

Towards Continuous Delivery
in System Integration Projects

Introducing a Strategy to Achieve Continuous
Delivery and Test Automation with FitNesse

Sandra Drenthen
06-02-2014

2

Master's Thesis

Towards Continuous Delivery in
System Integration Projects

Introducing a Strategy to Achieve Continuous
Delivery and Test Automation with FitNesse

Author
Name S. Drenthen BSc

Study Master Student Computer Science, Software Engineering
 Department of Computer Science
 Software Engineering group
 University of Twente, Enschede, The Netherlands

Student Number s0146110

E-mail s.drenthen@alumnus.utwente.nl

Graduation Committee
First Supervisor Dr. M.I.A. Stoelinga
 Associate Professor
 Department of Computer Science
 Formal Methods and Tools group
 University of Twente, Enschede, The Netherlands

Second Supervisor C.M. Bockisch
 Assistant Professor
 Department of Computer Science
 Formal Methods and Tools group
 University of Twente, Enschede, The Netherlands

Everett Supervisor Drs. René Mulder
 Identity and Access Management Architect
 Everett NL BV, Nieuwegein, The Netherlands

3

Preface
This master thesis is the result of the final research project for the Computer
Science master at the University of Twente. This project was performed
externally at Everett. During the research project, I have learned a lot about
continuous delivery, test automation, research methodologies and the process of
conducting research. Furthermore, since the project was performed externally, I
have experienced Everett's projects which enabled me to experience the
practical field of computer science as well as the theoretical field.

First of all, I would also like to thank my supervisors Mariëlle, Pascal (during the
first months), Christoph (during the last months), and René. I had the privilege to
meet them all together every month, and my Everett supervisor René even every
week. During these meetings, they provided feedback on my work, asked critical
questions, guided me in the right direction and René also helped me with the
practice. I believe their commitment in the guidance really did improve my work.

Furthermore, I would like to thank Everett for making this research project
possible and the (anonymous) client of Everett for enabling me to apply the
designed strategy at their project. I would like to thank the colleagues of both
companies for making me feel welcome and part of the team, for all the fun we
had and for their interesting insights on the project. Special thanks to the
colleagues who invested their time to apply and evaluate my strategy in the case
study and to my carpool-buddy for the fun trips, driving me almost every day to
the case study and back.

Finally, I would like to thank my friends and family who supported me during the
whole process, especially when I wasn't able to see them very often. They were
always there for me: they helped me moving, they coped with my busy agenda,
they cheered me up when needed, they gave me give good advice and they
provided a lot of fun in the evenings and weekends. Special thanks for Pim for
reviewing my thesis during his busy schedule, giving useful insights and
improvements.

I hope that you like reading this thesis and that Everett and others can benefit
from the results.

Sandra Drenthen

4

Abstract
This thesis presents a strategy to introduce continuous delivery and test
automation with FitNesse in system integration projects. It was designed for
Everett's identity solutions projects, but is expected to be mostly applicable for
other system integration projects as well.

The strategy consists of tools, tutorials, approaches and guidelines:

 NetBeans, Git, Ant, JUnit, FitNesse and Jenkins were chosen as tools, used
to achieve continuous delivery and test automation.

 Tutorials were written for FitNesse, Jenkins and a solution to
automatically push and pull to Git.

 Several approaches and guidelines were chosen and tailored to Everett's
projects and showed how to incorporate test driven development, how to
decide which tests should be automated, how FitNesse and Jenkins needs
to be configured and used, how to cope with test data changes and how to
communicate with the system under test.

The strategy was constructed by first creating a high level strategy, which was
then applied, evaluated, supplemented and improved during a case study at a
client of Everett. During the case study, ten automated tests were made by the
team-members of the project and the continuous delivery cycle was set up.

Evaluations were held with team-members of the case study project, which
showed that the strategy did need some time investments in creating the
strategy and tests, but can deliver an added value as it is expected to reduce
faults, increase the quality, enhance trust from the client and possibly in the long
run, also save time. However, in order to show this with hard facts and
significance, the strategy should be applied once again where the strategy is
complete in the beginning and more tests are written during the whole project.

keywords: continuous delivery, test automation, case study, FitNesse

5

Contents
1 Introduction ... 7

1.1 Problem Statement... 7

1.2 Goal ... 7

1.3 Research Questions .. 8

1.4 Research Method .. 8

1.5 Scope .. 9

1.6 Outline .. 10

2 Background .. 11

2.1 Chapter Summary .. 11

2.2 Identity Solutions Projects ... 11

2.3 Current System Development Strategy ... 15

2.4 Previous Test Strategy ... 16

2.5 Test Automation Tool Selection ... 17

3 Research Method ... 20

3.1 Chapter Summary .. 20

3.2 High Level Strategy Design .. 20

3.3 Case Study ... 20

3.4 Evaluation ... 26

4 Literature Review .. 27

4.1 Chapter Summary .. 27

4.2 Continuous Delivery ... 27

4.3 Test Models .. 29

4.4 Test-Driven Development .. 30

4.5 Test Automation ... 31

4.6 FitNesse ... 32

5 High level Strategy .. 36

5.1 Tools.. 36

5.2 Use Continuous Delivery Framework .. 37

5.3 Use FitNesse ... 37

5.4 Guidelines ... 40

5.5 Documentation ... 43

6 Case Study: Fine-Tuning the Strategy ... 45

6.1 First Iteration .. 45

6.2 Second Iteration ... 46

6

6.3 Third Iteration .. 50

6.4 Fourth Iteration .. 52

6.5 Fifth Iteration .. 53

7 Results ... 55

7.1 Final Strategy ... 55

7.2 Application of the Strategy ... 56

7.3 Evaluation of the Strategy .. 56

7.4 Analysis of the Strategy and it's Evaluation .. 66

8 Discussion .. 70

8.1 Strategy .. 70

8.2 Methodology .. 70

8.3 Implication of results ... 70

8.4 Future research .. 71

9 Conclusion .. 72

9.1 Goals .. 72

9.2 Answer on the Research Questions .. 72

9.3 Future work ... 74

References ... 75

Appendix A: Principles for Interpretive Field Research .. 80

Appendix B: Survey During Sprint Retrospective .. 81

Appendix C: Interview Questions for the Final Evaluation .. 84

Appendix D: Raw Data of Survey Results .. 85

Appendix E: FitNesse Tutorial ... 94

Appendix F: Automatic pull/add/commit/push Tutorial ... 110

Appendix G: Jenkins Tutorial.. 113

7

1 Introduction

1.1 Problem Statement
Everett's test strategy for their system integration projects, called identity
solutions was ad-hoc and based on much manual work, resulting in high costs for
testing and sometimes finding bugs in a late stadium (e.g., at the last sprints of
the project). Everett wanted to reduce both the costs of testing and the amount
of delivered faults by introducing test automation in their projects with the use
of FitNesse. Furthermore, Everett wanted to automate and improve the process
of software delivery further by introducing the continuous delivery pattern in
their projects as well.

In order to set up the continuous delivery framework, several foundations are
needed: good configuration management, automated build and deploy scripts,
automated tests and a continuous delivery framework to manage the steps in the
deployment pattern. In Everett's case, the introduction of test automation and a
continuous delivery framework were the last two steps that needed to be taken
in order to introduce continuous delivery in their projects.

Everett was founded in 1999 and has nearly 80 employees throughout the
Netherlands, Italy and the United Kingdom [1]. Everett's mission is to help
organizations around the world to be successful with identity solutions through
consulting, system integration, and support services.

System integration projects are projects where different computing systems and
software applications are linked together, physically or functionally, to act as a
coordinated whole [2].

Identity solutions [3] is a name that Everett gives to their defined set of several
solution areas[3]. Identity solutions projects are system integration projects
which revolve around the scalable and timely management of users and their
access to information and applications. These projects characterize themselves
as consisting of highly configured and customized third party software and being
highly integrated, data-driven and short term (10-15 weeks). Identity solutions
projects are performed at different clients at several sectors and may be
implemented with various techniques and third party products. Due to these
characterizations, the projects are hard to test. The aspect that the projects are
short term and different third party software is used for different projects gives
less time and less reuse in the target of achieving a return on investment from
test automation. See section 2.2 for more information on identity solutions.

1.2 Goal
The goal of this thesis is to introduce continuous delivery and, as an important
part of continuous delivery, to introduce test automation with FitNesse in order
to lower the costs on testing, reducing the amount of faults in projects and
enhancing the process software delivery.

8

The designed strategy for test automation and continuous delivery defines the
test and development process and consists of tool-selections, tutorials,
approaches and guidelines. The strategy was documented in a wiki.

The requirements and evaluation criteria for the designed strategy were defined
as follows:

 Efficacy - It must tackle the problem in the
problem scope (i.e., enable parts of
continuous delivery)

 Flexibility - It must be useable in different
projects with different circumstances.

 Implementation time - It must be easy and fast to install,
learn and use.

 Cost-effectiveness - It must have an early return on
investment.

 Transferability - It must enable the client to keep
using and maintaining the tool.

1.3 Research Questions
The main research question of this research project has been:

 How can continuous delivery and test automation with FitNesse be
introduced in system integration projects?

This question was divided into the following underlining questions, which
needed to be answered in order to provide an answer to the main research
question:

1. What is a good1 strategy to introduce continuous delivery and test
automation with FitNesse?

a. Which guidelines and tools are used in this strategy?
b. How will these guidelines and tools be tailored to system integration

projects and to each other?
2. What is are the costs and benefits of applying the strategy?

a. Which effects has the application of the strategy on a project?
b. Is the strategy an improvement compared to the test- and

development strategy used in earlier projects?
c. Where is the break-even point to recoup the effort of applying this

strategy?
i. How does this differ in several factors of the projects (e.g.

different test types, different features, different projects and
different software)?

d. To which extent is the strategy applicable for other system
integration projects?

1.4 Research Method
The first research question (i.e., what is a good strategy) has been answered by
creating a high level strategy for test automation and continuous delivery based
on literature by selecting promising combinations of methods, guidelines and
tools and creating tutorials when needed. This strategy is described in chapter 5.

1 The strategy is considered good when it satisfies the requirements mentioned in section 1.2

9

When the high level strategy was created, it was applied, evaluated,
supplemented and improved during a case study which is discussed below.

The second research question (i.e., what are the costs and benefits) has been
answered by evaluating the strategy in a case study. The case study approach
allows to investigate the validity of the strategy in the real-life context of a
identity solutions project in a qualitative manner. The case study followed an
iterative research pattern, which has intermediate evaluations and strategy
changes in order to design the strategy in steps and improve it along the way.
The case study has been performed in five iterations, each during two weeks.
Data was gathered from documents, observations, surveys and personal
interviews. The validity of the strategy is determined by the outcome of the
evaluations and personal interviews.

A more detailed research method description is given in chapter 3.

1.5 Scope
Three scopes have been defined in order to have some control on the size and
the time needed to carry out the research project. First of all, his research used
FitNesse as test automation tool, which was selected in earlier research as a
promising tool to be used with Everett's projects. Furthermore, the strategy has
been created for and applied on Everett's Identity & Access Governance projects,
and even more specific, Identity & Access Governance projects using SailPoint
IdentityIQ software. However this was a specific project and software choice, the
goal was to be able to use (most of) the strategy for other projects and software
as well.

1.5.1 Test Tool: FitNesse
In earlier research[4], several test automation tools have been compared and
judged on the degree of how well they meet the requirements mentioned in
section 1.2. The investigated tools were web browser automation tools like
Selenium [5] and Watir [6] and test automation tools FitNesse [7], GreenPepper
[8], Cucumber [9] and Root Framework [10]. After evaluating these tools (see
section 2.5), FitNesse was selected as the most suitable test tool for Everett's
purposes. FitNesse is an acceptance testing framework that is lightweight, open
source and easy to use. See section 4.6 for more information on FitNesse.

1.5.2 Solution area: Identity & Access Governance
The strategy has been created and applied on the solution area of Identity &
Access Governance projects (see section 2.2.2). This solution area has been
chosen because Everett experienced a high demand for these projects, making it
more likely that such a project would be available for the case study than with
other solution areas. Furthermore, Identity & Access Governance projects are
short term in particular (10 to 15 weeks).

1.5.3 Identity & Access Governance Software: SailPoint IdentityIQ
Designing a strategy for all products and suites that Everett uses in identity
solutions projects would have made this research project far too comprehensive,
so a representative product has been chosen to serve as reference, keeping in
mind that the overall strategy should be generic enough to extrapolate it for

10

other products as well. IdentityIQ from SailPoint [11] was chosen as this
representative product, as it is a well-known vendor software for Identity &
Access Governance, and it is widely used at the time of this research project.

SailPoint IdentityIQ is a governance-based identity and access management suite
[12]. It offers an identity warehouse where the identities are stored in a central
repository, a role model, a policy model, an advanced risk model [13] and a
workflow engine. Together, it enables the client to, for instance, create and
manage roles, automate access certifications, automate changes based on
lifecycle events (i.e., hiring, transferring, leaving), calculate access risks and
define, detect and enforce policies. During the project, SailPoint IdentityIQ)
becomes the center of all the main applications at the client's business for
identity and access related information (see figure 1 on page 12).

1.6 Outline
This thesis is divided in 7 chapters, starting with this chapter which provides an
introduction to the thesis. Chapter 2 gives background information of an earlier
research project, providing preliminary knowledge for this thesis. Then, in
chapter 3, the research method is described in depth. Next, a literature review is
given in chapter 4, discussing important concepts and giving the proper
literature background through the thesis. Chapter 5 then gives the high level
strategy which was designed prior to the case study. Chapter 6 describes how
this high level strategy is fine-tuned during a case study. Chapter 7 then gives the
results of this thesis, discussing the final strategy, the application of the strategy,
the evaluation of the strategy and an giving analysis of the results of this thesis.
Chapter 8 discusses the thesis by giving the strengths, weaknesses and future
work of this thesis. Finally, the overall conclusion can be found in chapter 9.

11

2 Background
This chapter is based on the author's earlier study, performed during the course
'Research Topics' [4], and offers background information for this thesis. The
earlier study has been performed by a literature study, an observing case study
at a project of Everett (including observations and personal interviews) and an
analysis between theory and Everett's practice.

2.1 Chapter Summary
Everett's identity solutions projects are system integration projects that revolve
around the scalable and timely management of users and their access to
information and applications [3]. These projects are characterized as consisting
of highly configured and customized third party software and being highly
integrated, data-driven and short term (10-15 weeks) [4]. Identity solutions
projects are performed at different clients at several sectors and may be
implemented with various techniques and third party products [14].

The current system development process of Everett is based on the Scrum and
Prince2 methodologies [15]. Everett already has Continuous Integration
(revision control using GIT) and automated builds (using Maven or Ant) in place.
Furthermore, Everett uses the Atlassian Software Stack (Bitbucket, JIRA,
GreenHopper and Confluence) for revision control management, issue
management, scrum project management and documentation [4].

The current test strategy of Everett consists of mostly manually and ad-hoc
testing; tests are risk-driven; there are no formal test scenario's (except for user
acceptance tests), negative test cases are seldom tested, testing is often
performed with production data and there are no special test tools used in the
project [4].

An analysis between the current strategy and the literature resulted in a set of
improvement points [4]:

 Everett should be more test-oriented.
 A general test-strategy should be created.
 The handling of the system's high level of integration should be improved.
 Test automation with FitNesse should be introduced.
 Fictional data should be used instead of production data.

Based on the requirements given in section 1.2, FitNesse has been selected as a
promising test automation tool for Everett's projects [4].

2.2 Identity Solutions Projects
Identity solutions revolves around the scalable and timely management of users
and their access to information and applications. Everett delivers solutions with
which organizations have, even across organizational boundaries, means to [3]:

 Reduce the operational and development costs of IT.
 Increase security.
 Comply with policies and regulations.

12

 Simplify business processes.
 Personalize services.

Figure 1: An architectural overview of an identity solutions project

Figure 1 shows an example of the architectural overview of an identity solutions
project: An identity solutions system is introduced, configured and connected
with several applications of the client and an authoritative source for identities
(for instance, a human resource application).

The identity solutions system can perform several actions with identities, their
access to information and source applications. The result is integrated
management and use of identity information regarding employees, partners,
suppliers and other stakeholders to support a complete service chain. Examples
of identity solutions projects can be found from section 2.2.1 to 2.2.6.

Identity Solutions projects (ISP) are often realized in a short period of time (10
to 15 weeks). Everett consults, designs, implements and supports [16] identity
solutions for their clients and uses various products and technologies in order to
create the best fit for their clients requirements. The various products that act as
an identity solutions system include products and suites from vendors like
ForgeRock, iWelcome, Microsoft, NetIQ, Oracle, RM5, SailPoint and various open
source products [14].

Identity solutions is a name that Everett gives to their defined set of several
solution areas [3]. These solution areas are defined as groups of functionalities
which are present in identity solutions projects. Multiple solution areas can be
combined in one identity solutions project and there is some overlap between
them. The following solution areas are defined:

 Identity management
 Identity & access governance
 Access management
 Identity federation
 Identity cloud solutions
 Authentication

These solution areas are explained in the following subsections.

13

2.2.1 Identity Management
Identity management [17] revolves around managing the lifecycle of identities
and the subsequent relevant impact on their access to applications and services.
It enables the company to give a new user quickly and automatically access to
systems that match his relation to the company, using the same account for each
system. Identity management can include self-service (manager can assign rights
to its employees through an access request portal) and provisioning (automatic
process that executes the changes in access rights the ICT landscape).

 Example When the role of the employee changes (e.g., via promotion), he

automatically gets the correct access for his new role. This includes
withdrawing the access he had for his previous role but does not
need for his new role. Furthermore, when the employee leaves the
company, all access rights are automatically removed. Secondly,
the manager can inspect some company data (name, personnel
number and function) and access data of the employees that he
supervises.

2.2.2 Identity & Access Governance
Identity & Access Governance [18] revolves around being in control of access
rights to the information systems and the ability to demonstrate and prove it. It
enables companies to comply with the regulations on access control set by
regulatory bodies and gives these companies the ability to prove it as well.

 Example Identity & access governance can enable companies to comply with

the report from the Basil Committee on Banking Supervision [19],
which states that the e-banking security process should include,
among others, sufficient logical controls and monitoring processes
to prevent unauthorized internal and external access to e-banking
applications and databases.
In order to be in control of access rights and to be able to prove it,
certification-cycles and reports are performed and generated
periodically (for instance every quarter). In the certification-cycle,
access rights of employees and accounts are verified by, for
instance, the employee's manager or the system owner. During this
verification, the manager can accept, revoke or redirect de decision
to another employee. If the right is revoked, the identity solution
system will take the appropriate actions: either by directly
revoking the access via provisioning, by entering a ticket to the
associated ticketing system or by sending an email to a specified
address with the message to change the access right. Reports can
be generated to provide an overview of information, for instance,
describing which identities had access to which systems and
information in a specified period of time.

2.2.3 Access Management
Access Management [20] revolves around the run-time evaluation and
enforcement of what users are allowed to do when accessing a service. It
provides a central mechanism to manage access of users, including
comprehensive audit trails and important end-user functionality such as single

14

sign on. Access Management relies on authentication solutions to validate the
identity of the users and relies on Identity & Access Governance solutions to
determine authorizations.

 Example When a user wants access to information (e.g. log in the system

with customer data), access management techniques identifies the
user (for instance by asking a username and password), and
checks whether the user has the right authorizations to access the
information (by verifying the credentials). Finally, the user gets
access to the information (e.g. gets access to the system with
customer data) when both steps are performed successfully. When
the user does not have the correct rights, an error-message will be
shown.

2.2.4 Identity Federation
Identity Federation [21] revolves around all processes and underlying
technology which makes it possible to exchange identity data across
organizational boundaries in a secure and controlled manner. It implements a
comprehensive and robust architecture for Identity Federation, establishing a
solution for integrated services in a supply chain.

 Example Identity Federation enables secure collaboration across

organizational boundaries, giving parties access to each other
services. This can be between, for instance, suppliers and buyers:
the buyers can access the stock information of suppliers and place
orders directly.

2.2.5 Identity Cloud Solutions
Identity Cloud Solutions [22] revolves around integrating cloud applications,
enabling one-click access to all applications, anywhere, anytime and from any
device, while keeping identities safe. It delivers a single point of access to the
company's public and private applications.

 Example Identity Cloud Solutions enables companies to integrate and

manage identities for cloud applications like Google, Salesfore and
Office365 with their internal applications, letting their users access
these cloud applications via the same portal as the company's
internal applications, possibly with single sign on as well.

2.2.6 Authentication
Authentication [23] revolves around the process whereby a user’s claim to an
identity is verified. It is one of the cornerstones of information security as it
ensures both the traceability of actions performed within a system and that an
identity is what its claims to be. Authentication is performed by validating a
user’s credentials for the claimed identity. These credentials can be something
that someone knows, possesses, is or a combination of these. Everett helps
selecting and implementing the right authentication scheme to provide the
required security level balanced with other business drivers.

15

 Example Authentication can verify a user by something that someone knows
(e.g., a password or PIN code), something that someone possesses
(e.g., a key, token or phone) or something that someone is (e.g., a
fingerprint-scan or iris-scan) or a combination of these. With these
authentication techniques, a user can ensure his identity in order to
get the access rights that are assigned to this identity.

2.3 Current System Development Strategy
Everett develops according to the Scrum methodology [24]. Scrum works with
iterations called sprints, typically lasting between two and four weeks. A Sprint is
a fixed period of time for developing functionality as part of a product release
(final product). Each Sprint will need to deliver some form of business value,
adding on to the previous Sprints [15]. Each sprint starts with a planning and
ends with a review. In between, user stories are implemented and tested. A user
story is a software system feature specified by the customer in everyday
business language. An example of a user story is: "As a customer, I want to be
able to login on the site in order to see my purchase history". Working with the
Scrum methodology helps the project in continuously delivering working
software to the client and keep on moving forward to success.

Everett combines the Scrum methodology with the project management
methodology Prince2. Prince2 provides a control and governance framework
that aligns with the stakeholders, business and budget owners and their project
organization [15]. Figure 2 shows how Everett combined the stages of Prince2
with the Scrum development methodology. Prince2 identifies several stages of
the project (shown in yellow), such as directing, startup, initiation, planning and
so on. Everett has added scrum (shown in orange) to this diagram, which shows
that the product delivery is done with sprints and a daily standup (i.e., the 24h-
cycle), that a sprint starts with planning and ends with a demo where after a new
sprint starts.

Figure 2: Involve: combining Prince2 (yellow) with Scrum (orange)[15]

16

As part of the development environment, Everett uses the Atlassian software
stack [25] in their projects; Bitbucket combined with Git [26] for revision control
(integrating code and manage the different versions of this code), JIRA and
GreenHopper for issue and scrum project management (managing user stories
and issues to work on), and Confluence for documentation (wiki).

Furthermore, Everett uses mostly Maven [27] and Ant [28] as automated build
tools (automatic compiling and building the projects code into an application
that can be run). With these tools, Everett has build scripts that can be run via,
for instance, a command line in order to build the project.

2.4 Previous Test Strategy
When using scrum, a project has a definition of done, which specifies the criteria
of when a task in the project is considered done. An example/standard definition
of done of Everett has three specified test activities, performed by three different
parties/individuals:

 Developer: The developer tests his implementation of the user story.
 Review: The implementation of the user story needs to be reviewed by

another team member.
 Acceptance testing: When the sprint is finished, the client tests the

implementation of the user story, as part of acceptance testing.

Earlier research [4] notices that, except from the statements in the definition of
done, there was no clear or standard strategy defined at Everett, so an observing
case study was held in order to investigate the test process in practice. In this
case study, team members of a project were interviewed on the test process. This
project was also an Identity & Access Governance project, also using SailPoint
IdentityIQ. The case study showed that:

 Most tests are performed manually without special test tools or test
scripts; the developer checks his solution with a couple of debug
statements and visually checking the output based on the requirements
and the user story where the developer is working on.

 Tests are risk-based, meaning that for standard solutions, only the
configurations are checked. For instance, for a standard connection, the
hostname, logs and whether or not the data is received are checked
visually, but there is no deep test for every detail. Negative (i.e., test cases
that should cause an error or failure) test cases probably seldom or not
performed by the developers.

 Tests are performed with production data, because this whole project
revolves around this data. For instance, with production data it is possible
to check whether or not rights have meaningful names, roles are
representative and business rules are specified correctly. Furthermore it
gives insight what the real effects of this project will be in production,
which can only be assured with production-like data. Since there are
guidelines and laws stating production data should not be used in test
environments [29, 30, 31, 32], certain agreements are made before using
production data. For instance, the data is only available on the test
environment and will not be available to the cloud.

17

 Unit tests are seldom used, since IdentityIQ uses a script language called
BeanShell which doesn't support unit tests. However, it is possible to let
BeanShell call Java-functions and perform unit tests on those Java-
functions.

 Instead of unit tests, integration tests are performed. Ideally end-to-end,
although it is almost never possible to obtain full test coverage of the
whole software chain. The missing parts of an end-to-end test are then
simulated by mocking.

During interviews in an observing case study in earlier research [4] several
improvement points have been mentioned as well: According to the Junior
Engineer, testing was started too late, which gives a risk that problems are
discovered in a late stage where a lot of work may be redone. The project
manager stated that it probably would help to add someone to the project that
monitors the test process and helps with defining correct test cases. Secondly,
the project manager stated that it might help to formulize test cases so they can
be reviewed and correlated to requirements and risks, introducing transparency
to the client. These test cases are then probably reusable for other projects as
well.

2.4.1 Improvement Points
The earlier research project [4] had performed an analysis over the literature
combined with the observed strategy, identifying gaps between the applied
practice and theory. These gaps were presented as improvements over the
current strategy:

 More focus on testing should be created throughout the company in order
to improve the test process. This focus is needed in order to investigate
and apply the other improvements mentioned below.

 A new test strategy should be created and standardized to improve the
test process, making testing more structured, documented and well
thought out.

 Decompose highly-integrated systems into manageable and testable units
to deal with the system's high level of integration. Mocking should be
investigated in detail in order to help with this decomposition.

 Test automation should be introduced. In order to do this, a strategy
should be designed that uses FitNesse.

 Techniques like data anonymization and generation should be
investigated, including proper tools which can assist in applying these
techniques for identity solution projects.

2.5 Test Automation Tool Selection
As said in the introduction, several automation steps are needed in order to set
up continuous delivery: configuration management, automated build and deploy
scripts, automated tests and a continuous delivery framework. As statded in
section 2.3, Everett has the configuration management and automated builds
already in place.

In the earlier research project [4], FitNesse has been chosen as automated
acceptance test tool, since this choice will have a huge impact on the strategy.

18

Jenkins was chosen during the case study of the thesis as continuous delivery
framework (see section 6.2.1). The rest of this section will elaborate on the
choice for FitNesse.

There are several tools available for the purpose of test automation, such as web
browser automation tools like Selenium [5] and Watir [6] and the test
automation tools FitNesse [7], GreenPepper [8], Cucumber [9] and Root
Framework [10]. These tools are compared with each other based on the
requirements in section 1.2.

A short list of the functionalities and usage of the possible tools is given:

 Web browser automation tools like Selenium and Watir perform tests on
the web GUI of the systems under test. These tools want several
interactions with the web browser and validations (i.e. the current pane
must contain the word "x") as input and give true or false for each
validations. Selenium is based on multiple programming languages: Java,
C#, Groovy, Perl, Php, Python and Ruby whereas Watir is a Ruby library.
Both tools support multiple browsers and Selenium also has the feature
to record and playback tests [5, 6].

 FitNesse is an open source wiki and acceptance testing framework,
enabling teams to collaboratively define acceptance tests. This tool
expects test tables in a wiki format, which interact with Java programs
(called fixtures) that communicate with the system under test. When the
acceptance tests are run, the results are given in the wiki. It can be used
with one of the two frameworks as basis: Framework for integrated tests
(FIT) [33] or Simple List Invocation Method (Slim) [34]. FitNesse has
plug-ins for Maven and Git and can be connected with the continuous
integration tool: Jenkins [7].

 GreenPepper is very similar to FitNesse, although it is not open source
and does only supports the FIT framework. It has build-in support to
connect it with the Atlassian software stack, Maven and some IDE's [8].

 Cucumber is an open source framework where users can create behavior
and scenarios in plain text and write a definition in Ruby that interprets
this plain text and calls the system under test [9].

 Robot Framework is an open source framework where users create tests
in a tabular test data syntax. It uses keywords provided by the test
libraries (written in Python or Java) to interact with the system under
test. The results are given in HTML format and XML output [10].

Table 1 gives a comparison table between the tools and shows how well they
score on the requirements for our strategy given in section 1.2, including some
clarification for the score. The table shows that FitNesse is the most suitable tool
for our purposes by having the most plusses and benefits and the least minuses
and disadvantages. Therefore, FitNesse has been chosen as test tool for the
strategy. More detailed information on FitNesse is be given in chapter 4.6.

19

req. →

tools ↓

Efficacy Flexibility Implementatio
n time

Cost-
effectiveness

Transferability

Web
browser
automatio
n tools

-
tests higher
level than
needed

--
although
multiple
browsers, only
tests web
browser apps

++
can record tests,
Java

?-
depends on
implementation
time but has
maintenance
when GUI
changes

+-
open source but
maintenance
when GUI
changes

FitNesse +
can test
multiple test
levels (e.g., unit,
integration and
acceptance
tests)

wiki to create
and show test
cases and its
results

+
can test all apps
that can be
called via Java
(optionally via
other languages
with language
plug-ins)

++
separation
between test
definition (wiki
tables) and test
coding

easy to deploy

?
depends on
implementation
time

+
open source

GreenPep
per

+
same as
FitNesse

+
same as
FitNesse

++
mostly same as
FitNesse,
however: it
connects to the
Atlassian
software stack
that Everett
uses and does
not support the
slim framework

?
depends on
implementation
time

-
closed source

Cucumber +
multiple test
levels

+-
can test all apps
that can be
called via ruby

-
separation
between test
definition (plain
text) and test
coding, but
need to learn
ruby

?
depends on
implementation
time

+
open source

Robot
Framewor
k

+-
multiple test
levels
reports in html
and xml format

+
can test all apps
that can be
called via
python and Java

+-
separation
between test
definition
(tabular data
syntax) and test
coding

?
depends on
implementation
time

+
open source

Table 1: Test automation tool comparison table

20

3 Research Method
This chapter explains by which method the research questions from section 1.3
have been answered by this research project. The main research question and its
underlining research questions are listed here as reminder:

 How can continuous delivery and test automation with FitNesse be
introduced in system integration projects?
1. What is a good strategy to introduce continuous delivery and test

automation with FitNesse?
2. What is are the costs and benefits of applying the strategy?

3.1 Chapter Summary
The first underlining research question (i.e., what is a good strategy) has been
answered by creating a high level strategy for test automation and continuous
delivery based on literature by selecting promising combinations of methods,
guidelines and tools and creating tutorials when needed. When the high level
strategy is created, it will be applied, evaluated, supplemented and improved
during a case study which is discussed below.

The second underlining research question (i.e., what are the costs and benefits)
has been answered by evaluating the strategy in a case study. The case study
approach is chosen to investigate the validity of the strategy in the real-life
context of an identity solutions project in a qualitative manner. The case study
followed an iterative research pattern, which has intermediate evaluations and
changes in order to design the strategy in steps and improve it along the way.
The case study is performed in five iterations, each during two weeks. Data is
gathered from documents, observations, surveys and personal interviews.

3.2 High Level Strategy Design
The high level strategy design has been created prior to the case study in order
to have a well-thought-out solution basis at the beginning. Much details were
then yet to be determined. This high level strategy consist of tool-selections,
tutorials approaches and guidelines which are documented in informative
documents. The high level strategy design is listed in chapter 5. The strategy has
been given more details and is adjusted and improved during the case study.

3.3 Case Study
The case study's project needed to be a project at a client of Everett and consists
of implementing, testing, evaluating and improving the strategy design.

The case study's main goal is to determine the validity of the designed strategy
with as secondary goal to add details, improve and adjust the strategy. With the
case study approach, the validity of the strategy has been investigated in the
real-life context of an identity solutions project in a qualitative manner. Data is
gathered from observations, surveys, interviews and documents.

A case study is a qualitative research method. Qualitative methods can help to
identify problems and improve the strategy design during its development [35].
According to Yin [36], case study research is appropriate for investigating a

21

phenomenon in its real-life context, and for answering how and why questions
when the investigator has little control over the events.

3.3.1 The Case Study's Project
The case study's project has been performed at a client of Everett where an
Identity & Access Governance project takes place. This project uses the SailPoint
IdentityIQ software and was the second phase of a project at this client.

The first phase introduced SailPoint IdentityIQ at the client, migrated the
management of role models from Excel to IdentityIQ, integrated six applications
with IdentityIQ, and finally introduced periodic certifications, periodic
verifications of access rights and periodic reports on risks and policy violations.

The second phase, which is project of the case study, will extend the first phase
by using SailPoint IdentityIQ's LifeCycleManager [37] as an application portal
with lifecycle events, introducing provisioning and connecting more applications
for certifications. Phase 2 will be conducted with the same team members as in
phase 1 with four people of Everett and three people of the client. The project is
conducted with sprints of two weeks whereas Everett consults three days in a
week.

3.3.2 Case Study Approaches

Iterative Research Pattern
The case study had been used an iterative
research pattern as described by Pratt
[38]. This model allows the design of the
strategy to be constructed in steps,
beginning with a basic strategy design
which will be applied, evaluated and
adjusted and in several iterations. This
differs from the non-iterative method,
which requires a final and complete
strategy before validation. To create such
a final and complete strategy at once is
difficult to achieve without practical
experience in both performing identity
solutions projects and in creating and
applying test strategies. Because of this,
the iterative research pattern suits the
case study better.

Figure 3: Iterative research pattern [38]

As shown in figure 3, the iterative research pattern consists of four primary steps
with a cyclic relationship: observe the application, identify problems, develop the
solution and test the solution. The pattern starts and ends with the observe step.
The pattern should be used with several iterations. If not, the pattern
degenerates to a waterfall development model [38].

Prior to the case study, three steps already have been performed: observing and
identifying the problem is done in a previous research project (see chapter 2)
and the development of a solution is done by creating the high level strategy (see

22

chapter 5). Because of this, the case study has been started halfway of the first
iteration at the test-phase.

Interpretive perspective
There are several philosophical perspectives on how to conduct valid qualitative
research, including the commonly known positive and interpretive perspective.
The positive perspective assumes that that the reality is objectively given and
can be gathered objectively, whereas the interpretive perspective assumes that
the reality is subjective and can only be gathered through social constructions
[39, 40, 41].

The effects of the strategy is not well or at least not completely measurable
through only objective data (e.g., the amount of errors found). Therefore, the
subjective opinions (e.g., how does a participant experience the strategy) have
been considered of great value. resulting in the choice of the interpretive
perspective.

Using the interpretive perspective, the strategy is evaluated through the
opinions of the team members (what did they find difficult, what did they want
to have improved, what worked well, etc). This gives the opportunity to adjust
the strategy during the case study, based on these opinions.

In order to perform the interpretive approach properly, the case study has been
following the set of principles for conducting and evaluating interpretive field
studies in information systems given by Klein and Myers [42] (see appendix A
for their summary of these principles).

Inquiry from the inside
Next to perspectives, there are multiple inquiry modes; inquiry from the inside
and inquiry from the outside. With inquiry from the outside, the researcher is
totally detached from the organizational setting of the investigation, where with
inquiry from the inside, the researcher is personally involved in the investigation
[43, 44].

The case study has been performed as an inquiry from the inside, as the
researcher has been a part of the team and helped the team implementing the
new strategy. It has been chosen above the inquiry from the outside for several
reasons. First of all, more experience and knowledge on practical issues and
opportunities of the strategy can be gathered with inquiry from the inside, which
helps with making more founded choices when adjusting the strategy.
Furthermore, the team members of the case study had limited amount of time to
apply the strategy, making it useful to have some tests already in place. These
tests were then used as examples and reference material when evaluating the
strategy, its capabilities and its limits. Finally, this approach enabled the case
study's team members to ask for more clarification, details or examples about
the strategy when necessary.

23

3.3.3 Case Study Detailed Design

Iterations
With the chosen project and approaches, a detailed case study design has been
made. First of all, a time scope of the iterations has been defined. Since the
project already works with sprint as development cycles, one iteration matches
one sprint. In total, five sprints have been used for the case study. It is decided to
held five sprints in order to gather a proper amount of feedback, enough room
for improvements and a duration that is long enough to be able to perform a final
validation, but not longer in order to stay in schedule of the thesis. In total, with
an occupation of three days a week, the case study had been performed in thirty
workdays, spread over ten weeks.

Figure 4: Case study detailed design

Figure 4 gives an overview on which activities (blue) took place at which
moment of the iteration/sprint (yellow), how this is done (green) and by who
(orange):

 Explain strategy: The sprint planning has been the ideal time to explain
strategy (adjustments), since the sprint planning marks a new sprint and
is used as a new start.

 Apply strategy: Naturally, the application of the strategy has been done
during the sprint, since then the user stories will be implemented and
tested.

 Evaluate strategy: The strategy has been evaluated during the
retrospective, since the retrospective is the place where normally the
sprint is evaluated as well, having everyone already in an evaluating

24

mood. These evaluations will be hold by presenting everyone a survey,
which was filled in on the spot.
In the week after the final iteration, in-depth interviews with the team
members have been hold for each team member separately.

 Adjust strategy: The strategy was adjusted before the new sprint, so that
changes can be communicated before the new sprint. Because sprints end
at Thursdays and start again at Mondays, it leaves the Fridays open to
design the adjustments based on the evaluations on Thursdays.
Adjustments that took more time were designed during the following
sprint and introduced in the sprint after that.

The activities shown in figure 4 matches the iterative pattern of figure 3 on page
21, in a way that is shown in table 2: The application has been observed by
observing how the strategy is applied, the problem has been identified by
evaluating the strategy, the solution has been developed by adjusting the
strategy, then the strategy adjustments has been explained, where after the
solution has been tested by applying the adjusted strategy.

Step of the iterative
research pattern
(figure 3)

 Steps of the case study
detailed design (figure 4)

Observe the application <-> Apply Strategy
Identify the problem <-> Evaluate Strategy

Develop the solution <-> Adjust Strategy

<inbetween> <-> Explain Strategy
Test the solution <-> Apply Strategy

Table 2: matching steps of the iterative research pattern
 with steps of the case study detailed design

During the sprint, I (i.e., the researcher) was present on location: observing the
project, supporting team members with the strategy, designing adjustments and
implementing some example test cases.

Surveys
The survey at the end of each iteration has been used to gather information on
how the team members experience the new strategy: what is clear, what could
be improved, which problems did occur, etc. The main goal of the survey has
been to determine which parts of the strategy worked well, which parts were
unclear, which parts were needed to be adjusted and what was missing.
Secondly, it has been used to identify the costs and benefits of the strategy,
including outliers and trends over the iterations.

The survey has been chosen instead of a verbal group setting to let the
participants not influence each other. Furthermore, it has been performed on
paper instead of on a digital medium, so it could be filled in directly at the
retrospective and it would not have been be postponed or forgotten.

The survey contained mainly questions with answers that use a five-point scale
and some room for explanation if necessary. Scale-questions can be filled in
quickly and are suitable for comparison between sprints. Additionally there

25

were open questions for those where I couldn't provide pre-defined answers, but
the answers could be very valuable when improving the strategy.

The complete survey is enclosed in appendix B. Below states what each question
of the survey contributes to the thesis.

 The first question asked about the amount of experience from the team
members on Sailpoint IdentityIQ, FitNesse, test-driven development and
test automating. The answers on this question can be used in order to
determine with how much experience the other questions are answered
and possibly show a growth in expertise during the case study.

 The second question asked how well the strategy parts lend their selves
to do their task and to what extent the tutorial and explanations were
good to follow and apply. These questions are used to evaluate and adjust
the strategy during time.

 The third question asked the amount of hours spend on test-activities in
order to give rough estimations for the time it costs to apply the strategy

 The fourth question asks whether problems are encountered, how
restrictive these problems are and if they are solved (and how). This
question is used for strategy improvements in order to determine
limitations for the strategy and possible improve the strategy by fixing
the problem in a next iteration.

 The fifth question asked how the strategy effects several aspects of the
project by comparing these effects between the first phase with the
previous strategy and the second phase with the new designed strategy
and is mainly used for evaluation purposes.

 The sixth and seventh questions asked which part of the strategy could be
reused in which manner and/or to which extent in order to determine the
reusability of this strategy in other projects.

 Finally, there was room for comments, tips, ideas, complaints or pitfalls of
the strategy.

Interviews
The final interviews after the last sprint have the goal to gather an overall
evaluation of the strategy. This evaluation is done by comparing my strategy
with the strategy used in the first phase of this project and comparing my
strategy with the goals and requirements given in section 1.2. All interviews are
recorded, transcribed and send back to the participant in order to be able to
verify the statements done in the interviews.

The interview mainly contains open questions, asking the participants to
evaluate the strategy as a whole. The interview gives the opportunity to respond
on their answers, asking for more clarification, details and examples. The
interviews helped to achieve a qualitative and complete evaluation of the
strategy.

The complete list of interview questions is enclosed in appendix C. Below states
what each question of the survey contributes to the thesis.

 In the first part of the interview, the team members have been asked to
give positive and negative aspects of the strategy. This question gives the

26

team member the change to give his opinions without further influences
or steering towards an answer. The answers given on this question were
a guidance for other questions as well, so the interviewer knows where it
could ask for more information or clarification.

 The second part of the interview consists of questions that asked about
the costs, benefits, effects and specific evaluations of the strategy. The
answers given on this question determines mainly how the strategy
performed and is evaluated.

 The third part of the interview consists of questions that asked to which
extent the goals of this thesis has been achieved in order to use that for
evaluations and future work.

3.4 Evaluation
The strategy was evaluated through analyzing the results of surveys and
interviews.

Surveys were summarized by first grouping answers on questions. For the
questions that have a scale as answer, the answers are grouped by survey
iteration, calculating the averages per iteration (with min and max values) and
the overall average (with min and max values), and creating a plot from this,
both with individual values and average values. For the open questions, all
individual answers are listed, sometimes grouped per iteration.

Interviews were summarized by grouping answers on questions or subjects,
listing the opinions of all individuals on that question or subject.

From both summaries (of the surveys and the interviews), the results were
analyzed by linking answers on related subjects and questions, relate them to
each other, to the application of the strategy and/or to the background of the
individuals in order to draw conclusions.

27

4 Literature Review
This chapter provides theoretical background and the state of the techniques on
important concepts of the research project. The following concepts are
discussed:

 Continuous delivery
 Test models
 Test-driven development
 Test automation
 FitNesse

4.1 Chapter Summary
Continuous delivery is used in software development to automate and improve
the process of software delivery by using a deployment pipeline that consists of
continuously integrating, building, testing and releasing software [45, 46].

Test models describe test activities with correlation to development activities.
The v-model shows that testing can (and should) start at the beginning of the
project. An improved version of the v-model [47], called the advanced v-model
[48], is designed to reflect the relationship between the development activities,
test activities and maintenance activities. Another improved version of the v-
model, called the w-model [47], is designed to define more clearly when which
test activity starts, what the connections are between various test stages, and it
shows the link between the tasks of testing, debugging and changing during test
phases.

Test-driven development (TDD) is a development and testing practice from the
agile software movement where tests are written before coding in small
iterations existing of: write a failing test, make the test pass, refactor [49].

Test automation is the use of a mechanism for running test cases without a
tester, which can improve the quality of testing but also requires an investment
that should repay itself [50, 51].

FitNesse is a test automation tool that is used in the strategy design of this thesis.
It is a lightweight, open source framework that enables teams to collaboratively
define acceptance tests, run those tests and see the results. FitNesse tests can be
used very early in the project and tests can be written by both technical and non-
technical stakeholders [7].

4.2 Continuous Delivery
Continuous delivery is used in software development to automate and improve
the process of software delivery by using a deployment pipeline that consists of
continuously integrating, building, testing and releasing software [45, 46].

28

4.2.1 The Deployment Pipeline
The Continuous delivery deployment pipeline [45, 46] is shown in figure 5:

 First, the delivery team delivers commits to the version control,
integrating code in one central place.

 The update in the version control software triggers the build and unit
tests, which verifies that the system compiles and passes a suite of
automated unit tests.

 When the build and unit tests pass, a series of automated acceptance tests
are triggered, which tests whether the system works at the functional and
nonfunctional level.

 When the automated acceptance tests also succeed, the manual user
acceptance tests can start, testing whether or not the system is usable and
fulfills its requirements.

 When the manual tests succeed, the delivery team will get this success as
feedback and the software can be released.

 When one of the tests fails, the delivery team will get this fail as feedback.

Figure 5: Changes moving through the deployment pipeline [46]

4.2.2 Prerequisites of Introducing Continuous Delivery
The deployment pipeline depends on having some foundations in place [46]:

 Good configuration management.
 Automated scripts for building and deploying your application.
 Automated tests to prove that your application will deliver value to its

users.
With these foundations, a continuous delivery framework can be set-up in order
to perform the triggers and feedback steps shown in figure 5.

Successful continuous delivery requires discipline, such as ensuring that only
changes that passed the automated build, test, and deployment get released.

29

4.2.3 Supporting Tools
Several tools exists which support steps of the continuous delivery pattern.
Below, some tools are listed as starting point for the automated steps of figure 5:

 Version control software like Git [26] and Subversion [52] for
configuration management.

 Build tools like Maven [27] and Ant [28] for automated builds and tools
like the xUnit frameworks [53] for unit tests.

 Test automation tools like FitNesse [7], GreenPepper [8], Cucumber [9] and
Root Framework [10] and - for automating web browsers - tools like
Selenium [5] and Watir [6] for automated acceptance tests.

 Continuous Integration tools like Jenkins [54] and Bamboo [55], for
managing the overall process, triggers and feedback steps of continuous
delivery. These tools offer to perform and monitor external jobs that build
and test software projects continuously.

4.3 Test Models
There are several test models that describe test activities in relation to
development activities. The V-Model is the most commonly known. Later on, the
Advanced V-Model and W-Model were introduced as an improved version of the
V-Model.

4.3.1 V-Model
The v-model describes the graphical arrangement of individual software
development phases, connecting development and test activities in different
abstraction levels. The V points to both the form of the graphical representation
shown in figure 6 and to the terms verification and validation [47].

The v-model shows that testing can (and
should) start at the beginning of the
project [48]. In figure 6, all grey arrows
have the meaning of based on. For
example, acceptance testing is based on
the requirements, coding is based on the
detailed design, and so on. The purpose of
the v-model is to improve efficiency and
effectiveness of software development-
and maintenance activities by connecting
development and test activities.

Figure 6: The v-model[47]

4.3.2 Advanced V-Model
An improved version of the v-model, called the advanced v-model, is designed to
reflect the relationship between the development activities, test activities and
maintenance test activities. It adds the maintenance line to the model, containing
test cases, regression testing, security testing and deployment testing [48].

30

The advanced v-model shown in
figure 7 has an extra line on the right
compared with the v-model in figure
6. The figure illustrates that, when
the test activity in the middle line is
done, the test activity on the right of
that activity needs to be performed
afterwards (perform test cases after
unit testing, perform regression
testing after integration testing, and
so on.) Again, all grey arrows have
the meaning of based on.

Figure 7: The advanced v-model [48]

4.3.3 W-Model
Another improved version of the v-model, called the w-model, is designed to
define more clearly which test activity initiates which other test activities, what
the connections are between various test stages, and what the link between the
tasks of testing, debugging and changing during test phases are [47]. Figure 8
illustrates this w-model. If you compare the w-model in figure 8 to the v-model
in figure 6, two lines are added:

 The second line from the left. This line states test should be planned and
test activities should start early on.

 The line on the right. This line states that test activities lead to change
activities by the discovery of faults and errors.

Again, all grey straight arrows have the meaning of based on, and as addition, the
grey round arrows have the meaning of a cycle of debugging, changing and re-
testing.

Figure 8: The w-model [47]

4.4 Test-Driven Development
In Agile Software Development, test-driven development (TDD) emerged as a new
development and testing practice from the agile software movement [56]. The
idea of TDD is to write test cases before coding and work in small iterations to
yield better quality and fewer defects in code. The principles of TDD are to test as
early as possible, as often as possible, test just enough for the situation and to
perform pair testing.

31

Figure 9 shows the most common
development cycle of TDD [49]:

 Write an automated test case that
defines a desired improvement or
new function.

 Produce the minimum amount of
code to pass the test.

 Refactor the new code to acceptable
standards.

 (Repeat)
Figure 9: Test-driven development[56]

Using TDD as development style makes your code self-testing, in general more
suitable for testing and it sets the focus on testing requirements instead of
testing if the implementation is satisfied [57].

4.5 Test Automation
In order to achieve continuous delivery, tests should be automated. Manual
testing can be described as a person initiating tests, interact with them, interpret,
analyze and report the results. Automated testing is the use of a mechanism for
running test cases without a tester [50].

4.5.1 Benefits
Test automation provides an improvement on the quality of testing; automated
tests are formalized and can be run repeatedly for many times with minimal
effort. The repeating property enables tests to run often, therefore finding errors
more quickly than when manual testing is used, especially when modification in
one component breaks another component [51]. Finding errors quickly saves
time overall in the development processand can reduce overall development
time by 8–15% [58, 59, 60].

4.5.2 What/When to Automate
The benefits mentioned above sound very promising, but test automation is not
always profitable, since test automation comes with an investment: the costs of
automating a GUI-test may be several times as expensive as a manual GUI test
(although, relatively cheaper when a capture or replay tool is used). However,
when automating compiler testing, automation is only a little more expensive
than running manual tests (because both manual and automatic tests of compiles
use the same syntax and it is fairly easy to put these syntax in a script) [51].

Automated tests have a lifecycle; they are run every time after the code changes
until they need to be repaired or discarded. The investment of automating a test
should repay itself before that test breaks.

To estimate the costs and benefits of automating, three questions should be
asked [51]:

 How much more time does it take to automate the test instead of
manually running it?

32

 How likely is it that the test dies(e.g., it needs maintenance or is thrown
away)? Which events are likely to end it?

 During its lifetime, how likely is this test to find additional bugs (after the
first run) and how does this balance with the costs of automation?

Note that there will always be a role for manual testing [51, 61]. First of all, it is
the only way to sanity test the automation itself and secondly, some tests are not
worth repeating due to high automation costs.

4.5.3 Tools
One of the key elements when automating tests for a system is knowing which
tools can support test automation in the system's environment [50]. As stated in
section 4.2.3, test automation tools like FitNesse [7], GreenPepper [8], Cucumber
[9] and Root Framework [10], Selenium [5] and Watir [6] are a selection of
automated solutions for acceptance tests.

Next to tools that automate acceptance tests, there are many tools for supporting
other test activities as well, such as tools that automatically generate test cases
or test data. Finding, selecting and adjusting these tools so that they are capable
to work and deliver value in identity solutions projects will be a challenge on its
own and out of the scope of this project due to time constraints and the choice of
focusing on introducing continuous delivery.

4.5.4 Common Test Automation Problems
Pettichord illustrated several common problems that plague test automation
projects [61], including that test automation does not get the focus it needs, that
the goals of automation are not clear and that projects suffer from a lack of test
experience from employees. Pettichord contends that test automation projects
need to be run like other software development processes, needing test designs,
source code management, user documentation etc. It is good to be aware of these
problems to be able to early identify if these problems occur at your project.

4.6 FitNesse
As stated in section 1.5.1 and section 2.5, FitNesse will be used as test
automation tool in the strategy. FitNesse [7] is a lightweight, open source
framework that enables teams to collaboratively define acceptance tests, run
those tests and see the results. FitNesse tests can be used very early in the
project: it works well with test-driven development, where the tests are written
first. FitNesse also offers an internal version control system that stores old
versions of wiki pages automatically in ZIP-files as a backup [62].

With FitNesse, tests are specified in the wiki through test tables. This is done in a
way that is user-friendly for both technical and non-technical stakeholders. The
idea is that all stakeholders contribute on creating test tables in the wiki, since it
represents requirements as a verifiable and executable table. With this, FitNesse
can help with specifying and clarifying textual requirements because it forces
stakeholders to come up with specific examples and think of specific exceptions.

33

4.6.1 Components
A simplified version of the FitNesse architecture, is given in figure 10. This figure
shows only the parts that need to be created when using FitNesse: test cases,
fixtures and the system under test [63]. Tests are specified in the wiki, from this
wiki, the corresponding fixtures are called, which in their turn perform calls to
the system under test and report the results back to the fixture, back to the wiki.

Figure 10: FitNesse components and the system under test (based on [64] and [63])

Wiki
The wiki has three types of pages: static, test and suite pages. Static pages are
simple text pages, test pages are executable pages which contain test tables and
suite pages are collections of test pages or other suites in order to group en order
test pages. A screenshot of a test page with a script table is shown in figure 11.
FitNesse stores the wiki as folders and plain text [62]. The wiki-pages can be run
manually (via the Wiki) or automatically (via Ant, Maven, JUnit, REST-
commands) by anyone with web access to the server, as frequently as required.

Figure 11: A screenshot of a FitNesse wiki page with a script table

34

Fixtures
The test tables in the wiki are associated with tests programs, called fixtures.
These fixtures take the input data from the wiki, test the system under test and
delegate the output back to the wiki again. FitNesse then compares the actual
outcome with the expected outcome and reports the results by color-coding the
table rows in the wiki: green for success and red for failure and, when a test fails,
giving the errors and differences between what was expected and what was
received from the system under test (SUT). Figure 12 shows the results after
running the test page of figure 11. As you can see in figure 12, the test found an
error (color coded with red) which is in this case due to a bad value in the script
table.

Figure 12: Running the test

FitNesse supports two programming languages for these fixtures: Java and
DotNet [65]. Support for other languages can be build in manually; some
extensions for other languages exists already (e.g., plug-ins for Ruby, C, and PHP)
[66]. In general, fixture code should be as thin as possible, only piping and wiring
between the test table and the application code under test.

4.6.2 Detailed FitNesse Info

Test Systems
FitNesse supports two test systems, FIT (Framework for Integrated Test) [33]
and SLIM (Simple List Invocation Method) [34]. FitNesse started as a wiki front-
end to FIT and, since 2008, FitNesse has added SLIM as alternative to FIT [67].

35

Test Tables
The SLIM and FIT test system supports several table styles to define your tests
in. The most common used table styles are [34, 68]:

 ColumnFixture (FIT) and Decision Table (SLIM), which allows series of
inputs and outputs to be defined.

 RowFixture (FIT) and Query Table (SLIM), which allows testing queries
that should return an exact set of values.

 ActionFixture (FIT) and Script Table (SLIM), which allows series of events
to be performed.

 Comment Table (FIT) and Comment Table (SLIM), which allows to write a
tabular comment that is not executed as test.

 Import Table (FIT) and Import Table (SLIM), which allows to add a path
to the fixture search path.

Architecture
The FitNesse architecture with both test systems is shown in figure 13. As shown
on the left of the picture, test cases are defined in a wiki in FitNesse. Dependent
on the specified test system, either the Fit Client or the Slim runners will be used
which eventually execute fixtures that perform test API calls to the system under
test. The blue blocks in the picture are given and generally not changed and the
orange blocks are the places where application specific development needs to be
done.

Figure 13: FitNesse's architecture [64]

36

5 High level Strategy
This section describes the first strategy design, which is a high level design
where much details have not been decided. This strategy design was created
prior to the case study, so the case study could start the iterative pattern from
section 3.3.2 (i.e., observe-identify-develop-test) directly with the test phase:
applying the strategy on a real project.

The main goal of the strategy is achieving continuous delivery by introducing
test automation and a continuous delivery framework. Continuous delivery
consists of several steps: version control, automated build and unit tests,
automated acceptance tests, manual acceptance tests and a release. Tools are
needed for each of these steps that can be automated, including a continuous
delivery framework to manage the continuous delivery process.

The high level strategy below begins with a list of chosen tools for each step and
then illustrates how these tools are combined into a continuous delivery
workflow. After that, it is described how tests should be created with FitNesse
and test-driven development, several test guidelines are given and some specific
choices on how to use the tools and environment are made. Finally, this chapter
states how the strategy is documented.

5.1 Tools

Version Control Tool: Git (1.8.4)
For version control, Everett uses the version control software Git [26] in
combination with Bitbucket [69], which hosts the Git-repository in the cloud.

Automated Build+ Unit Test Tool: Ant (1.0.b3) and JUnit (4.8.2)
Since this project had been using ant scripts to build the software and run the
unit tests from JUnit, these ant-scripts had been reused and called by the
continuous delivery framework in order to automatically build the software and
run unit tests during the continuous delivery cycle.

Automated Acceptance Test Tool: FitNesse (release 20131110) with SLIM test system
FitNesse had been chosen as test automation tool (see section 2.5 on how and
why this choice is made). As stated in section 0, FitNesse offers two test systems:
SLIM and FIT. The SLIM test system of FitNesse had been chosen for this
strategy, since SLIM is newer, easier to use, easier to port to different platforms
and more powerful than FIT[34]. See section 5.3 on how to use FitNesse in order
to create and run tests.

Integrated Development Environment Tool (IDE): NetBeans 7.3 and 7.4
It is desired to use a good IDE when creating the Java fixtures, because an IDE
enhances the productivity of the developer. Since in this project Netflix was been
used for small development and NetBeans is an well-known and appropriate
IDE, NetBeans has also been used when creating fixtures.

37

Continuous Delivery Framework: To Be Decided (Jenkins 1.528)
As stated in section 4.2.3, Jenkins and Bamboo had been two possible candidates
to act as continuous delivery framework in this project. For the high level design,
had been yet undecided which one will be used.

In the second iteration, Jenkins has been chosen as continuous delivery
framework (see section 6.2.1).

5.2 Use Continuous Delivery Framework

Use Continuous Delivery Framework
The continuous delivery framework connects all the tools together; it pulls the
latest code from Git, runs the automated build and unit tests (and deploys the
application) by calling an ant-script, runs the automated acceptance tests of
FitNesse and finally shows the results.

In the second iteration, it has been chosen to run the continuous delivery
framework early in the morning instead of after each commit to save
resources (see section 6.2.1).
In the fifth iteration, the time-out of the continuous delivery framework had
been set to 5 minutes instead of 1 minute, in order to solve a time-out error
(see section 6.5.1)

5.3 Use FitNesse

Use FitNesse with Test-Driven Development
Using test-driven development (TDD) in agile environments offers some
benefits. As stated in section 4.4, TDD enhances the test and code quality, makes
your code more suitable for testing and sets the focus on testing the actual
requirements. As stated in section 4.6, FitNesse works well with TDD.
Furthermore, the principles of TDD to test to test as early and often as possible is
consistent with the principles of continuous delivery, where tests are performed
continuously.

The book from Adzic [62] describes how to combine FitNesse and test-driven
development, which I had illustrated in a workflow-diagram (see figure 14). The
following workflow is shown visually in figure 14:

 The first step of test-driven development with FitNesse is to let business
users and/or developers describe functionality in the FitNesse wiki, and
then let them demonstrate this functionality with examples in wiki tables,
creating for instance scenario's or a list of input-output values.

 When the wiki has a test case, the functionality can be developed or
configured by the developers, then they hook the FitNesse fixture to the
system under test, and then the test is run.

o When the test fails, the developer should go back at an loop;
developing or configuring the functionality and/or developing and
hooking the fixture, run the test again until it passes.

o When the test passes and the test case/examples can be refined,
start at the first step again and refine the test case. When no
refinements can be made, the cycle is completed.

38

Figure 14: Test-driven development with FitNesse

This workflow is a FitNesse-specific view on test-driven development, first write
the test (describe functionality and create wiki tables), then make the test pass
(create functionality, hook fixture and run test – if not pass, again), then refactor
(not shown in this diagram). It is possible to first develop/hook the fixture and
then the functionality, but generally, that would be more difficult if you do not
implemented the actions or functions on the SUT that needs to be done or called.
When business experts are involved in creating the test cases in the wiki, I had
concluded this approach then might be more effective to differ from classic test-
driven development; instead of continuously test and develop in steps, it is
advised that the business user specifies the complete test in advance so that the
business expert can sit down once and isn't constantly involved and interrupted
to refine the test case. Then it's the developers task to implement and test the
feature in small steps if possible.

Interaction Between Test-Fixtures and IdentityIQ
Since there are multiple ways to perform calls to SailPoint IdentityIQ from
outside and none of them are ideal, the pros and cons had been weighed against
each other to be able to decide which strategy was the best to use: test via the
REST API, test via the console or test via the graphical user interface (GUI).

39

 REST API: The REST API is made available for customers to use, either
from inside a Java application or via HTTP. Therefore, the REST API can
be easily called from Java fixtures, offering a couple of methods such as
showing/creating/updating identities, check an identity's authorization,
aggregate an account, launch workflows [70]. Unfortunately, this set of
methods and things you can do or test with these methods is very limited
at the time of the project, making the REST API only suitable for some
very specific tests and definitely not for acceptance tests.

 Console: The console is a command line utility that makes a live
connection to the IdentityIQ database and is mainly used for debugging
and troubleshooting. It allows the user to view objects, run tasks, run
manager certifications, run workflows, import and export data, and a
couple of other functions [71]. The console offers definitely more
functionality then the REST-API, but still has functional limitations.
Furthermore, the console is harder to use from the Java fixtures then the
REST-API and it is a lot slower: the command to start the console is
different for each operating system and starting the console initiates the
IdentityIQ environment which takes a lot of time (approximately 10-60
seconds depending on the available resources).

 GUI: IdentityIQ is delivered with a web-GUI, which is normally used to
interact with IdentityIQ. prior to this strategy, most tests are performed
manually in this project, by interacting with the GUI. Although nearly all
actions can be performed via the web-GUI, GUI's generally change more
often than the functionality-layer below it. These changes could break
tests and limit the reuse of these tests on important moments (for
instance when a new patch is delivered with new functionalities and a
new GUI, the regression tests still needs to work in order to test if the new
functionalities did not break anything), where the reusability is a key
factor of getting a return on investment on test automation. For this
reason, it has been desired to test on a functional level.

With the information above and some experimenting with all possibilities, the
choice has been made to use the API when possible, since it is very easy to use
from the fixtures, and otherwise use the console, which is much slower but offers
more functionalities then the API. Although this won't be the perfect solution, it
had been considered the most promising option from the three options above.

In the second iteration, the choice has been reconsidered, since it was not
quite usable. An extra option has been found, which replaced this choice:
using the private API (see section 6.2.1).
In the third iteration, the SailPoint environment had been initialized and
closed before and after the main suite instead of before/after each test (see
section 6.3.1).

Collaborate with FitNesse by Storing FitNesse Tests in Version Control (Git)
According to Adzic, here are multiple solutions that allow collaboration between
team members using FitNesse [62]:

 Using a single central server and all work on that server. However this is a
natural setup, in practice this only works with small teams since it has
performing issues when executing multiple tests simultaneously.

40

 Use a single central server for collaboration but execute tests locally. The
central server keeps the updated version of FitNesse tests, which are
imported by using a wiki import; developers can then edit test cases
remotely and locally. This option needs some discipline in order to have
all local updates send back to the central server.

 Store the tests on version control and run local instances of FitNesse. This
is a logical option sine most projects use version control for code anyway.
The benefit is that both the wiki as the fixtures are in the same repository.
Since FitNesse stores the wiki as plain text files in a folder hierarchy and
the fixtures are stored as general Java (text) files, version control systems
can correctly merge concurrent changes to these files. A downside is that
it leaves people like business analysts and customers outside the loop,
because they typically do not have tools to access the version control
system. This can be solved with an additional “central” test server for
people who cannot run FitNesse on their machines.

The most suiting solution for Everett is the latest option. Since Everett uses GIT
for their code, it is only natural to use Git for the FitNesse wiki and fixtures as
well. Since external version control is used, the advice from Adzic [62] to disable
the internal version control of FitNesse is used as well. Keeping it enabled will
clutter the version control with zip-files and introduce merge-conflicts on those
zip-files. The internal version control can easily be disabled by adding the
parameter "-e 0" at the end of the commando that starts FitNesse. As mentioned
in the solution, an additional “central” test server must be run for people who
cannot run FitNesse on their machines.

5.4 Guidelines

Which tests should be Automated
The guideline from the literature mentioned in section 4.5 had been used as
main test automation principle:

To estimate the costs and benefits of automating, three questions should be
asked [51] (where I've added a fourth question):

 How much more time does it take to automate the test instead of
manually running it?

 How likely is it that the test dies(e.g., it needs maintenance or is
thrown away)? Which events are likely to end it?

 During its lifetime, how likely is this test to find additional bugs
(after the first run)? How does this balance with the costs of
automation?

 (My fourth question:) Can I re-use (parts) of this test for other tests?

Note that there will always be a role for manual testing [51, 61]. First of all,
it is the only way to sanity-test the automation itself and secondly, some
tests are not worth repeating.

This guideline has been added to determine which tests should be automated
and which not. It helps developers to identify the benefits and costs of
automating a test and helps to make a thought-out decision on this.

41

Since identity solutions projects are short term, the return on investment needs
to be sooner than with long-term projects. Therefore it is extra important to
focus on reduce the effort to automate a test as much as possible by, for instance,
reusing (parts of) tests as much as possible, both in-between tests as in-between
different projects. The fact that the projects are short term also gives some extra
restrictions in what to test; only test parts with high risks. Furthermore, the
developers should beware to not test the third party systems themselves, since it
is assumed that those are already tested by the third party themselves and won't
deliver the desired return on investment.

The final test suites was been expected to have many tests that test features that
are common through several identity solutions projects, such as an aggregation
feature, a certification feature, a reporting feature, a form of role management, a
form of life cycle management etc. These tests might be reusable for other
identity solutions projects as well. It had been expected that the tests also would
contain some project or platform specific tests that could have been created
quickly in order cover an essential element, rule or task. If such a specific test
takes a long time (i.e., multiple hours) to create, it is probably more efficient to
test it by hand.

Using Environments for the Continuous Delivery Framework and FitNesse
In the high level strategy, the choice of on which environment(s) the continuous
delivery framework, the developers FitNesse instances and the additional central
FitNesse instance for business users can or should be run was postponed, since
the environment details were not known at that time.

In the second iteration it has been decided to run the Jenkins and the
FitNesse instance for business users both on the test-environment of the
client. The developer may run a test in his local environment or on the
development environment as well (see section 6.2.1).
In the fourth iteration, an automatic pull/commit/push-solution had been
made in order to keep the separate FitNesse instance and Git both up to
date (see section 6.4.1)

Working with Test Environment Data
In order to have repeatable test suites, a constant initial system state is needed at
the beginning of a test run, including appropriate test data. Similar to Enterprise
resource planning systems (ERP systems), identity solutions systems are
practically impossible to reset to the initial system state: the effort is too high
and/or it cannot be done at all [72], which lowers the testability of such systems
(i.e. to which degree such systems allow to define and execute an effective
testing process).

I had came up with three possible strategies on how to cope with data changes
during testing: clean up, leave the changes or reload the initial test data set:

 Clean up: All the changes made during a test needs to be deleted at the
end. Sometimes it might not be possible to really delete a change (e.g.,
creating an identity and the delete command will make it an inactive
identity instead of really deleting it).

42

 Leave the changes: Let the changes stay on the system. This is a simple
solution, although you need to make sure that these changes do not stand
in the way of a second run of the test or of a run of another test. For
instance when creating an identity, random strings can be used to create a
new object to avoid "identity already exists"-errors when the test is run
multiple times. With this option, the database needs to be cleaned up once
in a while to avoid cluttering the database too much.

 Reload the initial test set: After a test or series of tests, reload the initial
test set. This will be the most clean solution, since there is always the
same solid test environment state when testing. The downside of
reloading is that it might be very time-consuming and therefore not
practical.

Which option or combination should be used in the strategy was not decided in
the high level strategy, but in a group-meeting during the case study since the
team members would had a better view of the possibilities and consequences of
these options, specifically in identity solutions projects.

In the second iteration, it had been chosen to, when possible, clean up the
change and otherwise leave the changes be. Once in a while, the test
environment must be reset manually. Because of this choice, there is not
always a clean data-set. Therefore so no assumptions can be made on the
existing data set in the tests (see section 6.2.1).

Grouping FitNesse Tests in Test Suites
FitNesse tests had been grouped in suites that to group similar tests together.
The book from Adzic [62] advices to divide slow and fast tests (to run fast tests
on every change and run slow tests every couple of hours) and divide code-
oriented and customer-oriented tests (so that customers and business analysts
won't get confused by code-oriented tests). This vision was used as starting point
for the strategy. In a later iteration, it would be determined if these differences
exist our project and, if so, how these should be grouped.

In the second iteration, it is decided to not divide slow and fast tests and
code-oriented and customer-oriented tests, but group all test suites in one
main test suite. Furthermore, from the second iteration forward, the test
suite hierarchy was going to be based on functionality (see section 6.2.1).

Stimulate re-use in Fixtures: Using Inheritance
The FitNesse fixtures were created with the use of Java inheritance to reuse
functions as much as possible, both inside the project as for other projects.

I had been making some examples and assumptions on how the reuse with
inheritance could take shape in identity solutions projects:

 Inside the project: If features need to be tested that are partly similar, the
functions for the similar part can be combined in an own abstraction layer
where some functions have a standard body and some are abstract.
Sometimes, multiple abstract layers are desirable. If these abstract layers
are present, the reusable abstract layer only needs to be implemented
once. For all similar tests, only the part that differs needs to be
implemented, saving a lot of time.

43

 Other SailPoint IdentityIQ projects: All the non-application/project-
specific parts of the test suite could be reused for other projects, simply
by deleting the lowest (specific) classes from the suite above, reusing the
abstract classes, and create new classes for the application/project-
specific parts of the new project.

 Other identity solutions projects: All identity solutions projects have some
part of functionality in common. Reusing the abstract functions (mostly
with an empty body, since the body will be mostly IdentityIQ specific) for
these common features will give new projects some guidance to start with
creating tests for this strategy.

5.5 Documentation

Presentation
A presentation had been made to explain the case study to all team members of
the case-study's project; the motivation, goal, method, planning and the most
important points of the strategy, referencing to the tutorial for additional
information.

Tutorials
Tutorials had been made on Everett's wiki to explain:

 How FitNesse needs to be installed and set-up, what the main functions of
FitNesse are, how to use the most common test tables, illustrated with a
very simple system under test: decision tables, query tables and script
tables.

 How to interact with IdentityIQ from the Java fixtures.
 Advanced FitNesse info.

The goal of these tutorials is to give the developers the knowledge on what
FitNesse's capabilities are and, furthermore, how to use it in combination with
the IdentityIQ project.

The tutorial parts of FitNesse's installation, setup and main functionalities is
based on an existing tutorial by Erik Pragt [73]. That tutorial also uses the SLIM
test system with FitNesse and is very clear, although the examples by Pragt were
not always complete. Therefore I had been added some more general and
project-specific details and the complete code-base to enable team members to
experience the functionalities in practice as well. This tutorial had been tested by
one of my colleagues, a couple of weeks before the case study, in order to
determine if the tutorial was clear and correct. The colleague had found one
small error which I corrected (paths are in Mac OS and Linux specified with a
forward slash where in windows you could use both forward as backward
slashes. The tutorial used backward slashes resulting in an error on the Mac).
The colleague also stated that more information is needed on how to use
FitNesse to interact with SailPoint IdentityIQ.
With this feedback, the interaction with IdentityIQ had been added to the
tutorial. These instructions included a simple Java-example for calling IdentityIQ
from both the REST-API as from the console.

The tutorial of FitNesse also includes some advanced FitNesse info, where is the
rest of the strategy was defined.

44

Some small changes had been made during several iterations, making some
things a bit more clear.
In the fourth iteration, a tutorial had been added to the wiki on how to
automatically push and pull from Git for the running FitNesse instance (see
section 6.4.1).
In the fifth iteration, a tutorial had been added to the wiki on how to install
and configure Jenkins (see section 6.5.1).

The export of the final tutorial is listed in appendices E, F and G.

45

6 Case Study: Fine-Tuning the Strategy
As stated in the Research Design in section 1.4 and chapter 3, the strategy has
been created and adjusted through iterations. During the case study, the high
level strategy was applied, evaluated and if needed, adjusted or supplemented.
The strategy was evaluated by holding surveys after each iteration and by
holding an interview with all team members after the last iteration.

In order to anonymously discuss opinions and work of the several team
members, but keep identities they are labeled with a letter:

 Team member A is from Everett and had been working on the case study
project as the architect/scrum master.

 Team member B is from Everett and had been working on the case study
project as a developer.

 Team member C is from Everett and had been working on the case study
project as a developer.

 Team member D is from the client and had been working on the case
study project as an acceptance tester.

 Team member E is from the client and had been working on the case
study project as the product owner.

This chapter explains per iteration what had been changed or added to the high
level strategy , how the strategy was applied and discusses relevant parts of the
evaluation, following the iterative design flow of the case study.

6.1 First Iteration

6.1.1 Adjustments and Additions
The first iteration starts with the high level strategy as described in chapter 5,
without any adjustments or additions.

6.1.2 Application
The case study had started with a presentation as introduction, given by me,
explaining the strategy to all team members of the case study.

A day after the presentation, team member A installed FitNesse on site and
added it to the GIT repository.

After that, team member B started implementing a simple test together with me,
in order to investigate how the strategy works in practice. The first test was
about testing an aggregation for an application via an CSV-file: running the
aggregation and verifying if the aggregation did correlate the amount of
identities that were available in the CSV-file. After the first test, further
applications of the strategy were put on-hold, since the way of interacting with
IdentityIQ via the API and the console is considered quite unusable (see section
6.1.3 for the details). Later on, this test was removed.

46

6.1.3 Evaluation
In this iteration, no survey was conducted since an important problem had been
found, resulting in an on-hold strategy.

When creating the first test, a couple of problems were found when using the
console to interact with IdentityIQ:

 The console needed to be started via the Java-runnable method which
needs a different call for each operating system. Of course, the Java
program can loop over several operating systems and list for each
different system what call needs to be made, but that would be an ugly
hack.

 The console's feedback/result could only be gathered via file-exports,
which need to be read with Java file readers. These readers might have
read-locks errors and files might be outdated, so you need to make sure to
clean the file afterwards. This cleaning can easily be forgotten and
therefore yield wrong results.

 The console needed to be restarted for each sequence of commands.
Because starting the console takes a long time, it makes tests far too slow.

Before further adoption of this strategy in this project could have been done,
these issues above needed to be solved.

6.2 Second Iteration

6.2.1 Adjustments and Additions

Continuous Delivery Framework
 Addition: chose Jenkins (1.528) as framework
As stated in the high level design, a continuous delivery framework is needed in
order to achieve continuous delivery. Since a team member on the case study
(team member A) had some experience with Jenkins, Jenkins is open source and,
next to plug-ins for Ant and Git, even a plug-in for FitNesse was available [74],
Jenkins is chosen as the continuous delivery framework.

Use Continuous Delivery Framework
 Addition: added details on configurations
In order to not use all resources of the machine where Jenkins and FitNesse are
deployed on and not clutter logs, the tests should be run on a time that nothing
else runs, for instance around 05:00 to 07:00AM, so the test results are ready
when the workday starts. This differs from the continuous delivery cycle in
section 4.2.1 which builds and tests after every GIT push, but this choice is
needed when there are less resources available.

In the fifth iteration, the time-out of the continuous delivery framework had
been set to 5 minutes instead of 1 minute, in order to solve a time-out error
(see section 6.5.1)

47

Interaction Between Test-Fixtures and IdentityIQ
 Change: use private API instead of REST-API and console
As stated in the evaluation of the first iteration, the chosen approach for
interaction between the fixtures and IdentityIQ was not sufficient. In order to
solve this problem, I had held a brainstorm with the team members of Everett
which had resulted in a new option: using the private API of the product instead
of the REST API and the console. In order to use this, a part of the code of
IdentityIQ was decompiled and reconstructed in a java framework.

The created java framework initializes the database-environment of the product,
which is normally also done when the console is started. From this environment,
functions in the private API can be called directly from Java, including the
functions that the console offers. Furthermore, the so called SailPointContext can
be gathered as well, which can be used to query objects from the database.

This solution is faster than the previous one and uses less workarounds, since
now the console functions can be called directly from Java and the environment
only needs to be initialized and closed once every test: initialize before the test
and close after the test.

In the third iteration, the SailPoint environment had been initialized and
closed before and after the main suite instead of before/after each test (see
section 6.3.1).

Using Environments for the Continuous Delivery Framework and FitNesse
 Addition: run Jenkins and FitNesse instance of client in test-environment and
 developers may run tests in development environment or local environment.
A project often has multiple environments. In this project, there had been four
environments available for the team: development, test, acceptation and
production. The production needed to stay clean of tests, since this is the real
and critical environment. The acceptation development also needed to stay clean
since it is used for manual acceptance tests. This leaves the development and test
environment as options for running the continuous delivery framework and
FitNesse.

Because the development environment was already been used very intensively,
the test environment has been hosting the continuous delivery cycle.

The test environment had also been chosen to run the separate FitNesse instance
on, where the non-technical team members can define tests in. Because of his
separate FitNesse instance, the non-technical team members don't have to worry
about installing Git and FitNesse but simply go to this FitNesse wiki instead. One
team member had been made responsible to run this wiki and to push and pull
changes on the wiki from and to Git at the end of every day to keep the wiki up to
date.

When developing a fixture or functionality, the developer my run a FitNesse
instance in his local environment and/or on the development environment.
When using the development environment, the developer should only run the

48

test that he is working on and not the whole suite in order to keep the used
resources and interference with others minimal.

In the fourth iteration, an automatic pull/commit/push-solution had been
made in order to keep the separate FitNesse instance and Git both up to
date (see section 6.4.1)

Working with Test Environment Data
 Addition/Choice: clean up when possible, otherwise leave changes and reset
 the environment once in a while
In order to choose between the test environment data options given in the first
iterations (clean up, leave the changes or reload the initial test set), I had held a
small group-meeting with the Everett team members on the case study where
we together came up with an approach:

 When possible, clean up changes at the end of the test.
 Otherwise, leave the changes be, but make sure these changes don't

prohibit a new test run.
 Once in a while reset the test environment and reload the test data from

the export. This takes a lot of time (and therefore it cannot be run that
often), but cleans the system well.

Since the test environment had also been used for manual tests, the data-import
files are updated from time to time and some test-changes cannot be reverted, no
assumptions about the existing data set in the tests can be made.

Grouping Tests in Test Suites
 Addition: group all tests in one main suite and order sub suites on
 functionality
As stated in the first iteration, the book from Adzic [62] advices to divide slow
and fast tests and code-oriented and customer-oriented tests. However, in the
case study, almost all tests would have been slow because of the time it costs to
set-up the environment. Furthermore, the difference between code-oriented and
customer-oriented tests are not that clear in this project, so at this point, no
difference between fast and slow tests and code-oriented and customer-oriented
tests had been made. It might be wise to reconsider this choice when necessary.

All suites had been grouped in one main suite called AllTestSuite. This way, all
tests can be run from that one suite. Before and after this suite, the setup and
teardown of the environment is done; When this suite (or any test or suite in this
suite) is run, the environment is setup before and tear down after. Furthermore
it makes the Jenkins-configuration simple (only pointing at one suite to run all
tests).

Tests still need to be grouped in a test suite hierarchy to have all tests ordered in
a logical way. The way that had felt the most naturally for this project is to group
on the basis of functionality (e.g. aggregation, certification, life cycle manager), so
that is chosen as first approach.

6.2.2 Application
I designed a new SailPoint-Interaction-framework on the a demo-environment,
as was explained in section 6.2.1.

49

With this framework, I have been making example tests on the same demo-
environment to show how the new interaction with SailPoint IdentityIQ works:

 Two example tests which tests two different aggregations in IdentityIQ.
These examples are a good example on how the abstract layers can be
used; it had a layer structure of: {Aggregation, AggregationCsv,
AggregationCsvApplication}, where the Aggregation layer has reusable
methods for all aggregations, the AggregationCsv layer has reusable
methods for all csv aggregations and the AggregationCsvApplication has
some specific methods and possible some overwrites if it differs from the
standard.

 An example test that tests the naming convention when creating an
Active-Directory account, specifying how special characters are filtered,
how names are shortened and tests which exceptions there are and how
the new login-name should be constructed. This test was inspired by a
functionality where team member B worked on in the real environment,
using BeanShell in IdentityIQ to program the naming convention. The
most easiest way to test this functionality is to, instead of using BeanShell,
use a Java-class that does all the work, test this Java-class and call the
functions of this class from the BeanShell-code in IdentityIQ. For the
demo, I extracted the BeanShell code to Java-code and tested this code.
When running this test, it found that the apostrophe was not filtered and
the special characters were not yet filtered in the prefix of the surname.

On site, Jenkins had been installed on the test environment by team member A.
Jenkins pulls from GIT, then calls the build-script which builds the software, runs
unit-tests, creates a possible release, and finally runs the FitNesse test suite.
When test automation is achieved on site was well, this step is the step that
completes the continuous delivery cycle.

At the end of the sprint, during the "Demo & Retrospective", I had given a
demonstration that showed the example tests that were made on the small
demo-environment. I had shown how they work (with fixtures and Java code),
that they use inheritance, that they can be run and that the last suite found an
error in the code. This demonstration was given in order to show how FitNesse
can be used in such a project and what the added value can be, also for business
users. This demo was also used as input for the evaluation that followed.

6.2.3 Evaluation
The first survey was handed out during the "Demo & Retrospective", directly
after the demonstration given by me. In total, 5 team members (3 of Everett, 2 of
the client) participated at the survey.
the overview of results of this survey are covered in section 7.3.1. Here, only the
notable statements are listed:

 Team member A indicated that the acceptance testers have difficulty
picturing how to use FitNesse and that redeployment of Java-classes used
by IdentityIQ (which are sometimes used instead of BeanShell-code to
make testing easier) takes a long time.

 Team member B indicated that when a test is performed, the
environment changes, making it possible that a test works on one

50

environment and not on another. Furthermore, he/she indicated that
smart test should be developed, that tests many steps at once.

 Team member C indicated that time needs to be reserved in order to be
able to dive in the strategy with high pressure of work on the project
already.

 Team member E indicated that the automated tests still needs to be
moved and adapted to the test environment and he/she eagerly awaits
the next sprints and is convinced that this strategy can deliver an added
value.

I have experienced the same problem that one of the team members noticed by
myself as well: testing changes the environment and, furthermore, you cannot
assume any state of the environment before testing (except maybe that some
rule or task exist with a specified name). This makes it harder to write tests that
can be performed repeatedly, but is something that is difficult to solve.

I also experienced that team members have difficulty reserving time to apply the
strategy due to the high workload. During the evaluation, we decided/agreed
that for the following sprint, at least some team members will put some time in
creating tests with this strategy. In order to help the acceptant testers, I had
decided to help them create their first test-case.

Furthermore I personally had difficulties in finding the right commands in the
private API of SailPoint IdentityIQ, however, when developers already work with
IdentityIQ and use BeanShell, I believe it will be easier, especially when some
example tests are given in forehand. Due to this finding, I filled the generic Java
class called SailPointConsoleCommands.Java with functions that cover the most-
used commands (run a task, aggregation, certification, get the date, delete etc) as
an example and basis when more commands needs to be added. These functions
can be called from the fixtures when needed.

6.3 Third Iteration

6.3.1 Adjustments and Additions

Interaction Between Test-Fixtures and IdentityIQ
 Change: use SetUp and TearDown pages to initialize and close the
 environment
Instead of initializing and closing the environment before and after each test, it is
done before and after the AllTestSuite, using the SetUp and TearDown pages of
FitNesse. This makes it much faster to run the AllTestSuite.

6.3.2 Application
I had created two extra simple tests on the demo environment:

 a certification test which tests if a certification can be started.
 a rule test which tests if a rule can be run.

Team member A and I had applied some additional settings on-site in the ant
scripts to compile FitNesse tests as well when the software is compiled and
build, so the tests can be executed later in Jenkins.

51

Team member A created a test on-site which tests an export-task of IdentityIQ.

I copied the wiki-page of the naming convention from the demo environment
and placed it on-site. After that, team member D added new conditions and
exceptions were to it. While team member D was doing this, I helped with the
wiki-syntax.

Team member B moved the naming-convention functionality from BeanShell to a
Java-class, where the BeanShell code calls the functions in this Java-class in
IdentityIQ. Furthermore, team member B created the fixture that stands between
the specification of team member D and the Java-class with the naming
convention used IdentityIQ. Finally, team member B used the test to
develop/change the naming convention to the specification in the wiki.

6.3.3 Evaluation
The second survey was handed out during the "Demo & Retrospective", directly
after the demonstration given by me. In total 6 team members (3 of Everett, 3 of
the client) participated at the survey. This includes one extra team member from
the client compared with the first survey. However, this extra team member is
finally excluded from the results, since this member was not involved in the
strategy and was not part of the following evaluations.

Similar as the evaluation section of the last iteration (see section 6.2.3), the
overview of results of this survey are covered in section 7.3.1. Here, only the
notable statements are listed:

 Team member A indicated that the defined test cases in the running
FitNesse wiki for business users are not automatically pushed to Git and
therefore not in Jenkins as well. A possible solution is introducing a script
that does this automatically. Furthermore, he/she indicated that the test
effort lies more at the consultant and less at the acceptant testers. More
effort of acceptance testers is needed in order to go deeper in the TDD
process. Finally he/she also indicated that the next step is to let all test
cases run flawlessly, so the Jenkins notifications can be turned on and the
impact of the development work becomes visible

 Team member B indicated that Shifting BeanShell to Java code takes more
time then programming in BeanShell since it needs a redeploy on every
Java-change. Furthermore, after a redeploy, the console needs to be
restarted as well.

 Team member D indicated that he/she found the strategy very effective
for testing the naming convention

52

6.4 Fourth Iteration

6.4.1 Adjustments and Additions

Using Environments for the Continuous Delivery Framework and FitNesse
 Addition: use automatic pull/commit/push-solution to keep the FitNesse
 instance and Git up to date
I have been searching for an solution to automatic push and pull to/from the Git
repository so that the running FitNesse server and Git stay both up to date.
For this, there are a couple of options:

 use GitHub service hooks [75, 76]
 use Directory Monitor [77, 78]
 use Windows-task with script (or use unix cronjob with the same script if

you have a unix environment) [79]
 use Jenkins [80]

I have chosen the third option with a batch script that performs these automatic
pull and push-actions for the folder of the FitNesse, since all options are designed
to automatically pull and this option is the easiest to customize to push as well.
This batch script runs every hour with the windows task scheduler.

Tutorials
 Addition: added tutorial on how to automatically push and pull from Git.
The wiki was updated with a part about how to create the batch script and
windows task in order to automatically push and pull from and to Git (see
appendix F for the complete tutorial).

In the fifth iteration, a tutorial had been added to the wiki on how to install
and configure Jenkins (see section 6.5.1).

6.4.2 Application
As stated above, I have build a script and windows-task that automatically pulls
and pushed from and to Git. This solution is put in use on-site by team member
A.

Furthermore, I created three test on site:

 An aggregation-test that tests if an aggregation is run successfully
(reusing large parts from the aggregation-test on the demo-environment).

 A basic certification test that tests if a certification can be run (reusing
large parts from the certification-test on the demo environment).

 A basic reporting test that tests if a report can be run (created this test on
the demo-environment as well, for demo purposes).

Team member A created two tests:

 A import test, testing the import-task of IdentityIQ.
 A custom test, testing an API class.

Team member C created two tests:

 A provisioning/integration test for two different applications with
IdentityIQ (one test per application).

53

At this point, Team member A, B, C (from Everett) and D (from the client) all
created at least one test.

6.4.3 Evaluation
The third survey was handed out during the "Demo & Retrospective", directly
after the demonstration given by me. In total 5 team members (3 of Everett, 2 of
the client) participated at the survey.

As in the evaluation section of the last iterations (see section 6.2.3 and 6.3.3), the
overview of results of this survey are covered in section 7.3.1. Here, only the
notable statements are listed:

 Team member A indicated that it is hard to estimate the changes in the
tutorial wiki, since these are made gradually and are not clearly
communicated at the start of the sprint, that writing a tests sometimes
requires almost completely implementing the functionality. In order to
solve this, smart entry/exit criteria needs to be made and that there is
quite some risk in performing changes in the presentation layer that are
not testable.

 Team member B indicated that the things that are tested via the tool are
well documented in the tool.

6.5 Fifth Iteration

6.5.1 Adjustments and Additions

Use Continuous Delivery Framework
 Change: in the configuration, thetimeout is to 5 minutes instead of 1 minute.
Suddenly, Jenkins started reporting the error: "test report file\FitNesse-
results.xml was length 0". This error was caused by a time-out during testing.
The time-out was first set on 1 minute, and now changed to 5 minutes, which
solved the error (running the whole suite now takes 2 minutes).

Tutorials
 Addition: added tutorial on how to install and configure Jenkins
The wiki was updated with a part about how to install and configure Jenkins (see
appendix G for the complete tutorial).

6.5.2 Application
I have improved the certification test by after running a certification, also check
some content and delete the running certification afterwards. This improvement
is introduced both on-site and in the demo-environment.

I have added an extra aggregation test on-site to show how the use of abstract
classes make it easy to add a new aggregation test.

I have tried to start FitNesse with his own properties file instead of using the
property file of the console, but a strange bug occurred which I reported it to the
community of the 3rd party software. In the meantime, the property file of the
console can be used.

54

At last, I have restructured some Java-functions for more reuse.

6.5.3 Evaluation
The fourth survey was handed out during the "Demo & Retrospective", directly
after the demonstration. In total 5 team members (3 of Everett, 2 of the client)
participated at the survey.

As in the evaluation section of the last iterations (see section 6.2.3, 6.3.3 and
6.4.3), the overview of results of this survey are covered in section 7.3.1. Here,
only the notable statements are listed:

 Team member A indicated that he/she found no API for handling requests
in IdentityIQ, so this is something that is difficult to test outside the GUI.
He/she also indicated that a pitfall is that a team needs a dedicated tester
to ensure that sufficient test cases are supplied.

 Team member B indicated that he/she found it difficult that multiple
users work at the same environment, having a lot of log data that does not
belong to his test activities, but to someone else's.

 Team member D indicated that he/she misses a complete test plan and
he/she indicated that not much has changed since he/she still does the
manual acceptance tests, but that the strategy saved a lot of time and was
very valuable for testing the naming convention.

55

7 Results
The result of the case study is a strategy for test automation and continuous
delivery with some example test cases which are defined while using the
strategy on the case study, including an evaluation of the strategy from both
surveys as interviews. As stated in section 1.2, the strategy exists of tool-
selections, tutorials, approaches and guidelines which are documented in a wiki.

This chapter starts with a summary on the final strategy, its application, its
evaluation and ends with an analysis of the results and it's evaluation.

7.1 Final Strategy
The final strategy is the high level strategy of chapter 5 with the additions and
changes during the case study, described in chapter 6. This chapter gives a short
summary of this final strategy.

The tools that we used for continuous delivery are:

 NetBeans (7.3 and 7.4) for developing code
 Git (1.8.4) for version control
 Ant (1.0.b3) for compiling and building (and running unit tests)
 JUnit (4.8.2) for creating unit tests
 FitNesse (release 20131110) for creating (and running) acceptance tests
 Jenkins (1.528) for creating the continuous delivery cycle; automatically

pull from Git, compile and build the project (also creating a release), run
unit tests, run FitNesse tests.

Test-driven development is included in the strategy; the FitNesse test case in the
wiki needs to be written first, then the functionality and then the FitNesse fixture
should be created.

A test automation guideline is used which is based on asking yourself a couple of
questions to determine which tests needs to be automated and which should
better be done manually. This guideline is extra strict for identity solutions
projects, since they are very short-term and the return on investment needs to
be sooner than with long-term projects.

Some guidelines/choices have been made on how to use FitNesse:

 FitNesse is configured with the SLIM test system.
 Both the wiki and the fixtures are stored in GIT.
 FitNesse is run locally by developers and one main instance is run at the

test-environment for business users.
 Changes in Git and on the running wiki are kept up to date by

automatically push and pull from and to Git via a script.
 FitNesse tests are grouped in one main suite and ordered in an hierarchy

of suites based on functionality.
 FitNesse fixtures use inheritance when possible, in order to be able to

reuse as much as possible.

56

Jenkins is run on the test environment and performs the continuous delivery
cycle every day, early in the morning.

In case of IdentityIQ and a lot of identity solutions projects, changes made by a
test cannot always be easily reverted to restore the original state of the system,
so we need to agree on an alternative approach:

 For the test data, when possible, changes need to be made undone at the
end of the test

 When not possible, changes stay on the test environment.
 Once in a while, the test environment is reset manually.

This set-up introduces some complexity, since no assumptions can be made by
the test on an existing data set.

Interaction between the fixtures and IdentityIQ take place via an private API,
which enables direct communication to the IdentityIQ database and direct use of
the console-functions. The environment is initialized once before the main test
suite and closed after the main test suite is run.

A tutorial wiki is made that explains how FitNesse needs to be installed and what
the main functionalities are, how to interact with IdentityIQ from the Java
fixtures, some advanced FitNesse info stating the FitNesse choices above, how to
install and use Jenkins and how to configure the automated push/pull solution
for the running wiki for stakeholders.

7.2 Application of the Strategy
In total, ten automated tests were created with the designed strategy and Jenkins
was set-up to perform the continuous delivery cycle.

Six of ten automated tests were created by team members different from the
author. Team-member A, B and C all made at least one test, team member D
created a test-case in the FitNesse wiki and team member E did not create any
tests.

In creating my tests, I did not follow the test-driven development paradigm,
since the functionality was already implemented and I focused on determining
whether or not it is possible to test these functionalities and giving some
example tests for the other team members.

The continuous delivery cycle was not performed after each commit, but instead
every morning at 07:00 AM in order to save resources on the environment and
not clutter logs. When desired, the cycle could also be start manually in Jenkins.
Jenkins did not send notifications to developers yet, but provides feedback on its
web interface.

7.3 Evaluation of the Strategy

7.3.1 Surveys
This chapter discusses some interesting results from the surveys which were
held at the end of each iteration (note: except from the first iteration, since no
survey was hold then). Parts of these results were discussed already in the

57

previous sections. In this section, the results are shown as a whole and ordered
per question, in order to show some overall opinions and possible trends. The
raw (complete) data of the survey results is available in appendix D.

Experience with Strategies and Tools

 The experience with SailPoint IdentityIQ was rated fairly stable throughout
the iterations, team-members A,B,C, and E all rated him/herself as having
much experience and team-member D rated him/herself as average.

 Throughout the iterations, the experience with FitNesse and the experience
with test-driven development grew from very few to few experience to few
to average experience. See figure 15 for a visual representation of the
numbers of individuals (grey) and the average trend (in orange) of the
growth of the FitNesse experience.

 The experience with test automation grew slightly, but staying at an
average experience. See figure 16 for a visual representation of this chart.
It is interesting to see that some individuals also show a dip in experience,
which is probably due to difficulty guessing where they stand on
experience.

Figure 15: The amount of experience with

Sailpoint IdentityIQ. The vertical scale shows
abbreviations for: very much, much, average,

few and very few.

Figure 16: The amount of experience with test

automation. The vertical scale shows
abbreviations for: very much, much, average,

few and very few.

Statements on Strategy and Tutorial

 On average, the team-members agreed on thee following statements:
o "Test-driven development lends itself well to start testing early in the

development process".
o "FitNesse lends itself well to specify test cases clear and on a central

place".
o "FitNesse lends itself well to automate the test cases".
o "The strategy-tutorial was easy to follow",
o "The explanation on test-driven development is sufficient to be able

to apply it in this project"
o The explanation on FitNesse is sufficient to be able to apply it in this

project"
o "The explanation on testing IdentityIQ is sufficient to be able to

apply it in this project"
 The statement "IdentityIQ lends itself well to test outside the web-

interface", was rated on average between neither agreed nor disagreed
and agreed. See figure 17 for a visual representation of this chart.

1

2

3

4

5

2nd 3th 4th 5th

A
m

o
u

n
t

o
f

Ex
p

e
ri

e
n

ce

Iteration

Experience: FitNesse
A

B

C

D

E

Average

VM

M

A

F

VF 1

2

3

4

5

2nd 3th 4th 5th

A
m

o
u

n
t

o
f

Ex
p

e
ri

e
n

ce

Iteration

Experience: Test Automation
A

B

C

D

E

Average

VM

M

A

F

VF

58

Figure 17: Survey answers on how much they

agree with the statement: IdentityIQ lends itself
well to test outside the web-interface. The

vertical scale shows abbreviations for: strongly
agree, agree, neither agree nor disagree,

disagree and strongly disagree.

Hours Spend on Testing

 The total amount of hours on learning/figuring out (parts of) the strategy
was estimated around 3 hours for team member A, 4 hours for team
member B and 0 hours for the other team members.

 The total amount of hours on setting up the test environment and tools was
estimated around 4 hours for team member A, 2 hours for team member
B and 0 hours for the other team members.

 The total amount of hours on defining test cases in FitNesse was estimated
around 2,5 hours for team member A, 1 hour for team member B, 7 hours
for team member C, a half hour for team member D and 0 for team
member E.

 The total amount of hours on implementing FitNesse fixtures was
estimated around 3,5 hours for team member A, 7 hours for team
member B, 10 hours for team member C and 0 hours for the other team
members.

 The total amount of hours on manual testing was estimated around 24
hours of team member A (where he/she indicated that he/she did
perform a lot of smoke tests after a new deployment and had some trial
and error development), 47 hours for team member B (where he/she
indicated that he/she tested manually during development), team
member C did fill in zeroes and question marks, 18 hours for team
member D and 18 hours for team member E.

 The total amount of hours on other test activities was estimated around 8
hours for team member A, 9 hours for team member B, team member C
did fill in zeroes and question marks,, 0 hours by team member D and 7
hours by team member E.

Problems During Testing
Problems mentioned at the end of the second iteration:

 Team member A indicated that redeployment of Java-classes used by
IdentityIQ (which are sometimes used instead of BeanShell-code to make
testing easier) takes a long time.

01

02

03

04

05

2nd 3th 4th 5th

A
gr

e
e

 t
o

 D
is

ag
re

e

Iteration

IIQ: Test Outside GUI
A

B

C

D

E

Average

SA

A

N

D

SD

59

 Team member B indicated that when a test is performed, the environment
changes, making it possible that a test works on one environment and not
on another.

Problems mentioned at the end of the third iteration:

 Team member B indicated the problem: Shifting BeanShell to Java code
takes more time then programming in BeanShell since it needs a redeploy
on every Java-change. Furthermore, after a redeploy, the console needs to
be restarted as well.

 Team member A indicated that defined test cases in the running FitNesse
wiki for business users are not automatically pushed to Git and therefore
not in Jenkins as well. A possible solution is introducing a script that does
this automatically.

Problems mentioned at the end of the fourth iteration:

 Team member A indicated that writing a tests sometimes requires almost
completely implementing the functionality. In order to solve this, smart
entry/exit criteria needs to be made and that there is quite some risk in
performing changes in the presentation layer that are not testable"

Problems mentioned at the end of the fifth iteration:

 Team member B indicated that he/she found it difficult that multiple
users work at the same environment, having a lot of log data that does not
belong to his test activities, but to someone else's.

 Team member D indicated that he/she misses a complete test plan.

Statements Comparing with Phase 1

 On the statement "The documentation on what and how there is tested is
improved", on average, they agreed (3.8 out of 5; lowest was 3; highest
was 4).

 On the statement "Less time is spend on testing", on average, they
disagreed (2.2 out of 5; lowest was 1; highest was 3).

 On the statement "Bugs are found earlier", the opinions were scattered.
See figure 18 for a visual representation of the numbers of individuals
(grey) and the average (in orange). On average, they neither agree nor
disagree (3.1 out of 5; lowest was 2; highest was 4).

 On the statement "More bugs are found", there might be a slight trend
throughout the iterations: from an average rating of 2.8 out of 5 (i.e.,
neither agree nor disagree) to an average rating of 3.5 out of 5 (i.e.,
between neither agree nor disagree and agree). See figure 19 for a visual
representation of the numbers of individuals (grey) and the average (in
orange).

 On the statement "I have more confidence in the correctness of the project",
there might be a trend throughout the iterations: from an average rating
of 2.8 out of 5 (i.e., neither agree nor disagree) to an average rating of 3.8
out of 5 (i.e., agree). See figure 20 for a visual representation of the
numbers of individuals (grey) and the average (in orange).

60

 On the statement "The strategy has helped with defining clear
requirements and test criteria", on average, On average, they neither agree
nor disagree (3.1 out of 5; lowest was 2; highest was 4).

Figure 18: Survey answers on how much they
agree with the statement: In comparison with
phase 1 of this project bugs are found earlier.

The vertical scale shows abbreviations for:
strongly agree, agree, neither agree nor

disagree, disagree and strongly disagree.

Figure 19: Survey answers on how much they
agree with the statement: In comparison with

phase 1 of this project more bugs are found. The
vertical scale shows abbreviations for: strongly

agree, agree, neither agree nor disagree,
disagree and strongly disagree.

Figure 20: Survey answers on how much they
agree with the statement: In comparison with

phase 1 of this project I have more confidence in
the correctness of the project. The vertical scale
shows abbreviations for: strongly agree, agree,

neither agree nor disagree, disagree and
strongly disagree.

Reuse Test Cases and Fixtures on Other Projects

 Team member A indicated, at the third iteration, that the fixtures are very
specific for IdentityIQ and are partly usable for other IIQ projects, but not
for other projects; at the fourth iteration, he/she added that these fixtures
might be partly reusable for IDM projects as well; at the fifth iteration,
he/she indicated that it is quite limited to IIQ, since most fixtures are
about IIQ-specific things.

 Team member B indicated, at the end of the second, third and fourth
iteration, that many tests are reusable for other similar IIQ projects, but
he/she cannot judge for projects outside IIQ. At the end of the fifth
iteration, he/she indicated that the tests were quite specific, so the reuse
is limited.

 Team member C indicated, at the end of the fourth iteration that the tests
and fixtures themselves are not very much reusable, but the experience is;
at the fifth iteration he/she added that the tests are to specific for the
project of the case study.

01

02

03

04

05

2nd 3th 4th 5th

A
gr

e
e

 t
o

 D
is

ag
re

e

Iteration

Bugs Found Earlier
A

B

C

D

E

Average

SA

A

N

D

SD 01

02

03

04

05

2nd 3th 4th 5th

Ti
tA

gr
e

e
 t

o
 D

is
ag

re
e

e
l

Iteration

More Bugs Found
A

B

C

D

E

Average

SA

A

N

D

SD

01

02

03

04

05

2nd 3th 4th 5th

Ti
A

gr
e

e
 t

o
 D

is
ag

re
e

te
l

Iteration

More Confidence Correctness
A

B

C

D

E

Average

SA

A

N

D

SD

61

 Team member D and E indicated that they cannot give a good estimate on
this.

Reuse Strategy Other Projects

 Team member A indicated, through all iterations, that the strategy is
definitely reusable for other projects, FitNesse and the strategy are
general enough and test-driven development is based on risks and works
well on any product. At the end of the fifth iteration, he/she added that it
is in particular useful for projects where software is developed. For
example at migrations or small projects, a strategy is needed that focuses
more on risks then on test automation.

 Team member B indicated, at the end of the second iteration, that it will
be reusable for IIQ projects, but he/she cannot say anything about other
projects. At the end of the third iteration, he/she noted that it is more
generically usable: also at many Access Governance and Identity
Management projects. At the end of the fifth iteration, he/she indicated
that it is reusable in a reasonable amount, but not everything.

 Team member C indicated, at the end of the fourth iteration, that for IIQ
projects, the strategy could be reused and for other projects, the
communication with the system under test needs to be re-designed. At
the end of the fifth iteration, he/she added that it helps to develop
complex connections without continuously having to walk through a
complete scenario.

 Team member D and E indicated that they cannot give a good estimate on
this.

Additional Comments, Tips, Ideas
Given comments at the end of 2nd iteration:

 Team member B indicated that smart test should be developed, that tests
many steps at once.

 Team member C indicated that time needs to be reserved in order to be
able to dive in the strategy with high pressure of work on the project
already.

 Team member E indicated that he/she eagerly awaits the next sprints and
is convinced that this strategy can deliver an added value.

Given comments at the end of 3rd iteration:

 Team member A indicated that the next step is to let all test cases run
flawlessly, so the Jenkins notifications can be turned on and the impact of
the development work becomes visible.

Given comments at the end of 4th iteration:

 Team member A indicated that he/she is curious about how this strategy
can relate to monitoring and unit tests.

Given comments at the end of 5th iteration:

 Team member A indicated that a pitfall is that a team needs a dedicated
tester to ensure that sufficient test cases are supplied.

62

7.3.2 Interviews
Interviews were hold with all 5 team members (3 of Everett and 2 of the client)
at the end of the case study. The questions used in these interviews are listed in
appendix C. The complete transcript of the interviews are listed in the
confidential appendices H to L, which are, by the definition of confidential, non-
public. This section offers an objective summary of these interviews.

Costs of the strategy
As costs of the strategy, team member A stated that first of all, all the time that I
had spend on the case study (around 30 days) should be considered as a cost,
since during these days, the strategy is tailored, adjusted and explained to the
team members.

The tutorial did cost team member B around 2 hours to complete, and team
member C a couple of hours. Both then know only the basics; just enough to
work with it. This indicates that strategy has a short learning curve, as also
indicated by team member A. Team member D did not study the tutorial through,
but managed to make, together with me, some extra test cases to an existing test
and indicated that the tests of the demo were very understandable and readable
enough. Team member E added to this that it might have costs hem some time,
but he/she did not mind because of the academic value and he/she did not think
that the invested time hindered the project.

Team member B indicated that it costs a lot of time to create a test, but the more
tests you make, the easier it will become. Somewhat contradictory, team member
C indicated that it did not cost him/her more time to automate the test compared
with manually testing.

The set-up of Jenkins did cost team member A around half a day; however,
he/she had some experience with setting up Jenkins already.

Next to time investments, team member A indicated that cleanup-tasks, after a
test had failed, still needs to be done manually, which is a downside.

A downside mentioned by team member D was that he/she wasn't able to apply
the strategy alone, since he/she did not completely understand the language or
how to formulate tests in the wiki, however he/she indicated that this can be
learned and he/she managed with some help.

Benefits of the strategy
One benefit of this strategy all team members mentioned, is that the strategy can
be, in the future, very valuable for regression testing and re-running tests, if
enough test cases are made.

Team member B and E mentioned that, at the moment for this project, the
strategy did not help the acceptation process; for this, more tests needs to be
written. Furthermore, team member E has the impression that the real value lies
in the development process instead of the acceptation process.

63

Team member B and D indicated that they were very pleased by the possibility
that the client can specify a lot of variants and exceptions with FitNesse, before
the developer programs/configures it, making it an easy, structured, more
complete and an efficient method. Team member D added to that that he/she
then did not have to test every case manually anymore.

Team member C indicated that it could especially help with testing things
outside the 3rd party software, implementing with test-driven development in
small iterative steps and being able to test this one operation at a time, instead of
every time walking through the whole workflow as was needed with manual
testing.

Team member A and B indicated that another added value is on the bigger
picture as well: the strategy including the communication framework is designed
and the involved team members had gathered knowledge of the strategy,
continuous delivery and test-driven development.

Team member B, C and D did say that the strategy could help with giving some
trust to the client if the client is involved, since it is easy to demonstrate to the
client which tests were run and possible to run them again.

Execution of the strategy
Team member A and B indicated that they did invest less in the strategy then
was expected in the beginning, partly because the strategy was still under
development. Team member C indicated that he/she started late with the
strategy. Furthermore, as team member A indicated, we did look more into the
possibility to test several aspects of the system and less in what should really be
tested at the moment. Furthermore, both team member A and C indicated that
we did not yet were on the stage were Jenkins sends email notifications, which
should be done in the future.

(Re)use strategy in other projects
All team members of Everett agreed that quite a lot of the strategy can be reused
for other projects who also use IdentityIQ as software, not all tests are usable in
a new project, since most tests are very project-specific. Team member A and C
stated it should be re-used in new IdentityIQ project, where team member B
indicated that, for this, a dedicated tester is really needed to watch over the
testing strategy and its adoption. Team member A also said that the strategy
would have more value if there is an dedicated tester who takes the ownership of
the strategy.

For other projects, all team members of Everett agreed the strategy itself can be
reused, but the framework on how to communicate with the product needs to be
redesigned for each product.
Team member A added some critical notes to that statement, First of all, that it is
definitely worth to consider using this strategy for other projects in the area of
Identity & Access management, but it is needed to investigate in the amount of
work that it takes to integrate that product within the FitNesse fixtures. If this is
difficult or takes more time than a week, than the strategy should probably not
be used for that project. For completely other projects, it really depends since

64

other factors may rise, and some parts of the strategy should be reviewed again,
so probably this is only beneficial if it is a longer project.

Return on investment
Team member A stated, that for the case study, the strategy didn't outweigh the
costs, since the strategy is also designed here and it was the first time. Team
member B stated that it did outweigh the costs for the naming convention test
specifically and team member A and C mentioned that it probably would for a
new IdentityIQ project; and team member C mentioned that he/she would like to
add it to the IdentityIQ Accelerator (which is a startup used as basis for each
IdentityIQ project).

Furthermore, Team member A expects that the added value of this strategy
would be far more clear and easier to achieve at a product company as well and
team member B indicated that he/she is not sure if IdentityIQ is the best product
for this strategy, since it has a lot of configuration and not much development.

Change in return on investment for different kind of tests and features
On the different added value on different kind of tests, all team members of
Everett have their own opinion:

 Team member A indicated that the most value lies in system tests,
acceptation tests and integration tests and that unit tests should stay in
JUnit or Xunit, since these are integrated in the IDE and are therefore
faster to run then FitNesse tests.

 Team member B indicated that he/she sees the most value in specifying
very big tests on a high level, from which can be determined if the lower-
level steps succeeded or not.

 Team member C did see most value in testing developed software that
acts outside of IdentityIQ, so the functionality could be developed in small
steps, which can be arranged as a test scenario.

On different added value for different features, all team members also had their
own ideas:

 Team member A stated that the most important dependency on the added
value for different features is to which extent the feature can be
controlled from the outside.

 Team member B stated that the strategy is probably most useful in parts
where software is developed and less where software is configured, since
when you develop, tests can be build gradually with the deployment.

 Team member C stated that some features of the product is definitely
more work to test automatically then others. Especially pieces where a lot
of time can sit in between steps (e.g., timeouts and wait for processes),
they can be difficult for testing. These tests should be limited to pieces
that do not suffer from these time-constraints together with one big
manual test.

Train Client
Team member B, C, D and E indicated that the client should be trained more for
this strategy, in order to let them create good tests in the wiki, having the client
involved and create more trust. According to team member D, if it costs for

65

instance half a day, this time will be earned back in the long run. Team member E
added that it is the question if their company agrees with this, but if the time
investment could be done inside the project-scope, he/she would invest in a
training. Team member A indicated that, whether or not to train the client
depends on the type of client; if the client has business-oriented employees on
the project, the conversion from a original test-script to FitNesse should be done
by the developers themselves and if the client has technical-oriented employees
on the project, they will probably learn it themselves to use this tool. Team
member E also indicated that, if the tool is used during the project, he/she would
consider keep using the tool afterwards.

Goals
The goal to introduce continuous delivery is considered achieved, however, both
team member A and C indicated that we did not yet were on the stage were
Jenkins sends email notifications, which should be done in the future. Team
member C stated that from earlier experiences with automatic builds with
Jenkins, that such a setup is very useful.

The goal to automate tests is in the opinion of team member A achieved, and
according to team member B achieved for the parts where tests are written.
Team member C found it difficult to estimate.

The goal to spend less money (time) on testing is according to team member A, B
and C not yet achieved, since it did cost a lot of time to create the private-API
framework, the team members needed to learn the strategy in this project,
where sometimes the time in-between creating a test was quite long, resulting in
time needed to revisit the workings of FitNesse. Furthermore, there were still
quite much manual tests and sometimes a feature is tested both manual as
automatic since we did not fully went for the strategy. Team member D indicated
that for the test he/she made, it was more effective and costs less time for
him/her then testing it by hand. Team member E had the feeling that developers
were less occupied with testing. Team member C expects that, when this is
applied throughout the company and when everyone is familiar with it, that it
would finally save some time.

The goal to have less errors in products does, according to team member A, B
and C, completely depends on the tests being written; these tests should cover
good scenario's and should be thought out well. Team member A stated it is
achieved for the parts that were used for FitNesse, such as the naming
convention, since no bugs were found manually on these features. Team member
C stated a better quality is achieved for the OVIS-connection. Team member A
stated that the manual tests did found some bugs that could also be found with
FitNesse and if the test-plan was available earlier, these tests could have been
transformed into FitNesse tests. Team member B stated that there would
especially be less faults when these tests are used for interim deliveries as well.
Team member C stated that from earlier experiences with automatic builds with
Jenkins, that such a setup is very useful. Furthermore, he/she states that
regression bugs in general show up the most when you work in a large team,
which are then made visible when tests are automated. Team member D expects

66

that this strategy will reduce the amount of faults, since things will be tested on a
much earlier stage, causing faults to be found much earlier.

7.4 Analysis of the Strategy and it's Evaluation

FitNesse
In general, FitNesse did its job as test automation framework well. The team
members agreed in the survey that FitNesse lends itself well to both automate
test cases and specify test cases clear and on a central place. Furthermore, the
promises of FitNesse that it is easy to learn and deploy/configure are also
supported by the surveys and interviews: in about 3-4 hours, it is possible for
developers to use FitNesse in a level that you know how to create test cases and
fixtures and FitNesse can be run on-site with a simple download and startup call.
For business users, it can be a bit more difficult to learn and use the strategy, as
is illustrated by the case study: team member D did not study the tutorial and did
manage to add some extra test cases to an existing wiki, but he/she needs some
training in order to be able to create a test case from scratch alone.

Test-Driven Development
The combination of test automation and test-driven development is a good
practice to start testing early, test in small steps and test during development
(which were normally done manually).The theory of test-driven development,
the survey-results and the interview-results all support this statement.

Jenkins
Jenkins also delivered the promise of being the framework that connects
everything together into a continuous delivery pattern. It can be deployed and
configured within a day (team member A did it in half a day, but he/she had done
this a couple of times before and I copied it and wrote a tutorial for Jenkins in a
couple of hours as well) and gives a good visualization of the status of the build
and tests. The plug-ins for Git, Ant and FitNesse did play a factor in this, since
they make it quite easy to integrate the software with Jenkins.

Communications
The communication between the fixtures and the system under test was changed
from the REST API and Console to using the private API, which was quite an
improvement in the time it costs a test to run and more possibilities to interact
(especially now that the SailPointContext was also available), but it made it also
more complex; the private API did not have Javadoc and sometimes you need to
search quite a while to find the right calls and parameters. This struggle is also
indicated in some way by the surveys, where the team members on average
neither agree nor disagree that IdentityIQ lends itself well to test outside the
web-interface; for some features it does, for others it doesn't. Because of this, It
might be profitable to dive into possibilities for GUI-testing as well.

Combination of tools and techniques
The combination of tools and techniques works quite well for most of the times,
however it did costs some time and adjustments to let it all work together (for
instance, by also storing the FitNesse tests in Git, so they are everywhere up-to-
date required a separate FitNesse instance for the business users and a Git-auto-

67

pull/commit/push-solution, which can be considered a hack. Next to that, all
software and techniques worked quite well together.

Application
As stated in the application-sections, only 10 test cases were created on site. One
cause could be the high pressure of work on the project, as stated by in the
survey by team member C and another cause could be that the strategy was still
under development, resulting in the team to not fully went for the strategy and
still many manual tests are performed.

The guidelines of which tests should be automated was mostly used in order to
determine the return on investment of this strategy; in order to give some input
to answer these questions in a next project, we focused in the case study mostly
on testing different aspects and features of the system and less on these
questions before automating a test.

As stated in section 6.2.2, Jenkins is configured to build and test the software
every day at 07:00AM instead of after every commit, as the continuous delivery
cycle states, in order to save resources at the environment and not clutter the
logs.

Return on Investment
The strategy has several benefits; it can be very valuable for regression testing;
the client can specify a lot of test cases and exceptions, it can be very useful to
help with testing parts outside of the third party software and when the client is
involved, it can help giving trust as well.

The strategy also has some costs; time needs to be invested to set up the
strategy, and for each different software package, time needs to be invested to
set up the communication between the fixtures and the system under test; time
needs to be invested in automating the test instead of manually test a feature,
which can be sometimes time-consuming and sometimes done quickly; in our
case, the clean-up tasks needed to be done manually as well.

In the case study's project, the benefits do not currently outweigh the costs;
however for some parts, such as the naming convention, it was valuable, the
costs of creating the strategy and framework is not yet earned back with the
strategy, but expectations are, that for a new IdentityIQ project, it will be, since
the framework is already in place, some example tests are available and three
Everett team members already learned how to use the strategy and can share
their knowledge in future projects. For a new different project, it depends on the
length of the project and the possibilities to integrate the software with FitNesse.

Whether or not the return on investment is different for different kind of tests or
different features, I partly agree with team member A that unit tests should stay
in JUnit or XUnit, however, when the business user has specific requirements for
such a part, I believe it can be valuable to put a unit test in FitNesse, as is
illustrated by the test on the naming-convention, which could easily also be
specified in a unit test, but with FitNesse, the business user can participate in
creating the test and good test criteria and see for themselves that the code

68

passes the test. Although high level tests can be valuable, I do not agree with
team member B that the most value will be there; a lot of scenario's will then not
be tested and when a test fails it is hard to determine what is broken. I see the
point of team member C that, according to him/her, the most value will lie in
testing developed software that acts outside IdentityIQ, since generally the
strategy will deliver more value for software developments then for
configurations and these parts can now be tested easier, without manually
performing scenarios in IdentityIQ, which can be quite a time-saver.

Reuse of strategy
The interviews and surveys both mention that strategy can mostly be reused for
other projects, although for projects with different software, the communication
with the system under test needs to be redesigned. The test cases will mostly be
project-specific, except a few tests that test a standard IdentityIQ feature which
can be reused in a new IdentityIQ project.

Goals
The goal to introduce continuous delivery is achieved, with the side-note that no
feedback-notifications to the developers were set in Jenkins yet (but that is
possible). Instead, the feedback was visible on the Jenkins homepage.

The goal of test automation is achieved, as stated by team member B in the
interview, at least for the tests that are written. Since these tests cover several
different aspects of the system under test, it is shown that test automation can be
applied throughout the software.

The goal of having less costs on testing is not yet achieved because the
investment in creating the strategy and learning the strategy were together
higher than the benefits at this moment. In a next project, some time savings will
probably be achieved since the strategy is known and it is easier to estimate
when it is profitable to use. Furthermore, as according to team member B and D
in the interviews, applying this strategy with test-driven development helps to
let the client specify a lot of variants and exceptions with FitNesse, before the
developer programs/configures it. Making it an easy, structured, more complete
and an efficient method.

The goal of having less errors was partly achieved, since for a couple of tests (i.e.,
the naming convention test and the integration tests), the creators identified that
they probably had less errors with this strategy since the specifications are
known on forehand and tested thoroughly.

Train business users
This raises the question whether or not the business users should be trained in
using the FitNesse wiki to create tests. The interviews showed that most of the
team members indicate that the client should be trained in creating good tests in
the wiki, resulting in a client that is involved in testing and in more trust. When
they are involved, the strategy might be more useful in the acceptation process
as well as the development process and save test time there as well. While team
member A indicated that it depends on the type of client, with business-oriented

69

clients the tests should be converted to FitNesse by the developers and with
technical-oriented clients will learn it themselves.
In my belief, the solution lies in between; when the client is eager to learn and
change their methods, it will help to give training and create more involvement
and trust, and lowers the barrier between automated and manual acceptance
tests, resulting in less duplicated tests. However, when the client does not show
interest in the strategy, the training would probably not help.

70

8 Discussion
This section discusses the strategy, the methodology, the implications of the
results and the future research for this research project.

8.1 Strategy
The designed strategy is definitely usable in order to achieve continuous delivery
with test automation in identity solutions projects. The strategy can be set up in
a couple of hours, although it can cost a significant amount of hours/days to set
up and design a way of communicating with the system under test from the java
fixtures when the system under test does not offer an easy REST-API.
Furthermore, team-members learned how to use FitNesse in just a couple of
hours, making it suitable for short term projects.

8.2 Methodology
The case study method was very suitable for a proof of concept, since it tested
the strategy in a real-world environment, however, it does not provide any
statistically valid results, since the strategy is only applied at one case with a
small team. This is the main limitation of the methodology.

Unfortunately, the team had a slow start with applying the strategy, since the
communication-framework needed to change in the first iteration already. In the
second iteration, I had created demo-tests, but no further tests were made and
only in the third and fourth iteration everyone started creating tests. This can
have had influences on the results, but nevertheless, the strategy did improve
during all iterations into a workable strategy for this project, and the delivered
tests show the possibilities of the strategy for Everett.

The main strength of the methodology is that a strategy is not only designed, but
it is applied, evaluated and improved in practice as well. With this application
and iterative approach, flaws in the strategy were found fast (such as
communication framework), which might not have been found without the
application.

8.3 Implication of results
For Everett, this case study showed the potential of introducing continuous
delivery with test automation in their projects. Furthermore, it introduced test-
driven development, FitNesse and some testing-guidelines to the team members
of the case study. This knowledge is now in-house and can be used in future
projects.

The scientific value of this research project is to show how theoretical concepts
and paradigms of continuous delivery and test automation can be applied in
practice and are suitable and expectedly profitable for short-term integration
projects as well as for standard software development, where these techniques
were originally designed for.

71

8.4 Future research
For future research, the strategy should be implemented on full scale, on a lot of
different projects in order to investigate further where the breakeven point of
the strategy lies and whether or not the expected benefits and costs will work
out.

For projects using different software, it should be investigated whether or not
the communication between FitNesse and the system under test can be achieved
with a low investment.

72

9 Conclusion
This chapter provides the final conclusions by answering the research questions,
defining to which extent the goals are met and giving the limitations and future
work of this research project.

9.1 Goals
There were several goals for this research project, the goals mentioned in section
1.2 are:

 Introduce continuous delivery, in order to:
o enhance the process of software delivery.

 Introduce test automation with FitNesse, in order to:
o lower the costs on testing,
o reduce the amount of faults.

The first goal to introduce continuous delivery is achieved, with the side-note
that no feedback-notifications to the developers were set in Jenkins yet (but that
is possible). Instead, the feedback was visible on the Jenkins homepage. From
earlier experiences of team member C, automatic builds with Jenkins is a very
helpful setup in the process of software delivery.

The goal of introducing test automation is achieved as well. Several automated
tests show how tests can be automated throughout the product. Whether or not
test automation lowers the costs on testing and reduce the amount of faults is
interesting. The investment of designing and tailoring the strategy and learning
the strategy by the team members was not yet earned back by the benefits of the
project. However, for the naming convention, the test was very effective and
saved time in manual testing all cases. For the integrations, it did not cost more
time to test it via the strategy instead of by hand, but it did increase the quality.
For both the naming convention as the integration, the quality is improved,
probably leading to less faults, but in order to show this with significance, the
strategy should be applied once again where more tests are written.

9.2 Answer on the Research Questions
In order to answer the main research question of this thesis, this section will
start answering the two underlining research questions first, ending with
answering the main research question.

9.2.1 First research question
The designed strategy provided an answer to the first underlining research
question stated in section 1.3:

1. What is a good strategy to introduce continuous delivery and test
automation with FitNesse?

a. Which guidelines and tools are used in this strategy?
b. How will these guidelines and tools be tailored to system integration

projects and to each other?

73

The final strategy mentioned in section 7.1 used various tools and techniques,
selected on the strategy criteria stated in section 1.2, which will be discussed
below.

The tools and guidelines are tailored to system integration projects and identity
solutions projects in particular, coping with the short project duration and the
data-dependency, by selecting tools and guidelines that satisfied the criteria
stated in section 1.2 the best, making the when-to-automate guideline more
strict and let the developers cope with a non-specific state of data at their tests.
Tools and guidelines were tailored to each other by for instance the FitNesse-
specific workflow for using test-driven development and by configuring Jenkins
to perform the continuous delivery steps with several tools. This configuration
was possible as most tools are designed to also be controlled/called from the
outside and there were some Jenkins-plugins as well.

The final strategy introduced continuous delivery and test automation with
FitNesse, but whether or not the strategy was good is determined through the
the satisfaction of the strategy criteria in section 1.2 (shown below) and the
answer on the second research question (see section 9.2.2):

 Efficacy - It must tackle the problem in the
problem scope.

 Flexibility - It must be useable in different projects
with different circumstances.

 Implementation time - It must be easy and fast to install,
learn and use.

 Cost-effectiveness - It must have an early return on
investment.

 Transferability - It must enable the client to keep using
and maintaining the tool.

The strategy satisfies these criteria quite well: the strategy makes it possible to
automate tests and achieve continuous delivery; the strategy is mostly reusable
in different projects with different circumstances (except the communication
with SUT must be redesigned for SUT that aren't IdentityIQ and the test cases),
the tools can be installed and configured fast and are easy to learn, the return of
investment can probably be matched in new projects and the strategy can be
completely transferred to the client.

9.2.2 Second research question
The evaluation of the strategy during the case study provided an answer to the
second underlining research question stated in section 1.3:

2. What is are the costs and benefits of applying the strategy?
a. Which effects has the application of the strategy on a project?
b. Is the strategy an improvement compared to the test- and

development strategy used in earlier projects?
c. Where is the break-even point to recoup the effort of applying this

strategy?
i. How does this differ in several factors of the projects (e.g.

different test types, different features, different projects and
different software)?

74

d. To which extent is the strategy applicable for other system
integration projects?

The evaluation showed that the application of this strategy now only showed
slight effects of better quality and possibly less faults, but it is expected when
this strategy is used throughout the company, that there will be less faults and
more trust from the client. Because of these effects, the strategy will be an
improvement compared to the old test- and development strategy, where only
manual tests are performed, but only if the communication between the fixtures
and the system under test is easy to create or at least often reusable, since that
took a couple of days in the case study. It is difficult to determine a break-even
point for this strategy yet, and the opinions of the team-members differ from
which factors influence this; one said it was in particular good for testing
software outside IdentityIQ, especially since it did not took him more time to
create these tests than manually testing it; features where processes need to
wait can be difficult to test and might be better testes partly automatic (where
these time-constraints aren't in the scope) and partly manually. The strategy
would probably be even more valuable for projects where more code is written
instead of performing configurations, taking the whole benefits of test-driven
development. The strategy can mostly be reused for other projects as well,
except the communication with the system under test for projects with different
software.

Generally, this strategy has an added value to the project, with costs of time-
investments and benefits of better quality and more trust from the client and
possibly on the long run, it can create savings in time.

9.2.3 Main Research Question
The answers on both underlining research questions provided an answer to the
main research question stated in section 1.3:

 How can continuous delivery and test automation with FitNesse be
introduced in system integration projects?

Continuous delivery and test automation with FitNesse can be introduced in
system integration projects with the final strategy mentioned in section 7.1.

9.3 Future work
For future research, the strategy should be implemented on full scale, on a lot of
different projects in order to investigate further where the breakeven point of
the strategy lies and whether or not the expected benefits and costs will work
out. For this, Everett probably needs to start with another IdentityIQ project and
gradually apply the strategy at other software projects too, when the
communication between FitNesse and the system under test can be achieved
with a low investment.

75

References

[1] Everett, "Our Company," 2013. [Online]. Available:
http://www.everett.nl/en/company/our-company/.

[2] Georgia State University, "Computer Information Systems GSU Graduate
Course Catalog 2013-2014: CIS 8020 - Systems Integration," 2013.
[Online]. Available:
http://catalog.gsu.edu/graduate20132014/subject/cis/.

[3] Everett, "Identity Solutions," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/.

[4] S. Drenthen, "A Test Strategy for Continuous Testing in Identity Solution
Projects - Research Topics Report," University of Twente, 2013.

[5] Selenium, "Selenium - Web Browser Automation," 2013. [Online].
Available: http://docs.seleniumhq.org/.

[6] Watir, "Watir.com | Web Application Testing in Ruby," 2013. [Online].
Available: http://watir.com/.

[7] FitNesse, "FitNesse FrontPage," 2013. [Online]. Available:
http://www.fitnesse.org/.

[8] Atlassian, "Home - GreenPepper," 2013. [Online]. Available:
http://www.greenpeppersoftware.com/.

[9] Cucumber, "Cucumber - Making BDD fun," 2013. [Online]. Available:
http://cukes.info/.

[10] Robot Framework, "Robot Framework," 2013. [Online]. Available:
http://robotframework.org/.

[11] SailPoint, "IdentityIQ," 2013. [Online]. Available:
http://www.sailpoint.com/products/identity-iq/.

[12] SailPoint, SailPoint IdentityIQ Product Brochure, 2013.

[13] D. Hildebrand and D. Rolls, "System and Method for User Access Risk
Scoring". Austin, United States Patent 2008/0288330, 14 May 2008.

[14] Everett, "Identity Technologies," 2013. [Online]. Available:
http://www.everett.nl/en/identity-technologies/.

[15] Everett, "Involve - Everett's best practice based agile approach for
delivering integration projects.," no. Verson 1.3, 2013.

[16] Everett, "Services," 2013. [Online]. Available:
http://www.everett.nl/en/services-219/.

[17] Everett, "Identity Management," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/identity-
management/.

[18] Everett, "Identity & Access Governance," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/identity--access-
governance/.

[19] Basel Committee on Banking Supervision, "Risk Management Principles
for Electronic Banking," Bank for International Settlements, 2003.

76

[20] Everett, "Access Management," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/access-management/.

[21] Everett, "Identity Federation," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/identity-federation/.

[22] Everett, "Identity Cloud Solutions," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/identity-cloud-
solutions/.

[23] Everett, "Authentication," 2013. [Online]. Available:
http://www.everett.nl/en/identity-solutions-216/authentication/.

[24] E. Hossain, M. A. Babar and H. Y. Paik, "Using scrum in global software
development: a systematic literature review," Fourth IEEE International
Conference on Global Software Engineering, pp. 175-184, 2009.

[25] Atlassian, "Software Development and Collaboration Tools | Atlassian,"
Atlassian, 2013. [Online]. Available: http://www.atlassian.com/.

[26] Git, "Git - Fast Version Control System," 2013. [Online]. Available:
http://gitscm.com/.

[27] The Apache Software Foundation, "Maven - Welcome to Apache Maven,"
2013. [Online]. Available: http://maven.apache.org/.

[28] The Apache Software Foundation, "Apache Ant - Welcome," 2013.
[Online]. Available: http://ant.apache.org/.

[29] H. Kikkers, B. Nienhuis and E. Rutkens, "Testen van informatiesystemen
en het gebruik van (geanonimiseerde) persoonsgegevens," Compact-
Kwartaalblad EDP Auditing 3, no. 3, pp. 29-36, 2009.

[30] Overheid.nl, "Wet bescherming persoonsgegevens," 6 Juli 2000. [Online].
Available: wetten.overheid.nl/BWBR0011468/geldigheidsdatum_29-04-
2013/.

[31] G. v. Blarkom and d. J. Borking, "Beveiliging van persoonsgegevens,"
Registratiekamer. Achtergrondstudies en Verkenningen 23, 2001.

[32] J. Breeman, "Richtlijn Productiegegevens," Bureau Keteninformatisering
Werk & Inkomen, 2002.

[33] FIT, "Wiki: Welcome Visitors," 2013. [Online]. Available:
http://fit.c2.com/.

[34] FitNesse, "The SLIM Test System," 2013. [Online]. Available:
http://fitnesse.org/FitNesse.UserGuide.SliM.

[35] B. Kaplan and J. A. Maxwell, "Qualitative Research Methods for Evaluating
Computer Information Systems," Evaluating the Organizational Impact of
Healthcare Information Systems, pp. 30-55, 2005.

[36] R. Yin, Case Study Research: Design and Methods. - 4th ed., United States
of America: SAGE Publications, Inc., 2009.

[37] SailPoint, "IdentityIQ Lifecycle Manager," [Online]. Available:
http://www.sailpoint.com/solutions/products/identityiq/lifecycle-
manager.

[38] K. S. Pratt, "Design Patterns for Research Methods: Iterative Field
Research," in AAAI Spring Symposium: Experimental Design for Real-World
Systems, Stanford University, California, USA, 2009.

77

[39] M. Myers, "Qualitative Research in Information Systems," Management
Information Systems Quarterly Discovery, no. 21, pp. 241-242, 1997.

[40] W. J. Orlikowski and J. J. Baroudi, "Studying information technology in
organizations: Research approaches and assumptions.," Information
systems research, no. 2(1), pp. 1-28, 1991.

[41] P. Darke, G. Shanks and M. Broadbent, "Successfully completing case study
research: combining rigour, relevance and pragmatism.," Information
systems journal, no. 8(4), pp. 273-289, 1998.

[42] H. Klein and M. Myers, "A set of principles for conducting and evaluating
interpretive field studies in information systems," MIS quarterly, pp. 67-
93, 1999.

[43] J. B. A. Iacono and C. Holtham, "Research methods—A case example of
participant observation.," 8th European Conference on Research
Methodology for Business and Management Studies: University of Malta,
Valletta, Malta, 22-23 June 2009:[proceedings], p. 178, 2009.

[44] R. Evered and M. R. Louis, "Alternative perspectives in the organizational
sciences:“inquiry from the inside” and “inquiry from the outside”,"
Academy of Management Review, no. 6(3), pp. 385-395, 1981.

[45] J. Humble, C. Read and D. North, "The deployment production line,"
Proceedings IEE Agile 2006 Conference, pp. 113-118, 2006.

[46] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation., Addison-Wesley
Professional, 2010.

[47] A. Spillner and H. Bremenn, "The W-Model Strengthening the Bond
Between Development and Test.," in Proceeding of the STAReast '2002 ,
Conference, Orlando, Florida, 2002.

[48] S. Mathur and S. & Malik, "Advancements in the V-Model.," International
Journal of Computer Applications, no. 1(12), pp. 30-35, 2010.

[49] N. Ganesh and S. Thangasamy, "New Agile Testing Modes," Information
Technology Journal, no. 11.6, pp. 707-712, 2012.

[50] D. Hoffman, "Test automation architectures: planning for test
automation.," Proceedings of the International Quality Week, pp. 37-45,
1999.

[51] B. Marnick, "When Should a Test Be Automated?," in Proceedings of The
11th International Software/Internet Quality Week, San Francisco, 1998.

[52] The Apache Software Foundation, "Apache Subversion," 2013. [Online].
Available: http://subversion.apache.org/.

[53] M. Fowler, "Xunit," 2013. [Online]. Available:
http://www.martinfowler.com/bliki/Xunit.html.

[54] Jenkins, "Welcome to Jenkins CI!," 2013. [Online]. Available:
http://jenkins-ci.org/.

[55] Atlassian Bamboo, "Continuous Integration & Deployment Software,"
2013. [Online]. Available:
http://www.atlassian.com/software/bamboo/overview.

[56] B. Satrom, "BDD Primer: Behavior-Driven Development with SpecFlow

78

and WatiN," MSDN Magazine, pp. 50-56, December 2010.

[57] W. Aejmelaeus, "Test-driven development," 2009.

[58] D. Saff and M. D. Ernst, "Reducing wasted development time via
continuous testing," Proceedings of the 14th International Symposium on
Software Reliability Engineering, pp. 281-292, 2003.

[59] D. Saff and M. D. Ernst, "An experimental evaluation of continuous testing
during development.," ACM SIGSOFT Software Engineering Notes, no. 29.4,
pp. 76-85, 2004.

[60] B. Boehm, "Software Engineering," IEEE Transactions on Computers, Vols.
C-25, no. 12, pp. 1226-1241, 1976.

[61] B. Pettichord, "Seven steps to test automation success," in STAR West, San
Jose, NV, USA, 1999.

[62] G. Adzic, Test Driven. NET Development with FitNesse, United Kingdom:
Neuri Limited, 2008.

[63] M. Sorens, "Acceptance Testing With FitNesse, The Overview," Juli 2013.
[Online]. Available: https://www.simple-talk.com/dotnet/.net-
tools/acceptance-testing-with-fitnesse,-the-overview/.

[64] FitNesse, "What is FitNesse? - One Minute Description," 2013. [Online].
Available: http://fitnesse.org/FitNesse.UserGuide.OneMinuteDescription.

[65] FitNesse, "Multi Language FitNesse," 2013. [Online]. Available:
http://fitnesse.org/FitNesse.UserGuide.MultiLanguageFitNesse .

[66] FitNesse, "Extend FitNesse," 2013. [Online]. Available:
http://fitnesse.org/PlugIns.

[67] FitNesse, "FitNesse Release 20081115," 2008. [Online]. Available:
http://fitnesse.org/.FrontPage.FitNesseDevelopment.FitNesseRelease200
81115.

[68] FitNesse, "Fit Table Styles," 2013. [Online]. Available:
http://fitnesse.org/FitNesse.UserGuide.FitTableStyles.

[69] Atlassian, "Free source code hosting for Git and Mercurial by Bitbucket,"
2013. [Online]. Available: https://bitbucket.org/.

[70] SailPoint, "SailPoint Compass - REST API Integration," 2013. [Online].
Available: https://community.sailpoint.com/docs/DOC-1642.

[71] SailPoint, "SailPoint Compass - IdentityIQ Console Command Reference,"
2013. [Online]. Available: https://community.sailpoint.com/docs/DOC-
1631.

[72] S. Wieczorek, A. Stefanescu and I. Schieferdecker, "Test data provision for
ERP systems. In , 2008 (pp. 396-403). IEEE.," in First International
Conference on Software Testing, Verification, and Validation, Lillehammer,
Norway, 2008.

[73] E. Pragt, "Getting Started with FitNesse," 2013. [Online]. Available:
http://refcardz.dzone.com/refcardz/getting-started-fitnesse.

[74] Jenkins, "FitNesse Plugin," 2013. [Online]. Available: https://wiki.jenkins-
ci.org/display/JENKINS/Fitnesse+Plugin.

[75] J. Way, "The Perfect Workflow, with Git, GitHub, and SSH," 2011. [Online].
Available: http://net.tutsplus.com/tutorials/other/the-perfect-workflow-

79

with-git-github-and-ssh/.

[76] B. Van Damme, "Automatic website publishing with Git, GitHub-Style,"
2012. [Online]. Available: http://www.bram.us/2012/05/06/automatic-
website-publishing-with-git-github-style/.

[77] DevEnterprise.NET, "Directory Monitor," 2013. [Online]. Available:
http://www.deventerprise.net/DirectoryMonitor.

[78] Stack Overflow [forum], "Making git auto-commit," 2009. [Online].
Available: http://stackoverflow.com/questions/420143/making-git-
auto-commit.

[79] T. Lee, "TortoiseGIT / GIT Tutorial: Hosting a dedicated server with auto
commit periodically on Windows 7 and Windows 8," 2013. [Online].
Available: http://www.thehelper.net/attachments/git-tutorial-auto-
commit-pdf.18221/.

[80] Google Discussion Groups [forum], "Looking to auto-update a GIT local
repo (on Windows Server) when bare repo on redmine is pushed to,"
2011. [Online]. Available: https://groups.google.com/forum/#!msg/git-
users/9wVCXrZabCE/r3ip0XyM_ZIJ.

[81] FitNesse, "Executing Tests Outside The User Interface," 2013. [Online].
Available:
http://fitnesse.org/FitNesse.UserGuide.ExecutingTestsOutsideTheUserIn
terface.

80

Appendix A: Principles for Interpretive Field Research
The table below shows the summary of principles for Interpretive Field Research
used in the case study, as given by Klein and Myers [42, p. 72].

Principles
1. The Fundamental Principle of the Hermeneutic Circle
This principle suggests that all human understanding is achieved by iterating between
considering the interdependent meaning of parts and the whole that they form. This
principle of human understanding is fundamental to all the other principles.

Example: Lee’s (1994) study of information richness in e-mail communications. It iterates between
the separate message fragments of individual e-mail participants as parts and the global context
that determines the full meanings of the separate messages to interpret the message exchange as a
whole.
2. The Principle of Contextualization
Requires critical reflection of the social and historical background of the research
setting, so that the intended audience can see how the current situation under
investigation emerged.

Example: After discussing the historical forces that led to Fiat establishing a new assembly plant,
Ciborra et al. (1996) show how old Fordist production concepts still had a significant influence
despite radical changes in work organization and operations.
3. The Principle of Interaction Between the Researchers and the Subjects
Requires critical reflection on how the research materials (or “data”) were socially
constructed through the interaction between the researchers and participants.

Example: Trauth (1997) explains how her understanding improved as she became self-conscious
and started to question her own assumptions.
4. The Principle of Abstraction and Generalization
Requires relating the idiographic details revealed by the data interpretation through
the application of principles one and two to theoretical, general concepts that describe
the nature of human understanding and social action.

Example: Monteiro and Hanseth’s (1996) findings are discussed in relation to Latour’s actor-
network theory.
5. The Principle of Dialogical Reasoning
Requires sensitivity to possible contradictions between the theoretical preconceptions
guiding the research design and actual findings (“the story which the data tell”) with
subsequent cycles of revision.

Example: Lee (1991) describes how Nardulli (1978) came to revise his preconceptions of the role of
case load pressure as a central concept in the study of criminal courts several times.
6. The Principle of Multiple Interpretations
Requires sensitivity to possible differences in interpretations among the participants as
are typically expressed in multiple narratives or stories of the same sequence of events
under study. Similar to multiple witness accounts even if all tell it as they saw it.

Example: Levine and Rossmore’s (1993) account of the conflicting expectations for the Threshold
system in the Bremerton Inc. case.
7. The Principle of Suspicion
Requires sensitivity to possible “biases” and systematic “distortions” in the narratives
collected from the participants.

Example: Forester (1992) looks at the facetious figures of speech used by city planning staff to
negotiate the problem of data acquisition.

Table 3: Summary of Principles for Interpretive Field Research [42, p. 72]

81

Appendix B: Survey During Sprint Retrospective
The responses to this survey will be used to evaluate and improve the testing
strategy. It is important to give honest answers to this survey. Additional
comments, ideas and tips are always welcome.

Name: ___

Experience with products and methods
1. How much experience do you have with the following

products/methods? choose: very much (VM), much (M), average (A),
few (F), very few (VF)
 (Check the relevant box)

 VM M A F VF

SailPoint IdentityIQ

FitNesse

Test-Driven Development

Test Automating

 Additions/Comments/Tips:

 ___ _____________________

 __

Strategy design
2. Indicate for the following statements if you strongly agree (SA),

agree (A), neither agree nor disagree (N), disagree (D), strongly
disagree (SD) or not applicable (na) (Check the relevant box for each
statement)

 SA A N D SD na

Test-driven development lends itself well to start
testing early in the development process

FitNesse lends itself well to specify test cases clear
and on a central place

FitNesse lends itself well to automate the test cases

IdentityIQ lends itself well to test outside the web-
interface

The strategy-tutorial was easy to follow

The explanation on test-driven development is
sufficient to be able to apply it in this project

The explanation on FitNesse is sufficient to be able
to apply it in this project

The explanation on testing IdentityIQ is sufficient to
be able to apply it in this project

 Additions/Comments/Tips:

 ___ _____________________

 __

 ___ _____________________

82

Applying the strategy
3. How many hours did you spend in the finished sprint on the

following activities? (Fill in the estimated hours)
____ hours on learning/figuring out (parts of) the strategy
____ hours on setting up the test environment and tools
____ hours on defining test cases in FitNesse
____ hours on implementing FitNesse fixtures (including the associated
code/scripts/xml files)
____ hours on manual testing
____ hours on other test activities: ___

4. Did you encounter problems during one of the test activities? Hereby
I am not referring to errors found with testing, but problems with
testing itself. (Check the relevant box)

 Yes No Not applicable
If so:

a. Which problems did you encounter?

 ___ _____________________

 __

 ___ _____________________

b. How restrictive or how bad are these problems?

 __

 __

c. Are the problems (partly) solved? If so: how?

 ___ _____________________

 __

 ___ _____________________

5. Indicate for the following statements if you strongly agree (SA),

agree (A), neither agree nor disagree (N), disagree (D), strongly
disagree (SD) or not applicable (na) (Check the relevant box for each
statement)
In comparison with phase 1 of this project ... SA A N D SD na

... the documentation on what and how there is
tested is improved

... less time is spend on testing

... bugs are found earlier

... more bugs are found

... I have more confidence in the correctness of the
project

... the strategy has helped with defining clear
requirements and test criteria

 Additions/Comments/Tips:

 ___ _____________________

 __

 ___ _____________________

83

6. To what extent can (parts of) test-cases and fixtures that you have
made be reused in this project and in other projects (both IdentityIQ
projects as projects with different software/scope)?
 (Fill in your answer)

 ___ _____________________

 __

 ___ _____________________

 __

 ___ _____________________

 __

7. To what extent is de general strategy (tools/manner of working)

reusable in other projects (both IdentityIQ projects as projects with
different software/scope)?
 (Fill in your answer)

 ___ _____________________

 __

 ___ _____________________

 __

 ___ _____________________

 __

Extra space for comments, ideas, tips
8. Do you have additional comments, tips, ideas, complaints or pitfalls

on the strategy?
 (Fill in your answer)

 ___ _____________________

 ___ _____________________

 ___ _____________________

 __

 ___ _____________________

 __

 ___ _____________________

 __

 ___ _____________________

 ___ _____________________

 __

 ___ _____________________

 __

 ___ _____________________

84

Appendix C: Interview Questions for the Final Evaluation

Positive en Negative aspects
1. What are in your opinion the positive and negative aspects of the

strategy?
a. Can you give an example?
b. How important are they?
c. How much impact do they have?

Costs and Benefits
2. In your opinion, how much did it cost to learn and apply the new

strategy? (time, effort, problems, researching, learning)
a. With the gathered experience, how much will it cost to apply this

strategy in a new project?
3. In your opinion, what has the strategy delivered in this project? (test

quality, less time due reuse, less time due to automatic rerun, amount of
found bugs, confidence in the correctness of the code)?

4. In your opinion, do you think the benefits outweigh the costs in this
project?

a. How do you think this will be in future projects?
b. Can you point out specific factors or parts that play an important

role in the cost-effectiveness?
i. Using different kind of tests (unit tests, system tests,

integration tests, acceptation tests)?
ii. Testing different parts of the product (certification,

provisioning, live cycle manager)?
iii. Testing with different systems (database, IdentityIQ, a

connection-protocol)?
iv. The amount of experience with the strategy, tools and

software of the project?

Goal
5. To which extent does the project achieve its goal (less money to test, less

faults in the product, automating tests)?
6. Does test automation show its worth? (test faster due reuse or find a

regression bug)?
7. To which extent do you think that the strategy can be reused in other

projects?
a. and the test-cases, fixtures and code?

8. To which extent does the strategy help the client?
a. Does the strategy help with the acceptation process?

i. Why?
b. Does the strategy help with giving confidence in the solution?

i. Why?
c. Does the client have the knowledge to use the tool after the project

ends?
i. If so: what are the benefits to the client?

ii. If not: is it desirable to invest in this?

85

Appendix D: Raw Data of Survey Results
This appendix lists the raw data of the survey results.

Question 1: How much experience do you have with the following
products/methods? (5=very much. 4=much, 3=average, 2=few, 1=very few)

SailPoint IdentityIQ
Iteration /
Team member

A B C D E Average

2nd 4,0 4,0 4,0 3,0 4,0 3,8

3th 4,0 4,0 4,0 2,0 4,0 3,6

4th 4,0 4,0 4,0 3,0 4,0 3,8

5th 4,0 4,0 4,0 3,0 3,8

Average 4,0 4,0 4,0 2,8 4,0 3,7

FitNesse

Iteration /
Team member

A B C D E Average

2nd 2,0 2,0 1,0 1,0 1,0 1,4

3th 3,0 2,0 1,0 1,0 1,0 1,6

4th 3,0 2,0 2,0 1,0 1,0 1,8

5th 3,0 3,0 3,0 2,0 2,8

Average 2,8 2,3 1,8 1,3 1,0 1,9

Test-Driven Development

Iteration /
Team member

A B C D E Average

2nd 2,0 1,0 3,0 1,0 1,0 1,6

3th 3,0 2,0 3,0 1,0 1,0 2,0

4th 3,0 2,0 2,0 1,0 2,0 2,0

5th 3,0 3,0 3,0 2,0 2,8

Average 2,8 2,0 2,8 1,3 1,3 2,1

Test Automating

Iteration /
Team member

A B C D E Average

2nd 4,0 1,0 3,0 1,0 2,0 2,2

3th 4,0 2,0 2,0 2,0 1,0 2,2

4th 4,0 4,0 2,0 1,0 2,0 2,6

5th 4,0 3,0 3,0 2,0 3,0

Average 4,0 2,5 2,5 1,5 1,7 2,5

86

Comments
 At the end of the second iteration, team member D indicated that

he/she only has experience with IIQ on the compliance side and less
on the LCM side.

Question 2: Indicate for the following statements if you strongly agree (SA=5), agree
(A=4), neither agree nor disagree (N=3), disagree (D=2), strongly disagree (SD=1) or
not applicable (na=empty)

Test-driven development lends itself well to start testing early in the
development process

Iteration /
Team member

A B C D E Average

2nd 5,0 4,0 4,0 4,0 4,3

3th 5,0 4,0 4,0 5,0 3,0 4,2

4th 5,0 4,0 4,0 4,0 4,0 4,2

5th 4,0 4,0 4,0 4,0 4,0

Average 4,8 4,0 4,0 4,3 3,7 4,2

FitNesse lends itself well to specify test cases clear and on a central
place

Iteration /
Team member

A B C D E Average

2nd 4,0 3,0 4,0 3,0 3,5

3th 4,0 4,0 4,0 4,0 4,0

4th 3,0 4,0 4,0 4,0 4,0 3,8

5th 4,0 4,0 4,0 4,0 4,0

Average 3,8 3,8 4,0 4,0 3,7 3,8

FitNesse lends itself well to automate the test cases

Iteration /
Team member

A B C D E Average

2nd 4,0 3,0 4,0 3,0 3,5

3th 5,0 4,0 5,0 4,0 4,5

4th 4,0 4,0 4,0 4,0 3,0 3,8

5th 4,0 4,0 4,0 4,0 4,0

Average 4,3 3,8 4,0 4,3 3,3 3,8

IdentityIQ lends itself well to test outside the web-interface

Iteration /
Team member

A B C D E Average

2nd 3,0 4,0 3,0 4,0 3,0 3,4

3th 4,0 4,0 3,0 4,0 3,0 3,6

4th 5,0 3,0 5,0 4,0 3,0 4,0

5th 2,0 3,0 3,0 4,0 3,0

Average 3,5 3,5 3,5 4,0 3,0 3,5

87

The strategy-tutorial was easy to follow
Iteration /
Team member

A B C D E Average

2nd 4,0 4,0 4,0 4,0

3th 4,0 4,0 3,0 3,7

4th 4,0 5,0 4,0 4,3

5th 4,0 4,0

Average 4,0 4,3 3,7 4,0

The explanation on test-driven development is sufficient to be able
to apply it in this project

Iteration /
Team member

A B C D E Average

2nd 3,0 4,0 3,0 4,0 3,5

3th 4,0 3,0 3,0 4,0 3,5

4th 4,0 4,0 4,0 4,0 4,0

5th 4,0 4,0 4,0

Average 3,8 3,5 3,5 4,0 4,0 3,8

The explanation on FitNesse is sufficient to be able to apply it in this
project

Iteration /
Team member

A B C D E Average

2nd 4,0 3,0 3,0 4,0 3,5

3th 4,0 3,0 3,0 4,0 3,5

4th 4,0 4,0 4,0 4,0 4,0 4,0

5th 5,0 4,0 4,0 4,3

Average 4,3 3,3 3,5 4,0 4,0 3,8

The explanation on testing IdentityIQ is sufficient to be able to apply
it in this project

Iteration /
Team member

A B C D E Average

2nd 4,0 3,0 4,0 4,0 3,8

3th 4,0 4,0 4,0 4,0 4,0

4th 4,0 4,0 4,0 4,0 4,0 4,0

5th 4,0 4,0 4,0

Average 4,0 3,7 4,0 4,0 4,0 3,9

Comments
 Team member A indicated, at the end of the second iteration, that the

acceptance testers have difficulty picturing how to use FitNesse. At the
end of the fourth iteration, he/she indicated that it is hard to estimate
the changes in the tutorial wiki, since these are made gradually and
are not clearly communicated at the start of the sprint At the end of
the fifth iteration, he/she indicated that he/she found no API for

88

handling requests in IdentityIQ, so this is something that is difficult to
test outside the GUI.

 Team member B indicated, at the end of the second iteration, that
he/she did not had time yet to study the tutorial (and did fill in not
applicable). At the end of the fourth iteration, he/she did indicate that
she still did not follow the tutorials, but that the explanations were
clear.

Question 3: How many hours did you spend in the finished sprint on the following
activities?

Learning/figuring out (parts of) the strategy
Iteration /
Team member

A B C D E

2nd 1 0 0 0 0

3th 2 0 0 0 0

4th 0 2 0 0 0

5th 0 2 0 0 .

Sum 3 4 0 0 0

Setting up the test environment and tools

Iteration /
Team member

A B C D E

2nd 2 0 0 0 0

3th 2 2 0 0 0

4th 0 0 0 0 0

5th 0 0 0 0 .

Sum 4 2 0 0 0

Defining test cases in FitNesse

Iteration /
Team member

A B C D E

2nd 0 0 0 0 0

3th 1 1 0 0,5 0

4th 1 0 6 0 0

5th 0,5 0 1 0 .

Sum 2,5 1 7 0,5 0

Implementing FitNesse fixtures (including the associated
code/scripts/xml files)

Iteration /
Team member

A B C D E

2nd 0 0 0 0 0

3th 1 7 0 0 0

4th 2 0 6 0 0

5th 0,5 0 4 0 .

Sum 3,5 7 10 0 0

89

Manual testing

Iteration /
Team member

A B C D E

2nd 2 2 ? 8 15

3th 4 5 ? 0 0

4th 2 16 0 0 4

5th 16 24 ? 10 .

Sum 24 47 0 18 19

Other test activities

Iteration /
Team member

A B C D E

2nd 0 0 ? 0 5

3th 0 1 ? 0 2

4th 0 8 0 0 0

5th 8 0 ? 0 .

Sum 8 9 0 0 7

Comments
 Team member A indicated that he/she did do quite much trial and

error development in the fourth iteration (he/she had that iteration 2
hours of manual tests) and indicated that, in the fifth iteration, he/she
did perform smoke tests after a new deployment (he/she had that
iteration 16 hours of manual tests)

 Team member B indicated that he/she tested manually during
development in the second iteration (he/she had that iteration 2
hours of manual tests).

Question 4: Did you encounter problems during one of the test activities? Hereby I
am not referring to errors found with testing, but problems with testing itself.

Problems mentioned at the end of the second iteration:
 Team member A indicated that redeployment of Java-classes used by

IdentityIQ (which are sometimes used instead of BeanShell-code to
make testing easier) takes a long time

 Team member B indicated that when a test is performed, the
environment changes, making it possible that a test works on one
environment and not on another.

Problems mentioned at the end of the third iteration:
 Team member B also indicated this problem: Shifting BeanShell to

Java code takes more time then programming in BeanShell since it
needs a redeploy on every Java-change. Furthermore, after a redeploy,
the console needs to be restarted as well.

 Team member A indicated that defined test cases in the running
FitNesse wiki for business users are not automatically pushed to Git
and therefore not in Jenkins as well. A possible solution is introducing
a script that does this automatically

90

Problems mentioned at the end of the fourth iteration:
 Team member A indicated that writing a tests sometimes requires

almost completely implementing the functionality. In order to solve
this, smart entry/exit criteria needs to be made and that there is quite
some risk in performing changes in the presentation layer that are not
testable

Problems mentioned at the end of the fifth iteration:
 Team member B indicated that he/she found it difficult that multiple

users work at the same environment, having a lot of log data that does
not belong to his test activities, but to someone else's.

 Team member D indicated that he/she misses a complete test plan.

Question 5: Indicate for the following statements if you strongly agree (SA=5), agree
(A=4), neither agree nor disagree (N=3), disagree (D=2), strongly disagree (SD=1) or
not applicable (na=empty): In comparison with phase 1 of this project.

The documentation on what and how there is tested is improved
Iteration /
Team member

A B C D E Average

2nd 3,0 2,0 4,0 3,0

3th 3,0 4,0 3,0 2,0 3,0 3,0

4th 4,0 4,0 3,0 3,0 3,0 3,4

5th 4,0 3,0 3,0 3,3

Average 3,5 3,3 3,0 2,5 3,3 3,2

Less time is spend on testing

Iteration /
Team member

A B C D E Average

2nd 2,0 2,0 3,0 3,0 2,5

3th 1,0 1,0 3,0 3,0 2,0

4th 2,0 2,0 2,0 3,0 2,3

5th 2,0 2,0 2,0 2,0

Average 1,8 1,8 2,5 3,0 2,2

Bugs are found earlier

Iteration /
Team member

A B C D E Average

2nd 4,0 2,0 3,0 3,0 3,0

3th 2,0 3,0 3,0 4,0 3,0 3,0

4th 3,0 3,0 3,0 4,0 2,0 3,0

5th 4,0 2,0 3,0 4,0 3,3

Average 3,3 2,5 3,0 4,0 2,7 3,1

91

More bugs are found
Iteration /
Team member

A B C D E Average

2nd 3,0 2,0 3,0 3,0 2,8

3th 3,0 3,0 3,0 3,0 3,0

4th 2,0 4,0 3,0 3,0 3,0

5th 4,0 4,0 3,0 3,0 3,5

Average 3,0 3,3 3,0 3,0 3,0 3,3

I have more confidence in the correctness of the project

Iteration /
Team member

A B C D E Average

2nd 3,0 2,0 3,0 3,0 2,8

3th 4,0 3,0 3,0 4,0 3,0 3,4

4th 4,0 3,0 4,0 4,0 3,0 3,6

5th 4,0 3,0 4,0 4,0 3,8

Average 3,8 2,8 3,5 4,0 3,0 2,8

The strategy has helped with defining clear requirements and test
criteria

Iteration /
Team member

A B C D E Average

2nd 3,0 2,0 3,0 2,7

3th 3,0 4,0 3,0 4,0 3,0 3,4

4th 4,0 3,0 3,0 3,3

5th 3,0 3,0 3,0 3,0 3,0

Average 3,3 3,0 3,0 3,5 3,0 3,1

Comments
 Team member A indicated, at the end of the third iteration, that the

test effort lies more at the consultant and less at the acceptant testers.
More effort of acceptance testers is needed in order to go deeper in
the TDD process.

 Team member E indicated, at the end of the second iteration, that the
automated tests still needs to be moved and adapted to the test
environment.

 Team member D indicated, at the end of the third iteration, that
he/she found the strategy very effective for testing the naming
convention. At the end of the fourth iteration, he/she indicated that
the things that are tested via the tool are well documented in the tool.
At the end of the fifth iteration, he/she indicated that not much has
changed since he/she still does the manual acceptance tests, but that
the strategy saved a lot of time and was very valuable for testing the
naming convention.

92

Question 6: To what extent can (parts of) test-cases and fixtures that you have made
be reused in this project and in other projects (both IdentityIQ projects as projects
with different software/scope)?

 Team member A indicated, at the third iteration, that the fixtures are
very specific for IdentityIQ and are partly usable for other IIQ projects,
but not for other projects; at the fourth iteration, he/she added that
these fixtures might be partly reusable for IDM projects as well; at the
fifth iteration, he/she indicated that it is quite limited to IIQ, since
most fixtures are about IIQ-specific things.

 Team member B indicated, at the end of the second, third and fourth
iteration, that many tests are reusable for other similar IIQ projects,
but he/she cannot judge for projects outside IIQ. At the end of the fifth
iteration, he/she indicated that the tests were quite specific, so the
reuse is limited.

 Team member C indicated, at the end of the fourth iteration that the
tests and fixtures themselves are not very much reusable, but the
experience is; at the fifth iteration he/she added that the tests are to
specific for the project of the case study.

 Team member D and E indicated that they cannot give a good estimate
on this.

Question 7: To what extent is de general strategy (tools/manner of working) reusable
in other projects (both IdentityIQ projects as projects with different software/scope)?

 Team member A indicated, through all iterations, that the strategy is
definitely reusable for other projects, FitNesse and the strategy are
general enough and test-driven development is based on risks and
works well on any product. At the end of the fifth iteration, he/she
added that it is in particular useful for projects where software is
developed. For example at migrations or small projects, a strategy is
needed that focuses more on risks then on test automation.

 Team member B indicated, at the end of the second iteration, that it
will be reusable for IIQ projects, but he/she cannot say anything about
other projects. At the end of the third iteration, he/she noted that it is
more generically usable: also at many Access Governance and Identity
Management projects. At the end of the fifth iteration, he/she
indicated that it is reusable in a reasonable amount, but not
everything.

 Team member C indicated, at the end of the fourth iteration, that for
IIQ projects, the strategy could be reused and for other projects, the
communication with the system under test needs to be re-designed. At
the end of the fifth iteration, he/she added that it helps to develop
complex connections without continuously having to walk through a
complete scenario

 Team member D and E indicated that they cannot give a good estimate
on this.

93

Question 8: Do you have additional comments, tips, ideas, complaints or pitfalls on
the strategy?

Given answers at the end of 2nd iteration:
 Team member B indicated that smart test should be developed, that

tests many steps at once
 Team member C indicated that time needs to be reserved in order to

be able to dive in the strategy with high pressure of work on the
project already

 Team member E indicated that he/she eagerly awaits the next
sprints and is convinced that this strategy can deliver an added
value.

Given answers at the end of 3rd iteration:
 Team member A indicated that the next step is to let all test cases run

flawlessly, so the Jenkins notifications can be turned on and the
impact of the development work becomes visible.

Given answers at the end of 4th iteration:
 Team member A indicated that he/she is curious about how this

strategy can relate to monitoring and unit tests.

Given answers at the end of 5th iteration:
 Team member A indicated that a pitfall is that a team needs a

dedicated tester to ensure that sufficient test cases are supplied.

94

Appendix E: FitNesse Tutorial
This appendix shows the FitNesse tutorial that can be followed in order to use
the strategy. Text in black are steps to be taken and steps in gray give extra
information.

Tutorial - FitNesse: Installing, Strategy, Usage etc

0. Introduction
The content below follows a nice tutorial (see
http://refcardz.dzone.com/refcardz/getting-started-FitNesse) , but this page
will give some more detailed or complete code and instructions where the
tutorial misses out.
Please follow the whole tutorial, step 1 to 7.

1. FitNesse Setup
Install an IDE to your choice

 Choose and install an IDE according to your preferences, e.g.:
o Install NetBeans from: https://netbeans.org/downloads/ (I used

the all-languages version 7.3.1)

Install Java JDK

 If the Java JDK is not installed, download the Java JDK from
http://www.oracle.com/technetwork/Java/Javase/downloads/ and
install it.

o Note: in Windows, you need to add to the path of the bin-folder of
the JDK (like: [...]\Java\JDK_xxx\bin) to the PATH environment
variable of your computer

Download FitNesse

 If you want to run FitNesse by itself, You could download the FitNesse-
standalone.jar from: http://FitNesse.org/FitNesseDownload. It contains
all dependencies.

o Note: If you use Maven, you could find it in the FitNesse Maven
Central Repository or download the FitNesse.jar from FitNesse's
latest stable build.

Create Tutorial Project

 Create a tutorial project
o in NetBeans:

 File - New Project
 Java project - Java Application - Next
 Project Name: "Tutorial", Project Location "yourchoice"
 unselect create main class
 Finish

Add FitNesse-library to project

http://refcardz.dzone.com/refcardz/getting-started-fitnesse
https://netbeans.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://fitnesse.org/FitNesseDownload

95

 Move FitNesse-standalone.jar to the Tutorial-folder of your project (or
when used for your project: to the project-git directory)

 Add the FitNesse-standalone.jar to the Library of the project
o in NetBeans:

 Right-click on Libraries and click "add JAR/Folder", browse
to .../Tutorial/FitNesse-standalone.jar and click on "open".

Start FitNesse

 go to the Tutorial directory.
 Open a command prompt /shell in the Tutorial-folder and type:

o Java -jar FitNesse-standalone.jar -p 9090 -e 0
This will extract itself (creating a directory named FitNesseRoot
with all its content) and try to run itself.

 The -p 9090 runs FitNesse on the port 9090 instead of the
standard 8080 (because SailPoint uses 8080)

 The “-e 0” argument disables the built-in versioning system
of FitNesse, since we use GIT and leaving it on will clutter
the GIT repository.

 For more possible arguments, see:
http://FitNesse.org/FitNesse.UserGuide.CommandLineArg
uments

 Note: The command above assumes you moved fitnesee-
standalone.jar to the project folder that is in git-
sourcecontrol, it starts FitNesse from the location of the jar-
file, placing the FitNesse-wiki-pages at this location in a
subdirectory called FitNesseRoot. If you don't start the
FitNesse-jar-file from the project/git directory but from
another folder, you should start FitNesse with an extra
argument: -d <pathToProjectDirectory>, in order to start
FitNesse in the shared project-directory and share the wiki-
pages.

 Let it run (so don't close/kill the process)

FitNesse and GIT

 The content of the FitNesse wiki is stored in the FitNesseRoot-directory
that is created when you start FitNesse. If you performed the step above
in the right way, the FitNesseRoot-directory is in the project folder of the
project you want to test, that is under version control (in our case: git).

 The wiki-pages of FitNesse are stored in this FitNesseRoot-directory. The
name of a wiki page is stored as a directories and subpages are
subdirectories. Each directory has the page content stored in a txt file and
the page configurations stored in an xml file, making them very suitable to
submit to GIT (since text-based files are easy to merge)

 The following FitNesse-folders should be in the git-ignore file:
o FitNesseRoot/files
o FitNesseRoot/Errorlog
o FitNesseRoot/RecentChanges

Try FitNesse

http://fitnesse.org/FitNesse.UserGuide.CommandLineArguments
http://fitnesse.org/FitNesse.UserGuide.CommandLineArguments

96

 Try the pre-defined FitNesse example:
 Go to localhost:9090/FitNesse.UserGuide.TwoMinuteExample
 Press test at the right corner and it should look like the picture below

(click to enlarge).
 You see the test results with one fail and 5 passes, colored green and red:

2. Download Tutorial files, run FitNesse, copy system under test and create a test
suite
Download The Tutorial files

 Now you have a working FitNesse server and you could continue with the
tutorial.

o Download Tutorial-Files.zip2 in which you will find the needed
files for this tutorial.

o (If desired, The final result is also available to use as reference):
 Tutorial-final-results-NetBeans.zip1

Copy the System Under Test from my zip-file
 Go to the Tutorial-Files.zip (downloaded above) and copy the src-folder to

your Tutorial-folder.
 The src-folder contains the system under test, which is a very simplified

Jukebox, which could calculate how much credits you will get for a certain
payment, which has a list of songs, a song could be added and you could
find a song from an artist name. From the song, you could get the title, the
artist and the duration.

Run FitNesse

 Start the FitNesse server as given in the set-up (run "Java -jar FitNesse-
standalone.jar -p 9090 -e 0") and leave it run.

 Go to localhost:9090 , you should see the FrontPage of FitNesse with a
Welcome message.

2 These files can be requested by sending an email to: s.drenthen@alumnus.utwente.nl

localhost:9090/FitNesse.UserGuide.TwoMinuteExample
localhost:9090/
mailto:s.drenthen@alumnus.utwente.nl

97

Create a Test Suite

 FitNesse has the concept of suites and tests. Suites are sets of tests, which
is a way to organize the tests. As an additional benefit, when executing a
suite, all tests within the suite are executed.

 Click on Edit in the menu at the top right.
 Insert under the existing text the following and click on save afterwards:

!1 The tutorial-pages
JukeboxSuite

 This will create a header and a link to a new non-existing link. Note that
FitNesse only creates links when the text is written in CamelCase.

 Click on the question mark next to JukeboxSuite and click on save. This
creates an empty suite at http://localhost:9090/JukeboxSuite.
Note: FitNesse marks a page as a Suite automatically when it starts or
ends with Suite. A Wiki page can also manually be set as an
Suite/Test/Static in the page properties by clicking ‘Tools-Properties’
when you are at that page.

3. Test with a Decision Table
Creating a FitNesse Test based on a Decision Table

 When you are at http://localhost:9090/JukeboxSuite, click on Add - Test
page at the menu at the top right.

 We will create a test for the feature: "calculate how much credits you will
get for a certain payment". To test this, we will give several payment input
and want to check if the given output of the SUT is the same as our
definition. We test this with a decision table (see
http://www.FitNesse.org/FitNesse.UserGuide.SliM.DecisionTable). A
Decision table test supplies inputs checks if the given outputs match.

 Give the test-page the name: PaymentTest (Note that the page name in
FitNesse has to written in CamelCase)

 And the help-text: Testing the payment feature
 Insert under the existing text the following:

!2 Tests with Decision table

The First four should pass, last two should fail

!|decision:credits for payment|

| payment | credits? |

| .25 | 1 |

| 1 | 4 |

| 5 | 20 |

| 10 | 40 |

| 5 | 21 |

| 10 | 45 |

 In this case, our test checks if for every .25 of payment, one credit is
received (thus for 1 payment, 4 credits and so on). Note that the output
value is specified by a question mark and the first four should pass and
last two rows of this test should fail (because they give 1 and 5 credits to
much).

 Click on Save and then click on the link to the newly created test.
 When you execute this test by clicking on ‘Test’ in the menu, your test will

fail with an exception: Could not find fixture: DecisionCreditsForPayment.

http://localhost:9090/JukeboxSuite
http://localhost:9090/JukeboxSuite
http://www.fitnesse.org/FitNesse.UserGuide.SliM.DecisionTable

98

To get the test to work, we need to do two more things: write the Fixture
and configure FitNesse correctly.

Creating a Fixture

 The Fixture will be the layer between the production code (the Subject
Under Test) and the FitNesse test pages. There are multiple types of
Fixtures, and to support the Test above, a Decision Table Fixture is
needed.

 Consider line 11-13 from src/jukebox/sut/JukeBox.Java. This is the
implementation of the credits-calculation of the SUT.

 Create in the Tutorial/src folder a folder/package named jukebox.fixtures.
 Create in the package/folder a Java class named CreditsForPayment.Java

which contains the following:
package jukebox.fixtures;

import jukebox.sut.*;

public class CreditsForPayment {

 private double payment;

 private int credits;

 public void setPayment(double payment) { // setter method

 this.payment = payment;

 }

 public void execute() { // executed after each table row

 this.credits = new JukeBox().calculateCredits(payment);

 }

 public int credits() { // returning function (question mark)

 return this.credits;

 }

}

 And compile it as well:
o Netbeans: Run - Build Project
o No IDE: run the following in the Tutorial/src-folder (both compile

SUT as the fixtures):
Javac -classpath .;../FitNesse-standalone.jar jukebox/sut/*.Java
Javac -classpath .;../FitNesse-standalone.jar
jukebox/fixtures/*.Java

 This class above is the corresponding fixture class for the FitNesse test
page.

 When running the FitNesse test it will search for the fixture called
CreditsForPayment, and then will do this for each row:

o First the setters are called (in this case setPayment(..) function) so
the fixture has the input,

o Then the execute()-function is called to do call the function of the
SUT with the given inputs and stores the result in the fixture

o Then the result is retrieved from the Fixture (in this case by the
credits()-function). The FitNesse Test Page compares this value
with the given value in the table.

 Finally, the FitNesse test page needs to be configured before the test will
work.

Configuring the FitNesse Test Page

 go to http://localhost:9090/JukeboxSuite.PaymentTest and click on edit.
 Add on the top of the page (just below the "!contents ..."):

http://localhost:9090/JukeboxSuite.PaymentTest

99

!define TEST_SYSTEM {slim}

for using Netbeans with standard settings:

!path ../Tutorial/build/classes

|import |

|jukebox.fixtures|

 Different IDE's use different output-paths for their .class files. You could
change the path to where your .class files are.

 In the case study's project, we will use the NetBeans standard settings.
Note: To let it work on all operating systems, the path needs to be
specified with "/" (instead of "\")

 This configuration will tell FitNesse:
o we want to use SLIM-fixtures instead of the default FIT (as

mentioned in the introduction)
o the class path to your project (this is a relative path from the

FitNesse-standalone.jar to the class-files)
o the location of the fixtures for this test (relative from the class

path) and that these should be imported (this table is called an
import table)

Run the test!

 Go to http://localhost:9090/JukeboxSuite.PaymentTest
 Click on Test in the menu at the right.
 The result should look like below (click to enlarge):

 Note that you could also run the whole test suite, by going to

http://localhost:9090/JukeboxSuite?suite and click on Suite. This
 will run all test pages in the suite and give the results.
 Note that normally, the two failed test won't be here as such, cause you

could test the correct working with the two above. These are added so
you could see how failed tests look like.

http://localhost:9090/JukeboxSuite.PaymentTest
http://localhost:9090/JukeboxSuite?suite

100

4. Test with a Query Table

 You may skip this step and go to step 5, since we will probably not use it
 Query tables are, as the name implies, meant to query for data. There are

currently 3 kinds of query tables, which are almost identical, but with
 some notable exceptions.

 Fixture Description
Query A standard query table, which compares

the complete set of data in and unordered
way.

Subset query Only those rows defined in the table need
to be in the Fixture result.

Ordered query The order of the rows in the table must be
in the same order as the rows returned by
the query

 A query table is used to compare the results of a query. This is helpful
when you only need to make assertions about data, instead of also
manipulating data in the system. The following example only illustrate the
first Query-fixture, the others are similar.

Create the test

 Consider line 5-9 and 15-21 from jukebox.sut.JukeBox.Java. The jukebox
has a list of songs, songs can be added and you could get a list of songs for
a given artist.

 We will create a test that tests the feature of getting a list of songs for a
given artist.

 Add the following on the
http://localhost:9090/JukeboxSuite.PaymentTest-page by editing it and
add it below the Disicion-table tests:
!2 Tests with a Query table

first artist misses Zeppelin, second duration is 2:25,

third is not in jukebox, there is an extra

|Query:songs from artist |Led Zeppelin |

|title |artist |duration |

|Stairway to Heaven |Led |8:36 |

|Immigrant Song |Led Zeppelin |2:00 |

|I Dont Exist |Hiding Band |0:00 |

 This test will try to find the fixture called SongsFromArtist and finds a
function that returns a list of rows. Each row returned by the query
method is a list of fields. Each field is a two-element list composed of the
field name and its value as a String.

 Each row in the table is checked to see if there is a match in the query
response. The results of the comparison are colored accordingly, and are
checked for extra or missing records. The order of the rows is irrelevant
in this query table.

Create the fixture

 Create in jukebox.fixtures Java class named SongsFromArtist.Java which
contains the following::
package jukebox.fixtures;

import static util.ListUtility.list;

http://localhost:9090/JukeboxSuite.PaymentTest

101

import Java.util.*;

import jukebox.sut.*;

public class SongsFromArtist {

 String artist;

 public SongsFromArtist(String artist) {

 this.artist = artist;

 }

 public List<Object> query() {

 List result = new ArrayList();

 for (Song song : JukeBox.findSongsFromArtist(artist)) {

 result.add(

 list(

 list("title", song.getTitle()),

 list("artist", song.getArtist()),

 list("duration",song.getDurationInUserFriendlyFormat())

)

);

 }

 return result;

 }

}

 Note that the list function simply builds an ArrayList from its arguments.
It’s in the ListUtility class, which is included in the FitNesse.jar.

 Compile the fixture or build the project in the IDE

Configuring the FitNesse Test Page

 The test page is already configured with our first test (see the Configure-
step in: 3. Test with a Desicion Table

Run the test!

 Go to http://localhost:9090/JukeboxSuite.PaymentTest
 Click on Test in the menu at the right.
 The result should look like below (click to enlarge)

http://localhost:9090/JukeboxSuite.PaymentTest

102

5. Test with a Script Table

 Script tables are one of the most flexible table styles and can be used for
scenario or story based testing. When using a Script table, each statement
in the FitNesse test will refer to a method of the fixture used or to an
earlier defined scenario. Each statement can be prefixed by one of the
Script Table keywords (see below).

Create the test

 We don't have a SUT for this test, we just show how the test page calls the
fixture, the fixture then could call the SUT as in the previous two
examples.

 We will create a test that tests the feature of depositing and withdrawing
money from an account. Add the following on the
http://localhost:9090/JukeboxSuite.PaymentTest-page by editing it and
add it below the Query-table tests:
!2 Tests with script table

|script |current account |

|check |cash balance should be |0.0 |

|deposit |0.25 |

|check |cash balance should be |0.25 |

|deposit |0.75 |

|check |cash balance should be |1.0 |

|$balance= |total deposits |

|ensure |withdraw |1.0 |

|note |account should not allow negative balance|

 This test will try to find the fixture called CurrentAccount.
o The first row finds a function called cashBalanceShouldBe() and

compares the value with the given value.
o The second row finds a function called deposit(xxx) and calls it

with the given value
o The $balance row finds a function called totalDeposits() and sets

this value in the parameter $balance.
o The ensure row finds a function called withdraw(xxx) and calls it

with the given value. the withdraw(xxx) function gives a boolean
back and the ensure expects a true-value in order to pass.

o The note row does nothing, it is there as an comment

Create the fixture

 Create in jukebox.fixtures Java class named CurrentAccount.Java which
contains the following:
package jukebox.fixtures;

public class CurrentAccount {

 public double cashBalance;

 public double totalDeposits;

 public CurrentAccount(){

 cashBalance = 0.0;

 totalDeposits = 0.0;

 }

 public double cashBalanceShouldBe() {

 return cashBalance;

 }

 public double totalDeposits() {

 return totalDeposits;

 }

http://localhost:9090/JukeboxSuite.PaymentTest

103

 public void deposit(double amount) {

 cashBalance= cashBalance+amount;

 totalDeposits = totalDeposits+amount;

 }

 //only withdraw when enough balance

 public boolean withdraw(double amount) {

 if(amount <= cashBalance){

 cashBalance = cashBalance-amount;

 return true;

 }else{

 return false;

 }

 }

}

 Here the fixture does all the work, instead of calling an SUT. But you could
imagine that the deposit and withdraw functions just call a SUT.

 Compile the fixture or build the project in the IDE

Configuring the FitNesse Test Page

 The test page is already configured with our first test (see the Configure-
step in: 3. Test with a Desicion Table)

Run the test!

 Go to http://localhost:9090/JukeboxSuite.PaymentTest
 Click on Test in the menu at the right.
 The result should look like below (click to enlarge):

http://localhost:9090/JukeboxSuite.PaymentTest

104

More info
 More info on script tables:

http://FitNesse.org/FitNesse.UserGuide.SliM.ScriptTable

Combining script tables with Scenario tables

 You can also create scenario tables (see
http://FitNesse.org/FitNesse.UserGuide.SliM.ScenarioTable)

 Example: you have a scenario for checking if a name is converted well,
which shows the original and the normalized name and checks if the
result of the normalized name matches the expectations:
!|scenario | scenario normalize name | originalName | with

result | normalizedName |

|show | give original back | @originalName|

|show | normalize name | @originalName |

|ensure | normalize original name | @originalName | matches |

@normalizedName |

 In a script table, the scenarios can be called. This makes the script more
consise:
!|script| FixtureClassName

|scenario normalize name| Olàf | with result | Olaf |

|scenario normalize name| Smid-Härt | with result | Smid-Hart |

|scenario normalize name| àáâãäåçý | with result | aaaaaacy |

 The result is a concise script-table which can be clicked open for more
information (automatically clicks open when there is a fault).

6. Advanced Important FitNesse Info
How to use symbols in SLIM

 FitNesse also supports the use of symbols in their tables (see
http://FitNesse.org/FitNesse.UserGuide.SliM.SymbolsInTables).

 Apart from the decision table-example given in the link, symbols can also
be used in other tables.

 An example of a usage of an symbol in a script table is shown below:
!| script | FixtureClassName |

| $symbolname= | functionReslultString |

| show | $symbolname |

| check | $symbolname | "test" |

| ensure | functionResultBoolInputString | $symbolname |

 This is a script table, which, in the first line calls a function that returns a
string and puts it's result in a symbol called symbol name

 The second line, displays the value of symbol name when the test is run

http://fitnesse.org/FitNesse.UserGuide.SliM.ScriptTable
http://fitnesse.org/FitNesse.UserGuide.SliM.ScenarioTable
http://fitnesse.org/FitNesse.UserGuide.SliM.SymbolsInTables

105

 The third line, checks whether the value of the symbol name matches the
value "test"

 The last line passes the value of the symbol name to the function specified
and calls that function, the result of the function is checked (ensure means
that the result needs to be true in order to pass the test).

Other tables in FitNesse, test organization and formatting

 See the original tutorial (see http://refcardz.dzone.com/refcardz/getting-
started-FitNesse) for more information on:

o Testing with a Library Table
o How to create a Comment Table
o How to organize tests
o Formatting

Using SLIM + More information on several tables and usages

 Although it is mentioned in the tutorial, I would like to mention it again
for clarity:

o We will use FitNesse with SliM-fixtures as an alternative to the
FIT-fixtures. See the SliM User Guide
(http://www.FitNesse.org/FitNesse.UserGuide.SliM) for more
information.

o The SliM User Guide contains all the possible script tables which
can be used under SLiM

Use FitNesse with Test-Driven Development

 Since we will also use test-driven
development, we will write tests (and the
specifications) before we will code or
configure.

 The TDD routine in combination with
FitNesse is visualized on the right:
describe functionality (business experts
BE), demonstrate with examples (BE) -
develop functionality (developer) - hook
fixture (DEV) - test pass (DEV) – repeat

 Once the first test passes, we write
another test, write more code, make the
new test run, clean up again and retest.
After we have repeated this cycle for all
the tests for a specific feature, our work
on the feature is done and we can move
on to the next feature.

Group tests in test suites

 We will use one main-suite called AllTestSuite. In this suite, multiple
other suites are added, based on functionality. So there is a separate suite
for testing Aggregations, one for testing Certifications, one for Workflows
etc. In these suites, multiple tests are added for different applications
and/or different tests.

http://refcardz.dzone.com/refcardz/getting-started-fitnesse
http://refcardz.dzone.com/refcardz/getting-started-fitnesse
http://www.fitnesse.org/FitNesse.UserGuide.SliM

106

Use Setup pages

 SetUp is a special page, and is included automatically at the beginning of
all test pages in the test suite. Define the paths to the suit-specific fixtures
here. Do not mark this page as a test.

 To execute the parent SetUp page in the setup, include it in the sub wiki
SetUp with an !include directive, followed by the page name.

 In addition, there is a special root page that defines global definitions for
the entire system. Put common HTML content like documentation links
into PageHeader and PageFooter, as they are pasted directly into the page
code.

 Furthermore, there is an SuiteSetUp page and a SuiteTearDown page
which are run before and after the test suite is run. We will use these
suites to setup the environment (initialize the sailpoint environment) and
tear it down (close connection of SailPoint environment) at the end.

FitNesse in Version Control System, Environments and Automated Builds

 We will use FitNesse in a team by storing tests in our version control
system: GIT.

 Tests are plain text files, so modern version control systems can merge
most concurrent changes correctly.

 Exclude ErrorLogs and RecentChanges directories (in the wiki) from
version control!

 The version control of FitNesse stands in the way, with hundreds of ZIP
files.

o Turn off the FitNesse internal archiving by adding -e 0 to the
command used for starting FitNesse (as mentioned in the tutorial
as well)

 Developers start FitNesse from the local copy of the repository, and can
run test their currently working on locally on their machines and add it to
GIT when they are done

 The test-environment will act as the continuous integration server which
verifies the builds and runs the tests.

o A Jenkins server is set up for the continuous build and continuous
running of tests

o Since the integration tests run slowly and ask a lot of resources, we
execute them every day on a time that other processes sleep (for
instance: at 5 in the morning) instead of after every commit.

o If the tests fail, developers should be notified. Pre-defined tests are
supposed to fail, so these should not notify developers

 maybe put them in a separate suite?
o When integrating with continuous build tools, make sure to delete

old test results so that they do not get mixed with new ones.
 On this sever, FitNesse is run continuously so that non-technical staff can

add their tests to the wiki as well, without all technical work
 One developer is appointed as owner for this process and checks in the

above mentioned additions daily in GIT, so that it is merged with the
mainline. (however this is automated later on, see next tutorial).

107

 It is sometimes a good idea to restart FitNesse after tests are updated via
Git

How Do we specify tests and use test data?

 We assume dynamic test data: data can and will change, so no
assumptions should be made on this

 If possible: undo all changes at the end of your test, so the begin-state and
end-state of your test will be the same

 If you add data (for instance: a new user), make sure this happens with a
randomized name, so it will not clash with possible other data.

If you like to use custom objects in fixtures

 FitNesse normally uses some standard objects in their tables, but you can
use any business domain object as long as it can be uniquely represented
by a string. See p111 of the book called "Test Driven .Net Development
with FitNesse", which can be downloaded at: http://gojko.net/FitNesse/

7. Using FitNesse with SailPoint

 FitNesse fixtures perform calls to the system under test, where it would
need to perform some actions in SailPoint. Currently many test-activities
are performed via the web-based GUI. For test automation, we would like
to avoid GUI-testing and call to the system directly. Next to the GUI,
SailPoint offers an REST API, a console and I created an extract of a
deeper functional layer of IIQ, which we will use.

Possible SailPoint Approaches

 GUI
o GUI tests can be performed. If GUI-testing is ever considered, make

sure you use GUI-tests where you can specify commands textual,
so you could maintain the code better. A recording option is also
preferred, since that lowers the time it costs and the difficulty to
create a test. The problem with GUI tests is that GUI's changes
more often than the functional level, these changes will break the
tests and therefore the tests will lose its reusability and regression
testing functionality when it happens, making it less suitable for
testing then testing on a functional level

 REST API
o The REST API (see https://community.sailpoint.com/docs/DOC-

1642) is the publicly available API where you can mainly: list
identities, create or update them, check an identity's rights and
launch workflows (for 6.1:
https://community.sailpoint.com/docs/DOC-1668 page 147-202).
The API gives results in a JSON-format. The REST API is very
limited in the sort of calls it can do to SailPoint, making it not
suitable enough for testing

 Console
o The console makes a live connection to the database of SailPoint

IdentityIQ. It is mainly used for debugging and troubleshooting:

http://gojko.net/fitnesse/
https://community.sailpoint.com/docs/DOC-1642
https://community.sailpoint.com/docs/DOC-1642
https://community.sailpoint.com/docs/DOC-1668

108

testing rules,properties, aggregations, workflows, tasks and
performing queries to the database. The console directly talks to
the IdentityIQ database, bypassing the GUI. (See the console
whitepaper on compass:
https://community.sailpoint.com/docs/DOC-1631). Although the
console can do a lot more then the api, the console needs to be
started from the command line and starting it is very slow.
Furthermore the console also does not support everything we
would like to do with SailPoint, so this approach is also not
suitable enough for testing.

 Our Own SailPointEnvironment
o Instead of using the console from command line and the public api,

there is another way to test on a functional level; we will create
our own connection to the SailPoint database. At the start of the
test, the SailPoint environment is initialized, which is closed and at
the end of the test. During the test, we have access to the
SailPointContext (and therefore the private api) and the
SailPointConsole (where we can perform calls directly). This
approach offers more functionality then the REST-API and console
alone, it is faster than the console and on a good functional level. Of
course it also has a downside: the lack of documentation of the
private API. (see below for more information)

The Chosen SailPoint Approach

 Our Own SailPointEnvironment
o Using our own SailPointEnvironment is by far the best option, so

we will use this option for our tests.
o As you read above, we will use our own connection to the SailPoint

database. I have created a Java class (named
SailPointEnvironment) which creates a SpringStarter and a
console when it is initialized furthermore you can get and release
the SailPoint context from that class.

o Another class is created, called SailPointConsoleCommands, and
has methods for performing commands on the console via the
private API and an OutputStream for the feedback. The first
version of this class contains a few console commands, which must
be extended with more methods that call the console-methods
more directly when you need a console-method that isn't already
available.

o With those two base classes, you can create test classes that use
the SailPointContext and console commando's. These tests needs
to be build with inheritance; for common parts, define a common
(abstract) class with functions (either abstract or predefined with
a standard body). The example discussed below (see next heading)
gives an example on how this inheritance should be done.

o The created classes for this approach are the following:
 testing.UsefulFunctionsLibrary

 It contains usefull generic static methods (not
specific to sailpoint).

https://community.sailpoint.com/docs/DOC-1631

109

 generic static help-methods like:
getNumberOfLinesInFile and
giveRandomNumberFromRange

 testing.sailpoint.ConsoleCommands
 It contains defined static methods for needed

console commands
 static console-command-methods like:

runAggregate, runDateAndReturnDate and
runConnectorDebug (should be extended with more
console-commands when needed)

 testing.sailpoint.SailpointEnvironment
 It contains methods for the creation and termination

of the SailPoint environment.
 methods like: constructor, initialize,

closeEnvironment, getConsole, giveContext and
releaseContext.

 Note that when you get the context (via
giveContext), you should always release the context
afterwards, otherwise it will cause errors!

 Note: in SuiteSetUp of the AllTestSuite, the
SailpointEnvironment.initialize-method needs to be
called to set the environment before all tests are run

 Note: in SuiteTearDown of the AllTestSuite, the
SailpointEnvironment.closeEnvironment needs to be
called to close the environment at the end of all tests

 testing.sailpoint.fixtures.Test
 It contains the basis of each test-fixture, right now it

is empty.
 Right now it is empty, it might have some use for the

future.
 Note that all test-fixtures should extend this class (or

a child-class of this class)!

Example and more detail and downloads

 I have created an example using this files for two Aggregations.
 Please look into this example, it explains it the above in more detail and

also offers a download for these Java-files.
<<Example Omitted from this attachment: too project-specific>>

110

Appendix F: Automatic pull/add/commit/push Tutorial
This appendix shows the automatic pull/add/commit/push tutorial that can be
followed in order to use the strategy. Text in black are steps to be taken and
steps in gray give extra information.

Tutorial – Configure automatic pull, add, commit and push for
running FitNesse wiki

 Since we run the FitNesse wiki separately on the test server, such that
business users can create test cases without checking out git and running
FitNesse for themselves, we need to make sure that the changes that
business users make to the wiki are added to Git.

 Furthermore, GIT needs to pull occasionally in order to stay up-to-date.

Options

 There are several options:
o use GitHub service hooks (source 1:

http://net.tutsplus.com/tutorials/other/the-perfect-workflow-
with-git-github-and-ssh/ , source 2:
http://www.bram.us/2012/05/06/automatic-website-publishing-
with-git-github-style/)

o use Directory Monitor (source 1:
http://www.deventerprise.net/DirectoryMonitor, source 2:
http://stackoverflow.com/questions/420143/making-git-auto-
commit)

o use Windows-task with script (source:
http://www.thehelper.net/attachments/git-tutorial-auto-commit-
pdf.18221/) (or use unix cronjob with the same script if you have a
unix environment)

o use Jenkins (source: https://groups.google.com/d/msg/git-
users/9wVCXrZabCE/r3ip0XyM_ZIJ)

Chosen Option: use Windows-task with script

 -- Install Git Bash
o We use Git Bash, so download Git Bash from

https://code.google.com/p/msysgit/downloads/list?q=full+install
er+official+git

 -- Fix environment

o add git environment variable (e.g., C:\Program Files
(x86)\Git\bin) to the path environment variable of windows.

 With this, we can run git-commands from cmd, which the
windows-task does.

o If ssh is not enabled (which was the case at my case study):
 clone the git repository with the command (change it to

your own https-directory and add username and password

http://net.tutsplus.com/tutorials/other/the-perfect-workflow-with-git-github-and-ssh/
http://net.tutsplus.com/tutorials/other/the-perfect-workflow-with-git-github-and-ssh/
http://www.bram.us/2012/05/06/automatic-website-publishing-with-git-github-style/
http://www.bram.us/2012/05/06/automatic-website-publishing-with-git-github-style/
http://www.deventerprise.net/DirectoryMonitor
http://stackoverflow.com/questions/420143/making-git-auto-commit
http://stackoverflow.com/questions/420143/making-git-auto-commit
http://www.thehelper.net/attachments/git-tutorial-auto-commit-pdf.18221/
http://www.thehelper.net/attachments/git-tutorial-auto-commit-pdf.18221/
https://groups.google.com/d/msg/git-users/9wVCXrZabCE/r3ip0XyM_ZIJ
https://groups.google.com/d/msg/git-users/9wVCXrZabCE/r3ip0XyM_ZIJ
https://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git
https://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git

111

at user /password for the FitNesse/Jenkins specific user of
your repository(which has write-access)):

 Cone git with password (take the https-link from bitbucket
and add username pass)

 git clone https://user:password@github.com
o if ssh is enabled (which is more neat):

 If ssh is enabled (instead of https), you can create a ssh-key
instead of giving the password at the git clone (source:
https://confluence.atlassian.com/display/BITBUCKET/Set
+up+SSH+for+Git):

 Fix ssh-key:
 start Git Bash
 type ssh-keygen -t rsa -C me@email.com (Note: use

the same email as the FitNesse/Jenkins account is
used)

 enter enter enter (Note: no passphrase)
 add the content of: .ssh/id_rsa.pub to the bitbucket-

account for the FitNesse/Jenkins-account under his
ssh keys.

 move .ssh folder and its content to:
o C:\Program Files (x86)\Git\.ssh

 Clone git with ssh key (take the ssh-link from
bitbucket)

o git clone
git@github.com:username/repositoryname.g
it

 -- Create Autocommit-script

o create a script called: autocommit.bat which contains:
o Make sure you change the path of the first cd-statement to the path

of your repository you just cloned, including to the FitNesseRoot-
directory, so only changes in that directory are added/pushed.
:: go to right folder

cd/ IdentityIQ/FitNesseRoot

:: first pull

git pull

:: add everything from this folder

git add -A .

:: commit it

git commit -m "automatic commit from FitNesse"

:: push to master

git push origin master

 -- Create Windows Task

o open control panel - task scheduler
o click on create task
o general tab:

 give it a descriptive name and description (for instance:
automatic push FitNesse wiki)

o trigger tab:

https://confluence.atlassian.com/display/BITBUCKET/Set+up+SSH+for+Git
https://confluence.atlassian.com/display/BITBUCKET/Set+up+SSH+for+Git

112

 click new, click on startup, run every hour indefinitally,
click on stop task if it runs longer than X and choose 30
minutes.

o actions tab:
 browse to the bat-file you just created.

 -- Done!

o Then you're done! If you start FitNesse from that cloned
repository, all changes will be pulled, added, committed and
pushed.

113

Appendix G: Jenkins Tutorial
This appendix shows the Jenkins tutorial that can be followed in order to use the
strategy. Text in black are steps to be taken and steps in gray give extra
information.

Tutorial - Jenkins: Installing, Use etc
 Jenkins is used as our Continuous Integration Server. We use Jenkins to

pull changes from the GIT repository, building the application and
FitNesse-tests and then running the unit tests and the FitNesse tests every
day (the schedule is configurable).

 The configurations below includes some specific IdentityIQ-parts (for
building and deploying IdentityIQ), these parts can be replaced with
building and deploying other applications; the way of installing Jenkins
and specifying how Jenkins should execute and report FitNesse tests stays
the same.

Install Jenkins

 Download the Jenkins war-file from: http://Jenkins-ci.org/ (see the menu
on the right)

 We use Tomcat to run our apps, so we deploy in this manner:
o Move the de war-file to $TOMCAT_HOME/webapps
o Go to tomcat, and then click on Tomcat Manager
o In this window, Deploy de jenkins.war

 Go to: http://localhost:8080/Jenkins/, this will start Jenkins.

Install Jenkins Plugins

 Go to Jenkins - Manage Jenkins - Manage plugins - Available
 Install these plugins: Git Plugin; Hudson FitNesse plugin;

Configure Jenkins

 Go to Jenkins and click on Manage Jenkins - Configure System
 check if the path to git.exe exists, if not: fill in the path to git.exe
 at Ant, click Add Ant, give the name apache-ant-<version>

Bug-fixing configurations

 When configuring FitNesse-tests, we experienced this bug
(https://issues.Jenkins-ci.org/browse/JENKINS-16204), where the
default JDK selection does not work and let the run fail. We used the
suggested solution (configuring 2 JDK's and choose one) which worked.

 So install an extra JDK on the machine.
 Go to Manage Jenkins - Configure System

o at JDK, click add JDK and give it the name JDK<version> and
specify the JAVA_HOME of these version (i.e.,
E:\ProgramFiles\Java\JDK1.7.0_25)

o Do the same for an older version of Java

http://jenkins-ci.org/
http://localhost:8080/jenkins/
https://issues.jenkins-ci.org/browse/JENKINS-16204

114

Create the Jenkins Job that pulls from git, builds the software, execute tests
and reports the results.

 Click on New Job
 name the job "build-war" and choose build a free-style software project
 Project

o Check Discard Old Builds and choose the #days to keep builds and
max builds to keep (for instance 5)

o Choose the newest JDK version
 Source Code Management

o Check Git and set up Git via the repository url
 Build Triggers

o Check Build periodically and fill in the Schedule-textbox the time of
the day to start the job, for instance, to start it at 7 in the morning:
0 7 * * * (or use the GIT as trigger)

 Build Steps
o Click on Add build step - invoke ant and click on advanced

 Choose the ant version
 set its target (i.e., clean war prepare.extract.for.console)

(for FitNesse tests, the prepare.extract.for.console sets the
iiq.properties so that FitNesse can access the database, like
it is needed for the console)

 set the link to the build file (i.e., IdentityIQ/build.xml)
 set the properties for the build file (i.e., environment=test)

o Click on Add build step - execute FitNesse tests
 Choose Start New FitNesse Instance as part of build
 Set Java working directory on IdentityIQ and set the path of

FitNesse.jar and FitNesseRoot, set the port on a unused port
(i.e., 9000), set the target page on the main suite (i.e.,
AllTestSuite) and check it is a suite. Set the HTTP Timeout
to 300000 and set the FitNesse results path to
IdentityIQ/build/FitNesse-results.xml

 Post-Build Actions
o Click on Add post-build action - Archive the artifacts

 set Files to archive: IdentityIQ/build/deploy/*
o if you have unit tests: Click on Add post-build action - Publish JUnit

 test result report test report XMLs: IdentityIQ/build/*.xml
o Click on Add post-build action - Publish FitNesse results report

and set the path to FitNesse results file (same as the one above)
 This should be it to automate the execution of the build and tests steps!

Add security

 Without configuring some security, every user that has access to the link
has admin-rights to Jenkins, which needs to be managed

 Click Manage Jenkins - Configure Global Security
o Check enable security
o Check Access Control - Jenkins's own user database
o Save (first we need to add users to the user database before

restricting more)
 Click Manage Users

115

o Create User and add your own credentials
 Try to log in with your just created account

o If it works, you can enhance security:
 Click manage Jenkins - Configure Global Security

 Uncheck Allow users to sign up
 Check Logged-in users can do anything
 Save

o Add other user accounts for your team members.
 They can change their password after logging in, clicking on

their name on the right and then clicking on configure

