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Management summary 
This report describes the research conducted to reduce peak fluctuations in bed demand in the St. 

Antonius hospital. 

Problem statement & objective 

The core problem is identified as the percentage of boarded patients being too high. A patient is 

‘boarded’ on another ward when there is a bed shortage on that patient’s designated ward. However, 

there is no bed shortage on a macro level: in the analysed period there were never more clinical 

patients than there were beds in the clinic. We identify variability as the root cause of boarding 

patients. Average bed utilisation shows that wards should have sufficient space if the variation in 

inflow and outflow would be reduced. Reasons for this can be natural variation but also artificial 

variation, the variation introduced by the hospitals own processes. We identify the scheduling of 

elective patients as the largest source of artificial variation in bed demand. The hospital would like to 

have a new planning approach to reduce this variation. Because it is not possible to remove all variation 

in the scheduling of elective patients we also create strategies to cope with remaining variation. To 

tackle the core problem we set the following goals for this research: 

1. Minimise artificial variation in bed demand by improving the OR planning.  

2. Create strategies to cope with natural variation in bed demand. 

Approach 
We identify the scheduling of elective surgical patients within the existing Master Surgery Schedule 

(MSS) to be the area with the best balance between practical feasibility and improvement potential. 

We construct two variants of a mathematical optimisation model, which advises admission planners 

when to schedule patient types to minimise variation in resulting bed utilisation. The new scheduling 

approach consists of two phases: 

Phase one: determine the theoretically optimal case mix per session with a mathematical model 

Phase two: schedule patients based on the case mix prescribed by the model  
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The left part of Figure 0-1 shows a simplified representation of the current scheduling method and the 

proposed improved scheduling method is illustrated in the right part. In the old situation, sessions are 

filled first come first serve until there is no time left on the schedule. In the new situation planners aim 

to fill sessions with a predetermined mix made by our mathematical model: the case mix matrix. This 

matrix shows the mix and volume of patient types they should preferably schedule on each OR session. 

 

Figure 0-1 Current versus proposed situation for planning elective surgical patients 

Contribution statement 

The contribution of this model is that it provides an optimal, length of stay (LOS) based, patient mix 

per operating room (OR) session within a given an MSS. The model takes into account deterministic 

surgery durations and stochastic LOS distributions. The proposed planning model can be applied to 

other hospitals using an MSS block schedule but the interpretation of the model's results and the 

consequent planning guidelines are specific for the St. Antonius hospital location Utrecht.  

Results 

Reducing variation – In phase one, 

both mathematical models are able 

to theoretically plan patients in such 

a way that the bed utilisation 

approaches the theoretical 

optimum, see Figure 0-2.  

Figure 0-2 Practical improvement potential for planning elective surgical 
patients using case mix matrices 
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In phase two we find it is possible to reduce variation in bed demand by scheduling individual patients 

to OR sessions according to the case mix matrix. During the scheduling of patients in phase two, we 

find the improvement to be lower than the theoretical performance of the model. We identify patients 

who can only be operated on by a specific physician (strict patients), and variation in surgery duration 

and LOS as the largest causes of reduction in improvement potential. Figure 0-2  shows the practical 

phase two potential for using case mix matrices to plan elective surgical patients in the Utrecht location 

of the St. Antonius hospital. It can be seen that using case mix matrices from both mathematical 

models in scheduling elective surgical patients can lead to a 13-15% reduction in bed requirement. 

Reacting to variation – Analysis shows admitting patients to a bed after surgery instead of before offers 

a large improvement potential for reducing peaks in bed demand. Buffer capacity offers temporary 

capacity to react to remaining bed demand. We conclude that length of stay improvements and flexible 

discharge moments have the potential to permanently free up capacity, which can be used to cope 

with peak demand. We identify the redistribution of beds as a possibility to decrease the percentage 

of boarded patients, but with little improvement potential for reacting to peak bed demand. Real time 

insight into the state of the system is a precondition for better coping with peak bed demand. 

Implementation 
The implementation is divided in seven steps. We start with only one specialty in step one because 

each specialty has specialty-specific methods and restrictions when it comes to scheduling patients. 

Starting small enables us to keep focus in fine-tuning the process for one specialty. After evaluating 

and improving the method for one specialty we can expand to other specialties. The seven steps: 

1 General decision rules – extrapolate general decision rules from the case mix matrix 

2 Flexibility to adapt –use of case mix matrices whilst adjusting for demand & MSS changes 

3 Expand to more specialties – perform step 1 & 2 for more specialties in Utrecht location 

4 Expand to Nieuwegein location – analyse the Nieuwegein location and implement 

5 Supporting IT system – include support data for planning in the existing IT system 

6 Embed in IT system – embed the planning approach completely in an IT system 

7 Planning decision making tool – create a planning tool that schedules automatically 
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Management samenvatting 
Dit rapport beschrijft onderzoek uitgevoerd in het St. Antonius ziekenhuis om pieken en dalen in 

bedbezetting te verminderen. 

Probleemomschrijving & onderzoeksdoel 

Als kernprobleem is geïdentificeerd dat het percentage vreemdliggers te hoog is. Een patiënt wordt 

een vreemdligger als deze patiënt door een beddentekort op een andere afdeling wordt gelegd dan 

zijn eigen. Op totaalniveau is er echter geen beddentekort: in de geanalyseerde periode waren er nooit 

meer patiënten in de kliniek dan bedden. We identificeren variabiliteit als de kernoorzaak achter 

vreemdliggers. De gemiddelde bedbezetting laat zien dat verpleegafdelingen genoeg ruimte hebben 

als de variatie in beddenvraag minder zou zijn. Oorzaken van variatie zijn natuurlijke variatie maar ook 

kunstmatige variatie, de variatie die ontstaat uit de manier waarop het ziekenhuis processen heeft 

ingericht. We identificeren het plannen van electieve patiënten als de grootste bron van kunstmatige 

variatie in beddenvraag. Het ziekenhuis wil een ander planningsconcept gaan gebruiken om deze 

variatie te verminderen. Omdat het niet mogelijk is alle variatie uit de planning te halen, ontwikkelen 

we ook strategieën om overgebleven variatie op te vangen. Om het kernprobleem aan te pakken 

stellen we de volgende doelen voor dit onderzoek: 

1. Het minimaliseren van kunstmatige variatie in beddenvraag door het verbeteren van de 
operatiekamer (OK) planning  

2. Het ontwikkelen van strategieën hoe om te gaan met overgebleven variatie 

Aanpak 
We erkennen het plannen van electieve patiënten op de OK, binnen het bestaande Master Surgery 

Schedule (MSS), als de interventie met de beste balans tussen implementeerbaarheid en 

verbeterpotentieel. We ontwikkelen twee varianten van een wiskundig optimalisatiemodel dat 

planners adviseert hoe te plannen zodat de variatie in de daaropvolgende beddenvraag vermindert. 

Dit nieuwe planningsconcept bestaat uit twee fasen: 

Fase een: Het bepalen van een theoretisch optimale patiëntenmix per OK met een wiskundig model 

Fase twee: Het daadwerkelijk inplannen van patiënten op basis van de voorkeursmix uit het model  
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De linker kant van Figuur 0-1 geeft een versimpelde weergave van de huidige planningsmethodiek en 

de voorgestelde nieuwe methode is aan de rechterkant weergegeven. In de huidige situatie worden 

patiënten ingepland op de eerstvolgende beschikbare OK sessie tot die sessie vol zit. In de nieuwe 

methode proberen planners sessies te vullen aan de hand van het volume en de mix voorgeschreven 

door het wiskundig model: de case mix matrix. 

 

Figuur 0-1 huidige versus voorgestelde planningsmethodiek voor electieve patiënten op de OK 

Contributie statement 

De contributie van dit model is dat het een optimale mix van patiënten geeft, gebaseerd op ligduur, 

binnen een bestaand MSS. Het model gebruikt deterministische operatieduur en een stochastische 

ligduurverdeling. Het voorgestelde planningsmodel kan ook gebruikt worden in andere ziekenhuizen 

die een MSS blok schema gebruiken, maar de interpretatie van de modeluitkomsten in dit onderzoek 

richten zich specifiek op de Utrecht locatie van het St. Antonius ziekenhuis.  

Resultaten 

Variatie verminderen – In de eerste 

fase zijn beide modellen in staat om 

patiënten theoretisch zo te plannen 

dat de bedbezetting in de buurt komt 

van het theoretisch optimum, zie 

Figuur 0-2. 
Figuur 0-2 Verbeterpotentieel in fase 1 en 2 voor alle negen snijdende 
specialismen op locatie Utrecht van het St. Antonius ziekenhuis 
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In fase twee is het mogelijk patiënten in te plannen volgens de case mix matrices voortkomend uit 

beide modelvarianten. De reductie in benodigde bedden is echter minder in fase twee dan de 

theoretische reductie in fase een. We erkennen patiënten die slechts door een specialist geopereerd 

kunnen worden (strikte patiënten), en variatie in operatieduur en ligduur als de grootste oorzaken 

voor deze vermindering. Figuur 0-2 laat zien dat het plannen volgens matrices van beide wiskundige 

modellen een winstpotentieel oplevert van 13-15% beddenreductie. 

Opvangen van variatie – Analyse laat zien dat patiënten pas na een operatie opnemen in een bed een 

aanzienlijke reductie in beddenvraag kan opleveren. Tijdelijke buffercapaciteit kan gebruikt worden 

om de daarna overgebleven variatie op te vangen. We concluderen dat ligduurverbetering en flexibele 

ontslagprocedures de potentie hebben om permanent meer vrije capaciteit te creëren, wat gebruikt 

kan worden om pieken op te vangen. Het herverdelen van bedden over de afdelingen kan het aantal 

vreemdliggers verminderen maar zal op totaalniveau geen extra capaciteit opleveren. Een realtime 

overzicht van de huidige staat van het beddenhuis is een randvoorwaarde om variatie beter op te 

kunnen vangen. 

Implementatie 
De implementatie is onderverdeeld in zeven stappen. We starten de implementatie bij slechts een 

specialisme omdat elk specialisme specifieke planningsrestricties en methoden heeft. Door het klein 

te houden kunnen we de implementatie hierop aanpassen. Na het evalueren en verbeteren van de 

methode voor een specialisme kan er uitgebreid worden naar andere specialismen. De zeven stappen: 

1 Algemene beslisregels – gebruik algemene beslisregels uit de case mix matrices 

2 Flexibiliteit inbouwen – gebruik matrices met bijsturen voor verandering in vraag & MSS 

3 Meer specialismen – herhaal stap 1 & 2 voor meer snijdende specialismen in Utrecht 

4 Uitbreiden naar Nieuwegein – analyseer de Nieuwegein locatie en breid uit. 

5 Ondersteunend IT systeem – ondersteunende data inbouwen in bestaand IT systeem 

6 Inbedden in IT systeem – volledig inbedden van planningsmethodiek in IT system 

7 Planning beslistool – ontwikkel een beslistool om de methode heen die automatisch plant 

  



vii 
 

Acknowledgements 
Upon reading this, you have stumbled upon the final results of my long, vibrant and especially unforgettable time 

as a student. Over the course of my time as a student, I have seen two studies, three universities in as many 

countries, failed courses, thankfully a lot more passed courses, low grades, high grades and perhaps most 

important: many, many inspiring people that I am proud to call my friends now. The thesis that lies before you 

in a way reflects how I see myself as a person, in that it is very practice based and solution oriented but with a 

central role for the exact side of science.  

Unlike most IEM students, I actually started studying health care, professionally flunking way too difficult math 

courses and acing health care related courses in the field of biomedical engineering. Although I finally figured 

out my area of expertise was more problem solver than theoretical thinker, it did spark my interest in healthcare. 

This insight about myself, is something my mother already told me a long time ago. It just goes to show: always 

listen to your mother. Just as it is recommendable to listen to Erwin Hans, at least most of the time that is, when 

he is not cracking jokes. This because I wouldn’t be sitting here without meeting Erwin for my bachelor thesis. 

Not even three weeks after meeting him, I was on an airplane headed towards an Australian adventure full of 

wonderful people. Anneke and Erwin are pretty much solely responsible for my interest in healthcare as it is now, 

both spiders in an international web of healthcare researchers. This web also brought me to an exchange 

semester in Munich, without a doubt one of the best decisions I have made in the last few years. Of course, when 

looking for a master assignment it were the same connections that got me talking with Marc at the St. Antonius 

hospital, where he invited me to do my MSc research. Marc is a highly enthusiastic and motivating mentor for 

me, for which I am very grateful. Our different backgrounds have led to many challenging discussions, and I like 

to believe it was a great learning experience for us both. Without doubt the last six months have been a blast: 

friendly colleagues, challenging assignments and a very synergetic vibe on logistical topics with Marc and Renee. 

I would like to thank Erwin, Marc and Renee for all the laughs and their close involvement and assistance in 

getting this thesis finished. I would like to thank Martijn for the flexibility to step in as the second committee 

member at a late stage. I would like to thank my friends for all the highlights, not in the least those to come. I 

would like to thank Nichon, Gerjan and my mother Irma for being a wonderful family, I hope you will accept an 

MSc degree as a wedding present mom. And finally, I would have loved for my father to have been here for this 

moment, but I like to think he knows anyway. 

Arvid Glerum, Utrecht 2014  



viii 
 

Table of contents 

Management summary ............................................................................................................................ i 

Management samenvatting .................................................................................................................... iv 

Acknowledgements ................................................................................................................................ vii 

Table of contents ................................................................................................................................... viii 

Table of concepts ................................................................................................................................ - 1 - 

1 Introduction .................................................................................................................................. - 2 - 

1.1 Background .......................................................................................................................... - 3 - 

1.2 Problem Description ............................................................................................................ - 3 - 

1.3 Research goal ...................................................................................................................... - 4 - 

1.4 Scope ................................................................................................................................... - 4 - 

1.5 Methodology ....................................................................................................................... - 5 - 

1.6 Research questions.............................................................................................................. - 6 - 

2 Situational analysis ........................................................................................................................ - 7 - 

2.1 Process description.............................................................................................................. - 7 - 

2.2 Control structure ............................................................................................................... - 11 - 

2.3 Stakeholders ...................................................................................................................... - 14 - 

2.4 Performance indicators ..................................................................................................... - 16 - 

2.5 Current performance of the system .................................................................................. - 19 - 

2.6 Conclusion ......................................................................................................................... - 23 - 

3 Literature research ...................................................................................................................... - 24 - 

3.1 Variability in health care processes and patient flow ....................................................... - 24 - 

3.2 Managing variability .......................................................................................................... - 26 - 

3.3 OM literature about OR scheduling .................................................................................. - 27 - 

3.4 Statistical process control & control charts ...................................................................... - 30 - 

4 Selection of improvement interventions .................................................................................... - 31 - 

5 Intervention 1: Approach for levelling incoming bed demand ................................................... - 34 - 

5.1 Conceptual model ............................................................................................................. - 34 - 

5.2 Formal model description ................................................................................................. - 35 - 



ix 
 

5.3 Model output .................................................................................................................... - 40 - 

5.4 Validating the technical model .......................................................................................... - 41 - 

5.5 Limitations of the approach .............................................................................................. - 41 - 

6 Intervention 1: Experimental settings & results ......................................................................... - 43 - 

6.1 Experimental design .......................................................................................................... - 43 - 

6.2 ORT case study phase one ................................................................................................. - 49 - 

6.3 ORT case study phase two ................................................................................................. - 54 - 

6.4 INT case study .................................................................................................................... - 60 - 

6.5 Conclusions ........................................................................................................................ - 67 - 

7 Interventions for reacting to incoming bed demand .................................................................. - 69 - 

7.1 Intervention 2: Admitting patients after surgery .............................................................. - 69 - 

7.2 Intervention 3: Use buffer capacity during peak demand ................................................ - 73 - 

7.3 Intervention 4: Length of stay improvements ................................................................... - 74 - 

7.4 Intervention 5: redistribution of beds ............................................................................... - 74 - 

7.5 Intervention 6: Insight in the “state of the system” .......................................................... - 75 - 

7.6 Conclusion ......................................................................................................................... - 76 - 

8 Implementation .......................................................................................................................... - 77 - 

9 Conclusion & Recommendations ................................................................................................ - 81 - 

9.1 Conclusions ........................................................................................................................ - 81 - 

9.2 Recommendations............................................................................................................. - 83 - 

Bibliography .............................................................................................................................................. I 

Appendix A – Analysis Day Treatment (U008) ....................................................................................... IV 

Appendix B – Analysis Clinical Ward 4a (U402) ...................................................................................... IV 

Appendix C – Analysis Clinical Ward 4b (U403)...................................................................................... IV 

Appendix D – Analysis Clinical Ward 5a (U502) ..................................................................................... IV 

Appendix E – Analysis Clinical Ward 5b (U503) ...................................................................................... IV 

Appendix F – input for the INT case study .............................................................................................. V 

Appendix G – Case type matrices per specialty .................................................................................... VII 



- 1 - 
 

Table of concepts 

 Bed distribution: the division of all beds over the wards and the assignment of beds on a ward 

to a specialty 

 Boarding: assigning a patient to a bed on a different ward than the intended ward for this 

patient group 

 Closed bed: a bed that is physically there but there is no personnel scheduled to support it. 

Due to quality of care issues a patient can never be assigned to a closed bed  

 Designated-ward: the intended ward for a patient 

 Elective patient: scheduled patient requiring non-urgent care 

 Emergency patient: unscheduled patient requiring urgent care 

 Home-patients: the patients intended for a specific ward 

 Inflow of patients: the number and type of patients entering the hospital or parts of the 

hospital 

 Inpatient: a patient admitted to one of the wards in the hospital 

 Intake planners: staff assigning patients in a FIFO order to a specific block in the MSS 

 Intake: the moment a patient arrives at the hospital on the day of the treatment/operation 

 Length of stay (LOS): the amount of time (days/hours) a patient occupies a bed 

 Master Surgery Schedule (MSS): the schedule assigning blocks of 4 hours in a specific OR to a 

specific specialty 

 Medicine specialty: non-operative medicine 

 Occupied bed: a bed with a patient assigned to it 

 Opened bed: a bed for which supporting personnel is scheduled on the wards 

 Operating room (OR): the room equipped for performing surgeries. The medical equipment 

available differs per OR 

 Operating room schedule: the schedule assigning patients, specialists, staff and equipment to 

an operating room 

 Outflow of patients: the number and type of patients leaving the hospital or parts of the 

hospital 

 Outpatient: a patient that is not admitted to one of the wards in the hospital 

 Overflow: the number and type of patients for whom no beds are available on their designated 

ward at a point in time 

 Specialty: a branch of medicine with expertise in a specific field 

 Surgery specialty: operative medicine  

 Turning down a patient: denying a patient entrance to the hospital system due to lack of 

resources 

 Utilisation of resources: the amount of time a resource is used in relation to the amount of 

time available on that resource 

 Ward: a part of the hospital designed to take care of patients from certain patient groups who 

need a bed   
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1 Introduction 

This report describes the research conducted to reduce peak fluctuations in bed demand in the St. 

Antonius hospital. The two main goals of this research are reduction of artificial variation in bed 

demand and ways to better react to natural variation in bed demand. Reducing artificial variation is 

achieved by improving the admission planning of elective surgical patients using mathematical 

modeling. The contribution of this model is that, given a master surgery schedule (MSS), it provides an 

optimal case mix per OR session. The model takes into account deterministic surgery durations and 

stochastic LOS distributions per case type. To our knowledge there are no models available assigning 

variable volumes of -length of stay based- case types to ORs within the bounds of an existing MSS, with 

the goal of reducing variation in bed utilisation. 

The planning model proposed can be applied to all hospitals using a master surgery schedule (MSS) 

but the interpretation of the model's results and the consequent planning guidelines are specific for 

the St. Antonius hospital location Utrecht. The interventions proposed to react to fluctuations in bed 

utilisation are applicable in a wide variety of health care environments. 

Chapter 1 provides the reader with an introduction to this research. Section 1.1 gives an overview and 

some key figures about the hospital where this research is conducted. Section 1.2 offers a concise 

problem description and introduces the core problem. Section 1.3 explains the research goal followed 

by the scope of the research in Section 1.4 and the methodology in Section 1.5. Finally Section 1.6 

elaborates on the problem description and research goal by stating the research questions.  
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1.1 Background 

The St. Antonius hospital is a large regional hospital in the Utrecht region in the centre of The 

Netherlands. The hospital has 5 locations of which two main clinical hubs and 3 outpatient clinics. The 

two main hubs are located in Nieuwegein and in Utrecht. The Utrecht location recently opened (16th 

of September 2013) and is intended mainly as a centre for low complexity care (ASA1), whereas 

patients with mid to high complexity care (ASA 2 & 3) are intended for the Nieuwegein location.  

The hospital in its totality employs 4.860 employees, 272 medical specialists and 150 resident 

physicians. Around 850 beds and 22 operating rooms (ORs) are available. Nationwide the Antonius 

hospital is known for its expertise in the fields of cardiovascular disease, lung disease and cancer. It is 

also the largest non-academic teaching hospital in the Netherlands [1]. 

1.2 Problem Description 

The St. Antonius hospital currently faces large peaks in bed demand. These peak demands lead to 

overflowing of the wards, thereby having to resort to boarding patients. Boarding is described as 

admitting patients on another ward than the patient’s designated ward. The core problem is defined 

as: 

The percentage of boarded patients is too high 

The process of boarding due to overcrowded wards is believed to have a negative influence on both 

the quality of care and the efficiency of the hospital. Boarding decreases the quality of care by placing 

the patient in a suboptimal care environment, extending waiting times and unnecessary transportation 

of the patient. These factors decrease the efficiency of the care process, as well as the additional 

planning effort required to provide all patients with a bed. These factors also affect the financial 

performance of the hospital. Peak demands are believed to cause occasional cancellations of surgical 

procedures and admission stops.  
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1.3 Research goal 

Stakeholders from the hospital have set the following goals for this research: 

1. To minimise artificial variation in bed demand by improving the OR planning.  

2. Create strategies to cope with natural variation in bed demand 

Minimising the artificial variation in bed demand is achieved by regulating the number of patients 

flowing into the wards from the OR by taking into account the length of stay of patients when 

scheduling elective surgical admissions. Strategies to cope with peaks in bed demand are developed 

after data analysis and meetings with the heads of the wards. 

1.4 Scope 

This research concerns patient flows through the admissions department, Operating Rooms (ORs) and 

the wards of the Utrecht location of the hospital.  We define the scope of this research as the elective 

surgical admission planning within OR sessions in the Utrecht location of the St. Antonius hospital. The 

flows of emergency and non-surgical patients are outside the scope of this research, as are the 

outpatient clinic and the post-ward activities. This research provides the hospital with multiple 

interventions to tackle the peak bed demand problem. We position this research in the healthcare 

planning and control framework [2] at the tactical and offline-operational level of resource capacity 

planning, see Figure 1-1.  

  

 

 

 

Figure 1-1 Healthcare planning & control framework, Hans et al. (2010) 
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1.5 Methodology 

This research follows the five steps proposed in the Define-Measure-Analyse-Improve-Control 

improvement cycle.  

Define – in the define phase we describe the process and identify performance indicators 

Measure – in the measure phase we map the perceived problem situation and collect data from 

stakeholders and the hospitals information systems. 

Analyse – In the analyse-phase we conduct a quantitative and qualitative retrospective analysis of the 

performance of the system based on the identified performance indicators. Consequently, a problem 

analysis is conducted. 

Improve – In the improve phase we identify and select improvement areas and interventions. We do 

this by executing the following steps:  

1. Literature research in the areas of variability and planning & scheduling models in healthcare 

2. Selection of improvement interventions  

3. Devising a mathematical model to optimise the admission scheduling problem 

4. Provide practical planning guidelines to assist the hospital planners in the short term 

5. Analyse the potential benefit of interventions to better react to peak bed demand 

Control – In the control phase we provide the means to keep improving the planning process using the 

devised model and recommend future steps. 
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1.6 Research questions  

1. What does the current situation look like, how is it controlled and what is its current 

performance? [Chapter 2] 

o Process description. 

o What are suitable evaluation criteria/performance indicators? 

o What is the core problem, what are the consequences of the core problem and what 

factors influence the core problem? 

 

2. What planning and control concepts regarding the core problem are available in the 

literature? [Chapter 3] 

3. What are suitable improvement interventions? [Chapter 4] 

4. How can we model and improve the patient admission process? [Chapter 5] 

o Creating an optimisation model 

 

5. What is the improvement potential for the patient admission process? [Chapter 6] 

 

o Case study test instance results 

o Case study practice results 

o Full system results 

 

6. How can we improve the ability of the system to react to peak bed demands? [Chapter 7] 

 

7. What steps need to be taken to improve the OR-Ward system using the identified leverage 

points and the results of the model? [Chapter 8] 
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2 Situational analysis 

In this chapter we analyse the processes connected to the issues the St. Antonius hospital is 

experiencing. This information helps to accurately define the problem and the causal relation between 

variables but also provides essential insights needed to adequately model the system. The analysis 

starts by describing the process’ resources, patient flows and control structure in Section 2.1. In Section 

2.2 the planning & control framework for elective patients is introduced, where Section 2.3 introduces 

the stakeholders and positions them in a framework according to their properties. In Section 2.4 a list 

of performance indicators is composed to evaluate the performance of the system and give feedback. 

These performance indicators are consequently used to evaluate the current performance of the 

system and to zoom in on the core problem in Section 2.5. 

2.1 Process description  

To understand the processes surrounding the problem, we map the patient population and their flow 

through the hospital. The resources involved are summed up and explained and an overview of the 

control structure is given.  

2.1.1 Patient population 

Two main defining characteristics a patient has 

from both a medical and a logistical perspective 

are his specialty type and the urgency level, see 

Figure 2-1. On the specialty axis a patient can 

require surgical care or medicine care.  On the 

urgency axis a patient can be admitted as an 

emergency patient or as a planned (elective) 

patient. This division is important because it largely determines the general route a patient is going to 

follow leading up to the wards. In practice, elective patients are mostly surgical patients and 

emergency patients are mostly from the medicine specialty. Clinical patients are admitted to a clinical 

Figure 2-1 Patient types in the patient population 
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ward and usually stay one night or more. Day patients go to the day treatment ward and do not stay 

overnight.  

2.1.2 Clinical course of patients 

There are numerous clinical courses a patient can take through a hospital; entities a patient has to 

attend and the procedures performed all depend heavily on the unique characteristics of that patient. 

We identify the patient flows coming through the wards in the context of this problem. Elective 

patients usually enter the system through an outpatient clinic and emergency patients usually enter 

the system at an emergency department. All elective surgical patients visit the pre-operative screening 

and admission planners before surgery. Almost all patients are placed in a bed before diagnostics or 

the OR. After the OR, patients always visit a recovery before arriving back at the ward. A graphical 

representation of the patient flows can be seen in Figure 2-2. 

 

Figure 2-2 Patient flows through the system in the St. Antonius Hospital (S represents Surgical specialty, M represents 

Medicine specialty). 

2.1.3 Entities in the system 

Outpatient clinic - The outpatient clinic is aimed at medical consultation and performing small 

procedures for outpatients. If more complicated procedures are necessary, the patient needs clinical 

care. In case of a surgical patient, the patient is placed on a waiting list and is referred to the 

preoperative process to get a date and prepare for an operation. In case of a medicine patient, the 
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patient is planned to be admitted on a bed and scheduled for a procedure or scan. The outpatient clinic 

functions as a gateway to the hospital for elective patients. 

Emergency Department - The emergency department (ED) is designed specifically for acute care. 

Patients arrive unscheduled with a wide range of medical issues and varying urgency. Even though the 

hospital has no control over the inflow and characteristics of emergency patients, it is still possible to 

forecast demand. The ED functions as a gateway to the hospital for emergency patients. 

Pre-Operative Screening - In the preoperative process, the patients consults with a pharmacist, an 

anaesthesiologist and nursing staff to exchange all relevant data and to get informed. The patient can 

choose when he wants to attend the preoperative process, as long as it is no more than 6 months prior 

to the surgery. Emergency patients undergo an adapted version of the preoperative process. After 

attending the POS, a patient can be scheduled for surgery. 

Admission planning - Elective surgical patients receive an admission date for the surgery roughly two 

weeks prior to the surgery from the admission planners in the preoperative process. The OR date is 

determined by available sessions in the MSS per specialty. The admission planners add patients from 

the waiting list to a session until the session is full. For this they use the available time in a 4-hour half-

day session and a periodically updated expected surgery duration for the specific patient type. Two 

half-day sessions in a row are frequently assigned to a single specialty so they have the OR for the 

entire day. There is a dedicated admission planner for every specialty who is familiar with specific 

session details like specialist preferences and special patient groups like children. The planner tries to 

incorporate these planning preferences in the admission planning. A patient can also express a 

preference for an OR date and sometimes a patient can only be scheduled to a specific specialist. 

OR - The operating room is a facility where surgical operations take place. OR time is distributed over 

the surgical specialties by the Master Surgery Schedule (MSS). The MSS gives for each available half-

day session in an OR the specialty that may use that session. The idea behind a master surgery schedule 

is to create predictive cyclical schedules for the medical specialists and other resources to base their 
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own planning on. The MSS is typically revised every three months on a strategic level, on a tactical 

level sessions can be added or cancelled depending on demand.  

Two days before the scheduled surgery, the OR planner sequences the patients planned by the 

admission planner for that session. Surgeon preferences and rules of thumb like children first dictate 

the sequencing process. After sequencing, the admission time is communicated back to the patient. 

Recovery & IC/MC - The recovery area functions as a resting area right after surgery with heightened 

monitoring of vitals. Patients are transferred from the recovery to the ward when the condition of the 

patient allows for it. Instead of taking the patient to the normal recovery area after surgery, patients 

are occasionally transferred to the intensive care (IC) or the medium care (MC) unit depending on 

medical urgency. 

Wards - A ward is a facility inside a hospital 

dedicated to the care of inpatients of a specific 

medical specialty. There are typically two types 

of wards: day treatment and clinical (long term) 

care. Day treatment wards can have beds and 

lounge chairs, clinical wards usually only have 

beds. A clear distinction needs to be made 

between “closed” beds and “opened” beds. A bed is opened when it is staffed, that is, personnel are 

scheduled to attend to that bed. Closed beds are physically present but are not staffed. In this research 

“beds” refer to opened beds. Figure 2-3 shows the layout of the clinic and the day treatment centre. 

The wards have the following capacities throughout the week: 

 Day Treatment:  Monday to Friday 08:00-22:00 28 beds opened 

 4a:    Monday 08:00 to Saturday 12:00 28 beds opened 

 4b:    Monday 08:00 to Saturday 12:00 46 beds opened  

   Saturday 12:00 to Monday 08:00 38 beds opened 

 5a:   All week 30 beds opened 

 5b:   All week 30 beds opened 

Figure 2-3 Layout of the clinical and day treatment wards in 
the St. Antonius hospital Utrecht 
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Inflow on the wards - Patients leaving the operating room (OR) almost always need a bed on a specific 

ward, the patients “designated ward”. Patients can be assigned to a bed on the day of the surgery or 

earlier. From the moment a patient is assigned to a bed during the intake procedure the bed is no 

longer available to other patients. The hospital has control over the inflow of elective patients through 

the MSS, admission planning, surgeon scheduling and bed planning. The available capacity depends on 

the total number of available beds and their distribution over the various wards.  

Outflow of the wards - Patients leave the bed and the ward in the discharge process. The time between 

intake and discharge is known as the length of stay of these patients. The time of the discharge 

depends largely on protocol and medical indicators. The length of stay increases when a patient cannot 

be discharged. This occurs when there is no specialist available to discharge the patient or when the 

patient cannot proceed intramural (no access to the OR or imaging) or extramural (family, nursing 

home, geriatric facility, other hospital). Length of stay also increases if the discharge procedure takes 

longer than usual due to, for instance, medical circumstances or specialists in training who require 

more time.  

Boarding - If there is no bed available on a patient’s designated ward the patient is temporarily placed 

on a different ward until a bed on the right ward becomes available, a process called boarding. Because 

wards are designed and staffed to take care of patients of a specific specialty, some wards are more 

suitable than others for certain types of patients. Medical specialists also prefer their boarded patients 

to be close to their designated ward. If no beds are available at any of the wards, the patient is either 

not admitted to the hospital pre-OR or is transferred to another hospital post-OR. 

2.2 Control structure 

The planning and control structure of the St Antonius hospital is aimed at planning the elective patient 

stream, reacting to the emergency stream and controlling the capacity usage resulting from these 

streams. Section 2.2.1 covers the planning and control structure for the elective patient stream. 

Section 2.2.2 covers the monitoring and control structure for the emergency patient stream. 
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2.2.1 Planning & control: elective patient stream 

Planning and control is conducted on the strategic, tactical and offline operational level. Figure 2-4 

illustrates the hospital’s control structure on all three different levels. On the strategic level, the 

organisation needs to determine which type of patients it wants to serve and at what volumes, i.e. the 

patient mix planning. The aggregated resource requirement for operating rooms (ORs) and beds is also 

determined to create an aggregated resource planning. On the tactical level, both aggregated OR and 

aggregated ward capacity is divided amongst specialties based on norms set by the hospital and the 

state of the system (demand, staff availability etc.). In practice, the allocation of beds over the 

specialties is not updated frequently. The division of OR sessions over the specialties, in the form of 

the master surgery schedule, is updated every three months to match the capacity allocated to a 

specialty to changes in this specialty’s demand. On the offline operational level, patients are assigned 

to resources based on the specialty they belong to.  

Figure 2-4 Control structure of the OR and wards of the St. Antonius hospital on a strategic, tactical and (offline) 

operational level for elective patients. 
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Planning and control information is shared between different resources. Ideally, every resource has 

access to all the planning and demand information upstream in the system. In practice, however, this 

is usually not the case. Figure 2-5 shows a diagram with which stations share what planning and 

demand information with each other.  

 

Figure 2-5 Overview of shared planning information between entities in the surgical stream of the St. Antonius Hospital 

2.2.2 Monitoring & control: emergency patient stream 

Capacity is allocated to the emergency stream on both the strategic and the tactical level, but this 

capacity cannot be scheduled due to the unplanned arrival of emergency patients. Special sessions in 

the MSS are allocated to the emergency stream. If there is an emergency patient when there is no 

dedicated emergency OR available this patient gets preference in an elective OR. On the online 

operational level, the ED coordinates the emergency stream towards the OR. The emergency 

coordinator ensures the patient has a bed after the OR. The emergency coordinator also handles and 

keeps track of boarded patients, both the boarding itself and the eventual relocation to their 

designated ward. The emergency coordinator has access to the following information: 

1. A morning status of the wards 

a. Number of beds occupied 

b. Number of planned admissions 

c. Number of planned discharges 

d. Number and details of boarded patients 

2. Regular updates from the ED, OR and wards with changes and recent developments 
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Based on this information the emergency coordinator tries to get as many patients to their designated 

ward as possible. In case of a shortage of beds, priorities need to be set. Choices need to be made 

between where and whether to admit new patients and possibly moving boarded patients to their 

designated ward. The ranking of the alternatives and their dependencies are shown in Figure 2-6.  

 

Figure 2-6 Preference of actions undertaken by the emergency coordinator and the factors influencing the chosen action 

and ward in the St. Antonius hospital 

2.3 Stakeholders 

Stakeholder mapping is a way to identify and rank parties within the organization that have a stake or 

interest in the problem or organizational change under review [3]. Categorizing the stakeholders is 

done by identifying the level of influence they have (power) and the interest they hold in the change. 

The matrix in Figure 2-7 shows the two axes with three intensity levels per axis: low, average and high. 

Stakeholders in the upper right corner are usually regarded as key stakeholders that need to be 

intensively involved in the decision making process. The top left stakeholders need to be kept satisfied, 
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where the bottom right stakeholders need to be kept well informed. The bottom left stakeholders only 

need monitoring. An addition to the power/interest framework is the attitude of the stakeholders 

towards the project.  

Stakeholders are identified by means of brainstorming with a variety of staff members involved in the 

project. Staff members that have a high degree of knowledge regarding the project and the 

stakeholders carry out the categorisation and establishment of attitudes.  

 

Figure 2-7 Stakeholder map 

The stakeholder analysis shows that Medical specialists, the head of the pre-operative (and most 

importantly the admission planning) process and the heads of the wards are key stakeholders. The 

head of the pre-operative process and the heads of the wards have a positive attitude towards the 

project. Medical specialists have a neutral-negative attitude towards the project, mostly because it 

enters their realm of influence in their working roster, the usage of OR sessions and the placement of 

their patients on the wards. They, however, also experience the downsides of the current situation 

where their patients are sometimes scattered over the different wards and where they cannot admit 

all the patients they want due to overcrowding. This leads them to see room for improvement and the 

possible advantages of the project. 
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The OR coordinator and anaesthesiologists are classified as stakeholders that need to be kept satisfied. 

Both these stakeholders have a neutral attitude towards the project, but have a vested interest in the 

workings of the OR and will not just accept a decrease in OR performance without convincing 

arguments why the patient and the hospital as a whole would benefit from it. This project offers the 

chance to reduce alterations in the operational planning. To achieve this, however, it might require 

changes in roster and flexibility regarding working hours.  

Stakeholders that need to be informed are the emergency coordinator and the admission planners. 

The emergency coordinator is the central hub for all communication regarding emergency patients 

and patients that cannot get a bed on the right ward straightaway. This project offers the potential to 

greatly reduce the workload of the emergency coordinator, leading to a positive attitude towards the 

project. The admission planners might have to change their working routines as a result of this 

research. They however also get less complaints about the resulting planning leading them to have a 

neutral-negative towards the project.  Finally, patients need to be monitored as stakeholders. The 

patient has little direct influence over the project but can clearly benefit from a lower chance of being 

turned down, boarded or transported multiple times.  

To satisfy the needs of the stakeholders, we have weekly meetings with all the heads of the wards, the 

emergency coordinator and the head of the pre-operative process. This ensures the practical feasibility 

of the project and provides valuable insights and support for the project. 

2.4 Performance indicators 

Performance indicators are used to evaluate the performance of a system both retrospectively and 

continuously for process control purposes. There are two different types of identified performance 

indicators: control variables and monitoring variables. Control variables directly relate to the objectives 

set for a process. Monitoring variables can provide useful detailed information in case one or more of 

the control variables indicate an issue.   
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2.4.1 Control variables 

Table 1 shows the four indicators that serve as control variables. These four variables give an aggregate 

idea of the performance of the system and should be (semi) continuously monitored.  

Table 1 Control variables for the OR-ward chain 

Control variables 

  The bed requirement needed to fulfil 95% of bed demand 

  Number (hours) of boarded patients 

  Number of turned down patients 

  Variation In utilisation of sessions 

In literature it is common to use resource utilisation as a key performance indicator for process 

improvement in health care processes. Vissers et al. (2001) argue that maximising resource utilisation, 

whilst maintaining acceptable standards of service quality, is the most logical objective for their health 

care production control framework. We propose to use an alternative main objective for health care 

production control: levelled resource utilisation by minimising process variation. The control variable 

for the levelling of bed utilisation is defined as: “The bed requirement needed to fulfil 95% of bed 

demand”. There are multiple benefits to using this metric instead of maximising resource utilisation. 

Minimising process variation improves patient flow through the system (see Chapter 0). Additionally, 

maximising resource utilisation potentially creates an unwanted incentive to, for instance, extend the 

length of stay or surgery durations of patients. Consider the hypothetical situation where physician A 

can do three identical knee operations in a day with almost equal surgery durations, and physician B 

can do three identical knee operations but with highly varying surgery durations. If the average OR 

utilisation of the slower physician B is 80% and is 70% for the faster physician A, physician B appears 

to be more efficient according to the metric proposed by Vissers et al. (2001). Physician B however 

sometimes has to cancel his last patient because the first two operations happened to be very lengthy, 

whereas Physician A has the possibility to add a fourth knee operation to his schedule with little chance 

of having to work overtime or to cancel his patient. We believe that resource utilisation should be 

monitored but not used as an objective in its own right within the scope of this research. 
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2.4.2 Monitoring variables 

Table 2 shows multiple monitoring variables that provide detailed insight into the state of the system 

and can indicate which areas need attention. Continuously monitoring all monitoring variables would 

require a high degree of data analysis, these indicators can once again be determined after control 

variables indicate a problem might have occurred. 

Table 2 Monitoring variables for the OR-ward chain 

OR  

  Number of surgeries 

  Number of sessions 

  % Utilisation of allocated weekly sessions 

  % Utilisation of sessions 

  Variation in utilisation 

  Number of turned down patients <24h before surgery 

  Number of deviations from MSS (cancelled sessions, extra sessions and so forth) 

Ward  

  Number of boarded patients 

  Chance of turning down patients 

  % Utilisation 

  Variation in utilisation 

  Length of stay 

  Variation in length of stay 

  Number of admitted patients (elective and emergency) (target: peak moments only incidentally, 

not weekly) 

  Variation admitted patients (elective and emergency) 

Admissions department  

  Number of patients on the waiting list 

  Hours of planned and unplanned OR work available 
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2.5 Current performance of the system 

This section gives an overview of the current performance of the system. This overview is compiled by 

combining the experiences of the stakeholders with data analysis. We start with input from 

stakeholders followed by proposed hypotheses based on that input. This information is consequently 

compared to and tested by an extensive data analysis. Together, this gained knowledge serves as the 

basis for the problem analysis at the end of this section. 

2.5.1 Current situation as described by stakeholders 

During regular meetings with heads of the wards, certain focal points were mentioned while describing 

the current situation and the problems experienced. The following perceived situation is a summary 

of the points mentioned by the heads of the wards before data analysis.  

“We experience high and low bed demand, but in general we have trouble placing patients on the right 

ward, especially emergency patients. For these patients we have to find a bed on another ward, which 

interrupts and disturbs our regular work and at times reduces the quality of care we can deliver. We 

have little information in advance on how many patients are coming our way and have hardly any 

influence over the inflow of patients, meaning we can only react to the sometimes sizeable fluctuations 

in demand over the day and week. Fluctuations over the day occur mostly in the morning before the 

discharge and demand over the week usually leads to a peak towards the end of the week. We have 

the feeling that physician rostering and patient scheduling on the OR might have something to do with 

the fluctuations.” 

From this description we conclude that the wards perceive capacity and patient flow issues as the 

leading cause of boarding patients. These capacity issues are believed to originate in the operating 

room schedule and patient flow issues possibly originate from the admission and discharge process on 

the wards. The capacity and flow issues are believed to lead to a large proportion of boarded patients. 

These suspicions are tested through the means of hypotheses in Section 2.5.3. 
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2.5.2 Hypotheses 

The following hypotheses are proposed based on the situational description given by the heads of the 

wards and on a preliminary exploratory data analysis. These hypotheses are used to structurally and 

thoroughly analyse the data in Section 2.5.3: 

H1: The bed utilisation exceeds the hospitals threshold of a minimum of 85% for all wards 

H2: Demand for beds surpasses the total number of available beds in the clinic at least once in the 

analysed period 

H3: Demand for home-beds surpasses number of available beds on the individual wards at least 

once per ward in the analysed period 

H4: The elective stream causes more variation in bed demand than the emergency stream 

H5: The elective surgical stream has the highest variation in inflow of patients of all incoming 

patient streams 

H6: Admission and discharge times on the wards are not synchronised 

H7: The average turn-down probability does not exceed the threshold of maximum 5% for all wards 

H8: Day Treatment (DT) patients are admitted to ward 4a in case of bed shortage in the DT 

H9: Ward 5b is the largest receiver of boarded patients in the clinic whilst having overcapacity 

H10: Boarding patients is unnecessary, if we would forbid boarding, all patients would end up with 

a bed on their designated ward 

 

2.5.3 Data analysis 

This section is marked confidential and is removed from the public version of this report 
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Summary of the tested hypotheses: 

Table 3 Summary of the hypotheses in the data analysis 

Summary of the data analysis: 

O Conclusion 
hypothesis 1:  

The bed utilisation is only above 85% for ward 5a. The other wards and the total clinic 
average do not meet the threshold. 

O Conclusion 
hypothesis 2:  

The total demand for clinical beds never surpasses the number of clinical beds 
available. 

O Conclusion 
hypothesis 3:  

Not all clinical wards have an expected bed shortage in case of home-patient 
demand, but some do. 

O 
Conclusion 
hypothesis 4:  

The elective stream introduces the highest variation in total bed demand. On the 
ward level the elective stream introduces the highest variation in bed demand on 
wards 4a, 4b and the day treatment. 

O 
Conclusion 
hypothesis 5:  

The impact of the variation of the surgical elective stream is the highest on the day 
treatment ward and wards 4a and 4b. On wards 5a and 5b the variation in the 
emergency medicine stream has the highest impact. 

O 
Conclusion 
hypothesis 6:  

On three out of four clinical wards there is a multiple hour mismatch between the 
peak moment of admission and the peak moment of discharge. There is also a 
tendency for clinical wards to get more crowded towards the end of the week. 

O 
Conclusion 
hypothesis 7:  

Ward 5a exceeds the maximum of 5% average turn-down probability. 

O 
Conclusion 
hypothesis 8: 

Patients with the day treatment as their designated ward almost exclusively flow 
towards ward 4a in case of an overflowing day treatment. 

O 
Conclusion 
hypothesis 9: 

Ward 5b has the highest percentage of boarded patients of all wards and is the only 
ward to receive substantial incoming streams of boarded patients from all other 
clinical wards. 

O 
Conclusion 
hypothesis 10: 

Only ward 5b has enough capacity to fulfil all home-patient demand, the other wards 
don’t. If boarding was forbidden not all patient demand for beds on their designated 
ward could be fulfilled. 

 

2.5.4 Problem analysis 

The data analysis and stakeholder meetings reveal the process characteristics that make up the core 

problem. Figure 2-8 shows a graphical depiction of the (core) problem and its causes. The core problem 

is stated as: 

The percentage of boarded patients is too high 
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Figure 2-8 Problem bundle: the core problem and its causes 

We have found that variability plays a key role. Data analysis has shown that wards are sometimes full 

but also have periods where bed utilization is relatively low. Average bed utilisation shows that wards 

should have sufficient space if the variation in inflow and outflow would not be as high as it currently 

is. Reasons for this can be natural variation but also variation induced by the hospitals own processes: 

artificial variation. The variation in bed demand is a determining factor for wards. Analysis identified 

the elective stream to cause the highest level of variation in bed demand. Variation throughout the 

day results from the lack of synchronisation between the intake and discharge processes. Analysis 

shows that some wards have less capacity issues than others, indicating that total capacity is not 

divided over the wards proportional to the bed demand. The analysis shows there are no capacity 

issues on a macro level: there were never more clinical patients than there were beds in the clinic. 

Stakeholders indicate that beds are frequently reserved for elective patients scheduled for an OR in 

the near future. This does not only structurally reduce bed utilisation it also forces emergency patients 

to be boarded. Patients are also occasionally boarded because there is no complete overview of 

available beds and when beds become available. 
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Consequence of the core problem 

The lack of synchronisation between inflow, outflow and capacity causes there a surplus of beds on 

one moment and a shortage on the next. This has a number of consequences: 

Not occupying an opened bed leads to a low average utilization of expensive and valuable resources, 

like medical personnel. On the other hand, a shortage of opened beds is also sub-optimal, both on 

ward level and on a hospital wide level.  

When there is no bed available on a patient’s designated ward, nursing staff needs to perform a lot of 

ad hoc activities to search for alternatives and colleagues are rushed in their activities to free up beds 

as soon as possible. If no beds can be freed up, the dominant alternative is boarding the patient. 

Although boarding is preferred over denying patients’ entry to the hospital system, it is highly 

undesirable. Boarding patients leads to large amount of disruptions of regular processes and a 

reduction in quality of care by placing patients in possible sub-optimal environments of care compared 

to their designated ward. As mentioned, the alternative to boarding is turning down patients. Turning 

down patients can lead to a lower OR utilization, resulting in scheduled valuable and expensive 

resources like the OR and medical personnel to be used sub-optimally. Turning down patients also has 

a negative effect on patient satisfaction.  

2.6 Conclusion 
We conclude that the percentage of boarded patients is too high. However, there are no capacity 

issues on a macro level: there were never more clinical patients than there were beds in the clinic. We 

identify variability as the root cause of boarding patients. Average bed utilization shows that wards 

should have sufficient space if the variation in inflow and outflow would not be as high as it is. Reasons 

for this can be natural variation but also variation induced by the hospitals own processes: artificial 

variation. We identify the scheduling of elective patients as the largest source of artificial variation in 

bed demand.  
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3 Literature research 

For years, hospitals responded to delays by adding resources like beds and staff. Increased financial 

pressure means these options are no longer available. Moreover, work by the Institute for Healthcare 

Improvement suggests that delays are not a resource problem; they are a flow problem [4]. This 

literature research reflects on the current views on hospital capacity management and optimal care 

delivery under minimal cost and is used to find solutions for the problems identified in Section 2.5.4. 

We conduct our research using the google scholar [5] and ORchestra [6] search engines. The literature 

review by Vanberkel et al. [7] serves as a starting point for the literature research, as well as the article 

by Litvak & Long [8]. We identify four topics for our literature research: variability, patient flow, OR 

scheduling and statistical process control. During the literature research we summarise and categorise 

literature relating to our research. For each topic we start our search by selecting a recent paper on 

the topic and consequently going back in time through the references: a snowball technique. Keywords 

found in relevant articles also help us to both deepen and broaden our literature research. The 

keywords used in the literature research are stated at the beginning of each section in Chapter 3.  

We agree with the views of Eugene Litvak in the acknowledgement of variability as the key determining 

factor in health care processes [9]. Therefore this chapter starts with literature on variability in 

healthcare processes and patient flow in Section 3.1. Section 3.2 addresses ways to manage different 

forms of variability. Different types of planning and scheduling models from Operations Management 

are addressed in Section 3.3 followed by ways to monitor processes in Section 3.4. 

3.1 Variability in health care processes and patient flow 
Keywords – Health care, variability, process variability, natural variation, artificial variation, 

optimisation, patient flow, flow variability, hospital flow, process flow 

Healthcare systems are expected to deliver quality care for patients with many different types of 

disease. Litvak & Long [8] identify four different kinds of variability: clinical, flow, professional and 

artificial. Clinical variability presents itself as the variation in disease types of patients entering the 

hospital, the severity of the disease presentation and the different treatment alternatives these 
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patients get. Flow variability can be seen in the random manner in which patients and cases arrive with 

a need for care. Professional variability can be seen as the difference in working routines, preferences 

and results of medical professionals in the care delivery process. Litvak & Long [8] describe the 

constant challenge to the healthcare system as: 

“To efficiently convert a naturally variable incoming group of sick patients into a homogeneous 

outgoing stream of well patients. The presence of these “natural” clinical, flow, and 

professional variability’s increases complexity and adds cost to the healthcare system. The goal 

then is to optimally manage natural variability’s. However, dysfunctional management often 

leads to the creation of a fourth type of variability—“artificial”—that unnecessarily increases 

the very cost and inefficiency we are trying to control. Compared with natural variability, 

artificial variability is non-random. Yet it also is unpredictable, driven by numerous competing 

demands on the surgeons’ time that are usually unknown and therefore unaccounted for by 

the healthcare system” [8]. 

This artificial variation, introduced by the way we have set up the care delivery process, far outweighs 

the variation caused by the randomness of disease presentation [4]. Thus the number of admissions 

for elective scheduled surgery may be less predictable than the purely random admissions for 

emergency care in the emergency department [8]. In fact, research has shown that the majority of 

variability in patient flow is attributable to scheduled admissions, especially when adjusted for patient 

volume [10]. Patient flow is directly related to the concept of variability. Randomness in disease 

presentation and care processes are, however, not the only factors influencing flow. When improving 

flow in hospitals, processes need to be looked at as an interdependent system rather than individual 

departments, to use an integral systems approach. Any individual that improves flow in its area alone 

often in fact exacerbates the problem for other dependant departments [4]. 
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3.2 Managing variability 
Keywords – process variability, natural variation, artificial variation, managing variation 

Managing artificial variability 

Artificial variability, described by Litvak [9] as non-random, non-predictable, and driven by individual 

priorities, unlike natural variability, should not be managed. Rather, it must be identified and 

eliminated [9]. There is usually far more variation in the pattern of patient discharge than in the pattern 

of admission. The main cause of this is the way we manage our processes, e.g., ward rounds, which 

leads to a highly unpredictable length of stay [11]. Operations management techniques offer multiple 

ways to eliminate artificial variation by, for instance, reorganising schedules. It is important to increase 

flexibility in the system to be able to cope with natural variation, adding flexibility in the system to 

cope with artificial variation should be discouraged. Capacity should only be increased when all 

artificial variation is reduced.  

Managing natural variability 

Clinical, flow and professional variability, described by Litvak & Fineberg [10], are natural variability. 

Patients do not present with the same type and severity of diseases, they come to the ED unexpectedly 

and professionals are not uniform in their care delivery. These three types of variation are random 

and, in the case of the first two, patient driven. Natural variability cannot be eliminated or even 

reduced. Instead, it must be optimally managed [9]. Managing natural variability often involves finding 

a balance between multiple goals. For detailed descriptions on how to manage natural variability by 

for instance segmenting patient groups we refer the reader to [9].  

Buffers play a decisive role in managing natural variation and creating a steady inflow of patients. 

However, it is not always possible to create buffers between every step in the process. Capacity 

management and intelligent use of buffers provide the means to create flow. In the chain “Outpatient 

clinic-OR-Wards”, there are multiple interdependent capacity management decisions that influence 

the chain. These decision and their results can be seen in Figure 3-1. 
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Figure 3-1 Capacity management decisions and their results in the Outpatient Clinic-OR-Ward chain 

3.3 OM literature about OR scheduling 
This section covers the planning models regarding the OR-ward chain available in literature. The 

operating room is often referred to as the engine that drives the hospital. The activities inside the 

operating room have a drastic impact on many other activities within hospitals. For instance, patients 

undergoing an operation are expected to recover over a number of days. Consequently, bed capacity 

and nursing staff requirements are dependent on the operating room schedule. By well-thought-out 

scheduling of the operating room, the expected variability in resource demand can be minimized [12].  

The planning and scheduling of an OR can be complicated due to the number of stakeholders and 

different objectives involved in the process. Adding to the pressure is the importance of the OR to the 

hospital: the OR is one of the most expensive resources in the hospital, making its optimal utilisation 

an important goal for the organisation [13]. There are planning and optimisation models available for 

all three levels of planning (strategic, tactical and operational) for a wide range of OR scheduling 

problems. The degree of detail incorporated in the models and whether or not they take into account 

other parts of the system varies. The scheduling of an OR can be seen as a three stage process [12]. 

First the available OR time needs to be allocated over the different surgical groups, referred to as case 

mix planning. Second a Master Surgery Schedule (MSS) is determined, which functions as a cyclical 

timetable assigning the OR time for a surgical group to specific ORs on specific days. Whenever the 

total OR time or the resource allocation changes a new MSS needs to be created [14]. The third stage 

involves the day-to-day admission planning of individual patients. A fourth stage not mentioned by 
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Belien & Demeulemeester [12] regards the sequencing of patients within a session. The remainder of 

this section covers literature available for stage 2-4, the focus of stage one, OR capacity allocation, lies 

outside of the scope of this research. Section 3.3.1 covers literature regarding master surgery 

schedules, Section 3.3.2 covers admission planning and Section 3.3.3 covers case sequencing. 

3.3.1 OR MSS scheduling 

Keywords – Cyclic master surgery scheduling, MSS, block scheduling, open scheduling, 

operating theatre planning, operating room scheduling. 

In repetitive production environments cyclical planning approaches are common to reduce demand 

fluctuations in the supply chain [13]. In the area of OR scheduling these types of schedules, called 

tactical master surgery schedules, can be divided into two categories: open scheduling and block 

scheduling [15]. In block scheduling a surgical group gets assigned to an OR on a specific day in which 

they can schedule patients from their specialty. In this literature research we only cover block 

scheduling since this is the current practice at the St. Antonius hospital. Within the block scheduling 

literature there are multiple definitions of an MSS. We identify MSSs on specialty level and MSSs on 

procedure type level in literature. An MSS on specialty level, as defined by Belien en Demeulemeester 

[12], cyclically assigns blocks (ORs) to specialties. An MSS on procedure type level, as defined by Van 

Oostrum et al. [13] cyclically assigning groups of procedures to ORs.  

A surgery schedule can be optimised against several different objectives, depending on the hospital’s 

preferences. Maximising OR utilisation is a common objective, especially since it is closely related to 

OR staffing costs. An alternative objective is to minimise the chance of running into overtime by 

improving the predictability of the schedule [12]. In recent years there has been increased attention 

to surgery scheduling incorporating resulting bed demand [12] [16] [17] [18] [15] [19] [20] [21] [13]. 

Creating optimal master surgery schedules is mostly done by using mathematical programming or 

heuristics. Some authors [22], [16] use deterministic input parameters like surgery durations and 

length of stay whereas others [12], [17], [18], [15] use stochastic inputs. Using stochastic parameters 

increases complexity but significantly improves results [17]. Despite the large volume of literature 
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available about health care scheduling problems relatively few papers have checked their models 

against real-life data [18]. 

3.3.2 Admission planning 

Keywords – Scheduling elective surgeries, admission planning, operating theatre planning, 

surgical case scheduling, OR scheduling, procedure scheduling, patient mix optimisation. 

Admission planning refers to the scheduling of procedures to specific ORs. Generally, OR actors plan 

their procedures independently from one another [13]. Optimising the admission planning process 

therefore might restrict the authority of some actors [23]. Admission planning can serve several goals, 

such as minimising OR overtime, maximising OR usage, capacity utilisation of downstream capacities 

and revenue. A variety of papers in literature suggest approaches to optimise admission planning, 

considering either elective cases or both elective and emergency cases [24]. Few papers take into 

account downstream resources like beds and most papers simplify reality to a deterministic level. 

3.3.3 Case sequencing 

Keywords – Case sequencing problem, case sequencing, admission scheduling, OR scheduling. 

Case sequencing is the order in which scheduled cases are performed in an OR. Case sequencing can 

benefit patient waiting time, the available intrusion moments on the OR and the risk of overtime on 

an OR [25]. For example, sequencing the shortest or least variable cases first within a day generally 

leads to more cases being completed by any given time during the day. This means an emergency 

intrusion that disrupts the surgical schedule will disrupt fewer cases. This leads to fewer cancellations 

and an increase in the average number of cases per day performed [26]. Also, variability in case 

durations tends to propagate throughout the day. So, putting less variable cases earlier can decrease 

the overall volatility of the schedule and the probability of case cancellations [26]. For further reading 

on case scheduling we refer the reader to articles by [23], [25] & [27]. 

 

 



- 30 - 
 

3.4 Statistical process control & control charts 
Keywords – Statistical process control, control charts, healthcare, health care processes, 

improvement, process control, process indicators. 

Continuous improvement of healthcare systems requires the measuring and understanding of process 

variation [28]. Statistically derived decision rules help users to determine whether the performance of 

a process is stable and predictable or whether there is variation in the performance that makes the 

process unstable and unpredictable [29]. 

Statistical Process Control (SPC) distinguishes two types of variation: common (random) cause and 

special (assignable) cause variation. Common cause variation is comparable to natural variation 

described by Litvak & Long [8]. Processes that only show common cause variation are considered 

completely stable and predictable [30]. Please note that this does not mean the process produces 

desirable results; a process that is in control can still produce unwanted results, e.g., a lab test that is 

consistently completed in twice the desired time. Special cause variation is comparable to artificial 

variation as described by Litvak & Long [8]. Special cause variation is created by factors that were not 

part of the process’ design and highlights something unusual going on in the process. These factors are 

assignable and can usually be eliminated [30]. SPC control charts can aid in identifying these factors. 

SPC charts are chronological time series analyses of important variables, such as averages, rates or 

proportions. This graphical presentation of data provides quick insight into the data in a way more 

understandable to lay decision makers [31]. Lower and upper thresholds are determined statistically 

using process data and indicate the area of natural variation in which a measure should almost always 

fall. If a point falls outside the limits, it is an indication that the result was not produced by the same 

process, either because of a lack of standardization or because a change in the process may have 

occurred. Such changes could represent either quality improvement or quality deterioration, 

depending on which control limit is crossed. Control charts are thus quite useful both for monitoring if 

processes get worse and for testing and verifying improvement ideas [28].  
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4 Selection of improvement interventions 

Using the problem analysis of Section 2.5.4 and the literature research, we identify a number of 

improvement interventions to reduce variation in bed demand and to better react to incoming bed 

demand. The interventions are ranked using a cost & benefit framework and consequently a number 

of suitable interventions are selected for further investigation and implementation.  

Areas of improvement 

Analysis and available literature both regard elective patient scheduling as a large source of variation 

in bed demand. Therefore, the first identified improvement intervention is the levelling of the inflow 

of patients by improving elective patient scheduling. Because it is not reasonable to assume we can 

completely level the inflow of the elective stream, we determine what interventions are suitable to 

increase the capability of a ward to handle the remaining variation in inflow of elective surgical 

patients. First, we identify interventions to create more capacity on the wards during peaks in bed 

demand. Second, we identify interventions to increase the free bed capacity per ward at all times. 

Third we identify the preconditions that need to be satisfied for the interventions to be successful.  

Admitting patients after surgery and creating temporary buffer capacity are interventions suitable to 

better match available capacity with remaining fluctuations in bed demand. Reducing the length of 

stay (LOS) of patients and redistributing bed capacity per specialty increases the number of free beds 

a ward has available to admit patients. A redistribution of beds across the wards is beneficial to the 

number of boarded patients considering there is no bed shortage on an aggregated level. However, 

flexible assignment of beds might be a better option than fixed redistribution. Improvements in the 

availability of information are necessary to allow wards to better react to incoming bed demand. A 

central information platform helps to locate available beds and quickly provide an overview of the 

current situation. 
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Cost & benefits 

To rank the interventions we categorise them using a cost benefit 

framework, see Figure 4-1. The cost refers to the ease of 

implementation, not limited to the financial resources needed. The 

interventions and their ranking can be seen in Table 4. 

Table 4 Categorised improvement interventions 

Levelling incoming bed demand: Benefit Cost 

 1 Model: reduce artificial variation in bed demand from the elective 
surgical stream by redesigning elective admission planning 

High Med 

Reacting to incoming bed demand:   

 2 Admit patients after surgery High Med 

 3 Use temporary buffer capacity for peak hours per day High High 

 4 LOS improvement Med Med 

 5 Redistribution of beds per specialty  Med High 

 6 Real-time insight in the ‘state of the system’ Med Med 

 

We discuss Intervention 1 in Chapter 5 and 6. Interventions 2-6 are discussed in Chapter 7. Intervention 

1 is the main focus of this research because elective patient scheduling has been selected as an area 

with a high potential for improvement. Research has shown that the majority of variability in patient 

flow is attributable to scheduled admissions, especially when adjusted for patient volume, and 

redesigning the elective scheduling system is reported to show significant improvement results in the 

number of boarded patients, cancelled operations and session utilisation [10] [11]. We select 

admission scheduling as the focus for our model predominantly for practical reasons. The St. Antonius 

hospital uses a block type master surgery schedule which has proven to be difficult to change 

structurally. Letting go of the block scheduling or continue operations during the weekend are also 

possible interventions to reduce artificial variation in bed demand but are thought to be infeasible in 

Figure 4-1 Cost & benefit framework 
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the short term. Case sequencing is thought to have too little effect on bed requirement. Admission 

planning therefore has the right balance between practical feasibility and improvement potential. An 

added motivation to choose admission planning originates from meetings with admission planners and 

heads of the wards. When scheduling patients, admission planners take into account restrictions, such 

as available OR-time and physician preference but have no feedback on what the consequences of 

their planning efforts are on the wards. We identify the planning of elective surgical patients as an area 

where an integral systems perspective can have a significant improvement over local optimisation.  
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5 Intervention 1: Approach for levelling incoming bed demand 
As introduced in Chapter 4, we aim to reduce peaks and variation in bed demand by improving the 

admission planning of the elective OR stream. This chapter starts with a conceptual model in Section 

5.1, followed by the formal model description and multiple variations on the mathematical model in 

Section 5.2. Section 5.3 describes the output of the model and the validation of the model is the subject 

of Section 5.4. Finally Section 5.4 indicates the limitations of our approach. 

5.1 Conceptual model 
Currently, admission planners schedule individual patients onto sessions without being able to see the 

result of their planning efforts on the bed requirement. We propose to construct an optimisation 

model that provides admission planners with advice as to the mix and volume they should preferably 

schedule on each session to minimise peaks in variation in resulting bed utilisation. Intervention one 

consists of two phases: 

Phase one: determine the theoretically optimal case mix per session with a mathematical model 

Phase two: schedule patients based on the case mix prescribed by the model 

Figure 5-1 shows a simplified representation of the current scheduling method on the left and the 

proposed improved scheduling method on the right.  

 

Figure 5-1 Current versus proposed situation for planning elective surgical patients 
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In the old situation, sessions are filled first come first serve until there is no time left on the schedule. 

In the new situation planners aim to fill sessions with a predetermined desirable mix, the case mix 

matrix. In the end the same 9 patients are scheduled, just in a sequence that results in less variation in 

bed demand. 

5.2 Formal model description 
Phase one consists of using the mathematical optimisation model to create optimal case mixes. The 

mathematical optimisation model is based on multiple forms of mathematical programming and is 

programmed in IBM ILOG CPLEX optimisation studio 12.5 [32]. We use mathematical programming 

because it provides us with solutions for our combinatorial optimisation problem where we optimally 

use our resources. Mathematical programming also provides flexibility in adding and modifying 

constraints. 

The phase one objective is to reduce fluctuations in the demand for beds by assigning volume and mix 

of case types to OR sessions for each day in the planning cycle. The mathematical model gives an 

answer to the following question: 

Given a certain Master Surgery Schedule and expected demand, when should we schedule which case 

types and in what volumes? 

The mathematical model is based on the technique used by [13] to relate the surgical schedule to 

resulting bed demand. However, there are differences between the approach and goal of our research 

compared to [13]. Van Oostrum et al. [13] aim to minimise the number of opened ORs and the resulting 

bed requirement, by creating an optimal cyclic surgery schedule from a set of surgical procedures. We 

aim to minimise the bed requirement, by creating an optimal case mix per OR session within an existing 

cyclical block schedule. We therefore provide a refinement on the existing MSS on a specialty level, 

whereas [13] create a new MSS on procedure type level. For a description of these different types of 

MSSs see Section 3.3.1. We choose this approach because the St. Antonius hospital currently uses an 

MSS on specialty level and a new MSS on procedure type level is considered to have a low probability 
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of being implemented. Van Oostrum et al. [13] create their cyclical schedule based on the most 

frequently occurring medically homogenous case types whereas we use case types based on LOS 

duration. We can therefore capture all elective demand in our model, where [13] disregard 

infrequently occurring procedures. Contrary to [13] we do not use a probabilistic representation of the 

surgery duration, because we only use surgery duration to ensure the case mixes resulting from the 

model are practically feasible within the existing OR time.  

The mathematical model is constructed to fit the characteristics of the St. Antonius’ Utrecht location 

but is designed in a broad and general way. This means the model can also be used to optimize the 

other location of the hospital and potentially other hospitals that face similar planning and scheduling 

problems. Hospitals that could also benefit from this approach use an MSS on specialty level, on which 

patients are scheduled onto the first available suitable session without observing the resulting bed 

requirement.  

5.2.1 Input parameters, entities and variables: 

Table 5 through Table 7 show the input parameters and indices and the decision variables used in the 

mathematical model. 

Table 5 Input entities 

Entities Set Index 

Cycle horizon T t 

Operating rooms J j 

Bed types B b 

Case types I i 

Set of ORs j and days t in which specialty i can perform surgery Si j,t 

 



- 37 - 
 

Table 6 Input parameters 

Parameters Notation 

Expected surgery duration in minutes  needed by case type I ei ∈  ℤ+ 

Capacity of OR j on day t in minutes oj,t ∈  ℤ+
 

Demand for case type i di ∈  ℤ+ 

Probability of case type i being in bed type b after t days pb,I,t ∈  ℝ, 0 ≤ 𝑝𝑏,𝑖,𝑡 ≤ 1  

Maximum number of nights required in bed type b by case type i lb,I ∈  ℤ+ 

Priority factor for bed type b, ∑ 𝑐𝑏 = 1 cb ∈  ℝ, 0 ≤ 𝑐𝑏 ≤ 1 

Setup time in minutes between operations St ∈  ℤ+ 

Weight for objective 1 θ1 

Weight for objective 2 θ 2 

  

 

Table 7 Decision variables 

Decision variables Notation 

Number of case types i scheduled in OR j on day t Vi,j,t 

Maximum demand for bed type b (performance indicator goal 2) Zb 

Maximum utilisation of all ORs (performance indicator goal 1) U 

Utilisation of bed type b on day t ZZb,t 

Utilisation of OR j on day t UUj,t 

Number of setups needed in OR j on day t STj,t 
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5.2.2 Mixed Integer Linear Programming model 

The objective function minimises two weighted goals: minimizing the peaks in OR utilisation and 

minimising the peaks in bed demand. Both measures are normalised by expressing them as 

percentages utilisation. The peaks in bed demand per bed type are determined by dividing the 

observed peak in bed demand by the theoretical optimal, completely levelled, bed demand. This is 

comparable to the technique used by [13]. Minimising peaks in OR utilisation might seem 

counterintuitive since maximising OR utilisation might free up an entire OR that can be closed. In this 

case however, considering the inherent variation in surgical durations per case type, we want to 

maximise the unscheduled time per session to maximise the chances an admission planner is able to 

fill a session according to the desired mix without overtime.  Constraint (1) ensures that all demand is 

scheduled whilst only allowing case types to be scheduled on a day Si their specialty has OR time. 

Constraint (2) sets decision variable ZZb,t to reflect the daily peak in bed demand for each bed type and 

day. The term t-f in decision variable Vi,j,t-f should be read as modulo T to incorporate patients still in a 

bed at the end of the cycle horizon. Constraint (3) sets decision variable and performance indicator Zb 

at the peak of bed demand for bed b over the entire planning horizon, this is comparable to the 

technique used by [13] to model a minmax objective. Constraint (4) determines the OR capacity 

needed by all case types scheduled on that day and OR. Constraint (5) ensures that this workload does 

not exceed the available capacity of the OR on that day. Constraint (6) sets decision variable and 

performance indicator U such that it reflects the peak in OR utilisation for all ORs in the planning 

horizon as a percentage compared to full utilisation. Constraints (7) and (8) determine how many 

setups are needed in an OR per day, which is equal to the number of surgeries minus one if there is 

more than one surgery scheduled, zero otherwise. 

Objective function: 

𝑀𝑖𝑛 𝜃1 ∗ 𝑈 + 𝜃2 ∗ ∑ [
𝑍𝑏

[∑ ∑ 𝑝𝑏,𝑖,𝑓 ∗ 𝑑𝑖
𝑙𝑏,𝑖

𝑓=1𝑖∈𝐼 ] /𝑇
∗ 𝑐𝑏]

𝑏∈𝐵
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s.t. 

                               ∑ 𝑉𝑖,𝑗,𝑡 =  𝑑𝑖               ∀𝑖 ∈ 𝐼

(𝑗,𝑡)∈𝑆𝑖

                        (1) 

∑ ∑ ∑ 𝑝𝑏,𝑖,𝑓 ∗ 𝑉𝑖,𝑗,(𝑡−𝑓)∗ = 𝑍𝑍𝑏,𝑡           ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇

𝑙𝑏,𝑖

𝑓=1𝑗∈𝐽

           (2)

𝑖∈𝐼

 

                                          𝑍𝑍𝑏,𝑡 ≤  𝑍𝑏             ∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇            (3) 

       ∑ 𝑒𝑖 ∗ 𝑉𝑖,𝑗,𝑡 + 𝑆𝑇𝑗𝑡 ∗ 𝑠𝑡 = 𝑈𝑈𝑗,𝑡           ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

𝑖∈𝐼

             (4) 

                                          𝑈𝑈𝑗,𝑡 ≤ 𝑜𝑗,𝑡              ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇              (5) 

                                          
𝑈𝑈𝑗,𝑡

𝑜𝑗,𝑡
≤ 𝑈                ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇              (6) 

                         (∑ 𝑉𝑖,𝑗,𝑡) − 1 ≤  𝑆𝑇𝑗,𝑡          ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇

𝑖∈𝐼

             (7) 

                                     ∑ 𝑉𝑖,𝑗,𝑡 ≥  𝑆𝑇𝑗,𝑡 

𝑖∈𝐼

        ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇              (8) 

 

5.2.3 Quadratic Assignment Problem model 

As mentioned in Section 2.4 the goal is to minimise variation in the demand for resources. Even though 

reducing peaks in demand almost certainly also reduces variation in demand, it is not necessarily the 

case that minimizing the peak in demand also minimises demand variation. To this end we also model 

the case type scheduling problem as a Quadratic Assignment Problem (QAP), with the objective of 

minimising the squared deviation from the mean. To do this we make a few changes to the MILP 

formulation from Section 5.2.2: 

Additional decision variable AVb: the average bed utilisation for bed type b over the cycle horizon 

Additional constraint: 

                                       
1

𝑇
∑ 𝑍𝑍𝑏,𝑡

𝑡∈𝑇

=  𝐴𝑉𝑏               ∀𝑏 ∈ 𝐵                     (9) 

Consequently we also adapt the objective function to reflect the new goal: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

𝑇 ∗ 𝐵
∑ ∑(𝑍𝑍𝑏,𝑡 − 𝐴𝑉𝑏)

2

𝑡∈𝑇𝑏∈𝐵
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5.2.4 Total Daily Capacity (TDC) model 

The MILP and QAP model described in Section 5.2.2 and 5.2.3 assign patient volumes to specific ORs 

on specific days. This could mean that 3 patients with a surgery duration of 150 minutes cannot be 

assigned to an OR day where a specialty has two, 4-hour, back to back sessions, where in practice these 

450 minutes of OR time fit neatly in the 495 minutes of total OR time available. Considering the total 

OR time a specialty has on a day instead of at the individual ORs gives the model more freedom to 

assign patient types, which potentially improves the models performance. The likelihood of this to 

have substantial negative practical implications in phase two is thought to be minimal, especially 

considering individual OR times can differ from the expected OR duration for that patient’s case type. 

We create a TDC version of both the MILP and the QAP model by substituting constraint (5) with 

constraint (5’): 

                                          ∑ 𝑈𝑈𝑗,𝑡

𝑗∈𝐽′

≤ ∑ 𝑜𝑗,𝑡

𝑗∈𝐽′

           ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇             (5′) 

Where 𝐽’ ⊂ 𝐽 represents a subset of all ORs J that are assigned to a specialty on day t. 

5.3 Model output 
The output of the model is a matrix with, for each 

OR j on each day j, the amount of patients per 

case type to schedule: the case mix matrix. This 

is the phase one result. Case mix matrices 

provide the optimal mix and volume of patients 

to be planned by admission planners in phase 

two. Figure 5-2 shows an example of a case mix 

matrix in for a specialty with three case types and 

a cycle of 14 days. 

Figure 5-2 Example of a case mix matrix for T=14 days and 
I=3 (DT=Day Treatment, SS=Short Stay clinical, LS=Long Stay 
clinical) 
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5.4 Validating the technical model 

It is important that the analysis and the optimization model both produce usable results comparable 

to practice. In constructing the model regular feedback is obtained from stakeholders inside the 

hospital to validate the choices and constraints. Involving stakeholders from practice also aids in the 

creation of awareness and the willingness to accept results produced by the model. The optimisation 

model is validated by introducing multiple small instances that can also be calculated manually and 

comparing the results. These checks are executed for different parts of the mathematical model. 

Results from the model are also manually checked for practical feasibility. The outcome of the model 

is placed besides the realisation of scheduled patients and cross-checked to see if the patient 

population, total length of stay and surgery duration match. In all checks the model functions as 

intended. We recommend the St. Antonius hospital to build a small simulation model to provide an 

additional validation of the results. Also, more practice validation is needed. Testing the approach in a 

real life situation can help identify shortcomings in the model or previously unknown restrictions. 

When implementing this approach we recommend to hold weekly feedback sessions help to validate 

the model and increase its accuracy. 

5.5 Limitations of the approach 
There are a number of limitations to the chosen approach. In our approach we can only optimise the 

scheduling of case types, not the scheduling of actual patients. The properties of individual patients, 

used in phase two, differ from the expected properties of case types, used in phase one. This variation 

means the phase two scheduling potentially reduces the improvement potential of the optimisation in 

phase one.  

There are also a number of limitations to the mathematical model. The model simplifies the time of 

entry and exit, and therefore LOS, in a bed to days instead of hours or minutes. This is believed to be 

a sufficient level of detail, considering the goal is to schedule case types over weekdays. For sequencing 

patients within a day we refer the reader to models by [25] [23] [27]. When it comes to the use of OR 

sessions, the model represents the expected OR-time and expected setup-time needed as a 
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deterministic parameter. The restriction that the expected total case type mix duration in a day may 

not exceed the available time, forces the model to create mixes that have a high potential to be realised 

when used by admission planners in planning actual patients. Given the inherent variation in OR-time 

per individual patient in phase two, it is not necessary to incorporate a higher level of detail in the 

phase one model. We do need a higher level of granulation when determining the expected LOS per 

case type to accurately model daily bed requirements. We represent the stochastic LOS variable as 

deterministic chances of a case type still occupying a bed after t days. Once again, considering the 

expected LOS distribution per case type most likely differs from the realised LOS of individual patients, 

this level of granulation is assumed to be sufficient.  

At the end of the planning cycle there could be patients still in a bed, while the model assumes all beds 

are empty at the beginning of the cycle. To capture these remaining patients the model assumes 

patients who are still in a bed at the last day of the cycle ‘continue’ in their LOS on the first day of the 

cycle, by means of a modulo function. This simplification allows us to model the full LOS of all planned 

patients. The model however cannot take into account the emergency stream of patients, who are by 

nature not suitable for scheduling in advance. These patients can reduce the improvement potential 

of the model.  Finally, weights for the different bed types and for the two different goals (in case of the 

MILP model) need to be determined by stakeholders. 
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6 Intervention 1: Experimental settings & results 
Section 6.1 introduces the experimental design to test our approach. The theoretical performance of 

the mathematical models is tested in Section 6.2. Section 6.3 shows the practical improvements for a 

single specialty case study by scheduling patients according to the phase one matrices. Section 6.4 

introduces the results when incorporating all nine surgical specialties in the Utrecht location. 

6.1 Experimental design 
In this section we introduce the method to test our approach. Like our approach, the testing is divided 

into the two phases of the model: creating the case mix matrices in phase one and scheduling patients 

according to the case mix matrix in phase two. We first do a case study based on a single specialty. We 

choose to test on one specialty first because it can quickly give an indication of the improvement 

potential without the need for extensive data analysis. For this case study we choose the orthopaedics 

(ORT) specialty. We choose ORT for the initial case study because it represents a relatively large 

proportion of the surgical elective stream. After the ORT case study is completed we extend the scope 

to an integral planning for all nine surgical specialties: the integral planning (INT) case study. 

Figure 6-1 illustrates the experimental design for both phase one and two. In phase one we evaluate 

the performance of the different types of mathematical model from Section 5.2 compared to a 

theoretical optimum. In phase two we use the case mix matrices from the best performing model type 

and evaluate the practical improvement potential it offers in phase two. For evaluating the 

performance in phase two we test multiple scenarios. 

 

Figure 6-1 Illustration of the 2-phase experimental design 
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Section 6.1.1 elaborates on the different tests and scenarios, where Section 6.1.2 explains how we 

determine the input parameters for the mathematical model.  

6.1.1 Test instances & scenarios 

The detailed description of the test instances scenarios are, once again, split up into the two phases. 

Phase one and phase two are covered for both the ORT case study and the INT case study. 

6.1.1.1 ORT case study: Phase one test instances 

In phase one of the ORT case study we evaluate the performance of the different model types using 

input parameters based on the ORT specialty. We compare the results by scheduling all orthopaedic 

patients in the observed 12 week period 30-09-2013 to 20-12-2013 according to their realised OR date 

and the OR dates suggested by all model variants. We also compare the results with the theoretical 

optimum where demand is spread perfectly over the available capacity. We compare the following 

instances: 

- Realised planning 
- Model: MILP variant 
- Model: QAP variant 
- Model: MILP TDC variant 
- Model: QAP TDC variant 
- Theoretical optimum 

6.1.1.2 ORT case study: Phase two test scenarios 

Phase two of the ORT case study consists of assigning individual orthopaedic patients in the 12 week 

period 30-09-2013 to 20-12-2013 to the OR session according to the mix determined by the best 

performing phase one model. In the St. Antonius hospital, assigning patients to the OR sessions is a 

task for the admission planners. There are practical restrictions a planner faces that are not 

incorporated in the model. For instance not every physician can perform all procedures, combined 

with a physician roster this means that a patient cannot be assigned to every OR session from that 

specialty. Certain patients can even only be operated on by one specific physician for medical or 

personal reasons, called “strict” patients. This planning difficulty has always existed and planners are 

used to working within this restriction, it might however limit the degree to which the optimal mix 
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from phase one can be adhered to. Therefore, we also need to make sure that the following practice 

constraints are met: 

- We have to assign a patient to an OR within one week of their original OR date, to make sure 

that no patient is on the waiting list for too long in the new situation 

- We cannot overload an OR, once it is filled we have to start on the next session 

- We can only assign patients to an OR where there is a physician scheduled that can perform 

the operation (only in the Strict QAP scenario) 

We create three scenarios and test them. These scenarios all use case mix matrices based the case 

types and the expected length of stay obtained by analysing the Orthopaedics patient population in 

the period 16-09-2013 to 24-01-2014. The expected demand and available OR time differs per 

scenario. We test the scenarios with the inputs and models as shown in Table 8. The scenarios are 

benchmarked against the observed bed demand in the case study period. 

Table 8 Scenario inputs and models they are tested with 

 

Standard Scenario - In the standard scenario, we use the basic MSS that was in effect in the case study 

period to determine available OR time, represented in Figure 6-7. We also use the expected 14-day 

demand obtained by analysing the Orthopaedics patient population in the period 16-09-2013 to 24-

01-2014 

Custom - Fill the 2 week cycle custom case mix matrix with patients. This is based on the observed 

demand in the 12 week case study period and accounts for cancelled or added OR sessions. This 

scenario therefore assumes we can perfectly forecast demand and available OR time. 

Demand OR schedule

Strict 

restriction

Standard

Long term expected 

demand Basic MSS No

Custom

Exact demand observed 

in case study

Realisation of MSS in 

case study period No

Strict

Exact demand observed 

in case study

Realisation of MSS in 

case study period Yes
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Strict - Fill the 2 week cycle custom case mix matrix with patients but ONLY with their own physician 

in case of strict patients. This is again based on the observed demand in the 12 week period and 

accounts for cancelled or added OR sessions and therefore this scenario also assumes we can perfectly 

forecast demand and available OR time.  

6.1.1.3 INT case study: Phase one test instances 

In phase one of the INT case study we evaluate the performance of the two best performing model 

types in phase one of the ORT case study. We use input parameters based on all nine surgical 

specialties on the Utrecht location. We compare the results by scheduling all patients in the observed 

period according to their realised OR date and the OR dates suggested by the model variants. We also 

compare the results with the theoretical optimum where demand is spread perfectly over the available 

capacity. We compare the following instances: 

- Realised planning 
- Model: best performing variant from phase one ORT case study 
- Model: second-best performing variant from phase one ORT case study 
- Theoretical optimum 

6.1.1.4 INT case study: Phase one test scenarios 

Unlike phase two of the ORT case study, where we scheduled all orthopaedic patients by hand 

according to the case mix matrix, we do not schedule patients in the INT case study. Manually 

scheduling all patients for nine specialties is considered too labour intensive to complete within the 

timeframe of this research. Alternatively, we compare the factors limiting the improvement potential 

in the ORT case study with the limiting factors in the INT case study. Comparing these limiting factors 

enables us to give an indication of the practical improvement potential for the integral planning. 

6.1.2 Parameter setting 

The phase one needs a number of input parameters. Available OR time per day can be found in the 

hospital information system and in the master surgery schedule. The total population of elective 

surgical patients is also obtained from the hospital information system, providing information on 

demand, surgery duration and length of stay. The deterministic expected surgery duration is based 

upon the assumption that surgery durations follow a lognormal distribution. We make this assumption 
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considering the data has a low predictive value. We fit the data to a lognormal distribution and use the 

expected value as an estimator for the surgery duration. This logistical information serves as the bases 

for the creation of case types. The highest aggregation level in the case types will be the specialty to 

which the patients belong, corresponding with the blocks in the master surgery schedule. The division 

of patients into subgroups within a specialty is based on the surgery duration and length of stay, with 

their corresponding stochastic distributions. To illustrate the creation of case types we use the 

orthopaedic patients as an example. 

Creating case types 

To distinguish case types in the total orthopaedic-patient population we look at the surgery duration 

and length of stay of elective orthopaedic patients operated between 16-09-2013 and 24-01-2014. We 

need to exclude some patients from the population due to special circumstances. First, we have to 

exclude emergency patients since they cannot be planned in advance. Second, we exclude patients 

going to ward U001 (children) and U003 (GE) after surgery. These are special isolated wards that do 

not fall within the scope of this research. This leaves us with 94% of all orthopaedic patients that are 

suitable for planning using our model. To determine demand for this group we can, due to data issues, 

only look at patients that have had surgery only once in the reviewed period. We account for the 

exclusion of multiple-visit patients by marking up the demand to a full 100% using the case type 

properties based on the single visit 

patients. It is assumed this leads to 

an appropriate representation of 

the patient population that is 

suitable for planning by our model. 

The patient population suitable for 

planning by the model is shown in 

Figure 6-2. 

Figure 6-2 Patient population in the ORT case suitable for scheduling by 
the model - 16-09-2013 to 24-01-2014, n = 1130, source: Hospital IT system 
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A total of 959 elective orthopaedic patients have been to the OR in this period. Figure 6-3 shows the 

histogram for both the surgery duration and the length of stay of all patients. 

 

Figure 6-3 Histogram surgery durations and length of stay full orthopaedic patient population - 16-09-2013 to 24-01-2014, 
n=959 patients 

In separating the patient population into case types, we first differentiate to which ward the patients 

need to go. The day treatment patients go to the day treatment ward and the clinical patients go to 

ward 4b. There is a clear distinction in the length of stay of clinical patients: patient that stay one night, 

a length of stay <1,5 days, and clinical patients that stay longer than 1,5 days. This distinction confirmed 

by the head of ward 4b. When differentiating into these three types, day treatment (DT), short stay 

clinical (SS) and long stay clinical (LS), we obtain the histograms in Figure 6-4-Figure 6-6. The 

differentiation into case types is based on an optimum between having enough demand per type and 

reducing variation in surgery duration and LOS. Also, it is believed that a higher number of case types 

makes the scheduling task of planners increasingly difficult. When looking at the data in combination 

with stakeholder preference we end up with the three case types as described.  

 

Figure 6-4 Histogram surgery durations and length of stay day treatment orthopaedic patient population - 16-09-2013 to 
24-01-2014, n=377 patients 
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Figure 6-5 Histogram surgery durations and length of stay short stay clinical patients - 16-09-2013 to 24-01-2014, n=260 
patients 

 

Figure 6-6 Histogram surgery durations and length of stay long stay clinical patients - 16-09-2013 to 24-01-2014, n=322 
patients 

 

6.2 ORT case study phase one 

In section 6.2.1 we evaluate the performance of the different model types using input parameters 

based on the ORT specialty. Section 6.2.2 summarises the conclusions from phase one of the ORT case 

study whereas Section 6.2.3 covers the limitations of phase one of the ORT case study. 

6.2.1 Results ORT case study phase one 

6.2.1.1 Input parameters 

To create a case mix matrix we need to determine the demand, surgery duration and length of stay 

distribution for each case type. These input parameters, based on the 12 week period 30-09-2013 to 

20-12-2013, can be seen in Table 9 and Table 10. Day 1 is defined as the day of surgery. The master 

surgery schedule (MSS) also needs to be determined. For the orthopaedic specialty there is a two-week 

cycle MSS. The number of sessions and available time per session can be seen in Figure 6-7. 
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Table 9 Surgery durations and demand per case type for orthopaedic patients – 30-09-2013 to 20-12-2013, n = 741, 
source: Hospital IT system 

 

Table 10 Percentage of patient still occupying a bed t days after surgery – 30-09-2013 to 20-12-2013, n = 741, source: 
Hospital IT system 

 

 

Figure 6-7 Two week session cycle for the orthopaedics specialty 

 

6.2.1.2 Instance testing 

 

Using the input parameter we run the Mixed Integer Linear Problem (MILP), the Quadratic Assignment 

Problem (QAP) and the TDC version for both models (MILP TDC & QAP TDC). The MILP versions of the 

model use weight 𝜃1 = 0.1 for levelling OR utilisation and weight 𝜃1 = 0.9 for reducing peaks in bed 

utilisation. The MILP model reaches a 0.2% optimality gap after only 5 seconds, the QAP model reaches 

an optimality gap of 3.5% after 8 seconds. Both optimality gaps are considered small enough to be 

acceptable.  

Case types phase one DT SS LS

Demand per 2 week cycle (patients) 46 34 43

Surgery duration (minutes) 41 78 118

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14

DT 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

SS 100% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

LS 100% 100% 93% 81% 59% 38% 15% 8% 5% 3% 2% 2% 1% 0%
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The minimal bed requirement is calculated based on the performance indicator as defined in Section 

2.4, where we calculate the bed requirement needed to fulfil 95% of all demand. The results can be 

seen in Table 11. For more accurate comparison of the solutions, we calculate the bed requirement to 

the nearest decimal. 

Table 11 Results for phase one of the ORT case study: instance testing - 30-09-2013 to 20-12-2013, n = 741, source: 
Hospital IT system & optimisation model 

 

It is clear that both QAP and MILP models provide a theoretical benefit to the bed requirement for 

both the day treatment ward and ward 4b. The QAP model provides an additional 2% reduction in bed 

requirement. It can be seen that the TDC version of the models do not lead to additional reductions. 

This can be explained by the fact that we are only able to schedule 85% percent of the total surgical 

orthopaedics patient population. This means there is some spare time in each OR session which gives 

the model the same flexibility in scheduling case types as the TDC version does. We therefore do not 

investigate the TDC variant any further. When looking at the variation, there are also notable 

differences for both wards. Figure 

6-8 shows the results, where it can 

be seen that both the QAP and the 

MILP model significantly reduce 

variation in bed demand and that 

the QAP model again outperforms 

the MILP model.  

 

Realised 

Planning MILP MILP TDC QAP QAP TDC

Theoretical 

Optimum

DT bed requirement 7.6 4.8 4.8 4.8 4.8 4.4

4B bed requirement 20.8 17.9 17.9 17.4 17.4 17.2

DT % reduction 37% 37% 37% 37% 43%

4B % reduction 14% 14% 16% 16% 17%

Total reduction 20% 20% 22% 22% 24%

Figure 6-8 Variation in bed utilisation for the different scenarios in phase 
one of the ORT case study - 30-09-2013 to 20-12-2013, n = 741, source: 
Hospital IT system & optimisation model 
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When comparing the QAP and the MILP model in terms of daily bed utilisation on the Day Treatment 

and ward 4b we obtain Figure 6-9 and Figure 6-10. It can be seen that both model instances provide a 

more stable and predictive pattern, confirming the model’s ability to reduce variation and increase its 

performance on the key performance indicator. 

 

Figure 6-9 DT - Bed utilisation by Orthopaedics patients ORT case study phase one - 30-09-2013 to 20-12-2013, n = 741, 
source: Hospital IT system & optimisation model 

 

Figure 6-10 4b - Bed utilisation by Orthopaedics patients instance testing - 30-09-2013 to 20-12-2013 n = 741, source: 
Hospital IT system & optimisation model 

The performance of both models is also evaluated with regard to the OR utilisation. Figure 6-11 shows 

the OR utilisation per day for the ORT case study for both the QAP en the MILP model, where Figure 

6-12 shows the coefficient of variation for the OR utilisation. It can be seen that both models create 

more variation in OR utilisation than the realised situation. 

 

Figure 6-11 OR utilisation per day resulting from phase one of the ORT case study - 30-09-2013 to 20-12-2013 n = 264, 
source: Hospital IT system & optimisation model 
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Figure 6-12 Coefficient of variation OR utilisation phase one ORT case study - 30-09-2013 to 20-12-2013 n = 264, source: 
Hospital IT system & optimisation model 

6.2.2 Conclusions ORT case study phase one 

The model is able to plan the patients in such a way that the variation in bed demand is reduced. The 

model also reduces the minimum bed requirement, where the QAP outperforms the MILP and the TDC 

variant of both models does not offer additional benefits, as can be seen in Figure 6-13. The model is 

able to plan the case types in such a way that the bed utilisation approaches the theoretical optimum. 

The OR utilisation resulting from the model shows a higher variation than in the observed situation, 

indicating that optimising bed utilisation has a negative effect on the variation in OR utilisation. 

 

Figure 6-13 ORT case study phase one results: model performance 
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6.2.3 Limitations ORT case study phase one 

There are a number of assumptions and limitations in phase one of the model that need to be 

addressed when reflecting on the results. First, we assume for the entire case study period that every 

14-day cycle has the same MSS. In practice reduction periods and session-changes create slightly 

different MSSs every week. In phase one we also assume that a patient can be assigned to any session 

from a specialty in the MSS that patient belongs to. In practice some patients can only be assigned to 

a session where a specific physician is scheduled, called strict patients.  Regarding the case types, there 

is only limited data available to base the sub-grouping, demand forecasting, expected LOS and 

expected surgery duration on. In phase one we assume all patients within a case type have the same 

expected LOS and surgery duration and that we can perfectly forecast demand. Due to the limited data 

set the chances increase that the demand forecast, expected surgery duration and expected LOS do 

not coincide with properties of the future patient population. Finally, we base the case types on LOS 

alone. This decision means that the variation of surgery duration within a case type is higher than when 

the case types are divided further to include subgroups based on surgery duration. 

6.3 ORT case study phase two 
In section 6.3.1 we evaluate the practical performance of the phase one case mix matrices. Section 

6.3.2 summarises the conclusions from phase two of the ORT case study whereas Section 6.3.3 covers 

the limitations of phase two of the ORT case study. 

6.3.1 Results ORT case study phase two  

6.3.1.1 Input parameters 

In phase two we schedule all orthopaedic elective demand for the wards within the scope of this 

research, this represents 94% of the total Orthopaedics patient population as can be seen in Figure 

6-2. The expected 14-day demand can be seen in Table 12. These demand figures are used in the 

“standard” scenario, just as the MSS in Figure 6-7. The other scenarios use week-specific demands and 

week-specific OR schedules. The surgery durations are the same as in phase one (see Table 9).  

Case type demand phase two DT SS LS

Demand per 2 week cycle (patients) 55 38 47

Table 12 Expected 14-day case type demand - 16-09-2013 to 24-01-2014 n = 959, source: Hospital IT system 
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6.3.1.2 Scenario testing 

Scheduling patients to the sessions according to the case mix matrix prescribed by the models within 

one week of their original OR date did not pose substantial issues, even with the restriction of roughly 

60% of the orthopaedic patients being strict. In this most restricted planning scenario we were able to 

plan 67% of the days exactly according to the case mix matrix and in total only had to deviate 5,5% 

from the prescribed case mix matrix. This means an admission planner is able to plan most patients 

according to the preferred mix. Figure 6-14 to Figure 6-16 show the case mix scheduled on the OR for 

the realised situation, the theoretically optimal case mix and the case mix as planned in phase two for 

the two week period 4-11-203 to 15-11-2013. It can be seen that the case mix resulting from planning 

using the matrix is a closer match to the theoretical optimal mix than the realised case mix.  

 

Figure 6-14 Observed (actual) scheduled case mix - 4-11-2013 to 15-11-2013, n = 78, source: Hospital IT system

 

Figure 6-15 Optimal case mix matrix according to the QAP model based on observed case study demand and realised OR 
sessions 
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Figure 6-16 Case mix resulting from scheduling patients to OR sessions. Restrictions: OR time, strict patients and no more 
than one week from original OR date 

The results of scheduling the patients according to the different matrices can be seen in Table 13. It is 

clear that the added restrictions in phase two, and the deviations between expected and observed 

length of stay reduce the improvement potential. 

Table 13 Results for phase two of the ORT case - 30-09-2013 to 20-12-2013, n = 741, source: Hospital IT system & 
optimisation model 

 

Figure 6-17 shows the variation for both wards and all scenarios. Again it is clear that the model 

reduces variation in bed demand, and that the QAP model outperforms the MILP model. 

 

 

 

 

 

 

 

Figure 6-17 Variation for the different scenarios in phase two of the ORT case study - 30-09-2013 to 20-12-2013, n = 741, 
source: Hospital IT system & optimisation model 

Realised 

Demand

Standard 

MILP

Standard 

QAP Custom QAP Strict QAP

Theoretical 

Optimum

DT bed requirement 7.6 5 5.3 4.9 5.1 4.4

4B bed requirement 25.2 23.9 23.4 22.9 22.7 20.7

DT % reduction 34% 30% 36% 33% 42%

4B % reduction 5% 7% 9% 10% 18%

Total 12% 13% 15% 15% 23%
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When looking at daily bed utilisation on the Day Treatment and ward 4b resulting from planning 

according to the case mix matrix we obtain Figure 6-18 and Figure 6-19. It can be seen that filling the 

case mix matrices from phase one with actual patients provides a more stable and predictive pattern 

than the observed bed utilisation, confirming the models’ ability to reduce variation and increase its 

performance on the key performance indicator. 

 

Figure 6-18 DT - Bed utilisation by Orthopaedics patients after phase two ORT case study - 30-09-2013 to 20-12-2013 n = 
741, source: Hospital IT system & optimisation model 

 

Figure 6-19 4b - Bed utilisation by Orthopaedics patients after phase two ORT case study - 30-09-2013 to 20-12-2013 n = 
741, source: Hospital IT system & optimisation model 

The performance of both models is also evaluated with regard to the OR utilisation. Figure 6-20 shows 

the OR utilisation per day for the ORT case study for both the QAP en the MILP model after scheduling 

patients according to the case mix matrices, where Figure 6-21 shows the coefficient of variation for 

the OR utilisation. It can be seen that the using case mix matrices creates more variation in OR 

utilisation than the realised situation, but that a large portion of the variation in OR utilisation is 

reduced in phase two compared to phase one. 
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Figure 6-20 OR utilisation per day resulting from phase two of the ORT case study - 30-09-2013 to 20-12-2013 n = 264, 
source: Hospital IT system & optimisation model 

 

Figure 6-21 Coefficient of variation OR utilisation phase two ORT case study - 30-09-2013 to 20-12-2013 n = 264, source: 
Hospital IT system & optimisation model 

6.3.2 Conclusions ORT case study phase two 

It is to a high degree possible to schedule individual patients to OR sessions according to the prescribed 

matrix, whilst staying within the constraints of the total OR-time, original OR date of the patient and 

strict patients. The use of case mix matrices results in reduced variation in bed demand for all phase 

two scenarios, but do not meet the expectations raised by the phase one model results, as can be seen 

in Figure 6-22. This is due to deviations in the MSS, surgery duration, LOS and demand per case type 

compared to the expected value. In case of the strict scenario there are also additional scheduling 

limitations. 

The custom matrices based on the observed demand and the realised MSS perform better than the 

general matrices based on forecasted demand and the base MSS. We therefore conclude that accurate 

forecasting of input parameters plays a vital role in the effectiveness of the case mix matrix. We also 

conclude that it is much more difficult to achieve the improvement potential put forth by the model 
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on ward 4b than it is on the Day Treatment. This is partly explained by the higher variability in LOS for 

long stay clinical patients but also because a longer LOS means reduction periods have a higher impact 

on ward 4b. The variation in utilisation of OR sessions increases slightly in the new situation, once again 

indicating that variation reduction in bed demand causes increased variation in OR utilisation.  

 

Figure 6-22 ORT case study phase two results: improvement potential 

6.3.3 Limitations ORT case study phase two 

There are several limitations to phase two of the ORT case study. First, the model used case type 

properties based on patients who only visited the hospital once in the analysed period and assumes 

the same properties hold for the multiple-visit patients. Second, we planned the patients a week from 

their original OR date, not as soon as possible after the date they were ready to be operated on. This 

data is not available from the hospital information system. This planning method does not necessarily 

reflect the order in which the admission planners scheduled the patients originally and therefore 

makes the comparison with the realised situation less accurate. Also, the scheduling of patients is not 

an exact science. The schedule we made, based on the data, is feasible but does not reflect all daily 

factors influencing the schedule, such as patient preference for a date and personal preference of 

physicians. These factors potentially reduce the improvement potential of the case mix matrices. 

Finally, in the case of the orthopaedics specialty around half of the patients get an OR-date directly 
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instead of being placed on the waiting list. The admission planner therefore has less flexibility in 

selecting the right patients to be able to get close to the preferred case mix. The practical implications 

of this restriction need to be determined in the implementation process. 

6.4 INT case study 

This section covers experiments that include all nine surgical specialties on the Utrecht location. As 

mentioned in the experimental design we test phase one for the INT case study the same way we did 

in the orthopaedics case study, and then see if the limiting factors in phase two of the INT case study 

are comparable to the limiting factors in the ORTs case study. If the limiting factors are comparable we 

assume we can extrapolate phase two results for the ORT case study to the INT case study. 

6.4.1 Results INT case study phase one 

6.4.1.1 Input parameters 

Appendix F shows the following input parameters for the model describing all nine surgical specialties, 

containing the general day treatment beds and wards 4a, 4b, 5a & 5b: 

- Base Master Surgery Schedule 
- Case types per specialty and their designated ward 
- Forecasted demand per case type 
- Expected length of stay per case type 
- Expected surgery duration per case type 

Not all specialties have three case types like the ORT case study. Some specialties, for instance, only 

have day treatment patients. How many case there are per specialty can be seen in Appendix F. 

6.4.1.2 Instance testing 

Influence of integral approach 

Contrary to the ORT case study, we now aim to simultaneously minimise variation in bed demand for 

all nine surgical specialties operating in the Utrecht location. Considering that all specialties jointly use 

three wards, this means scheduling activities of one specialty needs to be synchronised with other 

specialty’s planning activities. The impact of the integral approach compared to the stand-alone 

approach from the ORT case study is shown in Figure 6-23-Figure 6-25.  Integral optimisation 
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noticeably changed the optimal matrix for the orthopaedics specialty compared to the single-specialty 

optimisation in the ORT case study, indicating the substantial impact the schedules have on each other 

and advocating the use of an integral systems approach in these types of optimisation projects. When 

looking at the total case mix for the surgical specialties on the Utrecht location in Figure 6-25, there is 

once again a clear parallel in case mix patterns with the ORT case study case mix. The case mix matrices 

for all nine specialties in the integral optimisation can be seen in Appendix G. 

 

 

 

 

 

 

 

Figure 6-23 Optimal case mix in the ORT case study (QAP model) 

 

 

 

 

 

 

Figure 6-24 Optimal case mix for the orthopaedics specialty using integral optimisation of the Utrecht location (QAP model) 

 

 

 

 

 

 

 

Figure 6-25 Optimal case mix for all 9 specialties combined in the INT case study (QAP model) 



- 62 - 
 

Impact on bed utilisation 

Running the MILP and QAP model for INT case study provides the results shown in Table 14. The MILP 

model reaches s 3.0% optimality gap after only 4 seconds, the QAP model reaches a 0.2% optimality 

gap after 2.4 seconds. 

 

 

 

 

 

These results are similar to the phase one results in the ORT case study and show potential for 

improving the current method of planning by using case mix matrices.   

Figure 6-26 shows the variance in bed utilisation resulting from testing the INT case study. The variance 

once again shows the same pattern as the ORT case study. 

   

Figure 6-26 Variation for the different scenarios in phase one of INT case study - 16-09-2013 to 18-03-2014, n = 1656, 
source: Hospital IT system & optimisation model 

Realised planning MOD MILP MOD QAP Theo opt

Beds DT 28.1 21.7 21.6 21.6

Beds 4A 13.3 8.9 8.7 6.6

Beds 4B 21.6 17 16.7 16.4

Total beds 63 47.6 47 44.6

% impr DT 23% 23% 23%

% impr 4A 33% 35% 51%

% impr 4B 21% 23% 24%

% impr TOT 24% 25% 29%

Table 14 Results INT case study MILP and QAP model – 16-09-2013 to 18-03-2014, n = 1656, Source = Hospital IT 
system & optimisation model 
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Figure 6-27 to Figure 6-29 show the bed utilisation by the planned patient population for all three 

wards. Again the patterns are comparable with those seen in phase one of the ORT case study.   

 

Figure 6-27 DT - Bed utilisation by elective surgical patients after phase one of the INT case study - 16-09-2013 to 18-03-
2014, n = 1656, source: Hospital IT system & optimisation model 

 

Figure 6-28 4a - Bed utilisation by elective surgical patients after phase one of the INT case study - 16-09-2013 to 18-03-
2014, n = 1656, source: Hospital IT system & optimisation model 

 

Figure 6-29 4b - Bed utilisation by elective surgical patients after phase one of the INT case study - 16-09-2013 to 18-03-
2014, n = 1656, source: Hospital IT system & optimisation model 

 

6.4.2 Results INT case study phase two 

The phase one results show similar improvement potential for the ORT case study and the INT case 

study. In the ORT case study however we saw that phase two reduces the improvement potential due 

to a number of variables. For the following variables we compare the ORT case study with the INT case 

study: 
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 Percentage of patient population suitable for planning by model 

 Percentage strict patients 

 Percentage of patients scheduled from waiting list 

 Variation in surgery duration 

We assume the degree of variation in expected demand, LOS and MSS are comparable to the ORT case 

study. 

Percentage of patient population within the scope of this research 

In the ORT case study we were able to plan 94% of all patients using the case mix matrix. The more 

patients suitable for planning by the model the closer a ward can get to the improvement potential 

indicated by the model. In total 76% of all patients are suitable for planning in the INT case study, 

considerably less than in the ORT case study. However if we take the large volume of children (U001) 

out of the calculation, considering they go to the stand alone children’s ward, we end up with just 

under 92% of the patients suitable for planning, comparable to the ORT case study. Please note that 

the children still require OR-time, they only get excluded from the calculation because they do not go 

to a ward that falls within the scope of this research. See Table 15 for the detailed percentages. 

 

 

 

 

 

 

Percentage strict patients 

The more patients categorised as strict, the less flexibility an admission planner has in scheduling 

patients. A large percentage of strict patients therefore reduces the chances of adhering to the case 

Scheduled by model Not scheduled by model Total

Percentage # patients U001&U003 Emergency Population

KCH 74% 110 28 11 149

CHI 79% 1034 77 203 1314

GYN 88% 288 2 36 326

KNO 46% 1161 1315 67 2543

OOG 89% 1879 35 193 2107

ORT 94% 1491 34 59 1584

PCH 88% 257 26 8 291

URO 84% 367 46 24 437

NCH 93% 266 2 17 285

Total 76% 6853 1565 618 9036

Table 15 percentage of patients suitable for planning by the model - 16-09-2013 
to 18-03-2014, n = 9036, source: Hospital IT system 
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mix matrix which in turn reduces the improvement potential. In the ORT case study, the patient 

population consists of around 60% strict patients and 40% pool patients who could be operated by any 

physician of the specialty. Figure 6-30 shows that in total for all specialties around 41% of the 

population is strict and 59% is pool, meaning more flexibility than in the ORT case study. Three 

specialties with a high percentage of strict patients, KCH, PCH and NCH, potentially create problems 

for the admission planner. These specialties together however represent less than 10% of the patients 

suitable for planning by the model (see Table 15).   

 

Figure 6-30 Percentage strict and pool patients per specialty - 16-09-2013 to 18-03-2014, n = 9036, source: Hospital IT 
system 

Variation in surgery duration 

The higher the variation in surgery duration the smaller the chances of adhering to the case mix matrix, 

considering the matrix is based on the deterministic expected surgery duration. To be able to compare 

the variation in surgery duration, we use the coefficient of variation. Figure 6-31 shows that the 

average coefficient of variation for all specialties in Utrecht is smaller than the coefficient of variation 

for orthopaedic surgery durations across all three case types. This indicates that variation in surgery 

duration is less of a restriction in the INT case study than in the ORT case study. 
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Figure 6-31 Coefficient of variation for the surgery duration - 16-09-2013 to 18-03-2014, n = 9036, source: Hospital IT system 

Percentage of patients scheduled from waiting list 

The percentage of patients scheduled from the waiting list indicates a planning degree of freedom for 

admission planners. When all patients are scheduled from the waiting list, an admission planner can 

carefully select suitable patients to ‘fill the gaps’ in the OR-schedule whilst adhering to the case mix 

matrix. If all patients are walk-in and need an OR date immediately this is no longer an option. As 

mentioned in the case study limitations (see Section 6.3.3) it is not possible to replicate this effect 

retrospectively. This effect therefore reduces the improvement potential for both the ORT case study 

and the INT case study. Figure 6-32 shows these percentages for all specialties. Further research is 

needed to determine whether or not these figures significantly reduce the improvement potential. 

 

 

 

 

 

 

 

 

Figure 6-32 Percentage of patients scheduled from waiting list – 27-03-2014 to 26-03-2014, n = 973, source: registration list 
preoperative screening 
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6.4.3 Conclusion INT case study 

We conclude that the percentage of patients suitable for planning introduces a comparable limitation 

in both case studies. The number of strict patients provide less of a limitation for the INT case study, 

as does the variation in surgery duration. The limitation posed by the “percentage of patients 

scheduled from the waiting list” is unclear but the data reveals this factor to be comparable for both 

case studies. We therefore conclude that it is reasonable to assume the improvement potential seen 

in the ORT case study is also obtainable for the INT case study. If we assume a comparable 

improvement potential for phase two of the INT case study as we have seen in phase two of the ORT 

case study, we expect the improvement potential from Table 16 for using case mix matrices to plan 

elective surgical patients in the Utrecht location of the St. Antonius hospital. 

 

 

 

 

6.5 Conclusions 
In phase one it is possible to plan patients in such a way that theoretical variation in bed demand is 

reduced. The models are also able to theoretically plan the case types in such a way that the bed 

utilisation approaches the theoretical optimum. The results can be seen in Figure 6-33. 

 

 

 

 

 

 

Figure 6-33 Model performance for planning elective surgical patients using case mix matrices 

Expected practical 

improvement 

potential Realised planning

Long term 

forecasting

Perfect 

forecasting

Theoretical 

optimum

Total bed requirement 63 56 54 45

Bed reduction 7 9 18

% impr TOT 12% 15% 29%

Table 16 Expected improvement potential for using case mix matrices to schedule elective surgical patients 
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In phase two we find it is possible to schedule individual patients to OR sessions according to the 

prescribed theoretically optimal case mix, whilst reducing variation in bed demand. During the 

planning of patients in phase two, we find the improvement to be lower than the theoretical 

performance of the model due to the following causes:  

 There are patients who can only be operated on by a specific physician (strict patients) 

 Not all patients are planned from the waiting list, some require an OR-date immediately 

 There is variation in surgery duration 

 There is variation in demand 

 There is variation in Length of stay 

 There are variations on the basic MSS 

The first two causes reduce the flexibility planners have in scheduling patients. We identify strict 

patients as the largest restriction to adhere to the case mix matrix. The percentage of strict patients 

therefore must be as low as possible to reach the highest improvement potential. The last four causes 

are model inputs that determine the degree to which the models correctly represent reality.  The 

better these inputs forecast reality the more effective the case mix matrix are. Considering the limiting 

factors are comparable between the ORT case and the INT case, we expect our model to have the 

improvement potential seen in Figure 6-34 for using case mix matrices to plan elective surgical patients 

in the Utrecht location of the St. Antonius hospital. 

 

Figure 6-34 Practical improvement potential for planning elective surgical patients using case mix matrices 
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7 Interventions for reacting to incoming bed demand 

This chapter describes interventions 2-6, selected in Chapter 4 (see Table 4) for better reacting to 

incoming bed demand. Because it is not reasonable to assume we can completely level the inflow of 

the elective stream, we introduce five interventions that are suitable to increase the capability of a 

ward to handle the remaining variation in inflow of elective surgical patients. First, we identify two 

interventions to create more capacity on the wards during peaks in bed demand. Second, we identify 

two interventions to increase the free bed capacity per ward at all times. Third we identify the 

preconditions that need to be satisfied for the interventions to be successful. Each section covers one 

improvement intervention and Section 7.6 summarises the conclusions of this chapter. 

7.1 Intervention 2: Admitting patients after surgery 

The current practice of admitting patients on a bed before surgery means that patients wait for surgery 

in a bed instead of in a waiting area, creating peak moments in bed demand. Stakeholders mention a 

high percentage of the patients do not need a bed for medical reasons before surgery and some 

patients actually feel uncomfortable being admitted to a bed at such an early stage. Admitting a patient 

only after surgery, when it is actually medically necessary, frees up that bed for the whole duration of 

pre-surgery waiting and the time spent in the holding and the OR. Admitting patients after surgery is 

an intervention for peak reduction. Section 7.1.1 illustrates the effect of admitting patients after 

surgery for the Day Treatment ward, whereas Section 7.1.2 illustrates this effect for ward 4b. 

7.1.1 Day treatment 

On the day treatment ward, which has a high turnover, the second ‘wave’ of patients arriving on the 

ward need a bed while the first wave patients are still in a bed. Admitting day treatment patients after 

surgery can delay the admission time by several hours, creating enough time to have discharged a first-

wave patient. This way the same bed can be used for two patients on a day instead of one. An initial 

analysis shows the promising potential of this method (see Table 17). The analysis also takes into 
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account the possibility for the hospital to move patients from their bed to a lounge chair after two 

hours in a bed if the situation medically allows for it.  

Table 17 Results initial analysis " bed after OR" scenario Day Treatment – 01-10-2013 to 24-11-2013, n = 277, source: 

Hospital IT system 

 

A case study initiated together with the head of the day treatment ward shows the real impact this 

measure has. The case study assumes there are 24 beds on the ward and disregards the anaesthesia 

patients (these patients almost always get placed on the remaining 4 beds of the 28-bed ward). 

“Double beds” means the number of beds that have been used for two patients on that day. 

Table 18 Results case study "bed after OR" scenario Day Treatment - week 47-48 2013, n = 277, source: Hospital IT 

system 

 

It can be seen that the average improvement is 24%, a lot lower than the 46% in the initial study. This 

is because the exclusion of anaesthesia patients leaves less options to use beds multiple times a day. 

The improvement potential is still significant and frees up between 2 and 8 beds in the case study 

period. Considering the number of patients flowing into the clinical ward 4a is roughly four per day, 

this intervention has the potential to almost completely remove the need for boarding day treatment 

Current Bed after OR Chair >2u Combination

Beds required 23 13 18 11

% bed reduction 46% 23% 53%

Non-ANA Current situation Bed after OR

Case wk 47/48 Patients Double beds Beds required Double beds Beds required % improvement

11-11-2013 19 2 17 5 14 18%

12-11-2013 24 3 21 7 17 19%

13-11-2013 18 0 18 6 12 33%

14-11-2013 22 0 22 6 16 27%

15-11-2013 24 0 24 7 17 29%

18-11-2013 21 1 20 7 14 30%

19-11-2013 18 2 16 5 13 19%

20-11-2013 23 0 23 8 15 35%

21-11-2013 17 5 12 7 10 17%

22-11-2013 23 0 23 2 21 9%

Average case study 24%
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patients on the clinical wards. The intervention where patients get a lounge chair after 2 hours in a 

bed is planned to be investigated in detail after the successful implementation of the “bed after OR” 

intervention. 

7.1.2 Ward 4b 

Clinical wards can also benefit from admitting patients only after surgery. The situation is different 

compared to the day treatment because patients stay overnight. To show the logic behind this, we 

once again look at the admission and discharge periods throughout the day for clinical wards. Figure 

7-1 shows the pattern for ward 4b. It is clear that the morning admission period is multiple hours earlier 

than the discharge period. This mismatch creates a multi-hour period each day where there are ‘double 

patients’, causing a peak demand for beds. Shifting the admission period further ahead of time to just 

behind the time of discharge can reduce this peak demand.    

 

Figure 7-1 Admission and discharge periods ward 4b - 30-09-2013 to 18-12-2013, n = 1920, source: Hospital IT system 

Figure 7-2 and Figure 7-3 show the average mutations in patient attendance throughout the week for 

both the current state and the future state. The future state is defined by shifting the admission time 

4 hours into the future for all patients coming in between 07:00 and 11:00. In the current state the 

peak moments every day can be seen clearly, in the future state these peaks are minimised. The build-

up of patients throughout the week cannot be tackled using this intervention. 
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Figure 7-2 Current average mutation in patient attendance ward 4b – 01-10-2013 to 24-11-2013, n = 2640, source: 

Hospital IT system 

 

Figure 7-3 Average mutation patient attendance ward 4b Future State - 01-10-2013 to 24-11-2013, n = 2640, source: 

Hospital IT system 

The result for various scenarios of shifting patient groups can be seen in Table 8. It can be seen that 

in the most positive scenario, also depicted in Figure 7-3, the maximum number of beds needed 

drops by 3.4 beds. 

Table 19 Results of multiple future states "bed after OR" scenario for ward 4b - 01-10-2013 to 24-11-2013 n = 2640, 

source: Hospital IT system 

 

Amount of freed up beds on peak

Current 

situation 7>10

7>10 

8>11 7>11

7>11 

8>11

7>10 

8>11 

9>12

7>11 

8>12

7>11 

8>12 

9>13

7>11 

8>12 

9>13 

10>14

Mon 6.1 0.6 1.1 1.1 1.1 1.3 1.3 1.3 1.3

Tue 9.0 0.8 1.5 2.8 3.5 2.3 3.5 4.0 4.0

Wed 8.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Thu 14.2 0.3 1.4 3.1 3.4 2.8 3.4 3.4 3.4

Fri 15.1 0.4 1.3 2.4 2.6 2.3 3.3 3.3 3.4

Max 15.1 0.4 1.3 2.4 2.6 2.3 3.3 3.3 3.4
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7.2 Intervention 3: Use buffer capacity during peak demand 

Intervention two aims to reduce peaks in bed demand to better match demand patterns with available 

capacity. If there is still a mismatch after successful implementation of intervention two we can use 

(temporary) buffer capacity during peak moments to fully match demand with available capacity. 

Figure 7-4 shows the average daily mutation in realised patient attendance for ward 4a. If ward 4a has 

three beds free at the start of the day, then patients four and five need to be boarded on another 

ward. To prevent this, it could be worthwhile to place, on average, two extra temporary beds on the 

ward from 07:00 to 10:00. The same effect can be seen in ward 4b where they would need, on average, 

three temporary beds between 06:00 and 11:00. When looking at the weekly pattern in Figure 7-5, we 

see that the temporary beds are most useful on Tuesday, Wednesday and Thursday on ward 4a. Ward 

4b can benefit the most from deploying temporary beds on Thursday and Friday. On the other days, 

the peaks are less likely to be higher than the maximum capacity of the ward. This temporary capacity 

of beds is less useful in the day treatment because of the gradual increase and decrease in number of 

patients during the day. 

Figure 7-4 Average daily mutation in realised patient attendance ward 4a - 30-09-2013 to 18-12-2013 State - 01-10-2013 
to 24-11-2013, n = 1920, source: Hospital IT system 

 

Figure 7-5 Average mutation in weekly realised patient attendance ward 4a - 30-09-2013 to 18-12-2013, n = 1920, source: 
Hospital IT system 
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7.3 Intervention 4: Length of stay improvements 
Meetings with stakeholders reveal that the observed length of stay (LOS) of patients is frequently not 

the same as the LOS in an optimal recovery process. This means that patients occasionally stay in a bed 

longer than medically necessary. It is however not necessarily the case that a patient’s LOS is too high, 

sometimes it is preferable from a medical perspective to increase the length of stay of a patient if it 

lowers the chance of readmitting this patient later on. Most of the issues, however, relate to patients 

having an increased LOS due to logistical reasons. Patients frequently have an increased length of stay 

because they cannot proceed to the next stage of their treatment plan, e.g., nursing home or a 

physiotherapist. Extending the chain to extramural care units, like a ventilator unit, helps to improve 

the LOS and the flow out of the hospital. Accurate LOS predictions and LOS reductions free up capacity 

and also make the planning of beds easier. Orchestrating the check in/out process, for example 

discharging during the evening shift and during the weekends, can reduce the LOS and the variation in 

LOS. Currently discharging patients is done one or multiple times a day, meaning that patients have to 

wait until the next ‘round’ to be discharged. Continuous discharging ensures that patients get to leave 

their bed as soon as possible after being ready for discharging, thereby also freeing up the bed earlier. 

A pilot project on an emergency ward in the Nieuwegein location shows a significant LOS reduction by 

continuously discharging patients. It is also beneficial to standardise the admission & discharge 

processes by developing criteria and guidelines. 

An extended length of stay is a strain on the care process from a logistical perspective and it is 

recommended that the St. Antonius critically reviews its performance on length of stay of patients. 

7.4 Intervention 5: redistribution of beds 
Analysis shows that, in the reviewed period, ward 5b had the lowest turn-down probability. Ward 5b 

also had no bed shortage for the scenario where every patient gets a bed on their designated ward. In 

the current situation it is common practice to board patients on ward 5b rather than anywhere else. 

Permanently moving a specific patient group from ward 4a to ward 5b better matches the ward’s 

capacity with their corresponding demand. The beds on ward 4a that this frees up can then serve as 
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buffer beds for both ward 4a and ward 4b, decreasing the stream of boarded patients from the 4th 

floor to the 5th. Urology patients are considered to be a suitable patient group to move from ward 4a 

to ward 5b. The care for urology patients closely resembles the care provided on ward 5b. This 

intervention only reallocates beds and thus only minimizes the extra work coming from boarding 

patients, there is no structural decrease in variation and size of bed-demand.  

We recommend that the St. Antonius carefully weigh the benefit of a decrease in extra work to a radical 

restructuring of the ward layout. 

7.5 Intervention 6: Insight in the “state of the system” 

Staff confronted with the issue of peak bed demand frequently mention the low availability of 

information. The use of an information system can support real time insight into the state of the 

system. Ward bed planning, how many boarded patients there are and where they are, current 

occupation of the wards and upcoming demand are mostly registered locally in Microsoft Excel files, 

on whiteboards or on paper.  An information system showing the real-time state of the wards, patient 

length of stay, boarded patients and expected upcoming demand provides operational assistance to 

ward staff and the emergency coordinator, reducing the amount of time spent creating ad-hoc 

solutions on moments of peak demand. For instance, when an emergency patient arrives the 

information system can provide advice on which bed the patient should be admitted. Also, if the ward 

is full and a new patient needs to be admitted, the information system can provide information on 

beds on that become available in the near future on the patients designated ward or provide the best 

bed to board this patient on. When wards can observe expected demand and expected bed utilisation 

it is also possible for them to alert the admission planners to schedule no more than a maximum 

number of admissions in the peak period. 

 



- 76 - 
 

7.6 Conclusion 
This chapter provides interventions aimed at increasing the wards ability to react to incoming bed 

demand. Analysis shows admitting patients to a bed after surgery instead of before surgery offers a 

large improvement potential for reducing peaks in bed demand. Buffer capacity offers temporary 

capacity to react to remaining bed demand. We conclude that length of stay improvements and flexible 

discharge moments have the potential to permanently free up capacity, which can be used to cope 

with peak demand. We identify the redistribution of beds as a possibility to decrease the percentage 

of boarded patients, but with little improvement potential for reacting to peak bed demand. Real time 

insight into the state of the system is a precondition for better coping with peak bed demand.  
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8 Implementation 

In this chapter we identify what steps need to be taken to improve the levelling of bed requirement 

using the identified leverage points and the results of the model. The hospital aims to eventually have 

an admission planning system that integrally optimises admissions over multiple resources and 

provides real time support to admission planners, to achieve a more levelled resource requirement. 

We believe our model represents the first step towards that goal. The implementation is divided in 

seven steps. We start with only one specialty in step one because each specialty has specialty-specific 

methods and restrictions when it comes to scheduling patients. Starting small enables us to keep focus 

in fine-tuning the process for one specialty. After evaluating and improving the method for one 

specialty we can expand to other specialties. During implementation we suggest to minimise the risk 

of failure by assembling a cross-functional focus group with a medical specialist, a head of one of the 

wards, an anaesthesiologist, an admission planner, and the OR coordinator. Whenever possible we 

recommend involving stakeholders from the specific specialty where the method is being 

implemented. The focus group gives regular feedback on progress and provides valuable insights into 

the issues surrounding the implementation. It also ensures that relevant stakeholders are kept 

informed and are given a chance to express their opinions. Step 1-4 of the implementation are directly 

implementable using the results of this research, step 5-7 are recommended future implementation 

steps. 

Step one – General decision rules 

Integrating the case mixes into the existing IT system is considered to be unrealistic at this stage. 

Therefore, the first step in implementing the model requires no IT tools. We suggest to start with only 

one specialty to extensively evaluate the usability of the approach. Implementation starts with the 

simplest form of planning guidelines: decision rules. These general decision rules are extrapolated from 

the case mix matrices per specialty, e.g., no short stay clinical patients on Monday and Friday, and 

communicate these rules to the admission planners. From experience, the admission planners know 
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which procedures produce long and short stay patients and try to incorporate the general decision 

rules in the admission planning. The system indicates which ward every patients goes to after surgery. 

Decision rules are less detailed than case mix matrices and therefore do not have the same 

improvement potential. They are, however, easy to understand and flexible. Evaluation is key in this 

early implementation stage. Obtaining as much feedback as possible from admission planners and 

physicians about the issues identified with the new planning approach provides essential information 

for improvement. Identified restrictions or problems can, for instance, be difficulty adhering to the 

case mix matrix or resistance from physicians. We recommend doing a daily feedback session with an 

admission planner at the end of the day in the first week, then proceed with a weekly meeting with an 

admission planner and a physician. Considering patients are scheduled onto OR-sessions weeks in 

advance, bed utilisation analysis cannot indicate improvement in the first weeks after a change in 

planning routines. 

Step two – Flexibility to adapt 

In step one issues resulting from scheduling according to case mixes in the admission scheduling 

process are identified and tackled. For this we use generalised decision rules. In step two the use of 

case mix matrices in the admission scheduling process are implemented. Planning according to case 

mix matrices instead of decision rules increases the improvement potential of the approach. However, 

case mix matrices are created based on expected input parameters, and these parameters can differ 

in practise. For example, the matrices are determined based on the basic MSS and expected demand. 

If there are changes in the MSS, both temporary and permanent, the case mix matrix changes. The 

same holds for changes in demand. To be able to keep using the matrices we must create ways to 

adapt them to reflect changes in the MSSs and demand. A first response to changed demand or the 

MSS are “step changes”; if demand for a case type drops by more than 50% then reduce the advised 

number of patients of that case type by half. If one of three OR sessions is being cancelled, only 

schedule 2/3 of that days patients, but in the same ratio. In the same way, if a ward indicates that 
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there are only limited beds left due to, for instance, patients staying longer than expected, admission 

planners can cap the number of patients scheduled but can keep the ratio proposed by the matrix. It 

is possible to set up a traffic light system where, for example, ‘green’ indicates that wards have enough 

space available and planners can fill the matrices as best as they can, ‘orange’ means wards foresee 

problems in coping with upcoming demand so only plan 75% of the matrix and red means wards are 

overflowing, only plan 50%. This introduces a real time feedback link into usage of the matrices which 

can add flexibility. Diverging from the matrix however potentially reduces the benefit from its use. In 

implementing this system we propose introducing a self-learning system. Weekly feedback with 

admission planners allows us to detect bottlenecks and to adjust schedules. This weekly feedback also 

allows us to find out what practical restrictions we have not modeled into the system. The practical 

restrictions can consequently be tackled or the model/matrices can be adjusted accordingly.  

If outcome indicators show a significant reduction in performance, even after flexible use of the 

matrices, it is advised to update the model’s inputs and create entirely new matrices. 

Step three – Expand to more specialties 

In step two we propose a method for the admission planners to work with case mix matrices in an 

uncertain environment. In step three we expand the scope to include multiple departments. Expanding 

the scope starts with including the four largest specialties (CHI/KNO/OOG/ORT), together performing 

80% of all elective surgeries in the Utrecht location. To include these specialties we suggest to follow 

steps one and two again. After these four specialties are included all nine specialties can be included. 

Step four – Expand to other location 

After including all specialties in the Utrecht location the approach can be extended to include the 

Nieuwegein location as well. To apply the model to the new location it is necessary to perform a similar 

analysis as seen in Chapter 2, to identify if variation in the elective surgical stream is a root cause of 

capacity problems. Also, another extensive data analysis is needed to: 
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 Determine number of specialties, wards and ORs 

 Determine patient population, patient types and demand 

 Determine patient flows 

 Determine surgery durations and length of stay 

Using this data as input for the model case mix matrices can be created for the Nieuwegein location. 

In case of implementation in another hospital first the scheduling method of that hospital needs to be 

identified, to determine if case mixes offer potential for improvement. 

Step five – Supporting IT system (recommended) 

The hospital’s IT system can provide support for the planner in using the case mix matrices. The 

planning and waiting list databases need to register to what case type a patient belongs. In most cases 

planners intuitively already know but when registered in the system they can do post-planning checks 

to see how many patients from each case type they have already scheduled on a session.  

Step six – Embed in IT system (recommended) 

Embedding the approach in an IT system offers the opportunity to completely automate the matrix 

generation. This means that custom matrices can be generated based on the most recent MSS, bed 

utilisation and demand forecast. We suggest integrating the tool in a smart IT system already available 

in the hospital. This IT system makes input data readily available and can show the effect of scheduled 

patients on the bed demand. Additionally, stakeholders indicate the high failure rate of introducing 

separate tools for processes, advocating integration in an existing system. 

Step seven (recommended) 

In this final step we propose the construction of a full planning decision making tool, which gives advice 

when to plan patients based on the most recent state of the system. This means planners do not have 

to schedule patients anymore, they just have to offer and communicate a computer generated OR date 

to a patient. In this future scenario it is also possible to offer an online platform to patients where they 

can select an OR date. The case mixes proposed in this research are part of the planning algorithm of 

this decision making tool.  
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9 Conclusion & Recommendations 
This chapter summarises the conclusions of the research and gives recommendations for future 

research. Section 9.1 lists the conclusions, Section 9.2 provides recommendations. 

9.1 Conclusions 
The core problem is identified as the percentage of boarded patients being too high. A patient is 

‘boarded’ on another ward when there is a bed shortage on that patients designated ward. However, 

there is no bed shortage on a macro level: in the analysed period there were never more clinical 

patients than there were beds in the clinic. Literature research mentions variability as a key element 

in capacity and flow problems in hospitals. Based on data analysis we identify variability as the root 

cause of boarding patients. Average bed utilization shows that wards should have sufficient space if 

the variation in inflow and outflow would not be as high as it currently is. Variability literature suggests 

reasons for this can be natural variation but also artificial variation, the variation introduced by the 

hospitals own processes. Based on data analysis and literature research we identify the scheduling of 

elective patients as the largest source of artificial variation in bed demand. The hospital would like to 

have a new planning approach to reduce this variation. Because it is not possible to remove all variation 

in the scheduling of elective patients we also create strategies to cope with remaining variation. To 

tackle the core problem we need to reduce artificial variation and react to natural variation. 

Reducing variation – We identify the scheduling of elective surgical patients within the existing Master 

Surgery Schedule (MSS) to be the area with the best balance between practical feasibility and 

improvement potential. We construct two variants of a mathematical optimisation model that 

provides admission planners with advice as to the mix and volume of patient types they should 

preferably schedule on each session to minimise peaks in variation in resulting bed utilisation. This 

Intervention consists of two phases: 

Phase one: determine the theoretically optimal case mix per session with a mathematical model 

Phase two: schedule patients based on the case mix prescribed by the model 
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Case studies showed that, in phase one, it is possible to plan patients in such a way that theoretical 

variation in bed demand is reduced. The models are also able to plan the case types in such a way that 

the bed utilisation approaches the theoretical optimum. Figure 9-1 shows that the models theoretically 

achieve a reduction in bed requirement of 24% and 25%, for all nine surgical specialties in the Utrecht 

location. This is close to the 29% theoretical optimum. 

 

Figure 9-1 Model performance for planning elective surgical patients using case mix matrices 

In phase two we find it is possible to schedule individual patients to OR sessions according to the 

prescribed theoretically optimal case mix, whilst reducing variation in bed demand. During the 

planning of patients in phase two, we find the improvement to be lower than the theoretical 

performance of the model due to the following causes:  

 There are patients who can only be operated on by a specific physician (strict patients) 

 Not all patients are planned from the waiting list, some require an OR-date immediately 

 There is variation in surgery duration 

 There is variation in demand 

 There is variation in Length of stay 

 There are variations on the basic MSS 

The first two causes reduce the flexibility planners have in scheduling patients. We identify strict 

patients as the largest restriction to adhere to the case mix matrix. The percentage of strict patients 

therefore must be as low as possible to reach the highest improvement potential. The last four causes 

are model inputs that determine the degree to which the models correctly represent reality.  The 

better these inputs forecast reality the more effective the case mix matrix are. Considering the limiting 
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factors are comparable between the ORT case and the INT case, we expect our model to have the 

improvement potential seen in Figure 9-2 for using case mix matrices to plan elective surgical patients 

in the Utrecht location of the St. Antonius hospital. 

 

Figure 9-2 Practical improvement potential for planning elective surgical patients using case mix matrices 

Reacting to variation – Analysis shows admitting patients to a bed after surgery instead of before 

surgery offers a large improvement potential for reducing peaks in bed demand. Buffer capacity offers 

temporary capacity to react to remaining bed demand. We conclude that length of stay improvements 

and flexible discharge moments have the potential to permanently free up capacity, which can be used 

to cope with peak demand. We identify the redistribution of beds as a possibility to decrease the 

percentage of boarded patients, but with little improvement potential for reacting to peak bed 

demand. Real time insight into the state of the system is a precondition for better coping with peak 

bed demand. 

9.2 Recommendations  
Recommendations for improving and working with the model  

We recommend using statistical process control (SPC) to monitor and control the performance of the 

ORs and the wards. If there is no feedback loop, an integral approach to admission planning is most 

likely going to fail. SPC can also be used to see if the forecasting of input parameters is improving or 

deteriorating.  Furthermore, in the integral approach there is usually an optimum between stakeholder 
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interests. In this case it is worth investigating where the optimum lies between variation in OR 

utilisation and variation in bed utilisation. The model can better predict OR utilisation if there is less 

variation in surgery duration per case (patient) type. We recommend investigating the possibility to 

create sub-groups within the case types, by subdividing a case type into different clusters with 

homogenous surgery durations. It is also recommended to do research on how much improvement 

potential is lost due to giving patients a date immediately. Finally, we recommend implementing an IT 

system that provides planners with insight to the impact of their planning efforts on the bed 

requirement. 

Recommendations for improving OR scheduling in general 

It is recommended to do an exploratory analysis of the benefits or downsides of planning ORs during 

the weekends. This most likely increases personnel costs but has the potential to eliminate a large 

amount of artificial variation. Analysis needs to determine when this scenario provides beneficial 

results for both the hospital and the patients, and how much benefit it amounts to. Furthermore, it is 

possible to reduce surgery time variation by standardisation and implementation of best practices. We 

recommend that the St. Antonius hospital investigates the potential benefit of these strategies. 

Besides using our model to create optimal case mixes, we recommend to rethink the sequencing of 

patients. Case sequencing can improve patient waiting time and OR utilisation, but has to incorporate 

a substantial amount of practical restrictions. We recommend to investigate the benefit of using case 

sequencing from a logistical standpoint and to see which practice restriction are preferential and which 

are medically necessary. Finally, we recommend the St. Antonius hospital to investigate the potential 

and practical feasibility of eliminating the batching of patients in the OR by letting go of the MSS block 

schedule. This has the potential to provide a lot more flexibility towards the patient, but there are 

sizeable practical restrictions. For future research we recommend to extend our research by using 

stochastic surgery durations, for example by employing the technique used by Van Oostrum et al. [13].
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Appendix F – input for the INT case study 
 

The master surgery schedule 

 

Figure 0-1 Basic MSS week 38 2013 to week 1 2014 
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Appendix G – Case type matrices per specialty 
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