphi d2
| i == 4 = vshiftR rphi d4

8 | i == 5 = vshiftR rphi d8
| i == 7 = vshiftR rphi d32
| i == 8 = vshiftR rphi d64
| i == 9 = rphi -- end cyclic reduction
| i == 10 = ((vhead rphi - inp) :> vdrop d1 rphi) -- new u

13 | i == 11 = dt_tilde -- new y
| otherwise = vshiftR rphi d16

The computation can then be defined as the map over the zip of these five inputs:

1 calc_out = vmap calc (vzip5 i1 i2 i3 i4 i5)

Last, the result of the computation needs to be stored in either g’, rphi’, u’ or y’ depending
on what was calculated in that step. Another guard expression will do, for example:

calc_out = vmap calc (vzip5 i1 i2 i3 i4 i5)

g’ | i == 0 = calc_out
4 | otherwise = g

rphi’ | i >= 1 && i <= 9 = calc_out
| otherwise = rphi

9 u’ | i == 10 = calc_out
| otherwise = u

y’ | i == 11 = calc_out
| otherwise = y
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7 Results

This chapter is divided in three sections. First, the results of the simulation in Haskell are
presented. These results are compared to the fixed-point Matlab model that was already
available. Next, the CλaSH code is compiled to VHDL with the CλaSH compiler and results
of the compilation and VHDL simulation are shown. Last, the VHDL is synthesized and
resource usage and other synthesis results are given.

7.1 Simulation in Haskell

The CλaSH design of the cochlea that is generated by the script as described in chapter 6
can be straightforwardly run on any machine with a Haskell compiler. This serves as a first
verification step. The same input signals were tested as with the fixed-point test in chapter 6.
The outputs at several timesteps t of ut and yt, the speed and displacement of the membrane,
were compared to those of the fixed-point Matlab model.

The output of the Matlab fixed-point model will slightly differ from the output of the CλaSH
design, because the Matlab model is not completely fixed-point: the cyclic reduction step is
done in floating-point. Thus, the simulations should verify that the response to a specific input
signal is similar to the Matlab model response within a small margin. It should especially test
this for some signals close to the boundaries: with large and small amplitudes. Therefore,
testing is done with three 1 kHz sine waves at different amplitudes: 40 dB, 60 dB and 80 dB.

The code to simulate the design in CλaSH is as follows:

topEntity = arch <ˆ> (vcopyI 0, vcopyI 0, vcopyI 0, vcopyI 0, 0, 0, L,
vcopyI 0)

2

inpbit = concat (repeat (L:(take (numCycles-1) (repeat H))))
inpvec = concat (map (\x->take numCycles (repeat x)) inpv)
myinp = zip inpvec inpbit

7 myres :: [(Sample, Bit, SampleVect, SampleVect)]
myres = simulateP topEntity myinp

This code assumes that inpv is the sampled list of inputs that represent the sine wave. The
output myres contains ut and yt as last two elements of the tuple.

7.1.1 40 dB sine input

Figure 7.1 shows a plot with the output of the CλaSH design as well as the output of the
Matlab model for ut and yt after 2000 timesteps for a 40 dB input signal. It can be seen that
the lines do not exactly match, though the overall curve of the plot is the same. The peak in
the middle is caused by the 1 kHz input signal.

After the peak at 1 kHz the plot for yt does not go to zero, but stays below zero. This is caused
by small integration errors in the fixed-point computation of the cyclic reduction method.
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Figure 7.1: Comparison between Matlab fixed-point and CλaSH implementation of a 40 dB
SPL input signal

The Matlab model does not compute the solution of the equation with cyclic reduction, but
computes it by the inverse of the matrix A. In the model, this step is not calculated in
fixed-point, thus the results of the Matlab model are slightly better than the full fixed-point
calculation of the CλaSH model.

7.1.2 60 dB sine input

Figure 7.2 shows a plot with the output of the CλaSH design as well as the output of the
Matlab model for ut and yt after 2000 timesteps for a 60 dB input signal. The two plots match
better than the plot for the 40 dB input signal, but are still not completely identical.

7.1.3 80 dB sine input

Figure 7.3 shows a plot with the output of the CλaSH design as well as the output of the
Matlab model for ut and yt after 2000 timesteps for a 80 dB input signal. Here, the Matlab
model and CλaSH model are nearly identical.

Tests for input signals with different amplitudes showed that there is a reasonable match
between 50 and 80 dB. Signals smaller than 50 dB do not converge precisely to zero, while
signals larger than 80 dB experience peaks at 1 kHz which are too small.

7.2 VHDL simulation

The CλaSH-compiler can generate VHDL code from the CλaSH-code. Generally, no errors are
introduced in this translation unless bugs exist in the CλaSH-compiler or hand-written VHDL
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Figure 7.2: Comparison between Matlab fixed-point and CλaSH implementation of a 60 dB
SPL input signal

code is added to the design. The VHDL code for 32 elements was tested in a simulation with
ModelSim. The same inputs were applied as with the simulation of the CλaSH model and
it was verified that the outputs at every timestep were equal to the outputs of the CλaSH
simulation.

7.3 Synthesis

After simulation on both CλaSH level and VHDL level and verification showed that the design
was working as expected, synthesis could be started. Synthesis of the design is needed to
translate the VHDL code to a fully routed design which can be put on the FPGA. There are
several constraints that need to be met, all of which are concerned with the available resources
on the FPGA. These can roughly be divided into these categories:

• Number of multipliers; an FPGA has a limited number of hardware multipliers. Addi-
tional multipliers can be generated in logic, but these are much slower than the hardware
multipliers. Usually it is best to stick with hardware multipliers except for simple multi-
plications which consists of shifts only.

• Number of configurable logic blocks (CLBs); a CLB generally consists of several logic
cells which can be configured to perform a simple logic function. They can be seen as
some sort of configurable lookup table. The number of CLBs an FPGA has generally
limits the number of logic elements and multiplexers a design can have.

• Fan-out; the output of a logic gate can only drive a certain number of gate inputs. The
maximum value can generally be obtained from the FPGAs datasheet. If a design has a
large number of gates with a high fan-out, it might run into trouble when synthesizing
the design.
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Figure 7.3: Comparison between Matlab fixed-point and CλaSH implementation of a 80 dB
SPL input signal

• Wiring; designs with a lot of interconnections between logic gates, for example designs
with a lot of multiplexers, might run into trouble with the wiring. Just like with CLBs,
there is only a limited number of connections possible between them. Large designs
might not fit because there is no routing possible for the connections between CLBs,
while the number of CLBs does not exceed the maximum number available on the FPGA.

The number of multipliers can easily be constrained in the design with the methods described
in the chapter about transformations. However, as noted there, reducing the number of
multipliers by applying folding does increase the number of registers and multiplexers. It is
not easy to manually give an estimate how much this increase in multiplexers will affect the
number of CLBs and the wiring. A synthesis run is required to obtain reliable information
about these numbers.

7.3.1 Xilinx ZYNQ-7000 board

The design was synthesized for the Xilinx ZYNQ-7000 board, which has a XC7Z020 Artix-7
FPGA. The design that was synthesized has 128 slices (the cochlea is divided into 128 parts)
and a word length of 32 bits, as described in the previous chapter. The design can process 16
elements at a time, resulting in a multiplier usage of 16 · 4 · 2 = 128 multipliers. Results of
the synthesis showed that the design was too large to fit on the board. While the number of
multipliers was within boundaries (220 multipliers are available), the number of LUTs needed
was more than available.

As an attempt to make a design fit on the FPGA, the synthesis was also run for a design with
64 elements and one with 32 elements. In the design with 64 elements the number of elements
that could be processed in parallel was kept at 16, which means that the number of multipliers
remains the same as in the previous design. In the design with 32 elements, this was increased
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to 32. Normally, this would require 32 · 4 · 2 = 256 multipliers, however the Precision synthesis
tool was able to optimize this to fit it in the 220 multipliers that are available. By lowering
the number of total elements of the cochlea, the number of sequential steps decreases and
thereby the number of LUTs that are required for multiplexers also decreases.

Preliminary synthesis results showed that LUT usage was around 70% for the design with 64
elements. However, place and route ran into problems while trying to route the design. Heavy
multiplexer usage led to many wires, which made the place and route process too hard.

For 32 elements, the design was synthesizeable by Precision RTL. However, Xilinx ISE did not
perform the multiplier optimization like Precision. Thus, it was not synthesizeable by Xilinx
ISE. Results of the synthesis in Precision RTL were as follows:

***************************************************************
2 Device Utilization for 7Z020CLG484

***************************************************************
Resource Used Avail Utilization
---------------------------------------------------------------
IOs 68 200 34.00%

7 Global Buffers 2 32 6.25%
LUTs 15302 53200 28.76%
CLB Slices 3826 13300 28.77%
Dffs or Latches 5157 106400 4.85%
Block RAMs 0 140 0.00%

12 DSP48E1s 212 220 96.36%
---------------------------------------------------------------

Clock Frequency Report

17 Domain Clock Name Min Period
(Freq) Required Period (Freq)

------ ----------
----------------- ----------------------

ClockDomain0 clk 14.822
(67.467 MHz) 50.000 (20.000 MHz)

7.3.2 Xilinx 6VLX240TFF784

Because the ZYNQ board could only fit a design with 32 elements, synthesis was also run for
a larger board. The Xilinx 6VLX240TFF784 board has 768 multipliers, enough to process 64
elements in parallel or 128 elements in two steps. However, for the design with 128 slices,
there were still problems with place and route. The design with 64 elements did fit on the
device, with the following results. The results will further be discussed in the next chapter.

Device Utilization Summary:

Slice Logic Utilization:
Number of Slice Registers: 10,285 out of 301,440 3%

5 Number used as Flip Flops: 10,281
Number used as Latches: 0
Number used as Latch-thrus: 0
Number used as AND/OR logics: 4

Number of Slice LUTs: 34,051 out of 150,720 22%
10 Number used as logic: 33,985 out of 150,720 22%

Number using O6 output only: 33,959
Number using O5 output only: 14
Number using O5 and O6: 12
Number used as ROM: 0
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15 Number used as Memory: 0 out of 58,400 0%
Number used exclusively as route-thrus: 66

Number with same-slice register load: 0
Number with same-slice carry load: 66
Number with other load: 0

20

Slice Logic Distribution:
Number of occupied Slices: 11,037 out of 37,680 29%
Number of LUT Flip Flop pairs used: 34,053

Number with an unused Flip Flop: 23,768 out of 34,053 69%
25 Number with an unused LUT: 2 out of 34,053 1%

Number of fully used LUT-FF pairs: 10,283 out of 34,053 30%
Number of slice register sites lost

to control set restrictions: 0 out of 301,440 0%

30 IO Utilization:
Number of bonded IOBs: 68 out of 400 17%

Specific Feature Utilization:
Number of RAMB36E1/FIFO36E1s: 0 out of 416 0%

35 Number of RAMB18E1/FIFO18E1s: 0 out of 832 0%
Number of BUFG/BUFGCTRLs: 2 out of 32 6%

Number used as BUFGs: 2
Number used as BUFGCTRLs: 0

Number of ILOGICE1/ISERDESE1s: 0 out of 720 0%
40 Number of OLOGICE1/OSERDESE1s: 0 out of 720 0%

Number of BSCANs: 0 out of 4 0%
Number of BUFHCEs: 0 out of 144 0%
Number of BUFIODQSs: 0 out of 72 0%
Number of BUFRs: 0 out of 36 0%

45 Number of CAPTUREs: 0 out of 1 0%
Number of DSP48E1s: 367 out of 768 47%
Number of EFUSE_USRs: 0 out of 1 0%
Number of FRAME_ECCs: 0 out of 1 0%
Number of GTXE1s: 0 out of 12 0%

50 Number of IBUFDS_GTXE1s: 0 out of 12 0%
Number of ICAPs: 0 out of 2 0%
Number of IDELAYCTRLs: 0 out of 18 0%
Number of IODELAYE1s: 0 out of 720 0%
Number of MMCM_ADVs: 0 out of 12 0%

55 Number of PCIE_2_0s: 0 out of 2 0%
Number of STARTUPs: 1 out of 1 100%
Number of SYSMONs: 0 out of 1 0%
Number of TEMAC_SINGLEs: 0 out of 4 0%

60 286691356612 paths analyzed, 61491 endpoints analyzed, 0 failing endpoints
0 timing errors detected. (0 setup errors, 0 hold errors, 0 component

switching limit errors)
Minimum period is 31.060ns.
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8 Discussion

The purpose of the research was twofold. On the one hand, a design of the cochlea model for
an FPGA needed to be created. On the other hand, by doing this the effectiveness of CλaSH
and the mathematical design methodology was tested. The discussion can also be split into
these two parts. The first part discusses the results of the implementation of the cochlea
model. The second part discusses the usability of the mathematical design methodology and
CλaSH and the advantages and disadvantages of this methodology compared to writing VHDL
directly.

8.1 Fixed-point

First the discussion of the fixed-point model versus the floating-point model. The plots in the
implementation section show a large difference in input range for fixed-point versus floating-
point. In order to obtain similar results for the full input range the desired fixed-point param-
eters were too large. Also, even for a smaller input range, the actual results of the CλaSH
design were more off than the fixed-point model, because the fixed-point model still used
floating-point operations in one part of the model.

We observe that this difficulty in using fixed-point is mainly due to the large dynamic range of
the input and the intermediate results. In some operations of calculating the solution of the set
of linear equations, very small values are needed as parameters, while the input and output can
be very large. Also, the precalculated constants of most operations are usually large for slices
of the cochlea close to the first slice and diminish to zero to the end. This occurs, because
the damping and thus the frequency distribution across the cochlea is logarithmic. These large
differences make it difficult to find good fixed-point parameters.

This makes it difficult to obtain a good design, because in fixed-point more precision leads to
a larger word-length, which in turn leads to more multiplexers to get the inputs to the function
blocks and to write the outputs back to the registers. However, we noted in the results section
that area is already a bottleneck in the design. Further increasing area usage by increasing the
word-length is not a good idea.

Because of the large required fixed-point range, it might be beneficial to use floating-point
blocks instead. Using floating-point blocks would greatly reduce the required word-length and
therefore would also reduce the required number of multiplexers in the design. However, this
comes at the cost of the overhead of the floating-point units which are generally slower and
require more area. This would be worth looking into as an improvement.

8.2 Area usage

Three designs were synthesized for the ZYNQ board, of which only the smallest design fit on
the board. The designs for N = 128 and N = 64 did not fit and the design for N = 32 did
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fit on the ZYNQ board. For the 6VLX240TFF784 board the design for N = 64 also fit, but
the design for N = 128 is still too large. Several reasons exist for the large area usage of the
designs and in this section we will discuss those.

The first reason is already discussed in the previous section. In order to obtain useful precision
with fixed-point calculations, a large word-length is required. The large word-length leads to
a larger design.

A second reason is the extensive folding that is done is in the design. Because of the limited
number of multipliers available, these have to be shared for different operations. Folding saves
multipliers, but introduces extra multiplexers to make it possible to share the multipliers among
different operations. Because only a limited number of multipliers is available, the degree of
folding is determined by the number of multipliers. A large word-length further increases
folding, because the hardware multipliers are only 25x18 bits wide. Any word-length larger
than that uses more than one hardware multiplier for a multiplication. However, too much
folding led to problems with multiplexer usage and made place-and-route impossible.

A possible countermeasure for the first reason has already been discussed. It involves using
floating-point operations instead of fixed-point operations. This also partly tackles the second
reason, as the word-length can be reduced with floating-point operations. However, the area
usage that is saved by a smaller word length then has to be used for the floating-point functional
units. These consume much more area than fixed-point functional units. The main question
is whether the area savings of word-length are greater than the area increase of floating-point
units.

Another possible way to optimize the design is to use the built-in block RAMs to store the
precalculated coefficients. Now, these are stored in distributed RAM and it might save space
when keeping these in block RAMs. Indexing the block RAMs can be done with the builtin
indexer, or with another block RAM to store the indexes. This reduces multiplexer usage, at
the cost of using block RAMs. This method looks very promising to reduce area usage.

Also, one option is to clock the functional units at a higher speed than the rest of the design.
The hardware multipliers can be clocked at a high frequency, because the slowest path is caused
by the multiplexers. If this is split in two: multiplexers and multipliers, then the multipliers
can be clocked at twice the frequency of the multiplexers. This way, the number of required
multipliers can be reduced further, thereby saving space. This would require changes to the
design to have different clock domains: one for the multipliers and one for the multiplexers.
This could be combined with pipelining of the multipliers to save more resources.

8.3 ZYNQ-7000

The synthesis results for the ZYNQ-board for N = 32 show 96% multiplier usage. Normally,
four multipliers are needed for a 32-bits multiplication. This would result in 4 · 2 · 32 = 256
multipliers. However, Precision RTL synthesis tooling was able to reduce the number of
multipliers by applying some optimizations. This results in 212 multipliers instead of the
expected 256, which means it fits on the board.

Logic utilization is approximately 29%, which is mostly due to multiplexing. A higher utilization
would lead to a more difficult to route design, thus this utilization is fine. The slowest path is
approximately 15 ns, thus the clock speed can be 67 MHz, which is more than enough for the
design.
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Note that this could not be reproduced with standard Xilinx ISE tooling, because ISE does not
optimize the multiplier usage.

8.4 6VLX240TFF784

The synthesis results for the 6VLX240TFF784-board for N = 64 show 47% multiplier usage.
As with the design for the ZYNQ-board, synthesis tooling was able to reduce the number of
multipliers by applying some optimizations. However, even without optimizations the design
would have fit on the board. Logic utilization is approximately 22%. The slowest path is
approximately 31 ns, which means clock speed could run at 32 MHz.

8.5 Mathematical design methodology

The complete design has been created with a design methodology based on mathematics. Its
aim was to start from the mathematical model and apply transformations on the equations in
order to finally end up with a straightforward transformation to CλaSH code.

In this case study, we found that remaining close to mathematics as long as possible has
indeed numerous advantages. After several mathematical transformations, the design could
be translated to CλaSH code without errors. Different designs, for example for FPGAs with
more multipliers available, were just a minor adjustement to the code, because it just meant
one different mathematical transformation.

This process of generating the CλaSH code was so straightforward that a simple script had
been written to do it given the number of multipliers and the number of elements. This
allowed for simple and fast testing of different designs. The design approach combined with
this script made a great difference compared to writing traditional VHDL. It would have taken
a lot longer to write one of the possible implementation in VHDL, while it was now possible to
generate any of the implementations with a simple script. This process is similar to processes
that synthesis tools use already: for example, Xilinx Coregen can generate VHDL code directly
from user input. However, these are general tools that can only generate parts of a design. For
example, when a FIFO queue is needed it can generate the VHDL for a FIFO queue. However,
the rest of the code needs to be written manually. With my script, the CλaSH code for this
specific application can be generated.

There also exist several drawbacks of this method, which have mostly to do with the lack of
libraries and debug tools that currently exist. For example, a fixed-point library for CλaSH
would prove a great addition. Also, it is hard to have a good overview of all signals simulta-
neously during simulations and large simulations can take a long time to run. However, tools
that help the developer in debugging and libraries can always be developed. These drawbacks
do not relate to the design method itself. In recent months, a large improvement in the tooling
has already been accomplished. It is expected that more features will be added to the tooling
in the future.
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9 Conclusion

Hardware design can be a difficult task. Often, several tradeoffs have to be made between area
and time. In addition, cumbersome design processes with transformations between different
semantics can introduce subtle bugs in the design. In this case study we investigated a different
design methodology based on transformations in mathematical form. The topic of the case
study was the cochlea model, for which the goal was to design a working implementation of
the cochlea model on an FPGA.

During development of the implementation, the mathematical design methodology was found
to be very useful. The transformations are described in mathematical form and are fairly trivial.
This led to a reduced probability for errors in the design. In addition, because the last step
of transforming the mathematics to CλaSH-code was straightforward, it is faster to develop
variations of a certain algorithm: the only thing that needs to be changed is the mathemat-
ical form, the CλaSH-code follows. This is a large advantage, as in the previous approach
the algorithm would be changed in a sequential language like C-code, and transforming that
into an efficient hardware design leads to the aforementioned errors because of the seman-
tic mismatch between the two languages. Thus, the two main advantages of CλaSH and a
mathematical hardware design methodology over the traditional design using C and VHDL are
trivial, verifiable transformations and rapid development.

A disadvantage, at least in the current version of CλaSH, is the fact that some VHDL features
are not yet supported in the CλaSH compiler. An example of this are efficient fixed-point
libraries. Also, while the type system of Haskell is quite flexible, there are still limitations in
CλaSH, due to the fact that not everything can be easily translated into a hardware design.
Large simulations of designs with a lot of calculations can become slow at times. However,
these disadvantages are related to the tooling instead of the design methodology itself and can
easily be improved in the future.

The implementation of the cochlea model proved more difficult than expected. Because it is
a computationally intensive model with a wide range of input values, a large word-length and
a lot of multipliers are needed. There is plenty of parallelism to exploit, but there were not
enough resources on the FPGA to process everything in parallel. Folding was needed, which
led to a large area usage - too large for the target FPGA. Because of this, the model was
scaled down to a smaller number of cochlea elements until it fit on the desired FPGA.

Future work could investigate the use of block RAMs instead of multiplexers to select the input
to the functional units. Also, pipelining the multipliers in addition to running the multipliers
at a different clock frequency than the rest of the design might save more resources. These
might save enough resource to obtain a working design with 128 elements.

In conclusion, we found that the mathematical design methodology has many advantages.
Even for large projects like the cochlea model, it is faster and less error-prone to stay as long
as possible in a mathematical form. This project has not been performed with the traditional
VHDL approach and thus cannot be compared directly to it. However, we strongly think that a
traditional design approach would have led to more errors in the design. The CλaSH compiler
already has a lot of functionality, but more additions to the tooling like fixed-point libraries
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would be welcome. Unfortunately, the original design that was created for N = 128 did not
fit on the target FPGA as the model is too computationally intensive. The design was scaled
down to a smaller number of elements (N = 32), which led to a working implementation.
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lecting the best tridiagonal system solver projected on multi-core cpu and gpu platforms,”
in Int. Conf. on Parallel and Distributed Processing Techniques and Applications (as part
of WorldComp2011 Conference), 2011.

[12] S. Levin, “Footnote to parallel xt migration.” http://sepwww.stanford.edu/
data/media/public/oldreports/sep41/41 14.pdf.

[13] Jesshope and R. Hockney, “Parallel computers: architecture, programming and algorithm-
s/rw hockney, cr jesshope,” 1981.

65

http://sepwww.stanford.edu/data/media/public/oldreports/sep41/41_14.pdf
http://sepwww.stanford.edu/data/media/public/oldreports/sep41/41_14.pdf

	Abstract
	Contents
	1 Introduction
	2 C aSH and functional hardware design
	2.1 Flaws in current design methodology
	2.2 Functional hardware design
	2.3 C aSH
	2.3.1 The functions map, zipWith and fold
	2.3.2 The filter


	3 The cochlea
	3.1 The real cochlea
	3.1.1 Structure

	3.2 The cochlea model
	3.2.1 Mathematical approach to the model
	3.2.2 Discretized recurrence relations


	4 Solving a tridiagonal system
	4.1 Matrix inverse
	4.2 TDMA and Gaussian elimination
	4.2.1 Gaussian elimination for arbitrary matrices
	4.2.2 TDMA

	4.3 Cyclic reduction
	4.3.1 Cyclic reduction with back substitution
	4.3.2 Cyclic reduction without back substitution
	4.3.3 Optimizations

	4.4 Conclusion

	5 Transformations
	5.1 Recurrence relations
	5.2 Lifting
	5.3 Folding
	5.3.1 Folding over time
	5.3.2 Folding equations
	5.3.3 Folding over n
	5.3.4 Hybrid cyclic reduction


	6 Implementation
	6.1 Implementation requirements
	6.2 Fixed point
	6.3 Conversion to C aSH
	6.3.1 Generalization for M and N
	6.3.2 The C aSH code


	7 Results
	7.1 Simulation in Haskell
	7.1.1 40 dB sine input
	7.1.2 60 dB sine input
	7.1.3 80 dB sine input

	7.2 VHDL simulation
	7.3 Synthesis
	7.3.1 Xilinx ZYNQ-7000 board
	7.3.2 Xilinx 6VLX240TFF784


	8 Discussion
	8.1 Fixed-point
	8.2 Area usage
	8.3 ZYNQ-7000
	8.4 6VLX240TFF784
	8.5 Mathematical design methodology

	9 Conclusion
	References

