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Summary

This thesis reports the work performed for obtaining a master’s degree at
the Twente University. It consists of two main parts. In the first part, a
novel method for obtaining the absolute orientation of a spherical object
is developed. The method is based on painting a specific pattern onto the
surface of a sphere and minimizing a cost function based on the difference
between a image recording of the physical sphere and a digital reference
pattern. Contrary to existing methods that use brute-force comparisons
and select the best fitting image from a reference database, the method
introduced herein uses a minimization algorithm that does not require
databases or calibration. Instead, it employs a specifically designed pattern
that is painted on the surface of a sphere using a 3D-printed stencil, while
the digital counterpart is a simple piece-wise constant boolean function.
It is shown in chapter 3 that the resulting performance exceeds existing
methods by at least one order of magnitude in both computation speed
and accuracy and allows sub-degree real-time analysis of the absolute
orientation of a spere.

For the second part of this work, Rayleigh-Bénard (RB) convection is
studied both experimentally and numerically. Experimentally, a quasi-two-
dimensional RB convection setup is designed and built for both research
and demonstrative purposes. As demonstration, shadowgraphy allows
visualization of the complex dynamics of rising and falling thermal plumes
inside a convection cell. The setup is proven very succesful in showcasing
thermal convection with a table-top experiment. It is expected that the
setup continues to be used for such demonstrations and provide insight
into the field of fluid physics to the general public. In addition to Rayleigh-
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PART

Bénard experiments, the setup can be used for boiling experiments with
only minor modifications.

Also, a relatively novel technique called background-oriented schlieren [17]
is elaborated and applied to the setup. This method allows resolving the
temperature field of the thermal convection cell. The temperature field
can be used for statistical analysis on the dynamics of the system. We
hypothesized that with the conservation laws that govern these dynamics,
the velocity field can be resolved from the temperature field (if known with
sufficient spatial and temporal resolution). Unfortunately, however, we
prove in section 6.5 that it is mathematically impossible to uniquely recover
the velocity field from the temperature field.

Finally, a novel direct numerical simulation code is used to study the influ-
ence of strong geometric confinement on heat transport in RB convection.
It was recently shown [16] that heat transport enhancement is observed for
moderate confinement, despite an overall decrease in flow velocity due to
increased viscous drag from the sidewalls. In this thesis, we study a larger
range of aspect ratio’s and show that heat transport does increase for mod-
erate confinement, but peaks and decreases for very strong confinement.
In addition, the code is used for design of the experimental setup.
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Chapter 1

Introduction

1.1 Particles in turbulence

Freely advected rigid particles suspended in a fluid flow are subject to both
translational and rotational degrees of freedom. The dynamics of such
particles strongly depend on their size and the viscosity of the surrounding
fluid. These properties are combined into a dimensionless number known
as the Stokes number, defined as

St =
τU

D
(1.1)

where τ is the particles relaxation time (the time constant in exponential
velocity decay due to drag), U is the fluid velocity far away from the
particle and D is the characteristic dimension of the particle (typically
its diameter). Particles with low St are advected by the flow and follow
the fluid streamlines, which is is the case for particles where its typical
dimension is smaller than the smallest scales of the flow, the Kolmogorov
scale η. Due to its size, the flow around a particle is locally laminar and
the physics can be described as Stokes flow. In the limit where D → 0, the
velocity of a neutrally buoyant particle reduces to the surrounding fluid
velocity and the rotation and translation are effectively decoupled [8]. This
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property is crucial in particle tracking velocimetry (PTV) where small tracer
particles are seeded to a flow. As the particles follow the fluid streamlines,
their trajectories enable flow visualization.

As illustrated in figure 1.1, the dynamics of particles with typical dimension
larger than η are much more complex than those of tracer particles. It is
clear that for these scales, rotation and translation are interconnected as
the rotation-induced Magnus force directly affects the particle’s trajectory.

Figure 1.1: Illustration of the body forces that act upon small and large objects in a flow. The
flow around the small particle is smooth and the particle acts as a tracer, whereas the flow
around the large particle exhibits significant spatial variations. Illustration courtesy of [8].

To study the physics of these larger particles, it is crucial to obtain reliable
experimental data. The use of video footage for analysis is preferred and
commonly used in the fluid community due to its non-invasiveness and
straightforward implementation. Determining the translation from video
footage has been studied thoroughly and is even commercially exploited
in many forms like ball-tracking in sports. Rotation, however, has only
recently been subjected to study.

The objective of this field of study is to resolve and understand the six de-
grees of freedom of the particle dynamics, i.e. to track both the translation
and rotation of large particles in turbulence. Recent studies have shown
interesting intermittent behavior in the particles rotation, and while it is
expected that this is caused by the complex interaction between the particle
and its wake, the exact mechanism is still unknown. In addition, studies
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CHAPTER 1. INTRODUCTION

of human motion for rehabilitation purposes or athletic performance rely
on robust tracking systems and similar systems are used in the gaming
industry to create more natural movements in video games. Most of these
systems only capture translation and retrieve orientation from the relative
motion of translating vertices.

Part II of this thesis provides a novel technique that is both faster and more
accurate than existing techniques in determining the absolute orientation
of a spherical body. Like any such improvement, it enables a more reliable
and accurate understanding of the underlying physics.

This work is currently under evaluation for publication as Method and
experimental results for obtaining the absolute orientation of a spherical body
using recorded footage in the European Journal of Mechanics – B/Fluids.

1.2 Existing techniques

Several previous studies focused on the measurement of the angular ve-
locity without resolving the absolute orientation as function of time. One
technique involves drawing dots on the surface of a sphere and tracking
these dots using a high-speed camera system [9]. Another method [10]
involves specifically engineered transparent particles with an embedded
mirror. Measurements of the times required for laser reflections from the
mirrors to rotate through the small angle defined by a pair of slits then
yields the rotation rate. Unfortunately, this technique only allows for a
single rotation parameter to be measured.

Exponentially growing computing power has allowed for more advanced
optical techniques to become increasingly sensible. The present state-of-
the-art method for resolving the absolute orientation is based on a pattern-
matching algorithm we refer to as Zimmerman’s method [7]. It consists
of drawing a uecific pattern onto the surface of a sphere and subsequently
creating a database of 2D projections for the entire range of orientations.
A database with limited resolution is created for each sphere individually
by taking pictures from various angles. These pictures are provided to a
MATLAB toolbox which subsequently generates millions of 2D projections
from the input pictures.
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Figure 1.2: Flow process of Zimmerman’s method. Recorded footage is contrast-adjusted and
thresholded, and subsequently compared to a large set of images of known orientations. The
response indicates the match between the measurement and database reference.

Resolving the actual orientation consists of comparing the measured image
to the database. This process is illustrated in figure 1.2. The step called
Response is formed by multiplication of a given measured image and the
corresponding synthetic image, where the synthetic image is obtained
from the database created earlier. Using a brute-force method, several
initial coarse candidate orientations are selected from the database. A local
refinement is applied around these candidate orientations and the locally
refined candidate that best matches the measured image is selected. This
process is repeated for each movie frame of a recording. Finally, a graph
of possible candidates is generated, and a Dijkstra shortest-path-finding
algorithm is used to find the most likely absolute orientation over time,
omitting false data points and interpolating where necessary.

Although theoretically advanced, Zimmerman’s method has some practical
disadvantages. Foremost, each sphere requires a new database, which cre-
ation is a rather cumbersome and fallible process as it involves photograph-
ing each painted sphere from six specific angles prior to experimenting.
This database also directly restricts both the accuracy and performance of
the method. In addition, the requirement of an optimizing post-processing
step indicates an inherent shortcoming of the candidate database method.
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Chapter 2

Method

2.1 Overview

The method proposed in this report employs a very different approach than
Zimmerman’s method. It is a method that does not require any pre- or
post-processing, vastly reducing complexity while increasing accuracy and
performance.

In essence, the method can be divided into four parts. Initially, a suitable
boolean pattern is created. This pattern can be described as a piece-
wise constant function such that, given a coordinate on the surface of a
sphere, the function returns either zero or one depending on the color
of its corresponding infinitesimally small surface element. It is important
that this pattern is defined for the full range of spherical coordinates with
fixed radius (i.e. the entire surface of the sphere). Second, the pattern is
drawn onto an identical physical sphere. This is realized using a 3D-printed
painting stencil and an airbrush system. The exact pattern is elaborated in
section 2.5.3.
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Boolean surface 
pattern

Draw pattern onto sphere

Analytical functionCreate painting stencil

Obtain video frame 
from experiment

Pre-processor Cost 
function

Initial simplex

Projection onto 2D 
synthetic image

Termination 
check

False

True

Transform simplex

Done Causal methodGet next frame from recording

Select best vertex

Figure 2.1: Flowchart illustrating a schematic overview of the method. Starting with the
boolean surface pattern, a physical sphere is created which is subsequently compared to an
analytical function in experiments to determine the absolute orientation. After each frame,
the initial estimate for the next frame is passed on to the algorithm to reduce the computation
time. The initial simplex is a geometrical shape that is used in the minimization algorithm and
is elaborated in section 2.5.

Third, a synthetic 2D image is constructed from a projection of the surface
of the sphere onto a plane. This projection is a function of the angles of
rotation of the sphere, meaning a synthetic image can be generated for
every possible orientation. As the pattern is defined for a continuous range
of the sphere’s surface, there is no limit to the projection’s resolution.

Finally, the rotated and projected synthetic pattern is compared to an image
of the physical sphere. The difference between these images is reduced
to a scalar value using a cost function. The arguments for which this cost
function has a global minimum then determines the absolute orientation,
and the specific pattern in combination with a simplex-based minimization
algorithm enables the global minimum to be found very efficiently. The
general process is shown schematically in a flowchart in figure 2.1 and the
simplex-based minimization algorithm is elaborated in section 2.5.
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CHAPTER 2. METHOD

2.2 Pattern projection

The surface of a unit sphere1 can be described in spherical coordinates
as the two-dimensional span of the azimuthal and polar angle (θ and φ,
respectively). We introduce a piece-wise constant boolean function F (θ, φ)
that describes the pattern exactly for any coordinate on the spheres surface
(returning a zero or one). Plotting this function with unit radius and using
yellow and black to represent the different boolean output of the function
yields an illustration as shown in figure 2.2. The exact pattern is described
in paragraph 2.5.3.

r

z

y
x

x'

y'

Figure 2.2: Projection of the surface of the pattern onto a 2D grid. A line parallel to the x-axis
is drawn towards the surface of the sphere from each gridpoint. The coordinates r of the
intersection are calculated using eqs. (2.1)–(2.5).

As stated in the overview, the cost function is calculated from some mea-
sured image and a synthetic projection image. The latter is generated by
introducing a plane of two by two units with its center at x

R > 1 and its
normal directed towards the origin. This plane is then divided into a (N
by N) grid, and a line is drawn parallel to the x-axis towards the negative
x-direction for each of the gridpoints. The spherical coordinates at which

1A sphere with radius R = 1 (dimensionless units).
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this line intersects with the sphere surface can be geometrically derived
and are given by:

φ = acos
(
y′j

)
, (2.1)

θ = asin
(

x′i
sinφ

)
. (2.2)

Here, the accents denote the projection plane axes and i and j represent
the grid points as shown in figure 2.2. The resulting image is a (parallel)
projection of the sphere’s surface. Note that the resolution can be set to
any preferred value as it is only determined by the gridsize N . This allows
matching the synthetic image size to the measured image size (in pixels),
which is required to calculate the cost function.

2.3 Rotation

Section 2.2 describes the projection of the spheres surface onto a 2D grid
called the synthetic image. However, this projection must be orientation-
dependent which is realized by rotating the sphere itself prior to projecting
it onto the grid. Therefore, we require the Cartesian coordinates of the
surface elements corresponding to each of the gridpoints in the projection
grid. Since the radius of the sphere is 1, we calculate its coordinates
r = (x, y, z) using:

x = sin(φ) cos(θ), (2.3)

y = sin(φ) sin(θ), (2.4)

z = cos(φ). (2.5)

Next, we rotate each of the Cartesian coordinates around the origin. There
is no scientific consensus on the best method of rotating, though a common
method is the use of a rotation matrix in combination with some definition
of Euler angles. Unfortunately, Euler angles are prone to a problem called
gimbal lock, in which case the axes of two of the three gimbals are prompted
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into a parallel configuration, leading to the loss of one degree of freedom.
Though technically the gimbals are not locked, it leads to a degenerate case
where it is impossible to trace back the absolute orientation of all three
gimbals.

The use of a fourth axis, quaternions or the axis-angle convention resolves
this problem. We use the axis-angle convention considering its comprehen-
sible, singularity-free definition and straightforward implementation at the
cost of a minor performance decrease.

(a) ρ = (1, 0, 0, 0o) (b) ρ = (0,−1, 1, 45o)

Figure 2.3: Projection examples of synthetic image S = S (ρ) for various rotation parameters
ρ and gridsize N = 50.

The rotation of a vector in three dimensions is realized using a rotation
matrix or using Rodrigues’ formula:

r̃ = r cosα+ (k× r) sinα+ k (k · r) (1− cosα) . (2.6)

Here, r and r̃ are vectors (in Cartesian coordinates) before and after ro-
tation. The vector k and angle α are the axis and angle of rotation. After
applying a rotation, the rotated azimuth and polar angles can be retrieved
using r̃ and the inverse of eqs. (2.3)–(2.5). Next, the pattern function
F is called at the rotated azimuth and polar angles. Combined with the
projection, an N by N synthetic image S can now be generated using the
rotation parameters k and α. These four parameters are combined into one
vector as

(
kx, ky, kz, α

)
= ρ. A sample output is shown in figure 2.3.
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2.4 Painting stencil

Calibration is of crucial importance in absolute measurements. Often,
this is solved by zeroing the apparatus in question. However, a causality
problem arises which rules out this possibility as there is no absolute zero
in this problem. Zimmerman’s method tries to mitigate this by mapping
each sphere individually, making reference pictures from several angles.
However, these pictures have to be taken at known angle which is unfortu-
nately sensitive to human error as the sphere itself must be re-positioned
in-between pictures.

Our method assumes the synthetic projection as absolute reference, and
we dismiss many sources of error by introducing a painting stencil that acts
as a scaffold for painting the pattern onto a spheres surface.

The painting stencil consists of two 3D-printed halves, together referred to
as the shell. The shell is designed such that it forms a painting template for
an encapsulated sphere. The covered parts of the sphere are not affected
when spray-painting a (blank) sphere inside the shell, leaving an exact
physical representation of the pattern on the surface of the sphere. The
obvious advantage of this method is that it allows for high repeatability
without the need for mapping each individual sphere prior to experimenting.
A rendering of the stencil is shown in figure 2.4.
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Figure 2.4: Computer generated rendering of the painting stencil. The two halves are aligned
using the mounting holes in the rim.

The process of painting starts with placing a blank sphere inside one half
of the shell. Next, the other half is placed on top such that the holes in
the encompassed rings match. Screws subsequently keep the shells halves
aligned while a small diameter difference of the shell and sphere secures
the encased sphere against rotating inside the shell. Note that each sphere
size requires its own stencil, and stencils can easily be re-used.

2.5 Minimization

2.5.1 Objective

We define a cost function

µ (ρ) =
∑
|S (ρ)−M| (2.7)

where M is some measured image or movie frame, S is the synthetic image
and Σ indicates a summation over each grid-point of the images. As stated
in section 2.1, minimization of this cost function yields the best match
between M and S which means the objective is to solve argmin µ (ρ). In
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other words: to find ρ such that µ is minimized (globally). Also note that
M and S must be of equal dimensions and that the pattern must be unique
for every orientation. The latter is elaborated in paragraph 2.5.3.

2.5.2 Nelder-Mead

There are several methods to solve such minimization problems. We use the
Nelder-Mead method (NMM) for its multidimensionality, unboundedness
and clear implementation. It is a heuristic simplex search algorithm and is
one of the most used minimization algorithms and is specifically suitable
for solving parameter estimations of discontinuous or discrete functions
like our cost function (2.7) as it does not require derivatives. It is based on
the transformation of a geometric shape around a local minimum within
the parameter space. The geometric shape, a simplex Rk-space is defined
as the convex hull of any affinely independent2 set of k + 1 points. For
example, a simplex in two dimensions is a triangle and a tetrahedron in
three dimensions.

Start

Determine approximate 
parameters

Generate initial simplex

Termination 
check Finish

Transform simplex

True

False

Figure 2.5: Flowchart illustrating the schematic process of the Nelder-Mead method. Starting
with an approximate solution, an initial simplex is generated, which is transformed such that
its vertices advance towards a local minimum until a termination criterium is met. The best
vertex subsequently corresponds to the local minimum.

The method is quite simple, and the main process is illustrated in figure
2.5. The process starts with Determine approximate parameters, in which an

2all lines between all points are linearly independent
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initial estimate of the parameters is provided to the algorithm. This estimate
is used as a basis for the Initial simplex generation, where a simplex around
the initial estimate is created. The size of the simplex must be related to
the expected size of the parameter space in which a minimum should be
found, or sometimes the simplex’ vertices are directly defined. Next, the
algorithm performs several termination checks. The process terminates if
(1) the vertices are adjacent within some threshold, (2) the function values
themselves are sufficiently close or (3) a failure to converge termination,
when a preset maximum number of iterations is reached.

If the termination check returns false, the algorithm transforms the current
simplex. The transformation deforms the simplex such that its vertices
advance towards the local minimum and consist of three steps:

I Ordering: Determine the indices of the worst, second worst and best
vertex.

II Centroid: Compute the centroid of the best edge. This is the edge
opposite of the best vertex.

III Transform: Compute the new simplex from the current one. First, try
to replace the worst vertex by reflection, expansion, contraction with
respect to the best side. If the new vertex is accepted, it becomes the
new vertex of the simplex. Otherwise, shrink the simplex towards the
best vertex.

The simplex transformations are relatively straightforward and follows after
sorting the indices h, s and l of the worst, second worst and best vertex (the
ranking is based on the cost function). More details on the transformations
can be found in [4] and [11].

2.5.3 Pattern

The iterative nature of the NMM is sometimes considered unwanted when
exact solutions are required, but it is actually advantageous when used
with a suitable pattern, as the pattern itself leads the NMM to the global
minimum. The requires the pattern to be constructed such that there exists
a curve η(ti) in the solution space ρ that connects the initial estimate to the
global minimum for which
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∂µ

∂η
< 0 ∀ ti (2.8)

Here, ti is the position on this curve at iteration i. This means that an
iteration in the right direction (towards the minimum) directly yields the
cost function to returns a lower value and vice versa. Consequently, the
pattern must consists of a single continuous patch of black or white.

In addition, uniqueness of the pattern within the solution space is crucial
for correct operation of the algorithm. We therefore add small features
to distinguish possible ambiguities. These features expand or contract
the continuous patch locally such that the pattern remains one simply
connected region of black or white.

It is convenient to depict a cube around the sphere, such that we can refer
to its six sides. Using this definition, the pattern looks as shown in figure
2.6. An exact description of the function (θ, φ) that describes this pattern
can be found in Appendix A.
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(a) Front (b) Left (c) Top

(d) Back (e) Right (f) Bottom

Figure 2.6: Several viewpoints of the pattern. Here, the synthetic projection is defined
in the axis-angle convention as front: ρ = (1, 0, 0, 0o), left: ρ = (0, 0, 1,−90o), top:
ρ = (0, 1, 0,−90o), back: ρ = (0, 0, 1, 180o), right: ρ = (0, 0, 1, 90o) and bottom:
ρ = (0, 1, 0, 90o).

2.6 Accuracy

We define the accuracy of our method as the standard deviation of the
difference between a reference orientation and the orientation as solved by
our method. Unfortunately, direct measurement of the experimental error
is not possible as the exact reference orientation is not known. Therefore,
an indirect measurement is used to determine the experimental accuracy. In
addition, we define a numerical accuracy which is determined by generating
a synthetic image with known orientation and resolving the orientation of
this generated image using our method.

Also, although the axis-angle convention is straightforward to implement
into an algorithm, its quantities are not very intuitive. Therefore, we
perform a coordinate transform of the resolved orientations from axis-angle
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to XYZ-Euler (fixed axes) convention. We define this transformation as:

ε = f(ρ) (2.9)

whereεxεy
εz

 =

atan2
(
ky sinα− kxkz (1− cosα) , 1−

(
k2
y + k2

z

)
(1− cosα)

)
asin (kxkz (1− cosα+ kz sinα))

atan2
(
kx sinα− kykz (1− cosα) , 1−

(
k2
x + k2

z

)
(1− cosα)

)


(2.10)

Here, ε = (εx, εy, εz) describes the transformed resolved orientation. The
XYZ-Euler convention enables expressing the error in degree angle, which
is a relatively intuitive way of characterizing accuracy.

Finally, a we describe the experimental and numerical error in a scalar
value σe and σn which are defined as the standard deviations of the differ-
ences or residual between the reference and measured (using our method)
orientations.

σ = std |εR(eference) − εM(easured)| (2.11)

2.6.1 Experimental accuracy

Figure 2.7: Twente
Water Tunnel facility

The experimental accuracy is verified indirectly using
recorded footage of rising buoyant spheres. The required
pattern is painted onto the surface of the spheres and
the spheres are released separately from the lower part
of the transparent section of the Twente Water Tunnel fa-
cility (TWT), which is shown schematically in figure 2.7.
The TWT is an 8 meter high facility in which strong tur-
bulence can be created using an active grid. This setup
is used to study light (buoyant) particles in turbulence
[5] and can also easily be utilized for validation of our
algorithm. In our setup, spheres are released separately
from the lower part of the transparent section of the
TWT using a release mechanism and the buoyancy driven motion of a rising
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sphere is recorded using a high speed camera. Next, the recordings are
cropped around the region of interest using a circular Hough transform and
are contrast-adjusted and re-sized to form images similar to the synthetic
images in size and shape. The resulting images are provided to to algo-
rithm and subsequently solved for their orientation. If desired, a synthetic
projection of the resolved orientation can be generated. This process is
shown in figure 2.8.

argmin μ(ρ)
ρ ≈ (0.53, -0.09, 0.85, 196.35°)

Figure 2.8: Several steps in the process of resolving the orientation. Initially, a sphere is
placed inside the TWT and footage is recorded. The first image shows a loosely cropped
snapshot of an example recording. The next image shows the contrast-adjusted and tightly
cropped black-and-white image of the recording. This image is used as input for the algorithm,
which finds the absolute orientation. The last image shows a synthetic projection of the
corresponding orientation which clearly matches the original footage.

Repeating this process for each frame of a recording yields a data-set of
resolved orientations and corresponding synthetic projections. As there is
no absolute reference, we use the smoothness of the orientation in time.
In addition, we assume that the rotation between two movie frames of
that recording is small (up to approximately 10 degrees). The buoyancy-
driven motion of a sphere in a stagnant flow can be considered smooth and
continuous [7] and given a sufficiently small window of time, the rotational
motion only exhibits smooth, low-frequency features. Hence, we attribute
high-frequency motion to error of the measurement and approximate the
actual motion by piece-wise fitting cubic polynomials to the data and
consider the best fit of the data set as the reference orientation.

2.6.2 Numerical accuracy

The theoretical verification of our method uses computer-generated images
of the sphere, similar to those shown in figure 2.6. These images provide a
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perfect representation of their corresponding orientations, such that a set
of perfect images with known reference orientation is created.

This set of computer-generated or synthetic images is resolved by our
method and the results are compared to the synthetic reference orientation.
Although the numerical error should theoretically be zero, this only holds
for infinite resolution (N → ∞). The reason for this is that the NMM
minimizes a discrete cost function using floating point parameters (ρ)
which implies there is a finite range in the parameter space that yields
the same cost function output. The size of this range is directly related to
the resolution N and determines the numerical and theoretical maximum
accuracy for that resolution.

(a) SNR =∞ (b) SNR = 2

Figure 2.9: Example of the effect of salt & pepper noise for a signal-to-noise ratio (SNR) of∞
(undistorted, left) and 2 (right). It can be seen this type of distortion does not significantly
affect the image as one can still recognize the orientation by naked eye.

An indication of robustness is given by addition of salt & pepper noise 3 to
the generated images prior to resolving their orientation. Analogous to the
ideal numerical error, this noisy numerical error is directly related to the
resolution and signal-to-noise ratio.

3Randomly occurring black and white pixels
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2.7 Performance

The performance of our method is determined mostly by the efficiency
of computation and the desired accuracy. The most important factor in
efficiency is the the degree of parallelization of computation, and the
accuracy is mostly determined by the resolution N . Parallel computation
can be applied to this algorithm. A crucial condition for parallelization is
that certain computational steps are independent, which is the case for
most image editing processes. In the case of our method, the computation
of the cost function (eq. (2.7)) and the projection (such as in figure 2.3) are
independent for each pixel of the image, and can be computed in parallel.

For parallel scaling studies, we use the OpenMP API which allows shared
memory multiprocessing and can easily be implemented into our code. For
practical purposes, the strong scaling of the code is studied. Strong scaling
is defined as how the total computation time depends on the number of
threads (processors) for a fixed problem size; i.e. the speedup as a funtion
of the number of processors, with respect to the case of a single thread.

Although the NMM is guided towards the global minimum by the pattern in
most cases, local minima may still occur. This can be solved by exhaustive
scanning of the parameter space for each frame and choosing the lowest
local minimum as the global minimum. This is done by restarting the
algorithm at 208 initial conditions (26 axes at 8 angles) 4. We refer to this
mode as blank solving and is very time-consuming. Fortunately, this mode
is only required once when using what we call the causal method. In this
method, the NMM assumes an educated guess near the global minimum.
In practice, this educated guess is drawn from the solved orientation of the
previous movie frame. The result is that the number of iterations of the
NMM is reduced drastically when analyzing movies.

4This number may be greatly reduced, see section 4.2.
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Results

3.1 Painting stencil

Several iterations of patterns and production methods were evaluated.
Due to the advantages of rapid prototyping that 3D-printing offers, it was
decided to use a form of 3D printing to create the stencil. Initially, stencils
were printed using an extrusion deposition method called fused deposition
modeling (FDM). It was found that this method is not sufficiently accurate
to allow for spray painting as the surface finish of the material leaves the
extrusion profiles exposed. This is shown schematically in figure 3.1b.
The effect of this surface finish is that sphere will not be encapsulated
seamlessly which causes paint leakages and therefore an erroneous profile
on the surface of the sphere.
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Figure 3.1: Schematic process (left, courtesy of Wikipedia) and example product (right) of
a 3D-printing technique called fused deposition modeling (FDM). Note that the extrusion
profiles remain visible on the surface of the finished product.

Selective laser sintering (SLS) is another 3D-fabrication method that allows
for higher resolution fabrication, without leaving extrusion marks. The
printed stencils are also easily polished to a smooth surface finish, allowing
for a seamless interface between the stencil and the encapsulated sphere.
It was found that stencils printed using the SLS method (and subsequently
polished) meet the requirements for a painting stencil.

Figure 3.2: A finished painting stencil after several uses (left) and an example sphere as
spray-painted using the stencil (right).

Application of paint using the stencil was done using a standard airbrush
apparatus. A sample result is shown in figure 3.2b. It can be seen that the

32



CHAPTER 3. RESULTS

edges show a sharp contrast between the light and dark sections of the
profile.

In addition, the NMM requirement of a single large patch of black or white
is also beneficial to the painting stencil as it can consist of a continuous
covering structure. In contrast, having islands of patches occur in the
pattern would require overhang bridges in the stencil which add complexity
and difficulty in painting.

3.2 Accuracy

3.2.1 Experimental accuracy

The experimental error is determined from recordings at 1000 frames
per second (fps) of buoyancy-driven rising spheres inside the TWT. The
recordings are cropped around the sphere and re-sized1 to a resolution of
N = 80 to remove interframe size variations that may arise after automated
cropping. It was found that recording at 1000 fps was sufficient to visualize
the buoyance driven motion of rising spheres, as the the rotation between
two frames is very small (several degrees at most). Therefore, the causal
solving mode is applied to all physical experiments, and no post-processing
is applied. The results of a typical measurement recording is shown in
figure 3.3a. For this set, the data is piece-wise (in two segments) fitted
using a cubic polynomial function and the residuals are shown in figure
3.3b. It can be seen that the output of the algorithm shows little deviation
from smooth and continuous motion, which is confirmed by the residual
plot.

1In the original footage, the spheres are approximately 90 pixels in diameter.
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Figure 3.3: The left graph shows an example measurement as recorded in the TWT. The data
is piece-wise (in 2 segments) fitted using a cubic polynomial function which is not plotted for
clarity. Instead, the residuals are shown in the right plot.

In figure 3.4, several example results are shown. The top row are cropped
sections of the raw high-speed footage. The bottom row are synthetic
projections of the corresponding orientations as solved by our algorithm,
visually confirming that our method solves the correct orientation.

Figure 3.4: Example results of recorded images. The top row are loosely cropped snapshots of
recorded footage and the bottom row are synthetic projections of the orientation as solved by
our method. A good visual correspondence can be seen between the two images.
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The probability density function (PDF) of this example is shown as the
dotted line in figure 3.5 as the dotted line. The solid line represents
the same sample data, but cropped to N = 50 prior to resolving their
orientations, displaying the effect of resolution on accuracy. The standard
deviation of the solid blue line is approximately 0.7 degrees and 1.2 degrees
for the dashed red line. The effect of resolution on accuracy is elaborated
on in section 3.2.2.

−4 −2 0 2 4
0

0.2

0.4

0.6

Mean residual (degrees)

PD
F

N = 80
N = 50

Figure 3.5: Plot of the probability density function of the mean residual of the example dataset
of figure 3.3. The standard deviation for N = 50 is 1.2 degrees and 0.7 degrees for N = 80,
demonstrating sub-degree accuracy.

The original recording of the example and other datasets with inlay of a
synthetic projection can be found in supplemental material.

3.2.2 Numerical accuracy

Using the synthetic projections of several sets of 1024 randomly generated
orientations, the numerical error as a function of image size (resolution)
N is determined. The PDF of the numerical error is shown in figure 3.6.
Note that the numerical error only depicts the approximate size of the
parameter space that yields the same cost function for various resolutions,
as explained in section 2.6.2.
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Figure 3.6: Numerical accuracy of our method for various resolutions N and SNR. It can
be seen that the distributions resemble a normal distribution. In this example, the standard
deviation is 0.75 degrees for N = 50 and SNR = 2 and 0.06 degrees for N = 100 and
SNR =∞, demonstrating sub-degree accuracy.

It can be seen that the accuracy of our method increases significantly
with the resolution N ; the standard deviation decreases from 0.27 to 0.06
degree angle for the perfect image and decreases from 0.75 to 0.21 for the
distorted image (for N = 50 to N = 100, respectively).

To determine the scaling of the numerical error, the standard deviation
of error as a function of the resolution N is determined for N = 50 to
N = 100. A set of 1024 synthetic orientations are created for each value
of N and subsequently solved using our method. The results are shown in
figure 3.7.
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Figure 3.7: Scaling of the standard deviation of the numerical error as function of the
resolution N . It can be seen that the standard deviation shows a 1

N2 relation and ranges from
approxiamtely 0.2 to 0.1 degrees for the perfect image and from 0.7 to 0.2 for the distorted
image.

As can be seen, the standard deviation is plotted against 1
N2 , demonstrating

an inverse quadratic relation between the accuracy of our method and the
resolution of the image. The linear fits have a coefficient of determination
(R2) of 0.87 and 0.96 for the lower and upper data set, respectively. As an-
ticipated in section 2.6.2, this figure provides an estimate of the parameter
space that yields the same cost function and hence showing the theoretical
maximum accuracy for a given resolution N .

3.3 Performance

The computational performance of our method is primarily dependent the
solving mode. Using the causal mode, the NMM is only initiated once using
an educated guess based on, for instance, the orientation of the previous
frame of a movie. In the blank mode, a multitude of initial conditions are
evaluated to cover the entire parameter space (ρ) and thus every possible
orientation. Since the blank mode is mostly only used once per movie, we
only describe the performance of the causal mode.
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The parallel scaling study is performed on the Lisa system 2. The set of
synthetic projections are solved on 1 to 16 threads (processors) and the
computation time is recorded. The results are plotted in figure 3.8 for
various resolutions.

0 2 4 6 8 10 12 14 16
0

5

10

15

Number of threads

Sp
ee

du
p

N = 50
N = 60
N = 70
N = 80
N = 90
N = 100

Figure 3.8: Strong scaling of our method, showing the relation between the computation time
and number of threads. The dotted line represents perfect strong scaling, where doubling the
number of threads yields a doubling of the performance. It can be seen that scaling can be
improved by increasing N , which simultaneously increases the accuracy.

It can be seen that this approach scales better for higher resolutions. This
can be attributed to the degree of parallelization, as only the computational
steps that can be performed in parallel actually speed up. Nevertheless,
it was found that with a single thread on an Intel Core 2 Duo 2.53 GHz
processor, the method computes approximately ten frames per second when
using a resolution of N = 50.

2A computer cluster owned by the SURFsara organization.
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Concluding remarks &
recommendations

4.1 Conclusions

In part I of this thesis, we have introduced a new method for determining
the absolute orientation of a spherical object in three-dimensional space.
The theoretical accuracy of the method shows a 1

N2 scaling law, where the
standard deviation of error for an ideal-case image of 50 by 50 pixels is
approximately 0.2 degrees in the Euler angle convention. The addition of
pepper & salt noise with a signal-to-noise ratio of 2 reduces the accuracy
for the same image size to a standard deviation of 0.7 degrees. Although
with significantly decreased accuracy over the ideal case, it shows that the
method is still robust under very non-ideal circumstances.

In addition, the method was applied to experiments performed in the
Twente Water Tunnel facility to confirm its performance. Physical spheres
were painted using various methods, and it was shown that 3-dimensional
selective laser sintered (SLS) printed stencils and a paintbrush apparatus
yield the best results. Experiments were performed using these spheres
which verified that the experimental error is only dependent on the quality
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and resolution of the images, and it was shown that for an image size
of 50 by 50 pixels, the standard deviation of error is approximately 1.2
degrees. When cropping to a resolution of 80 by 80 pixels, the standard
deviation of error is reduced to 0.7 degrees. Although the experimental
error is considerably higher than the numerical error, it shows sub-degree
accuracy is possible in a practical setting.

Furthermore, it was found that neither blank or causal method required any
form of post-processing. This means that the orientation of the previous
frame of a (movie) sequence was sufficient to determine that of the current
frame. However, this is limited by the difference in orientation between
two frames. This limit was not encountered in any of the experiments
performed for this paper, and hence a detailed study was not done.

The computational performance of our method is of the order of tens of
frames per second using a contemporary standard laptop. In addition,
implementation is straightforward as the only preparation is painting the
pattern using a stencil.

In conclusion, it is proven that that the method introduced in this thesis
offers a fast, accurate and robust way to obtain the absolute orientation of
a spherical object.

4.2 Recommendations

Although the method introduced in this thesis outperforms existing algo-
rithms in efficiency and ease of implementation, improvements can be
made specifically in the blank mode. In most cases, the blank mode is
only used once per recording. However, it covers the solution space (ρ)
redudantly and chooses the global minimum from 208 initial conditions (26
axes at 8 angles). The pattern is designed to guide the algorithm towards
the global minimum, however no study was performed to determine the
ideal balance between the pattern, the number of intial simplices and the
corresponding intial simplex sizes. However, performance gains are likely
when this balance is optimized. Effectively, optimization would reduce
the number of initial simplices in the blank method, as well as reduce the
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number of iterations in the causal method and hence improving overall
performance.

Also, the pre-processing steps are less than optimal. Currently, a Hough
transform circle-detection is used to crop the recordings around the sphere
and some image enhancements are performed before presenting the images
to the algorithm. It would be beneficial to include the pre-processing steps
into the main program, and preferably allow multiple-sphere tracking in
three dimensions such that all translational as well as rotational degrees of
freedom are resolved. Furthermore, our method can be extended to work
for ellipsoids and other geometric shapes.
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Rayleigh-Bénard
convection
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Chapter 5

Introduction

5.1 Natural convection

Natural convection is fluid flow induced by buoyant forces, commonly as a
result of temperature differences. These contributions result in mass and
heat transfer within a fluid. In a fluid, convection of both mass and heat
is possible through diffusion (Brownian motion) and advection (mass or
heat is transported by large-scale motion of the fluid). Convection of heat
through diffusion alone is called conduction.

Figure 5.1: Convection examples. The left image shows our sun, with a close-up of the
convection patterns in the center image. Note the visual correspondence between the solar
surface patterns and the image on the right, which is a pan cooking a fluid. This example
shows the vast range of scales of convection, and demonstrates why dimensionless parameters
are useful to describe the dynamics of convection.
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As the name implies, natural convection has many natural occurences.
For example the motion of the Earth’s mantle is considered convection as
the hot core drives plumes of magma towards the crust. This process is
one of the driving forces of plate tectonics, the process that has formed
the shape of the Earth’s and other planets’ surface. Similar convection
patterns are observed in astrophysics, where it is the main mode of energy
transport in the sun and other stars for a certain range of radii called the
convection zone. An interesting feature of convection is its vast range
of scales. Figure 5.1 shows our sun, and a close up of its surface. As
comparison, a photograph is shown of a cooking pan heating some viscous
fluid. It can be noticed that, although the scales are many orders of
magnitude apart, the structures look similar.

5.2 The Boussinesq approximation

In the general case, the behavior of a fluid can be described by the equa-
tions of mass, momentum and energy conservation, most importantly the
continuity equation and Navier-Stokes equation. That is, the fluids motion
is governed by the equations:

∂ρ

∂t
+∇ · (ρu) = 0 (5.1)

ρ
Du
Dt

= −∇p+ µ∇2u + F. (5.2)

DT
Dt

= κ∇2T +Q (5.3)

Here, the term F represents any body forces that act upon the fluid, such
as gravity. The term Q contains any volumetric heating or cooling.

In buoyancy-driven flow, the body force F consists of gravitional effects on
density variations and thus:

F = ρg = (ρ0 + ∆ρ)g. (5.4)
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The Oberbeck-Boussinesq approximation assumes that variations of all fluid
properties are indepedent of time, temperature and pressure, except the
mass density ρ which is assumed linearly dependent on the temperature in
the buoyancy term [18]:

∆ρ = −αρ0(T − Tref), (5.5)

where α is the coefficient of expansion of the fluid. We assume no internal
heating or cooling and hence, rewriting the Boussinesq approximation in
Einstein notation, we obtain

∂ui
∂xi

= 0 (5.6)

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ αg(T − Tref)δiz (5.7)

∂T

∂t
+ uj

∂T

∂xj
= κ

∂2T

∂x2
j

. (5.8)

The non-dimensionalized equations can be found in appendix B. The result-
ing dimensonless parameters are the Rayleigh number Ra and the Prandtl
number Pr:

Ra =
gα∆H3

νκ
(5.9)

Pr =
ν

κ
(5.10)

Here, g is the gravitional constant, α the thermal expansion coefficient, ∆
the temperature difference between the top and bottom plate, H is typical
length scale, ν the kinematic viscosity and κ the thermal diffusivity of the
fluid.

The Rayleigh number can be viewed as the ratio of buoyant forcing of fluid
parcels over the viscous drag and thermal diffusion of that fluid parcel. For
large Rayleigh number, the flow is strongly driven (i.e. the temperature
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difference is high) and the flow is generally more turbulent whereas for
low Rayleigh number, the viscosity and/or thermal diffusion dominate the
inertial forces and turbulence is suppressed.

The Prandtl number is a fluid property that describes the ratio between
the rate at which the fluid diffuses momentum versus heat. If the Prandtl
number is high, the fluid tends to attenuate motion strongly by viscous
damping and is a relatively bad heat conductor and vice versa.

In addition to Ra and Pr, the geometry of the system determines the
convection dynamics. A common model of natural convection is Rayleigh-
Bénard (RB) convection and within the scope of this thesis we assume
RB convection inside a cuboid geometry as governed by the Boussinesq
approximation, although we point out where this approximation loses its
validity. The geometry is captured by the non-dimensional aspect ratio’s Γ1

and Γ2 of the cell which is elaborated in section 5.3.

In response to the input parameters, the transport of heat and momentum
can be summarized in two quantities called the Nusselt number Nu and the
Reynolds number Re, given by

Nu =
〈uzT 〉A,t − κ∂〈T 〉A,t

∂z

κ∆TH−1
(5.11)

Re =
UH

ν
(5.12)

Here, the Nusselt number can be understood as dimensionless heat transfer
between the top and bottom plate. A Nusselt number of 1 corresponds to
the case where there is no fluid motion (advection) and only conduction,
e.g. heat transfer in a solid. The Reynolds number is defined by the ratio of
inertial over viscous forces and provides an indication of the level of kinetic
energy within the flow.

The 〈·〉A,t denotes an average over a plane at fixed z and time. Note that
an additional averaging over the volume reduces Nu to

Nu =
〈uzT 〉V,t
κ∆TH−1

+ 1 (5.13)
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In addition, the Nusselt number can be computed from the viscous and
thermal dissipations rates, given by

ε(x, t) =
ν

2

∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2

(5.14)

εT (x, t) = κ
∑
i

(
∂T

∂xi

)2

(5.15)

using the exact relations that can be derived from the Boussinesq approxi-
mation. The exact relations are given by [19]

〈ε〉 =
ν3

H4
(Nu− 1)RaPr−2 (5.16)

〈εT 〉 = κ
∆T 2

H2
Nu (5.17)

where 〈·〉 denotes a statistical ensemble average.

The Reynolds number is computed using a velocity dimension U , typical
lengthscale H (the height of the cell) and the kinematic viscosity ν. When
using non-dimensional velocities, as is the case in simulation, the velocities
are scaled using the free-fall velocity uf =

√
gα∆TH. It can be derived

that a convenient Reynolds number can then be defined as

Re = urms ·
√

Ra
Pr

(5.18)

Where urms is the root-mean-square velocity in non-dimensional units of
each direction x, y and z.
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5.3 Rayleigh-Bénard convection

Rayleigh-Bénard convection is a model scenario of natural convection that
occurs in a two- or three-dimensional container. We refer to this container
as a cell which is heated from below and cooled from above.

Figure 5.2: Snapshot example of the temperature field for a 2D simulation of a Rayleigh-
Bénard cell for Ra = 108, Pr = 4.3 and Γ = 3. Plumes of hot (red) and cold (blue) fluid are
rising and falling due to buoyant forces.

The extent of the cell may be finite or infinite, and various boundary
conditions may be imposed. Within this thesis, we define a finite cell of
size HxWxL and impose no-slip conditions on all faces. In addition, the
bottom and top plate are kept at constant temperature and the sidewalls are
assumed adiabatic. Figure 5.3 shows a schematic view of a Rayleigh-Bénard
cell.
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Figure 5.3: Definitions of the thin-cell fluid volume. The cell is non-dimensionalized using the
aspect ratio’s Γ1 = L

H
and Γ2 = W

H
.

Heat is transported from hot bottom plate to the cool top plate by the
aggregate motion of the molecules within the fluid between the plates
through diffusion and advection, referred to as convection. For small tem-
perature differences, a temperature gradient arises within the fluid and
heat is transferred by conduction alone. However, critical Racrit = 1708 (for
no-slip boundary conditions), the temperature difference is sufficient to
induce instabilities and advection is initiated. Consequently, the Nusselt
number increases from Nu = 1 to Nu > 1.

Figure 5.4 shows two snapshots of the temperature field of a 3-dimensional
Rayleigh-Bénard system where Ra� Racrit. The snapshots show translucent
isothermal surfaces, showing the dynamics of the flow.
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Figure 5.4: Two snapshots of a 3-dimensional Rayleigh-Bénard simulations at different angles
and simulation times for illustrative purpose. For this simulation Ra = 107, Pr = 4.3 and
Γ1 = Γ2 = 1 and no-slip boundary conditions.

The cell is defined as a box of size HxWxL which is non-dimensionalized
using aspect ratios Γ1 = L

H and Γ2 = W
H . A schematic view of the geometry

is shown in figure 5.3. We define the directions x, y and z as the direction of
width (W), length (L) and height (H) and use these conventions throughout
this thesis.

5.4 Experimental methods

Recently, experimental setups designed for high Rayleigh numbers have
been studied. For example the Barrel of Ilmenau, currently the largest
convection cell measuring 7 m by 6.3 m, is used to study highly turbulent
convection in air. Similarly, the University of Twente built and maintains
a Taylor-Couette (TC) experimental setup. Although geometrically very
different, Taylor-Couette and Rayleigh-Bénard systems show profound
analogies [20].
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Figure 5.5: Barrel of Ilmenau (left), courtesy of Technische Universitaet Ilmenau, Institute
of Thermodynamics and Fluid Mechanics and the Twente Turbulent Taylor-Couette system
(right), courtesy of the Physics of Fluids Group, University of Twente

For both RB and TC, advanced flow visualization methods such as (3D)
PIV/PTV and micro temperature probing are commonly used. However,
it is difficult to obtain scalar or vector fields like temperature, pressure or
velocity over the entire flow. Therefore, within the Physics of Fluids group
at the University of Twente, numerical studies are performed for RB and
TC in addition to the TC experimental setups.

For this thesis, a thin-cell Rayleigh-Bénard setup is designed and manu-
factured, and a relatively novel visualization method called background-
oriented schlieren is worked out and applied to this setup. Chapter 6
elaborates on this setup.

5.5 Numerical methods

Direct numerical simulations provide a quantitative analysis of the flow by
solving the equations of motion down to the smallest physical scales of the
flow. In order to fully resolve the flow, the spatial mesh size is equal or
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smaller than the smallest physical scale of the flow, i.e. the Kolmogorov
length scale.

In contrast to experimental methods, numerical methods provide several
benefits regarding data analysis, because flow visualization and statistics
are trivial. Additionaly, system parameters and boundary condtions can
be continuously variable and be specified more precise. Nevertheless, a
major drawback of computer simulation is computational cost. In order
to fully resolve the thermal and viscous boundary layers and the smallest
scales of the bulk flow, the spatial resolution must be sufficiently high. In
addition, the temporal resolution must match the smallest time scales of
the flow, while the total simulation time must be sufficiently high to allow
for statistical convergence.

To minimize the simulation time, the spatial grid is divided into sections
which are individually evaluated by separate processors and subsequently
merged to compute the next temporal step. This process called parallel
computation has become an active field of research itself, but an elaboration
is unfortunately beyond the scope of this thesis.

For this thesis, a novel version of an existing [13] code is developed that
allows for direct numerical simulation of 3-dimensional cuboid geometries
in Rayleigh-Bénard systems with free- or no-slip boundary conditions. The
code is used in chapter 6 to simulate various geometries of the experimental
setup. The results are subsequently used to quantify the exact geometry of
the setup such that quasi-two-dimensional flow is ensured and schlieren
visualization techniques can be applied. In addition, chapter 7 describes a
brief numerical study of the heat transport in very small aspect ratio cells
using the new code.
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Thin-cell Rayleigh-Bénard
convection setup

6.1 Introduction

In the field of fluid physics, Rayleigh-Bénard is widely studied and emphasis
is given to understanding the underlying physics by forming theoretical
models and scaling laws of turbulent convection. These models and scaling
laws are derived from mathemetical theory, experiments or numerical stud-
ies. In recent years, advances in High-Performance Computing (HPC) have
allowed extracting vast amounts of data that would be difficult or impossi-
ble to obtain from laboratory experiments. In fact, numerical simulations
are used in chapters 6 and 7. Nevertheless, physical experiments provide
insight into real-world behavior such as the influence of perturbations,
material imperfections and heat loss which are very hard to model. Also,
experiments can achieve higher Ra. Therefore, having a physical setup may
complement numerical simulations by offering a way of validation and
relation to the real world. In addition, an appealing feature of the setup
itself is that its phenomena are perpetual; once initiated, there is a constant
supply of complex and interesting flow dynamics merely by heating and
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cooling. This provides a wonderful showcase of the dynamics of convection
inside a confined container.

6.2 Experimental setup

6.2.1 Design

An experimental setup is custom designed and built for the purpose of visu-
alization and data gathering of a quasi-two-dimensional Rayleigh-Bénard
system. The setup must be sufficiently flexible to allow studying of a
sufficiently large parameter space and be suitable for a multitude of visual-
ization techniques. Also, the heating and cooling elements must employ
closed-loop control systems to impose the fixed temperature boundary
conditions for the bottom and top plate.

For practical reasons, the experiment must be manageable and trans-
portable by one person, and hence the largest dimension may not exceed
approximately 0.5 m. Another important design feature are the cell’s size
and aspect ratio’s. Optical flow visualization techniques like shadowgraph
and schlieren are limited to (quasi)-two-dimensional flows1 and hence the
flow must be confined to two dimensions, i.e. Γ2 � Γ1. The value of Γ1

describes the aspect ratio of the cross-section, akin to the aspect ratio Γ of
a true 2-dimensional systems and determines largely the flow state of the
system [15].

An interesting feature of Rayleigh-Bénard systems is the interaction be-
tween the large scale circulation and thermal plumes that arise from the
boundary layers. Thermal plumes are generally sheared off by the large
scale circulation, and rise and fall in-between two rolls. It is therefore
decided to design the system for the double/triple roll state, which corre-
sponds to Γ1 ≈ 3. This ensures there are plumes rising and falling not only
at the side boundaries of the cell, but also in the center.

Example snapshots of two-dimensional simulations are shown in figure 6.1.

1Schlieren-based techniques may be extended to work in multiple dimensions. See section
6.6
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Figure 6.1: Snapshot of the temperature field of 2D simulations for various aspect ratio’s for
Pr = 4.3 and Ra = 107. The color indicates the temperature, where red corresponds to hot
fluid and blue to cold fluid. The aspect ratio Γ is placed alongside the snapshots. For Γ = 3, a
double roll state is observed, while Γ ≥ 3.5 prompts a triple roll state.

For quantification of the forcing parameter Ra, we assume plain demineral-
ized water as working fluid and boundary conditions of 10 oC and 50 oC
at the top and bottom plates. Although the Boussinesq approximation as-
sumes that fluid properties density do not change with temperature (except
where it it appears as buoyancy term), this is not true for large temperature
differences. Therefore, the Boussinesq approximation may be less valid.
In addition, the boundary conditions of the sidewalls may not be pure
adiabatic.

Near the top and bottom plate, the fluid is generally colder and hotter than
average and the properties of the fluid are within a certain range. From
[14], we find 0.9 · 10−4 ≤ α ≤ 4.5 · 10−4, 0.548 · 10−3 ≤ ν ≤ 1.307 · 10−6

and 1.38 · 10−7 ≤ κ ≤ 1.58 · 10−7. Therefore, the control parameters are
expected to be in the range of
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108 ≤ Ra ≤ 109 (6.1)

3.5 ≤ Pr ≤ 9.5 (6.2)

The dimensionalization of the physical setup is governed mostly by practical
considerations like size and safety. For example, the use of water as working
fluid limits the temperature range and fixes certain fluid parameters like
the Prandtl number. Also, a brief numerical study of Γ2 is done to verify
that the flow is confined in one dimension, but does not inhibit flow in the
other two dimensions. The setup is simulated for Ra = 106 and Ra = 108.
The Reynolds numbers of the x, y and z directions are computed using eq.
(5.18), The time averaged Reynolds number in the direction of narrowing
(the x-direction) is divided by that of the y- and z-direction.

The results are shown in figure 6.2.
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Figure 6.2: Simulation results of relative Re as a function of the narrow aspect ratio Γ2 for
Pr = 5, Γ1 = 3, Ra = 106 (left) and Ra = 108 (right).

It can be seen that the root-mean-square Reynolds number in the direction
of narrowing is approximately one order of magnitude smaller than both
the other horizontal and vertical direction if Γ < 10−1. For narrower cells,
the relative Reynolds number in the direction of narrowing monotonically
decreases down to 10−6 for Γ < 10−2. Therefore, we consider the flow as
quasi-two-dimensional for aspect ratio’s smaller than 0.1.
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The experimental setup is designed in SolidWorks taking into consideration
the design parameters as desribed. The design process consists mainly of
solving practical issues like sealing and mounting methods. A rendering of
the final setup is shown in figure 6.3.

Figure 6.3: Rendering of the setup assembly, consisting of the two transparent plates, top and
bottom plate and support structure.

The setup consists of two transparent acrylic glass plates, two plastic (POM)
side inlays and a brass top and bottom plate that encapsulate the working
fluid. The total volume of encapsulated fluid is 460 mm long, 160 mm high
and 5 mm wide. In dimensionless units, this means that Γ1 = 2.88 and
Γ2 = 0.031. From figure 6.2, it can be seen that for an aspect ratio 3.1 ·10−2,
the Reynolds number in the direction of confinement is several orders of
magnitude lower than in the other directions and hence we consider the
flow quasi-two-dimensional. Using the heating and cooling elements, a
temperature difference of approximately 50 degrees Celcius can be realized.
In this case, the top plate is kept at 10 degrees Celcius and the bottom plate
at 50 degrees Celcius.

The top and bottom plate both consist of single piece of machined brass
to ensure heat conduction from the heating or cooling elements to the
working fluid. The bottom plate contains holes that encapsulate electric
heating elements, and a temperature probe is inserted in any of these voids.
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Figure 6.5 shows a cut-through section of the bottom part of the setup,
visualizing the heater voids.

Figure 6.4: Close-up rendering of the U-shaped cooling channel of the top plate at the bend
(left) and at the input and output connections (right). Note the number of holes required for
the cooling liquid and assembly screws.

The top plate is liquid-cooled using a U-shaped channel that is milled into
the plate itself, as is shown in figure 6.4. The cooling liquid is deminer-
alized water that is pumped through the channel, and kept at constant
temperature by a cooling unit.
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Figure 6.5: Close-up section plane rendering of the electric heating elements. The channel for
filling the setup can be seen on the far left of the image.

When demineralized water is used as working fluid and the temperature
difference is set to 40oC, the dimensionless forcing parameter Ra and the
Prandtl number can be computed. Using equation (5.9) and (5.10) and
using the fluid parameters at an average temperature of 30oC, we find

Ra =
9.81 · 3.0 · 10−4 · 40 · 0.163

0.799 · 10−6 · 1.46 · 10−7
≈ 4.1 · 109 (6.3)

Pr =
0.799 · 10−6

1.46 · 10−7
≈ 5.3 (6.4)

6.3 Visualization methods

6.3.1 Theory

Shadowgraphy and schlieren methods are types of flow visualization that
make use of density differences induced by temperature variations inside
a medium. For transparant media like gases, density differences are not
necesarily visible by eye. However, the density (ρ) of a medium is related
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to the refractive index (n) through the Lorenz-Lorentz equation, given by

n2 − 1

(n2 + 2)
= KLL (6.5)

Where KLL is a function that relates the density to the refractive index.
This relation is quite complex, and commonly emperical relations are
used. However, it will be shown later in this section, we require the
temperature derivative of the refractive index to resolve the temperature
from the refractive index. Within the scope of this thesis, we assume that
the derivative is constant within our temperature range, i.e. dn

dT = constant.

Traversing light beams will be refracted following the inhomogeneities of
the medium, thereby casting shadows where temperature gradients are
present as is exploited in shadowgrapy. For example, the thermal plumes of
an (invisble) flame, often seen in ethanol fires in bright daylight, will cast
clear shadows on surrounding surfaces.

Figure 6.6: In this example, a lighter is lit and the rising plumes of hot air are visualized using
shadowgraphy. Image courtesy of Flickr user RachaelDere.

Within the scope of this thesis, we limit flow visualization to qualitative
visualization of the temperature field, i.e. a non-dimensionally scaled
temperature field. To resolve the temperature field, we derive the rela-
tion between the temperature and angle of refraction. Figure 6.7 shows
schematically the a ray of light refracting through a medium.
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Figure 6.7: Refraction

From figure 6.7, it can be derived that

∆ε =
∆z

∆y
=

(cy − cy+∆y)∆t

∆y
(6.6)

Given that the local speed of light cy is given by c∗

ny
, we can substitute the

index of refraction in the right hand side, yielding

c∗
(

1

ny
− 1

ny+∆y

)
∆t

∆y
= −c∗∆

(
1

n

)
∆t

∆y
(6.7)

Substituting the distance c∗∆t by n∆z then gives

∆ε = −n∆

(
1

n

)
∆z

∆y
(6.8)

We now substitute the ∆ with its infinitesimal counterpart d, which yields

dε = −nd
(

1

n

)
dn
dy

dz (6.9)

Which can be simplified slightly by merging the index of refraction differ-
ential, and noting that the light rays can be refracted in both the x and y
direction, we find

dεy =
1

n

∂n

∂y
dz (6.10)
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The last step is to integrate this over the length of the medium L. Here, we
also substitute n0, which denotes the index of refraction of the undisturbed
fluid. The result is the angle of deflection ε as a function of the refractive
index gradient

εy =
L

n0

∂n

∂y
(6.11)

The temperature is a function of the index of refraction, i.e. T = T (n).
Therefore, the chain rule must be applied and we find

εy =
L

n0

∂n

∂T

∂T

∂y
(6.12)

The angular deflection ε can be related to the virtual displacement of a
speckled pattern and from the displacement field, the temperature field
can be derived. This is elaborated in section 6.3.3 on background-oriented
schlieren.

6.3.2 Shadowgraph imaging

Shadowgraphy is the technique that employs the refractive phenomenon
and has applications in science and engineering. It is used in the aerospace
industry to visualize high-speed (compressible) flow around aircraft and
missiles, as well as the glass industry, where it provides a simple method to
visualize non-uniformities in the material.
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Figure 6.8: Schematic illustration of a shadowgraphy setup. The light rays from the light
source traverse the fluid medium and are thereby refracted, causing regions of high and low
intensity light at the image plane.

In a shadowgram, the resulting image that shadowgraphy generates, the
differences in light intensity I are related to the refractive index field of the
medium. Although it is possible to derive the density field and hence the
temperature field from a shadowgram, the background-oriented schlieren
method is better suited for recovering the said temperature field as is
explained in section 6.3.3.

We employ shadowgraphy for demonstrative flow visualization purposes.
The goal is to provide a simple accessible tabletop experiment that allows
exposition of the dynamics of a Rayleigh-Bénard system using shadowgraph
flow visualization.

In addition, the setup must allow for qualitative studying of thin-cell
Rayleigh-Bénard flow. Therefore, the setup is constructed such that both
shadowgraphy and flow visualization using background-oriented schlieren
can be applied. The latter is elaborated in section 6.3.3.
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6.3.3 Background-oriented schlieren

General concept

Similar to shadowgraphy, background-oriented schlieren or BOS employs
density variations to recover the temperature field of a test section. How-
ever, the implementation is quite different and allows a straightforward
quantitative reconstruction of the temperature field. It is a relatively novel
[17] method of flow visualization that simplifies conventional schlieren
visualization considerably by eliminating the need for precision optical
components.

xy
z

Speckled
background

sy

Camera lens

Camera sensor

Test section

Undeflected ray

Deflected ray

Virtual speckle
displacement

Figure 6.9: Illustration of background-oriented schlieren setup. The light rays originating
from a speckle are refracted by variations in the index of refraction of the test section, causing
a virtual displacement of that speckle with respect to the undistorted (reference) pattern as
recorded by the camera sensor.

Figure shows a schematic illustration of the BOS setup. It consists of an
illuminated background screen, a test section, camera and a computer
to store and process the recordings. Although conventional schlieren is
operated preferably under low light conditions, BOS is not sensitive to such
noise. In fact, BOS is based on the virtual displacement of the background
image and works with any number of light sources. The pattern on the
background screen must provide sufficient contrast and be matched with the
resolution of the camera. White noise, consisting of uniformly (random)
distributed black pixels on a white background, is well suited for this
purpose. We use the term speckles to refer to this pattern.
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Akin to shadowgraph, traversing light is refracted through the medium. If
there were no variations in the index of refraction of the test section, the
camera simply records the speckle pattern. However, when temperature
gradients inside the test section are present, light rays are bent slightly,
which distorts the perception of the speckle pattern as seen from the
camera’s perspective. This distortion is manifested as a virtual displacement
of the individual speckles, and the extent of displacement is proportional
to the index of refraction and thus to the temperature. By resolving the
speckle displacements relative to a steady calibration pattern, one can
resolve the temperature field of that time instance.

The speckle displacements are related to the deflection angle by the geom-
etry of the setup, and therefore the temperature can be resolved. Since
we are only interested in the qualitative temperature field, we assume that
the displacement is proportionally related to the angle of deflection, i.e.
ε ∼ s. Therefore, we find the following relation between the temperature
and displacement

sy = λ
∂T

∂y
(6.13)

where λ is a proportionaly constant that contains the relations between the
refractive index, density and temperature and the geometric parameters.

Measurements start by creating a reference recording snapshot of the
background with the test section at rest, i.e. no temperature difference
is present. Next, the cooler and heater and engaged and the camera
starts recording. Each frame of the recording is compared to the reference
snapshot to compute the displacement of that time instance. The next
section describes the process of analysis and how the temperature field is
recovered.

Analysis

Succeeding the measurement, the recorded frames are processed to recover
the temperature field. This process consists of computing the displace-
ment of the speckle pattern obtain the deflection of a light ray caused by
variations in the index of refraction.
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The displacement is computed using a cross-correlation, a method com-
monly used in particle image velocimetry (PIV). It is based on the correla-
tion between two images as a function of spatial variations. The image is
divided into several subsections called interrogation windows. The spatial
variation for which the cross-correlation is maximized, corresponds to the
approximate shift of each interrogation window.

A: Initial (reference) B: Measurement

A

B
F{A}* F{B}x

F
-1

Displacement

s

sy

x

Figure 6.10: Illustration of the computation of speckle displacement using a Fourier transform
(denoted by F{·}) to compute the correlation.

A common performance enancement is to compute correlation in Fourier
space. A cross correlation, defined as

(f ? g)(τ) =

∫ ∞
−∞

f∗(t)g(t+ τ)dt (6.14)

also satisfies
F{f ? g} = (F{f})∗ · F{g} (6.15)

where F denotes the Fourier transform, and the asterisk the complex
conjugate. Using fast Fourier transforms, the cross-correlation can be
computed very efficiently compared to the regular spatial method.

Next, the displacement field is solved by integrating eq. (6.13). In two
dimensions, this means finding the potential function T of a gradient field
s, i.e. to solve
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∇T = λs (6.16)

Which can be solved by numerical integration of the displacement field s
or by transforming the problem into a Poisson problem, i.e. (omitting the
proportionality constant)

∇ · (∇T ) = ∇ · (s)→ ∇2T = ∇ · s (6.17)

Which allows the use of Poisson solvers for which very efficient methods
exist.

6.4 Results

6.4.1 Experimental setup

An overview photograph of the experimental setup is shown in figure 6.11.
As can be seen from the image, the electric heater elements are inserted
into the setup, and the wires are guided towards a central unit. At the
top of the setup, the cooling channel is visible, and two tubes for in- and
outflow of cooling water are connected. These tubes are connected to a
central cooling unit which contains 5 L of temperature-controlled water as
cooling buffer. The tubes on the lower right and upper left of the setup are
used for filling and emptying the setup with the working fluid.
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Figure 6.11: Overview photograph of the setup. The bottom plate contains 9 heating elements
and a temperature probe in the center. The tube on the bottom right is used for filling the
setup, and the top right tubes are cooling tubes. The tube on the left top acts to ensure
atmospheric pressure inside the setup.

In figure 6.12, close-ups of the heating elements and cooling channel are
shown. In the left picture, the probe slightly deviating in size is the temper-
ature probe, which is inserted into the center hole. The right image shows
additional holes which are used for reverse-mounting of the triangular-
shaped steel supports. Although it was not used for this thesis, the setup
may be reversed, placing the heating elements on top and the cooling
element at the bottom.
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Figure 6.12: Close-up photographs of the electric heating elements (left) and the input and
output cooling channels of the top plate (right).

The setup as presented in this section is used for experiments within this
thesis. It is a flexible setup, allowing for a large range of parameters
including various working fluids to be studied.

6.4.2 Shadowgraphy visualization

In january of 2014, the working setup was displayed at the Physics@FOM
congress in Veldhoven. Due to material availability, we used a simple
projector as light source and a several sheets of matte A3 paper as screen
while the setup was placed onto a table-top. A photograph of the setup is
shown in figure 6.13a.

Figure 6.13: Photographs of the setup at the Physics@FOM congress (left) and a shadwogram
created by the setup (right).
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In figure 6.13b, a close-up photograph of the shadowgram is shown. Un-
fortunately, it is difficult for a camera to capture the perception as viewed
by naked eye. To improve visibility of the thermal structures of the flow,
we contrast-adjusted a photograph of the shadowgram which is shown in
figure 6.14.

Figure 6.14: Shadowgram as created by the setup. It is difficult to capture the perception
as viewed by the naked eye on paper, though this contrast-adjusted image shows good
resemblance with the actual shadowgram.

Over the course of several days, the setup was able to gain the attention of
both the scientific and general public and proved to be a great introduction
to explaining the thermally-driven motion of Rayleigh-Bénard.

6.4.3 Background-oriented schlieren

As stated in 6.3.3, a speckled pattern is generally used as reference back-
ground, as the displacements can easily be resolved using PIV methods.
Several speckled patterns are tested, and it was found that a salt & pepper
pattern with a 30:70 ratio of black and white pixels is well suited as back-
ground. However, BOS is a robust technique, and variations in this ratio
will not affect the results much.
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Figure 6.15: Photograph of the setup with the speckled background

Preferably, the entire flow field is recorded simultaneously. However, the
camera’s sensor resolution and lens’ focal distance limit the viewable region
of the background to an area of approximately 17x13 cm, which is captured
as an image of 1392x1040 pixels. Although calibration is not required since
we are interested in qualitative results, it is important that the smallest
features of the flow can be resolved by the camera. Based on the results of
the shadowgraphy method, it was estimated that the resolution is sufficient
to resolve the structures of the flow. Since the resolution of the camera is
approximately 0.13 mm/pixel, the speckle size is determined to be least
0.2 mm to ensure the camera can resolve individual speckles. However, no
quantitative study was performed for this thesis.

Using the method as described in section 6.3.3, footage of the background is
recorded and the displacements are calculated. From these displacements,
a relative temperature field is derived by solving the gradient equation
(6.16). Example results are shown in figure 6.16. These results were
obtained with demineralized water as working fluid, the lower plate set to
60oC and the upper plate set to 10oC.
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Figure 6.16: The displacement field (left) as computed by PIV and the corresponding nor-
malized temperature as resolved using eq. (6.16) (right). Dark regions correspond to lower
temperatures and light regions to hot regions.

It can be seen from figure 6.16 that the temperature field is and that a
quantitative result is obtained. By comparison, two snapshots of the same
parameters in simulation are shown in figure 6.17. A box is overlayed to
the image to illustrate the size of the viewable area from the experiments
relative to the complete cell.

Figure 6.17: Snapshot of the temperature field. For comparison, the same colormap as in
figure 6.16 is used. It can be seen that the simulation visually corresponds to the experimental
results.

It is clear that the structures of the flow show visually resemble the sim-
ulation snapshots, demonstrating a qualitative correspondence between
simulation and experiments. From these experiments, statistics on the
temperature field such as plume hotspots and scales may be obtained.
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Due to time and material restrictions, data collection and analysis is be-
yond the scope of this thesis. However, as shown in this section, the BOS
method provides a reliable way of recovering the temperature field of a
Rayleigh-Bénard cell. Recommendations on continuation of research using
the experimental setup can be found in section 6.6.

6.5 Derivation of velocity quantities

6.5.1 Hypothesis

Using the background-oriented schlieren technique, a relative temperature
field can be obtained. Although the temperature field provides great con-
ceptual insight in the behavior of the flow and thermal plumes therein, the
dynamics of the flow are descibed by the velocity field. The most common
method of deriving the velocity field of some flow is to use tracer particles
that follow the fluids streamlines. Advanced PIV algorithms can then re-
cover the actual velocity field in great detail. A drawback of this type of
flow visualization is that it is invasive; one has to add particles to the fluid
and match the density of these particles with the surrounding fluid.

In practice, it sometimes seems that one can deduce the velocity field
from the temperature field only by looking at it, specifically in the regions
where there is a strong temperature gradient. We hypothesize that the
velocity field can be derived from the temperature field alone, assuming
only incompressibility and given boundary conditions. In this paragraph,
we derive the mathematics of this hypothesis and prove that, unfortunately,
this is impossible.

Suppose a temperature field T (x, y). We use incompressibility (eq. (5.6)):

∇ · u = 0, (6.18)

and by the definition of the stream function

ψ =

∫ P

A

uxdy − vdx (6.19)
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we can relate the velocity components to the stream function as

u = +
∂ψ

∂y
(6.20)

v = −∂ψ
∂x

(6.21)

As stated in chapter 5, a Rayleigh-Bénard cell must satisfy the convection-
diffusion equation (eq. (5.8)), given by

∂T

∂t
= κ∇2T − u · ∇T (6.22)

Written out in differential form:

∂T

∂t
− κ

(
∂2T

∂x2
+
∂2T

∂y2

)
+ u

∂T

∂x
+ v

∂T

∂y
= 0 (6.23)

Substituting eq. (6.20) and (6.21) we obtain

∂T

∂t
− κ

(
∂2T

∂x2
+
∂2T

∂y2

)
+
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= 0 (6.24)

We assumed that the temperature is derived from the background-oriented
schlieren method and hence this equation can be rewritten to

α
∂ψ

∂x
+ β

∂ψ

∂y
= γ (6.25)

where α = ∂ψ
∂y , β = −∂ψ∂x and γ = κ

(
∂2T
∂x2 + ∂2T

∂y2

)
− ∂T

∂t . This is a linear
ordinary differential equation that can be rewritten to solve Ax = b for
x and can generally be solved as a system of linear equations or using
iterative methods like Gauss-Seidel relaxation. From the gradient of the
solved quantity ψ, the vertical and horizontal velocity components are
easily derived.
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Although equation (6.25) can indeed be solved, it is mathematically im-
possible to uniquely derive u and v from T , which is proven in section
6.5.2.

6.5.2 Proof

The proof for this is based on the fact that any velocity field v that is
solenoidal, perpendicular to T and satisfies the boundary conditions can be
added to u such that the conservation laws still hold.

More formally, the question is whether there exists some (non-trivial)
v ∈ R2 such that w = u+v satisfies the convection-diffusion and continuity
equation and corresponding boundary conditions. Consequently, if there
exists such v, then u cannot be uniquely retrieved because only w can be
recovered.

Restrictions on v

Starting with the generalized proof in 3 dimensions, we consider the
convection-diffusion equation (5.8). The temperature is assumed to be
obtained from some experiment and is thus a known quantity in space and
time. We can then simplify eq. (5.8) to

u · ∇T = L(x), (6.26)

where L = −∂tT + κ∇2T and x = (x, y, z). Now consider a solution
w = u + v, substitution then gives

(u + v) · ∇T = L (6.27)

Working out the brackets, this yields

u · ∇T + v · ∇T = L (6.28)
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It is clear that when v ⊥ ∇T , this equation is equal to (6.26) which infers
the first condition:

v · ∇T = 0 (6.29)

Second, the substitution must satisfy the continuity equation

∇ · u = 0 (6.30)

and after substitution we find

∇ · (u + v) = 0 (6.31)

Again, working out the brackets:

∇ · u +∇ · v = 0 (6.32)

It is clear that when v is divergence-free, the equation is equal to the
original incompressibility equation, and hence the second condition is
derived:

∇ · v = 0 (6.33)

Third, v must satisfy the boundary conditions. For Dirichlet boundary
conditions (no-slip boundary conditions) on a domain Ω, i.e. u(x) =
u0(x) ∀x ∈ ∂Ω, the substitution must also hold. Therefore, it must hold
that

w(x) = (u(x) + v(x)) = u0(x) ∀x ∈ ∂Ω (6.34)

which imposes v(x) = 0 ∀x ∈ ∂Ω as boundary condtion.

Similarly, if Neumann boundary conditions are imposed on the domain Ω,
i.e.

∂u

∂n
(x) = q(x) ∀x ∈ ∂Ω (6.35)
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where n is the vector normal to the boundary ∂Ω and q is some function at
the boundary.

It can be derived that it must hold for v that

∂v

∂n
= 0 (6.36)

Generalized existence proof in three dimensions

To prove that there exists a v, we provide an example. Consider the vector
field

v = ∇× (h∇T ) (6.37)

where h = h(x, y, z) is an arbitrary scalar function. For the first restriction,
substitution into (6.29) gives

(∇× (h∇T )) · ∇T = 0 (6.38)

Using the vector identity ∇× (ψA) = ψ∇×A + A×∇ψ and substituting
∇T for A, we find

(h∇×∇T +∇h×∇T ) · ∇T = 0 (6.39)

The above relation is true ∀h, because the cross product of a gradient is
always zero and because (A×B) ·B = 0 ∀A. Hence, eq. (6.29) is satisfied.

For the second restriction, substitution into (6.33) gives

∇ · (∇× (h∇T )) = 0 (6.40)

Which is also satisfied ∀h because the divergence of the curl of a vector
field is zero by definition.

For Dirichlet boundary conditions, demanding h(x) = 0 ∀x ∈ ∂Ω satisfies
the boundary condition restriction and does not restrict h in the rest of the
domain. Similarly, Neumann boundary conditions do not restrict h in rest
of the domain. Therefore, all restrictions are satisfied, proving that u can
not uniquely be recovered from the temperature field.
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Proof in two dimensions

The hypothesis is based on the assumption of a stream function, which can
only be defined in two dimensions. To prove that there exists a similar v
in two dimensions, we again provide an example. Also, we consider ∇
as two-dimensional operator and use both ∂x and ∂

∂x interchangeably as
partial derivative operators.

Consider the vector field

v =
(
f∂yT,−f∂xT

)ᵀ
(6.41)

where f is an arbitrary function of T , i.e. f = f(T ). Substituting (6.41)
into (6.29) gives

(
f∂yT,−f∂xT

)ᵀ · ∇T = 0 (6.42)

Writing out the components then gives

(
f∂yT∂xT

)
+
(
−f∂xT∂yT

)
= 0 (6.43)

which is true ∀f because multiplication is commutative and thus (6.41)
satisfies the first condition.

Substituting (6.41) into the incompressibility condition (6.33) gives

∇ ·
(
f∂yT,−f∂xT

)ᵀ
= 0 (6.44)

Working out the operator yields

∂x
(
f∂yT

)
+ ∂y (−f∂xT ) = 0 (6.45)

Which can be written out using the product rule and chain rule for f . For
the x-derivative, this yields
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∂x
(
f∂yT

)
=
∂f

∂T

∂T

∂x

∂T

∂y
+ f

∂2T

∂x∂y
(6.46)

And similarly for the y-derivative:

∂y (−f∂xT ) = − ∂f
∂T

∂T

∂y

∂T

∂x
− f ∂

2T

∂y∂x
(6.47)

It can be seen that adding (6.46) and (6.47) equals zero ∀f and thus
equation (6.45) is true ∀f . Therefore, the second condition is satisfied.

Similar to the three-dimensional case, the boundary conditions do not
impose additional restrictions on v and hence it suffices to demand f(x) =
0 ∀x ∈ ∂Ω for Dirichlet boundary conditions.

6.6 Conclusions & recommendations

In this chapter, we have shown the succesful design and build of an experi-
mental Rayleigh-Bénard setup. The setup allows for various visualization
techniques of which shadowgraphy and background-oriented schlieren are
applied. Shadowgraphy visualization is used for demonstrative purposes
at the Physics@FOM congress, at which the setup received interest from
both the scientific and general public. The background-oriented schlieren
method was succesfully applied to the experimental Rayleigh-Bénard setup
built for this thesis and a relative temperature field is obtained using the
BOS method. It was hypothesized that BOS would also allow the recovery
of the velocity field, but as proven in section 6.5, this is mathematically
impossible.

It was shown that background-oriented schlieren is a robust method to
determine the relative temperature field in two dimensions. Similar to
discrete tomography applications in medical imaging, a method may be
developed that allows resolving the temperature field in three dimensions.
Such a setup would consist of a transparent fluid container, a speckled
screen on one side and an array of camera’s opposite to the screen. The
camera array must be aligned such that the speckled screen is viewed
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through the fluid container from various angles. From the multitude of
computed displacement fields, the temperature field may then be recon-
structed. This technique would allow non-invasive measurement of the
relative temperature field in three dimensions, and it is recommended to
study the feasibility of this method.
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Chapter 7

Spatially confined thermal
convection cells

7.1 Introduction

In many domestic and industrial applications, the ability to enhance or
decrease the heat transport is of crucial importance. Examples range
from small-scale electronics to heat management of real estate. Using
geometrical confinement to manage heat transport is well-known in the
field of fluid physics [15], and the goal in general is to optimize heat
transport by changing the cell’s aspect ratios. As sidewalls enforce no-slip
conditions which cause the viscous boundary layers to increase relative to
the cell’s size, it is intuitively expected that narrowing even further will
only increase drag force, thereby decrease advection and thus reduce heat
transport. Recently [16], however, confinement induced heat transport
enhancement for very narrow cells (aspect ratios of order 10−1).

In this short chapter, we show the effect of spatial confinement of thermal
convection for a wider range of aspect ratios. We use direct numerical
simulations (DNS) to study the heat transport in cells of aspect ratios from
10−3 to 1.
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7.2 Background & method

The geometry of a Rayleigh-Bénard cell has a significant effect on its
flow behavior. It was recently shown [15] that the aspect ratio in two-
dimensional systems has a significant influence on the dynamics as well
as the heat transfer of that system. The dynamics of a system can be
categorized in certain modes called flow states. For example, the dynamics
of a two-dimensional system with aspect ratio Γ ≈ 1 can form a single
roll state (SRS) where there is one cell-sized large scale circulation. If the
aspect ratio is increased, the number of rolls can increase, as is shown
schematically in figure 7.1.

Figure 7.1: Nusselt number as a function of Γ for Ra = 108 and Pr = 4.3 for 1 < Γ < 12.
It can be seen that the aspect ratio has a significant effect on the dynamics of the system,
illustrated by 10 clusters of points that represent the SRS up to the horizontally stacked 10RS.
Courtesy of [15].

These flow structures are closely related to the Nusselt number, as the fluids
advection dynamics determine how efficient heat is transported from the
bottom to the top plate.

Using direct numerical simulation of the Boussinesq equations, we simulate
Rayleigh-Bénard cells of various aspect ratio’s and at several values of Ra.
We choose a non-unifom grid spacing of our simulation mesh such that
the boundary layers are sufficiently resolved. In addition, an a posteriori
analysis is done of each simulation verifying that it is sufficiently resolved
by comparing the time-averaged global Nusselt number computed from
the volume-integrated kinetic thermal energy dissipation rates to the time-
averaged Nusselt number as computed over each horizontal slice.
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For analysis, we study the volume-average Nu (eq. (5.13)) and the root-
mean-square Rerms averaged over each grid direction x, y and z.

7.3 Results

Several cell sizes for various forcing parameters are simulated. Figure 7.2
shows the normalized Nusselt number as a function of the confinement
aspect ratio Γ2. The Nusselt numbers are normalized to Nu = 1 at Γ2 = 1
for each set.

10−3 10−2 10−1 100

0.6

0.8

1

1.2

1.4

Γ2

N
u/
N
u

(Γ
2

=
1)

Ra = 106

Ra = 107

Ra = 109

Figure 7.2: Normalized Nu for Pr = 4.3, various Ra as a function of Γ2. It can be seen that Nu
increases for light confinement (Γ2 < 1). For moderate confinement, Nu peaks and decreases
for strong confinement.

It can be seen that the Nusselt number increases for moderate confinement.
The increase is significant, and seems to increase steeper for smaller Ra.
When decreasing the aspect ratio even further, however, the increase in
Nu peaks and starts to decrease. For Ra = 106, the peak is around Γ2 ≈ 1

2 ,
and the peak shifts to Γ2 ≈ 1

32 for Ra = 109. Figure 7.3 shows the peak,
denoted by Γopt, as a function of Ra.
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Figure 7.3: Γopt as a function of Ra. Although there are only three datapoints in this plot, a
monotonic inverse trend can be seen. It is expected that Γopt decreases for increasing Ra due
to the smaller thermal boundary layer and thermal plumes.

Although this plot only contains three datapoints, a monotonic inverse
relation can clearly be seen. It is expected that this is caused by the
decreasing size of the thermal boundary layer and corresponding thermal
plumes for higher Ra.

To couple the heat transfer increase to the flow dynamics in the x, y and z
directions, the time and volume averaged Reynolds numbers are shown in
figure 7.4.
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Figure 7.4: Rerms for Ra = 106 (left) and Ra = 107. Pr = 4.3 for both sets. It can be seen
that the geometric confinement restricts the flow in the direction of narrowing, while an
increase is observed in perpendicular directions.

It is clear that the geometric confinement restricts flow in the x-direction
for Ra = 106 and Ra = 107. As the aspect ratio decreases, an initial increase
in Nu is observed as shown in 7.2. It can be seen that this is accompanied
by a strong increase in Rey and Rez.

7.4 Conclusions & recommendations

In this chapter, the heat transport in spatially confined thermal convection
cells was studied for 1

256 ≤ Γ2 ≤ 1 and Pr = 4.3. It was shown that for
Ra = 106, 107 and 109, Nu increases, peaks and subsequently decreases and
that the aspect ratio Γopt for which Nu is highest, decreases for higher Ra.

This result is rather counter-intuitive as it is expected that spatial confine-
ment would increase viscous drag from the walls and therefore slow down
the flow, leading to a decrease of Nu. However, although confinement does
increase drag from the sidewalls, for light to moderate confinement this is
actually beneficial to heat transport as the large scale circulation (LSC) is
damped.

87



PART II

It is generally known that an LSC has a profound effect on the dynamics
of the thermal plumes, as they are carried along by the flow. Huang et.
al. [16] has found that the local temperature profile at the cell center
and its PDF change from exponential to Gaussian-like with decreasing Γ
and states that this is accompanied by an increasing number of thermal
plumes (compared to a lack of plumes for an exponential temperature
PDF). The increase in heat transfer may thus be attributed to the damping
of the LSC, allowing the thermal plumes to rise upwards through the center
of the cell (not being carried around by the LSC) and transfer their heat
more efficiently, leading to an increase in Nu. This corresponds to their
experimental and numerical results, as shown in figure 7.5 which shows an
increase of Nu for light to moderate confinement.

Figure 7.5: Experimentally measured and numerically computed (inlay) normalized Nu as a
function of Γ for various Ra and Pr = 4.3. It can be seen that Nu increases as Γ decreases.
Courtesy of [16].

For strong confinement, however (i.e. Γ / 1
2 for Ra = 106, Γ / 1

16 for
Ra = 107 and Γ / 1

32 for Ra = 109), we demonstrated a decrease in Nu as Γ
is decreased. It is expected that this may be attributed to the intuitive effect
of spatial confinement, where the viscous drag overcomes the buoyancy
of the thermal plumes such that the flow is slowed down overall. This
hypothesis is supported by the decrease in Rez and, to lesser extent Rey.

In conclusion, it is clear that this brief chapter is not sufficient to fully
understand the underlying physics of heat transport in spatially confined
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thermal convection cells. It is therefore recommended to continue research
in this area, for example by inreasing the resolution of the parameter space
in Γ and Ra. This would allow for determining the exact Γopt for which
heat transport is optimal and provide insight into the flow dynamics at
and around this point. The increased parameter space would also allow
for a more elaborate Γopt(Ra) relation. We expect that further study of
heat transport optimization by spatial confinement is beneficial for many
practical applications. For example passive cooling elements in electronics
industry are designed for optimal heat transport by natural convection.
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Appendix A

Sphere pattern in
FORTRAN syntax

The code below is a modified excerpt of the full code that describes analyti-
cal pattern function F (θ, φ) in FORTRAN syntax.

1 subroutine pattern(theta, phi, s)
2
3 implicit none
4
5 !---- Input and output variables
6 real, intent(in) :: theta, phi
7 integer, intent(out) :: s
8
9 !---- Internal variables

10 real :: y, z
11
12 !---- Internal parameters
13 real, parameter :: bw = 0.353553390593274 ! sqrt(2)/4
14 real, parameter :: pi = 3.141592653589793
15 real, parameter :: pi2 = pi/2
16
17 real, parameter :: num5 = 60.0/180.0*pi
18 real, parameter :: num6 = 90.0/180.0*pi
19 real, parameter :: num7 = 120.0/180.0*pi
20 real, parameter :: num10 = 180.0/180.0*pi
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21 real, parameter :: num11 = 210.0/180.0*pi
22 real, parameter :: num12 = 330.0/180.0*pi
23
24 !---- Limit theta angle
25 theta = mod(mod(theta,2.0*pi)+2.0*pi,2.0*pi)
26
27 !---- Initialize output to zero
28 s = 0
29
30 !---- Region-based pattern function F(theta,phi)
31 if (theta >= pi .and. phi >= pi2) then
32 s = 1
33 elseif (theta <= pi .and. phi <= pi2) then
34 s = 1
35 endif
36
37
38 if ( (phi >= num6) .and. (phi <= num7) .and. (theta >= num12) ) then
39 s = 0
40 endif
41
42 if ( (phi >= num5 .and. phi <= num6) .and. (theta >= num10 .and. theta <=

num11) ) then
43 s = 1
44 endif
45
46 y = sin(phi)*sin(theta)
47 z = cos(phi)
48
49 if ( (abs(sin(phi)*cos(theta)) <= (bw + y)) .and. (theta > pi) ) then
50 s = 1
51 endif
52
53 if ( (abs(sin(phi)*cos(theta)) <= (bw - z)) .and. (theta < pi) ) then
54 s = 0
55 endif
56
57 end subroutine pattern
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Non-dimensionalization of
Boussinesq approximation

Suppose Navier-Stokes and convection diffusion equation assuming incom-
pressibility and no sources:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ gρêz (B.1)

∂T

∂t
+ uj

∂T

∂xj
= κ

∂2T

∂x2
j

(B.2)

The Oberbeck-Boussinesq (OB) approximation then states that ν and κ are
not functions of time and ρ is only time-dependent in the buoyancy term.
This yields the buoyancy term in NS reduces to gβ

(
T − Ttop

)
where Ttop is

the temperature of the top plate (and Tbottom the bottom plate).

Now using the following non-dimensionalization:
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u∗ =
u

Uf
(B.3)

x∗ =
x

L
(B.4)

t∗ =
t

tf
(B.5)

p∗ =
p

ρU2
f

(B.6)

Θ =
T − Ttop

Ttop − Tbottom
(B.7)

Here, L is the height of the cell, Uf is called the free-fall velocity and tf
is called the free-fall time. This is obtained by assuming inviscid NS and
equating the forcing term (gβ∆) to an acceleration. Then d2s

dt2 = gβ∆ which

yields a free-fall time tf =
√

L
gβ∆ and thus free-fall velocity Uf =

√
gβ∆L.

The factor 1
2 is disregarded for clarity and has no effect on the (non-

)dimensionalization.

Then substituting everything:

∂u∗iUf
∂t∗tf

+ u∗jUf
∂u∗iUf
∂x∗jL

= −1

ρ

∂p∗ρU2
f

∂x∗iL
+ ν

∂2u∗iUf

∂
(
x∗j

)2

L2

+ gβ
(
T − Ttop

)
êz

(B.8)
∂Θ∆ + Ttop

∂t∗tf
+ u∗jUf

∂Θ∆ + Ttop

∂x∗jL
= κ

∂2Θ∆ + Ttop

∂
(
x∗j

)2

L2

(B.9)

Navier-Stokes

The first term of NS:
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∂u∗iUf
∂t∗tf

=
∂u∗i
√
gβ∆

∂t∗
√

L
gβ∆

= gβ∆
∂u∗i
∂t∗

(B.10)

And the convective term

u∗jUf
∂u∗iUf
∂x∗jL

= u∗j
√
gβ∆L

∂u∗i
√
gβ∆L

∂x∗jL
= gβ∆u∗j

∂u∗i
∂x∗j

(B.11)

And the pressure term:

1

ρ

∂p∗ρU2
f

∂x∗iL
=

1

ρ

∂p∗ρ (gβ∆L)

∂xiL
= gβ∆

∂p∗

∂xi
(B.12)

And the diffusive term:

ν
∂2u∗iUf

∂
(
x∗j

)2

L2

= ν
∂2u∗i

√
gβ∆L

∂x∗jL
2

= ν
1

L2

√
gβ∆L

∂2u∗i

∂
(
x∗j

)2 (B.13)

Dividing every term of NS by gβ∆ then yields (dropping the asterixes)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

√
Pr
Ra

∂2ui
∂x2

j

+ Θêz (B.14)

With Pr = ν
κ and Ra = gβ∆L3

νκ .

Convection diffusion temperature

Firstly, the factor Ttop is constant and drops out, leaving:

∂Θ∆

∂t∗tf
+ u∗jUf

∂Θ∆

∂x∗jL
= κ

∂2Θ∆

∂
(
x∗j

)2

L2

(B.15)
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Then the first term:

∂Θ∆

∂t∗tf
= ∆

√
gβ∆

L

∂Θ

∂t∗
(B.16)

And the second term:

u∗jUf
∂Θ∆

∂x∗jL
=
√
gβ∆L

∆

L
u∗j
∂Θ

∂x∗j
(B.17)

And the last term right of the equal sign:

κ
∂2Θ∆

∂
(
x∗j

)2

L2

= κ
∆

L2

∂2Θ

∂
(
x∗j

)2 (B.18)

Dividing everything by
√

gβ∆3

L then yields (dropping the asterixes again):

∂Θ

∂t
+ uj

∂Θ

∂xj
=

√
1

RaPr
∂2Θ

∂x2
j

(B.19)
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