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Chapter 1

Introduction

Photonic crystals are natural or artificial periodic structures composed of two or more materials
with different electromagnetic properties. If the period of the periodic structure is similar to the
wavelength of an incident light beam, an interplay of refraction and interference may give rise
to a photonic band gap: incident light is reflected and the amplitude of light somehow trapped
inside the crystal will decay exponentially.

Applications are solar arrays, where crystals could be used to reflect incident light at the
bottom of the array, fiber-optic cables, that can be ‘coated’ by photonic crystals to keep the
light trapped inside, see for example Figure 1.1, and lasers, where a photonic crystal can be used
to get a better spatial or frequential focus. If impurities are introduced similar to the impurities
in semi-conductors, it is also possible to construct optical switches out of photonic crystals. An
example of a photonic crystal from nature is an opal. Opals consist of densely packed spheres
of silica with a diameter of a few hundred nanometers. Since this is also the frequency of visible
light, a partial band gap causes different colours to reflect only at different angles of incidence.
For an example, see [22] (also displayed on the front page of this report)

The size constraints on photonic crystals and their complicated structure pose some serious
challenges for their synthetic production, so it is useful to be able to predict the optical properties
of a photonic crystal using numerical simulations. The governing equations for the behaviour
of light are the Maxwell equations. They are commonly discretised using finite differences with
a leap-frog scheme for the time discretization. In the context of the Maxwell equations, this is
commonly known as Yee’s algorithm [32].

An alternative is to assume that the solution is harmonic in time. This removes the time
derivative from the equation, replacing it with the frequency of the solution instead. The time-
harmonic Maxwell equations are then solved using mode expansions, e.g. Fourier modes, which
are well suited due to the periodic nature of the solution and known to be fast solution algorithms.
Widely used packages like MIT Photonic Bands (MPB) [18] make use of this strategy. However,
this method is also known to produce non-physical artefacts near discontinuities in the solution.

Another approach is based on Finite Element Methods [21, 28, 9]. The basic idea is to define
a weak formulation of the Maxwell equations and to approximate the solution using a piecewise
polynomial basis, such that each basis function is non-zero only on a finite subset of the domain.
This combines high flexibility with potentially high convergence rates.

This report will be based on the research done by Sármány et al. [27] and Denissen [12].
They also use Finite Element Methods, but with the extra feature that the basis functions are
allowed to be discontinuous at element boundaries. This has as a consequence that the trace
of the approximate solution becomes ill-defined at element boundaries and a numerical flux has
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Figure 1.1: Four designs of fiber-optic cables employing photonic crystals. The white areas
represent air, the blue areas represent silica and the red areas represent an unspecified high-
index material. Feature sizes are typically in the nanometer ranges. Figure taken from [19].
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to be introduced. The numerical flux has great impact on the stability and accuracy of the
solution. For a complete discussion of numerical fluxes, see for example [3].

Using discontinuous basis functions allows for a great flexibility in constructing the mesh,
in particular for locally refined meshes that are beneficial to capture important details in the
solution. The weak coupling of the elements using a numerical flux allows for a very easy
treatment of discontinuities in the parameters. It also gives rise to a better sparsity structure
of the discrete linear system. As an added bonus it allows for a slightly easier treatment of
boundary conditions.

The reason that Discontinuous Galerkin Finite Element Methods are only a recent devel-
opment is that they have relatively large memory requirements compared to classical (curl)-
conforming finite element methods. Moreover, the mathematical expressions involved appear
complicated at first glance. Moreover, to make good use of the sparsity structure efficient algo-
rithms have to be developed.

The remaining challenges in finding solutions to the Maxwell equations lie in the large null-
space of the curl-curl operator. Additionally, to be useful in applications a numerical solver needs
to find all eigenvalues and eigenfunctions of the time-harmonic Maxwell equations without any
spurious -nonphysical- modes.

As a natural result from the solution strategy the dispersion relation, linking wavenumber
to frequency, is obtained.

In experimental set-ups the (local) density of states (L)DOS is usually measured. This is
the number of photon states available for occupation at a specific energy level in the photonic
crystal. A very large DOS will enhance spontaneous emission since there are more decay paths
available than usual. An LDOS of zero means no light of this energy level can exist in the
crystal, so the crystal will act as a perfect mirror for the frequencies involved.

This work considers the linear Maxwell equations for non-conductive materials. Its aim will
be to provide a starting point for a mathematical model and computer code that can be used to
model general photonic crystals. In particular, a discretization of the Maxwell equations will be
provided and the accuracy of this discretization is verified using known convergence results from
literature. Moreover, the discretized equations will be applied to simple periodic structures to
demonstrate how they can be used to find the dispersion relation and (L)DOS for more general
structures.

The remainder of this report can be summarised as follows. Chapter 2 will provide a short
review of the Maxwell equations. In Chapter 3 a weak formulation will be set up for the Maxwell
equations. This formulation will be used in Chapter 4 to provide a discretization for the time-
harmonic Maxwell equations. Also in Chapter 4 the infinite periodic domain will be discussed.
Using Bloch-Floquet theory a reformulation will be given based on a finite unit domain and a
wave-vector k. In Chapter 5 it will be explained how these results can be used to compute the
LDOS and the DOS. Chapter 6 will collect all test cases and their results to verify the accuracy
of the discretization. Chapter 7 will present some additional details on the implementation of
the DG algorithm. A detailled description of the code can be found in Appendix A. Finally,
Chapter 8 will provide conclusions and an outlook for future work.
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Chapter 2

Maxwell equations

The Maxwell equations are given as a set of four coupled differential equations. Only the case
of linear isotropic media will be considered in this report. In that case some simplifications can
be made in the physics and the Maxwell equations are presented as



∇ · (εE) = ρf

∇× E = − 1

µ

∂H

∂t

∇ ·
(

1

µ
H

)
= 0

∇×H = J +
∂ (εE)

∂t
,

(2.1a)

(2.1b)

(2.1c)

(2.1d)

on Ω ⊆ R3 where

• ∇ =

 ∂
∂x
∂
∂y
∂
∂z

 is the gradient operator,

• ε is the electric permittivity,

• E is the electric field,

• ρf is the free charge distribution,

• µ is the magnetic permeability,

• H is the magnetic field,

• J is the free current.

Note that if (2.1a) and (2.1c) hold for the initial conditions and if ∇ · J = 0 then (2.1b)
and (2.1d) will guarantee that (2.1a) and (2.1c) hold for all time. This means they are just
consistency conditions. They can be dropped from the derivations, but should be kept in mind
at places where the consistency might be broken.

The equations are put in dimensionless form by introducing a reference length L̃ and a
reference magnetic field strength H̃0 and the scaling
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x =
x̃

L̃
t =

c0t̃

L̃
H =

H̃

H̃0

,

where c0 = 1√
ε0µ0

is the speed of light and ε0 and µ0 are the electric permittivity and magnetic

permeability of vacuum. Also, scaling E and J appropriately reduces (2.1) to
∇× E = − 1

µr

∂H

∂t

∇×H = J +
∂ (εrE)

∂t
,

(2.2a)

(2.2b)

where εr and µr are the relative electric permittivity and magnetic permeability, respectively. It
will be more beneficial to write the coupled set of equations as one equation. For this a choice
has to be made either to use E or H as the free variable in the resulting equation. Since the
eigenmodes of the E-field will be needed later on for the computation of the LDOS a choice
was made to use the E-field. The H-field can always be retrieved using (2.2a) and the initial
conditions if it is explicitly needed.

Take the curl of (2.2a) and the time derivative of (2.2b) and substitute ∂
∂t (∇×H) to find

∇× 1

µr
∇× E + εr

∂2E

∂t2
= −∂J

∂t
. (2.3)

This equation, together with the perfectly conducting boundary conditions n × E|∂Ω = 0 on a
domain Ω ⊆ R3 describes the behaviour of the electric field. For an infinite periodic structure,
for example idealised photonic crystals, Ω = R3 and it will be assumed that E, εr, µr and J are
periodic in space and that there exists a (cubic) unit domain Ω̃ that can be repeated infinitely
many times in all cardinal directions. The problem then becomes to find a solution on this unit
domain with the proper periodicity. See also Figure 2.1.

It will also be assumed that εr and µr are piecewise smooth positive functions that are
constant in time.

If J is an harmonic function in time with some frequency ω it is not needed to solve the full
time dependent problem. Using the Anzatz E (t, x) = e−iωtẼ (x) (where J (t, x) = e−iωtJ̃ (x))
with i =

√
−1 we obtain

∇× 1

µr
∇× E − ω2εrE = iωJ. (2.4)

This is a partial differential equation only in space, so in general it will be easier to solve. Note
that there are no initial conditions involved in this formulation so in principle the solution might
not be consistent with the free charge distribution, but this depends on the method used to solve
(2.4).

If J = 0 (2.4) can be considered as an eigenvalue problem. The challenge here becomes to
find the pairs (ω,E) such that

∇× 1

µr
∇× E = ω2εrE. (2.5)

To get more insight into the eigenvalue problem (2.5), assume that E has a Helmholz decompo-
sition
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Figure 2.1: Example of a 2D photonic crystal. Displayed are 9 complete unit domains and
parts of their surrounding unit domains. Domain boundaries are marked with dashed lines for
emphasis.

E = ∇g +∇× u.

After applying (2.5), we obtain

∇× 1

µr
∇×∇× u = ω2 (∇g +∇× u) .

Taking the divergence then results in

0 = ω2∆g.

So either ω = 0 or ∆g = ∇·E = 0. This means that the condition (2.1a) maps to the null-space
of the curl-curl operator, so for the eigenvalue problem an additional assumption must be made
that there is no free charge present. For the time harmonic formulation the free charge can also
assumed to be zero. If there is a free charge present in the time harmonic problem, a correcting
term can be found by solving ∆g = ρf and updating E accordingly.

If ω = 0 and ∆g = 0 then E can be linear at best. Since the eigenvalue problem is only solved
on the periodic unit domain E must then be constant. One of these eigenmodes is associated
with a uniform free charge density. The other two correspond to light with an infinitely long
wavelength in the two polarisations it may have.

It can be concluded that the eigenvalues of the Maxwell equations without free charge in the
domain are 0 (multiplicity 2) and whatever eigenvalues may be found with ω2 > 0
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Chapter 3

Discontinuous Galerkin
discretization

In this Chapter the weak formulation of the time-dependent Maxwell equations and the corre-
sponding discrete linear problem will be derived.

3.1 Function spaces and notation

Given a tessellation Th of Ω, such that εr and µr are both constant inside each element, define

H (curl; Th) =
{
u ∈

[
L2 (Ω)

]3
: ∇× u|

K
∈
[
L2 (K)

]3 ∀K ∈ Th
}
.

For some subset F of Ω, (·, ·)F denotes the standard L2 (F ) inner product. Also define an
element-wise gradient operator ∇h|K = ∇|

K
, ∀K ∈ Th.

At an interface of two elements define the tangential jump and the average of u ∈ R3 as:

[[u]]T = nL × uL + nR × uR,

{{u}} =
uL + uR

2
,

Where ·L and ·R denote the trace of the left element and the right element at their common
boundary, respectively, and n is the outward pointing normal vector of the element at the
interface. By their definition nL = −nR. The element that is considered left can be chosen
arbitrarily. At the domain boundaries choose {{u}} = uL and [[u]]T = n× uL.

Denote by F ih the set of all interfaces of pairs of elements. The set of all element boundaries
that coincide with domain boundaries is denoted by Fbh. The union of these sets is denoted by
Fh. Now we derive the following useful identity
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∑
K∈Th

(n× u, v)∂K

=
∑
F∈Fih

∫
F

(
nL × uL

)
· vL +

(
nR × uR

)
· vR ds+

∑
F∈Fbh

∫
F

(
nL × uL

)
· vL ds

=
∑
F∈Fih

1

2

∫
F

(
nL × uL

)
· vL −

(
nL × vL

)
· uL +

(
nR × uR

)
· vR −

(
nR × vR

)
· uR ds

+
∑
F∈Fbh

∫
F

(
nL × uL

)
· vL ds

=
∑
F∈Fih

1

2

∫
F

(
nL × uL

)
· vL −

(
nL × vL

)
· uL +

(
nR × uR

)
· vR −

(
nR × vR

)
· uR

+
(
nL × uL

)
· vR −

(
nL × uL

)
· vR −

(
nL × vL

)
· uR +

(
nL × vL

)
· uR ds

+
∑
F∈Fbh

∫
F

(
nL × uL

)
· vL ds

=
∑
F∈Fih

∫
F

(
nL × uL

)
· {{v}} −

(
nL × vL

)
· {{u}}

+
(
nR × uR

)
· {{v}} −

(
nR × vR

)
· {{u}}ds

+
∑
F∈Fbh

∫
F

(
nL × uL

)
· vL ds

=
∑
F∈Fih

∫
F

[[u]]T · {{v}} − [[v]]T · {{u}}ds+
∑
F∈Fbh

∫
F

[[u]]T · {{v}}ds. (3.1)

Also define, implicitly, the following lifting operators:

(L (u) , v)Ω =
∑
F∈Fih

∫
F

u · [[v]]T ds,

(R (u) , v)Ω =
∑
F∈Fh

∫
F

u · {{v}}ds,

(RF (u) , v)Ω =

∫
F

u · {{v}}ds ∀F ∈ Fh.

3.2 Discretisation of the Maxwell equations

For the discretization of the Maxwell equations the same approach will be followed as the one
followed by Sármány et al. [25, 26, 27] and Denissen [12]. Split Ω in a tessellation of tetrahedra
Th, such that εr and µr are both constant inside each tetrahedron.

For the spatial discretization introduce an auxiliary variable q to turn (2.3) into the following
coupled first order system
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∇× µ−1
r q + εr

∂2E

∂t2
= −∂J

∂t
q −∇× E = 0,

(3.2a)

(3.2b)

where E, q ∈ H (curl; Th). Now multiply (3.2) with arbitrary test functions φ, π ∈ H (curl; Th)
and integrate over Ω



(
−∂J
∂t
, φ

)
Ω

=
∑
K∈Th

∫
K

(
∇× µ−1

r q (t, x)
)
· φ (x) + εr

∂2E (t, x)

∂t2
· φ (x) dx

(q, π)Ω =
∑
K∈Th

∫
K

(∇× E (t, x)) · π (x) dx,

After integration by parts we obtain



(
−∂J
∂t
, φ

)
Ω

=
∑
K∈Th

∫
K

µ−1
r q (t, x) · (∇× φ (x)) + εr

∂2E (t, x)

∂t2
· φ (x) dx

+

∫
∂K

(
n× µ−1

r q (t, x)
)
· φ (x) ds

(q, π)Ω =
∑
K∈Th

∫
K

E (t, x) · (∇× π (x)) dx+

∫
∂K

(n× E (t, x)) · π (x) ds.

(3.4a)

(3.4b)

Since µ−1
r q and E have multiple valued traces in the boundary integrals we replace them with

their numerical fluxes µ−1
r q∗ and E∗ and integrate (3.4b) by parts again, resulting in



(
−∂J
∂t
, φ

)
Ω

=
∑
K∈Th

(
µ−1
r q,∇× φ

)
K

+

(
εr
∂2E

∂t2
, φ

)
K

+
(
n× µ−1

r q∗, φ
)
∂K

(q, π)Ω =
∑
K∈Th

∫
K

(∇× E (t, x)) · π (x) dx

+

∫
∂K

(n× (E∗ (t, x)− E (t, x))) · π (x) ds,

There is no need to replace π by π∗ because, given a test function, its trace is known. Now
rewrite the boundary integrals using (3.1) as
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(
−∂J
∂t
, φ

)
Ω

=
∑
K∈Th

(
µ−1
r q,∇× φ

)
K

+

(
εr
∂2E

∂t2
, φ

)
K

+
∑
F∈Fbh

(
[[µ−1
r q∗]]T , {{φ}}

)
F

+
∑
F∈Fih

∫
F

[[µ−1
r q∗ (t, x)]]T · {{φ (x)}} − [[φ (x)]]T · {{µ

−1
r q∗ (t, x)}}ds

(q, π)Ω =
∑
K∈Th

(∇× E, π)K +
∑
F∈Fbh

([[E∗ − E]]T , {{π}})F

+
∑
F∈Fih

∫
F

[[E∗ (t, x)− E (t, x)]]T · {{π (x)}}

− [[π (x)]]T · {{E
∗ (t, x)− E (t, x)}}ds.

(3.6a)

(3.6b)

Continue now with the equation for q and introduce the lifting operators defined in Section 3.1

(q, π)Ω = (∇h × E, π)Ω + (R ([[E∗ − E]]T ) , π)Ω − (L ({{E∗ − E}}) , π)Ω . (3.7)

Since π ∈ H (curl; Th) is arbitrary in (3.7) we obtain

q = ∇h × E +R ([[E∗ − E]]T )− L ({{E∗ − E}}) . (3.8)

Use this to eliminate q from (3.6a)

(
−∂J
∂t
, φ

)
Ω

=
(
µ−1
r (∇h × E +R ([[E∗ − E]]T )− L ({{E∗ − E}})) ,∇h × φ

)
Ω

+

(
εr
∂2E

∂t2
, φ

)
Ω

+
∑
F∈Fbh

(
[[µ−1
r q∗]]T , {{φ}}

)
F

+
∑
F∈Fih

∫
F

[[µ−1
r q∗ (t, x)]]T · {{φ (x)}} − [[φ (x)]]T · {{µ

−1
r q∗ (t, x)}}ds,

Using the relation for the lifting operators the weak formulation for generic numerical fluxes E∗

and q∗ can be transformed into

(
−∂J
∂t
, φ

)
Ω

=
(
µ−1
r ∇h × E,∇h × φ

)
Ω

+

(
εr
∂2E

∂t2
, φ

)
Ω

+
∑
F∈Fbh

(
[[µ−1
r q∗]]T , {{φ}}

)
F

+
(
[[E∗ − E]]T , {{µ

−1
r ∇h × φ}}

)
F

+
∑
F∈Fih

∫
F

[[µ−1
r q∗ (t, x)]]T · {{φ (x)}} − [[φ (x)]]T · {{µ

−1
r q∗ (t, x)}}

+ [[E∗ (t, x)− E (t, x)]]T · {{µ
−1
r ∇h × φ (x)}}

− {{E∗ (t, x)− E (t, x)}} · [[µ−1
r ∇h × φ (x)]]T ds. (3.9)
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3.3 Choosing a numerical flux

Before the definition of the weak formulation is completed the numerical flux still has to be
chosen. This will act as the representation of E and q at element boundaries. So it is important
that the flux is chosen such that, if E and µ−1

r q are smooth enough, E∗ = E and µ−1
r q∗ = µ−1

r q.
Moreover, to prevent violating (2.1a) or (2.1c) during a time step they should be chosen such
that ∇ · (µ−1

r ∇× E) = 0 everywhere.

3.3.1 Interior penalty flux

With this in mind introduce the numerical fluxes that correspond to the interior penalty (IP)
numerical flux{

E∗ = {{E}} µ−1
r q∗ = {{µ−1

r ∇× E}} − aF [[µ−1
r E]]T for internal faces,

n× E∗ = 0 µ−1
r q∗ = {{µ−1

r ∇× E}} − aF [[µ−1
r E]]T for boundary faces,

where aF can be chosen such that there are no spurious modes and the numerical discretization
is stable. Insert these relations into (3.9) to obtain the space discretization according to the IP
numerical flux

(
−∂J
∂t
, φ

)
Ω

≈
(
µ−1
r ∇h × E,∇h × φ

)
Ω

+

(
εr
∂2E

∂t2
, φ

)
Ω

+
∑
F∈Fbh

(
[[{{µ−1

r ∇× E}} − aF [[µ−1
r E]]T ]]T , {{φ}}

)
F

+
(
[[{{E}} − E]]T , {{µ

−1
r ∇h × φ}}

)
F

+
∑
F∈Fih

∫
F

[[{{µ−1
r ∇× E (t, x)}} − aF [[µ−1

r E (t, x)]]T ]]T · {{φ (x)}}

− [[φ (x)]]T · {{{{µ
−1
r ∇h × E (t, x)}} − aF [[µ−1

r E (t, x)]]T }}
+ [[{{E (t, x)}} − E (t, x)]]T · {{µ

−1
r ∇h × φ (x)}}

− {{{{E (t, x)}} − E (t, x)}} · [[µ−1
r ∇h × φ (x)]]T ds.

Eliminate the double jump and average operators to obtain the weak formulation for the IP-flux

(
−∂J
∂t
, φ

)
Ω

≈
(
µ−1
r ∇h × E,∇h × φ

)
Ω

+

(
εr
∂2E

∂t2
, φ

)
Ω

+
∑
F∈Fih

∫
F

−[[φ (x)]]T · {{µ
−1
r ∇h × E (t, x)}} − [[E (t, x)]]T · {{µ

−1
r ∇h × φ (x)}}

+ aF [[φ (x)]]T · [[µ
−1
r E (t, x)]]T ds−

∑
F∈Fbh

(
[[E]]T , {{µ

−1
r ∇h × φ}}

)
F
. (3.10)

3.3.2 Numerical flux in Brezzi formulation

As an alternative to the IP-flux it is also possible to define the numerical flux as

{
E∗ = {{E}} µ−1

r q∗ = {{µ−1
r q}} − ηF {{µ−1

r RF ([[E]]T )}} for internal faces,

n× E∗ = 0 µ−1
r q∗ = {{µ−1

r q}} − ηF {{µ−1
r RF ([[E]]T )}} for boundary faces,

(3.11)
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where ηF can be related to the number of faces, which ensures that the numerical discretization
is stable. This has the advantage that a stable choice for ηf is easier to choose than a stable
choice for aF , especially for higher order elements. Insert (3.11) into (3.9) to obtain the spatial
discretization according to the Brezzi-flux (remember the definition of q from (3.8)).

(
−∂J
∂t
, φ

)
Ω

≈
(
µ−1
r ∇h × E,∇h × φ

)
Ω

+

(
εr
∂2E

∂t2
, φ

)
Ω

+
∑
F∈Fbh

(
[[{{µ−1

r q}} − ηF {{µ−1
r RF ([[E]]T )}}]]T , {{φ}}

)
F

+
(
[[{{E}} − E]]T , {{µ

−1
r ∇h × φ}}

)
F

+
∑
F∈Fih

∫
F

[[{{µ−1
r ∇h × E (t, x) + µ−1

r R ([[{{E (t, x)}} − E (t, x)]]T )

− µ−1
r L ({{{{E (t, x)}} − E (t, x)}})}} − ηF {{µ−1

r RF ([[E (t, x)]]T )}}]]T · {{φ (x)}}
+ [[φ (x)]]T · {{ηF {{µ

−1
r RF ([[E (t, x)]]T )}} − {{µ−1

r ∇h × E (t, x)

+ µ−1
r R ([[{{E (t, x)}} − E (t, x)]]T )− µ−1

r L ({{{{E (t, x)}} − E (t, x)}})}}}}
+ [[{{E (t, x)}} − E (t, x)]]T · {{µ

−1
r ∇h × φ (x)}}

− {{{{E (t, x)}} − E (t, x)}} · [[µ−1
r ∇h × φ (x)]]T ds,

Again eliminate the double jump and average operators and reorder the terms

(
−∂J
∂t
, φ

)
Ω

≈
(
µ−1
r ∇h × E,∇h × φ

)
Ω

+

(
εr
∂2E

∂t2
, φ

)
Ω

+
∑
F∈Fih

∫
F

−[[E (t, x)]]T · {{µ
−1
r ∇h × φ (x)}} − [[φ (x)]]T · {{µ

−1
r ∇h × E (t, x)}}

+ (nF + ηF )
(
µ−1
r RF ([[φ (x)]]T )

)
· RF ([[E (t, x)]]T ) ds

−
∑
F∈Fbh

(
[[E]]T , {{µ

−1
r ∇h × φ}}

)
F
, (3.12)

where nF is the number of faces per tetrahedron.

3.4 Finite elements

We now introduce the finite element (K,P,N ). Let K be an element in a tessellation of tetra-
hedra Th. For the rest of this section, a tetrahedron K ∈ Th has vertices {v1, v2, v3, v4}, edges
{e12, e13, e14, e23, e24, e34}, such that eij has adjacent vertices vi and vj . The element K has
faces {F1, F2, F3, F4}. Number the faces such that Fi is opposite to vi, eij has tangent vector
τij pointing from i to j and Fi has an outward pointing normal ni. For a graphical overview see
Figure 3.1. Also define the barycentric coordinates as

λi =

{
1, x = vi

0, x ∈ Fi,
,

such that λi is linear. For an easy construction of a hierarchical basis we use Legendre polyno-
mials. For x ∈ [−1, 1] they are recursively defined as follows
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Figure 3.1: Finite element with all vertices, edges and faces marked. The vectors τ12 and n1 are
also drawn.


L0 (x) = 1

L1 (x) = x

Lp (x) =
2p− 1

p
xLp−1 (x)− p− 1

p
Lp−2 (x) p ≥ 2.

Let Pp ⊆ H (curl; Th) be the space of polynomials of order p in R3 and let N be its dual space.

Introduce the following set of hierarchic basis functions of H (curl) conforming finite elements
proposed by Ainsworth and Coyle [2]. We consider the following cases:

edges

• φ0,AB (x) = λA (x)∇λB (x)− λB (x)∇λA (x)

• φ1,AB (x) = −λA (x)∇λB (x)− λB (x)∇λA (x)

• φi,AB (x) = 2i−1
i Li−1 (λB (x)− λA (x))φ1,A,B (x)− i−1

i Li−2 (λB (x)− λA (x))φ0,A,B (x)
2 ≤ i ≤ p

edge based faces

• φi,e,D,AB (x) = λA (x)λB (x)Li (λB (x)− λA (x))∇λC (x) 0 ≤ i ≤ p− 2

faces

• φ0,D,l,m (x) = λA (x)λB (x)λC (x)Ll (λB (x)− λA (x))Lm (λC (x)− λA (x)) (vB − vA)
0 ≤ l ≤ l +m ≤ p− 3
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• φ1,D,l,m (x) = λA (x)λB (x)λC (x)Ll (λB (x)− λA (x))Lm (λC (x)− λA (x)) (vC − vA)
0 ≤ l ≤ l +m ≤ p− 3

face based interior

• φF,D,l,m (x) = λA (x)λB (x)λC (x)Ll (λB (x)− λA (x))Lm (λC (x)− λA (x))∇λD (x)
0 ≤ l ≤ l +m ≤ p− 3

interior

• φK,k,l,m,n (x) =
λ0 (x)λ1 (x)λ2 (x)λ3 (x)Ll (λ1 (x)− λ0 (x))Lm (λ2 (x)− λ0 (x))Ln (λ3 (x)− λ0 (x)) vk
0 ≤ l ≤ l +m ≤ l +m+ n ≤ p− 4

Next, we show that the hierarchic basis based on the H (curl) conforming finite elements of
Ainsworth and Coyle is a basis for Pp. For all x we have

∑
i,A,B

wi,A,Bφi,A,B (x)

+
∑

i,D,AB

wi,e,D,ABφi,e,D,AB (x)

+
∑
D,l,m

(w0,D,l,mφ0,D,l,m (x) + w1,D,l,mφ1,D,l,m (x))

+
∑
D,l,m

wF,D,l,mφF,D,l,m (x)

+
∑

k,l,m,n

wK,k,l,m,nφK,k,l,m,n (x) = 0. (3.13)

Consider the edge AB with A < B. Note that ∇λi · τAB is 1 if i = A or i = B and 0 otherwise.
Also λi is 0 on edge AB unless i = A or i = B. So by restricting (3.13) to the edge AB and
multiplying it with τAB (3.13) turns into

∑
i

wi,A,Bφi,A,B (x)

∣∣∣∣∣
AB

· τAB = 0.

The edge functions are linearly independent hence it follows that wi,A,B = 0. Now consider the
face Fj . We have the relations ∇λj × nj = 0 and λj = 0 on Fj , so restrict (3.13) to Fj and take
the cross product with nj to obtain

∑
i,AB

wi,D,ABφi,D,AB (x)

∣∣∣∣∣∣
Fj

× nj +
∑
l,m

(
w0,D,l,mφ0,D,l,m (x) |Fj + w1,D,l,mφ1,D,l,m (x) |Fj

)
× nj = 0.

The edge based face functions are linearly independent so restrict again to the edge AB to show
that wi,D,AB = 0. It is now easy to see that also w0,D,l,m = 0 and w1,D,l,m = 0.

Now still restrict (3.13) to Fj , but without taking the cross product with nj , to see that∑
l,m

wF,D,l,mφF,D,l,m (x) |Fj = 0,
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and wF,D,l,m = 0. This leaves

∑
k,l,m,n

wK,k,l,m,nφK,k,l,m,n (x) = 0.

The interior bubble functions are also independent, so wK,k,l,m,n = 0. It can be known that

[Pp (K)]3 has dimension (p+1)(p+2)(p+3)
2 . The linearly independent set proposed by Ainsworth

and Coyle is a basis of [Pp (K)]3 with dimension

6 (p+ 1) + 4 ∗ 3 (p− 1) + 4 (p− 1) (p− 2) + 2 (p− 1) (p− 2) +
(p− 1) (p− 2) (p− 3)

2

=
(p+ 1) (p+ 2) (p+ 3)

2
,

so indeed the proposed hierarchic basis is a basis for [Pp (K)]3.

3.5 Discontinuous Galerkin discretization of the Maxwell equa-
tions

Now express, for every element in Th, the unknown field E (t, x) as an expansion into the basis
functions

E (t, x) ≈
Np∑
i=1

Ei (t)φi (x) ∀x ∈ K ∀K ∈ Th. (3.14)

First consider a discretization using the Brezzi-flux. Insert the basis function expansion (3.14)
into (3.12) to get

(
−∂J
∂t
, φj

)
Ω

=

Np∑
i=1

∂2Ei
∂t2

∑
K∈Th

(εrφi, φj)K +

Np∑
i=1

Ei

( ∑
K∈Th

(
µ−1
r ∇× φi,∇× φj

)
K

+
∑
F∈Fih

∫
F

−[[φi (x)]]T · {{∇ × φj (x)}} − {{µ−1
r ∇× φi (x)}} · [[φj (x)]]T

+ (nF + ηF )
(
µ−1
r RF ([[φi (x)]]T )

)
· RF ([[φj (x)]]T ) ds

−
∑
F∈Fbh

(
[[φi]]T , {{µ

−1
r ∇× φj}}

))
j = 1, . . . , Np.

Similarly, for a discretization using the IP-flux, insert the basis function expansion (3.14) into
(3.10) to get
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(
−∂J
∂t
, φj

)
Ω

=

Np∑
i=1

∂2Ei
∂t2

∑
K∈Th

(εrφi, φj)K +

Np∑
i=1

Ei

( ∑
K∈Th

(
µ−1
r ∇× φi,∇× φj

)
K

+
∑
F∈Fh

∫
F

−[[φi (x)]]T · {{∇ × φj (x)}} − {{µ−1
r ∇× φi (x)}} · [[φj (x)]]T

+ aF [[µ−1
r φi (x)]]T · [[φj (x)]]T ds

−
∑
F∈Fbh

(
[[φi]]T , {{µ

−1
r ∇× φj}}

))
j = 1, . . . , Np.

In both cases these relations constitute a system of linear ODEs

M∂2 ~E

∂t2
+ S ~E = ~J, (3.15)

for suitable choices ofM, S and ~J . Equation (3.15) can be solved using any stable and consistent
time-stepping method. Actually doing this is left to the reader as the time-dependent formulation
is not the main concern of this report. (But see the notes on implementation.)

3.6 Periodic boundary conditions

Up to this point everything was derived for homogeneous boundary conditions. However, an
important class of applications, viz. photonic crystals, has an infinite, but periodic, domain. A
periodic domain, in this context, is taken to mean a domain where all given functions are periodic
in every spatial direction. In this case E is also assumed to be periodic and the computational
domain Ω is chosen such that the periods of the parameters and E fit nicely into Ω. On the top
boundary of Ω cell faces are linked to cell faces of the bottom boundary to mimic the periodic
behaviour. The same is done in the other spatial directions.

There are no explicit dependencies on x in the face contributions to S so it is safe to consider
these linked boundary faces as if they are internal faces in the discretization.



Chapter 4

Time-harmonic formulation

For the time-harmonic Maxwell equations the assumption is made that the solution to (2.3) and
the source term are of the form

E (t, x) = e−iωtĒ (x) ,

J (t, x) = e−iωtJ̄ (x) .

This reduces (2.3) to

∇× µ−1
r ∇× Ē − ω2εrĒ = iωJ̄. (4.1)

Notice that the derivation in the previous chapter is independent of the temporal contribution
of E so we can immediately write down the discrete system of equations(

S − ω2M
) ~̄E = ~̄J, (4.2)

Where ~̄J =
{(

iωJ̄, φi
)

Ω

}
and M and S remain unchanged.

4.1 Solving linear systems of equations

For solving linear systems of equations several methods are available. In this section we consider

the general linear problem Ax = b instead of the specific problem
(
S − ω2M

) ~̄E = ~̄J . For sparse
systems of equations we use a Krylov subspace method.

In the Krylov subspace method we construct the matrix Vk =
(
v1, v2, v3, ... , vk

)
,

where vk forms a basis of the Krylov subspace. The goal is then to find stationary values of
(AVky − b)T B (AVky − b) for some matrix B. The choice of B depends on the specific Krylov
method and B will rarely be needed explicitly. This means that a solution yk of

V T
k A

TBAVkyk = V T
k A

TBb (4.3)

has to be found. This is viable because the dimension of this problem is much smaller than
the dimension of the original problem. The dimension k of the Krylov subspace is increased
iteratively until either Ax− b is small enough or some other stopping criterion is reached.

This means a Krylov subspace method can be completely described by a strategy to construct
vk+1 and a choice of B. For this work the minres algorithm was used. In the remainder of this
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section a description of minres will be provided. First, a choice for B will be made and the
strategy to construct vk+1 will be given. Then, it is shown that in the case of minres the vectors
vi are orthonormal. Finally, a construction strategy of xk+1 will be provided that makes use of
the iterative nature and saves a lot of double work. The derivation presented here will be based
on the derivation presented in [24].

Minres is based on the choice B = I, v1 = b
‖b‖ and

βj+1vj+1 = Avj − αjvj − βjvj−1,

where αj = vTj Avj , β1 = ‖b‖, v0 = 0 and βj+1 ≥ 0 is chosen such that ‖vj+1‖ = 1. This
construction guarantees that the vj are normal. Now show the vj are orthogonal with the help
of the inproducts

βj+1vj+1 · vj =vTj Avj − αj ||vj || − βjvj · vj−1 = −βjvj · vj−1,

βj+1vj+1 · vj−1 =vTj Avj−1 − αjvj · vj−1 − βj ||vj−1||
=vTj (βjvj + αj−1vj−1 + βj−1vj−2)− αjvj · vj−1 − βj ||vj−1||
=βj−1vj · vj−2 + (αj−1 − αj) vj · vj−1,

βj+1vj+1 · vj−k =vTj (βj−k+1vj−k+1 + αj−kvj−k + βj−kvj−k−1)

−αjvj · vj−k − βjvj−1 · vj−k, k > 1.

So by induction vj+1 is orthogonal to each of v1, ..., vj . Their construction guarantees that the
vj have unit length. This means they are also orthonormal.

The construction procedure for vj+1 can be rewritten as

Avj = βjvj−1 + αjvj + βj+1vj+1, ∀0 ≤ j ≤ k.

Equivalently, using matrices

AVk = VkTk + βk+1vk+1e
T
k ,

where

Tk =


α1 β2

β2 α2 β3

. . .
. . .

. . .

βk αk

 .

By definition β1v1 = b and thanks to the orthonormality V T
k Vk = Ik, the k by k identity matrix.

With this information the system (4.3) can be rewritten into{
T Tk Tkyk + β2

k+1eke
T
k yk = β1Tke1,

xk = Vkyk.

The matrix T Tk Tkyk + β2
k+1eke

T
k is penta-diagonal and symmetric, so solving this linear system

is easy. Moreover, every iteration only introduces five new entries in the lower right part of
this matrix while leaving the rest of the matrix unchanged. The dense linear system solver is
programmed to make use of this advantage. Knowing xk the residual Axk − b can be computed
to use as a stopping criterion.



DGFEM for photonic crystals 23

An additional advantage of this strategy is that it is known from the time dependent problem
that the operator S−ω2M will not introduce a non-zero divergence into the numerical solution.
The algorithm presented here is based on repeated application of S − ω2M to the right hand
side J , so if J is divergence free the obtained solution will also be divergence free.

4.2 Eigenvalue problem and the k-shifted formulation

If J̄ = 0 in (4.1) then SĒ = ω2MĒ. This is a generalized eigenproblem in ω2. Knowing the
eigenvalues can be advantageous in finding time dependent solutions. The eigenvalues can also
be used to find the band structure of a photonic crystal.

There is, however, one problem with finding this band structure. These computations require
a solution to the periodic formulation. So, necessarily any eigenmode found will fit in the
computational domain chosen to model the real domain. To circumvent this problem drop the
assumption that the periodicity of E fits in the computational domain and instead assume

Ē (x) = eik·xẼ (x) , (4.5)

for some vector k, where Ẽ is periodic such that the period fits in the domain. For a 1D example
where the k-shifted formulation is necessary, see Figure 4.1.

Bloch-Floquet theory is used to analyse equation (4.5). By construction Ω̃ is the fundamental
domain of a Bravais lattice. More specifically there are three linearly independent vectors r1, r2

and r3 that generate the lattice

Λ =


3∑
j=1

ljrj |l1, l2, l3 ∈ Z

 ,

such that R3 =
⋃
a∈Λ

Ω̃ + a, where the shifted domains overlap only at the boundaries. Construct

reciprocal vectors r̂ such that ri · r̂j = 2πδij and the reciprocal lattice

Λ̂ =


3∑
j=1

lj r̂j |l1, l2, l3 ∈ Z

 .

If â ∈ Λ̂ and a ∈ Λ, then â · a = 2nπ, n ∈ Z so

ei(k+â)·xẼ (x) = ei(k·x+â·x+â·a)Ẽ (x) = eik·xeiâ·(x+a)Ẽ (x+ a) .

So k is equivalent to k+ â and (4.5) needs only be solved for the Brillouin zone, the set of all k
closer to the origin than to any other â ∈ Λ.

Before reformulating most of the equations discussed in Chapter 3, define some new operators

∇k × g = (ik +∇)× g = ik × g +∇× g,
∇k · g = (ik +∇) · g = ik · g +∇ · g,
∇kf = (ik +∇) f = ikf +∇f,

for all scalar functions f and all vector functions g. Also, derive a version of Stokes’ theorem
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Figure 4.1: Periodic function with period π, while the domain width is only 1. To accommodate
this function a frequency shift is required.

(∇k × g, φ)Ω =

∫
Ω

(∇k × g (x)) · φ (x) dx

=

∫
Ω

(ik × g (x)) · φ (x) + (∇× g (x)) · φ (x) dx

=

∫
Ω

g (x) · ik × φ (x) + g (x) · ∇ × φ (x) dx+

∫
∂Ω

(n× g (x)) · φ (x) ds

= (g,∇k × φ)Ω + (n× g, φ)∂Ω ,

where the overbar denotes complex conjugation. With these tools in hand we transform the
time-harmonic Maxwell equation into.

0 = ∇× µ−1
r ∇× eik·xẼ (x)− ω2εre

ik·xẼ (x)

= ∇× µ−1
r eik·x∇k × Ẽ (x)− ω2εre

ik·xẼ (x)

= ∇k × µ−1
r ∇k × Ẽ (x)− ω2εrẼ (x) . (4.6)

Next, we introduce the auxiliary variable q


(
∇k × µ−1

r q, φ
)

Ω
= ω2

(
εrẼ, φ

)
Ω(

∇k × Ẽ, π
)

Ω
= (q, π)Ω .

integrate by parts
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∑
K∈Th

(
µ−1
r q,∇k × φ

)
K

+
(
n× µ−1

r q, φ
)
∂K

= ω2
(
εrẼ, φ

)
Ω∑

K∈Th

(
Ẽ,∇k × π

)
K

+
(
n× Ẽ, π

)
∂K

= (q, π)Ω ,

Introduce q∗ and E∗ and integrate by parts again

∑
K∈Th

(
µ−1
r q,∇k × φ

)
K

+
(
n× µ−1

r q∗, φ
)
∂K

= ω2
(
εrẼ, φ

)
Ω∑

K∈Th

(
∇k × Ẽ, π

)
K

+
(
n×

(
Ẽ∗ − Ẽ

)
, π
)
∂K

= (q, π)Ω .

The introduction of k doesn’t change the face contributions, so from here we skip ahead to the
weak formulation. Using a wave vector is only relevant on a periodic domain, so the boundary
faces disappear. The weak formulation then becomes

ω2
(
εrẼ, φ

)
Ω

=
(
∇k,h × Ẽ,∇k,h × φ

)
Ω

+
∑
F∈Fh

∫
F

[[µ−1
r q∗ (x)]]T · {{φ (x)}} − {{µ−1

r q∗ (x)}} · [[φ (x)]]T

+ [[Ẽ∗ (x)− Ẽ (x)]]T · {{∇k × φ (x)}}
− {{Ẽ∗ (x)− Ẽ (x)}} · [[∇k × φ (x)]]T ds.

For the IP-flux use as numerical flux µ−1
R q∗ = {{µ−1

r ∇k × Ẽ}} − aF [[µ−1
r Ẽ]]T and we obtain the

weak formulation

ω2
(
εrẼ, φ

)
Ω

=
(
∇k,h × Ẽ,∇k,h × φ

)
Ω

+
∑
F∈Fh

∫
F

−{{µ−1
r ∇k × Ẽ (x)}} · [[φ (x)]]T − [[Ẽ (x)]]T · {{∇k × φ (x)}}

+ aF [[µ−1
r Ẽ (x)]]T · [[φ (x)]]T ds. (4.10)

For the Brezzi-flux the numerical flux defined in Section 3.3.2 is suitable, resulting in

ω2
(
εrẼ, φ

)
Ω

=
(
∇k,h × Ẽ,∇k,h × φ

)
Ω

+
∑
F∈Fh

∫
F

−{{µ−1
r ∇k × Ẽ (x)}} · [[φ (x)]]T − [[Ẽ (x)]]T · {{∇k × φ (x)}}

+ (nF + ηF )
(
µ−1
r RF

(
[[Ẽ (x)]]T

))
· RF ([[φ (x)]]T ) ds. (4.11)

The hierarchic basisfunctions of Ainsworth and Coyle were chosen for their nice properties in
the H (curl; Th) space. Unfortunately the ∇k operator destroys some of these. To counteract
this effect also apply a shift to the basisfunctions. φ̃ (x) = e−ik·(x−xi)φ (x), where the xi are still
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undefined. Insert the new basisfunctions into the weak formulations (4.10) and (4.11) to obtain
new discretizations with shifted basisfunctions. First for the IP-flux

Np∑
i=1

Eiω
2
(
εrφ̃i, φ̃j

)
Ω

=

Np∑
i=1

Ei

(
∇k,h × φ̃i,∇k,h × φ̃j

)
Ω

+ Ei
∑
F∈Fh

∫
F

−{{µ−1
r ∇k × φ̃i (x)}} · [[φ̃j (x)]]T − [[φ̃i (x)]]T · {{∇k × φ̃j (x)}}

+ aF [[µ−1
r φ̃i (x)]]T · [[φ̃j (x)]]T ds j = 1, . . . , Np.

Extracting the exponents wherever possible then results in

Np∑
i=1

Eie
ik·(xi−xj)ω2 (εrφi, φj)Ω

=

Np∑
i=1

Eie
ik·(xi−xj) (∇h × φi,∇h × φj)Ω

+Eie
ik·(xi−xj)

∑
F∈Fh

∫
F

−{{e−ik·xµ−1
r ∇× φi (x)}} · [[e−ik·xφj (x)]]T

− [[e−ik·xφi (x)]]T · {{e−ik·x∇× φj (x)}}

+ aF [[e−ik·xµ−1
r φi (x)]]T · [[e−ik·xφj (x)]]T ds j = 1, . . . , Np. (4.12)

For the Brezzi-flux we obtain analogously

Np∑
i=1

Eiω
2
(
εrφ̃i, φ̃j

)
Ω

=

Np∑
i=1

Ei

(
∇k,h × φ̃i,∇k,h × φ̃j

)
Ω

+Ei
∑
F∈Fh

∫
F

−{{µ−1
r ∇k × φ̃i (x)}} · [[φ̃j (x)]]T − [[φ̃i (x)]]T · {{∇k × φ̃j (x)}}

+ (nF + ηF )
(
µ−1
r RF

(
[[φ̃i (x)]]T

))
· RF

(
[[φ̃j (x)]]T

)
ds j = 1, . . . , Np.

After extracting the exponents this transforms into
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Np∑
i=1

Eie
ik·(xi−xj)ω2 (εrφi, φj)Ω

=

Np∑
i=1

Eie
ik·(xi−xj) (∇h × φi,∇h × φj)Ω

+Eie
ik·(xi−xj)

∑
F∈Fh

∫
F

−{{e−ik·xµ−1
r ∇× φi (x)}} · [[e−ik·xφj (x)]]T

−[[e−ik·xφi (x)]]T · {{e−ik·x∇× φj (x)}}

+ (nF + ηF )
(
µ−1
r RF

(
[[e−ik·xφi (x)]]T

))
· RF ([[e−ik·xφj (x)]]T ) ds j = 1, . . . , Np. (4.13)

The resulting eigenvalues ω(k) are called the dispersion relation.

4.3 Solving eigenvalue problems

Equations (4.12) and (4.13) represent a generalized eigenvalue problem of the form Skx = λMkx.
In the case of a DGFEM problem, the matrix Mk is block-diagonal and non-singular. Moreover,
in the construction of the Brezzi-flux an explicit inverse of every block is needed. Since an
explicit inverse of Mk is already available and only a block-diagonal matrix, it was chosen to
solve the (standard) eigenvalue problem M−1

k Skx = λx instead. Usually this takes more work,
but the extra work lies in constructing the matrix inverse, which is already known and results
therefore in a faster algorithm.

Again write the eigenvalue problem as Ax = λx and note from Section 4.1 that it is also
possible to write AVky = λVky as an approximate problem in the Krylov subspace. From the
orthonormality of Vk it follows V T

k AVky = Tky = λy. For stability reasons the symmetry of
A is no longer used. This means Tk is no longer tri-diagonal, but extra (small) corrections are
allowed in the orthogonalization process that appear in the upper triangular part of Tk. This
has as a disadvantage that the vj are all required explicitly, so the dimension k of the Krylov
space is limited by memory capacity.

To compensate, some components of Vk that correspond to uninteresting eigenvalues are
dropped. For this the Krylov-Schur method developed by Stewart [29] is used. Stewart slightly
generalises the form AVk = VkTK + βk+1vk+1e

T
k and uses the freedom gained by this general-

isation to move converged eigenvalues to the leftmost columns of T and undesired eigenvalues
to the rightmost columns of T . Moreover, he shows that truncating T and V after this has
been done removes the invariant spaces associated with the undesired eigenvalues from the
eigenvalue-problem, even when V is expanded again by the usual expansion procedure.

This removes the memory bounds on k without reducing the convergence properties of the
procedure so that, in the end only the desired eigenvalues and information about their invariant
spaces are contained in V and T .
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Chapter 5

Density of States and Local Density
of States

In practical situations, instead of measuring the dispersion relation, it is easier to measure the
(local) density of states. This chapter will present a derivation of this measure, and provides
a way to compute it from the eigenvalues and eigenfunctions obtained from the discontinuous
Galerkin finite element solution.

5.1 Derivation of the formulas

The local density of states is given in most physics texts; e.g. [23] as

ρp (x, ω, np) =
6ω

π
nTp Im [G (x, x, ω)]np, (5.1)

where G is the Green’s tensor, np is used to focus on a specific wave polarisation and Im
represents the imaginary part. With the eigenfunctions already available from computing the
dispersion relation, it is natural to construct the Green’s tensor by an eigenfunction expansion.
This quickly gives rise to a naming conflict. Denote by ω the given scalar quantity as used in
(4.1) and denote by (ωn,k, ψn,k) the n-th eigenpair of the k-shifted eigenproblem.

The first goal is to construct the Greens function. For this purpose, we introduce the
expansion of the Greens function in eigenfunctions

G
(
x, x′, ω

)
=

∫
BZ

∑
n

An,k
(
x′, ω

)
⊗ ψn,k (x) dk, (5.2)

where the An,k are the expansion coefficients, ⊗is the tensor product and BZ denotes the
Brillouin Zone. Now use the definition of the Greens function for (4.1)

∇× µ−1
r ∇×G

(
x, x′, ω

)
− ω2εrG

(
x, x′, ω

)
= Iδ3(x− x′), (5.3)

where δ3 (x) is the three-dimensional Dirac delta distribution. Introduce the expansion for the
Greens function given by (5.2) into (5.3)

∫
BZ

∑
n

An,k
(
x′, ω

)
⊗
(
∇× µ−1

r ∇× ψn,k (x)− ω2εrψn,k (x)
)

dk = Iδ3(x− x′), (5.4)
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Re(x)

Im(x)

Figure 5.1: Integrating real functions with singularities is actually complex contour integration.
The dot is the location of a singuarity, the line is the contour of the contour integral.

and use the fact that ψn,k is the solution to the eigenvalue problem (2.5). Substitution in (5.4)
then results in the expression∫

BZ

∑
n

An,k
(
x′, ω

)
⊗
(
ω2
n,k − ω2

)
εrψn,k (x) dk = Iδ3(x− x′).

Now take the L2-inner product with ψ∗n,k and make sure that the eigenfunctions are orthonormal

in the L2 (Ω)- inner product to find

An,k
(
x′, ω

)
=

ψ∗n,k (x′)

(2π)3
(
ω2
n,k − ω2

) .
So the Greens function can be represented as

G
(
x, x′, ω

)
=

1

(2π)3

∫
BZ

∑
n

ψn,k (x′)ψ∗n,k (x)

ω2
n,k − ω2

dk.

The next step is to find the imaginary part of the Greens function. The only factor that can
have an imaginary part is 1

ω2
n,k−ω2 . Whenever ω2 6= ω2

n,k this factor is also real, but from complex

analysis it is known that

ωn,k+ε∫
ωn,k−ε

1

ω2
n,k − ω2

dω =

ωn,k+ε∫
ωn,k−ε

1

(ωn,k − ω) (ωn,k + ω)
dω =

πi

2ωn,k
,

with ε real and sufficiently small. The contour of this complex integral is visualised in Figure
5.1. The only solution is then that the imaginary part forms a Dirac distribution centred at the
pole. A similar expression holds for the other pole, but one is generally only interested in the
positive ω part of the Greens function. With this the local density of states can be rewritten in
terms of the eigenfunctions as

ρp (x, ω, np) =
3

(2π)3

∫
BZ

∑
n

nTp
(
ψn,k (x)ψ∗n,k (x)

)
npδ (ω − ωn,k) dk. (5.5)

If the orientation of an emitter is not fixed, it is possible to average the orientation out of this
expression. In this case the local density of states is
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ρ (x, ω) =
1

(2π)3

∫
BZ

∑
n

|ψn,k (x)|2 δ (ω − ωn,k) dk. (5.6)

For the density of states we also integrate over all positions

ρ (ω) =
1

(2π)3

∫
BZ

∑
n

δ (ω − ωn,k) dk. (5.7)

5.2 Evaluating integrals involving a Dirac distribution

The equations for the (L)DOS given by (5.5), (5.6) and (5.7) all require computing integrals
of the form

∫
BZ

f (k) δ (ω − ω (k)) dk. As a first approximation, we use linear interpolation on a

tessellation of tetrahedra to evaluate this integral. Restrict the integral to an arbitrary tetra-
hedron inside the Brillouin zone and name the corners k0, k1, k2 and k3. Solve the k-shifted
eigenvalue problem to find ωi = ω (ki) and fi = f (ki). Now

ω (k) ≈ ω0 + a · (k − k0) , (5.8)

where

a =
(ω1 − ω0) (k2 − k0)× (k3 − k0)

(k1 − k0) · ((k2 − k0)× (k3 − k0))
+

(ω2 − ω0) (k3 − k0)× (k1 − k0)

(k2 − k0) · ((k3 − k0)× (k1 − k0))

+
(ω3 − ω0) (k1 − k0)× (k2 − k0)

(k3 − k0) · ((k1 − k0)× (k2 − k0))
. (5.9)

Note, (5.9) can be quickly verified by substituting the corners k0, . . . , k3 into (5.8). Because of
linearity there is always a plane kω such that ω (kω) = ω (except in the degenerate case). This
means it is possible to apply a change of coordinates∫

BZ

f (k) δ (ω − ω (k)) dk =

∫
BZ

f (k) δ (kω − k (ω))
1

|∇kω (k)|
dk,

where in the linear case ∇kω = a.

Now find the intersection of the kω-plane and the tetrahedron. Assume ω0 ≤ ω1 ≤ ω2 ≤ ω3.
If this is not the case it is possible to generalise the following formulas, keeping as distinctive
factor the number of corners where ωn,k < ω, but this needlessly complicates the derivation.
Now identify several cases. These cases are also illustrated in Figure 5.2

• If ω < ω0 or ω3 < ω the intersection is empty.

• If ω0 < ω < ω1 the intersection is a triangle with corners ω−ω0
ω1−ω0

k1 + ω1−ω
ω1−ω0

k0, ω−ω0
ω2−ω0

k2 +
ω2−ω
ω2−ω0

k0 and ω−ω0
ω3−ω0

k3 + ω3−ω
ω3−ω0

k0. By applying the midpoint integration rule it can be seen
that
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∫
f (k) δ (ω − ω (k)) dk

≈ 1

6 |a|

3∑
i=1

(ω − ω0) fi + (ωi − ω) f0

ωi − ω0∣∣∣∣((ω − ω0) k2 + (ω2 − ω) k0

ω2 − ω0
− (ω − ω0) k1 + (ω1 − ω) k0

ω1 − ω0

)
×(

(ω − ω0) k3 + (ω3 − ω) k0

ω3 − ω0
− (ω − ω0) k1 + (ω1 − ω) k0

ω1 − ω0

)∣∣∣∣ .
• If ω2 < ω < ω3 the intersection is also a triangle. This time it has corners ω3−ω

ω3−ω0
k0 +

ω−ω0
ω3−ω0

k3, ω3−ω
ω3−ω1

k1 + ω−ω1
ω3−ω1

k3 and ω3−ω
ω3−ω2

k2 + ω−ω2
ω3−ω2

k3. Again apply the midpoint-rule

∫
f (k) δ (ω − ω (k)) dk

≈ 1

6 |a|

2∑
i=0

(ω3 − ω) fi + (ω − ωi) f3

ω3 − ωi∣∣∣∣((ω3 − ω) k1 + (ω − ω1) k3

ω3 − ω1
− (ω3 − ω) k1 + (ω − ω1) k3

ω3 − ω1

)
×(

(ω3 − ω) k2 + (ω − ω2) k3

ω3 − ω2
− (ω3 − ω) k1 + (ω − ω1) k3

ω3 − ω1

)∣∣∣∣ .
• If ω1 < ω < ω2 the intersection is a quadrilateral. It has corners ω−ω0

ω2−ω0
k2 + ω2−ω

ω2−ω0
k0,

ω−ω0
ω3−ω0

k3 + ω3−ω
ω3−ω0

k0, ω−ω1
ω2−ω1

k2 + ω2−ω
ω2−ω1

k1 and ω−ω1
ω3−ω1

k3 + ω3−ω
ω3−ω1

k1. Now cut the quadrilateral
into two triangles and compute the integral on both triangles.
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Figure 5.2: Example tetrahedron and constant ω planes for three different values of ω.
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Chapter 6

Results

The discontinuous Galerkin finite element discretisation has been implemented in the C++ code
DG-Max using hpGEM [30]. PETSc [6] was used to provide a linear system solver and SLEPc
[15] was used as eigenvalue solver. In this chapter a series of tests cases will be presented to
demonstrate that the DG-Max code works correctly.

6.1 Convergence tests

First of all the tests presented in [27] and [12] are repeated as a basic validation of DG-Max.

6.1.1 Homogenous boundary conditions

Before considering periodic domains it is important to know if the problem is solved correctly
for the homogeneous boundary conditions n × E in a homogeneous medium. For this purpose
the initial conditions and the source term are set such that the exact solution is

E (t, x, y, z) =

sin (πy) sin (πz)
sin (πz) sin (πx)
sin (πx) sin (πy)

 cos
(√

2πt
)
,

with domain dimensions 1 × 1 × 1. Due to the nature of the solution the error of the time-
dependent numerical solution fluctuates in time. The simulation is stopped at t = 2.5. Then
the error shown is computed as

max
0<t≤2.5

‖E − Eh‖ .

Based on the works of Houston et al. [17, 8], the expected order of convergence is O
(
hp+1

)
in

the ‖ · ‖L2-norm and O (hp) in the ‖ · ‖DG-norm. For the eigenvalue problem the expected order
of convergence is O

(
h2p
)
. Here h is the diameter of the largest element in the mesh and p the

piece-wise polynomial order of the basis functions used. The eigenvalue solver is set to find the
smallest positive eigenvalues by choosing a target with prior knowledge such that the 24 closest
eigenvalues include at least the smallest positive eigenvalue. Any eigenvalues with value 0 are
manually filtered out. The exact eigenvalues are taken from [27].

It can be seen that the order of convergence is usually as good as expected. There are a few
exceptions. In these cases the solution always is already highly converged and the error close to
machine precision.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 5 1.27152e-0 - 5.23950e-0 -
Nel = 40 6.57174e-1 0.95 2.98154e-0 0.81
Nel = 320 2.03360e-1 1.69 1.09302e-0 1.45
Nel = 2560 5.27515e-2 1.95 4.85793e-1 1.17
Nel = 20480 1.33414e-2 1.98 2.54416e-1 0.93

p=2
Nel = 5 3.83875e-1 - 1.90489e-0 -
Nel = 40 5.53516e-2 2.79 5.40066e-1 1.82
Nel = 320 4.53141e-3 3.61 1.43667e-1 1.91
Nel = 2560 5.68881e-4 2.99 3.61636e-2 1.99

p=3
Nel = 5 1.31993e-1 - 1.04337e-0 -
Nel = 40 4.12030e-3 5.00 1.10527e-1 3.24
Nel = 320 2.63932e-4 3.96 1.46722e-2 2.91
Nel = 2560 1.77995e-5 3.89 1.85421e-3 2.98

p=4
Nel = 5 1.27279e-2 - 1.53443e-1 -
Nel = 40 5.87734e-4 4.44 1.88147e-2 3.03
Nel = 320 1.86281e-5 4.98 1.20593e-3 3.96

p=5
Nel = 5 7.02176e-3 - 9.93113e-2 -
Nel = 40 7.90798e-5 6.47 2.61866e-3 5.25
Nel = 320 DNF - DNF -

Table 6.1: Errors found for time dependent Maxwell calculations using the Brezzi numerical flux
and perfectly conducting boundary conditions together with piecewise polynomial basisfunctions
of order p and Nel elements. The domain has dimensions 1 × 1 × 1. The order of convergence
is also listed. DNF means the computer killed the simulation before it finished.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 5 1.32366e-0 - 5.66014e-0 -
Nel = 40 9.17346e-1 0.53 4.44130e-0 0.35
Nel = 320 2.59439e-1 1.82 1.27989e-0 1.80
Nel = 2560 5.13186e-2 2.34 5.17806e-1 1.31
Nel = 20480 6.35779e-3 3.01 2.47697e-1 1.06

p=2
Nel = 5 6.57622e-1 - 3.23391e-0 -
Nel = 40 6.89208e-2 3.25 6.17225e-1 2.39
Nel = 320 4.41895e-3 3.96 1.46087e-1 2.08
Nel = 2560 4.73919e-4 3.22 3.93327e-2 1.89

p=3
Nel = 5 1.63392e-1 - 1.06601e-0 -
Nel = 40 4.40342e-3 5.21 1.15940e-1 3.20
Nel = 320 2.40996e-4 4.19 1.48420e-2 2.97
Nel = 2560 1.56225e-5 3.95 1.87562e-3 2.98

p=4
Nel = 5 1.50866e-2 - 1.58541e-1 -
Nel = 40 5.10110e-4 4.89 1.81594e-2 3.13
Nel = 320 2.44701e-5 4.38 1.30421e-3 3.80

p=5
Nel = 5 7.18309e-3 - 1.00695e-1 -
Nel = 40 8.31709e-5 6.43 2.73436e-3 5.20
Nel = 320 DNF - DNF -

Table 6.2: Errors found for time dependent Maxwell calculations using the IP numerical flux and
perfectly conducting boundary conditions together with piecewise polynomial basisfunctions of
order p and Nel elements. The domain has dimensions 1 × 1 × 1. The order of convergence is
also listed. DNF means the computer killed the simulation before it finished.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 5 2.59635e-1 - 4.00567e-0 -
Nel = 40 2.46101e-1 0.08 1.84197e-0 1.12
Nel = 320 5.07053e-2 2.28 9.45967e-1 0.96
Nel = 2560 1.18549e-2 2.10 4.75940e-1 0.99
Nel = 20480 2.91011e-3 2.03 2.38232e-1 1.00

p=2
Nel = 5 2.63838e-1 - 1.26906e-0 -
Nel = 40 2.89828e-2 3.19 4.85614e-1 1.39
Nel = 320 3.25228e-3 3.16 1.26697e-1 1.94
Nel = 2560 3.92899e-4 3.05 3.20109e-2 1.98

p=3
Nel = 5 5.40371e-2 - 8.61001e-1 -
Nel = 40 4.28163e-3 3.66 9.62480e-2 3.16
Nel = 320 2.13142e-4 4.33 1.25106e-2 2.94
Nel = 2560 1.86856e-5 3.51 1.57853e-3 2.99

p=4
Nel = 5 2.25090e-2 - 1.07844e-1 -
Nel = 40 5.17862e-4 5.44 1.52262e-2 2.82

p=5
Nel = 5 4.52047e-3 - 8.70284e-2 -

Table 6.3: Errors found for time harmonic Maxwell calculations using the Brezzi numerical flux
and perfectly conducting boundary conditions together with piecewise polynomial basisfunctions
of order p and Nel elements. The domain has dimensions 1 × 1 × 1. The order of convergence
is also listed.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 5 5.17505e-1 - 4.25017e-0 -
Nel = 40 2.90662e-1 0.83 1.94746e-0 1.13
Nel = 320 6.04859e-2 2.26 9.87165e-1 0.98
Nel = 2560 1.15523e-2 2.39 4.82840e-1 1.03
Nel = 20480 1.98266e-3 2.54 2.36082e-1 1.03

p=2
Nel = 5 3.03454e-1 - 1.47002e-0 -
Nel = 40 3.09558e-2 3.29 5.03171e-1 1.55
Nel = 320 3.25404e-3 3.25 1.31052e-1 1.94
Nel = 2560 5.02666e-4 2.69 3.57966e-2 1.87

p=3
Nel = 5 5.82321e-2 - 8.81547e-1 -
Nel = 40 4.34719e-3 3.74 9.86913e-2 3.16
Nel = 320 2.13261e-4 4.35 1.28777e-2 2.94
Nel = 2560 1.05514e-5 1.34 1.65271e-3 2.96

p=4
Nel = 5 2.32344e-2 - 1.20657e-1 -
Nel = 40 5.29809e-4 5.45 1.55773e-2 2.95

p=5
Nel = 5 4.47974e-3 - 8.81404e-2 -

Table 6.4: Errors found for time harmonic Maxwell calculations using the IP numerical flux and
perfectly conducting boundary conditions together with piecewise polynomial basisfunctions of
order p and Nel elements. The domain has dimensions 1 × 1 × 1. The order of convergence is
also listed.
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Eigenvalue
Nel = 5 Nel = 320 Nel = 2560 Nel = 20480

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

2π2 9.9476e-1 - 4.6094e-2 1.82 1.1750e-2 1.97 2.9500e-3 1.99
2π2 9.9476e-1 - 4.6094e-2 1.82 1.1750e-2 1.97 2.9500e-3 1.99
2π2 9.9476e-1 - 4.6094e-2 1.82 1.1750e-2 1.97 2.9500e-3 1.99

3π2 1.4492e-0 - 6.7934e-2 2.39 1.7298e-2 1.97 4.3403e-3 1.99
3π2 1.4492e-0 - 6.7934e-2 2.39 1.7298e-2 1.97 4.3403e-3 1.99

5π2 1.2963e-0 - 1.0883e-1 0.45 2.5891e-2 2.07 7.2114e-3 1.84
5π2 1.2963e-0 - 1.0883e-1 0.45 2.5891e-2 2.07 7.2114e-3 1.84
5π2 1.2963e-0 - 1.0883e-1 0.45 2.5891e-2 2.07 7.2114e-3 1.84
5π2 1.4386e-0 - 1.0883e-1 1.86 2.5891e-2 2.07 7.2114e-3 1.84
5π2 1.4386e-0 - 1.0883e-1 1.86 2.5891e-2 2.07 7.2114e-3 1.84
5π2 1.4386e-0 - 1.0883e-1 1.86 2.5891e-2 2.07 7.2114e-3 1.84

6π2 1.6212e-0 - 1.2708e-1 1.65 3.3645e-2 1.92 8.4942e-3 1.99
6π2 1.6212e-0 - 1.2708e-1 1.65 3.3645e-2 1.92 8.4942e-3 1.99
6π2 1.6212e-0 - 1.2708e-1 1.65 3.3645e-2 1.92 8.4942e-3 1.99
6π2 not found 1.3173e-1 - 3.4426e-2 1.94 8.6713e-3 1.99
6π2 not found 1.3173e-1 - 3.4426e-2 1.94 8.6713e-3 1.99
6π2 not found 1.3173e-1 - 3.4426e-2 1.94 8.6713e-3 1.99

Table 6.5: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenproblem
with perfectly conducting boundary conditions and the Brezzi numerical flux. Piece-wise linear
basisfunctions on Nel elements were used. The domain has dimensions 1 × 1 × 1. For Nel = 5
also some spurious eigenvalues were found, these are not shown. The decision which eigenvalues
are considered spurious was made based on the expected order of convergence of the eigenvalues.
The order of convergence is also shown. Computations were also done on 40 elements, but due
to space limitations these results are not shown.
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Eigenvalue
Nel = 5 Nel = 40 Nel = 320 Nel = 2560

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

2π2 8.6580e-2 - 1.1690e-2 2.89 8.3800e-4 3.80 5.4500e-5 3.94
2π2 8.6580e-2 - 1.1690e-2 2.89 8.3800e-4 3.80 5.4500e-5 3.94
2π2 8.6580e-2 - 1.1690e-2 2.89 8.3800e-4 3.80 5.4500e-5 3.94

3π2 3.3452e-1 - 8.0807e-3 5.37 1.8703e-3 2.11 1.2300e-4 3.93
3π2 3.3452e-1 - 8.0807e-3 5.37 1.8703e-3 2.11 1.2300e-4 3.93

5π2 2.8120e-1 - 3.2992e-2 3.09 4.6606e-3 2.82 3.1580e-4 3.88
5π2 2.8120e-1 - 3.2992e-2 3.09 4.6606e-3 2.82 3.1580e-4 3.88
5π2 2.8120e-1 - 3.2992e-2 3.09 4.6606e-3 2.82 3.1580e-4 3.88
5π2 not found 6.0746e-2 - 4.6606e-3 3.70 3.1580e-4 3.88
5π2 not found 6.0746e-2 - 4.6606e-3 3.70 3.1580e-4 3.88
5π2 not found 6.0746e-2 - not found 3.1580e-4 3.79

6π2 4.8693e-1 - 6.2600e-2 2.96 6.6410e-3 3.24 4.5817e-4 3.86
6π2 4.8693e-1 - 6.2600e-2 2.96 6.6410e-3 3.24 4.5817e-4 3.86
6π2 4.8693e-1 - 6.2600e-2 2.96 6.6410e-3 3.24 4.5817e-4 3.86
6π2 not found 8.1383e-2 - 6.8365e-3 3.57 4.6817e-4 3.87
6π2 not found 8.1383e-2 - 6.8365e-3 3.57 4.6817e-4 3.87
6π2 not found 8.1383e-2 - 6.8365e-3 3.57 4.6817e-4 3.87

Table 6.6: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenprob-
lem with perfectly conducting boundary conditions and the Brezzi numerical flux. Piece-wise
quadratic basisfunctions on Nel elements were used. The domain has dimensions 1× 1× 1. The
order of convergence is also shown.
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Eigenvalue
Nel = 5 Nel = 40 Nel = 320

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

2π2 2.8411e-2 - 4.6700e-4 5.93 8.5000e-5 2.46
2π2 2.8411e-2 - 4.6700e-4 5.93 8.5000e-5 2.46
2π2 2.8411e-2 - 4.6700e-4 5.93 8.5000e-5 2.46

3π2 7.6612e-2 - 2.6157e-3 4.87 2.7333e-4 3.26
3π2 7.6612e-2 - 2.6157e-3 4.87 2.7333e-4 3.26

5π2 5.3142e-2 - 5.3394e-3 3.32 1.1100e-4 5.59
5π2 5.3142e-2 - 5.3394e-3 3.32 1.1100e-4 5.59
5π2 5.3142e-2 - 5.3394e-3 3.32 1.1100e-4 5.59
5π2 1.0647e-1 - 6.0208e-3 4.14 1.1100e-4 5.76
5π2 1.0647e-1 - 6.0208e-3 4.14 1.1100e-4 5.76
5π2 1.0647e-1 - 6.0208e-3 4.14 not found

6π2 1.2742e-1 - 8.8458e-3 3.85 1.9333e-4 5.52
6π2 1.2742e-1 - 8.8458e-3 3.85 1.9333e-4 5.52
6π2 1.2742e-1 - 8.8458e-3 3.85 1.9333e-4 5.52
6π2 2.2783e-1 - 8.9212e-3 4.67 1.9950e-4 5.48
6π2 2.2783e-1 - 8.9212e-3 4.67 1.9950e-4 5.48
6π2 2.2783e-1 - 8.9212e-3 4.67 1.9950e-4 5.48

Table 6.7: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenproblem
with perfectly conducting boundary conditions and the Brezzi numerical flux. Piece-wise cubic
basisfunctions on Nel elements were used. The domain has dimensions 1× 1× 1. The order of
convergence is also shown.

Eigenvalue
Nel = 5 Nel = 40 Nel = 320

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

8π2 1.8003e-1 - 2.5213e-4 9.48 ˜2.5e-7 9.98
8π2 1.9039e-1 - 2.5213e-4 9.56 ˜2.5e-7 9.98
8π2 not found 2.5213e-4 ˜2.5e-7 9.98

9π2 1.9989e-1 - 1.6444e-4 10.25 ˜3e-7 9.10
9π2 2.1590e-1 - 1.6444e-4 10.36 ˜3e-7 9.10
9π2 not found 1.6444e-4 ˜3e-7 9.10
9π2 2.9890e-1 - 3.0589e-4 9.93 ˜3e-7 9.99
9π2 3.0582e-1 - 3.0589e-4 9.97 ˜3e-7 9.99
9π2 not found 3.0589e-4 - not found

Table 6.8: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenproblem
with perfectly conducting boundary conditions and the Brezzi numerical flux. Piece-wise quintic
basisfunctions on Nel elements were used. The domain has dimensions 1× 1× 1. The order of
convergence is also shown. These are not the first 17 eigenvalues. Instead they are hand-picked
such that the required precision to show 10th order convergence is reached without having to
dodge numerical accuracy issues unrelated to the method.
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Eigenvalue
Nel = 40 Nel = 320 Nel = 2560 Nel = 20480

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

2π2 2.3145e-1 - 5.7874e-2 2.00 1.1505e-2 2.33 1.5870e-3 2.86
2π2 2.3145e-1 - 5.7874e-2 2.00 1.1505e-2 2.33 1.5870e-3 2.86
2π2 2.3145e-1 - 5.7874e-2 2.00 1.1505e-2 2.33 1.5870e-3 2.86

3π2 5.4758e-1 - 8.2680e-2 2.73 1.6688e-2 2.31 2.3720e-3 2.81
3π2 5.4758e-1 - 8.2680e-2 2.73 1.6688e-2 2.31 2.3720e-3 2.81

5π2 2.4867e-1 - 1.3602e-1 0.87 2.8019e-2 2.28 4.0442e-3 2.79
5π2 2.4867e-1 - 1.3602e-1 0.87 2.8019e-2 2.28 4.0442e-3 2.79
5π2 2.4867e-1 - 1.3602e-1 0.87 2.8019e-2 2.28 4.0442e-3 2.79
5π2 not found 1.3606e-1 - 2.8032e-2 2.28 4.0444e-3 2.79
5π2 not found 1.3606e-1 - 2.8032e-2 2.28 4.0444e-3 2.79
5π2 not found 1.3606e-1 - 2.8032e-2 2.28 4.0444e-3 2.79

6π2 5.6279e-1 1.45 1.5303e-1 1.88 3.2542e-2 2.23 4.7172e-3 2.79
6π2 5.6279e-1 1.45 1.5303e-1 1.88 3.2542e-2 2.23 4.7172e-3 2.79
6π2 5.6279e-1 1.45 1.5303e-1 1.88 3.2542e-2 2.23 not found
6π2 not found 1.6172e-1 - 3.3157e-2 2.29 4.8417e-3 2.78
6π2 not found 1.6172e-1 - 3.3157e-2 2.29 4.8417e-3 2.78
6π2 not found 1.6172e-1 - 3.3157e-2 2.29 not found

Table 6.9: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenproblem
with perfectly conducting boundary conditions and the IP numerical flux. Piece-wise linear
basisfunctions on Nel elements were used. The domain has dimensions 1× 1× 1. The order of
convergence is also shown.
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Eigenvalue
Nel = 5 Nel = 40 Nel = 320 Nel = 2560

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

2π2 1.4950e-1 - 1.4546e-2 3.36 8.6500e-4 4.07 3.4000e-5 4.67
2π2 1.4950e-1 - 1.4546e-2 3.36 8.6500e-4 4.07 3.4000e-5 4.67
2π2 1.4950e-1 - 1.4546e-2 3.36 8.6500e-4 4.07 3.4000e-5 4.67

3π2 4.5604e-1 - 8.8907e-3 5.68 1.9133e-3 2.22 7.4000e-5 4.69
3π2 4.5604e-1 - 8.8907e-3 5.68 1.9133e-3 2.22 7.4000e-5 4.69

5π2 5.2441e-1 - 4.0556e-2 3.69 4.7756e-3 3.09 1.8800e-4 4.67
5π2 5.2441e-1 - 4.0556e-2 3.69 4.7756e-3 3.09 1.8800e-4 4.67
5π2 5.2441e-1 - 4.0556e-2 3.69 4.7756e-3 3.09 1.8800e-4 4.67
5π2 not found 7.8506e-2 - 4.7760e-3 4.04 1.8860e-4 4.66
5π2 not found 7.8506e-2 - 4.7760e-3 4.04 1.8860e-4 4.66
5π2 not found 7.8506e-2 - 4.7760e-3 4.04 1.8860e-4 4.66

6π2 not found 7.8721e-2 - 6.7672e-3 3.54 2.6467e-4 4.68
6π2 not found 7.8721e-2 - 6.7672e-3 3.54 2.6467e-4 4.68
6π2 not found 7.8721e-2 - 6.7672e-3 3.54 not found
6π2 not found 1.0012e-1 - 6.9013e-3 3.86 2.8817e-4 4.58
6π2 not found 1.0012e-1 - 6.9013e-3 3.86 2.8817e-4 4.58
6π2 not found 1.0012e-1 - 6.9013e-3 3.86 not found

Table 6.10: Exact eigenvalues and relative errors of the computed eigenvalues for the eigen-
problem with perfectly conducting boundary conditions and the IP numerical flux. Piece-wise
quadratic basisfunctions on Nel elements were used. The domain has dimensions 1× 1× 1. The
order of convergence is also shown.
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Eigenvalue
Nel = 5 Nel = 40 Nel = 320

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

2π2 3.4835e-2 - 4.9600e-4 6.13 7.0000e-6 6.15
2π2 3.4835e-2 - 4.9600e-4 6.13 7.0000e-6 6.15
2π2 3.4835e-2 - 4.9600e-4 6.13 7.0000e-6 6.15

3π2 1.0674e-1 - 2.8707e-3 5.22 2.3667e-5 6.92
3π2 1.0674e-1 - 2.8707e-3 5.22 2.3667e-5 6.92

5π2 6.7150e-2 - 5.7590e-3 3.54 9.4200e-5 5.93
5π2 6.7150e-2 - 5.7590e-3 3.54 9.4200e-5 5.93
5π2 6.7150e-2 - 5.7590e-3 3.54 9.4200e-5 5.93
5π2 1.2554e-1 - 6.6128e-3 4.25 9.4400e-5 6.13
5π2 1.2554e-1 - 6.6128e-3 4.25 9.4400e-5 6.13
5π2 1.2554e-1 - 6.6128e-3 4.25 9.4400e-5 6.13

6π2 1.5028e-1 - 9.2027e-3 4.03 1.6400e-4 5.81
6π2 1.5028e-1 - 9.2027e-3 4.03 1.6400e-4 5.81
6π2 1.5028e-1 - 9.2027e-3 4.03 1.6400e-4 5.81
6π2 2.6798e-1 - 9.6335e-3 4.80 1.6667e-4 5.85
6π2 2.6798e-1 - 9.6335e-3 4.80 1.6667e-4 5.85
6π2 2.6798e-1 - 9.6335e-3 4.80 1.6667e-4 5.85

Table 6.11: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenprob-
lem with perfectly conducting boundary conditions and the IP numerical flux. Piece-wise cubic
basisfunctions on Nel elements were used. The domain has dimensions 1× 1× 1. The order of
convergence is also shown.
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Eigenvalue
Nel = 5 Nel = 40

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

2π2 1.0210e-3 - ˜1.4e-5 6.1884
2π2 1.0210e-3 - ˜1.4e-5 6.1884
2π2 1.0210e-3 - ˜1.4e-5 6.1884

3π2 4.7673e-3 - ˜8.3e-6 9.17
3π2 4.7673e-3 - ˜8.3e-6 9.17

5π2 5.0256e-2 - 3.4040e-4 7.21
5π2 5.0256e-2 - 3.4040e-4 7.21
5π2 5.0256e-2 - 3.4040e-4 7.21
5π2 5.7411e-2 - 3.8720e-4 7.21
5π2 5.7411e-2 - 3.8720e-4 7.21
5π2 5.7411e-2 - 3.8720e-4 7.21

6π2 1.0411e-1 - 7.6983e-4 7.07
6π2 1.0411e-1 - 7.6983e-4 7.07
6π2 1.0411e-1 - 7.6983e-4 7.07
6π2 1.1543e-1 - 7.8333e-4 7.20
6π2 1.1543e-1 - 7.8333e-4 7.20
6π2 1.1543e-1 - 7.8333e-4 7.20

Table 6.12: Exact eigenvalues and relative errors of the computed eigenvalues for the eigen-
problem with perfectly conducting boundary conditions and the IP numerical flux. Piece-wise
quartic basisfunctions on Nel elements were used. The domain has dimensions 1 × 1 × 1. The
order of convergence is also shown.

Eigenvalue
Nel = 5 Nel = 40 Nel = 320

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

9π2 2.1343e-1 - 1.7222e-4 10.28 ˜1e-7 10.60
9π2 2.3621e-1 - 1.7222e-4 10.42 ˜1e-7 10.60
9π2 not found 1.7222e-4 - not found
9π2 3.1029e-1 - 3.0511e-4 9.99 ˜2e-7 10.42
9π2 not found 3.0511e-4 - ˜2e-7 10.42
9π2 not found 3.0511e-4 - not found

10π2 2.0607e-1 - 2.3450e-4 9.78 ˜3e-7 9.61
10π2 2.1994e-1 - 2.3450e-4 9.87 ˜3e-7 9.61
10π2 not found
10π2 2.4418e-1 - 2.9030e-4 9.72 ˜3e-7 9.92
10π2 not found 2.9030e-4 ˜3e-7 9.92
10π2 not found

Table 6.13: Exact eigenvalues and relative errors of the computed eigenvalues for the eigen-
problem with perfectly conducting boundary conditions and the IP numerical flux. Piece-wise
quintic basisfunctions on Nel elements were used. The domain has dimensions 1 × 1 × 1. The
order of convergence is also shown.. These are not the first 17 eigenvalues. Instead they are
hand-picked such that the required precision to show 10th order convergence is reached without
having to dodge numerical accuracy issues unrelated to the method.
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In particular for the IP-flux we do not consistently find the correct multiplicity of the eigen-
values. An important factor in this may be that the value used for aF in the IP numerical flux
is only a decent guess instead of a serious attempt at the optimal choice. This strategy was also
used for the Brezzi numerical flux, but the optimal choice for ηF is always between 1 and 2,
making it much harder to guess wrong.

It can be concluded that the DG-Max code works for this target solution. While this is in no
way sufficient to show that the algorithm will always converge, it is at least sufficient to advance
to more complicated test cases. Based on their accuracy the Brezzi numerical flux and the IP
numerical flux show similar performance. The Brezzi numerical flux appears to be slightly more
robust however.

6.1.2 Periodic domain

The next test series was run on a homogeneous periodic domain with a unit domain of size
1× 1× 1. This test series attempts to verify that the boundaries are properly connected. This
means that for this test series k = 0. For the time-harmonic Maxwell equations and the time
dependent Maxwell equations the source term and initial conditions are set such that the exact
solution is

E (t, x, y, z) =

sin (2πy) sin (2πz)
sin (2πz) sin (2πx)
sin (2πx) sin (2πy)

 cos
(

2
√

2πt
)
. (6.1)

Due to the nature of the solutions the error of the time-dependent numerical solution fluctuates
in time. The simulation is stopped at t = 2.5. The error shown is then computed as

max
0<t≤2.5

‖E − Eh‖ .

The expected order of convergence is the same as in the non-periodic case: O
(
hp+1

)
in the

‖ · ‖L2-norm and O (hp) in the ‖ · ‖DG-norm; and O
(
h2p
)

for the eigenvalues. Here h is the
diameter of the largest element and p the piece-wise polynomial order of the basis functions
used. This time most of the results show slightly higher convergence rates than expected. More
tests are needed to check if this is actually the case or if this is some phantom result produced
by the lack of data available. In either case the results presented so far serve as an indication
that the code performs at least as good as expected in the case of periodic boundaries.

These tests reinforce the observation that the IP numerical flux and the Brezzi numerical
flux have similar accuracy performance and that the Brezzi flux is slightly more robust.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 40 1.3422e-0 - 1.1222e+1 -
Nel = 320 1.1953e-0 0.17 1.0664e+1 0.07
Nel = 2560 3.9579e-1 1.59 3.7129e+0 1.52
Nel = 20480 1.0343e-1 1.94 1.1006e+0 1.75

p=2
Nel = 40 7.2591e-1 - 7.0742e-0 -
Nel = 320 1.0404e-1 2.80 1.1444e-0 2.63
Nel = 2560 7.7700e-3 3.74 2.9185e-1 1.97

p=3
Nel = 40 2.4926e-1 - 2.7181e-0 -
Nel = 320 5.1728e-3 5.59 2.3178e-1 3.55
Nel = 2560 DNF - DNF -

p=4
Nel = 40 1.4173e-2 - 3.1003e-1 -
Nel = 320 5.6864e-4 4.64 3.7375e-2 3.05

p=5
Nel = 40 6.74247e-3 - 1.9589e-1 -

Table 6.14: Errors found for time dependent Maxwell calculations using the Brezzi numerical
flux on a periodic domain of size 1×1×1. Piece-wise polynomials of order p on Nel elements were
used. The order of convergence is also shown. DNF means the computer killed the simulation
before it finished.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 40 1.2528e-0 - 1.0707e+1 -
Nel = 320 1.5445e-0 -0.30 1.3612e+1 -0.35
Nel = 2560 4.0748e-1 1.92 3.8362e+0 1.83
Nel = 20480 5.9491e-2 2.78 1.0084e+0 1.93

p=2
Nel = 40 1.1126e-0 - 1.0772e+1 -
Nel = 320 1.1522e-1 3.27 1.1854e+0 3.18
Nel = 2560 5.7437e-3 4.33 2.8806e-1 2.04

p=3
Nel = 40 2.9124e-1 - 3.0617e-0 -
Nel = 320 4.8966e-3 5.89 2.2725e-1 3.75
Nel = 2560 DNF - DNF -

p=4
Nel = 40 1.3780e-2 - 3.2157e-1 -
Nel = 320 5.5115e-4 4.64 3.5923e-2 3.16

Table 6.15: Errors found for time dependent Maxwell calculations using the IP numerical flux
on a periodic domain of size 1× 1× 1. Piece-wise polynomials of order p on Nel elements were
used. The order of convergence is also shown. DNF means the computer killed the simulation
before it finished.

‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 40 2.8315e-1 - 8.0153e-0 -
Nel = 320 7.8529e-1 -1.47 3.7502e-0 1.10
Nel = 2560 1.1001e-1 2.84 1.9003e-0 0.98
Nel = 20480 1.7225e-2 2.68 9.582e-1 0.99

p=2
Nel = 40 8.7998e-1 - 2.6397e-0 -
Nel = 320 7.5250e-2 3.55 9.7377e-1 1.44
Nel = 2560 5.6153e-3 3.74 2.5441e-1 1.94

p=3
Nel = 40 9.3049e-2 - 1.7236e-0 -
Nel = 320 1.2637e-2 2.88 1.9311e-1 3.16
Nel = 2560 4.4256e-4 4.84 2.5070e-2 2.95

p=4
Nel = 40 8.4310e-2 - 2.2745e-1 -
Nel = 320 1.3479e-3 5.97 3.0483e-2 2.90

Table 6.16: Errors found for time harmonic Maxwell calculations using the Brezzi numerical flux
on a periodic domain of size 1× 1× 1. Piece-wise polynomials of order p on Nel elements were
used. The order of convergence is also shown. DNF means the computer killed the simulation
before it finished.
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‖E − Eh‖0 Order ‖E − Eh‖DG Order

p=1
Nel = 40 5.1160e-1 - 8.4678e-0 -
Nel = 320 7.9627e-1 -0.64 3.9248e-0 1.11
Nel = 2560 1.1043e-1 2.85 1.9392e-0 1.02
Nel = 20480 1.5009e-2 2.88 9.4445e-1 1.04

p=2
Nel = 40 8.9083e-1 - 3.0143e-0 -
Nel = 320 7.5562e-2 3.56 1.0087e-0 1.58
Nel = 2560 5.4341e-3 3.80 2.6719e-1 1.92

p=3
Nel = 40 9.4585e-2 - 1.7625e-0 -
Nel = 320 1.2576e-2 2.91 1.9849e-1 3.15
Nel = 2560 4.3435e-4 4.86 3.0089e-2 2.72

p=4
Nel = 40 8.4366e-2 - 2.4471e-1 -
Nel = 320 1.2395e-3 6.09 3.2284e-2 2.92

Table 6.17: Errors found for time harmonic Maxwell calculations using the IP numerical flux
on a periodic domain of size 1× 1× 1. Piece-wise polynomials of order p on Nel elements were
used. The order of convergence is also shown. DNF means the computer killed the simulation
before it finished.

Eigenvalue
Nel = 40 Nel = 320 Nel = 2560 Nel = 20480

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

4π2 2.0149e-1 - 1.0714e-1 0.91 2.2171e-2 2.27 3.4558e-3 2.68
4π2 2.0149e-1 - 1.0714e-1 0.91 2.2171e-2 2.27 3.4558e-3 2.68
4π2 2.0149e-1 - 1.0714e-1 0.91 2.2171e-2 2.27 3.4558e-3 2.68
4π2 2.0149e-1 - 1.0714e-1 0.91 2.2171e-2 2.27 3.4558e-3 2.68
4π2 2.0149e-1 - 1.0714e-1 0.91 2.2171e-2 2.27 3.4558e-3 2.68
4π2 2.0149e-1 - not found not found 3.4558e-3 1.96
4π2 5.6008e-1 - 1.0714e-1 2.39 2.2717e-2 2.27 3.4558e-3 2.68
4π2 5.6008e-1 - 1.0714e-1 2.39 2.2717e-2 2.27 3.4558e-3 2.68
4π2 5.6008e-1 - 1.0714e-1 2.39 2.2717e-2 2.27 3.4558e-3 2.68
4π2 5.6008e-1 - 1.0714e-1 2.39 2.2717e-2 2.27 3.4558e-3 2.68
4π2 5.6008e-1 - 1.0714e-1 2.39 2.2717e-2 2.27 3.4558e-3 2.68
4π2 5.6008e-1 - not found not found 3.4558e-3 2.45

Table 6.18: Exact eigenvalues and relative errors of the computed eigenvalues for the eigen-
problem on a periodic domain of size 1 × 1 × 1 using the IP numerical flux. Piece-wise linear
basisfunctions on Nel elements were used. The order of convergence is also shown.
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Eigenvalue
Nel = 40 Nel = 320 Nel = 2560

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

4π2 1.1100e-2 - 2.9715e-3 1.90 1.1850e-4 4.65
4π2 1.1100e-2 - 2.9715e-3 1.90 1.1850e-4 4.65
4π2 1.1100e-2 - 2.9715e-3 1.90 1.1850e-4 4.65
4π2 1.1100e-2 - 2.9715e-3 1.90 1.1850e-4 4.65
4π2 1.1100e-2 - 2.9715e-3 1.90 1.1850e-4 4.65
4π2 1.1100e-2 - 2.9715e-3 1.90 not found
4π2 8.5554e-2 - 2.9715e-3 4.85 1.1850e-4 4.65
4π2 8.5554e-2 - 2.9715e-3 4.85 1.1850e-4 4.65
4π2 8.5554e-2 - 2.9715e-3 4.85 1.1850e-4 4.65
4π2 8.5554e-2 - 2.9715e-3 4.85 1.1850e-4 4.65
4π2 8.5554e-2 - 2.9715e-3 4.85 1.1850e-4 4.65
4π2 8.5554e-2 - not found not found

Table 6.19: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenprob-
lem on a periodic domain of size 1 × 1 × 1 using the IP numerical flux. Piece-wise quadratic
basisfunctions on Nel elements were used. The order of convergence is also shown.

Eigenvalue
Nel = 40 Nel = 320 Nel = 2560

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

4π2 4.8825e-4 - 4.5000e-5 3.44 ˜5e-7 6.49
4π2 4.8825e-4 - 4.5000e-5 3.44 ˜5e-7 6.49
4π2 4.8825e-4 - 4.5000e-5 3.44 ˜5e-7 6.49
4π2 4.8825e-4 - 4.5000e-5 3.44 ˜5e-7 6.49
4π2 4.8825e-4 - 4.5000e-5 3.44 ˜5e-7 6.49
4π2 4.8825e-4 - 4.5000e-5 3.44 ˜5e-7 6.49
4π2 5.1875e-3 - 4.5000e-5 6.85 ˜5e-7 6.49
4π2 5.1875e-3 - 4.5000e-5 6.85 ˜5e-7 6.49
4π2 5.1875e-3 - 4.5000e-5 6.85 ˜5e-7 6.49
4π2 5.1875e-3 - 4.5000e-5 6.85 ˜5e-7 6.49
4π2 5.1875e-3 - 4.5000e-5 6.85 ˜5e-7 6.49
4π2 5.1875e-3 - 4.5000e-5 6.85 ˜5e-7 6.49

Table 6.20: Exact eigenvalues and relative errors of the computed eigenvalues for the eigen-
problem on a periodic domain of size 1 × 1 × 1 using the IP numerical flux. Piece-wise cubic
basisfunctions on Nel elements were used. The order of convergence is also shown.
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Eigenvalue
Nel = 40 Nel = 320

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

4π2 ˜1.05e-5 - ˜2.5e-7 5.39
4π2 ˜1.05e-5 - ˜2.5e-7 5.39
4π2 ˜1.05e-5 - ˜2.5e-7 5.39
4π2 ˜1.05e-5 - ˜2.5e-7 5.39
4π2 ˜1.05e-5 - ˜2.5e-7 5.39
4π2 ˜1.05e-5 - ˜2.5e-7 5.39
4π2 ˜2.00e-4 - ˜2.5e-7 9.64
4π2 ˜2.00e-4 - ˜2.5e-7 9.64
4π2 ˜2.00e-4 - ˜2.5e-7 9.64
4π2 ˜2.00e-4 - ˜2.5e-7 9.64
4π2 ˜2.00e-4 - ˜2.5e-7 9.64
4π2 ˜2.00e-4 - ˜2.5e-7 9.64

Table 6.21: Exact eigenvalues and relative errors of the computed eigenvalues for the eigen-
problem on a periodic domain of size 1× 1× 1 using the IP numerical flux. Piece-wise quartic
basisfunctions on Nel elements were used. The order of convergence is also shown.

Eigenvalue
Nel = 40 Nel = 320 Nel = 2560 Nel = 20480

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

4π2 1.8443e-1 - 8.6770e-2 1.09 2.2168e-2 1.97 5.5603e-3 2.00
4π2 1.8443e-1 - 8.6770e-2 1.09 2.2168e-2 1.97 5.5603e-3 2.00
4π2 1.8443e-1 - 8.6770e-2 1.09 2.2168e-2 1.97 5.5603e-3 2.00
4π2 1.8443e-1 - 8.6770e-2 1.09 2.2168e-2 1.97 5.5603e-3 2.00
4π2 1.8443e-1 - 8.6770e-2 1.09 2.2168e-2 1.97 5.5603e-3 2.00
4π2 1.8443e-1 - 8.6770e-2 1.09 2.2168e-2 1.97 5.5603e-3 2.00
4π2 3.6352e-1 - 8.6770e-2 2.07 2.2168e-2 1.97 5.5603e-3 2.00
4π2 3.6352e-1 - 8.6770e-2 2.07 2.2168e-2 1.97 5.5603e-3 2.00
4π2 3.6352e-1 - 8.6770e-2 2.07 2.2168e-2 1.97 5.5603e-3 2.00
4π2 3.6352e-1 - 8.6770e-2 2.07 2.2168e-2 1.97 5.5603e-3 2.00
4π2 3.6352e-1 - 8.6770e-2 2.07 2.2168e-2 1.97 not found
4π2 3.6352e-1 - not found not found not found

Table 6.22: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenprob-
lem on a periodic domain of size 1 × 1 × 1 using the Brezzi numerical flux. Piece-wise linear
basisfunctions on Nel elements were used. The order of convergence is also shown.
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Eigenvalue
Nel = 40 Nel = 320 Nel = 2560

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order ‖λ−λh‖
λ Order

4π2 9.5790e-3 - 2.7493e-3 1.80 1.8225e-4 3.92
4π2 9.5790e-3 - 2.7493e-3 1.80 1.8225e-4 3.92
4π2 9.5790e-3 - 2.7493e-3 1.80 1.8225e-4 3.92
4π2 9.5790e-3 - 2.7493e-3 1.80 1.8225e-4 3.92
4π2 9.5790e-3 - 2.7493e-3 1.80 1.8225e-4 3.92
4π2 9.5790e-3 - 2.7493e-3 1.80 1.8225e-4 3.92
4π2 6.7044e-2 - 2.7493e-3 4.61 1.8225e-4 3.92
4π2 6.7044e-2 - 2.7493e-3 4.61 1.8225e-4 3.92
4π2 6.7044e-2 - 2.7493e-3 4.61 1.8225e-4 3.92
4π2 6.7044e-2 - 2.7493e-3 4.61 1.8225e-4 3.92
4π2 6.7044e-2 - 2.7493e-3 4.61 1.8225e-4 3.92
4π2 6.7044e-2 - 2.7493e-3 4.61 1.8225e-4 3.92

Table 6.23: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenprob-
lem on a periodic domain of size 1× 1× 1 using the Brezzi numerical flux. Piece-wise quadratic
basisfunctions on Nel elements were used. The order of convergence is also shown.

Eigenvalue
Nel = 40 Nel = 320

‖λ−λh‖
λ Order ‖λ−λh‖

λ Order

4π2 4.6575e-4 - ˜4.7e-5 3.31
4π2 4.6575e-4 - ˜4.7e-5 3.31
4π2 4.6575e-4 - ˜4.7e-5 3.31
4π2 4.6575e-4 - ˜4.7e-5 3.31
4π2 4.6575e-4 - ˜4.7e-5 3.31
4π2 4.6575e-4 - ˜4.7e-5 3.31
4π2 4.3643e-3 - ˜4.7e-5 6.54
4π2 4.3643e-3 - ˜4.7e-5 6.54
4π2 4.3643e-3 - ˜4.7e-5 6.54
4π2 4.3643e-3 - ˜4.7e-5 6.54
4π2 4.3643e-3 - ˜4.7e-5 6.54
4π2 4.3643e-3 - ˜4.7e-5 6.54

Table 6.24: Exact eigenvalues and relative errors of the computed eigenvalues for the eigenprob-
lem on a periodic domain of size 1 × 1 × 1 using the Brezzi numerical flux. Piece-wise cubic
basisfunctions on Nel elements were used. The order of convergence is also shown.
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6.2 Wave-vector

The next test is to check if the DG-Max code works for all choices of k. The easiest test is a cube
where εr is constant, modelling a homogeneous medium. In this case a subset of the possible
eigenmodes can be computed exactly. Assume Ẽ is constant and orthogonal to k. In this case
(4.6) can be reduced to

ik × ik × Ẽ = ω2Ẽ.

So ‖k‖2 = ω2. From this relation Bloch-Floquet theory can be used to show that at least
‖k + 2πl‖ = ω2 ∀l ∈ Z3 are eigenvalues of (4.6). In [18] it is shown for the unbounded
homogeneous case that ‖k‖2 = ω2 are the only eigenvalues, but their translation argument
breaks in the case of infinite repetitions of a bounded domain. This makes it all the more
important to check that there are no spurious modes introduced by the boundary.

Figure 6.1 shows that all eigenvalues are found and that no spurious eigenvalues are found.
This shows that the DG-Max code handles the wave-vector correctly.

6.3 Variable εr

The next goal is to be able to perform simulations for cases where εr is only piece-wise constant.
There are some results on how the band structure should look like available in [18] and [7].
Three of these results are tested using DG-Max. They have in common that their symmetry
properties are such that in three dimensions the cube is the most intuitive unit cell.

The first domain consists of an alternating stack of two different materials of thicknes d1 and
d2 = 1 − d1. Figure 6.3 shows the band structure for a stack where d1 = d2 = 0.5, ε1 = 1 and
ε2 = 13. This domain is such that the interface between ε1 and ε2 is smooth and it is easy to
model with the default grid generation strategy.

The second domain consists of a square lattice of square columns. The columns have width
w1. Boffi [7] documents the case with w1 = 0.4, εcolumn = 1 and εbulk = 8.9 (alumina for the
desired frequency ranges). This domain can also be modelled by the default grid, but it has
sharp corners where singularities may appear.

The third domain consists of a square lattice of cylinders. The cylinders have radius r1.
Joanopoulos [18] documents the case with r1 = 0.2, εcolumn = 8.9 and εbulk = 1. This domain
again features a smooth bi-material interface, but it requires a grid specially designed to have
element boundaries at the bi-material interface.

In all cases the unit domain is chosen such that the symmetry properties of the domain are
optimised, so the centres of the cylinders are in the centre of the unit cell and for the alternating
stack the zone with high permittivity is split into two zones, each with width d2/2 on opposite
ends of the domain.

Figures 6.3 and 6.4 compare the DGFEM results for the multilayer stack with established
numerical results. Figure 6.4 is generated using MPB [18]. Figure 6.3 is made using DG-Max. A
small quantitative difference can be seen for higher frequency modes. This is likely because the
finite element solution is not sufficiently converged yet. Other than this the two computational
results match well.

For the case of the square columns it should be noted that the reported domain configurations
do not match the domain configurations used for the creation of the shown data (it is expected
that the graph shown in [7] is constructed using w1 = 0.8). For the purpose of comparison
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Figure 6.1: First few eigenfrequencies of vacuum in a periodic cube as a function of the wavevec-
tor. Computed using the Brezzi numerical flux on 320 quadratic elements. Also plotted are the
predicted eigenvalues based on the guess that Ẽ is constant and orthogonal to k.
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Figure 6.2: Mesh used for computations of the square grid of square columns. For clarity, bold
lines were used in the region of lower dielectric permittivity. The three cutting plains show the
mesh at the bottom of a layer (botton), at the middle of a layer (middle) and at the top of a
layer (top). These layers are rotated and stacked to fill the domain using a total of 10 layers.
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Figure 6.3: First few eigenfrequencies of a multi-layer stack. Computed using the IP numerical
flux on a mesh with 320 cubic elements. A unit domain in the periodic medium is also presented.
The grey area has a dielectric permittivity of 13. The white area has a dielectric permittivity
of 1.



58 F. Brink

25 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

X M RΓ

Figure 6.4: First few eigenfrequencies of a multi-layer stack. Reference picture computed with
MPB using default settings. This picture is meant to display solutions of the same problem as
the one described in Figure 6.3.
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Figure 6.5: Dispersion relation computed using MPB that matches the parameters given in Boffi
et al. [7]. Note that the distinction between TE and TM modes was dropped as it is not relevant
for comparison purposes.
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Figure 6.6: First few eigenfrequencies of a square grid of square columns. Computed using the
Brezzi numerical flux on a mesh with 5000 linear elements. A unit domain in the periodic medium
is also presented. The grey area has a dielectric permittivity of 8.9. The white, transparent area
has a dielectric permittivity of 1.
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Figure 6.7: One of the eigenfunctions of the square grid of square columns. This is only one com-
ponent of the eigenfunction. The full eigenfunction is of the form (E0 (x, y, z) , E0 (y, x, z) , 0)T .
The solution is constant in the z-direction.
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Figure 6.8: One of the eigenfunctions of the square grid of square columns. This is only one
component of the eigenfunction. The full eigenfunction is of the form (0, 0, E2 (x, y, z))T . The
solution is constant in the z-direction.
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the numerical data were recreated using MPB. This comparison is in excellent agreement with
the numerical data presented in Figure 6.6. Some extra pictures are included to show a few
eigenfunctions at the point Γ.

For the case with the cylinder a mesh was generated using the commercial external tools
Rhinoceros [14] and Centaur [1]. It turns out that solving the full eigenvalue-problem to find
the dispersion relation is too time-consuming with the available software implementation on the
current hardware. Finding one harmonic response is much faster so a picture of a harmonic
response is included to give an idea how the solutions on this domain look like.

From the results obtained so far no discrepancies with reference solutions were found, so it can
be concluded that the DG-Max code works satisfactory, but is slow for the cases considered so far.
More thorough testing should to done before DG-Max can be trusted to work on unstructured
grids, but on structured grids it is reasonably safe to assume it works satisfactory.



64 F. Brink

X
Y

Z

E1

1.8

1.2

0.6

0

0.6

1.2

1.8

Figure 6.9: One component of the harmonic response with the source iωJ given by (6.1) of a
domain with a cylinder of radius r1 = 0.25. The simulation was done using 3257 linear elements.
The cylinder was drawn with a radial plane to emphasize its 3 dimensional nature. The solution
is harmonic in the x-direction. The planes drawn show the extremes of the solution.
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Figure 6.10: Mesh used for computations of the grid of cylinders. For clarity, bold lines were
used in the region of higher dielectric permittivity. The mesh is unstructured.
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6.4 LDOS

As a first test some simulations were performed with the goal of computing the (L)DOS of the
uniform periodic domain. This domain models an infinite uniform medium. This means the
domain and the solution should be completely invariant under translations or rotations and
the expressions nTp (ψψ∗)np and |ψ|2 both reduce to constants. The domain of the integral∫
δ(ω − ωn,k) dk then can be reduced to the surface area of a sphere with radius ω. So ρ ∝ ω2.

For the purposes of finding the LDOS the eigenvalue solver is set to target the smallest positive
eigenvalues using the standard strategy. The two physical constant solutions are manually added.

These simulations appear to show a converging behaviour towards a homogeneous quadratic
polynomial. This polynomial is not the exact solution, however. This is caused by a very heavy
reliance on having found all the eigenmodes in the spectral interval of interest. As shown in
earlier tables the eigenvalues solver currently in use occasionally underestimates the multiplicity
of some eigenvalues by 1 or 2. This effect usually disappears when sufficient elements are used
and every physical eigenvalue is always found at least once, so it is not considered to be a very
large problem when computing the dispersion relation. For the (L)DOS, however, if even one or
two eigenvalues are missing, this breaks the numbering of the ωn,k for some k-points, introducing
a large error term that is not representative for the error of the LDOS computation.
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Figure 6.11: Density of states (DOS) with Nel elements and linear basis functions in a uniform
periodic domain using 165 k-points. The graph converges to a slight overestimation of the DOS.
This is probably caused by the missing eigenvalues.
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Figure 6.12: Local densitiy of states (LDOS) at three arbitrary locations a, b and c inside the
unit domain. Piecewise linear basis functions on 320 elements and 165 k-points were used. The
position averaged LDOS (actually the DOS) is also presented. The convergence of the LDOS
is necessarily worse than the convergence of the DOS since the LDOS not only depends on the
eigenvalues, but also on the eigenfunctions.
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Figure 6.13: DOS with 320 cubic elements in a uniform periodic domain. Each increment in the
number of k-points doubles the number of intervals in every cardinal direction.
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Chapter 7

Notes on implementation

The previous chapters present, from a mathematical point of view, a complete description of
the steps that need to be taken to solve the Maxwell equations numerically with a discontinuous
Galerkin finite element method. When attempting to implement the algorithms described above
it turns out there are some essential details hidden in the formulations. This chapter serves to
highlight those details and to present strategies for dealing with them.

7.1 Quadrature

In order to evaluate integrals numerically one needs a quadrature rule. That is, a rule of the
form

∫
K

f (ξ) dξ ≈
N∑
i=1

wif (xi) ,

where N is the number of mantissa used. It is possible to construct this approximation to be
exact up to polynomial order p by taking N sufficiently large and using basis functions in Pp(K)
that are of sufficiently high polynomial order. For example take f(x) ∈ {1, x, y, z, xy, . . . , zp},
then solve the resulting system against wi and xi. This is not easy, but has already been
extensively done. See for an overview [10, 11].

Since the basis functions appear quadratically in the weak formulation the quadrature rule
should be exact up to at least a polynomial order of 2p. It turns out that quadrature rules for
odd polynomial order are better known, so we use a quadrature rule that is exact up to order
2p+ 1. This has the added benefit that this extra accuracy gives a better approximation of the
error when an exact solution is known, especially for the time-dependent case near t = 0. In
the DG-Max code f is evaluated for an entire element matrix in one go at every mantissa. The
weights and additions are then applied using vectorised routines.
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7.2 Basisfunctions

The basisfunctions themselves can be implemented as they are presented. Their curl needs, how-
ever, an application of the chain rule. The following relations were used in the implementation

L′p =


0 p = 0,

1 p = 1,

2p− 1

p

(
Lp−1 + xL′p−1

)
− p− 1

p
L′p−2 p ≥ 2,

φ′p,AB =



∇λB ×∇λA p = 0,

0 p = 1,

2p− 1

p
L′p−1 (λB − λA)∇ (λB − λA)× φ1,AB

−p− 1

p
L′p−2 (λB − λA)∇ (λB − λA)× φ0,AB p ≥ 2,

−p− 1

p
Lp−2 (λB − λA)∇λB ×∇λA

φ′p,e,D,AB =
(
λBLp (λB − λA)− λAλBL′p (λB − λA)

)
∇λA ×∇λC

+
(
λALp (λB − λA) + λAλBL

′
p (λB − λA)

)
∇λB ×∇λC ,

φ′0,D,l,m = (λBλCLl (λB − λA)Lm (λC − λA)− λAλBλCL′l (λB − λA)Lm (λC − λA)

− λAλBλCLl (λB − λA)L′m (λC − λA))∇λA × (vB − vA)

+ (λAλCLl (λB − λA)Lm (λC − λA) + λAλBλCL
′
l (λB − λA)Lm (λC − λA))∇λB × (vB − vA)

+ (λAλBLl (λB − λA)Lm (λC − λA) + λAλBλCLl (λB − λA)L′m (λC − λA))∇λC × (vB − vA) ,

φ′1,D,l,m = (λBλCLl (λB − λA)Lm (λC − λA)− λAλBλCL′l (λB − λA)Lm (λC − λA)

− λAλBλCLl (λB − λA)L′m (λC − λA))∇λA × (vC − vA)

+ (λAλCLl (λB − λA)Lm (λC − λA) + λAλBλCL
′
l (λB − λA)Lm (λC − λA))∇λB × (vC − vA)

+ (λAλBLl (λB − λA)Lm (λC − λA) + λAλBλCLl (λB − λA)L′m (λC − λA))∇λC × (vC − vA) ,

φ′F,D,l,m = (λBλCLl (λB − λA)Lm (λC − λA)− λAλBλCL′l (λB − λA)Lm (λC − λA)

− λAλBλCLl (λB − λA)L′m (λC − λA))∇λA ×∇λD
+ (λAλCLl (λB − λA)Lm (λC − λA) + λAλBλCL

′
l (λB − λA)Lm (λC − λA))∇λB ×∇λD

+ (λAλBLl (λB − λA)Lm (λC − λA) + λAλBλCLl (λB − λA)L′m (λC − λA))∇λC ×∇λD,
φ′K,k,l,m,n = (λ1λ2λ3Ll (λ1 − λ0)Lm (λ2 − λ0)Ln (λ3 − λ0)

−λ0λ1λ2λ3L′l (λ1 − λ0)Lm (λ2 − λ0)Ln (λ3 − λ0)

−λ0λ1λ2λ3Ll (λ1 − λ0)L′m (λ2 − λ0)Ln (λ3 − λ0)

− λ0λ1λ2λ3Ll (λ1 − λ0)Lm (λ2 − λ0)L′n (λ3 − λ0))∇λ0 × vk
+ (λ0λ2λ3Ll (λ1 − λ0)Lm (λ2 − λ0)Ln (λ3 − λ0)

+ λ0λ1λ2λ3L
′
l (λ1 − λ0)Lm (λ2 − λ0)Ln (λ3 − λ0))∇λ1 × vk

+ (λ0λ1λ3Ll (λ1 − λ0)Lm (λ2 − λ0)Ln (λ3 − λ0)

+ λ0λ1λ2λ3Ll (λ1 − λ0)L′m (λ2 − λ0)Ln (λ3 − λ0))∇λ2 × vk
+ (λ0λ1λ2Ll (λ1 − λ0)Lm (λ2 − λ0)Ln (λ3 − λ0)

+ λ0λ1λ2λ3Ll (λ1 − λ0)Lm (λ2 − λ0)L′n (λ3 − λ0))∇λ3 × vk,

where functions of x have lost their explicit x dependance to save space and, for vector valued
functions, ·′ = ∇× · is used to denote the curl.
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7.3 Weak formulation

The semi-discrete formulations presented in this report are still a bit too complicated for direct
implementation. To help alleviate this problem the equations were split into several terms that
add up to the full equations. First of all consider the elements (or faces) one by one and remove
the basisfunctions that are zero on that element from the summation over i. This will lead
to several much smaller matrices, the element matrices, that will still add up to the full linear
system.

For the mass matrix M there is only one term in the bilinear form: (εrφi, φj)K , which can
be straightforwardly computed with the available quadrature rules.

Next, for the element contributions to the stiffness matrix S there is also only one term:
(∇× φi,∇× φj)K . While this term is not quite as easy as the contribution to the mass matrix
it does not present any serious problems.

Now only the face contributions to the stiffness matrix are left. It pays to split these into a
part that is common to both the IP-flux and the Brezzi-flux and a part that is unique to only
one of them. The common part is

∫
F

−[[φi (x)]]T · {{∇ × φj (x)}} − {{∇ × φi (x)}} · [[φj (x)]]T ds

=

∫
F

−1

2

(
nL × φLi + nR × φRi

)
·
(
∇× φLj +∇× φRj

)
− 1

2

(
nL × φLj + nR × φRj

)
·
(
∇× φLi +∇× φRi

)
ds.

At most one of φL and φR will be nonzero for any i or j so remove the zero contributions and
put the rest in a block structured matrix that looks like(

SLL SLR

SRL SRR

)
,

whose entries can be computed as

SLLij =

∫
F

−1

2

((
n× φLi

)
·
(
∇× φLj

)
+
(
n× φLj

)
·
(
∇× φLi

))
ds

SRLij =

∫
F

−1

2

((
−n× φRi

)
·
(
∇× φLj

)
+
(
n× φLj

)
·
(
∇× φRi

))
ds

SLRij =

∫
F

−1

2

((
n× φLi

)
·
(
∇× φRj

)
+
(
−n× φRj

)
·
(
∇× φLi

))
ds

SRRij =

∫
F

−1

2

((
−n× φRi

)
·
(
∇× φRj

)
+
(
−n× φRj

)
·
(
∇× φRi

))
ds.

Take care that the right element requires −n instead of n because the normal vector must point
outward, while hpGEM provides a normal vector that point towards the right element. Also
note that hpGEM provides a normal vector scaled by the size of the face because this is more
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beneficial for most differential equations. This vector is scaled to be of unit length before it is
used in these equations.

The part that is used only by the IP numerical flux can receive much the same treatment as
the common part

∫
F

aF [[φi (x)]]T · [[φj (x)]]T ds

=

∫
F

aF
(
nL × φLi + nR × φRi

)
·
(
nL × φLj + nR × φRj

)
ds

=

∫
F

aF (n× φi) · (n× φj) ds. (7.1)

In (7.1) the labels ·L and ·R were dropped to prevent having to write down what is essentially
the same equation four times.

The part that is used only by the Brezzi numerical flux is the hardest part. First, define

Mij = (φi, φj)K .

Then, project the lifting operator onto the space of basis functions and again drop the zero
terms

(nF + ηF ) (RF ([[φi]]T ) ,RF ([[φj ]]T ))F

= (nF + ηF ) (RF ([[φi]]T ) , φn)ΩM
−1 (φm,RF ([[φj ]]T ))F

= (nF + ηF ) ([[φi]]T , {{φn}})F M
−1 ({{φm}}, [[φj ]]T )F

=
nF + ηF

4

(
nL × φLi + nR × φRi , φLn + φRn

)
F
M−1

(
φLm + φRm, n

L × φLj + nR × φRj
)
F

=
nF + ηF

4
(n× φi, φn)F M

−1 (φm, n× φj)F .

This term is then computed using a matrix-matrix-matrix product. Here the most apparent
disadvantage of using the Brezzi-flux can be seen: in order to compute the stiffness matrix one
needs an explicit matrix inverse of the element mass matrix.

It may appear to the alert reader that terms and factors involving µ−1
r went missing. This is

correct; the current implementation is build with the extra assumption that µ−1
r = 1 everywhere,

so these extra terms and factors are deemed irrelevant for the description of the implementation.

7.4 Normalisation of the eigenfunctions

In Section 5.1 the orthonormality of the eigenfunctions was used. In practice this requires some
extra scaling. The used eigensolver guarantees the eigenvectors it finds are orthonormal in the
L2-(vector)norm, so use this as a starting point and project back to L2 (Ω)

δij = ψ∗i ψj =
∑
n,m

ψ∗i,nφ
∗
nM

−1φmψj,m, (7.2)

The matrix M is a positive definite real matrix, so its square root is properly defined and also
positive definite and real. Denote by M−

1
2 the inverse of the square root of M . Then it follows
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from (7.2) that the eigenfunctions
∑
m
M−

1
2φmψi,m are orthonormal. While the orthonormal

eigenfunctions are a nice theoretical tool, it is often possible to use (7.2) to evaluate products of

eigenfunctions. This circumvents the explicit construction of M−
1
2 .

7.5 Coordinate transformations

The theory presented so far allows one in principle to compute all the integrals and solve the
system. It is, however, more convenient to perform the computations on a reference element
and use mappings to find the element and face matrices for the physical elements.

7.5.1 Transformation of the basisfunctions

The first consideration is the transformation of functions. For this follow the derivation presented
in [21]. Let K̂ and K be two bounded domains in R3 (for example the reference tetrahedron
and a tetrahedron in the mesh) and let Fk : K̂ → K be a continuously differentiable bijection
where |dFk| does not change sign on K̂. If for a scalar function p on K and p̂ ∈ H1(K̂) such
that

p ◦ FK = p̂,

then the gradient operator transforms as

∇p = (dFK)−T ∇̂p̂,

where ∇̂ acts with respect to the coordinate system for K̂. By taking the curl of this equation
it is immediately obvious that ∇p ∈ H(curl;K) and ∇̂p̂ ∈ H(curl; K̂). So the transformation

u ◦ FK = (dFK)−T û. (7.3)

is H(curl) conforming.

For the computation of ∇× u ◦ FK first write

[∇× u]i,j =
∂ui
∂xj
− ∂uj
∂xi

,

for some 3 ∗ 3 matrix [∇× u]i,j . Note that (7.3) can be rewritten as

ui =
3∑

k=1

∂x̂k
∂xi

ûk.

Carry out the differentiations required for the curl-matrix

∂ui
∂xj

=
∂

∂xj

3∑
k=1

∂x̂k
∂xi

ûk =

3∑
k=1

∂2x̂k
∂xi∂xj

ûk +

3∑
l=1

∂x̂k
∂xi

∂x̂l
∂xj

∂ûk
∂x̂l

.

and

∂uj
∂xi

=
∂

∂xi

3∑
k=1

∂x̂k
∂xj

ûk =
3∑

k=1

∂2x̂k
∂xj∂xi

ûk +
3∑
l=1

∂x̂k
∂xj

∂x̂l
∂xi

∂ûk
∂x̂l

.
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So

([∇× u] ◦ FK)i,j =

3∑
k=1

3∑
l=1

∂x̂k
∂xi

(
∂ûk
∂x̂l
− ∂ûk
∂x̂l

)
∂x̂l
∂xj

.

or equivalently

[∇× u] ◦ FK = dF−TK

[
∇̂ × û

]
dF−1

K .

The matrix [∇ × u] ◦ FK still contains information about ∇ × u. After some tedious, but
straightforward linear algebra it is possible to show that

(∇× u) ◦ FK =
1

|dFK |
dFK∇̂ × û.

7.5.2 Transformation of integrals

Use the standard identity ∫
K

udx =

∫
K̂

(u ◦ FK) |dFK | dx (7.4)

to find the integral transformed to the reference element. In the case of face integrals FK is
usually a composite map, so despite its simple appearance (7.4) can get quite involved. A finite
element package able to resolve these mappings, such as hpGEM is recommended. In the case
of hpGEM a user is only required to provide u ◦ FK .

7.6 Boundary conditions for the k-shifted formulation

In the k-shifted formulation there are still some factors of the form e−ik·x left inside the jump and
average operators. This is because k was introduced on purpose to allow for periodic behaviour
with a period not conforming to the size of the domain. As a consequence e−ik·x will not be
continuous near domain boundaries and will need special a treatment there. Remember that
φi and φj are nonzero only on one element. There are now two options: Either they are both
active on the same element. In this case the contributions to the jump and average operators
come only from that element and the factors e−ik·x cancel. Or they are both active on different
elements. In this case their contributions to the jump and average operators come from elements
on opposite sides of Ω. This means the factors e−ik·x don’t cancel, but instead leave a shift of
about the size of the domain.

There are also the undefined shifts that were introduced with the basisfunctions. To provide
a definition the matrix formulation can be rewritten into

ω2diag
(

eik·xi
)
Mdiag

(
e−ik·xi

)
~E = diag

(
eik·xi

)
Sdiag

(
e−ik·xi

)
~E.

From this it can be seen that these shifts will have no effect on the eigenvalues. The eigenvectors,
however, are, for good choices of xi, shifted such that the effects of introducing k are approxi-
mately cancelled. This means that, once found, the eigenvectors can be reused as pré-converged
initial vectors for a next choice of k resulting in great speedups.
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In practice, when performing computations for many different values of k at the same time
the changes in k are small enough that even changing xi into −xi has no significant impact on
the simulation time. The requirement that the target eigenvalues are nonzero may have some
impact on this since it forces SLEPc [15] to reconsider the ‘desired’ ordering of the eigenvalues
every few steps. Even so, setting initial eigenvectors improves the simulation time significantly.
Implementing the divergence condition allows a zero target; with this setting, the desired or-
dering of the eigenvectors won’t change as often, potentially resulting in an even larger speed
improvement and much easier (L)DOS computation.

7.7 Symmetry considerations and the Irreducible Brillouin Zone

In Section 7.5.1 transformation rules for a curl-conforming change of coordinates were set up.
Nothing in that section is specific for basis-functions or single elements, so these rules can be
applied also for solutions on the whole of Ω. Consider for example the mapping F = (x, y, z) 7→
(1− x, y, z). This maps Ω onto itself. Moreover,

∫
Ω

(
µ−1 (∇× u) · (∇× φ) + ω2εru · φ

)
◦ F dx = (7.5)

∫
Ω̂

µ−1 1

|dF |

(
∇̂ × û

)T
dF−1dF−T

(
∇̂ × φ̂

)
+ |dF |ω2εrû

TdF TdFφ̂ dx, (7.6)

and since dF =

−1 0 0
0 1 0
0 0 1

 the matrices in (7.6) cancel. Flip the direction of integration in

the x-direction so the integral is from 0 to 1 again and notice that |dF | = −1 to see that (7.6)
is equivalent to ∫

Ω

µ−1
(
∇̂ × û

)
·
(
∇̂ × φ̂

)
+ ω2εrû · φ̂ dx.

So the only effect of applying F is that every term picked up a hat. This equivalence can also
be understood from a physical point of view: An electromagnetic wave propagating from x = 0
to x = 1 ‘sees’ exactly the same domain as a wave propagating from x = 1 to x = 0. From a
more practical perspective this means there is no need to consider wave-vectors with a negative
x-component, because this mapping shows they have the same eigenvalues as wave-vectors with
the same, but positive x-component. One has to be carefull, however, when computing the
orientation-dependent local density of states to compute ρp (r, ω, np) + ρp (r, ω, np ◦ F ) when
integrating over one half of the Brillouin zone.

A similar argument can be applied to mirroring in the other coordinate directions (x, y, z) 7→
(x, 1− y, z) and (x, y, z) 7→ (x, y, 1− z) and to changing the ordering of the coordinates (x, y, z) 7→
(y, x, z). In the case of a homogeneous medium this can be an arbitrary reordering. In the three
other test-cases εr treats one of the coordinate directions differently from the other two, so in
that case only those two directions can be swapped.

By applying all four of these symmetries the domain of integration in the Brillouin zone can
be reduced to a prism of size only 1

16 of the full size of the Brillouin zone for the non-homogeneous
cases. In the case of the homogeneous medium a further reduction to a tetrahedron of only 1

48
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of the size of the Brillouin zone is possible. Because of its importance for the computations this
smaller wedge is named the irreducible Brillouin zone(IBZ).

7.8 Used packages

The finite element toolkit hpGEM [30] has been used to construct the matrices in the DG
discretisation. It is a DGFEM package developed by the MACS chair at the University of Twente.
It provides routines for mesh generation and numerical quadrature and can provide iterated
access to all elements or all faces. PETSc [6] has been used for time integration and solving
linear systems of equations. It is a computer algebra package that is intended as MATLAB for
distributed memory systems. In principle hpGEM could also be used for the time integration,
but time integration is mostly implemented to test the correctness of the code, so a choice has
been made to use PETSc instead in order to prevent having to rëımplement the construction
of the matrices. For the solution of the eigenvalue problems SLEPc [15] has been used. This
is a specialised eigenvalue solver that is constructed to be used with the data structures and
routines provided in PETSc wherever this is appropriate, minimising the amount of extra work
needed to get it working with the rest of the code.

To construct complicated domains, such as the cylinder inside the cube, the CAD package
Rhinoceros [14] was used. The domain descriptions generated by Rhinoceros were converted to
tetrahedral meshes using the mesh-generator Centaur [1]. These meshes were used instead of
the regular meshes described earlier. Both Rhinoceros and Centaur are commercial packages.



Chapter 8

Conclusions

For the cases presented so far the DG-Max code works as intended. This is in agreement with
the conclusions by other authors so there is hope that the code also works as intended for cases
not yet studied.

8.1 Outlook

This research concerns multiple different disciplines that will also have different opinions about
what can be considered an improvement and what is irrelevant. Therefore this section is split
into multiple subsections, so all possibilities for improvement can be highlighted for the areas
that consider them relevant.

8.1.1 Mathematical aspects

A very important point of improvement would be to implement the extra condition ∇ · εrE = 0
to remove the null space of the curl-curl operation from the space of allowable solutions. It
is known that the presence of a null space is detrimental for the convergence speed of Krylov
subspace methods. So it is expected that removing the null-space will greatly improve the speed
of the code.

As an alternative strategy to achieve speedups a specialised preconditioner or linear solver
for matrices arising from Finite Element Methods can be developed. This will also be of use in
other fields where Finite Element Methods are used to discretize (partial) differential equations.

If this is still insufficient to achieve the desired speed it is also possible to adapt the code for
parallel computations.

A more thorough theoretical framework is useful for the construction of more accurate error
estimates. In particular, a good a-posteriory error estimator is useful for automated refinement
of the mesh in zones where a better accuracy is required.

At the moment basis functions are provided only for tetrahedral elements. If a basis is also
provided for elements of other shapes this will allow for greater flexibility in constructing a mesh.
In particular, if a basis can be constructed for elements with a curved boundary this allows for
exact matching of material interfaces, even when the unit cell contains spherical or cylindrical
structures.
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8.1.2 Photonic crystals

For users of DG-Max attempting to design photonic crystals the code should be able to handle
defects in the perfect infinite repetition of a unit cell. In particular, it should be possible to
incorporate point or line defects, where the perfect translational symmetry of a crystal is broken
in one unit cell or a line of unit cells. This adaption will also have to be able to handle finite
crystals or more general defect shapes.

It is also important to be able to handle more general εr. It is a relatively easy change
to make it a matrix, allowing the simulation of anisotropic media. Other options include a
dependence of εr on frequency or field strength.

Another requirement will be an option to change the unit cell for periodic structures where
the unit cell is not a cube.

Most important perhaps is a sensitivity analysis. Using the extra accuracy provided by the
mathematical model, it is possible to analyse what happens when a crystal is not produced to
mathematical perfection by artificially introducing small defects in a bi-material interface or in
the given parameters.

8.1.3 Local Density of States

The attention given in this work to the Local Density of States can be interpreted as a preliminary
exploration at best. Most importantly the order of accuracy of the LDOS computation should
be determined. The order of accuracy should probably also be improved to match the accuracy
achieved by the rest of the numerical model. Moreover, more testing needs to be done to verify
that the computation is also correct in realistic photonic crystals.

An eigenvalue solver -ideally an iterative one- should be found that can reliably find all
eigenvalues in a frequency range.

Ideally the eigenvalue problem has to be rewritten such that ω can be used as a given
parameter. This will greatly reduce the amount of work that needs to be done when computing
the LDOS. This probably also means that it is much easier to achieve a good order of convergence.

Note that at the moment the accuracy loss in the LDOS computation can be set indepen-
dently from the accuracy of the eigenvalue problem, so if no improvements can be made in this
area, it is not detrimental to the quality of the program or the usefulness of high accuracy in
the rest of the program.

Simulations in this work have been limited to low ω and to the irreducible Brillouin zone. In
this case the problem of crossing bands is avoided. For simulations with higher ω or over a larger
part of the Brillouin zone band crossings can occur. In this case the naive lowest first sorting
strategy will cause ωn (k) to become (locally) nondifferentiable. This breaks the integration
procedure presented in this report, so some other sorting strategy needs to be used in these
cases.



Appendix A

Detailed description of the code

This Appendix will aim to present a description of the DG-Max code in a format where formulas
are more readily presented than the online documentation. It will also include a comparison
with the hpGEM 1 code written by D. Sármány. Numbered equations will denote steps in the
algorithm the code executes. For the code written by Sármány, line numbers without a file name
refer to line numbers in Max3D.cc and are based on the dgFourier3D sample code from hpGEM
1.

A.1 Preamble

At the beginning of the code all data is initialised. A timer is also started to measure perfor-
mance. Sármány inputs only the desired polynomial order and the desired number of elements
per direction n. The other options are hard-coded and need a recompilation. This is also the
current, temporary set-up. Note that n takes a slightly more generalised meaning if using a
centaur mesh with the old code.

Old code found on lines 1-59 and in IncludeAll.hh. New code to be found in

DomokosProblem::initialise() (DomokosProblem.cpp)

A.2 Generating the mesh

The mesh is either read from a pre-generated Centaur file or constructed by assuming that
Ω = (0, 1)3 is subdivided into n∗n∗n sub-cubes and then splitting the cubes into five tetrahedra,
four of which are congruent. The exact subdivision can be seen in Figure A.1. Name the total
number of elements Nτ and the number of local degrees of freedom Np. Mesh generation is
handled by the hpGEM kernel. For the new code this is so easy that it is considered part of the
preamble. For the old code this is a separate stage. Separate function calls need to be made if
you want a periodic mesh instead of a non-periodic one.

Old code found on lines 63-133

A.3 Setting up of the matrices

First PETSc is initialised. Then the global matricesM∈ RNpNT ×NpNT orM−1 ∈ RNpNT ×NpNT ,
the (inverse) mass matrix, and S ∈ RNpNT ×NpNT , the stiffness matrix, are initialised. The
RHS vectors e ∈ RNpNT (the (exact) initial solution), u ∈ RNpNT (the derivative of the (exact)
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Figure A.1: Cube split into 5 tetrahedra. This is the subdivision used for generating a regular
structured mesh in hpGEM. For a domain with more than one cube per direction some cubes
are rotated such that the faces fit together.
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initial solution), j0 ∈ RNpNT (the initial source term) and j(used to store the source term) and
the auxiliary vectors X and Y are also initiated. Moreover space is allocated for some of the
temporary data. This should be done in the constructor of BaseExtended. However, not all data
is known during construction. So part of the initialisation is postponed to a more convenient
moment. The old code is not object oriented so declaration of the matrices is postponed until
all the required information is known.

The mass matrix M is a block-diagonal matrix with NT nonzero blocks [M ] ∈ RNp×Np ,
so M−1 is also a block-diagonal matrix, but with blocks

[
M−1

]
. Note that depending on the

problem either M or M−1 is not needed explicitly and is therefore not initialised in the code.
If the problem in principle allows both, M−1 is initialised because the Brezzi numerical flux
requires

[
M−1

]
in either case. S has N2

T blocks [S] ∈ RNp×Np . The vectors j0, e and u have NT
sub-vectors, each with length Np.

It is the intention that this part of the code becomes a part of the hpGEM core in the form
of a Global matrix assembly interface.

Old code found on lines 146-234. New code found in

hpGemUIExtentions::hpGemUIExtentions() (BaseExtended.cpp)

and the first 20 lines of both MatrixFillerIP::fillMatrixes() and

MatrixFillerBR::fillMatrixes() (fillMatrices.cpp){
initialise M← 0 for the time-harmonic problem

initialise M−1 ← 0 else

(A.1a)

(A.1b)

initialise S ← 0 (A.2)

initialise j0 ← 0 (A.3)

initialise e← 0 (A.4)

initialise u← 0 (A.5)

A.4 Filling of the matrices

The next step in the algorithm is computing the element matrices. Before this can be done,
some extra information is needed. The code needed to obtain this extra information is described
first.

A.4.1 Meta-data

For each element the Jacobian and its determinant are computed and stored. Then the transpose
of the inverse of the Jacobian is computed exactly. For example

J−1
0,0 =

J1,1J2,2 − J2,1J1,2

|J|
.

In the old code the local numbering of the vertices is manually made consistent with the global
numbering of the vertices. In the DG-Max code this is not needed because hpGEM 2 handles
face to face mappings correctly. The old code also sets up integration rules for all polynomial
orders, but then only uses the appropriate one.

The basis-functions at the quadrature points also have to be computed. They are already
written out in Sections 3.4 and 7.2 so they are not repeated here. In the old code they are
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computed preemptively for the elements and inefficiently for the faces. In the DG-Max code
they are computed on the fly whenever they are requested for a reference point where they
are not computed yet. The old code has all the basisfunctions explicitly coded. The new code
uses some parameters to reuse code for basisfunctions with large similarities and to be able to
increase the polynomial order of the basis without a lot of extra work.

Old code found on lines 234-262 and in files GetOrientation.hh,

GetJacobians.hh, InvertJacobian.hh, TranspMatrix.hh GetfuncTables.hh,

VectorCurl3D.hh, InitialiseVectorBasis.hh, edge.hh, edgeface.hh, facebubble.hh,

faceinterior.hh, interiorbubble.hh, InitialiseScalarBasis.hh, Bary3D.hh,

legend.hh and cross.hh. New code found in file ElementInfos.cpp and in file

BasisFunctionCollection Curl.cpp

A.4.2 Compute element matrices

The following is done for every element E separately:
The local mass and stiffness matrices and the inverse of the mass matrix are initialized by

resizing them to the correct size and clearing them. Now, for every 0 ≤ i ≤ j < Np the actual
values of the local mass matrix [M ]E and the local stiffness matrix [S]EE are computed as

[Mi,j ]
E ← [Mj,i]

E ←
∫
E
J−1,T
E φi (x) · J−1,T

E φj (x) dx (A.6)[
M−1

]E ←([M ]E
)−1

(A.7)

[Si,j ]
EE ← [Sj,i]

EE ←
∫
E

JE
|JE |

(∇× φi (x)) · JE
|JE |

(∇× φj (x)) dx (A.8)

using integration routines provided by hpGEM. Here JE is the Jacobian of the transformation
from the reference element to E. Next, the mass matrix is inverted using Lapack’s gesv (if this
is desired). The old code also exports all entries larger then 10−12 into a sparse matrix structure
by writing its global index (localnoDOF ∗ elID + i, localnoDOF ∗ elID + j) and its value to a
white-space separated text file for later use in external programs, such as Matlab.

The initial source term j, the exact solution e and its derivative u are initialised by resizing
them to the correct size and clearing them. Now for every 0 ≤ i < locNrDOF their entries are
computed as

[j0,i]
K ←

∫
K
J−1,T
K φi (x) · f0 (x) dx (A.9)

[ei]
K ←

∫
K
J−1,T
K φi (x) · u0 (x) dx (A.10)

[ui]
K ←

∫
K
J−1,T
K φi (x) · du0 (x)

dt
dx (A.11)

Where f0 is the exact source term at t = 0 and u0 is the exact solution at t = 0.
In the DG-Max code this is combined with the computations of the face contributions so

PETSc can already begin redistributing the stiffness matrix, while the vector entries are still
being computed.

It is the intention that the sorting of element contributions into the global matrix becomes
part of the hpGEM core in the form of a Global matrix assembly interface.

Old code can be found on lines 311-433 and in file calcElCont.hh,

ExactSolution.hh ExactSolutionDeriv.hh, SourceTermData.hh. New code can be



DGFEM for photonic crystals 85

found in MatrixFillerIP::fillMatrixes(), MatrixFillerBR::fillMatrixes()

(fillMatrices.cpp), DomokosProblem::elementMassIntegrand(),

DomokosProblem::elementStiffnessIntegrand(), DomokosProblem::sourceTerm(),

DomokosProblem::initialConditions() and DomokosProblem::initialConditionsDeriv()

(DomokosProblem.cpp)

A.4.3 Compute face matrices

For the face contributions the difference between the old code and the DG-Max code is larger.
The old code computes the block matrices mentioned in Section 7.3 as separate matrices while
the DG-Max code computes the entire block structured matrix in one go. The old code splits
the part that is common to both numerical fluxes into matrices F and G, it names the part used
only by the IP numerical flux H and names the matrix (φi, n× φj) used for the Brezzi numerical
flux D. The matrix DT is named C. Beyond this internal faces require different treatment than
boundary faces.

Internal face

If the face is an internal face it will have two neighboring elements. Name them l and r. First
for A,B ∈ {l, r} some auxiliary matrices FAB, GAB = (FBA)T , HAB, DAB and CAB = (DBA)T

are first initialised and then computed as

FABi,j =

∫
δE

(
nA × J−1,T

A φAi

)
· JB
|JB|

(
∇× φBj

)
dx

HAB
i,j =

∫
δE

(
nA × J−1,T

A φAi

)
·
(
nB × J−1,T

B φBj

)
dx

DAB
i,j =

∫
δE

J−1,T
A φAi ·

(
nB × J−1,T

B φBj

)
dx

Here ∂E is the face under consideration, JA is the Jacobian of the transformation from the
reference element to element A, φAi is the ith basis function of element A and nA is the outward
pointing normal vector.

Now compute the contributions to the stiffness matrix originating from the internal faces.
They are, again for ∀A,B ∈ {l, r}

[S]AB ← [S]AB − 1

2

(
FAB +GAB

)
+
(

1 +
ηF
4

)(
CAl

[
M−1

]l
DlB + CAr

[
M−1

]r
DrB

)
(A.12)

with ηF a stability coefficient for the used numerical method.

Boundary face

If the face is a boundary face it will have only one neighboring element. This is stored as the left
element. If F ll, Gll, H ll, C ll and Dll are as defined in the previous Section, the corresponding
contribution to the stiffness matrix can be computed as

[S]ll ← [S]ll −
(
F ll +Gll

)
+ (4 + ηF )C ll

[
M−1

]l
Dll (A.13)

Now to compute the right hand side contributions of the boundary faces, first set up some
auxiliary vectors G, H and D as
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Gi =

∫
∂E

Jl
|Jl|

(∇× φi) · (n× u0) ds

Hi =

∫
∂E

(
n× J−1,T

l φi

)
· (n× u0) ds

Di =

∫
∂E

J−1,T
l φi · (n× u0) ds.

Here u0 is the initial solution at t = 0.

Now the local contribution to the right hand side is

[J ]l ← [J ]l −G+ (4 + ηF )C ll
[
M−1

]l
D (A.14)

Old code can be found on lines 452-850 and in file calcFaceCont.hh. New code can

be found in MatrixFillerIP::fillMatrixes(), MatixFillerBR::fillMatrixes()

(fillMatrices.cpp), DomokosProblem::faceIntegrand(...),

DomokosProblem::faceIntegrandIPPart(...) and

DomokosProblem::faceIntegrandBRPart(...) (DomokosProblem.cpp)

A.5 Solver

A.5.1 Time integration

For the time dependent Maxwell equations everything is ready to perform the time integration.
The DG-Max code uses a second order leapfrogging scheme. The old code focuses more on time
integration and offers 3 alternatives that have fourth order convergence.

In the second order scheme the basis coefficients are obtained from the interpolant first.
Then, set the time step τ ← b 2.4

(2p+1)nc and number of time steps Nsteps ← d tend−t0τ e. Update

τ ← b tend−t0Nsteps c and Nsteps← b tend−t0τ c a few times to ensure Nstepsτ is as close to tend − t0 as
possible. Note that this choice of τ may be unstable for low p, so potentially τ will have to be
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set slightly lower. Finally, the time integration is performed using the following steps:

u←M−1u (A.15)

e←M−1e (A.16)

t← t0 (A.17)

while t < tend do (A.18)

e← e+
τ

2
u (A.19)

jt = j0
η(t)

η (0)
(A.20)

jt+τ = j0
η (t+ τ)

η (0)
(A.21)

u←
1− τ

2σ

1 + τ
2σ
u+M−1

(
τ

(jt+jt+τ )
2 − Se
1 + τ

2σ

)
(A.22)

e← e+
τ

2
u (A.23)

t← t+ τ (A.24)

end of while loop (A.25)

Note that this assumes the source term can be split into a spatial contribution and a temporal
contribution η (t). It also scales the boundary terms with this time contribution. For the time
steps where Tecplot output is desired the entire solution vector is copied into a local data
structure and stored for later post-processing.

code can be found on line 929-959 and in file TimeIntegrateCO2.hh. New code

found in BaseExtended::solveTimedependent()

A.5.2 Solve the time-harmonic system

Solving the time-harmonic system is much easier. In this case the steps in the algorithm will be

solve
(
S − ω2M

)
x = ~J (A.26)

Some extra work is done to make sure the default settings for the sparse matrix solver will
always work and to store the solution locally for postprocessing.

New code found in BaseExtended::solveHarmonic()

A.5.3 Find eigenvalues

Finding eigenvalues is more involved, because of the wave-vector dependence. To find all the
eigenvalues do the following

for all requested wave numbers (A.27)

S ← ei∆k·xiSe−i∆k·xi (A.28)

scale off-diagonal entries of S by ei∆k·∆x (only actually done for boundary faces) (A.29)

find eigenvalues of M−1S (A.30)

end of for loop (A.31)
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Note that explicitly inverting the right hand side matrix is generally not the best way to solve
a generalised eigenproblem, but in this caseM−1 is already explicitly available from computing
the Brezzi flux. To make it easier to mix and match pieces of code depending on the desired
solution strategy it was opted to always explicitly invertM. It is a bit unclear what information
is relevant for post-processing, so for now this part is not present.

New code found in BaseExtended::solveEigenvalues(),

BaseExtended::makeShiftMatrix() and BaseExtended::findBoundaryBlocks()

(BaseExtended.hpp)

A.5.4 Computing the (L)DOS

The LDOS computation starts with computing eigenvalues for all needed k-points using the
algorithm described in Section A.5.3. Extra care is taken that the sorting of the eigenvalues is
consistent and manually add the eigenvalue 0 (multiplicity 2) to the set of eigenvalues belonging
to |k| = 0. Once this is done, given a value of ω and for all tetrahedrons in the irreducible
Brillouin Zone, compute a contribution to the LDOS from this tetrahedron using the following
steps.

First compare ω against ω0, . . . , ω4 and sort the ωi, ki and fi into one of two lists based on
whether ωi is larger or smaller. The rest of the algorithm depends on the number of ωi that
are smaller than ω. If only one ωi is smaller this is equivalent to the ω0 < ω < ω1 case. The
expression presented in Section 5.2 does not depend on the ordering of ω1, ..., ω3, so they are
evaluated using the arbitrary ordering in which they were put into the list with larger ωi.

for all needed wave numbers (A.32)

S ← ei∆k·xiSe−i∆k·xi (A.33)

scale off-diagonal entries of S by ei∆k·∆x (only actually done for boundary faces) (A.34)

find eigenvalues of M−1S (A.35)

end of for loop (A.36)

for all tetrahedra in the IBZ (A.37)

count the number of smaller ωi (A.38)

evaluate the integral using the expression presented in Section 5.2 (A.39)

add result to DOS (A.40)

end of for loop (A.41)

New code found in BaseExtended::solveDOS(), BaseExtended::makeShiftMatrix(),

BaseExtended::findBoundaryBlocks() (BaseExtended.hpp) and in

KspaceData::getIntegral() (kspacedata.cpp)

A.6 Post-processing

During post-processing the discontinuous Tecplot writer is called to enable visualisation. After
this some errors are computed by interpolating the numerical solution and its curl from the
expansion coefficients and computing the L2 norm of their difference. For the H(curl)-error of
the numerical method the error in the tangential jump is also computed. Now the L2 error,
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the H(curl)-error and the DG-error are printed to the screen. This process will be repeated if
multiple time stages or multiple eigenfunctions are available for post-processing.

The old code also provides an estimate of the L∞ error by evaluating the error of the
numerical solution at all quadrature points. This has not been ported to the DG-Max code
because the quadrature points may give not a very accurate error measure, especially if some of
them lie outside the element.

Old code found on lines 992-1076 and in files calcError.hh and CalcFaError.hh.

New code found in BaseExtended::makeOutput(), BaseExtended::computeErrors(...),

BaseExtended::faceErrorIntegrand(...), BaseExtended::elementErrorIntegrand(...),

BaseExtended::writeFieldValues() (BaseExtended.hpp),

DomokosProblem::exactSolution(...) and DomokosProblem::exactSolutionCurl(...)

(DomokosProblem.cpp)

Note that if the exact solution for the problem you are trying to solve is unknown, you can
just enter an arbitrary ’exact’ solution. Of course you should not expect the error estimates to
be very accurate.

A.7 Used features of hpGEM

For the correct functioning of the code hpGEM provides many features that can be summarized
as

• automated mesh generation. It was explained that some parameters need to be provided
for the mesh generation. hpGEM uses these parameters to generate a regular mesh based
on unit cells that look like Figure A.1.

• Computing Jacobians and coordinate transformations. Both in the case where the mesh
is provided by an external mesh generator and in the case where the mesh is generated
internally hpGEM sets up coordinate transformations from the reference element to the
physical element and provides the Jacobian of this transformation so it can be used where
needed for correctly transforming vector functions.

• Computing integrals. If an integrand is provided hpGEM can automatically compute
integrals. This is useful both when filling the matrices and computing errors. Note that
hpGEM assumes the integral will have to be transformed to the physical element and
applies an appropriate coordinate transformation. This holds only for the intregral, if an
individual function that forms the integrand also needs to be transformed this needs to be
taken care of manually.

• Post-processing. The hpGEM package provides automated routines to write a computed
solution to a Tecplot file for visualisation.

• Future work: Constructing the global system. A planned feature of hpGEM is the auto-
mated construction of a global system given a strategy to construct element contributions.
This feature will include resorting a solution to the individual elements so post-processing
can be done on a per-element basis. If this part is constructed to work in parallel then the
entire code will be parallel.

• Future work: A generic way to set parameters of a code without having to recompile
should be introduced. Initial efforts were made in this direction, but are not finalized yet.
The goal is to have something like what is used for MPB.
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