UNIVERSITY OF TWENTE.

Making people matches using Supervised
Machine Learning algorithms

Master of Science Thesis

Nils van Kleef

Supervisors Universiteit Twente:
e dr.ir. RW. Poppe
e prof.dr. D.K.J. Heylen
e dr. M. Poel

Supervisors Paiq BV:
e ir. F.C. van Viegen

28 April 2014

Voorwoord

Online dating wordt steeds meer geaccepteerd door de samenleving. Mensen kiezen er steeds
vaker voor om via een dating site mogelijk een partner te vinden dan door de kroeg in te gaan en
daar vrouwen aan te spreken. De voordelen zijn een veel grotere verscheidenheid aan mogelijke
partners en de laagdrempeligerheid van contact leggen. Natuurlijk zijn er ook nadelen zoals het
veel meer afstandelijker contact en de mogelijkheid makkelijk en snel iemand weg te klikken,
waardoor mensen ook steeds minder snel tevreden zijn en maar door blijven gaan met zoeken.
De algemene trend is nog steeds dat dating sites steeds vaker worden gebruikt.

Mijn afstudeeronderzoek gaat over recommender systems. Het systeem kan idealerwijs foto’s
aanbevelen aan gebruikers aan de hand van hun stemgedrag op andere foto’s, waarbij gebruik
wordt gemaakt van wat andere gebruikers van die foto’s vinden. Dit zijn dan hopelijk foto’s die
deze gebruiker ook leuk zal vinden. Met mijn onderzoek hoop ik een radertje aan het
matchingsalgoritme van Paiq toe te voegen en deze weer te verbeteren. Als hierdoor al een paar
mensen succesvol met elkaar in contact zijn gebracht ben ik al tevreden met de praktische
toepasbaarheid van mijn onderzoek..

Mijn Master Thesis had niet mogelijk geweest zonder een aantal mensen. Bij deze bedank ik
Ronald Poppe voor zijn begeleiding, en ook voor zijn geduld en altijd erg nuttige feedback. Ik wil
Frank van Viegen en de andere mensen van Paiq bedanken voor de ondersteuning en de goede
tijd die ik bij hen heb gehad.

Op het bij elkaar brengen van mensen in de liefde!

Nils van Kleef
Enschede, 25 april 2014

Contents

Voorwoord
Contents
1 Introduction

1.1 Background

1.1.1 Paig.nl
1.1.2 The quest for photo suggestions

1.2 Problem Statement
1.3 Thesis structure
2 Literature
2.1 Datasets
2.1.1 Scientific datasets
2.1.1.1 The Netflix dataset
2.1.2 Dataset problems
2.2 Metrics
2.3 Classifying recommendation methods
2.3.1 Active and passive systems
2.3.2 Explicit and implicit measurements
2.3.3 Memory-based and model-based algorithms
2.3.4 Collaborative, content-based and hybrid filtering systems
2.4 Specific recommendation approaches
2.4.1 Selection criteria
2.4.2 Nearest neighbor-based approach (kNN)
2.4.2.1 Calculating predictions
2.4.2.2 Advantages and disadvantages
2.4.2.3 Variations
2.4.3 Singular value decomposition based approach (SVD)
2.4.3.1 Calculating predictions
2.4.3.2 Advantages and disadvantages
2.4.3.3 Variations
2.4 .4 Restricted Boltzmann machine based approach (RBM)
2.4.4.1 Calculating predictions
2.4.4.2 Advantages and disadvantages
2.4.4.3 Variations
2.4.5 Blending methods
2.4.5.1 Calculating predictions
2.4.5.2 Advantages and disadvantages
3 Experimental setup
3.1 Research Questions
3.2 Dataset
3.2.1 The Paiq dataset
3.2.2 Noise removal
3.2.3 The final Paiq dataset
3.2.4 Training, validation and test sets
3.3 Metrics
3.3.1 Mean absolute error
3.3.2 Baseline methods
3.4 Implementation

https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.z1iztwatjo3
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.kn7imq1mjtec
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.y1vnhwfwzb9c
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.a63bpqctcbz
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.z6xtv4tki0so
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.lnadxt6kwy7e
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.o75fscuv5t05
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.7di0z0tussob
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.805q9n83znrn
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.vttebfk3l6ew
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.geyxxds6ps56
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.6tjr56wjukjk
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.yr5adhcukd2n
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.6b4kb6b3onyx
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.rx8jfuhbqao5
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.7puis7vvj5bz
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.pbrd5lh7bev7
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.g1csens2nbiv
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.31xujbxy7135
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.cqj3cbmim9f8
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.79evnzmu4sqa
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.ktew3cq2h20y
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.xku43ea4ieo3
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.ljytc6m7l39p
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.nn5e30ftpcub
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.v05q5y3tovrp
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.65v6ocyl7m3r
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.620r4lg2qusy
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.wu72y5jyxii0
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.2n99272gc0b4
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.wnp6ypwq2dnx
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.iesmz1hzozdf
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.u3szusx33fl2
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.o7gulcr2eeie
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.oyxjg8kzzxyh
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.vgpjk4v3en2p
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.cony6uplm28a
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.exleg1yqjui4
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.lvjy1xpqxdtd
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.3ivljfb9hy64
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.kau087oxga99
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.hgp3envui58u
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.kxqbh5ladkq4
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.fd3eu9784p41
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.lb5zan3fczci
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.uj2tjscd4l9k
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.veu6mzz8y39n

3.4.1 Nearest neighbor (kNN)
3.4.2 Singular value decomposition (SVD)
3.4.3 Restricted Boltzmann machines (RBM)
4 Parameter estimation
4.1 Nearest neighbor
4.1.1 Parameters
4.1.2 Validation of parameters
4.1.3 Selected parameters
4.2 Singular value decomposition
4.2.1 Parameters
4.2.2 Validation of parameters
4.2.3 Selected parameters
4.3 Restricted Boltzmann machines
4.3.1 Parameters
4.3.2 Validation of parameters
4.3.3 Selected parameters
5 Results and discussion
5.1 Results
5.1.1 All average ratings distribution
5.1.1.1 Ratings distribution
5.1.1.3 Rating range errors
5.1.2 Average photo ratings distribution
5.1.2.1 Ratings distribution
5.1.2.2 Scatter plot

*

Chart 5.1.2.2.a: PA scatter plot of predicted ratings vs real ratings
5.1.2.3 Rating range errors
5.1.3 Nearest neighbor
5.1.3.1 Ratings distribution
5.1.3.2 Scatter plot
5.1.3.3 Rating range errors
5.1.4 Singular value decomposition
5.1.4.1 Ratings distribution
5.1.4.2 Scatter plot
5.1.4.3 Rating range errors
5.1.5 Restricted Boltzmann machines
5.1.5.1 Ratings distribution
5.1.5.2 Scatter plot
5.1.5.3 Rating range errors
5.2 Discussion
5.2.1 Overall performance
5.2.2 Ranges of ratings distribution
5.2.3 Computational cost
5.2.4 Memory cost
6 Conclusion
6.1 Answering the research questions
6.2 Future work
6.3 Recommendations to Paiq
References

https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.xjrz6ey91zzn
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.bkznf2wadnbw
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.o8s9w2wq28dt
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.kxkt23s3aif9
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.qm6233tafq3t
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.ehn7nzmp2r8f
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.rklj2jyeejfo
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.babbx5ucragr
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.jnpflydwdu13
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.5qd1vdm3r4ua
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.9zd2l162n401
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.t9shf7jgqb0d
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.1w529noil3i
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.1k5562w5zszh
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.ifj5ix4lld25
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.b9q23kf39ub
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.gh8a2dkbs6yu
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.kbmmccvy3g6b
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.8v3dws833kg5
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.yneh08gvjkvm
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.indp0a3iyg3g
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.tepieuamjmjk
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.xoaktce9dc17
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.ad0meul7oiz8
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.8yt9ds7t6v44
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.28wln21rt4un
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.71fw4p5a1kie
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.umivzswbo8k9
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.9gc242ivs5ph
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.9jszttdutwdf
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.r0ihlp7vo4dr
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.r5clojwy9bvd
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.vownk0d9js2k
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.4c7sk5sk1tpb
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.n1wyqqx88exx
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.tfe96v5gpo4a
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.fcu8zi6ycx8v
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.2nk7fyksqjgr
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.kqgzxzlspn6h
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.gsbty4dxgeou
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.rfwnp5tppaz6
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.1uy9x1rz0d0u
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.m8414n1ly74m
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.auzbjfixnms4
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.w2syfh6byhcd
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.l4buignh7yau
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.d40b71f84b2f
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.it5kjxh6mq4d
https://docs.google.com/document/d/sRshOsRTV92sBJNTtDpEV3g/headless/print#heading=h.py6di4kwxjya

1 Introduction

This chapter illustrates the background to the research in this thesis, the problem statement and
the structure of this thesis.

1.1 Background

1.1.1 Paiq.nl

The website Paiq.nl is a dating site that first came online on 2 June 2005, created by two former
computer science graduate students of the University of Twente: Frank van Viegen and Jelmer
Feenstra. Its office is located in the city center of Enschede, and there are still some ties with the
university, for example by hiring students as part-time employees.

Imagine the following scenario: on a dating site with profiles, it is often up to the men to initiate
contact with women. Because profiles usually have photos of the person and because in general
men are very much visually oriented, 80% of the men contact the top 20% of best looking
women. These women get lots of messages, and respond to those coming from the top 20% of
best looking men, getting conversations going, and perhaps dating in the real world too. The rest
of the women get few messages and the large group of men gets few responses, if any at all,
leaving most people disillusioned with online dating and leaving it altogether within several
months.

While the numbers in the above scenario are made up, a scenario like the one described often
happens with dating sites using profiles. Paiq tries to circumvent this problem by presenting a
new way of dating online, and thereby became part of a new generation of online dating sites.
Doing away with profiles, users just fill out a couple of questionnaires so that the system gets an
idea of what kind of person the user is and what his or her preferences are. The system then
matches users with similar personalities and preferences with an artificial intelligence. It is a
self-learning system that by using feedback has learned to use combinations that in practice
seem to work well. This is keeping in mind that even though one of the dating paradigms is
‘opposites attract’, there has to be enough similarity between people for dating to work.

1.1.2 The quest for photo suggestions

Prospective partners’ physical appearance (beauty) is the single strongest predictor of attraction
for people [18]. Paiq uses some simple numeric information about a person’s appearance to
improve its matching algorithm such as age, weight and height, and matching dating
preferences, as well as the average rated attractiveness of photos, but this leaves out a lot about
a person liking someone else’s appearance.

A user hopes to date someone whose desirability in looks is just a bit above their own

desirability. Someone with desirability far above their own will not want to date them, while it is
less satisfactory for a user to date someone with desirability below their own. This would create
a paradox, except that people have certain preferences for looks of a potential partner. For
example, some people prefer partners with blond hair, while others prefer those with brown hair.
This means that a person, who is judged on average to be okay looking, might be good looking
(have a better desirability) to a group of people. The implication is that people want to date
someone who is better than average looking, illustrated with another example: a person that is
judged to be on average a 7 will want to date another person of preferred gender who is judged
to be on average a 7 as well, while they both judge each other to be an worth an 8.

Paiqg has a photo rating app built into their website. Users can rate photos of faces of their
preferred sex for dating here. The way it works is that a user is shown a new photo and has to
compare it against a stack of photos the user already rated. The user is asked to insert the photo
into the stack by means of a binary search algorithm, using “is leuker dan” (is cuter than),
“vergelijkbaar” (comparable) and “minder leuk” (less cute) buttons, where the “vergelijkbaar”
button is treated as having found a match in the binary search algorithm. The photo is then
inserted into this stack at that position, with lesser liked photos below it and better liked photos
above it. Next, another new photo is presented to the user, resulting in a final stack of fifty
photos. Of course it starts off with two new photos, one of which is considered to already be in
the stack.

The photo rating app creates a wealth of data not only about users’ looks in photos in general
(average photo ratings), but also for a specific person (that person’s preferences for looks). An
algorithm is needed that can exploit these ratings to create predictions for what photos a user
might like, and use that to offer the user photo suggestions.

1.2 Problem Statement

Recommendation systems make the following assumption: user behavior in the past can be
used to predict user behavior in the future. Some of the better known uses of recommender
systems are on the websites Amazon.com and Netflix.com. These websites take into account
previous information collected about the users on a (small) subset of information or products
such as buys, views, and ratings, and use these to recommend possibly interesting items to
them [2]. The assumption is that there is a correlation between items that the recommender
systems can use, implying that for example a person that buys a fork has a big chance of also
wanting to buy a related product such as a knife or a plate.

Recommender systems such as the aforementioned ones have been further improved based on
another assumption, namely that not only items can be related, but also that people can be
related. They have the following train of thought: if two photos are related, and one of them has
been rated highly by a person, this means that we can likely recommend the other photo to this
person too. However, it can be that two photos do not seem to be related, but when taking a
group of people and looking at their preferences they suddenly appear to be. If we can find out

how people are related to other people concerning their photo preferences, and what photos hold
their preference, we can make even better recommendations. This is based on the assumption
that these relations between people exist: not only are photos correlated, but also users, and that
this information is hidden in the ratings data: ratings from the same photo but from different
users are correlated. People rate differently when compared to some groups of people, but
similar to yet other groups of people. This is further explored in the literature chapter in the
discussion of recommender systems.

Another assumption made specifically for this research is that we only have rating information to
base our predictions on. Most other datasets also have other data to use, such as date of rating,
buys and views, as explained in the paragraph above about Amazon.com and Netflix.com. The
Paiq dataset, containing only ratings, is a lot sparser and has a far larger number of users and
items than some of the datasets used in other scientific literature. Not only that, but the set of
available values is pretty random as well, as opposed to for example the Netflix dataset of user’s
movie ratings, which has a set of well known movies that many of their users will have rated.
Thus, some of the most important challenges that this research faces in creating
recommendations based on the Paiq dataset encounters are sparsity, scalability and
noise-related problems. These challenges make up the novelty of this research and will be
thoroughly explored in the following chapters.

Something else to consider when predicting ratings, is that one approach can lead to a lower
MAE because it predicts ratings more conservatively than another approach. If the conservative
predictions are the reason, another approach might be more desirable. Especially in
recommender systems, one would like to have a small amount of none-conservative ratings of
high confidence, rather than a high amount of many conservative ones. This also goes for Paiq:
when looking to create recommendation for a user, Paiq would rather have a couple of photos
with high predicted rating as well as high confidence than higher accuracy overall but a smaller
amount of obvious matches. In other words: Paiq wants to predict 9s and 10, and not 5s to 7s.

1.3 Thesis structure

First, the research intends to find out what types of recommendation algorithms are suitable.
Then it needs to find suitable machine learning approaches that belong to these types. It looks to
find a baseline method we can use as a metric against which the other algorithms can be tested.
Next, the experiment is done where first the selected algorithms are finetuned and then tested to
find out which one is most accurate. They are also matched up against the baseline algorithm to
see whether the extra computational costs are worth it. Then, the ratings are split into different
subsets depending on their height, and matched against each other and the baseline method.
Finally, the results are examined: does the noise in the dataset prove to be a problem for the
machine learning algorithms?

This thesis has the following structure:

Chapter 2, literature, details the literature research on recommender systems that was
done for this thesis, and covers dataset problems, metrics, classifying recommendation
methods and specific recommendation approaches.

Chapter 3, experimental setup, contains the setup of this experiment, with the research
questions, dataset, metrics and implementation details of the methods used.

Chapter 4, parameter estimation, shows how the parameters of the recommender
algorithms used were selected.

Chapter 5, results and discussion, shows the results of the experiments, and discusses
these results.

Chapter 6, conclusion, answers the research questions, presents possible options for
future work and suggests recommendations to Paiq.

2 Literature

This chapter details the literature research that was done for this thesis, and covers scientific
datasets, dataset problems, metrics, classifying recommendation methods and specific
recommendation approaches

2.1 Datasets

2.1.1 Scientific datasets

There are a lot of datasets that are used in the scientific world to test recommendation
algorithms. These datasets are often based on a customer-product principle. They can be used
to measure the performance of recommendation algorithms against other recommendation
algorithms in the scientific world, providing grounds for testing the algorithms in a scientific way.

Some of the standard ones used are the so called ‘MovieLens’, ‘BookCrossing’ and 'Joker’
datasets. A more recent one is the Netflix dataset. These datasets are discussed below.

2.1.1.1 The Netflix dataset

The most comparable dataset to the Paiq dataset is the Netflix dataset of the Netflix Prize
Challenge started in October 2006 [58]. This competition was set up by Netflix as a competition
worth 1 million dollars, with the goal of coming up with a recommendation system that beat the
RMSE (root mean squared error) of their own basic algorithm by 10% [17,24,26,27,58], which
started in October 2006 and ended in September 2009. The importance of this challenge for the
field recommendation algorithms is also that it made researchers compare their approaches and
algorithms against others that had been published maybe only some months before, instead of
often many years before, speeding up scientific research in this field greatly.

This dataset that has been used a lot in scientific research in the past years. The following list
shows some information about the Netflix training dataset:
e 100,480,507 ratings
480,189 users
17,770 items
Total number of possible ratings: 8,529,600,000
Missing data ~= 98,822%

Using this dataset for comparison might not be that relevant because all (consecutive) research
on this dataset has been optimized to this dataset as much as possible with little regards to
computational costs. It can however give an insight into the type of algorithms that work on such
a large dataset with a huge amount of missing data.

2.1.2 Dataset problems

In recommender systems, a problem often occurs that is called data sparsity [1,2,3,8]. This
happens when there are so many users and items that only few ratings are available from those
users for items. This can make it very hard for the recommendation algorithm to find similarity
between users. Even though recommendation systems often have to work with little data, there
has to be a sufficient mass of data to actually make correct predictions and recommendations.
Coverage is the percentage of items that the recommendation system can make good
predictions for [8]. If an item has not been rated a sufficient number of times, it could lead to the
item only very rarely being recommended, even though the few users that did rate it gave it very
high ratings.

A way of handling data sparsity is to also take into account user profile information when
calculating user similarity [1]. Users within the same age range, gender, location, education level
could be considered to be more similar to each other, extending the collaborative filtering
techniques with “demographic filtering” [1]. Another example is the use of popularity
characteristics of products [3], but this could lead to popular items being recommended more
often, where with the Paiq dataset, recommendation of less popular photos is more interesting.

A sub-problem of data sparsity called cold-start problems are problems that occur with
recommending items that no one (or only few users) have yet rated [1,11] or recommending
items for users that have not rated any items yet (or only very few) [1]. They are often again
subdivided into the new user problem and new item problem [1]. A possibility for handling this is
the use of a combination of general recommendations and user specific recommendations,
using the first for new(er) users and the second for users that have rated a sufficient number of
items.

Scalability is another problem recommendation systems with large and growing datasets have to
deal with. Especially memory-based collaborative filtering techniques have the problem that
when the number of users and items continues to grow, this causes the computational cost of
the recommendation algorithm to grow even faster [2]. Introducing model-based collaborative
filtering techniques where a model is created from the available data to base predictions on, help
combat this problem [8].

Users are human beings and are fickle in their ratings of items: the repeatability of users and
their own ratings is notoriously low. Not only can users change in their preferences, but their
mood can also lead to giving more positive or more negative ratings. Ratings can change by as
much as 40% of the rating scale from day to day [12], suggesting that when working with
model-based methods, a low-rank approximation of data is probably better at generalizing data
than perfectly reconstruction the data with a medium-rank model [12]. Furthermore, it can be
said that any recommendation algorithm cannot be more accurate than the variance in its users’
ratings [13].

The synonymy limitation occurs when two (very) similar items with different names are in the
database. Correlation-based systems do not see that these items are essentially the same [2,8].
When a large number of synonymy exists in a system, this can have a very noticeable impact on
performance. Some solutions include manually going through all items and removing duplicates
(passing over the already collected data to the remaining item), or using automatic methods
such as a thesaurus, or using dimensionality reduction techniques, that essentially try to group
together similar products to construct recommendations [8].

In any dataset, some users exist that have little similarity to any group of people. They are called
gray sheep if they sometimes agree and sometimes disagree with any existing group, and black
sheep if they have no similarity to any group at all [8]. Even considering that for black sheep it is
almost impossible to make recommendations regardless of the system used, hybrid
recommendation systems can be used as a way of approaching the gray sheep problem, taking
an optimal mix of content-based and collaborative filtering recommendation algorithms, which
are explained in section 2.3.4.

Any dataset contains the problem of noisy data [8], which is meaningless or even detrimental
data when used for data mining. In terms of this research, this can be defined as data not
helping with creating accurate recommendations, or even detracting from them. For example,
when using clustering, noise can be defined as any point not belonging to a cluster [14]. Most
collaborative filtering algorithms have a way of dealing with noise. In this setting, the main noise
will probably come from photos rated differently by the system than the user intends, due to the
uniformity of the ratings applied to sets of photos, as explained in section 3.2.1.

Shilling attacks [8] are deliberate attempts by parties to influence recommendation systems by
having certain items (their products) recommended more often than other items (those of
competitors) [9,10]. With creating profiles and giving biased ratings, this often helps increase
sales of their products. Both push attacks (upping ratings) and nuke attacks (lowering ratings)
can be used [10]. The problem is that they often have to be detected manually, but research has
been done that investigate the use of statistical metrics to detect these attacks [9,10]. This
research will not go more in depth into this problem: this is not relevant to this research, as it
takes a lot of effort by a user to increase their own rating, and it is assumed that they will not
want to go through this effort.

2.2 Metrics

Evaluation of recommendation algorithms is usually done with either coverage or accuracy
[1,8,15]. Coverage is the percentage of items for which the system can make any prediction at
all [1,15]. The accuracy metric is subdivided into two subtypes: statistical and decision-support
[1,15]. Statistical accuracy metrics are evaluation of the predicted values against the true values,
usually by means of testing the trained algorithm against a test set or validation set.
Decision-support accuracy metrics determine how good a recommender system is at predicting

high-relevance items [1,15].

The statistical accuracy metric that is very often used in the scientific world is the MAE (Mean
Absolute Error), which for example is used in the references [1,2,8,15]. This one divides the total
absolute error of all predictions by the number of predictions made. Another one is the RMSE
(Root Mean Square Error), which is used for example in the Netflix Prize challenge [8,17,58]. It
takes the total root of the sum of each individual error squared. This is like the MAE, but gives
more weight to large errors [13].

Even more important metrics for this research might be the ones falling in the decision-support
accuracy type discussed next. Classification accuracy is the percentage of examples correctly
classified as having a rating either negative or positive as seen from the average rating [16].
Recall is the percentage of positive examples classified as positive, and precision is the
percentage of examples classified as positive that are actually positive [16]. Because often an
increase in recall leads to a decrease in precision and vice versa, another metric resembling an
optimized mean between recall and precision called F-score, F-measure or the F1 metric is
often used [1,25]. Here especially precision might be important, because the recommendations
should be as good as possible.

The ROC (Receiver Operating Characteristic) curve is a graph in which the recall and inverse
recall (true positive rate and false positive rate) are plotted against each other. These curves can
be used to explore trade-offs between true positives and false positives [1,8,15].

2.3 Classifying recommendation methods

This section discusses the four different classes of recommendation methods: active and
passive systems, explicit and implicit measurements, memory-based and model-based
algorithms, and collaborative, content-based and hybrid filtering systems [1,3,8].

Recommender systems have been researched since the mid-1990s [1], when research started
explicitly on finding recommendations based only on ratings of items by users. Research in
recommendation algorithms borrows heavily from the fields of information retrieval and
information filtering [1,3]. With the introduction of the computer into workplaces, companies have
been able to easily store large amounts of customer data. This data was reason for some to look
into whether they can be used to improve sales. This led to even more research in
recommendation algorithms.

Different kinds of recommendation methods exist. Whether recommendations are user-specific
or general (active versus passive recommendation systems), the way ratings are gathered
(explicit and implicit measurements), the way recommendations are created from the data
(memory-based against model-based algorithms) and what kind of data is used (collaborative,
content-based and hybrid filtering) all lead to different sorts of approaches to recommendation
algorithms. This section discusses each briefly, together with the relevancy for this research’s

specific recommendation problem.

2.3.1 Active and passive systems

The Active filtering systems make user-specific recommendations [4]. They analyze the user’s
behavior and make recommendations based on that specific user’s preferences and past
behavior. The advantages are of course user-specific recommendations, with the disadvantage
that the algorithms needed to implement this are heavier computation-wise, the user will need to
be identified by the system and the system will need to have enough information about the user
(for example ratings) to make a good recommendation.

Passive filtering systems, such as Amazon recommending items that other customers bought
together with an item that the current customer intends to buy, make general recommendations
for its users [4]. They take the available data of all users and make recommendations based on
for example the average ratings and (current) popularity of items. It does not matter to the
system who the current user is, its recommendations will be the same. The advantage is that
they are easy to implement and do not have a lot of the problems that active systems face. The
disadvantage is of course that they do not take into account specific users and their specific
preferences and past behavior. These systems are often used for websites where no
user-specific rating information is (yet) available, or social news and entertainment sites such as
reddit.com.

The focus of this research is active filtering systems, where user-specific recommendations are
made. Passive filtering could in theory be used when not enough information is available to make
use of active filtering, but that is not relevant for this research.

2.3.2 Explicit and implicit measurements

Two types of user behavior measurements that can be used are implicit and explicit
measurements [4,5]. The difference between each is in the way ratings of items are obtained
from the user.

Explicit measurements are done by requiring direct user input [5]. When users rate an item, they
explicitly tell the system what they think about it, which can often be used to make reliable
predictions. This will ensure a high cost to the user [6,7], and benefits are not always apparent

[6].

When users browse a website, they also give a lot of information about themselves and their
preferences and behavior that they do not directly input into the system. Some of the important
implicit measurements can be used to make implicit ratings for creating recommendations.
Statistics such as number of mouse clicks, time spent on a webpage, or scrolling on a webpage
can be used, of which time spent on a page and the amount of scrolling appear to be good
indicators for interest [5]. When proper implicit ratings can be obtained, they can help circumvent
the problem of users saying something different (explicit ratings) from what they actually want

[5].

The problem is that implicit ratings are more difficult to work with than explicit ratings; and they
are not suitable for every recommendation system. It could work for a recommendation system
for a news website, where users read a lot of articles and only rate a few, but probably not as
well for a system where a user has to rate every item that he or she sees.

Both types of ratings could also be combined, perhaps leading to an effective answer to the
sparse data problem for collaborative filtering that states that it requires a certain number of
ratings for every item and user to provide accurate predictions [5,7].

This paper will focus on explicit measurements, as the Paiq dataset consists of only explicit
measurements.

2.3.3 Memory-based and model-based algorithms

Looking at memory-based algorithms (sometimes called “heuristic-based” algorithms [1,3]), they
use the entire user-item dataset every time when creating predictions. A couple of advantages of
memory-based techniques are easy implementation when designed for use with small data

sets, new data can be added easily and incrementally, and they scale well with items that have
been rated many times.

Model-based algorithms instead use a training subset of the dataset to create a model of the
user ratings and a test set to check its validity. When creating a recommendation, the model is
used instead of the entire dataset, most of the time leading to faster prediction times using less
memory. Some other advantages of model-based algorithms are less issues with scalability,
and sparsity problems [3] as discussed in the problems section in the previous section. Some
algorithms create all sets of predictions all at once, while most memory-based algorithms only
create a single prediction per run or only for one user. Model-based algorithms could lead to a
reduction in quality of its predictions as opposed to memory-based ones, often trading
performance for scalability. However, model-based algorithms can often offer better
generalization of the training data, so that they sometimes perform better than memory-based
algorithms. Because both could be valid options, both will be discussed later on.

2.3.4 Collaborative, content-based and hybrid filtering systems

The two types of filtering recommendation systems differ in the focus and the (amount of)
information available for the system to base its recommendations on. Collaborative (sometimes
called user-based) filtering [1] is based on finding similarity between users, based on rating
information. If similarity between some users is high, collaborative filtering supposes that the
rating of users with high similarity says something about missing ratings, which should also be
rather similar. The user is recommended items that people with similar tastes and preferences
liked in the past.

Content-based (sometimes called item-based) filtering is based on similarity of items, which
themselves often consist of textual information [3]. The recommendation algorithms take
information from the content of items and make recommendations based on the similarity of
them. It looks at items that the user rated highly in the past and then finds items that can be seen
as similar. For a movie recommendation, such an algorithm could consider information such as
its director, starring roles and genre. Some of the challenges of content-based
recommendations are limited content analysis (because of limited keywords), overspecialization
and new user problems [1,3]. Also, more information is needed on the items, and for every item
either a way of automatically inputting that information has to be found, or that information has to
be input into the system manually. If a lot of information is known about users instead of the
items, that information could be used instead of the information on items.

Hybrid filtering combine the collaborative and content-based recommendation methods as a way
of avoiding the disadvantages of both [3]. It may mean combining the results of separate
methods, adding characteristics of one to the other, or implementing a method that uses
characteristics of both [1]. Hybrid filtering techniques could overcome the disadvantages of both
collaborative filtering and content based recommenders, but are a lot more complex and
expensive in implementation.

For this paper, the assumption is made that there is only rating information available, which
means that the collaborative filtering methods will be looked into. Both content-based and hybrid
recommendation methods will not be considered in more detail in the remainder of this paper.

2.4 Specific recommendation approaches

This section will detail a few specific recommendation algorithms that are likely to be suitable for
tackling the dataset. These algorithms will be suitable for active systems, use explicit
measurements, and will use a collaborative filtering method because of reasons that are
explained in the problem statement. Both a memory-based and model-based approach will be
looked at.

2.4.1 Selection criteria

The selection criteria on which the choice for a specific recommendation approach is made are:
1. Use in the domain
2. Relevance for problem statement

Something to keep in mind when selecting approaches is that simple collaborative filtering
algorithms can be almost as effective as the best ones when grading them in terms of utility in
certain restricted settings [1,19], and that getting the basics right is probably at least as important
as tweaking the models [27].

Three of the better known models used in recommendation approaches, as well as being among
the most important ones for the winner of the Netflix challenge are the neighborhood-based kNN,

the matrix factorization-based SVD and the neural network-based RBM [52,69]. They can be
seen as some of the better approaches to both memory-based and model-based, and when
combined yield even better results [17,27]. Both will be discussed separately below as well as a
way of combining their results. Specific attention will be given to variations of the algorithms that
help improve the data scalability and sparsity problems that will probably occur when applying
these approaches to the Paiq dataset.

2.4.2 Nearest neighbor-based approach (kNN)

Good examples of memory-based recommendation algorithms are the collaborative filtering
algorithms that check all users for similarity compared to the one the prediction is made for, and
then use nearest-neighbor techniques to create a recommendation [4]. The name “nearest
neighbors” applies to the users that are most similar to the user the recommendation is
calculated for, and the k stands for the number of closest neighbors that are used in creating the
prediction. A distance measure is used to instantiate the similarities between users. Most of the
time a k nearest neighbor (kNN) approach is used, but sometimes a threshold-based approach
is used instead, where all the users with a similarity above a certain value are taken when
calculating a prediction [50]. These algorithms are easy to implement and make sense logically:
the group of people with in average a voting behavior in the past similar to a user will probably
have a voting behavior similar to that user in the future as well.

2.4.2.1 Calculating predictions

The input needed for using kNN to predict user ratings are existing user ratings of items, where
for each rating its corresponding user and the item are known. Calculating predictions for users
consists of these steps [21,28,34]:
1. Normalize the rating data
2. Calculate the user’s similarity ratings with other users
3. Select a subgroup of those other users to create the recommendation with (the k nearest
neighbors)
4. Calculate the interpolation weights of the other users
5. Calculate a prediction by taking a sum of weighted ratings from the selected subgroup of
users

The way these steps are filled in and which algorithms are used exactly can vary per
implementation. This means that for an actual implementation, for each of these steps choices
have to be made: how to normalize the data, choosing which similarity measure (distance of the
user to neighbors) to use and how many of the closest neighbors are involved in calculating
similarity ratings, and the way that the interpolation weights (how much weight is given to each
individual neighbor for calculating the prediction) are determined. The first normalization step
involves removing certain data-skewing effects such as some users having a higher or lower
average rating than another user, while still having the same preferences towards items. This
can also prevent some (extreme) users from being weighted too heavily [28,34]. Calculating the
interpolation weights (which sum up to 1) also involves doing a normalization on the influence of

other users on the final ratings, preventing some extreme users or users that have a large
number of ratings from weighing too heavily on the final result [28,34]. The similarity ratings are
often recalculated once in a while to new include new rating information.

The two simplest ways in which similarity is calculated between users are the weighted sum and
the adjusted weighted sum [1]. With the weighted sum, the similarity is calculated as sum of all
distances between the ratings of all items two users have in common. The adjusted weighted
sum takes into account that users can use ratings differently, which the weighted sum does not:
one user could for example consistently rate items a point lower than another user, and adjusts
for this by taking instead both distance measures from the average ratings of the items they
have both rated. This is the reason the adjusted weighted sum is widely used instead of the
original weighted sum, as it also presents a way of normalizing the data [28,34].

A few other commonly researched ways of measuring similarity are [1,22,23,46,48]:
Mean squared differences algorithm

Cosine based algorithm

Pearson r algorithm

Constrained Pearson r algorithm

Item-item (or artist-artist) algorithm

The computation of correlation in correlation-based approaches such as kNN is O(m?*n) [25,41],
where m is the number of photos and n the users.

The mean squared differences algorithm calculates the mean squared differences between two
users by looking at the items both users rated. This is a modification of the weighted sum
algorithm, putting greater emphasis on the magnitude of the errors by squaring the difference in
ratings between two users. After calculating all differences for one user and all other users, a
threshold is then set where all other users with greater dissimilarity are discarded. The inverse
dissimilarity scores of the remaining users are used as weights to calculate the prediction.

Calculating similarity with a cosine based algorithm treats two users as vectors in a (number of
items rated by both users)-dimensional space, where the similarity between the two users is
obtained by calculating the cosine angle between the two [1]. It is a variant of the inner product
which is a standard similarity calculation and is also often used in collaborative filtering, but
some research suggests that correlation based similarity algorithms perform better than similar
cosine based ones [47], probably because cosine similarity is not invariant, unlike the
correlation-based one described below.

The Pearson r algorithm calculation is another variant of the inner product calculation and
effectively builds on the cosine based approach. This algorithm had already been developed in
the 1880s by Karl Pearson as a measurement of the strength of linear dependence between two
variables. It is called a correlation-based approach and uses a Pearson r correlation coefficient,
now for measuring user similarity. Each calculated user similarity is a number between -1 and

+1, implying either negative or positive user similarity, or no similarity at all. One important
property of the Pearson correlation is that it is invariant: if all values scale or shift (for example x
to x+1), other similarity algorithm values would change, but the Pearson correlation stays the
same. This is good because similarity looks at users rating items in the same way, not that they
are the same in an absolute manner.

The above Pearson r algorithm uses both positive and negative similarity when calculating a
prediction. Positive similarity between two users implies that both will like and dislike about the
same items (e.g. they both like horror movies and dislike other movies). However, this does not
imply that a negative similarity between two users means that one likes what the other dislikes
and vice versa, but only that what one likes, the other might not like (e.g. one likes horror movies
but dislikes other movies, while the other user likes action movies and dislikes other movies,
meaning both users dislike movies such as drama and comedy). The constrained Pearson r
algorithm was thought up to take this into account: only when both users rate an item either
negatively or positively the similarity will change, with the change being an increase. This also
leads to only positive similarity ratings. Some research suggests that placing a restriction on
similarity scores between users to only be nonnegative actually improves prediction accuracy
[28,34], making this one better than the regular Pearson r algorithm.

When making a prediction, the item-item algorithm looks at the other items a user has rated and
looks at how much these items resemble the item the prediction is made for. This method was
considered as an alternative because with most datasets the number of users far outweighed
the number of items, meaning that looking at item-item instead of user-user relations could be
more effective because on average a single item would have more ratings than a single user and
thus contain more information for making predictions. This approach uses one of the other
algorithms (e.g. item-item correlation or cosine similarities between item vectors) to calculate
actual similarity [35]. Scientific literature is not conclusive about whether it is clever to look at
item-item algorithms: either well designed user-user and item-item algorithms will have
equivalent performance [23], or item-item algorithms might be (significantly) more effective than
user-user algorithms [34,35]; and item-item based algorithms seem to scale better to large
datasets [35]. The reasons given for this better performance is: that there are typically many
more users in the system than items [24,34]. The Paiq dataset has more items than users, as
almost every user will have uploaded at least a few photos. Therefore in this case, primarily
looking at user-user relations is probably the more suitable approach.

Just like with many other recommendation algorithms, it seems that when looking at results
there is a tradeoff between the accuracy of predictions and the number of predictions that can be
calculated by taking a smaller or greater number of nearest neighbors for creating the prediction
[22]. This difference can be influenced by increasing or decreasing the threshold of the similarity
ratings of the included users.

2.4.2.2 Advantages and disadvantages
As mentioned before, the advantage of using kNN for making recommendations is that it is

easier to implement than most other recommendation algorithms that fall within the scope of this
research. Furthermore, the workings and underlying mathematics are easy to understand, and
new data can easily and incrementally be added. Also, this approach scales well with items that
have been rated many times.

A problem can be found in the calculation times that a large and increasing dataset will cost, as
nearest neighbor approaches often have issues with scalability and sparsity of data [1,2,28,34].
Scalability is a computational cost issue, as the memory requirements become big by having to
store all the data, or else having to calculate similarities at run-time takes a lot of time, as does
updating the relevant similarities every time a user/item or even a rating is added. The sparsity
problem is one of the main disadvantages of kNN: it is hard to find users that have the same
items rated for users that have not rated a lot of photos, impacting performance.

Another disadvantage is that there is a chance of overfitting when tuning the algorithm that it
becomes even better at predicting past behavior (data from the training set) but worse at
predicting future behavior (tested with the test set).

2.4.2.3 Variations

There are some ways of making kNN more efficient in order to deal with scalability and sparsity
issues, the first of which can be done by preprocessing the dataset by using some kind of
dimensionality reduction technique [29,31]. These algorithms try to quickly determine (in the
case of this research) which users belong to the group of k nearest neighbors, some of them
finding approximations, reducing the computational cost by a large amount [31].

Scientific research on preprocessing the dataset by applying clustering techniques that already
exist to KNN recommendation methods was done to examine their effect on computational cost,
and sparsity and scalability issues, with the aim of decreasing them [35,49,50,55,56,64,65,67].
Clustering groups sets of users (or items) in such a way that calculating similarity between
users is divided into a lot of smaller problems, in a divide-and-conquer kind of manner. This
makes them easier to compute as compared to the biggest computational step, helping with the
scalability problem. This then means that when determining the similarity, only the similarity with
the users belonging to that group has to be calculated, and not with every other user first. The
problem of sparsity is decreased because for users with a small number of ratings, with
clustering the number of other users that can be counted as neighbors will likely be increased.

The simplest and most computational cost-efficient way to calculate predictions with clustering

is to just take the average of the cluster as prediction [35]. Clustering can be applied when
preprocessing the ratings dataset for use in kNN to help deal with the sparsity and scalability
problems [49,50]. A method is to first cluster users based on their ratings, and calculate a
cluster center for each cluster of users. Similarity can then be found easily by looking at the
distance of the user to the cluster center. A similar item clustering collaborative filtering algorithm
is then used to calculate recommendations, decreasing the computational cost for computing
recommendations because otherwise all predictions would have to be calculated [50]. This also

helps in combating the sparsity problem, and is one of the approaches most suitable for the Paiq
dataset in dealing with the scalability problem, yet the sparsity problem makes clustering
difficult.. Calculating the clusters themselves can take some time, but can in principle be done
on a subset of the dataset. For users and items not in this subset, their place in the clusters can
be determined during runtime, provided that they have rated some same items or users.

Some newer clustering approaches try to find user-item subgroups or subclusters, in line with
thinking that some users may agree on a subset of items, but totally disagree on another subset
of items [65]. Yet another somewhat similar approach first tries to find similar users and items by
using a spectral clustering technique, and then using an iterative process to calculate the
recommendation [64]. This technique uses eigenvector calculations to cluster the ratings, after
which a prediction is calculated by using both. To illustrate the effectiveness of approximation
methods, even though standard spectral clustering has a computational complexity of O(n®), in
more recent years an iterative k means approximation method has been proposed to lower it to
O(k®) + O(knt) [66]. The k stands for the number of clusters, and t for the number of iterations.
This was done to lower its computational cost so that spectral clustering becomes viable for
huge datasets. Apart from this research, a lot other research is and has been done on
approximate clustering [67].

A lot of scientific and other research has been done into data structures to optimize different
ways of searching through data. These found their way into recommender system research as a
means of making data lookup quicker. Data structures such as kd-trees, vp-trees, mvp-trees,
sphere/rectangle (SR)-trees, metric trees or ball-trees can be used to lower the computational
cost of the nearest neighbor step of calculating user similarity, but these are only efficient up to a
moderate number of dimensions, about 20, which is totally inadequate for the dataset in this
research [30,32]. Options for high dimensional space are Locality Sensitive Hashing (LSH) and
spill trees, including optimizations such as random projection, aggressive pruning and redundant
search [29,30,33]. An advantage of spill-trees are that they are exact nearest neighbor
approaches, whereas LSHs are approximations based on probability [30,33]. Distance-Based
Hashing (DBH) is based on LSH, with its main advantage over LSH that DBH can be
constructed in any space, while LSH can only be applied when locality sensitive families of
hashing functions exist, which also shows its relevancy for this research [32].

All'in all, kNN models are a good approach for recommendation algorithms, but can mainly have
scaling issues and problems with sparse datasets.

2.4.3 Singular value decomposition based approach (SVD)

Singular value decomposition (SVD) started taking form in 1873 after decades of related
research [43], but was first used in the early 90s as a dimensionality reduction technique for
finding relevant text documents in the field of information retrieval [39,41]. Near the end of the
90s, this feature extraction technique was starting to see use in recommendation approaches
working with ratings [1]. It was first tested to try to deal with some of the sparsity, scalability and

synonymy problems of other collaborative filtering mechanisms such as neighbor-based
approaches: these methods often only calculate similarity between users when these users
have rated the same items while with SVDs some users can be considered for similarity
calculations even though they have no overlap in ratings of items with other users [2,25,38].
Furthermore, SVDs have a very fast online performance [2,25]: calculating the actual
recommendations is called the online part and all calculations done before that (which is mainly
calculating the SVD) is called the offline part. The SVD approach gained another increase in
popularity during and after its successful use in winning the Netflix challenge.

Singular value decomposition is very closely related to principal component analysis [36] on a
data matrix (the other being eigenvalue decomposition [2]). It can be used as a feature
extraction, matrix factorization/approximation or dimensionality reduction technique
[1,2,20,25,39], which means finding the smaller dataset where the other data derives from, or
approximating the original matrix by factoring it into smaller matrices that approximate the former
matrix when the factors are multiplied, or reducing the number of dimensions of a matrix (by
doing the matrix factorization/approximation). This approach is a model-based approach, also
sometimes referred to as latent factor model approach [24], as instead of looking at relationships
between either items or users, it also looks at latent relations between users and items and
transforms both to the same space so they become directly comparable [24,26]. This makes
cross-comparisons possible, and thereby should reduce the sparsity problem present in other
collaborative filtering techniques.

2.4.3.1 Calculating predictions

Calculating predictions using SVD requires having a set of user ratings of items where for each
rating its corresponding user and item are known, similar to kKNN. The steps required for
obtaining the predictions are [25,39]:
1. Obtain the user-item ratings matrix M
2. Fillin the missing (empty) ratings of matrix M
3. Factorize/decompose this matrix M into three matrices: M, ., =U_. *S,. *V'. where S
is the singular-value matrix
4. Calculate the predictions by finding the best lower-rank approximation matrix M_hat of
Matrix M, for a number of values of k:
a. Obtain singular-value matrix S_hat from S by discarding the last r-k singular
values from S, where k <r
b. Compute the lower rank approximation Matrix M_hat from the resulting S_hat:
M_hat,,,~= U,y *S_hat, . * VT(r_k)*,,
c. Test on a test set whether the resulting Matrix M_hat has better predictions than
another computed Matrix M_hat with different rank
d. Repeat the above sub-steps until the best lower-rank Matrix approximation M_hat
can be selected, taking its now filled in entries as predictions

Just as with kNN, the manner in which these steps are done influence its final prediction results,
often with tweaks made to steps to better suit the dataset they are used for. The choices that

have to be made here are: how to fill in the missing ratings of the matrix and choosing the
metrics that determine which rank-r approximation will be the best one. Some of the more
advanced and alternative options for using SVD will be discussed further below.

To obtain the user-item ratings matrix M, take the user-item ratings and input them into a matrix,
with the users as its rows and the items as its columns, and the ratings as its entries. With a
large number of users and items this can turn into an enormous matrix, thus the computation of
the decomposition of the matrix will require a high computational cost (in both processing power
and memory) [2,25,28,37] and is by far the costliest step of the approach. Time-wise it takes in
the order of O((m+n)?), making classic SVD suffer from high scalability issues too [37]. On the
other hand, once the matrix has been decomposed, it is very simple computation-wise to obtain
the lower-rank matrix approximations, find the best one, and use it to gather recommendations,
as stated further above [2,25]. Also, because the lower-rank matrix approximations create a full
matrix with ratings and predictions, the predictions are not calculated one at a time as with kNN,
but all at once. This means that storage-wise SVD is more efficient, where only the reduced
matrices have to be stored with a storage cost of (m*r)+(r?) as opposed to m*n for
correlation-based approaches [25,39].

Another surmountable disadvantage of computing an SVD is that by definition there can be no
empty entries in the matrix, requiring the filling in of missing ratings. This often happens either
with a zero (which will make for more inaccurate predictions), or the corresponding (normalized)
average user-rating or item-rating (corresponding row or column average) [2,25,28], of which
using the item-rating seems to work better [25]. A more advanced way is using a combination of
the global average and a deviation for both the item and the user [23,24], of which a variation is
using the product average as a rating and then subtracting the user average, which is also a
normalization technique [25]. Taking the user average is not relevant for the Paiq dataset, since
all average user ratings will be somewhere around the average rating because of the way the
ratings are calculated (see problem statement). Another manner suggests performing SVD
iteratively while computing the missing values based on prior iteration results [25,45], but there is
a chance of the imputations distorting the data, especially with sparse datasets, and it is still very
expensive computation-wise and impractical for very large datasets [24,28,51].

Calculating the SVD itself can be done by reducing the filled ratings matrix to a bi-diagonal
matrix, for example with Householder reflections, and then computing its SVD with an iterative
method [68]. An advantage of only wanting to compute lower-rank approximations is that only the
SVD up until a certain rank (the one that has to be tested) will have to be calculated. It basically
boils down to finding the matrix factorizations that, when multiplied, have the smallest possible
(mean squared) error between the original matrix and the newly created matrix approximation.
Further information, discussion and mathematical background on SVDs can be found in
[39,40,68].

Utilizing the SVD approach involves calculating the best lower-rank approximation from the
full-rank matrix [1,2,36], removing unrepresentative or insignificant users (noise) in the process

[8,39]. As shown above in the steps needed to find the best lower-rank approximation matrix
M_hat, this has to be done iteratively, i.e. the best rank cannot be determined beforehand.
Choosing a different rank can significantly impact the general accuracy of the predictions [2,25].
The best rank is high enough so that all the important information is captured, but low enough so
overfitting is prevented. A good lower-rank approximation of the data has a higher chance of
being a better generalization than a medium-rank approximation that is a better reconstruction of
the data, because of user fickleness. This can also mean that the lower-rank approximation
matrix often better resembles user behavior than the original matrix itself [37,41].

Finding the best rank usually involves starting with rank 2 (k = 2) and moving up one in rank with
each new iteration until the performance clearly starts getting worse instead of getting better.
Usually the Frobenius norm ||M - M_hat||- (the difference between the square root of the sum of
the absolute squares of the elements of the two matrices) is minimized to determine which
matrix approximation M_hat is the best lower-rank approximation of the original ratings matrix
[2,25,28,37]. This is called the Eckart-Young theorem [43].

2.4.3.2 Advantages and disadvantages

There are a couple of main advantages to using SVD approximation for recommender systems.
The SVD approach better handles the online part of making predictions than kNN, making for
faster predictions and better scalability for the recommendation part. That the SVD method can
make use of latent relations between users and items helps with the sparsity problem and
synonymy problem (where differently named and stored items essentially refer to the same
item).

The SVD method also has a few drawbacks. The exact implementation details of the SVD are a
bit harder to explain, especially in layman’s terms. Another disadvantage is that computing the
SVD requires a high computational cost in both processing power and memory, as a huge
matrix has to be decomposed. This is only in the offline part, which can be done before putting
the system online. Furthermore, a process has to be used to fill in the unknown matrix entries,
resulting in extra computational time and complexity. This could mean that in this research’
situation, the SVD is not a very good alternative for KNN after all.

2.4.3.3 Variations

Variations on SVD focus mostly on dealing with the heavy offline computational cost of SVDs or
the filling in of missing ratings.

One way of making the matrix decomposition easier that is often applied is by using a reduced
matrix instead of the full matrix, which is often sufficient in statistical applications and in this case
for calculating predictions. The resulting SVD is called a thin SVD instead of a full SVD, which
refers to the matrix decomposition of the original ratings matrix [2,12]. Only the n column vectors
of U that correspond to the row vectors of V' are calculated: the other column vectors are
discarded. This leads to the matrix decomposition: M., ~= U,.., * S,., * V' ... Calculating this

thin SVD is a lot quicker than calculating the full SVD when n << m, meaning when the number

of items is a lot smaller than the number of users.

Calculating the SVD is the most costly step. When new rating, user and item data becomes
available, it would normally have to be added to the original matrix, and the SVD would have to be
recomputed to incorporate this fresh data into the predictions. Some research has focused on
ways to avoid this costly computation by updating the SVD with the new data instead of
recalculating it [2,12,37,39,41,44]. One method proposes updating the SVD by doing rank 1
updates, where one single column is modified or added to the original matrix per update
[2,12,39]. These are fast because they use small-matrix operations. Another method is the
SVD-update method, where orthogonality is retained [37,41,44]. A simpler version of the
SVD-update is the folding-in technique, where new users and ratings are folded into the existing
SVD [37,41], which is claimed by [37] to be slightly faster and more accurate than the rank 1
update method, and by [44] to be a lot faster but more inaccurate than the SVD-update. All these
SVD update methods can be (slightly) inaccurate, and each additional update will increase the
overall inaccuracy, so that its users should be wary of deviations too large from the predictions
were the SVD to be derived in the standard way [37]. Most methods have a tradeoff between
accuracy and computational cost, but their exact effects on those metrics can often only be

seen after applying the methods.

An alternating factorization approach is suggested in [2], which tries to find two factors that best
represent the original matrix by alternatingly updating each factor and thereby minimizing the
error between the original matrix and the multiplication of the factors. Its researchers claim this
approach has better accuracy than the SVD-update technique, but it has problems with a large
number of missing ratings.

Newer research to SVD has focused on avoiding having to fill in missing ratings to make the
rating matrix dense, because of the added computational cost and data distortion that might
happen with inaccurate methods of data imputation. Instead, only the available rating data is
used, while avoiding overfitting by using regularization [24,28,42,51,69,71]. These approaches
minimize the error of the factors versus the original matrix. One of these approaches is using an
alternating-least-squares (ALS) method [24,51]: systems that can use parallelization and
systems centered on implicit data [51].

Another newer SVD approach is the in the Netflix competition often used stochastic gradient
descent, brought to attention by Simon Funk [24,51,70]. This method loops through all ratings
and for each rating predicts a value, calculates the error of the prediction compared to the actual
value, and adjusts the factors by a magnitude proportional to a certain chosen value times the
opposite direction of the gradient. The main advantages of this method are its easiness in
implementation and relatively fast run time, and it is widely used in the Netflix competition over
more conventional SVD methods [51]. Good results are reported with optimized parameters.

2.4 .4 Restricted Boltzmann machine based approach (RBM)

The third and final method that is looked at in this literature chapter is the restricted Boltzmann
machine algorithm (RBM). The RBM was originally invented by Paul Smolensky [76]. It became
more widely used in the 2000s, when Geoffrey Hinton and others thought of ways to massively
increase its learning speed. This model-based approach has been used for problems such as
dimensionality reduction, classification and recommendation algorithms and as a stackable
basis for deep belief networks (DBNs) [75,77]. It was one of the algorithms used in the winning
entry for the Netflix Prize, where the winners lauded the algorithm for its accuracy and its relative
tolerance for different parameter settings [17].

The RBM is a generative stochastic neural network (consisting of bidirectionally connected
stochastic units). The network consists of visible and hidden units separated into two layers, with
weights in-between, and biases (offsets) linking to all units. A Boltzmann machine is a neural
network with the restriction that it has only one layer of hidden units. And a restricted Boltzmann
machine refers to there being no connections in between visible and hidden units [73], making
them independent from each other, as shown in figure 2.4.4.a. Both reasons make learning for
the RBM easier and less time consuming than for other more elaborate neural networks [75], as
they are not recurrent and thereby having more efficient training algorithms available for them.

Visible units

Hidden units

Figure 2.4.4.a: RBM, with the existing connections in black, and the lost connections in grey.

2.4.4.1 Calculating predictions
Calculating predictions for users with RBM is done with the following steps [73,74,75,78,79]:
1. Initiate the weights and biases
2. Choose a number of training epochs and do contrastive divergence (CD) to train the
weights:
a. Initialize the visible units with the given ratings from a training case
b. Calculate the probabilities of the hidden units
c. Calculate the probabilities of the visible units, given the calculated probabilities of

the hidden units
Calculate the probabilities of the hidden units again
Repeat steps ¢ and d for each rank of CD
Adjust the weights of the connections where the visible units have changed
Adjust the biases of the visible and hidden units
Repeat the above sub-steps until all training cases from the training set have
been used for training
3. Calculate the predictions (the online part) for a user by:
a. Setting the visible units for the user
b. Doing steps 2b and 2c once
c. Use those calculated probabilities to get the score as the prediction

s@ ™o o

The RBM has two layers of units: a number of visible units and a number of hidden units. All
units are binary, meaning they can have one of two states: 0 (off) and 1 (on). Each visible unit
represents an item, so the total number of visible units is equal to the number of items. The
hidden units make up the latent factors the network tries to learn, and these will have to be set
semi-arbitrarily and the RBM tested to find their optimal amount.

Each user has one RBM and makes up exactly one training case, but each RBM has the same
number of hidden units and the weights are shared between all RBMs. The weight sharing
means that when two users have rated some similar items, the relevant weights will be used for
the RBM corresponding with the first user, and after that the same weights will be used for the
RBM corresponding with the second user (for the ratings of the similar items). This allows the
RBM to learn weights from a different network each time, but remembering the weights from
when they were last updated [73]. Each unit also has an associated bias that contains
generalized information about it (the bias can be seen as belonging to a unit, or the bias can be
seen as a separate entity with a separate connection for all units). The weights and biases are
initialized in semi-random fashion to avoid local minima.

The recent widely accepted way of training an RBM is the CD method, an approximate gradient
descent based method [73,74]. The visible units of the network are initialized with a training case
from the training set, making sure that the chain will already be close to having converged to its
final distribution. Then, k steps of Gibbs sampling (with a small k) are performed and the results
are used to train the weights and biases. The k stand for the rank of the CD, which is generally
written as CD-k.

Gibbs sampling consists of steps 2b to 2e in the above mentioned steps for calculating
predictions. The probabilities of the hidden units are calculated using the entries of the training
case, their biases and the connection weights. Then, the hidden units are set and the visible
units are calculated again using the states of the hidden units combined with their biases, and
connection weights (the reconstruction step). Then the hidden units are calculated yet again.
The last two steps of calculating the visible units and hidden units are performed for each rank of
CD [73,74,79].

RBM works with an energy function. The activation energy for a unit is the weight of all
connections that the unit has with other units from the opposite class (for hidden and visible
units). While calculating the activation energy, if there is a positive relation between two units,
one unit tries to get the other unit to share its state. Where a negative relation between the units
is present, one unit tries to get the other unit to take on its opposite state [73]. The total energy of
a state is calculated by subtracting the weights of the connection between the visible and hidden
units with the bias of the visible nodes and the bias of the hidden nodes.

The activation rule is the rule that determines whether a unit is activated (set to 1 instead of 0). A
unit is activated when its energy is over a certain threshold. The probability of this happening is
computed by calculating the sigmoid 7/(1+e”), where t is the sum of the biases of the hidden and
visible units and the weight of the connection times the unit that the state is calculated from
[78,79].

The weights are updated in the following way [73,74,75,79]: first we have a measurement for
each relevant hidden-visible unit combination, whether they are both on or both off (similar), or
one is on and the other is off (dissimilar). This measurement is done twice during the CD: once
the first time the probability of the hidden units are calculated (called the positive phase), and
once after the last time this is done and CD is over (called the negative phase). The
measurement of the positive phase is added and that of the negative phase is subtracted from
the weight (modified by a learning rate). Thus, we reinforce the association between the units
that we want the network to learn, while we diminish the association between the units that the
network itself generates [78,79].

And finally, creating predictions is done as explained in the sub-steps of step 3 in the above
mentioned steps for calculating the predictions, which is basically another 1-step Gibbs
sampling: CD-1. This can be done in time linear in the number of hidden units.

2.4.4.2 Advantages and disadvantages

The RBM has some of the same advantages as the SVD (specifically the Funk SVD), because it
is also a model-based approach: it handles the online part of making predictions really quickly.
Once the network is trained, the predictions can be created by just calculating CD-1. The rest of
the advantages of being a model-based approach like SVD have already been discussed in the
SVD section.

A disadvantage is that even with the CD approach, the offline part of RBM remains quite
computationally expensive, especially with big datasets: the number of visible units grows with
an increasing number of photos, as there is one visible unit per photo. Furthermore, the RBM is
at least as difficult as the SVD to understand and implement.

2.4.4.3 Variations
One of the variations of is using softmax visible units for a (very) small amount of discrete

ratings higher than 2 [73]. With this approach, each visible unit is split up into x sub-units, where
each sub-unit stands for a possible rating. This changes the amount of available ratings from 2

(1 and 0) to x. Each sub-unit has a different probability for whether it is turned on or not, and the
sub-unit with the highest probability will be turned on. The number of biases for the visible units is
changed to x biases, where x stands for the number of values of the softmax units.

Another variation is continuous RBM, which can model continuous data [72]. This replaces the
binary units with continuous ones, and changes the energy function to incorporate the change.

Another is addition can be taking into account that users can have used items, for example
watched movies, but not have rated them. In this case, the types of movies a user watches says
something about the types of movies he or she likes [73].

Conditional factored RBM [73] is a type of RBM where the weight matrix is factorized, because a
huge amount of visible units, hidden units and ratings make for a very big weight matrix. The
factorization can remove possible memory issues. The advantage is that a lot more hidden units
can be used.

2.4.5 Blending methods

As stated before, the kNN, SVD and RBM approaches all have a different specialization in the
relations they take into account. They are 3 of the 4 main approaches of the Netflix prize winning
entry [17], and SVD and RBM were the only two methods that were implemented by Netflix itself.
The kNN approach looks more at localized relations and the SVD and RBM approaches are
better at looking at global relations [24,28,69]. RBM also finds slightly different relationships than
the SVD [73]. This makes it interesting to look at all three methods when considering which one
to use. It also led researchers to look for ways to combine multiple approaches to increase
accuracy, obviously at the expense of computational cost. The idea is that, like when asking
more people for directions, calculating predictions in multiple ways add up to more predictions
than just calculating predictions one way.

In [42], SVD is post-processed with KNN by using SVD to find similarity ratings for items and then
using kNN to create predictions using those SVD similarity ratings, but their results were not
encouraging: their research already found other methods that performed better.

2.4.5.1 Calculating predictions

The most basic method of blending predictions of different methods together to get one better
prediction is using the mean of all obtained predictions. A better approach to combining models
works by taking a linear combination of the predictions of both models [24]. Another uses a
factorization approach with included an overweight for items similar to the one for which the
prediction is made, those of which are derived with nearest neighbor techniques [28]. It is also
possible to blend results by using an ensemble of multiple methods [17,27]. Here, a ratings
vector is regressed on the predictors of those method, leading to weights for each predictor.

This approach also suggests that overtraining or overfitting is helpful when blending, without
giving reasons why.

Other suggestions for blending are made in [52], which shows that linear blending is not optimal.
Binned blending is a blending method that applies learners to structured subsets. Neural

networks and gradient boosted decision trees work even better, of which the first performed best
in this research, and the second was used in the winning entry of the Netflix challenge entry [27].

2.4.5.2 Advantages and disadvantages

The accuracy of the recommendations can be improved beyond what any single approach
would achieve, but this means an increase in complexity and computational time, because the
predictions of multiple recommendation algorithms have to be calculated and then combined in a
simple or more convoluted way.

3 Experimental setup

This chapter discusses the setup of the experiment. It starts with the research questions. Next,
information is given about the dataset that is used by the recommender algorithms to make
recommendations. The metrics that are used to compare the implemented methods are
detailed, with the error and the baseline methods. It finishes with relevant implementation details
of the methods used for the experiment: baseline methods, nearest neighbor, singular value
decomposition and restricted Boltzmann machines.

3.1 Research Questions

Looking at the challenges and assumptions made in the introduction and the dataset problems
and recommender approaches researched in the literature study, there are a couple of research
qguestions that this research will address:

R1.Which of the researched machine learning approaches or baseline methods is best for
creating recommendations on the Paiq dataset considering accuracy?
a. Which of the researched machine learning approaches or baseline methods is
best for creating predictions on the higher rating range, considering accuracy?
R2.Which of the researched machine learning approaches is best for creating
recommendations on the Paiq dataset considering computational and memory costs?

The metrics used to compare accuracy are discussed further on in this chapter. The next
chapter on parameter estimation will outline how validation of the parameters was done. The
results and discussion chapter after that will discuss the MAE on the test set as well as the MAE
of the methods on different rating ranges taken together in steps of 200, starting with a rating of 1
up to a rating of 1000. The computational and memory costs of the algorithms are discussed in
this chapter as well.

3.2 Dataset

This section elaborates on details of obtaining the final Paiq dataset and the splitting into training,
validation and test sets for the experiment.

3.2.1 The Paiq dataset

The final Paiq dataset consists of subjective ratings of photos by users. Some photos have been
rated only a few times, and others have been rated many times. Some users have rated only a
few photos, and others have rated a lot of photos, as shown in the chart below. The number of
photos (83,513) exceeds the number of users (30,598) by a factor of almost three, making for an
enormous dataset would all items be rated by all users. This used data is just a subset of the
entire Paiq dataset, which as per 10-03-2014 contains 99,344,346 ratings from 164,323 users

about 414,813 photos. Making recommendations for this dataset means having to deal with
some problems: a gigantic, but extremely sparse, dataset with a huge number of missing
ratings, far bigger and sparser (especially the combination) than most datasets used in scientific
research done on recommender systems.

User ratings frequency histogram 1-500 ratings for training set

1200 M Number of users with

this rating count

900

600

300

Number of users with this number of ratings

0 el il Lt il L
Ak @ 0 a0 P 10 b pL o B g e ol D P b b gl a0 g 6

Number of ratings by one user

Chart 3.2.1.a: User ratings frequency histogram 1-500 ratings for training set

As chart 3.2.1.a shows, there is a peak at around 36 ratings by one user, and peaks again every
next 36. A user rating set (one sitting of a user rating photos, as explained in the next paragraph)
consists of 50 ratings, so most users have rated multiples of 50 photos. Of these ratings, 10%
were semi-randomly taken for the validation and test sets, leaving on average 40 ratings per user
rating set. After the original test set was lost, another 10% was semi-randomly taken away as
part of a new test set, leaving on average 36 ratings per user ratings set.

The uniformity of the ratings might also influence the ratings themselves. This uniformity is
because of the manner in which ratings are assigned between users and photos. When the
users is done rating a user set of 50 photos, the system inserts uniform ratings from 0 to 1000 to
the photos into the database for that user and those photos depending on the order of the photo
set.

The distribution of photo ratings across the ratings as shown in chart 3.2.1.b is expected: the
average rating of most photos is close to the global photo average of 501, and the count goes
down as the line moves from the global photo average towards either end of the graph, with
ratings 0 and 1000.

Average photo ratings frequency histogram

5000 W Count

4000

3000

Count

2000

1000

0 200 400 600 200

Average photo rating
Chart 3.2.1.b: Average photo ratings frequency histogram

3.2.2 Noise removal

The first thing done with the dataset was noise and outlier removal. The following ratings were
removed:
e All non-headshots
e All ratings consisting of men rating other men or women rating either men or other
women
All user rating sets with less than 40 items
All with less than 1,8 click average per photo
Users rating the same photo multiple times, using an average rating instead
Photos with less than 5 total photo ratings

A user rating set will have to have at least 40 items, otherwise the rating set was not complete
enough for the system in order to get a good rating assessment of the photos. When rating a
photo, the user has to click to put the photo in the already existing list of photo ratings, as
explained in the dataset subsection. When plotting the average number of clicks per photo for
such a user rating set (the data itself is not available anymore), the resulting chart shows one
clear top. If this would be two, when a user was not serious about rating the photos, that user
rating set would have been close to the first top, and were he or she serious, the user rating set
would be in the second top. Because this is not the case, no clear cutoff line for serious and
not-serious user rating sets can be found, and it was chosen somewhat arbitrarily at an average
of 1.8 clicks per photo.

This cleared up dataset will from here on be referred to as the (Paiq) dataset.

3.2.3 The final Paiq dataset

The final Paiq dataset consists of close to fourteen million (13,784,389) ratings. The final
users/items combinations for the subsets are shown in table 3.2.4.a. The ratings distributions
chart in chart 3.2.3.a shows the count for each rating in the training set. The ratings are clearly
quite evenly divided among the scale of 10 to 1000.

Ratings distribution

28000 B Count

21000

14000

Count

000

0 200 400 600 800

Rating of photo given By user
Chart 3.2.3.a: Ratings distribution of training set

3.2.4 Training, validation and test sets

The dataset was split into a training, validation and test set. As the data in sets were randomly
taken from the full set and as they contain a huge number of ratings, the assumption can be
made that the ratings distribution of the three sets are comparable.

The training set is used as input for the algorithm for training for the SVD and RBM approaches.
This set has 99,568% missing ratings, meaning that from the total of possible ratings, only
0.432% of ratings can be used for training.

The validation set is used to determine the best set of parameters to minimize overfitting. Based
on the training data and a specific parameter instantiation, a model is generated. This model is
then validated on the validation set, which contains data other than the training set. The
parameter instantiation with the best validation score are chosen.

The test set is used to calculate the final performance. This set is untouched previously and can

therefore find out the actual predictive power of the algorithm on new data.

The dataset was split into a training, validation and test set with 80%, 10%, 10% ratio. The
validation and test sets were selected semi-randomly from the total dataset. Because of the
randomness in the algorithm, the aforementioned ratios are very good approximation of the real
ratios. The exact number of ratings and percentage of total dataset are shown in table 3.2.4.a.

The number of photos in the test set was 1,370,471, but the number of photos that could be
predicted by the algorithms was only 1,370,349. This is because of the semi-random way in
which the test set was obtained from the training and validation sets, having some photos in the
test set but not in the training set. This set of photos was used as the final test set.

Set Number of ratings Percentage of total dataset
Training 11,035,267 80.06%

Validation 1,378,651 10.00%

Test 1,370,349 9.94%

Totals 13,784,389 100%

Table 3.2.4.a: Ratings numbers for subsets

3.3 Metrics

3.3.1 Mean absolute error

In literature, [49] states that MAE is often used in scientific research on recommender systems,
and that it is easiest to understand and interpret. RMSE is the second most used metric. In [15],
it concludes that using RMSE led to the same conclusion as using MAE. Based on the above
reasons, this research uses MAE as an error metric.

3.3.2 Baseline methods

It is important to have a baseline to test the algorithms against. Two baseline methods were
tested:

e All average (AA)

e Photo average (PA)

The AA is the most basic baseline rating method. It takes the average of all photo scores in the
training set and uses that as a prediction for all photo scores. The AA is 501.077, so this method
uses that average as prediction for all photos. The mean absolute error of this method only
depends on the distribution of the photo ratings. As these ratings are more or less uniformly

distributed along the 10-1000 domain, this method will likely have a mean absolute error of
around 240-250.

The PA method calculates the average rating per photo in the training set and then uses that
value as prediction for its corresponding photos in the test set. Only items are taken into account
here, while nothing is done with users. Because the user ratings are assigned uniformly by the
Paiq software, the average score of each user will be around the global rating average of
501.077 and thus user average scores will not be used.

The difference between the PA and AA methods is that AA calculates the average rating of all
photos while PA calculates the average rating per photo. This is more accurate than the AA
method, because of the assumption that ratings for the same photo but from different users are
correlated: photos that are generally liked better have a greater chance of being liked by another
person as well, and vice versa. Thus, the mean absolute error of this method should be lower
than AA.

3.4 Implementation

The three methods that were discussed in depth in the literature section are also the ones that
were implemented for the experiment. They are:

e (k-)Nearest neighbor (kNN)

e Singular value decomposition (SVD)

e Restricted Boltzmann Machines (RBM)

This section explains implementation choices made for each method, based on the literature
study of the previous chapter.

3.4.1 Nearest neighbor (kNN)

K-nearest neighbor (kNN) is implemented as described in the literature.

Normalizing the ratings is not necessary because the ratings are already normalized by the
ordering of the ratings done when a user rates the photos.

The problem of the training data scaling to use too much memory is handled by calculating
similarity during runtime. When creating a prediction, the similarity of the user to all users that
have rated that photo is calculated, by looking at the difference between the user’s and another
user’s score on photos they have both rated. The chosen error metric is linear, therefore this
kNN implementation uses a linear metric too.

After calculating the similarity with all relevant users, the k nearest neighbors (users with the
highest similarity score) are selected. All these users’ photo ratings, corrected by the user
similarity, are then weighted averaged to get the final prediction.

For users with very little neighbors, this implementation could cause problems because of the
lack of information on which to base the prediction, creating quite random predictions. In a
practical application, this problem could be dealt with by having the photo averages have a part in
the prediction as well, but since this research is trying to find out the performance of kNN in this
particular case, this is not done, and solely all available neighbors up to k are used.

The greatest computational cost is finding the nearest neighbors. This would normally be done
offline, but is done online in this implementation. This goes in the order of O(m*p), where m is
the number of users that rated that photo in the training set and p the number of photos that are
rated by both users. This is the computational cost for all the user similarities required for all
predictions, but of course the real values of n and m vary per prediction [1,8,23,29].

To calculate the actual prediction once the relevant user similarities are known, the
computational costs are O(k), where k is the number of nearest neighbors used for the
prediction [1,8,23,29].

The greatest memory costs is s, where s is the number of entries in the training set. Other
important memory costs are p? where p is the number of photos, when storing user similarity. In
practical use, there will not be similarity between every user [1,8,23,29].

3.4.2 Singular value decomposition (SVD)

The method used for doing SVD is the gradient descent Funk-SVD method [70], an approach to
finding the U and V matrices of the SVD as mentioned in the literature chapter.

The advantages of this method over normal SVD are:
e |t works a lot faster than most other SVD calculation methods
e The ratings the algorithm uses can be chosen, leading to less perturbations

The normal SVD approach has a computational cost of O((m+n)?), as elaborated upon in the
literature chapter. The implementation of the gradient descent solver of Funk-SVD has a
computational cost equal to the main loop explained below of O(k*p*q), where k is the rank, p
the number of training epochs and g the number of entries in the training set [70]. The Funk-SVD
working faster than the SVD means that it is easier to recalculate the U and V matrices once (a
lot of) new rating data has been added that can and should be used.

That the ratings can be chosen means that it does not have to fill in the missing entries with zero
or make other assumptions about them. This does not perturb the data, which will happen with
regular SVD, especially with the extreme number of missing values in the Paiq dataset. Another
advantage is that it only works on the existing items, so unlike the standard SVD calculation it
does not have to fill in the missing entries.

The cost of calculating a prediction from the resulting reduced matrix is the same for both

methods: a dot product of the corresponding row and column, being O(k) [25,70]. Storage space
requirements are also the same for both, being (m+n)*k for a reduced matrix with dimensions m
x n and order k, for storing the features. Memory requirements are s+((m+n)*k), where s is the
total number of entries in the training set, and (m+n)*k is the storage space cost.

A disadvantage is that Funk-SVD is prone to overfitting, so using regularization mechanisms is
important, as they help in preventing overfitting. Often with SVD, the values of the features will
become very good at describing the training data but be a bad generalization of the data, so that
with testing the validation data error will increase instead of decreasing. Regularization tries to
take into account that for photos and users for which there are only a few observations (few
entries in the training set), a few extreme values (outliers) will most likely not generalize to
extreme values for most users.

Another disadvantage is that the method is sensitive to the order of the training data. This can be
overcome by training multiple SVDs and combining their results, but doing this in a way that
does not just increase the computational cost is not straightforward. Changing the data order
also changes the ideal learning and regularization rates, as the first entries of the dataset have
more influence on the training simply by being used for training before the rest of the data. Also,
just randomly changing the data order does not seem to help as much as ordering it by some
pseudo-logical criteria. Ordering the data by deviation of the ratings from the average rating,
meaning taking the extreme ratings first and the averages ones later will probably not help, since
some extreme ratings might be important for training the SVD, while others might slow learning
down. Due to these reasons the tests were just carried out on the training set ordered by photo,
and no extra SVDs were done and combined.

Getting predictions with Funk-SVD starts with initiating two feature sets, one for the rows and
one for the columns of the original matrix. It takes arbitrary values for the features: either
manually or semi-randomly chosen, close to zero. For this experiment, a global initial value for all
features was used to make comparison testing easier.

Then for each training cycle, the algorithm derives the approximation error, in our case the MAE,
on the predictions for each entry in the training set by taking the first rank column-vector U, and
corresponding row-vector V, (the first feature). It tries to optimize these vectors as best as
possible by doing gradient descent. This entails a step-by-step adjustment of the feature values
so that the approximation error gets smaller each time, moving the error towards the derived
approximation error minimum. It then moves on to the next pair of vectors U, and V, (the second
feature), and tries to optimize those, and so on. The first vectors are the most significant ones,
then the second ones, and so on. Each extra pair of vectors increases number of features
(similar to the rank of the matrix decomposition) by 1. For clarification, the loops in the main
training algorithm are shown in algorithm 3.4.2.a.

For (each training epoch)
For (each feature)
For (each rating in the training set)
Calculate a prediction and the error (MAE) associated wit
this prediction
Increase the value of the features by a small amount that
lowers the error

Algorithm 3.4.2.a: SVD main training algorithm loop

3.4.3 Restricted Boltzmann machines (RBM)

RBM is implemented in a straightforward manner from the details found in the literature study.

This research used RBMs with binary states, where 0 is used for dislike and 1 for like to get
clear values . Every time a state is set for a rating in the training set, a random function chooses
a number between 0 and 1000. If the number is bigger than the rating, the state is set to 0 and if
it is smaller or equal to the rating it is set to 1.

Softmax visible units were not used because the number of softmax units per visible unit would
have to be 1000 to cover each possible rating, making both computational time and memory
constraints a problem. Continuous RBM was not used because of the large amount of training
ratings probably already makes up for the RBM having binary units instead and losing out on
some accuracy here.

The weights and biases are initialized with a Gaussian around 0.1, with a standard deviation of
1.0, as is often done in practical applications.

A CD (contrastive divergence) with rank 1, 3, 5 and 9 was used; the lowest one for the first 25%
of the training epochs, and then each subsequent 25% of the training epochs the following CD is
used: 3, 5 and 9. In practice, using rank 1 already seemed to work out well, but using the higher
ranks should make the RBM even more accurate in its training [79].

The learning rate was halved after half of the training epochs, and then halved again after
three-quarters of the training epochs. This is done because at that point the weights are already
converging and the smaller improvements become more important [75].

To train the RBM, the computational cost is O(h*e*s), where h is the number of hidden units, e
the number of training epochs and s the number of entries in the training set [73,78,79].

To calculate a prediction: O(v*h), where v is the number of visible units for that user that are
used and h the number of hidden units. A translation from visible units to hidden units and back
to visible units is made [73,78,79].

The memory costs for RBM are: s+5*v+5*h, where s is the number of entries in the training set,
h is the number of hidden units, v the number of visible units (equal to the number of photos),

[73,78,79]. Here, v*h stands for the weights, v+h for the biases, and the other v+h terms for the
temporary storage needed to do contrastive divergence.

4 Parameter estimation

This chapter shows how the values of the parameters of the algorithms were selected. Per
method it discusses the parameters that were trained, the validation of the parameters and
finally states which values were chosen for the parameters.

The parameters are the values of the methods that can be varied and thereby either increase or
decrease the MAE when changed. Each method’s parameters were chosen based on this
criterion.

For most of the parameters, there will be a tradeoff between performance and computation time.
The higher the precision of the algorithm, the greater the computational cost required to get to
this point. This research wants to find the settings where the improvement in precision is a large
improvement over other settings, but the additional computational time is still acceptable. Finding
this sweet spot is also what the validation phase is used for. The computational time of the
optimally selected parameter settings should be acceptable, which is arbitrary and depends on
the hardware and specific algorithm implementation used to calculate the predictions.

4.1 Nearest neighbor

4.1.1 Parameters

This is the parameter that was tested for KNN:
e Number of nearest neighbors k

The implementation of nearest neighbor used in this research has only one parameter that is
changed, which is the number of nearest neighbors to use, also known as the k in the term kNN.
Using a k that is too low will probably mean that the predictions will often lack information from
other neighbors that are also very near. Using a k that is too high will probably add information
from users that are too far away, meaning they have little nothing in common with the rating
behavior of the user the prediction is calculated for.

Because of limitations to the available hardware and time constraints, 1/10th of the entries in the
validation set were randomly selected and used for validation of the parameters. The test set run
is done over the entire test set to make sure the final results are derived from the exact same set
for all methods.

4.1.2 Validation of parameters

The chart containing error information on parameter settings is shown in chart 4.1.2.a.

Error on varying number of nearest neighbors

B tverage
200 validation set
MAE

Mean absolute error
o
ra

=

n
—_—
=
—
n

20 2

n

30 3

mn
e
=
i
£
in
=

MNumber of nearest neighbors
Chart 4.1.2.a: KNN error on varying number of nearest neighbors

The chart (4.1.2.a) shows that the best number of nearest neighbors to use is 35, which has a
slightly lower MAE than 34 and 36. Using a higher number adds information from unwanted
neighbors.

4.1.3 Selected parameters

The selected values for the parameters are:
e Number of nearest neighbors: 35

4.2 Singular value decomposition

4.2.1 Parameters

These are the parameters that were tested for SVD, with the used default values:
e Number of features: 40

Initial value of features: 0.1

Number of training epochs: 100

Learning rate: 0.000001

Regularization: 0.025

These default values were suggested in Funk-SVD references, for example in [70,80].

The number of features corresponds to the number of properties that try to generalize the data,

which is the number of different categories that the SVD tries to categorize the ratings into.
Probably when adding more features, the mean absolute error decreases, but at some time all
meaningful properties have been described, and adding more features does not really decrease
the error in a noticeable way, but does increase computational time.

The features are updated by doing multiplications over previous values, starting of course with
the initial value. If the initial values are set too low or too high, it will take a long time for the model
to find its settings with the smallest MAE.

A training epoch is one pass of all features over all training data. Per rating in the training set,
each feature is adjusted a bit in the direction of the error. Using more training epochs would
essentially decrease the error each time, but after some time each extra training epoch is
redundant because the minimum error has already been reached, and because it will cause
more overfitting. Not having enough training epochs will stop the training before the feature
settings with minimal error have been found.

The learning rate is the rate by which the values of the features change each training run. If it is
set too low it will increase computational time and if it is set too high the features can pass over
the global minimum.

With regularization, when training a user feature-photo feature combination, the prior value of the
other feature is taken into account and subtracted from the learning rate. A low regularization
rate will not prevent overfitting as much, while a too high regularization rate will negate learning
too much and just generalize all features.

The default values of the parameters gives the following mean absolute error:
e Validation set: 188.256

4.2.2 Validation of parameters

Chart 4.2.2.a shows the error that comes with varying the number of features.

Error on varying number of features

188.6 W validation
set MAE
188.48
5
£ 18838
Z
g 188.24
0
[1:]
—
T 188.12
=
188
187.88
10 40 70 100 130

Number of features
Chart 4.2.2.a: SVD error on varying number of features

As can be seen in the graph, the MAE declines by increasing the number of features used in the
SVD, as expected. However, this is a converging process, meaning that the decrease in mean
absolute error gets smaller with every extra added feature. The best tradeoff between MAE and
computational cost was set on 50 features. Overfitting might happen at some point when using
even more features, but this was not researched.

Chart 4.2.2.b shows the error when varying the initial value of the features.

Error on varying initial value of features

190 W validation
set MAE
189
5
2
o 188
E
[
G
= 187
18]
L+ F]
=
186
185
0 0.04 0.1 1

Initial value of feafures
Chart 4.2.2.b: SVD error on varying initial value of features

The best initial value of features seems to be 2.5, looking at the graph. This is where validation
set MAE is at its lowest. When the initial value is set lower or higher, there are not enough
training epochs to get to a lower MAE, meaning that for 200 training epochs 2.5 is the optimal
value of the initial features.

When changing the number of training epochs, the mean absolute error changes as shown in
chart4.2.2.c.

Error on varying number of training epochs

188 4 I Validation
zet MAE

187.3

186.2

Mean absolule envror

1851

184
100 300 500 700 a00

Mummber of training epochs
Chart 4.2.2.c: SVD error on varying number of training epochs

As with the number of features, the mean absolute error keeps decreasing as an asymptote
when increasing the number of training epochs. This is because adding more training epochs
gives the algorithm better time to converge to the global minimum. It was expected that after
some time overfitting would occur, but this is not the case. This can mean that the data in the
training set is a really good generalization of the data in the validation set, or that this method
creates a generalization of the data based on inherent properties between ratings in both the
training and validation sets, which likely could be the average photo scores. This furthermore
means having to find a sweet spot here instead of finding the minimum and taking that as the
selected parameter setting. Here, 600 training epochs were chosen, because the improvement
of adding another 100 training epochs (and having 700 training epochs total) only improves the
final resulting mean absolute error is less than 0.05.

Chart 4.2.2.d presents the error that belongs to varying the learning rate.

Error on varying learning rate

189 B Vvalidation
set MAE
N 188
S
T
P
=
g 187
£
Li+]
ey
1+
ki
= 186
185

0.000001
0.000M
0.0001

Learning rate

Chart 4.2.2.d: SVD error on varying learning rate

With the learning rate a minimum can be found that can be used as the best setting. The
number 0.000007 was chosen as the optimized learning rate.

Chart 4.2.2.e shows the mean absolute error on varying the regularization:

Error on varying regularization

188.26 W validation
set MAE

. 188.255
=
o
&
= 183.25
O
15
[el
o
[E)
= 488245

183.24

0.01 0.1 i

Regularization
Chart 4.2.2.e: SVD error on varying regularization

The regularization is a parameter where there is a minimum, at 1. This is the optimized
parameter setting taken for testing. Since the differences are small, it seems that regularization

has little effect on the outcome of the SVD. Why this is will be further explained in the discussion
in the next chapter.

4.2.3 Selected parameters

The selected values for the parameters are:
Number of features: 50

Initial value of features: 2.5

Number of training epochs: 600
Learning rate: 0.000007
Regularization: 1

4.3 Restricted Boltzmann machines

4.3.1 Parameters

These are the parameters that were tested for RBM, with the used default values:
e Number of hidden units: 20
e Number of training epochs: 200
e Learning rate: 0.001

As with the SVD approach, the parameter values were adapted from practical references such
as [78,79,80], mixed with own insights about the dataset and computational costs.

The hidden units are comparable to the features of the SVD. It is expected that adding more
hidden units leads to a decrease in MAE, but having too many hidden units only adds unneeded
computational time.

Just as with SVD, adding more training epochs decreases the MAE up to a certain point, but
after that it will increase MAE because of overtraining on the training set. For the RMB, because
contrastive divergence is used in four steps, the number of training epochs used in the model is
also tested in multiples of four.

The consequences of tweaking the learning rate is also the same as SVD: setting it too low
makes learning slow, and setting it too high makes it unable to get close to the global minimum
in MAE.

The RBM was trained five times with the default values of the parameters. These settings give
the following averaged mean absolute error:
e Validation set: 189.827

4.3.2 Validation of parameters

The semi-random initiation of RBM causes a slight variance in parameter testing results. To

counter this, all tests were carried out five times and their average MAE was taken as the MAE of
that model.

Chart 4.3.2.a shows the error that comes with varying the number of hidden units.

Error on varying number of hidden units

195 M Average
validation =et
194 MAE
5
= 193
L
= 192
0
o
5
= 191
=
190
189
10 20 a0 40 a0

Number of hidden units
Chart 4.3.2.a: RBM error on varying number of hidden units
This chart shows that increasing the number of hidden units until 15 decreases the MAE.

Increasing the number of hidden units further increases the MAE, meaning that 15 hidden units
best describes the underlying data, and using more hidden units overfits on the validation set.

Chart 4.3.2.b shows the error on varying the number of training epochs.

Error on varying number of training epochs

188.4 M Average
validation set
188.3 MAE

188.2
188.1

188

Mean absolute error

187.9

187.8
30 40 50 60 70 a0 80 100

MNumber of training epochs
Chart 4.3.2.b: RBM error on varying number of training epochs

The average MAE on the default number of training epochs of 200 is 189.827. This is not in the
chart to make the chart more focused on the number of training epochs with the lowest MAE.
The spikiness in the chart can be attributed to the semi-random initiation of RBM. To get clearer
results and a possibly smoother graph, more parameter tests could have been run. The selected
value of the parameter is 56.

The learning rate parameter tests are shown in chart 4.3.2.c.

Error on varying learning rate

o}
—
m

B Average
validation set
210 MAE

Meah absolute error

190

185
0.00001 0.00010 0.00100 0.01000

Learning rate

Chart 4.3.2.c: RBM error on varying learning rate

The best on the learning rate is 0.0007. It is important to note that the learning rate was halved
after 50% of the training epochs were done, and again halved after 75% was done, as explained
in implementation details of RBM in the experimental setup chapter.

4.3.3 Selected parameters

The selected values for the parameters are:
e Number of hidden units: 15
e Number of training epochs: 56
e Learning rate: 0.0007

5 Results and discussion

The first part of this chapter shows the results of the experiments, while the second part
discusses these results.

5.1 Results

This section describes the results of the predictions with the selected parameters on the test set
and shows several charts and metrics concerning the testing data.

For each method, the distribution of the ratings, the averaged MAE of the predictions and the
MAEs of the prediction over the real ratings are shown. Then, a scatter plot shows about 1/500
randomly chosen predictions (which is 2741 predictions) plotted against the real ratings for those
predictions. Finally, the ratings scale of 1-1000 is subdivided into five equal categories, starting
with 1-200, and the last being 801-1000, and shows the averaged MAE for all the predicted and
real ratings in those categories.

5.1.1 All average ratings distribution

Some stats for the AA baseline method on the test set are:
e MAE: 241.255
e Average prediction: 501 (rounded to full integer)

5.1.1.1 Ratings distribution

The ratings distribution for the AA is not that interesting, since all predictions were the same
rating. The same goes for its error distribution over predicted ratings, which is equal to the test
set error of 241.255 for the rating 501.077. The average error of the AA predictions over the real
ratings are shown in chart 5.1.2.1.a, showing an expected average error that is equal to the
absolute value of (501.077 - the real rating).

Average error of AA over real ratings

400

300

M MAE

Chart 5.1.2.1.a: Average error of AA over real ratings

5.1.1.3 Rating range errors

When merging a range of ratings per 200 ratings, the following average errors on the predicted

ratings are shown in table 5.1.1.3.a.

Predicted ratings range Averaged MAE per range Number of ratings
1-200 0 0

201-400 0 0

401-600 241.255 1,370,471

601-800 0 0

801-1000 0 0

Average / Total 241.255 1,370,471

Table 5.1.1.3.a: AA predicted ratings range errors and count

This is obvious, because all predictions are made at the global photo average.

And the average errors on the real ratings are in table 5.1.1.3.b.

Real ratings range Averaged MAE per range Number of ratings
1-200 393,019 261,509

201-400 197.824 279,268

401-600 49.307 284,216

601-800 194.529 276,959

801-1000 389.988 268,519

Average / Total 241.255 1,370,471

Table 5.1.1.3.b: AA real ratings range errors and count

5.1.2 Average photo ratings distribution

Some stats for the PA baseline method on the test set are:
e MAE: 186.862
e Average prediction: 501.176

5.1.2.1 Ratings distribution

The distribution of predicted ratings for the PA is equal to the average photo ratings frequency
histogram shown in chart 3.2.1.b, as it uses the average photo ratings as predictions.

The average error of PA predictions produce chart 5.1.2.1.b.

Average error of PA predictions

400 W MAE

300

100

100 200 500 700 800

Predicted rating

Chart 5.1.2.1.b: Average error of PA predictions

A total of seven merged ratings with total count eleven were taken out to improve clarity of the
above chart:

A MAE of 910 on one 51 rating

A MAE of 894 on one 894 rating

A MAE of 678 on two (averaged) 903 ratings

A MAE of 685 on one 959 rating

A MAE of 520 on two (averaged) 961 ratings

A MAE of 669 on one 973 rating

A MAE of 705 on three (averaged) 982 ratings

The chart shows that the error tops between the ratings of 450 and 600, and tapers off at both
sides. The absolute outliers can have a high or low error, or anything in between, due to these
having a relatively low count.

And the average error of PA over real ratings:

Average error of PA over real ratings

G600 B WAE

450

100 300 500 Fo0 a00

Real rating
Chart 5.1.2.1.c: Average error of PA over real ratings

The above chart shows that most photos that had a true rating close to the global photo average
of 501 had the least error in prediction, and photos further away have on average a greater error.

5.1.2.2 Scatter plot

Chart 5.1.2.2.a shows the scatter plot for PA. The most important thing it shows it that the main
predicted ratings are at least somewhat equal to the real rating. There are few low predicted

ratings for the higher real ratings, and not many high predicted ratings for the low real ratings.

PA scatter plot
1000

750

500

Fredicted rating

250

0 250 500 750 1000

Real rating

Chart 5.1.2.2.a: PA scatter plot of predicted ratings vs real ratings

5.1.2.3 Rating range errors
When merging a range of ratings per 200 ratings, the average errors on the predicted ratings as
displayed in table 5.1.2.3.a are found.

Predicted ratings range Averaged MAE per range Number of ratings
1-200 127.819 52,011

201-400 174.161 339,384

401-600 201.942 556,776

601-800 186.832 400,717

801-1000 139.823 21,461

Average / Total 186.857 1,370,349

Table 5.1.2.3.a: PA predicted ratings range errors and count

And the average errors on the real ratings are shown in table 5.1.2.3.b.

Real ratings range Averaged MAE per range Number of ratings
1-200 252.365 261,487

201-400 164.156 279,243

401-600 115.004 284,190

601-800 153.445 276,928

801-1000 257.210 268,501

Average / Total 186.862 1,370,349

Table 5.1.2.3.b: PA real ratings range errors and count

5.1.3 Nearest neighbor

Some stats for the selected values of the parameters on the KNN method are:
e Training set MAE: 181.334
e Testset MAE: 182.552
e Average prediction on test set: 504.942

5.1.3.1 Ratings distribution

The distribution of predicted ratings for KNN shown in chart 5.1.3.1.a shows a mountainous
curve. Most ratings are around the global photo average of 501 and the number of ratings tapers
off towards either side. The highest count of a predicted rating with 2.561 predictions is at a
rating of 597.

Distribution of KNN predictions

3000 B Count

2000

Count

1000

0 200 400 600 800

FPredicted rating

Chart 5.1.3.1.a: Distribution of kNN predictions

The average error of kNN predictions produce chart 5.1.3.1.b. The errors are distributed in a hill
in somewhat the same way again as that of the PA. A total of six merged ratings with total count
nine were taken out to improve the clarity of the chart:

e A MAE of 768 on one 17 rating

e A MAE of 618 on two (averaged) 972 ratings

e A MAE of 510 on one 401 rating

Average error of kNN predictions

&00 B WAE
450
G 300
Li]
150
0
0 200 400 600 800
Predicted rating

Chart 5.1.3.1.b: Average error of kNN predictions

And the average error of KNN over the real ratings are in chart 5.1.3.1.c. This chart shows that
the algorithm’s predictions have a higher error on the real lower and higher ratings compared to
the middle ratings around 500.

Average error of KNN over real ratings

B00 B AE

450

Errar

300

150

0 200 400 600 800

Real rating
Chart 5.1.3.1.c: Average error of kNN over real ratings

5.1.3.2 Scatter plot
Chart 5.1.3.2.a shows the scatter plot for kKNN. This scatter plot is quite similar to the one for PA.

kNN scatter plot
1000

750

500

Fredicted raling

250

0 250 500 750 1000

Real rating
Chart 5.1.3.2.a: kNN scatter plot of predicted ratings vs real ratings

5.1.3.3 Rating range errors
When merging a range of ratings per 200 ratings, the following average errors on the predicted
ratings are found as shown in table 5.1.3.3.a.

Predicted ratings range Averaged MAE per range Number of ratings
1-200 124.441 94,733

201-400 176.075 332,700

401-600 201.529 466,403

601-800 187.882 403,315

801-1000 136.893 73,125

Average / Total 182.553 1,370,276

Table 5.1.3.3.a: kNN predicted ratings range errors and count

And the average errors on the real ratings are in table 5.1.3.3.b.

Real ratings range Averaged MAE per range Number of ratings
1-200 233.431 261,467

201-400 169.620 279,231

401-600 133.403 284,176

601-800 154.731 276,917

801-1000 227.176 268,485

Average / Total 182.553 1,370,276

Table 5.1.3.3.b: kNN real ratings range errors and count

5.1.4 Singular value decomposition

Some stats for the selected values of the parameters on the SVD method are:
e Training set MAE: 183.268
e Testset MAE: 185.264
e Average prediction on test set: 500.701

5.1.4.1 Ratings distribution

The distribution of predicted ratings for the SVD shown in chart 5.1.4.1.a shows a similar
mountainous curve to that of the KNN. The SVD has its highest count of a predicted rating with
3.030 predictions ending up at 553.

Distribution of SVD predictions

4000 B Count

3000

2000

Count

1000

0 200 400 600 800
Predicted rating
Chart 5.1.4.1.a: Distribution of SVD predictions
The average error of SVD predictions produce chart 5.1.4.1.b. A total of 2 merged ratings with
total count 2 were taken out to improve clarity of the chart:

e A MAE of 544 on one 44 rating
e A MAE of 913 on one 48 rating

Average error of SVD predictions
400

W WAE
300

200

100

100 300 500 700 a00

FPredicted rating
Chart 5.1.4.1.b: Average error of SVD predictions

And the average error of SVD over the real ratings are in chart 5.1.4.1.c. This chart shows the
same thing for SVD as for kNN: a higher error on the real lower and higher ratings compared to

the middle ratings around 500.

Average error of 3VD over real ratings

&00 B WAE
450
g 300
L]
150
a0
100 200 500 700 900
Real rating

Chart 5.1.4.1.c: Average error of SVD over real ratings

5.1.4.2 Scatter plot
Chart 5.1.4.2.a shows the scatter plot for SVD. This one is again quite similar to the ones for PA

and kNN.

SVD scatter plot

1000
750
2
IS
2 500
o
5
1]
@
250

0 250 500 750 1000

Real rating

Chart 5.1.4.2.a: SVD scatter plot of predicted ratings vs real ratings

5.1.4.3 Rating range errors

When merging a range of ratings per 200 ratings, the following average errors on the predicted
ratings are found as shown in table 5.1.4.3.a.

Predicted ratings range Averaged MAE per range Number of ratings
1-200 131.966 54,741

201-400 175.511 345,379

401-600 201.358 550,048

601-800 183.661 386,367

801-1000 127.656 33,814

Average / Total 185.263 1,370,349

Table 5.1.4.3.a: SVD predicted ratings range errors and count

And the average errors on the real ratings are in table 5.1.4.3.b.

Real ratings range Averaged MAE per range Number of ratings
1-200 248.209 261,487

201-400 162.039 279,243

401-600 115.930 284,190

601-800 154.921 276,928

801-1000 252.797 268,501

Average / Total 185.264 1,370,349

Table 5.1.4.3.b: SVD real ratings range errors and count

5.1.5 Restricted Boltzmann machines

When taking the averaged error of five test runs, some stats for the selected values of the
parameters on the RBM method:

e Training set MAE: 185.026

e Testset MAE: 187.438

e Average prediction on test set: 501.662

For the ratings distribution and ratings range errors, one run was arbitrarily selected to go

in-depth into.

5.1.5.1 Ratings distribution

The distribution of predicted ratings for the RBM as shown in chart 5.1.5.1.a also shows a similar
mountainous curve to that of the KNN and SVD. For RBM the highest amount of predictions with
predictions is 3.172 predictions ending up at 524.

Distribution of RBM predictions

4000 B Count

3000

2000

Count

1000

0 200 400 g00 200

Predicted rating
Chart 5.1.5.1.a: Distribution of RBM predictions

The average error of RBM predictions produce chart 5.1.5.1.b. The errors are distributed in a hill

in somewhat the same way again as that of the other methods. No ratings were taken out in this
chart.

Average error of RBM predictions

500 B MAE
375
g 250
LLj
125 .
0
100 200 500 700 900
Predicted rating

Chart 5.1.5.1.b: Average error of RBM predictions
And the average error of RBM over the real ratings are in chart 5.1.5.1.c. It shows the same thing

for RBM as the similar SVD chart did for KNN: a higher error on the real lower and higher ratings
compared to the middle ratings around 500.

Average error of RBM over real ratings

600 B MAE
450
S 300
Lij
150
0
100 300 500 700 900
Real rating

Chart 5.1.5.1.c: Average error of RBM over real ratings

5.1.5.2 Scatter plot

Chart 5.1.5.2.a shows the scatter plot for RBM. This chart is again quite similar to the scatter
plots for PA, kNN and SVD.

RBM scatter plot

1000

750

500

Predicted raling

250

250 500 750

Real rating

1000

Chart 5.1.5.2.a: RBM scatter plot of predicted ratings vs real ratings

5.1.5.3 Rating range errors
When merging a range of ratings per 200 ratings, the following average errors on the predicted

ratings are found as shown in table 5.1.5.3.a.

Predicted ratings range Averaged MAE per range Number of ratings
1-200 113.771 55,530

201-400 172.502 331,659

401-600 203.903 561,592

601-800 187.250 397,777

801-1000 128.226 23,791

Average / Total 185.829 1,370,349

Table 5.1.5.3.a: RBM predicted ratings range errors and count

And the average errors on the real ratings are in table 5.1.5.3.b.

Real ratings range Averaged MAE per range Number of ratings
1-200 252.188 261,487

201-400 164.865 279,243

401-600 114.498 284,190

601-800 152.531 276,928

801-1000 256.289 268,501

Average / Total 187.438 1,370,349

Table 5.1.5.3.b: RBM real ratings range errors and count

5.2 Discussion

Because PA is a far better baseline method than AA, and has the same linear computational and
memory costs as PA, AA is not considered as one of the relevant methods that will be
discussed in this section, whereas PA, kNN, SVD and RBM are.

In any machine learning recommender system, after some time overfitting will occur during
training, but this is not the case in this experiment. This can mean that the data in the training set
is a good generalization of the data in the validation set, or that this method creates a
generalization of the data based on inherent properties between ratings in both the training and
validation sets, which likely could be the average photo scores. This is probably due to noise in
the dataset and that the models are not powerful enough to model the training set. The training
set MAE for the approaches are barely better than the test set MAE, and are not even close to 0.

5.2.1 Overall performance

The performance of all relevant methods (thus meaning PA, kNN, SVD and RBM, but excluding
AA) is close when purely looking at their MAE on the test set. Table 5.2.1.a shows the MAE for all
the important methods. It shows that kNN is the best performer here, but only 4.130 points better
than the next best method, and only 2.712 points better than the worst method.

PA kNN SVD RBM

MAE 186.862 182.552 185.264 187.438
Table 5.2.1.a: MAE for all important methods

Table 5.2.1.b shows the average predicted rating for all important methods. The average
prediction of SVD and RBM only differs by 0.193, while the average kNN prediction of 504.942
differs with 3.28 points from the nearest method (RBM). In a blend, mixing the predictions of KNN

and either SVD or RBM would probably work better than mixing SVD and RBM.

PA kNN SVD RBM

Average rating | 501.176 504.942 500.701 501.662
Table 5.2.1.b: Average predicted rating for all important methods

The likely reason that the machine learning approaches work only one to five MAE points better
than the PA baseline method is due to the dataset that was used. The dataset is constructed of
data that does not have clearly specified ratings per photo by a user as in other recommendation
systems, but instead is made up of batches of fifty photos that are put in order of preference by
the user and then given somewhat arbitrary ratings by the software. Furthermore, the user will
often not carefully put the photos in order but might only do this with photos he or she finds
interesting, often resulting in more arbitrary ratings from the user for most photos. There is
simply too much noise in the dataset to make the machine learning approaches perform clearly
better than the PA baseline method. This might mean that only the low and high ratings are
actually meaningful, which will be discussed in the next section.

The reasons stated in the above paragraph also made it unlikely for a blending method to lower
the MAE in a way that made up for the noise in the data set. Therefore, blending was not
experimented with any further in this research after the literature study.

5.2.2 Ranges of ratings distribution

Table 5.2.2.a shows the predicted ratings range for all relevant methods. This table shows that
even though kNN is overall a better performer than SVD and RBM (as concluded in the
discussion of the overall performance of the methods), RBM performs best in the 1-200 range,
making RBM the top choice when looking to make predictions in the 801-1000 range.

Predicted PA kNN SVD RBM
ratings range

1-200 127.819 124.441 131.966 113.771
201-400 174.161 176.075 175.511 172.502
401-600 201.942 201.529 201.358 203.903
601-800 186.832 187.882 183.661 187.250
801-1000 139.823 136.893 127.656 128.226
Average / Total | 186.857 182.553 185.263 185.829

Table 5.2.2.a: Predicted ratings range for all relevant methods

Table 5.2.2.b shows the number of ratings for all important methods for the ratings ranges. Even
though SVD (and RBM) are the best performers in the 801-1000 ratings range, they have less

than half the number of predictions in that ratings range of kKNN.

Predicted PA kNN SVD RBM
ratings range

1-200 52,011 94,733 54,741 55,530
201-400 339,384 332,700 345,379 331,659
401-600 556,776 466,403 550,048 561,592
601-800 400,717 403,315 386,367 397,777
801-1000 21,461 73,125 33,814 23,791
Average / Total | 1,370,349 1,370,276 1,370,349 1,370,349

Table 5.2.2.b: Number of ratings for ratings ranges for all relevant methods

As the focus of this research is to get as many high quality predictions in the high rating ranges
of 801-1000 as possible, the overall best performers here is SVD. RBM is a close second, with
their MAE only differing by 0.57. However, RBM has almost 30% less predictions than SVD,
meaning that SVD seems to be the better algorithm to use when looking at both quality and
quantity of the predictions. KNN can also be used when needing more predictions while
sacrificing some quality.

5.2.3 Computational cost

This section compares both the offline (preliminary work) and the online (calculating the actual
predictions using the preliminary work) computational costs of the relevant methods. For
information on the terms used in the table see the implementation details of the methods in the
experimental setup chapter.

Table 5.2.3.a shows the offline computational cost of the relevant methods. PA is clearly the
fastest method, whereas the offline performance of both SVD and RBM were close. The kNN
approach did not have an offline computational cost.

PA kNN SVD RBM

O(k*p*q)

Offline O(s-p) -
Computational cost

O(h*e*s)

Table 5.2.3.a: Offline computational cost for all relevant methods

In practice, the online computational costs are much more important, as these have to be

calculated quickly when needing predictions in a small timeframe. These are shown in table
5.2.3.b, showing that PA is clearly the fastest here. The SVD and RBM methods’ performances
are quite close to each other, with the slight edge to SVD as even though three terms are of SVD
is to the third, in practice the RBM is slightly slower. The problem with kNN is that it scaled way
worse because it does the entire calculation online per separate prediction, while the SVD and
RBM do a lot of work in the offline computation. And while SVD and RBM were by far fast enough
in practice with calculating predictions after the offline computations were done, for kNN all of the
calculations were done in the online part. This means that the best machine learning algorithms
in this category here are SVD and RBM, over kNN.

Keep in mind that in table 5.2.3.b the term k in the order for KNN and SVD stand for different
things (number of nearest neighbors versus order of the matrix decomposition).

PA kNN SVD RBM

Online 0(1) O((m*p)+(k)) O(k) O(v*h)
Computational cost

Table 5.2.3.b: Online computational cost for all relevant methods

For kNN, calculating the nearest neighbors could be done beforehand, but this means a lot of
redundant work because most user similarity that would have been calculated cannot be used to
create the predictions for the exact photo-user combinations that were in the test set. This was
not doable for the hardware used so was not done in this experiment.

5.2.4 Memory cost

As can be seen in table 5.2.4.a, PA is also the best method when considering the memory cost.
The most expensive costs between the offline and online part of the algorithms are shown. SVD
and RBM were both efficient enough in terms of memory so their cost was never an issue. The
memory costs of KNN were a problem on the experiments, since kNN requires a lot more
specialized data structures to store the sets for fast retrieval using hash maps. Iterators could be
used for SVD and RBM to walk over the training entries.

PA kNN SVD RBM

Memory cost o] 2*s + p? s+((m+n)*k) s+5*v+5*h

Table 5.2.4.a: Memory costs for all relevant methods

The storage cost is not big enough to be an issue for the training and test sets in this research.

6 Conclusion

This chapter answers the research questions, presents possible options for future work and
suggests recommendations to Paiq.

6.1 Answering the research questions

Having done the evaluation of the methods in the previous chapter, the research questions are
answered below.

R1.Which of the researched machine learning approaches or baseline methods is best for
creating recommendations on the Paiq dataset considering accuracy?

The kNN method is the best machine learning approach for creating recommendations on the
Paiq dataset considering accuracy, as it has the lowest overall MAE of 182.552. It is slightly
better than the other methods, only differing with the highest overall MAE of RBM by 4.886. The
PA baseline method is best to use if either computational cost or memory costs are an issue.

a. Which of the researched machine learning approaches or baseline methods is
best for creating predictions on the higher rating range, considering accuracy?

SVD is the best machine learning approach for this research question, as it has the lowest MAE
of 127.656 on the 801-1000 rating range. The MAE of RBM on this rating range is only slightly
higher (128.226) and is therefore a good alternative to SVD. It is best to use kNN if the MAE of
136.893 is deemed to be low enough, giving over twice the amount of predictions that any of the
other methods do.

R2.Which of the researched machine learning approaches is best for creating
recommendations on the Paiq dataset considering computational and memory costs?

The answer is two approaches: both the computational and memory costs of SVD and RBM are
quite similar, with a slight edge to the SVD due to computational cost.

6.2 Future work

This section shows some possible approaches for future work:

e Refine the machine learning approaches:

o Using refinements such as a continuous RBM (CRBM) that replaces the binary
stochastic unit by a continuous one, exchanging its deterministic behavior for
binary-stochastic behavior [72].

e Change the dataset:

o Remove more noise from the database’.
o Only train on the low/high scoring ratings.
e Change the type of machine learning algorithm:
o Use a ranking machine learning algorithm, one that orders the predictions instead
of calculating hard errors.
e Change the rating system:
o Using a different rating system where the user’s input is directly converted to a
photo rating should clear up a lot of noise. The entire dataset will have to be rebuilt
though.

6.3 Recommendations to Paiq

This research has shown that using a baseline recommender is almost as effective MAE-wise
as machine learning methods because of the noise in the Paiq dataset, but that the SVD method
provides the best quality predictions in the higher rating ranges. Therefore this research
suggests that if Paiq were to implement an algorithm, it implements SVD and uses it for its
predictions in the higher rating range, or kNN if needs more predictions in the higher rating
ranges than SVD can give. Taking into account the scalability issues of kNN as well as its lower
performance on the 801-1000 ratings range, the recommendation is to not use kNN, unless the
higher number of predictions in that ratings range for kNN is required. RBM can be used as an
alternative for SVD.

Other options are to change the photo rating app to either:
e Let people straight up give ratings from 1 to 10.
e Pair photos against another, and using all ratings information for a person to give the
photos a rating, instead of just using a set of 50 photos.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Gediminas Adomavicius and Alexander Tuzhilin; Towards the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions; IEEE Transactions on
Knowledge and Data Engineering archive, Volume 17 Issue 6, June 2005, Page 734-749

Carme Julia, Angel D. Sappa, Felipe Lumbreras, Joan Serrat, Antonio Lépez; Predicting Missing
Ratings in Recommender System: Adapted Factorization Approach; International Journal of
Electronic Commerce, Winter 2009-10, Vol. 14, No. 2, pp. 89-108; M.E. Sharpe, Inc. Copyright
2009

Kangning Wei, Jinghua Huang, Shaohong Fu; A survey of e-commerce recommender systems;
Tsinghua University and Beijing Normal University, China

Kangas, S.; Collaborative Filtering and Recommendation Systems; Research Report TTE4-2001-35
Mark Claypool, Phong Le, Makoto Waseda and David Brown; Implicit Interest Indicators; 1UI'01,
January 1417, 2001, Santa Fe, New Mexico, USA.

Diane Kelly, Jaime Teevan; Implicit Feedback for Inferring User Preference: A Bibliography;
Newsletter ACM SIGIR Forum Homepage archive Volume 37 Issue 2, Fall 2003 Pages 18 - 28
Douglas W. Oard, Jinmook Kim; Implicit Feedback for Recommender Systems; Published in 1998,
pages 81-83. Technical Report WS-98-08. AAAI Press, in AAAI Workshop on Recommender
Systems, Madison, WI.

Xiaoyuan Su and Taghi M. Khoshgoftaar; A Survey of Collaborative Filtering Techniques; Journal
Advances in Atrtificial Intelligence archive Volume 2009, January 2009 Article No. 4 Hindawi
Publishing Corp. New York, NY, United States

Lam, S.T.K., Ried|, J.; Shilling Recommender Systems for Fun and Prot; Journal Advances in
Atrtificial Intelligence archive Volume 2009, January 2009 Article No. 4 Hindawi Publishing Corp.
New York, NY, United States

Chirita, P-A., Nejdl, W., Zamfir, C.; Preventing shilling attacks in online recommender systems;
WIDM’05 Bremen, Germany

Schein, A. ., A. Popescul, L. H. Ungar, and D. M. Pennock; Methods and metrics for cold-start
recommendations; In Proc. of the 25th Annual Intl. ACM SIGIR Conf., 2002

Brand, M.; Fast online SVD revisions for lightweight recommender systems; In <<ed.>> SIAM
Conference on Data Mining. Montreal: <<publisher>> 2003, pp. 37—-46.

Herlocker, J. L., J. A. Konstan, L. G. Terveen, and J. T. Riedl; Evaluating Collaborative Filtering
Recommender Systems; ACM Transactions on Information Systems, 22(1):5-53, 2004

Martin Ester, Hans-Peter Kriegel, Joérg Sander, Xiaowei Xu; A density-based algorithm for
discovering clusters in large spatial databases with noise; 2nd International Conference on
Knowledge Discovery and Data Mining (KDD-96)

Herlocker, J. L., J. A. Konstan, A. Borchers, and J. Riedl; An algorithmic framework for performing
collaborative filtering; In Proc. of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’99). 1999

Mooney, R. J. and L. Roy; Content-based book recommending using learning for text
categorization; In ACM SIGIR'99. Workshop on Recommender Systems: Algorithms and
Evaluation, 1999

Robert M. Bell, Yehuda Koren and Chris Volinsky; The BellKor solution to the Netflix Prize; Netflix
Prize (2007), related to ICDM'2007 and KDD-Cup '2007 papers

Shanhong Luo and Guangjian Zhang; What Leads to Romantic Attraction - Similarity, Reciprocity,
Security, or Beauty - Evidence From a Speed-Dating Study; Journal of Personality, Vol. 77, No. 4.,

19.

20.

21,

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

pp. 933-964

Kumar, R., P. Raghavan, S. Rajagopalan, and A. Tomkins; Recommendation Systems: A
Probabilistic Analysis; Journal of Computer and System Sciences, 63(1): pp42-61, 2001
Abdelwahab, Amira Sekiya, Hiroo; Matsuba, Ikuo; Horiuchi, Yasuo; Kuroiwa, Shingo; Nishida,
Masafumi; An Efficient Collaborative Filtering Algorithm using SVD-free Latent Semantic Indexing
and Particle Swarm Optimization; International Conference on Natural Language Processing and
Knowledge Engineering, 2009. NLP-KE 2009. 24-27 Sept. 2009

Jon Herlocker, Joseph A. Konstan, John Riedl; An Empirical Analysis of Design Choices in
Neighborhood-Based Collaborative Filtering Algorithms; Journal, Information Retrieval archive,
Volume 5 Issue 4, October 2002, Pages 287 - 310

Shardanand, U. and P. Maes; Social information filtering: Algorithms for automating ‘word of mouth’;
In Proc. of the Conf. on Human Factors in Computing Systems, 1995

Yehuda Koren and Robert Bell; Advances in Collaborative Filtering; Recommender Systems
Handbook, 2011, pp 145-186

Yehuda Koren; Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model;
Proceeding KDD '08 Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining Pages 426-434

Sarwar, M.; Karypis, G.; Konstan, J.; and Riedl, J.; Application of dimensionality reduction in
recommender system - a case study; In Workshop on Web Mining for E-Commerce. Boston:
2000, pp. 133-151

Katz, G.; Shani, G.; Shapira, B.; Rokach, L.; Using Wikipedia to Boost SVD Recommender
Systems; arXiv preprint arXiv:1212.1131; Dec 5, 2012

Koren, Y.; The BellKor Solution to the Netflix Grand Prize; August 2009

Bell, R.M.; Koren, Y.; Volinsky, C.; Modeling Relationships at Multiple Scales to Improve Accuracy
of Large Recommender Systems; Conference on Knowledge Discovery and Data Mining, KDD’07,
August 12-15, 2007, San Jose, California, USA

Andoni, A.; Indyk, P.; Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High
Dimensions; COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1

Liu, T.; Moore, AW.; Gray, A.; Yang, K.; An Investigation of Practical Approximate Nearest
Neighbor Algorithms; In proceedings of Neural Information Processing Systems(NIPS 2004),
Vancouver, BC, Canada, 2004

Beis, J.S.; Lowe, D.G.; Shape Indexing Using Approximate Nearest-Neighbour Search in
High-Dimensional Spaces; 1997 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 17-19 Jun 1997, Page(s): 1000 - 1006

Athitsos, V.; Potamias, M.; Papapetrou, P.; Kollios, G.; Nearest Neighbor Retrieval Using
Distance-Based Hashing; Proceedings of IEEE International Conference on Data Engineering
(ICDE), 7-12 April 2008, Pages: 327 - 336

Slaney M., Casey M.; Locality-Sensitive Hashing for Finding Nearest Neighbors; IEEE Signal
Processing Magazine, Volume 25, Issue 2, p.128-131 (2008)

Bell, R.M.; Koren, Y.; Scalable Collaborative Filtering with Jointly Derived Neighborhood
Interpolation Weights; ICDM '07 Proceedings of the 2007 Seventh IEEE International Conference on
Data Mining, Pages 43-52

Sarwar, B., G. Karypis, J. Konstan, and J. Riedl; ltem-based Collaborative Filtering
Recommendation Algorithms; In Proc. of the 10th International WWW Conference, 2001

Kostelich, E.; Kuhl, D.; Introduction to SVD and Applications; MSRI Climate Change Summer
School, July 18, 2008

Sarwar, B.; Karypis, G.; Konstan, J.; Ried|, J.; Incremental Singular Value Decomposition
Algorithms for Highly Scalable Recommender Systems; 5th International Conference on Computer

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

and Information Technology (ICCIT), 2002

Billsus, D.; Pazzani, M.; Learning Collaborative Information Filters; In 15th International Conference
on Machine Learning. Madison, 1998, pp. 46-54.
http://www.cs.carleton.edu/cs_comps/0607/recommend/recommender/svd.html; Dimensionality
Reduction and the Singular Value Decomposition; Recommender systems, A Computer Science
Comprehensive Exercise Carleton College, Northfield, MN
http://www.igvita.com/2007/01/15/svd-recommendation-system-in-ruby/; Grigorik, I.; SVD
Recommendation System in Ruby: 1 January 2007

Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R.; Indexing by Latent
Semantic Analysis; Journal of the American Society for Information Science (1986-1998); Sep 1990;
41,6

Paterek, A.; Improving regularized singular value decomposition for collaborative filtering; Proc. KDD
Cup Workshop at SIGKDD'07, 13th ACM Int. Conf. on Knowledge Discovery and Data Mining
(2007), pp- 39-42

Stewart, G.W.; On the Early History of the Singular Value Decomposition; SIAM Review, Vol. 35,
No. 4 (Dec 1993), pp. 551-566

Berry, M.W.; Dumais, S.T.; O'Brien, G.W.; Using Linear Algebra for Intelligent Information Retrieval,
SIAM Review, Vol. 37, Issue 4, Dec. 1995, pp. 573 - 595

Kim, D.; Yum, B.-J.; Collaborative Filtering Based on Iterative Principal Component Analysis; Expert
Systems with Applications, Volume 28, Issue 4, May 2005, Pages 823—-830

Shardanand, U.; Social Information Filtering for Music Recommendation; CHI '95 Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, Pages 210-217

Elnaz B.; Comparing accuracy of cosine-based similarity and correlation-based similarity algorithms
in tourism recommender systems; ICMIT 2008. 4th IEEE International Conference on Management
of Innovation and Technology, 21-24 Sept. 2008, pages 469 - 474
http://brenocon.com/blog/2012/03/cosine-similarity-pearson-correlation-and-ols-coefficients/;
O'Connor, B.; Cosine similarity, Pearson correlation, and OLS coefficients

Sarwar, B. M.; Karypis, G.; Konstan, J. A.; Riedl, J.; Recommender Systems for Large-Scale
E-Commerce: Scalable Neighborhood Formation Using Clustering; 5th International Conference on
Computer and Information Technology (ICCIT), 2002

Gong, S.J.; A Collaborative Filtering Recommendation Algorithm Based on User Clustering and Item
Clustering; JOURNAL OF SOFTWARE, VOL. 5, NO. 7, JULY 2010, PAGES 745 - 752

Koren, Y.; Bell, R.; Volinsky, C.; Matrix Factorization Techniques for Recommender Systems;

IEEE Computer Magazine, Volume 42, Issue 8, p.30-37 (2009)

Jahrer, M.; Combining Predictions for Accurate Recommender Systems; KDD '10 Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, Pages
693-702

Zhang, Z.; Cuff, P.; Kulkarni, S.; lterative Collaborative Filtering for Recommender Systems with
Sparse Data; 2012 IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), Santander, Spain, 23-26 Sept. 2012, pp 1 -6

Huang, Z.; Zeng, D.; Chen, H.; A Comparison of Collaborative-Filtering Recommendation Algorithms
for E-commerce; Intelligent Systems Journal, IEEE, Sept.-Oct. 2007,Volume: 22, Issue: 5, pps: 68
-78

Kim, T.H.; Yang, S.B.; An Effective Recommendation Algorithm for Clustering-Based Recommender
Systems; AlI'05 Proceedings of the 18th Australian Joint conference on Advances in Atrtificial
Intelligence, Pages 1150-1153, Springer-Verlag Berlin, Heidelberg, 2005

Yao, Z.; Zhang, Q.; ltem-Based Clustering Collaborative Filtering Algorithm under High-Dimensional
Sparse Data; International Joint Conference on Computational Sciences and Optimization. CSO

http://www.google.com/url?q=http%3A%2F%2Fwww.igvita.com%2F2007%2F01%2F15%2Fsvd-recommendation-system-in-ruby%2F&sa=D&sntz=1&usg=AFQjCNECusRotqVFPqDRzOd_0yms_-5tKw
http://www.google.com/url?q=http%3A%2F%2Fwww.igvita.com%2F2007%2F01%2F15%2Fsvd-recommendation-system-in-ruby%2F&sa=D&sntz=1&usg=AFQjCNECusRotqVFPqDRzOd_0yms_-5tKw
http://www.google.com/url?q=http%3A%2F%2Fwww.igvita.com%2F2007%2F01%2F15%2Fsvd-recommendation-system-in-ruby%2F&sa=D&sntz=1&usg=AFQjCNECusRotqVFPqDRzOd_0yms_-5tKw
http://www.google.com/url?q=http%3A%2F%2Fbrenocon.com%2Fblog%2F2012%2F03%2Fcosine-similarity-pearson-correlation-and-ols-coefficients%2F&sa=D&sntz=1&usg=AFQjCNHNu_S0GBU1E-XPQOH-ND1KhU0x-Q

57.

58.
59.
60.
61.
62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.
75.

76.

77.

2009, 24-26 April 2009, Volume: 1, pps. 787 - 790

Miller, B. N., I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl; MovieLens Unplugged: Experiences
with an Occasionally Connected Recommender System; In Proceedings of the International
Conference on Intelligent User Interfaces, Miami, Florida, 2003

www.netflixprize.com; Netflix; Netflix prize website

http://www.grouplens.org/node/12; GroupLens; MovieLens Data Sets
http://www.informatik.uni-freiburg.de/~cziegler/BX/; Institut fir Informatik, Universitat Freiburg;
Book-Crossing Dataset

Ziegler, C.; McNee, S.; Konstan, J.; and Lausen, G.; Improving recommendation lists through topic
diversification; In International World Wide Web Conference. Chiba, 2005, pp. 22-32
http://eigentaste.berkeley.edu/dataset; Berkeley; Anonymous Ratings from the Jester Online Joke
Recommender System

Goldberg, K.; Roeder, T.; Gupta, D.; and Perkins, C.; Eigentaste: A constant time collaborative
filtering algorithm; Information Retrieval Conference, 4 (2001), 133-151

Abdelwahab, A.; Sekiya, H.; Matsuba, I.; Horiuchi, Y.; Kuroiwa, S.; Collaborative filtering based on
an iterative prediction method to alleviate the sparsity problem; iiWAS '09 Proceedings of the 11th
International Conference on Information Integration and Web-based Applications & Services, Pages
375-379, ACM New York, NY, USA

Xu, B.; Bu, J.; Chen, C.; Cai, D.; An Exploration of Improving Collaborative Recommender Systems
via User-ltem Subgroups; WWW '12 Proceedings of the 21st international conference on World
Wide Web, Pages 21-30, ACM New York, NY, USA

Yan, D.; Huang, L.; Jordan, M.I.; Fast Approximate Spectral Clustering; KDD '09 Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data minin, Pages
907-916, ACM New York, NY, USA, 2009

Balcan, M.F.; Blum, A.; Gupta, A.; Approximate Clustering without the Approximation; SODA '09
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, Pages
1068-1077, Society for Industrial and Applied Mathematics Philadelphia, PA, USA

Klema, V.C.; Laub, A.J.; The Singular Value Decomposition: Its Computation and Some
Applications; IEEE Transactions on Automatic Control, Apr 1980, Massachusetts Institute of
Technology, Cambridge, MA, USA, Volume: 25, Issue: 2, pages: 164 - 176

Bell, R.M.; Koren, Y.; Lessons from the Netflix Prize Challenge; ACM SIGKDD Explorations
Newsletter - Special issue on visual analytics, Volume 9 Issue 2, December 2007, Pages 75-79 ,
ACM New York, NY, USA

http://sifter.org/~simon/journal/20061211.html; Funk, S.; Netflix Update: Try This at Home; Monday,
December 11, 2006

Salakhutdinov, R.; Mnih, A.; Probabalistic Matrix Factorization; ICML ’'08: Proceedings of the 25th
International Conference on Machine Learning

Chen, H.; Murray, A.F.; Continuous restricted Boltzmann machine with an implementable training
algorithm; IEE Proc.-Vis. Image Signal Process., Vol. 150, No. 3, June 2003

Salakhutdinov, R.; Mnih, A.; Hinton, G.; Restricted Boltzmann Machines for Collaborative Filtering;
24th International Conference on Machine Learning, Corvallis, OR, 2007

Carreira-Perpinan, M.A.; Hinton, G.; On Contrastive Divergence Learning

Fischer, A.; Igel, C.; An Introduction to Restricted Boltzmann Machines; L. Alvarez et al. (Eds.):
CIARP 2012, LNCS 7441, pp. 14-36, 2012

Smolensky, P.; Information processing in dynamical systems: Foundations of harmony theory;
Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1: Foundations, pp. 194—281

Hinton, G.E., Salakhutdinov, R.R.; Reducing the dimensionality of data with neural networks;

http://www.google.com/url?q=http%3A%2F%2Fwww.netflixprize.com&sa=D&sntz=1&usg=AFQjCNGa9rA_dQ4mAZgx4465DAKNDyHeXw
http://www.google.com/url?q=http%3A%2F%2Fwww.grouplens.org%2Fnode%2F12&sa=D&sntz=1&usg=AFQjCNGQZV98WjA_IpJGvNrVHp_x6GPkVA
http://www.google.com/url?q=http%3A%2F%2Fwww.informatik.uni-freiburg.de%2F~cziegler%2FBX%2F&sa=D&sntz=1&usg=AFQjCNFyTpGXl9pZL5-p22LrfT5nmmDM6g
http://www.google.com/url?q=http%3A%2F%2Feigentaste.berkeley.edu%2Fdataset%2F&sa=D&sntz=1&usg=AFQjCNEMT-vhsd1v0ZvfmBeI8Z1vDR8kYA

Science 313(5786), 504-507 (2006)

78. http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/; Chen, E.;
Introduction to Restricted Boltzmann Machines

79. http://deeplearning.net/tutorial/rom.html; Restricted Boltzmann Machines (RBM)

80. https://github.com/grouplens/lenskit/wiki/FunkSVD; Ekstrand, M.; Github grouplens / lenskit

http://www.google.com/url?q=http%3A%2F%2Fblog.echen.me%2F2011%2F07%2F18%2Fintroduction-to-restricted-boltzmann-machines%2F&sa=D&sntz=1&usg=AFQjCNEXCVXTZVXmsaolc0yB_1Nm1GqJRA
http://www.google.com/url?q=http%3A%2F%2Fdeeplearning.net%2Ftutorial%2Frbm.html&sa=D&sntz=1&usg=AFQjCNGaK4YeAnyWdZcHkCUhqhnQcrBSAg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgrouplens%2Flenskit%2Fwiki%2FFunkSVD&sa=D&sntz=1&usg=AFQjCNH19xI_R9bo0-tqHywJT7UgEOzJeg
http://www.google.com/url?q=http%3A%2F%2Fwww.igvita.com%2F2007%2F01%2F15%2Fsvd-recommendation-system-in-ruby%2F&sa=D&sntz=1&usg=AFQjCNECusRotqVFPqDRzOd_0yms_-5tKw
http://www.google.com/url?q=http%3A%2F%2Fwww.igvita.com%2F2007%2F01%2F15%2Fsvd-recommendation-system-in-ruby%2F&sa=D&sntz=1&usg=AFQjCNECusRotqVFPqDRzOd_0yms_-5tKw

