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Abstract

As armed forces become more technologically advanced, so does the need to effectively use this tech-
nology increase. One of the developments within the military for the past years is its increasing network-
ing capabilities. Mobile ad-hoc networks are used in the military environment to increase cohesiveness
between units and improve their efficiency. These networks however have to operate in hostile envi-
ronments where there might not always be a (viable) direct connection between endpoints. Disruption
Tolerant Networking (DTN) can help alleviate this issue by offering means to transfer data between end-
points using Store-Carry-Forward message switching, eliminating the need for end-to-end connectivity.
To facilitate routing on these networks, several protocols have been developed.

One of these protocols is the Opportunistic Routing with Window-Aware Replication (ORWAR) proto-
col. This protocol aims to optimize power and bandwidth use by dynamically reordering its transmission
buffer and limiting incomplete transmissions. It also uses a priority scheduling system in an attempt to
provide limited Quality of Service (QoS) to the network. In this thesis we further analyse this protocol
and aim to improve upon it to better provide QoS provisioning for military networks.

To this purpose, we determine the requirements traffic on a military network imposes on the network.
Using these requirements, we assign all traffic a transmission priority and retention priority class and
adapt the ORWAR protocol to provide support for these classes. We then analyse whether this division
into two traffic classes has a positive influence on network performance, using a mobility model which
accurately reflects the military environment.
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Chapter 1

Introduction

1.1 Background

The time where armies fought each other on isolated battlefields, led by their local commanders with
little communication between units has long passed. Over the years, as technology developed, so did
communication become more and more important. This development has evolved to a point where
battles can be won or lost through the communication capabilities of armed forces. This concept is
called information superiority, defined by[1]:

The ability to collect, process, and disseminate an uninterrupted flow of information while
exploiting and/or denying an adversary’s ability to do the same.

The concept of information superiority has led to the development of Network Centric Warfare(NCW).
A type of combat characterized by the need to obtain information superiority over the opponent, NCW
describes ways a fully or partially networked force can gain a decisive advantage over its opponent.

In the light of NCW, a lot of research has been performed in improving connectivity in military envi-
ronments. Nowadays almost every unit is connected with other units one way or the other, using a wide
range of communication technologies; these include radio, wifi and satellite communications. These
connections result in a wide-scale network which has both components with and without infrastructure,
e.g. networks on a base vs. wireless connections between frontline troops.

On the battlefield, vehicles and troops are sparsely connected over large areas and in general have
limited resources available to them. In addition, there generally is no fixed infrastructure available to
these mobile nodes. Because these nodes are constantly on the move, with no fixed infrastructure,
wireless transmissions in a Mobile Ad-hoc Networking (MANET) configuration are used. This lack of
infrastructure results in the need for special routing and discovery algorithms to provide a connection
between two nodes.

In addition to these extra algorithms, the mobility of the nodes results in the network being very
dynamic, with some connections only being intermittently available. On the battlefield these problems
are amplified as enemy forces will actively try to disrupt communications in any way possible or nodes
will be unreachable due to the need of radio silence. An example of all the problems summarized here
can be seen in Figure 1.1.

Disruption Tolerant Networking (DTN)[2][3] can help alleviate these issues. DTN networks are net-
works characterized by communications between two nodes possibly taking a longer period of time

Figure 1.1: MANET issues in military environments
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than expected in contemporary wireless networks. These networks are specialized in dealing with not
always having end-to-end connectivity and/or long delays which will inevitably break down ordinary
connection-oriented protocols such as TCP.

DTN employs Store Carry Forward (SCF) message switching to disseminate its messages across
the network. This means copies of messages are transmitted to intermittent nodes on the network.
These will then store the message copy, carry it with them while they move, and forward it when they
meet another node. Furthermore, DTN is able to transmit messages regardless of lower-layer transmis-
sion methods. It is therefore possible for a message to be partially transmitted using TCP/IP connections
and partially through proprietary lower-layer protocols.

1.2 Disruption Tolerant Networking

Originally developed as a means to provide inter-planetary networking (IPN)[4], DTN addresses some
issues of modern mobile wireless networks which conflicts with some of the original assumptions of
the internet. These issues include intermittent connectivity, long or variable delays, asymmetric data
rates and high error rates. In intermittent connectivity, links between nodes appear and disappear,
this can result in no end-to-end connectivity existing between two specific nodes, also called network
partitioning. In addition to intermittent connectivity, long propagation delays between nodes and variable
queuing delays at nodes in a multi-hop network can increase the end-to-end path delay significantly.
This way, internet protocols relying on a quick replies from other nodes will not function anymore.

To support connectivity between nodes communicating using a network suffering these issues, DTN
introduces the Bundle Protocol [5]. This protocol operates between the Application layer and underlying
transmission layers, providing SCF functionality to a node. Individual application messages will get
stored in one or more bundles, which in turn will be transmitted using underlying transmission protocols.
It is also in this bundle layer that DTN-specific routing occurs.

In contrast to normal internet routing, messages, or fragments thereof, are stored in persistent stor-
age at a node rather than a limited-size and -time buffer. Using the SCF principle explained earlier,
even if no end-to-end connection exists due to e.g. network partitioning, messages are still able to be
delivered to their destination.

Due to the fact that DTN is independent of underlying transmission protocols, DTN nodes need not
see each other directly. Instead of only propagating messages to next-hop neighbours running DTN,
messages can also be transmitted through other nodes not running DTN. For instance, a DTN node
connected to the internet, can transmit DTN messages to another DTN node connected to the internet,
even though there may be intermittent hops which cannot process DTN messages. This however will
be dependent on which DTN routing protocol is used as we will explain in Chapter 2

In traditional MANET routing protocols like OLSR[6] and AODV[7] a packet traverses the network by
being forwarded from one hop to the other. These protocols can be either proactive, reactive or a hybrid
of the former two. A proactive protocol, such as OLSR, maintains a list of routes to possible destinations
by occasionally distributing routing tables across the network. These protocols are generally slow to
adapt to rapidly changing topologies. Reactive protocols, such as AODV, on the other hand only provide
on-demand routing information using Route REQuest (RREQ) packets. While these protocols are better
suited to rapidly changing topologies, the extra flooding of RREQ packets will waste bandwidth. In
addition, these protocols may show high latency when attempting to discover a route to the destination.

These protocols do not always perform well in Disruption Tolerant Networks as they rely on end-
to-end connectivity, which might not always be available. For this reason, a new kind of routing called
replication based routing has been developed. Unlike traditional routing schemes where messages get
forwarded to the next hop, in replication based routing a copy of the message will get forwarded to the
next hop. This results in multiple copies of a message being available on the network, increasing the
probability it will arrive at the intended destination. This routing is coupled with SCF to reduce the need
for end-to-end connectivity.

One of the simplest forms of replication based routing is the flooding of message copies to every
node within range. While this form of routing will almost guarantee the delivery of a message on the
network, it is also very wasteful of resources, especially bandwidth. In Disruption Tolerant Networks,
there is currently no single standardized routing protocol as different protocols aim to improve different
metrics. Most Disruption Tolerant Networks serve a specific purpose or operate in a specific environ-
ment and therefore impose different requirements on the routing protocols. For instance, a network
used for Inter-Planetary Internet may have different requirements than one used for military networks.

In addition to flooding, many different, more sophisticated, routing schemes have been researched
to provide routing in Disruption Tolerant Networks, with some examples being [8][9][10][11][12]. In
military MANETs, the main resource limitation is bandwidth. This is due to the enemy attempting to
disrupt communications and imposed periods of Emissions Control (EMCON), also known as radio
silence. These bandwidth limitations are in addition to the already limited bandwidth due to the sparsely
connected nature of a military MANET.
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Opportunistic Routing with Window-Aware Replication (ORWAR) [13] is one of these routing proto-
cols, which aims to optimize bandwidth use and power control. This protocol tries to optimize bandwidth
use and power control through a combination of limiting incomplete transmissions and priority schedul-
ing of messages. For this purpose, it uses localization information of a network node, acquired through
for instance GPS. This information contains a node’s location, velocity and transmission range. Based
on this information, it will calculate the time two nodes remain within transmission range of each other
and schedule messages in such a way, no incomplete transfers occur due to nodes moving out of range.
In [14], this protocol is deemed as the one most suited for a military MANET and the one we will try to
improve upon in this research.

1.3 QoS in Disruption Tolerant Networks

In military networks, different traffic classes exist, imposing different requirements on the network. In
contrast to commercial networks, stringent Quality of Service (QoS) requirements can be imposed on
the different traffic types within a military network. Similarly, nodes on a military network can be forced
to offer support for these QoS requirements. While QoS has been mentioned for DTN, there are no
standards on how to facilitate QoS in these networks.

The only mention of QoS in DTN, as stated in [2], states that bundles can be assigned one of three
priority classes: bulk, normal and expedited. These classes however only state how to differentiate
bundles originating from the same source. This means that a high priority bundle from one source
may not be delivered faster, or with some other superior QoS, than a medium priority bundle from
a different source. In addition, depending on a particular DTN node’s forwarding/scheduling policy,
priority scheduling may or may not be enforced.

QoS in Disruption Tolerant Networks is also hard to guarantee due to the nature of these networks.
Traffic is generally not interactive and is often one-way. There are generally no strong guarantees
of timely delivery, though QoS may for instance be used to improve reliability and security. Different
routing protocols attempt to offer some form of QoS due to their routing mechanics. The Probabilistic
Routing Protocol using History of Encounters and Transitivity (PRoPHET) [9][15] for instance attempts
to improve reliability by calculating the probability of a node meeting the destination. Further analysis
of the different routing protocols and the way in which they attempt to improve QoS of network traffic is
given in [14].

In this research, we focus on analysing what traffic classes military MANETs impose on DTN. Using
this knowledge, we try to improve the ORWAR routing protocol by providing support for these QoS
requirements. Finally, we analyse whether these QoS improvements actually improve performance.

1.4 Research Questions

This research focuses on improving the performance of DTN in a military environment using the ORWAR
routing protocol. This should be achieved through implementing QoS support in this protocol. Our main
research question therefore is:

Can we improve ORWAR to better support QoS provisioning for use in military MANETs?

To answer this question, the following sub-questions have been defined:

1. What traffic classes can be distinguished in military MANETs and what requirements do they
impose?

2. Does the current design of ORWAR support a separation in transmission priority QoS and buffer
management QoS?

3. How can the required QoS be implemented in ORWAR?

4. How does the implemented QoS perform in comparison to non-QoS ORWAR?

1.5 Thesis overview

The rest of this thesis is structured as follows: Chapter 2 provides some background information on
the military environment and the DTN protocols used. In specific, Section 2.1 provides an overview of
the different traffic classes within a military network and their QoS requirements. These requirements
are then translated into concrete QoS classes to be used for messages on a DTN network. Section 2.2
provides an overview of the bundle protocol, which has been designed to facilitate DTN communications
on a network. Section 2.3 provides an overview of ORWAR and its workings.
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Chapter 3 describes some of the limitations of the protocol which have to be addressed to be able to
use it in a realistic military environment. Part of this research has been addressing these issues and offer
solutions to enable the use of it for simulations. The limitations here could be split into general limitations
of the protocol and arising issues occurring due to it not being designed to support communication
between more than two nodes at a time. Improvements to enable communication between multiple
nodes are introduced here as well.

Chapter 4 states which adaptations are needed to both the bundle protocol and ORWAR to provide
for the QoS determined in Section 2.1.

Chapter 5 provides an overview of our experimental setup. A description of the different mobility
models will be given, as well as network characteristics and our implemented adaptations of ORWAR.
Furthermore, we describe our approach of how to compare the performance of normal ORWAR to our
QoS-enabled ORWAR.

Chapters 6 and 7 detail the network performance measurement results using different mobility mod-
els. Section 6 mainly focuses on analysing the behaviour of ORWAR as we add more parameters using
simplified mobility models. Section 7 uses a realistic military mobility model to compare the performance
of normal ORWAR to the performance of QoS-enabled ORWAR.

Finally, Chapter 8 will provide a summary of this work and the reached conclusions. In this section,
the research questions will be answered and future work will be discussed.
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Chapter 2

Background and Related work

2.1 QoS in military networks

2.1.1 Traffic types

Military MANETs are generally used to improve Shared Situational Awareness (SSA) and to communi-
cate Clear and Consistent Command Intent. These are defined in [16, p.137] as

The capability to extract meaningful activities and patterns from the battlespace picture and
to share this awareness across the network with appropriate participants.

and

The capability to articulate decisions in terms of desired goals/effects, constraints, and pri-
orities that are functionally aligned across the network and with other participating organiza-
tions.

respectively.
For this purpose, nodes transmit Command and Control(C2) data to each other. Some examples of

this data are:

• Voice communications

• Video streams, such as camera feeds from vehicles and personnel

• Targeting data

• Blue Force Tracking (BFT): location updates of allied forces

These datatypes bring their own requirements in terms of delay, reliability and bandwidth. Live camera
feeds for instance need low delay and consume large amounts of bandwidth. A military MANET should
be able to cope with these requirements and allocate resources correspondingly.

All the different C2 traffic can be divided into three main classes:

• Command data

• Situational awareness

• Reports

Command data is used to improve the communication of Clear and Consistent Command Intent.
This traffic will generally take shape as database modifications for a Battlefield Management System
(BMS). Here we distinguish two different types of traffic, database updates and database synchroniza-
tions. Database updates are modifications to the database, while database synchronization traffic is
used to periodically synchronize the complete database contents with other nodes on the network. The
majority of the traffic will therefore be update messages rather than synchronization messages. When
an incoming database synchronization message is more recent than an update message, the obsolete
update message can be flushed from a node’s buffer. Aside from synchronization messages flushing
update messages, command data should have a high delivery accuracy.

Situational awareness takes the form of for instance BFT. This traffic type deals with periodic position
updates of vehicles and personnel on the battlefield. Outdated information of this type is rarely useful,
therefore the network should aim for as little delay as possible when transmitting this kind of traffic.
When transmitting position updates, the receiver is only interested in the most up to date version. This
means that while it should have a high transmission priority, older updates can be deleted as soon as a
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Figure 2.1: Examples of traffic types with different transmission and retention priority

newer update arrives at a node. Aside from periodic position updates, BFT traffic can also consist of for
instance maps, battlefield conditions and text and imagery messages.

Last, there are the reports. These reports can be very varied and split into high- and low-priority
updates. Some example of low-priority reports include a vehicle status report or mission debriefings; an
example of high-priority reports would be a vehicle running low on ammunition. While a report may not
have a high transmission priority, some reports should have a high delivery accuracy even if it suffers
from longer delays. As the traffic is very varied, it is hard to deduce any general requirements, aside
from that it should be able to be transmitted with different priorities. In addition, all of the traffic types
mentioned for C2 by default limit their messages’ time to live to 24 hours or shorter.

2.1.2 QoS classes

As we can see, the different traffic types on the military network impose different requirements on
the network in terms of transmission priority and buffer retention. Some messages may have a high
transmission priority but may easily be removed by newer messages, e.g. BFT, or messages may
arrive with a higher delay but should have a high delivery accuracy, e.g. debriefings. In addition,
some messages are just more important than others and should be transmitted first. For instance, a
vehicle running low on ammunition should have priority over a mission debriefing. Some examples of
traffic having different transmission and retention priorities can be seen in Figure 2.1. To accommodate
this functionality, we propose a separate classification of transmission priority and retention class for
messages.

Based on NATO defined QoS requirements for traffic on a military network, we identify the following
transmission priorities, from high to low:

• Real-time

• Non real-time, but time-critical

• Non real-time, lower priority

• Best effort

As a DTN network should be delay-tolerant, it cannot offer support for real-time communications. How-
ever, we will still adapt four different transmission priorities, with Priority 4 being the highest and Priority
1 the lowest.

Rather than using retention priorities to define data retention behaviour, we define different retention
classes based on the aforementioned traffic requirements. These classes determine whether messages
should be stored when new messages arrive or as the transmission buffer of a network node runs out
of free space. For these purposes, we define the network classes Normal, Never Delete and Keep Most
Recent.

Normal messages behave based on classic buffer management based on transmission priorities.
Once a buffer runs out of space for an incoming message, messages with a lower priority may be
deleted to accommodate this message. Examples include database update messages and non-critical
reports.
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Figure 2.2: Different retention classes to be used in military DTN

Class Deletes Deleted by
Normal Lower priority non-ND Higher priority, more recent KMR, TTL

expiring
Never Delete (ND) Lower priority non-ND TTL expiring
Keep Most Recent
(KMR)

Lower priority and/or obsoleted
non-ND

Higher priority, more recent KMR, TTL
expiring

Table 2.1: Overview of retention classes

Never Delete messages must always remain stored within a node’s buffer, regardless of their trans-
mission priority. The purpose of these messages is that they should have a relatively high delivery
accuracy, even though it may suffer some delay. When a node’s buffer runs out of storage space, a
higher transmission priority message may not delete messages flagged as Never Delete. One example
of this type of data is a mission debriefing.

The last class is Keep Most Recent. These messages are allowed to delete older message types of
the Normal or Keep Most Recent class, regardless of transmission priority presuming they belong to the
same traffic flow. In other words, position updates for instance can only delete relevant older updates.
This can occur even when the buffer still has plenty of space available. This class is introduced to
limit transmitting obsolete data, optimize buffer use and overall reduce delay due to limiting the number
of messages transmitted. Examples of this retention class include database synchronizations or BFT
position updates. A summary of these retention classes can be seen in Figure 2.2 and Table 2.1.

The introduced retention classes do not have a direct 1-on-1 mapping to the traffic types mentioned
in Section 2.1.1. Different traffic types may have a combination of different retention classes. For
instance we mentioned Command data consisting of BMS traffic. When combining this BMS traffic
with retention classes, a database update message may have retention class Normal, while a database
synchronization message will have retention class Keep Most Recent. By analysing traffic requirements
for each application operating on a military network, an exact mapping of retention classes on traffic
types can be made.
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Figure 2.3: Layer structure using the bundle layer

2.2 The Bundle protocol

One of the core requirements in DTN is to provide SCF functionality regardless of underlying transport
protocols such as for instance TCP or IEEE 802.11. To offer this functionality, a new layer is introduced
just between the application layer and transport layer. This layer is the bundle protocol layer, providing
DTN services to an application while managing the lower transport layers. It creates an additional
overlay network to handle internode communications, tying together different lower level transmission
protocols. The new model can be seen in Figure 2.3. This figure compares a classic TCP/IP Internet
transfer to a Disruption Tolerant Network transfer. Note that the use of the TCP/IP stack is for illustrative
purposes only and is valid for any underlying transmission layers such as UDP or non-IP networks.

Data coming from an application is stored in so-called bundles at this layer. The SCF mechanism
is then applied to bundles rather than individual packets. The bundle itself however, may be split into
several smaller packets depending on which lower layers are used. Each intermittent hop may decide
which lower level layers to use, therefore one hop may for instance communicate through TCP/IP using
a wireless connection, while the next hop may communicate using a proprietary protocol. The protocol
used at the bundle layer is a non-conversational protocol with simple sessions and limited or no round-
trips.

The added layer provides virtual endpoints to the network. At each transmission between two nodes,
the bundle layer protocol terminates the transport protocol connection, setting up a new connection for
each hop a bundle needs to traverse. Because of this, retransmissions happen between two hops
rather than between two endpoints as is the case with protocols such as TCP. This setup gives the
bundle layer responsibility over end-to-end reliability, while hop-by-hop reliability is still handled by the
underlying protocols.

To provide for retransmissions in the case of lost or corrupt data and for storage management pur-
poses, DTN works with custody transfers. When a node transmits a bundle to the next DTN node with
custody transfer capabilities, it will request a custody transfer for this bundle. After transmitting this
custody transfer request, it will set a timer to receive a custody transfer acknowledgement from the
intended custodian. Should the next hop’s bundle layer accept custody, it will transmit a custody trans-
fer acknowledgement. If no acknowledgement is received before the timer runs out, the entire bundle
is retransmitted. A bundle should always stay in the custodian’s storage at a node until the bundle’s
time-to-live (TTL) is expired or another node accepts custody.

To provide all this functionality, the bundle protocol [5] has been designed. A bundle PDU consists
of one or more blocks, containing meta-data, application data or both. These blocks serve either as
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Figure 2.4: Primary Bundle Block PDU

payload information or information normally stored in headers in lower layer PDUs. The bundle protocol
however allows this information to occur anywhere within the bundle, not necessarily at the front, with
exception of the Primary Bundle Block. This structure allows a certain degree of freedom in providing
for different application requirements, but also different lower layer requirements. Values within these
blocks are often stored as Self Delimiting Numerical Values (SDNV) as they can be variable in length.

The first block in a bundle is called the Primary Bundle Block (PBB). The PDU of this block is shown in
Figure 2.4. It contains information essential for routing the bundle to its correct destination. Information
stored in this block is similar to other lower layer headers, such as the bundle’s source, destination and
bundle processing control flags. Some other bundle protocol-specific fields are present as well however,
such as the creation timestamp sequence number and dictionary fields.

Addressing within DTN using the bundle protocol is based upon nodes having one or more Endpoint
IDs (EID) and one or more Region IDs (RID). RIDs are used for routing between regions, where a re-
gion is defined as a part of the network where a set of communication characteristics are homogeneous.
Which characteristics should be homogeneous may vary, resulting in control of region definitions. Re-
gions may be as large as the internet, or as small as a bluetooth piconet. Nodes acting as a gateway
between different regions will therefore have multiple RIDs. Within a region, nodes are identified by
their EIDs, bound only to that region. A node can have multiple EIDs to support anycast, multicast and
unicast transmissions. These identifiers follow the same name-space syntax as the Internet’s Domain
Name System (DNS).

All the EIDs used when transmitting a bundle should be stored in the dictionary field of the PBB.
Some fields within the block may contain similar EIDs, such as for instance the source and report-to
entity. Rather than storing all addresses within these fields, fields that refer to an EID should provide an
offset within the dictionary byte array where this EID can be found.

What is noticeable in the PBB is the lack of a bundle ID, common in many other transport protocols.
Instead, the bundle’s ID is generated by the combination of:

• Source EID

• Creation Timestamp and

• Creation Timestamp sequence number

The creation timestamp holds the real time at which the bundle was created. This timestamp, together
with the lifetime denoting the TTL, determines the lifespan of a bundle. The lifetime is provided as
an offset to the timestamp; should this lifetime expire, the bundle should be removed from a node’s
buffer/storage. The creation timestamp sequence number is a monotonically increasing value as new
bundles are created. Together with the creation timestamp and source EID, it provides an unique
identifier of the bundle. This use of timestamps however also results in the need of synchronized clocks
among different DTN nodes. In case of unsynchronized clocks, a bundle’s TTL may not be accurately
handled and bundles may expire too late or too early.

Aside from this Primary Block, other special blocks may be specified as well. These blocks can
provide extensions to the bundle protocol, such as security features or application specific information.
These extra blocks always follow the same format: a one byte block type, block processing flags, block
length and block payload. A bundle payload block will always have block type code 1. Other block types
have already been reserved, however the blocktype codes 192 to 255 are free to use for private or
experimental use. These so-called extension blocks are not covered in [5] and therefore nodes may not
be able to process them correctly while adhering to the protocol.
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Figure 2.5: ORWAR overview

2.3 Opportunistic Routing with Window Aware Replication

Opportunistic Routing with Window Aware Replication (ORWAR) is a DTN routing protocol which at-
tempts to utilize the limited bandwidth in DTNs in the most efficient way possible. Its secondary purpose
is to optimize the transmission power and use of the limited storage in nodes. For these purposes, it
makes use of message utility to make its routing decisions in a similar fashion to the RAPID[11] routing
scheme. As shown in [12], there exists a message distribution method where the number of copies on
the network is bound by a maximum value, depending on network structure. Copies in excess of this
bound do not improve the probability of the message arriving in a significant manner, but only possibly
reduce the latency. These excessive copies will therefore in general limit bandwidth efficiency. It is for
this reason that ORWAR uses a similar distribution method, limiting the number of copies which are
allowed to be distributed on the network.

In contrast to schemes such as PRoPHET[9], ORWAR is completely opportunistic. It does not
attempt to estimate future network states of the network or in any way require higher level network
topology information. The only information required by nodes is their own location, velocity and trans-
mission range. The location information can be either absolute or relative to other nodes. Every bundle
in a node’s buffer has a utility value uk which partially determines the transmission priority of a mes-
sage. This utility value is chosen from a set of possible values, with 1 being the lowest possible utility.
This utility value is then divided by the bundle’s size sk to determine the marginal utility. The higher the
marginal utility, the higher the transmission priority of the bundle in a node’s buffer. This marginal utility,
in combination with the localization information, is used to transmit as much information as possible
during the limited contact opportunities between nodes. This way, no resources are wasted transmitting
fragmented/incomplete messages.

When a new node is discovered, ORWAR dynamically rearranges its transmission buffer, effectively
separating transmission from storage. Bundles are sorted with bundles with the highest marginal utility
placed at the front of the transmission buffer. Transmission in ORWAR is divided in two phases. First,
bundles with the newly discovered node as its destination are transmitted. Only then is custody over the
remaining bundles transferred to the other node, time permitting. At each transmission, the remaining
transmission capacity in bytes is calculated using the estimated contact window. Should the next bundle
in line to be transmitted be smaller or equal in size to this remaining capacity, it is transmitted. Any
bundle with its size exceeding this value is skipped, even though it may have a high marginal utility. This
way, wasted bandwidth due to incomplete transfers is limited. The bandwidth saved in this way can then
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be used to transfer smaller, lower priority bundles.
Should the node’s storage reach its maximum capacity, bundles will be deleted based on this

marginal utility. Bundles with the lowest marginal utility are deleted first. It will keep removing bundles
from the back of the storage buffer until enough space can be freed to accommodate a new bundle.
However, it will only attempt to clear space as long as the removed bundles have a lower marginal utility
than the incoming bundle. Should the incoming bundle’s size still be too large to clear enough space in
this manner, no bundles are removed and the incoming bundle is dropped instead.

When distributing bundles over the network, ORWAR makes use of Spray-and-Wait [12] mechanics.
Each bundle has a limited number of copies, determined at creation by its value of uk. Bundles with a
higher value of uk will have more copies available. At each transmission opportunity, as long as there
is more than one copy of a bundle available at the transmitting node, half of the remaining copies are
transmitted to the receiving node(s). If there is only one copy remaining at the transmitting node, it will
only transmit this bundle if the receiving node is the destination of this bundle. This results in low latency
and high delivery probability for high utility bundles, as they will have a higher transmission priority and
a larger number of copies on the network.

To determine the number of copies per bundle, the parameter L is calculated first according to the
method presented in [12]. This value of L determines the base number of copies per bundle. ORWAR
furthermore introduces the parameter ∆ which determines the offset of L for different utility values. In
the ORWAR scheme proposed in [13], three utility values are used, with 1 being the lowest and 3 the
highest utility. Based on experiments performed in their research, they found a value of ∆ = L/3 to be
optimal. This however may vary for each network and is based on the number of utility values there are
available. Finally, the number of copies for each utility were determined as

Lk

 L+ ∆ if uk = 3
L if uk = 2
L−∆ if uk = 1

ORWAR also supports a system for distributing acknowledgements of delivered bundles over the
network. As nodes distribute copies of a bundle rather than the bundle itself, intermittent nodes will
keep a copy of a bundle until an acknowledgement is received, the bundle’s TTL expires, or it has to be
deleted to free up storage space for bundles with a higher marginal utility. These acknowledgements
are therefore used to both notify the source of successful delivery and remove copies of this bundle at
intermediate custodians to prevent further propagation of a bundle that has already arrived. For this
purpose, ORWAR introduces a record of Known Delivered Messages (KDM). This kdmi keeps track
of all bundles node i knows have been delivered to their destination. During the handshake between
two nodes, these nodes exchange their respective kdm. The new information is then merged with the
existing knowledge to get an up-to-date version of kdm. These records are merged in such a way that
kdminew = kdmiold ∪ kdmj . Bundles in a node’s buffer matching any of the entries in kdm are then
deleted from the buffer. In this process a node also deleted any bundle for which its TTL has expired.
As soon as a bundle is transmitted to its final destination, upon confirmation of successful delivery, both
the last transmitting node as well as the receiver update their kdm accordingly.

Bundles stored in the kdm are stored just as long as their TTL at the minimum. In addition, a
retention time τ is introduced. This is the time a bundle should stay in kdm even after their TTL has
expired. After a node’s buffer has been cleared during handshaking using either the newly updated kdm
or a bundle’s TTL, the kdm itself is cleaned. Any bundle m in kdm for which t > TTLm + τ is removed
from that node’s kdm, where t is the current time. This addition of a retention time is necessary to allow
an acknowledgement some extra time to reach the original source to notify it of a bundle’s delivery. The
bundle itself may already have been expired and deleted at the source, though the retention time of the
acknowledgement can prevent an unnecessary retransmission.

After the management of a node’s buffer and kdm during handshaking, nodes will exchange the
aforementioned localization information. This information is then used to estimate the contact window
between them. To calculate the contact window, the information depicted in Figure 2.6 is used. Nodes
exchange their coordinates (x, y), transmission range r and velocity ~vi. Given two nodes advancing at
a vectorial speed of ~v1 and ~v2 respectively, with transmission ranges r1 and r2 respectively, the contact
window time tcw can then be calculated through

tcw =
2 ∗min (r1, r2) ∗ cosα

~v
(2.1)

where ~v = ~v1 − ~v2 and α is the angle between ~v and the line defined by the two nodes at contact time,
depicted in Figure 2.6.

The calculation of this contact window is however non-trivial. As is explained in [17, Section 5.7],
the mobility of nodes can result in inaccurate estimations of this contact window. In addition, nodes may
change direction or speed during a contact window; therefore, some error margin should be taken into
account when calculating this value.
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Figure 2.6: Contact window estimation in ORWAR

The calculated contact window time is then used to calculate the maximum amount of data that can
be transmitted between these nodes. The maximum amount of data that can be transmitted, given the
medium’s transmission rate b in bytes/sec, can be calculated through

smax = b ∗ tcw (2.2)

During transmission, the next bundle in line, i.e. the one with the highest value of uk/sk, is compared
to smax. Should sk ≤ smax, the bundle is transmitted. If sk > smax the bundle is skipped as it cannot
be transmitted in time and the next bundle in line is evaluated. At each transmission or reception of sk
a node’s smax is decreased with sk. The maximum amount is decreased upon reception as well as the
time spent receiving a message is time you cannot use to transmit your own. This process continues
until either the end of the buffer is reached, or smax = 0.

Upon reception, a node checks whether enough space is available for the incoming bundle. If this is
not the case, it will attempt to free space as explained earlier. Should there be enough space available,
a bundle is always inserted at its correct position in the buffer, determined by its marginal utility. This
ensures the buffer is sorted at all times and not only after handshaking.

2.4 ORWAR Neighbour discovery

What constitutes a neighbour in DTN or not is not formally standardized and different DTN routing
protocols have different descriptions of what constitutes one. As stated earlier, DTN can use underlying
protocols to aid it in neighbour discovery and hop by hop routing. This means it is possible for a next-hop
DTN neighbour to actually be multiple lower layer hops away. Additionally, these intermediate hops are
not required to provide DTN functionality. In other words, a node connected through several IP hops to
another node can be its DTN next-hop neighbour.

Due to this functionality, protocols such as OLSR and AODV can be used to determine a node’s
next-hop DTN neighbours as lower-layer end-to-end connectivity is always required for DTN next-hop
transmissions. In addition, custom DTN-specific neighbour discovery methods using lower-layer trans-
mission protocols have been proposed, such as [18], which can be used in combination with the epi-
demic [8] and PRoPHET [9] routing protocols.

However, due to ORWAR’s calculation of contact windows with individual nodes, its DTN neighbours
are also its direct physical neighbours. It is impossible to effectively calculate a contact window with
nodes that are several lower-layer hops removed from the source. As such, existing MANET routing
protocols are of little use other than for neighbour discovery of nodes within physical transmission range.
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Chapter 3

ORWAR limitations & proposed
improvements

While ORWAR is a very bandwidth-efficient protocol, the original research shows some limitations to
the protocol which have to be overcome before its performance can be tested for a realistic mobility
scenario. First and foremost, current research on ORWAR has focused on only two nodes meeting at
a time for simplicity. The problem however, is that some features of ORWAR are not as clearly defined
anymore once multiple nodes can communicate at the same time on a TDMA medium. Some examples
include the contact window estimation and transmission buffer order. Aside from this problem, other
issues have either been overlooked or not addressed in the currently available literature. These issues
will be explained here and where possible, solutions are given.

3.1 Current limitations in ORWAR

In the available research concerning ORWAR, some issues have not been properly addressed which
will reduce the performance of ORWAR when applied to a practical scenario. The following subsections
will address and explain these issues and describe our proposed solutions on how to remedy the issue.

3.1.1 Unknown buffer contents of neighbours

An important, but easy to resolve, issue of ORWAR is that nodes do not know which bundles a neigh-
bouring node already has stored. Nodes in ORWAR exchange information regarding which bundles
have been delivered to the final destination, but not which bundles they are currently carrying. The
problem arising from this is that nodes may transmit bundles which its neighbour already has stored in
its buffer. This transmission is wasted bandwidth as no useful information is transmitted.

Even epidemic routing [8], one of the most basic routing schemes, informs neighbouring nodes of a
node’s buffer content. Our solution therefore is loosely based on this mechanic. Nodes already need
to exchange information during handshaking with regard to their position and their kdm. We therefore
also propose to add the exchange of their buffer contents to this handshaking procedure.

During the handshaking procedure, each node exchanges a collection of all bundle IDs it has stored
in its buffer. This collection of IDs, which we name the Buffer Contents, or bc, is then used to prevent
transmissions of bundles which a node’s neighbour already has stored. The collection of bundle IDs
should be transmitted after the kdm however, to keep overhead to a minimum. First, as the kdm is
exchanged, both nodes have the opportunity to clear delivered bundles from their buffer. This will then
reduce the size of bc before it is transmitted. Each node keeps track of all received bci for each node i.
It will store and update this collection to keep it up to date.

When a node has multiple neighbours, the stored contents of bci for each neighbouring node may
become out of date. This can be due to a neighbour receiving bundles from another node hidden
from the local node, or the local node transmitting bundles to the neighbour. To compensate for this,
whenever a node transmits a bundle, it updates the stored bci for each node by adding the transmitted
bundle upon successful transmission. Furthermore, to compensate for bundles arriving at neighbours
from unknown nodes, each node periodically retransmits its own bc to its neighbours.

In case only two nodes are communicating, bundles in local storage which are also contained within
the received bc are not transmitted, as its neighbour will already have these bundles stored. When a
node has multiple neighbours, the decision of which bundles to transmit based on the neighbouring
nodes’ buffer contents becomes non-trivial. We will further elaborate on this in Section 3.2.
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3.1.2 Contact window limitations

We have already stated that the calculation of the contact window within ORWAR is a non-trivial prob-
lem. Aside from the issues concerning transmission range estimation, there are other limitations in
ORWAR concerning the use of contact windows. Presuming that we can correctly estimate the contact
window upon initial contact with another node, we are still left with the issue of how to use this window
and of course nodes generally not travelling in a completely straight line at a constant speed all the time.

First of all, how will the contact window be used? The contact window is used to calculate the
maximum number of bytes a node can transmit before the other node moves out of transmission range.
This calculation however presumes that all of the calculated time can be used for transmissions. Shown
in the pseudo-code presented in [19], smax is only decreased upon transmitting or receiving a bundle.
This window, and accompanying smax, will however never be completely accurate due to for instance
overhead inherent to lower level protocols. For instance, when using Wifi and its CSMA/CA multiple
access mode, nodes need to take contention periods and/or RTS/CTS exchanges into account. This is
time that cannot be utilized for data transfer and as such, some margin should be taken into account.
This issue gets even more complex when multiple neighbouring nodes are involved, as nodes may be
idle even though there are neighbouring nodes. This issue will however be elaborated in Section 3.2

The other issue is nodes changing direction or speed mid-transmission. Contact windows are only
exchanged during handshaking between two nodes and not updated anymore after. Should a node
change its speed or direction, the calculate contact window and hence smax will be incorrect. This
can never be avoided, as during travel, most nodes show minor fluctuations in speed and direction.
For calculated contact windows which were short to begin with, this generally will not be too much of
an issue. For large contact windows, this can prove problematic however. During a large calculated
contact window, it is easy to drift into a significantly shortened, or lengthened, actual contact window.
For these large windows we propose to periodically update the contact window so nodes have an actual
value. These synchronisation moments should however be limited as it creates additional overhead. In
addition, nodes should take into account some error margin when calculating the contact window.

3.1.3 Limited buffer maintenance

In ORWAR, the only time bundles are deleted from the buffer are during handshaking and if a bundle
is successfully transmitted to its final destination. This includes bundles for which the TTL has expired.
This method heavily favours many short duration contacts. In periods where a node is associated for a
long time with another node, the TTL of bundles may expire. In [13], these bundles would not be deleted
until the node meets another node again. This may result in bundles being transmitted while their TTL
expired, wasting bandwidth, and bundles staying in the buffer longer than necessary, wasting storage.
To prevent this, we propose that at each transmission opportunity, the source node first checks if the
TTL of the bundle is still valid. If it is still valid, it will transmit the bundle and subtract sk from smax.
However, if the TTL has expired, it will delete the bundle instead and tries to transmit the next one.

3.1.4 Limited acknowledgement support

According to the bundle protocol, when a node attempts a custody transfer to another node, the other
node must reply with an acknowledgement within a certain period. After this period passes, the transfer
request is timed-out and a retransmission of the bundle occurs. In ORWAR, storage space is limited
and incoming bundles may not always be accepted. If the incoming bundle’s marginal utility is too low
and there is not enough room left in the storage buffer, the incoming bundle is dropped.

Other routing methods, such as epidemic routing, work around the issue of limited storage space by
allowing the destination to request which bundles should be transmitted. ORWAR, however, does not
offer any support for rejecting custody of a bundle. With no such support available, this may result in
a bundle being constantly retransmitted and subsequently dropped, wasting bandwidth. We can solve
this issue using two different methods.

Firstly, we can copy epidemic routing’s method of allowing the destination request which bundles it
receives. When implementing this method for the scenario where a node has multiple neighbours, the
node will first order its transmission buffer normally. At every subsequent transmission opportunity it
then determines which of its neighbours actually requested the next bundle to be transmitted. Secondly,
we can introduce a system of negative-acknowledgements. If a node drops an incoming bundle as
it cannot accommodate it, it sends a negative-acknowledgement. Upon receiving of this negative-
acknowledgement, a node does not attempt a retransmission of this bundle and moves on to attempting
to transmit the next bundle in its buffer. As bundles are ordered based on their marginal utility, the
receiving node may be able to accommodate the next bundle as it may have a smaller bundle size.
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3.2 Adjustments for multiple-neighbour support

The current research of ORWAR has thusfar been focussed on communication between two nodes at
a time. When a node has multiple neighbours however, issues arise which have to be overcome before
we can adapt ORWAR in tests involving realistic military networks. These issues include:

• Different contact windows with different neighbours

• Different neighbours having different bundles stored

• Insufficient acknowledgement propagation

• Determining which node to transmit to

The following subsections explain these issues in more detail and offer a possible solution.

3.2.1 Different contact windows

In a MANET, a node may have several other nodes within its transmission range. Based on each
neighbour’s localization information, all of these neighbours may have a different contact duration with
the node. In ORWAR, the contact window is used to determine which bundles will be transmitted. This
poses no problem when there are only two nodes associated with each other, however with multiple
neighbours, the node must decide which contact window to use to order its buffer. Furthermore, nodes
can not rely on their own transmitting/receiving of bundles to reduce smax. In half-duplex mediums,
such as the IEEE 802.11 standard, only one node is allowed to transmit at a time. In IEEE 802.11
systems, nodes use CSMA/CA to circumvent collisions and the hidden terminal problem. This however
also means that sometimes nodes have to wait till the medium becomes available again, reducing their
remaining contact window and smax.

First, let us address the issue of determining what contact window to use. We presume that nodes
are able to accurately estimate the contact window as soon as a node comes within range. Furthermore,
we presume that through lower-level network discovery algorithms a node is able to detect when a node
comes within range or moves out of range. Should a node meet multiple neighbours at the same time,
it will choose the most favourable contact window amongst the different contact windows as its leading
contact window. We propose the most favourable contact window to be the largest contact window
available.

In general, only wireless communications are used in DTNs. One of the properties of wireless
communications is that on a physical level, all transmissions are broadcasts and unicast does not exist.
When using the largest contact window, other nodes may still listen in during every transmission. This
means that even though some bundles will not be delivered to some neighbours due to them moving out
of transmission range, the bandwidth is not wasted as it will still reach at least one other node. Using
the largest contact window furthermore reduces the need to constantly reorder the transmission buffer,
reducing overhead.

When broadcasting in such a way, the number of copies distributed on the network may increase
as the number of copies remaining will be stored within the bundle. For instance, if a node has 4
remaining copies and transmits half to 3 other neighbours using a single hop broadcast, this results in
2 + (3 ∗ 2) = 8 copies existing on the network after the transmission. The exact impact of transmitting in
this way in terms of accuracy and delay, rather than using a different algorithm to distribute copies in a
single transmission, is however outside the scope of this research.

It can also occur that a new neighbour moves in range while a node already has a contact window
calculated for another node. This new neighbour may have a favourable contact window compared to
the current contact window. However, we do not want to reorder our transmission buffer each time a
new neighbour moves into range with only a marginally favourable contact window. This may lead to
a node constantly reordering its buffer if it frequently meets new neighbours rather than transmitting.
Also we should remember that each contact window should have some error margin and therefore a
marginally better contact window might not matter in the end.

To resolve this issue, we introduce a contact window threshold θcw (in %). When a node already
has calculated a contact window with another node i, tcwi , the new neighbour must produce a contact
window which exceeds this by θcw. In other words, if a node is communicating with node i and another
node j arrives, the new contact window is given by the following equation:

tcw

{
tcwj

if tcwj
≥ tcwi

+ θcwtcwi

tcwi otherwise (3.1)

If this results in a new, larger, contact window, the transmission buffer should be reordered. Otherwise,
nothing happens. Setting this threshold too low will result in a node reordering its buffer too often.
Setting it too high however, may lead to inefficient propagation of bundles.
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To resolve the issue of a shared medium, we introduce an effective contact window, teff . To solve
this issue, we presume that each node gets a fair share of the medium through lower layer channel
access mechanisms. This means that for n neighbours, each node will get 1/(n + 1) share of the
medium’s resources. We therefore define the effective contact window of a node with n neighbours as:

teff =
tcw
n+ 1

(3.2)

In the original research, smax was decreased as a node transmits or receives bundles. The effective
contact window however estimates how many bundles can be transmitted by this node on the medium.
We therefore redefine smax as:

smax = teff ∗ b (3.3)

Using this new value of smax we now only decrease it when a node transmits data. This should provide
a work-around for time spent idle waiting for the medium to become available.

This also means that as soon as a node loses contact with another node, teff should be recalculated
using an up to date number of neighbours. When comparing contact windows to determine the most
favourable window, teff should be used rather than tcw. As soon as a node leaves however, even
though teff might improve by more than θcw, the buffer should never be reordered. Only smax should
be recalculated in this scenario as the increased contact window is due to less contention for network
resources rather than meeting a new neighbour with favourable mobility.

3.2.2 Different buffer contents

Each node that is discovered on the network will have different bundles stored in its buffer. We already
discussed the issue where nodes need to know which bundles its neighbours have stored to prevent
duplicate transmissions. When only two nodes are communicating, the issue becomes trivial as nodes
should refrain from transmitting bundles which the other node already has stored. However, as a node
meets different neighbours, some of its neighbours may already have received the bundle while others
have not. This creates a problem where nodes need to determine which bundles to transmit.

The focus of ORWAR is to maintain bandwidth efficiency, therefore we do not want to waste too
much bandwidth on bundles which are already widely spread. For this purpose we have added another
threshold θbc (in %), which is defined as the percentage of neighbouring nodes which are allowed to
already have a copy of this bundle stored before transmission. For a bundle bk, let S denote the set of
neighbours ni with associated buffer contents bci, defined by

S = {ni|bk ∈ bci} (3.4)

The percentage of neighbours Φbk already having a copy of bk, for N neighbours, is therefore given by

Φbk =
|S|
N

(3.5)

When reordering the transmission buffer, only bundles for which Φbk ≤ θbc should be included. Re-
gardless of Φbk however, bundles which have one of the neighbours as its destination should always be
included in the transmission buffer. Choosing θbc too strict may prevent bundles from being propagated
over the network, whereas choosing it too lenient may lead to wasted bandwidth.

Using this threshold may not produce a transmission buffer for which the total size sbuffer ≥ smax. In
this case there are two options, the node leaves the buffer as it is, or it can decide to adjust the threshold
to be more lenient until sbuffer ≥ smax. Not adjusting the threshold may free up network resources for
its neighbours to transmit barely propagated bundles. However, this also comes at the risk of stunting
the propagation of its own bundles.

3.2.3 Insufficient acknowledgement propagation

The kdm collections are the only way in ORWAR to propagate acknowledgements over the network.
When only two nodes are connected to each other, the kdm of each node will always be up to date as
it is exchanged during handshaking and updated when a bundle has been successfully transmitted to
its destination. When a node has multiple neighbours however, the kdm of different nodes may get out
of sync. Presume there is a node j which moves into range of another node i. At some later moment,
node k also moves within range of i, but not within range of j, see Figure 3.1. In this scenario, after
handshaking, kdmi = kdmk, but there is no guarantee kdmj = kdmk.

Furthermore, node j may also meet another node l which is only within range of node j. Presume
that now node j transmits a bundle to node l, where l is the bundle’s destination. Now both nodes j and
l add that bundle to their respective kdm, but nodes i and k do not receive this acknowledgement.
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Figure 3.1: Network setup where each node has a different kdm

When the kdm of different nodes get out of sync, nodes may start transmitting bundles which have
already arrived at their destination. To prevent this from happening, we need to improve the way ac-
knowledgements are handled within ORWAR. One improvement we propose is nodes checking incom-
ing bundles whether they are already listed in their own kdm. Should an incoming bundle already be
listed in the node’s kdm, it will transmit an acknowledgement to the transmitter so it can also add this
bundle to its kdm and clear all remaining copies from its storage.

Should the transmitting node have received this bundle through a custody transfer by another node
in its range, there is only a low risk that this other node retransmits this bundle. As a node transfers a
bundle to node i, it adds this bundle to bci, therefore stopping it from retransmitting the bundle to this
node. It may still attempt a retransmission if it meets new nodes and may therefore reorder its trans-
mission buffer. When reordering its buffer, it will again evaluate this bundle using θbc. To prevent further
propagations of an already delivered, we therefore also propose that as soon as a bundle reorders its
transmission buffer, it requests an up to date kdm from its neighbours.

Furthermore, we make use of the broadcasting nature of wireless transmissions by sending acknowl-
edgements as a single-hop broadcast. This way, for each bundle that has been delivered, or erroneously
transmitted to a custodian which already has it stored in its buffer, multiple nodes may be able to update
their kdm without using more network resources. We limit this to only a single-hop broadcast to prevent
flooding the network with acknowledgements, which would waste too much bandwidth.

3.2.4 Determining next-hop node

When we assume that only two nodes will meet each other at a time, bundles are always transmitted
in sequence based on their marginal utility to the other node. Of course, this presumes the other node
does not already have the bundle and the bundle fits within the remaining contact window. However, as
soon as a node has multiple neighbours, it has to decide who to transmit a bundle copy to.

As ORWAR is opportunistic, with one of its advantages being not requiring topology information,
it is hard to determine which bundle should be transmitted to which neighbour. As it stands, the only
decision mechanic we have to select which node a bundle is transmitted to is whether or not that node
already has a copy of the bundle. Furthermore, when we transmit a bundle to another node, we need to
decide whether or not this bundle will also be transmitted to more neighbours. Unlike traditional ad-hoc
routing protocols such as OLSR, the next-hop of a bundle is not clearly defined.

Determining the next hop of a bundle has impact on both the delivery ratio of this bundle but also on
that of other bundles stored at the same node. Choosing the wrong next hop of a bundle will decrease
the probability of the bundle arriving at the destination. Furthermore, if a bundle needs to be transmitted
to multiple neighbours using several unicasts, this may waste a portion of the contact window. This
in turn limits the number of bundles which will be transmitted, possibly reducing the delivery ratio of
bundles with a lower marginal utility.

To resolve this issue, we make use of the wireless channel characteristic that all transmissions by
a node can be sensed by all of its neighbours. Instead of unicasting bundles to custodians, we use a
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one-hop broadcast to transmit the bundle to a node’s neighbours. This way, only a single use of the
medium is required to propagate copies of the bundle to other nodes. We limit unicasts to bundles being
transmitted to their final destination. In this case, we do not want other nodes to accept custody over
the bundle as this will add unneeded copies of a bundle to the network.
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Chapter 4

Adaptations for QoS provisioning

4.1 Bundle protocol

The bundle protocol as specified in [5] already offers some QoS support as the primary bundle block
contains QoS flags. Referring to Figure 2.4, the primary bundle block has 7 bits reserved for QoS.
In our proposed QoS mechanism for military networks, we make use of 4 transmission priorities and
3 retention classes. This totals to 12 different combinations of transmission and retention. These 12
combinations are easily contained within the 7 bits available in the primary bundle block. We therefore
do not need to make changes to the bundle protocol to identify the transmission priority and retention
class of a bundle.

Using ORWAR and our retention classes introduces the need to transmit additional information, not
contained within the primary bundle block. Therefore, to provide support for ORWAR and our retention
classes, we need to add a new bundle header block. According to [5], block type codes 192 to 255
are free to use for experimental or private use. We should therefore use any of these unused codes to
define our ORWAR-specific header block.

First, ORWAR makes use of Spray-and-Wait mechanics to distribute its bundles over the network.
This limits the number of copies of a bundle available on the network. In addition, the number of copies
remaining determines whether or not this bundle should be transmitted by a node. It is wasteful of
bandwidth and storage capacity to physically store multiple copies of a bundle. Instead, it is more
efficient to keep track of a counter in each bundle copy tracking the number of copies remaining for this
bundle. At each successful transmission this counter is halved until only 1 copy remains at the current
node. This counter should be added to our custom header block.

Second, when using the Keep Most Recent retention class, bundles need to be able to filter which
bundles can be deleted by a more recent bundle. Merely replacing bundles originating from the same
source or directed at the same destination for instance, results in unwanted behaviour. Based on the
fields available in the primary bundle block, bundles from unrelated applications are able to delete each
other. For instance, by filtering on either source or destination EIDs, bundles containing debriefing
information can delete bundles transmitting position updates.

To counter this issue, we add a field called stream ID to the custom header block. This stream ID
is determined by an application to divide its traffic into separate “streams”. Different applications will
have different stream IDs, however within an application different stream IDs may also be defined. This
means that a database application and a targeting system will use different stream IDs. However, the
targeting system itself may use different stream IDs to distinguish between visual and positioning data.
When a Keep Most Recent bundle is received by a node, it is only allowed to remove bundles which
share its stream ID.

4.2 ORWAR

Due to the marginal utility in ORWAR, priority scheduling based on transmission priority is already
present. By replacing the utility value with transmission priority, bundles will be sorted based on the
highest transmission priority per bit. As we replace the utility value with our transmission priorities,
we do not need to change anything within ORWAR’s transmission algorithm. This means Priority 4
messages will have highest priority and Priority 1 the lowest priority. Our added retention classes have
no influence on the way bundles are transmitted.

Our added retention classes, however do influence which bundles to keep and which to remove
when a bundle is received. Therefore, we need to adapt ORWAR’s receiving algorithm. The current
algorithm either stores a bundle at the correct location within the buffer if there is enough storage space
available, or first tries to free enough space if there is not enough space available. If a bundle bk is
received with size sk and utility uk, yet there is not enough space left to store it, it will attempt to delete
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bundles with a lower marginal utility from its buffer B. This clearing algorithm works as such: if ∃bn ∈ B
such that (uk/sk > un/sn) ∧ (sk ≤

∑last
i=n si), delete bn, . . . , blast. If not, drop the incoming bundle.

This algorithm needs to be expanded to provide support for Never Delete and Keep Most Recent
bundles. First of all, when calculating if enough space can be freed through

∑last
i=n si), the node should

not take into account bundles which are classed as Never Delete. Things get a little bit more complicated
when introducing Keep Most Recent bundles, however. We do not want to delete bundles if no new
bundles will be inserted in their stead. When a Keep Most Recent bundle is received, the receive
algorithm is split in two parts.

First, we check which older bundles will be deleted should we accept the bundle. This results in a
set of obsolete bundles O, defined as

O = {bn | (sidn = sidk) ∧ (tcn < tck) ∧ (classn 6= never delete)}

with sid being the bundle’s stream ID and tc its creation time. Using this set, we can calculate how
much space would be freed by deleting these obsoleted bundles, namely sO =

∑
n∈O sn. If there is

already enough space to accept the incoming bundles, we remove all the bundles contained in O from
B and accept the bundle. Similarly, if sO ≥ sk, we also remove all bundles contained in O and accept
the bundle.

Should it still be impossible to clear enough space this way, we move on to the second part. This
part is similar to the original ORWAR algorithm, with a few minor differences. When we check whether
any bundles with a lower marginal utility can be deleted, we do not take into account bundles already
present in O as these will be deleted anyway due to obsolescence. This will prevent us from calculating
a wrong value for the possibly freed space if a bundle is both obsolete and has a lower marginal utility.
If ∃bn ∈ B such that (uk/sk > un/sn)∧ (classn 6= never delete)∧ (sk ≤

∑last
i=n si +

∑
bj∈O sj), we delete

the contents of O as well as bn, . . . , blast from the buffer and accept the bundle. If not, there is no way
we can accommodate the incoming bundle and we drop it. Note that as we drop the incoming bundle,
the contents of O stay in the buffer.

One final adaptation needs to be made to the receiving algorithm to accommodate Keep Most Re-
cent bundles. In DTN, bundles are propagated by transmitting several copies over the network. This
means that while a bundle may be removed from a node as it has become obsolete, copies of this
bundle may still exist somewhere else on the network. This means that as bundles are removed by
Keep Most Recent bundles, these same bundles may be received by the node at some later time. To
prevent this from happening, each node should record the creation time tc of the most recent accepted
Keep Most Recent bundle for any given stream ID. When a node receives a new bundle k, where
classk 6= never delete, it compares tck to the tc stored for sidk if its available. Only when tck ≥ tcsid will
it consider accepting the bundle. If tck < tcsid , it will reject the bundle outright. This tcsid value should
however be linked to the TTL of the Keep Most Recent bundle to prevent endless storing of these val-
ues. Should the TTL of the original Keep Most Recent bundle expire, then tcsid can also be cleared from
memory.
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Chapter 5

Measurement setup & Simulation
approach

5.1 Mobility model

The proper choice of a mobility model greatly influences the perceived performance of a protocol during
simulation. To performance basic tests on our protocol to analyse its behaviour, we make use of several
different models as displayed in Figures 5.1 and 5.2. Figure 5.1 displays three different simplified
mobility models we use to analyse the behaviour of ORWAR and our added retention classes. In each
of these simplified models, we use three nodes: A, B and C, which behave differently based on the model
used.

First we have a model where all three nodes are stationary. Nodes A and C are invisible to each
other, with B being visible to both. This effectively creates a permanent end-to-end connection between
A and C. From this point onwards we shall refer to this model as the stationary model.

The second model is a model where the middle node, B, is moving in a linear “back-and-forth” pattern
between nodes A and C. Again, nodes A and C are invisible to each other and rely on node B to relay
their messages. In this case, intermittent connectivity is introduced as node B intermittently moves out
of range from either node A or C. This mobility shall be referred to as the linear mobility model.

The last model is similar to the second. However, in this model node B moves in a different pattern
between the nodes. Rather than simply going back and forth, it now moves in an eight-shaped pattern,
changing direction within the transmission range of either node A or C. We shall refer to this model as
the non-linear mobility model.

For the non-stationary models, we assume B to move with a constant speed. In addition, all nodes
have an equal transmission range of 25 meters and node B moves to within a distance of 5 meters away
from nodes A and C. To provide a fair comparison between the linear and non-linear mobility models,
we make sure that the contact window between B and either A or C is equal. For this purpose, we have
chosen a speed of 5 m/s in the linear mobility model and 5

√
2 m/s in the non-linear mobility model.

This results in a contact window of 8 seconds for each node, presuming node B does not change its
speed when turning or reversing. Also note that in these models, there is a brief moment of end-to-end
connectivity as node B crosses over from one node’s transmission range into the other.

Figure 5.2 shows a mobility model, developed in [20]. This mobility model is a more realistic model of
a group of military vehicles. Military vehicles rarely move in a completely random manner, therefore the
mobility model should reflect this. This model consists of four vehicles moving together as a formation
using a random waypoint model. These vehicles do not always stay in an identical position relative to
each other however. As the vehicles move, the actual distance between them may vary over time as
they for instance drive around obstacles. Their formation should however remain relatively unchanged.

In this model, the vehicles’ formation is determined by the distance between vehicles at their initial
position. Each individual vehicle however also has an individual area around it in which it is allowed
to deviate from its initial position. In this area vehicles use a random waypoint model. Due to their
individual movement, they may move in and out of each other’s transmission range. In our model, in
their initial position, the distance to the nearest node is 25 meters. We therefore set the transmission
range to match this distance so there is an end-to-end connection in their initial position. To simulate
this model, we make use of traces generated in [20].

In [21] and [22], other mobility models attempting to simulate real military networks have been anal-
ysed. Both researches have confirmed that mobility in military networks is never completely random
and there is a strong group hierarchy in the involved nodes. In addition, both researches describe the
use of a grouped random waypoint model, where nodes move as a group but with random variations
within the group. These researches therefore serve as validation for the use of the model described
in [20]
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Figure 5.1: Simplified mobility models

5.2 ORWAR & Network setup

In our simulations we use the ORWAR protocol adjusted for the support of multiple neighbours, as
described in Section 3.2. In our simulated version we increase θbc if a transmission buffer can not be
completely filled with bundles using the current value. This decision was made as not to risk reduced
propagation of bundles.

Our version of ORWAR was implemented in C++, using the pseudo-code derived from [19]. Fur-
thermore, we make use of an abstract model of a network through the use of a custom simulator.
This simulator simulates a TDMA environment with a strict scheduler which determines which node
can transmit. This scheduler ensures each node gets a fair share of the network resources. We use
abstract representations of bundles in our simulations, choosing not to concern ourselves with the un-
derlying layers’ transport mechanisms. As bundles are abstract in our simulations, this also means we
do not implement the complete bundle protocol and the extra bundle headers. We have chosen this
approach as we are only interested in the behaviour of ORWAR when we introduce QoS features.

Furthermore, in our simulations, we presume faultless transmission of bundles between nodes, han-
dled by the lower layers. In addition, we do not track the behaviour of individual bundles. This means
that even though a bundle is rejected by the receiving node, we do not concern ourselves with retrans-
mission. This situation is treated as if the transmitting node received a negative-acknowledgement as
described in Section 3.1.4.

The properties of the simulated network are shown in Table 5.1.

5.3 Approach

Our experiments are split into two parts where we first analyse the behaviour of ORWAR where we
gradually introduce transmission priorities and retention classes. In this analysis, we make use of the
simplified mobility models described earlier. The second part of our experiment deals with comparing
the performance of ORWAR with and without our QoS provisioning. For this purpose, we make use of
the realistic model as presented in Figure 5.2.

When analysing the behaviour of ORWAR, we insert bundles using node A as the source and node C

as the destination. This approach is chosen to establish an indication of how the different variables are
influencing each other in a single traffic flow, with a single source buffer. Using this insertion method,
we generate a bundle stream and measure the loss and delay of these bundles.
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Figure 5.2: Realistic mobility model for a military MANET

Buffersize 500 bytes
Bundlesize 5 bytes or 1-10 bytes
Medium half-duplex TDMA, 100 bytes/sec
TTL 20 seconds
Stream IDs 16 total, of which 4 can contain Keep Most Re-

cent bundles
Measurement time 300 seconds with topology updates every sec-

ond (retention class-only behaviour)

3600 seconds with topology updates every sec-
ond

θcw 20%
θbc 50% with possible 10% increments up to a max-

imum of 90%

Table 5.1: Simulated network properties
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Here we distinguish two types of loss. First there is the network loss, defined as the loss of bundles
after they have been injected onto the network. This loss can occur by either the TTL expiring, or if all
copies on the network are deleted by higher-priority bundles. Note that this loss is not calculated for
individual copies, but for the availability of a certain bundle on the network. In other words, as long as
at least one copy of a bundle is still available on the network, it is not deemed lost.

The other type of loss is the total loss, which encompasses both the network loss and bundles lost
before being injected on the network. As a node stores copies of bundles, the storage buffer will fill
up over time. The situation may arise where it cannot accommodate an incoming bundle, either from
another node or from an application, and it will be dropped. Incoming bundles from other nodes that
are dropped will be part of the network loss, presuming all other existing copies are lost as well. This
results in the total loss being a sum of the network loss and bundles which are not injected in the source
buffer.

To state these losses more formally, let a denote the number of arrived unique bundles, c the number
of bundles created by applications, bi the number of bundles injected on the network and br the number
of bundles created by applications but rejected at the source buffer. We then obtain the loss L through

Lnetwork =
a

bi

Ltotal =
a

c
=

a

bi + br

(5.1)

We first test our added retention classes using the simplified mobility models by generating bundles
of equal transmission priority and equal bundlesize, as shown in Table 5.1. In this situation, only the
retention priority and stream ID influence the network’s behaviour as buffersize, transmission range and
bitrate are kept equal. Note that this removes some of the functionality of standard ORWAR as now
there is no scheduling of bundles based on the utility per bit. Bundles in this case will be transmitted in
a FIFO manner.

Using this setup we measure the delay and loss for varying ratios of retention classes. To determine
the individual influences of each retention class, we perform measurements with only two retention
classes at a time.

In our experiments we provide a stream of bundles at the source node, which in reality will be
generated by varying applications. By changing the creation rate of bundles, we simulate different loads
on the network. In our first experiments we create a different fixed numbers of bundles per second to
analyse the network’s performance. This allows for easier validation of results as the injection rate is
constant. We then repeat these simulations using a Poisson distributed creation rate with different mean
rates c to provide a more realistic view of the network.

These simulations will provide a good understanding how the retention classes influence each other.
We continue to run the same experiments, still keeping the bundle size constant but adding the trans-
mission priorities. Transmission priorities are assigned independent of retention priority and uniformly
distributed. By assigning transmission priorities, priority scheduling occurs in the nodes and bundles
may be dropped in favour of higher priority bundles. However, as size is kept equal, high transmission
priority bundles will always be transmitted before lower priorities.

For our last experiments to determine the behaviour of ORWAR, we will also vary the bundlesize of
individual bundles. In this scenario, if all the transmitted bundles have the Normal retention class, its
behaviour will simulate the non-QoS provisioned ORWAR. This is the final analysis we perform on the
network behaviour of ORWAR and our proposed QoS provisioning.

After our analysis of ORWAR’s behaviour, we switch to using the realistic mobility model. Using
the results gathered from our analysis using the simplified models, we attempt to determine some
optimal parameters for our QoS-provisioning in terms of retention class distribution. We now do not limit
ourselves anymore to a single source and destination; every node on the network will now generate
bundles, randomly selecting a destination on the network. Every node will generate bundles based
on a Poisson distribution with a mean creation rate c, which will be varied to depict different network
loads. At the end, we measure the Lnetwork and Ltotal on the network, together with the mean delay.
These values are then used to compare the performance of normal ORWAR to our version with added
QoS-provisioning.
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Chapter 6

Results using simplified mobility
models

6.1 Retention classes only

To determine the influence of the added retention classes, mentioned in Section 2.1.2 we first test
our version of the ORWAR protocol with the transmission priorities removed. Additionally, all bundle
sizes are equal. In this case, the utility per bit is equal for all created bundles and hence there is no
priority scheduling based on transmission priority. The goal of these experiments is to determine the
influence of our retention classes on the network loss and delay. Note that this does not accurately
reflect ORWAR as a whole, as the use of bundle size and transmission priorities is a big factor in its
performance. However, it does present us with some insight into the behaviour when using retention
classes.

6.1.1 Stationary model

Basic ORWAR performance

As a baseline comparison, we first analyse the accuracy of normal ORWAR using this setup and a
constant, deterministic, injection rate. The results for this setup, using the stationary mobility model, are
shown in Figure 6.1.

What is already significant in this figure, is that at a creation rate larger than 4 bundles per second,
losses start to occur. As the total loss increases, but the network loss does not, we can determine this
loss is due to bundles not being injected on the network. Further analysis of this behaviour shows that
this behaviour occurs due to ORWAR performing poorly with stationary nodes.

This poor performance is caused in the way acknowledgements are propagated within ORWAR. In
ORWAR, these are exchanged from node to node using the KDM-vector. However, this vector is only
exchanged during handshaking. The result of this is that in the stationary model, acknowledgements

Figure 6.1: Loss in normal ORWAR without transmission priorities and constant bundle creation rate for
the stationary mobility model
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do not reach the source node as there is no handshaking aside from the initial setup. This leads to the
source buffer filling up, as now only the expiry time of bundles is able to provide the means to clear
bundles from the buffer. Therefore, new bundles are unable to be injected onto the network as bundles
that are already delivered are still in the source’s transmission buffer, increasing loss.

The intermediary node, however, will receive an acknowledgement and remove the transmitted bun-
dle from its buffer, due to it being the final hop and receiving an acknowledgement directly from the
destination. This explains why no loss occurs on the network itself, as bundles injected on the network
still will be able to reach the destination because the intermediate node still has a clean buffer.

Note that this issue does not only occur with stationary nodes. It can occur as long as there is more
than one hop between a source and destination, with long periods of connectivity between these nodes.
In these situations, the acknowledgements are not properly propagated back to the source.

The point at which this problem occurs is based on the TTL and source buffer size. Once the creation
rate has a value where the source buffer will reach maximum capacity if bundles are only deleted when
they expire, loss starts to occur due to non-injection. More formally, loss starts to occur when

c ∗ TTL ≥ sb (6.1)

where c is the bundle creation rate and sb the buffer size in bundles. In our simulations, the TTL is 20
seconds and the buffer size is 500 bytes. As all bundles have an equal size of 5 bytes, this means it can
accommodate 100 bundles. When bundles are only deleted through TTL expiration, loss will therefore
start to occur when the bundle creation rate c ≥ 5, which we see in Figure 6.1

The acknowledgement propagation improvements mentioned in Section 3.2.3 do not remedy this
issue. In the mentioned scenarios, the intermediate node will not receive another transmission of the
delivered bundle as the source node knows the intermediate node already received that bundle. There-
fore, this calls for another improvement to the manner in which acknowledgements are propagated on
the network.

To remedy this issue, we introduce a periodic update of the KDM-vector at each node. In our
experiment, we force a KDM-vector synchronization between nodes every second. This solution is only
implemented in the static mobility model, as in the other models this issue does not occur. By forcing a
synchronization of these vectors, we improve buffer efficiency and in turn reduce the total network loss.
The cost of this is a tiny increase in bandwidth use. As this KDM-vector is nothing more than a vector
of bundle IDs and associated expiry times, the bandwidth required is very small compared to actual
bundles.

Implementing these changes, we obtain the results shown in Figure 6.2. Here we can clearly see the
effects of having an end-to-end connection available between source and destination. Our medium has
a bit rate of 100 bytes/sec; bundles sent in this simulation all have the same size of 5 bytes, resulting
in a channel capacity of 20 bundles/sec. All nodes also share the same medium, even though node
A is hidden from node C, see Figure 5.1. We also presume that in a real world scenario, each node
receives a fair share of the medium. Therefore, we conclude that each hop in the stationary model has
a capacity of 10 bundles/sec.

This means that, presuming there is an end-to-end connection, 10 bundles/sec can be transmitted
from source to destination every timeframe. Hence, as can be seen in Figure 6.2, any creation rate of
≤10 bundles/sec will have 0% loss as created bundles will immediately be transmitted to the destination
within the same timeframe. Beyond this point, every second more bundles are injected on the network
than can be transmitted. This results in the buffer gradually filling over time until it is full and all bundles
in excess of 10 each second are rejected by the buffer. More formally, in this mobility model, the total
loss is given by:

Ltotal =

{
0 if c ≤ rb
c−rb
c otherwise (6.2)

where c is the creation rate in bundles/sec, rb the network’s per-hop transmission rate in bundles/sec
and Ltotal the network’s total loss percentage.

Likewise, due to the capacity, a limited number of bundles can be transmitted during each experi-
ment, regardless of creation rate. Our buffersize is 500 bytes, which is equal to 100 bundles using the
current setup. At the end of the simulation, there will still be 90 bundles remaining in the buffer at the
end of the simulation, presuming the creation rate is larger than the transmission rate. This remainder
is the only network loss, as these are the only bundles that will not reach their destination. The network
loss can therefore be given by

Lnetwork =
sb − rb
t ∗ rb

, if c > rb (6.3)

with Lnetwork being the network loss percentage, sb the buffer size in bundles, rb the per-hop transmis-
sion rate in bundles/sec, t the total simulation time in seconds and c the creation rate in bundles/sec.
In our experiments, this results in a constant network loss of approximately 3% once c > 10. However,
it is easily shown that for t → ∞, this loss becomes 0%. As we add extra variables such as transmis-
sion priorities and varying bundlesizes to our experiments and increase the simulation time later in this
section, this loss due to left-over bundles after simulation becomes negligible.
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Figure 6.2: Loss of normal ORWAR without transmission priorities and constant bundle creation rate for
the stationary mobility model after applying periodic KDM updates

(a) (b)

Figure 6.3: Mean bundle delay in normal ORWAR without transmission priorities with deterministic
bundle creation rate (a) and Poisson distributed creation rate (b) for the stationary mobility model

When we plot the mean delay per bundle in normal ORWAR without transmission priorities using
the static mobility model, we obtain Figure 6.3. Note that in this version we have already implemented
the improvements regarding the propagation of the KDM-vector discussed previously.

This figure can again easily be explained using the characteristics of the stationary model. As stated
before, if c ≤ rb, then all created bundles can be transmitted as soon as they are created, resulting
in zero delay. For values where c > rb, the delay quickly increases as the buffer fills up and bundles
will have to wait before being transmitted, as displayed in Figure 6.3a. This delay is however upper
bounded by either the TTL of bundles or the maximum time a bundle has to stay in the buffer before
being transmitted, depending on the buffer size and throughput of the medium.

In our example, we have a buffer size of 100 bundles and a throughput of 10 bundles/sec. Presuming
c > rb, once the buffer is full at time t, it will have 90 bundles remaining at t + 1. Any bundle injected
at this time, will be transmitted after 9 seconds. As the model is stationary, no extra delay is introduced
after transmission and hence the delay’s upper bound is 9 seconds as this delay is smaller than the
bundles’ TTL. The delay in this network can therefore be given by:

D = max

(
sb − rb
rb

, TTL

)
(6.4)

with D denoting the mean delay on the network, sb the buffer size in bundles and rb the per-hop trans-
mission rate in bundles/sec.

As we replace the deterministic constant bundle creation rate with a Poisson distributed creation
rate, we observe that a delay is already introduced when c < rb. This is easily explained by the fact that
due to the use of a Poisson distribution, occasionally more bundles are injected than can be immediately
transmitted, introducing delay. However, this should not happen often enough in quick succession to fill
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(a) (b)

Figure 6.4: Loss (a) and mean delay (b) using the stationary mobility model and deterministic bundle
creation for an equal distribution of Normal and Never Delete traffic

up the buffer, hence keeping the mean delay low.

Individual retention class behaviour in combination with Normal bundles

Now that we have established the behaviour of normal ORWAR without transmission priorities using
the stationary mobility model, we can add traffic from the different retention classes and see how this
affects the behaviour. First, we compare the Normal retention class to Never Delete. As we adjust
the percentage of Never Delete bundles compared to Normal bundles, we see no change in behaviour
compared to normal ORWAR, as evidenced in Figure 6.4

In this figure, we distribute the traffic equally between the Normal and Never Delete retention classes.
This figure is representable for all possible distributions of Normal and Never Delete as the distribution
does not have any affect on the behaviour.

The explanation for this behaviour is easy. In Section 2.1.2 we have stated that Normal and Never
Delete bundles can only delete bundles with a lower marginal utility. As transmission priorities are equal
for every bundle, neither a Never Delete bundle or a Normal bundle is able to remove bundles from the
buffer. Therefore they are equal in this setup and hence the behaviour will be similar to the case where
there is only one retention class.

Differences to the original ORWAR without transmission priorities can be seen, however, once the
Keep Most Recent retention class is introduced. Figure 6.5 shows the measured loss on the network
for different distributions of Normal and Keep Most Recent traffic. Looking at Figure 6.5a, we notice
there is a big difference in loss between the Normal and Keep Most Recent classes. At a creation rate
of 14 bundles/second, the loss for Keep Most Recent traffic is already 90%, where the normal ORWAR
scenario, depicted in Figure 6.2 shows a loss of just under 30%.

This difference can be explained through the use of stream IDs. In our setup, we use 16 distinct
stream IDs, of which 4 can also be used by keep most recent classed traffic. In case any bundle is
present in the buffer matching the stream ID of a newly created bundle, created at a later time than the
existing bundle, the existing bundle is deleted. This means that with our stream ID distribution, 75%
of the Normal bundles will not be deleted through this mechanism. As there is no other way to delete
bundles upon insertion, these bundles will always arrive, similar to the original ORWAR scheme.

Likewise, for every Keep Most Recent bundle in the buffer, there is a 25% probability it will be deleted
as soon as a new Keep Most Recent bundle is inserted. This means that as soon as the creation rate
increases, the probability of being deleted from the buffer by a new bundle also increases. In addition, in
the case where there is a low percentage of Keep Most Recent bundles compared to Normal bundles,
this effect is even more prominent. There is a low probability that a Keep Most Recent bundle is able
to delete a Normal bundle, resulting in these Normal bundles being normally injected into the source
buffer. This results in the buffer filling up with bundles and therefore newly inserted Keep Most Recent
bundles may not be transmitted immediately after insertion. Instead, they are forced to wait in the buffer
until they are served. However, the longer a Keep Most Recent bundle has to wait in the buffer, the
greater the probability it will be deleted by a newer bundle.

It is this difference in stream IDs that also explains why the Normal bundles are the only type that
show a difference between total and network loss. The probability of a Keep Most Recent bundle not
being inserted into the source buffer because it is full is fairly small as it will likely find an older bundle to
delete and replace. Therefore the loss for this bundle type is mainly network loss. The Normal bundles
however, cannot delete other bundles to insert themselves and may be dropped once the buffer is full.

Page 38



(a) Normal 90%, Keep Most Recent 10% (b) Normal 50%, Keep Most Recent 50%

(c) Normal 20%, Keep Most Recent 80% (d) Keep Most Recent 100%

Figure 6.5: Measured loss using the stationary mobility model and deterministic bundle creation for
different distributions of Normal and Keep Most Recent traffic
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This occurs later than in normal ORWAR however, as the Keep Most Recent bundles delay the buffer
filling up by deleting obsolete bundles. Similarly, the network loss is higher for Normal bundles compared
to Figure 6.2, as some Normal bundles may be deleted by a Keep Most Recent bundle matching its
stream ID. When introducing Keep Most Recent bundles, 25% of the injected Normal bundles are at
risk of being deleted by a more recent Keep Most Recent bundle whereas when only using Normal
bundles, there is no way to delete bundles once they are injected if transmission priorities and bundle
sizes are kept equal.

As we see the percentage of Keep Most Recent bundles increasing, we see the loss of these bundles
decreasing and finally becoming similar to normal ORWAR, however without a distinction between total
and network loss as explained above. When the percentage of Keep Most Recent bundles increases,
the probability of transmitting Keep Most Recent bundles as soon as they are created increases. As
there is an end-to-end connection, these bundles can not be deleted at intermediate nodes as they will
not be stored at these nodes long enough. Only bundles remaining in the source buffer are at risk of
being deleted by newer bundles. There is no distinction between network and total loss anymore as the
buffer does not get the opportunity to fill up and new bundles can overwrite obsolete ones. This results
in newly created bundles not being rejected by the buffer anymore.

The total loss on the network does not change in any of the tested distributions of Normal and Keep
Most Recent traffic. This is due to the fact that the total loss on the network shows the maximum
capacity of the network. This loss is caused by more bundles being created per second than can be
transmitted, something no distribution of retention classes can change. Note that Keep Most Recent
bundles can only delete bundles older than themselves. If bundles are inserted with the same creation
time and stream ID, neither can delete the other. Their behaviour therefore is similar to the other classes
in this case. This also ensures that every second, enough bundles are inserted to use the full network
capacity if c ≥ rb.

Keep Most Recent traffic however shifts the moment of bundle deletion from the back of the buffer by
dropping new bundles to replacing bundles already in the buffer by a newer version. Through this delet-
ing of obsolete bundles, we observe that the total loss of Normal bundles decreases as the percentage
of Keep Most Recent traffic increases. This is due to the fact that the majority of Normal bundles will
not be deleted by Keep Most Recent bundles, but will also not be dropped at the source buffer due to
insufficient storage space.

Figure 6.6 shows the network delay using different distributions of these retention classes. What we
see here is that the delay greatly decreases as the percentage of Keep Most Recent bundles increases.
In addition, the delay of arriving Keep Most Recent bundles is always smaller than that of Normal
bundles. We already established that for the stationary mobility model, in normal ORWAR, the delay is
caused by bundles waiting to be transmitted by the source node. With the introduction of Keep Most
Recent bundles, the waiting period in the source buffer is reduced as obsolete bundles are removed
rather than kept in the queue. Due to this deletion of obsolete bundles, no network resources are
wasted on propagating these bundles.

Furthermore, delay can only be measured for bundles that arrive at the destination. The longer a
bundle waits in the buffer, the greater the probability it will be removed by a newer Keep Most Recent
bundle. Therefore, only bundles which got transmitted relatively quickly after insertion will arrive at the
destination and hence get their delay registered.

Retention class behaviour without Normal bundles

Lastly, we compare the Never Delete and Keep Most Recent classes with each other for different distri-
butions. From the previous results we already concluded that Never Delete behaves similar to Normal
in addition to Keep Most Recent being able to manage the buffer, reducing delay but increasing loss
as it overwrites bundles. Figure 6.7 shows the loss and Figure 6.8 the delay on the network for the
combination of Keep Most Recent and Never Delete classes.

In this figure we indeed see similar behaviour when comparing it to Figure 6.5. There are two
differences worth noting, however. First, the split between network loss and total loss occurs at a lower
creation rate when we compare figures 6.5a and 6.7a. Second, we see that the loss of Keep Most
Recent bundles is even greater when coupled with Never Delete bundles compared to Normal bundles.
In addition, the loss of Never Delete bundles becomes nearly non-existent as the percentage of Keep
Most Recent bundles increases.

Every bundle has a stream ID, and Never Delete bundles are no exception. However, while Keep
Most Recent bundles are allowed to delete obsolete Normal bundles with matching stream IDs, they are
not allowed to delete Never Delete bundles. As a result, if a Keep Most Recent bundle removes part of
the existing buffer by deleting obsolete bundles, any newly inserted Never Delete bundles will take up
that space until its TTL expires or it is delivered at the destination and an acknowledgement is received.
In the end, with either a high enough percentage of Never Delete bundles or high enough creation rate,
this means that the buffer will slowly become full with Never Delete bundles. Once the buffer is full with
this type of bundle, any newly created bundle will be dropped, resulting in the split between network and
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(a)
Normal 90%,

Keep Most Recent 10%

(b)
Normal 50%,

Keep Most Recent 50%

(c)
Normal 10%,

Keep Most Recent 90%

Figure 6.6: Measured delay using the stationary mobility model and deterministic bundle creation for
different distributions of Normal and Keep Most Recent traffic

(a) Never Delete 90%, Keep Most Recent 10% (b) Never Delete 50%, Keep Most Recent 50%

Figure 6.7: Measured loss using the stationary mobility model and deterministic bundle creation for
different distributions of Never Delete and Keep Most Recent traffic
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Figure 6.8: Mean delay using the stationary mobility model and deterministic bundle creation for an
equal distribution of Never Delete and Keep Most Recent traffic

total loss.
This phenomenon also explains why the loss of Never Delete bundles is almost non-existent as the

percentage of keep most recent bundles increases. As the Keep Most Recent bundles keep overwriting
each other, freeing space in the buffer before it is full, the Never Delete bundles will always be inserted.
As once inserted they cannot be removed before they arrive at their destination or they expire, their loss
will be close to 0%, with the only loss being the buffer remainder after the simulation is completed.

In Figure 6.8 we see similar behaviour to Figure 6.6b. The delay is however slightly higher in this
scenario than in the scenario using Normal and Keep Most Recent bundles. Again, this is explained
by the fact Keep Most Recent bundles are not allowed to delete Never Delete bundles. The buffer will
therefore not be cleared as much as in the case where Normal bundles are used instead of Never Delete
bundles. This increases the delay as bundles have to wait in the buffer for a longer time before being
transmitted.

6.1.2 Linear mobility model

Introducing mobility to our simulations will show the influence of intermittent connectivity on our retention
classes. In this scenario, traditional transport protocols will cease to function effectively as there often
will not be an end-to-end connection between nodes A and C. Our goals are still similar to the stationary
model however, in that we aim to analyse the basic behaviour of ORWAR and the influence of our
retention classes on this behaviour.

Basic ORWAR performance

As we change the mobility model from the stationary model to the linear mobility model, we observe
some important changes in behaviour. First, there is a change in the observed loss compared to the
stationary model, as shown in Figure 6.9. In this figure we notice that a total loss > 0% occurs at an
earlier moment than in the stationary model. Rather than loss occurring once the creation rate exceeds
the transmission rate, bundles are dropped before network injection at an earlier time. We know they
are dropped before injection as the total loss increases while the network loss does not.

This behaviour is caused by the movement of node B and the effect this has on the propagation
of acknowledgements and subsequent bundle removal from the buffer. This model also illustrates the
need for a retention time for acknowledgements as discussed in Section 2.3. The retention time in
effect serves the purpose of adding a delay between a time-out and retransmission of a bundle. What
happens here is that it takes a longer time before node A can receive an acknowledgement for its
transmitted bundles through the KDM-vector. This in turn results in bundles staying in the source buffer
for a longer time, filling up the buffer.

We can easily explain this through an example scenario. In our model, node B stays in range of
either node A or C for eight seconds. Presume a bundle bX is inserted at node A just as node B moves
out of range. In addition, we assume that at this point of time, the buffer at node A is completely empty.
As node B moves out of range, bX will be placed at the front of the buffer. It now takes eight seconds
for B to move back into A’s transmission range. At this point, bX will be transmitted to B. However, in
contrast to the stationary model, there is now a delay before the bundle is transmitted to C, as B needs
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Figure 6.9: Loss in normal ORWAR without transmission priorities and constant bundle creation rate for
the linear mobility model

to move back into C’s transmission range. Therefore, it takes another eight seconds before bX is finally
delivered to node C.

Now here is where the “unnecessary” occupying of node A’s buffer by bX occurs. Before node A

can receive the acknowledgement that bX has been successfully delivered and therefore clear it from
its buffer, it has to wait yet another eight seconds before node B moves within range again. Adding
all these delays together, this means that it takes 24 seconds between bX ’s creation and a received
acknowledgement for this bundle. However, its TTL is only 20 seconds and it will therefore be deleted
before an acknowledgement can arrive.

We can see from this situation that even with a low creation rate, bundles can remain in the buffer
for the complete duration of their TTL, depending on the interval at which the source node is serviced
by other nodes, regardless of whether these bundles are actually delivered to the destination. As a
result, the source buffer can fill up at a lower load than in the stationary model, where the only factor is
the network’s transmission rate. Consequentially, this means that the source buffer may need to drop
incoming bundles sooner than in the stationary model. The storage space reserved for bundles should
therefore be calibrated based on the network connectivity, including the rate at which nodes are serviced
by others.

This situation also displays the need for the aforementioned retention time τ . In this example we
notice that while the bundle is successfully delivered, the acknowledgement will arrive too late. It takes
node B 24 seconds in total for a round-trip to deliver the acknowledgement of bX to node A, while its
TTL is only 20 seconds. Without the retention time, this acknowledgement will be deleted from the
KDM-vector before node B reaches node A again, as in this case acknowledgements are only stored for
the duration of the TTL of the corresponding bundle. Without the retention time, node A might attempt
to retransmit a successfully delivered bundle, wasting resources. Of course this situation only arises if
DTN is configured to retransmit bundles it has not received an acknowledgement for.

Note that just adding this retention time to the KDM-vector is insufficient. In the bundle protocol spec-
ification [5], the bundle ID is formed by the source EID and creation timestamp rather than a separate
field. A retransmission will therefore have a different ID compared to the original bundle. This retention
time should therefore be integrated at the source node as well, though the bundle itself may be deleted
already in accordance to its TTL. This way, the source node should be able to receive an acknowledge-
ment for a successfully delivered bundle, without increasing the TTL of bundles, to prevent unnecessary
retransmissions. In other words, not only bundle transmission, but also acknowledgement-propagation
should be delay tolerant. To simplify our simulations, we do not simulate retransmissions, however this
situation does show a point of concern which can be detrimental to performance.

This situation therefore leads us to some conclusions based on the network density/mobility. The
sparser connected a network is in both density and mobility, the larger the storage buffer of a node
should be. In addition, the combination of TTL and retention time of a bundle should be larger in these
networks. These parameters should be chosen in such a way as to accommodate the round trip of a
bundle.

The mean delay in the linear model is also different from the stationary model, as evidenced in Fig-
ure 6.10. In the stationary model, the delay is determined by the buffersize, creation rate, transmission
rate and TTL of bundles. In summary, as soon as the creation rate exceeds the transmission rate, the
delay is upper bound by either the time it takes for a bundle to reach the front of the buffer or the TTL of
the bundle, whichever is lower. This upper bound is reached shortly after the creation rate exceeds the
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Figure 6.10: Delay in normal ORWAR without transmission priorities and constant bundle creation rate
for the linear mobility model

transmission rate. In the linear and non-linear mobility models, the movement of node B plays a central
part in the delay.

When mobility for node B is introduced, bundles cannot be directly transmitted from source to desti-
nation anymore, except when node B is directly between nodes A and C. In all other situations, bundles
transmitted from node A to node B need to wait before node B gets within transmission range of node
C before they can be transmitted to their destination. Likewise, bundles injected at node A need to wait
before node B moves within range before they can be transmitted. This introduces extra delay as node
A waits for node B to move within range.

However, the introduction of mobility also means that node B is either just a receiver or just a trans-
mitter, depending on which node it is associated with. This is in contrast to the stationary model where
at each timeslot node B performed both roles: receiving from node A and transmitting to node C in the
same timeslot. This results in the full network transmission capacity of 20 bundles/sec being reached
for a single hop if node B is associated with only one other node.

Whether the source buffer completely fills up is therefore dependent on a couple of factors. The first
factor is the buffersize of both nodes A and B. Whereas in the stationary model the buffersize of node
B is not important as bundles get immediately forwarded, now it has to be big enough to accommodate
all the bundles which node A transmits before it moves on to node C. In addition, node A needs to be
able to accommodate the influx of bundles while node B is out of range. The advantage of this model
however, is that as soon as node B is within range of node A again, it will receive bundles from node A’s
buffer at the channel’s maximum transmission rate, in our case 20 bundles/sec. Node A however has
to wait another complete round-trip of node B before it receives acknowledgements for these bundles,
clearing them from the buffer, as explained earlier.

Another factor of course is the TTL of a bundle. If the bundle’s TTL ∗ c < buffersize, with c denoting
the bundle creation rate, node A’s buffer will never fill up as bundles will time-out before the maximum
capacity is reached.

The final factor is how long node B stays out of range of node A and within range of node C. In our
model, we have chosen equal durations for both of them for simplicity. The longer node B stays away
from node A, the more bundles get created at node A with nowhere to go. This will result in either the
buffer filling up and new bundles being dropped or a situation where bundles will reach their TTL and
get deleted if the buffersize is adequately large. In addition, node B needs enough time within node C’s
range so that it can transmit all the bundles it has received from node A. Should this time in node C’s
range be too little, it will require several round-trips to deliver all the bundles from node A. This in turn
will greatly increase the delay and may also affect the loss as its buffer will not be empty upon its return
to node A. Bundles may also expire more often in this situation due to the longer delay.

Due to these factors, the delay shows a more gradual increase over time before reaching its upper
bound. This upper bound is determined by the average waiting time of a bundle residing at node A before
node B moves within range and the rate at which node B can transmit bundles to node C. Specifically,
whether node B can transmit its complete buffer to node C in a single trip.

What we also see is that the delay does not monotonously increase but has two more or less stable
levels, one level with a delay of roughly 8 seconds for 3 ≤ c ≤ 6, and one level with a delay of roughly
10.5 seconds for c ≥ 10. These levels are caused by the mobility of node B. The delay is always
measured by the receiving node by comparing the creation timestamp with the delivery timestamp. This
means that even though bundles may expire at the source, their delivery delay is still measured.
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When node B moves between nodes A and C, there is a small timeframe where it is in range of both
nodes and an end-to-end connection exists. This also means that at this point the network behaves
as in the stationary model, with a transmission rate of 10 bundles/sec from node A to node C. If less
than 10 bundles have been created while node B was out of node A’s transmission range, all nodes can
immediately be transmitted when it moves back into range. This occurs at c = 1, resulting in 8 bundles
being created and therefore an average delay of 4.5 seconds.

As c gets larger, delay is added as bundles need to wait for node B to move within range of C again.
As bundles are served in a FIFO manner, the average waiting time will be roughly equal to the time it
takes for node B to move within range of either node A or node C again. In other words, the delay will be
around 8 seconds. Minor fluctuations are possible as node B’s transmission speed is increased when
it is in range of only one other node, meaning it might take a second more or less to empty its buffer
contents depending on the exact number of bundles contained when entering node C’s range.

Delay starts to increase even further if c is so high that within a single round-trip of node B, loss
starts to occur due to bundles not being inserted. However, node B is still able to transmit its complete
buffer contents when it is within range of node C. In this scenario, the average delay will increase as
bundles which would normally have a lower delay due to being inserted later will not be inserted at
all as the buffer will be full. The bundles which are actually inserted on the network and subsequently
delivered are therefore the ones that have to wait the longest for their delivery, increasing the average
delay. Hence why we see the delay increasing once c > sb/RTTB

, with sb the buffer size in bundles and
RTTB the round-trip time of node B. In our case this evaluates to c > 100/16 = 6.25.

Retention class influence

Similar to the stationary model, we see no change in behaviour between Normal and Never Delete
bundles. Again, as transmission priority is identical and neither is allowed to delete the other from the
buffer, behaviour is similar.

We do see some change between Keep Most Recent and Normal bundles, however, compared to
the stationary model. As shown in Figure 6.11, we see some similarities to the stationary model when
the Normal bundles outweigh the Keep Most Recent bundles. The Keep Most Recent bundles still show
a larger loss and the Normal bundles still show a split between network and total loss. However, as
we increase the percentage of Keep Most Recent bundles, the behaviour changes compared to the
stationary model. Due to the delay of bundles being transmitted between nodes A and C, the probability
of an obsolete bundle being overwritten by a newer one increases rapidly. This will free up space for
Normal bundles, which will rarely get dropped due to a full buffer. The only loss that occurs for Normal
bundles is the loss introduced by newer Keep Most Recent bundles matching its stream ID. Therefore,
the loss for both these classes will reach a stable level at even a low creation rate. This rate is near
95% for Keep Most Recent bundles and 20% for Normal bundles. These metrics depend on the mobility
of node B. When node B makes more frequent, shorter duration round trips, the loss should be lower.
Bundles will be stored for a shorter time and therefore are at a lower risk of being deleted by a newer
Keep Most Recent bundle.

What is also noticeable, is that even the loss for Normal bundles is already more than 0% even at
a low creation rate. Again, this is due to bundles not being propagated fast enough due to node B’s
mobility. This means that even at a low creation rate, channel resources may be used for bundles which
will get deleted at a later point. One of the reasons to use ORWAR is its efficient use of the limited
medium resources. Therefore, the proportion of Keep Most Recent bundles in regard to the total traffic
load should be carefully moderated to prevent this behaviour from occurring too much. Especially at a
low creation rate and when there are longer periods between topology changes, the number of Keep
Most Recent bundles should be limited.

In terms of delay, we observe that as long as the percentage of Keep Most Recent bundles 50% ≤
%KMR < 100%, the delay of the Keep Most Recent bundles stays relatively stable for all values of the
bundle creation rate c, while the delay of Normal bundles increases as c increases. Figure 6.12 shows
this delay for different distributions of Keep Most Recent and Normal bundles. This is caused by Keep
Most Recent bundles constantly deleting older Keep Most Recent bundles due to the delay introduced by
node B’s mobility. When bundles are constantly deleted by newer copies, only the most recent injected
bundles will reach the final destination, resulting in a stable delay regardless of the creation rate. The
Normal bundles will still increase in delay as the majority of these will still not be deleted by Keep Most
Recent bundles, therefore they will have to wait in the buffer before the older bundles are transmitted. It
is also for this reason why there is still a delay for Keep Most Recent bundles, as they will have to wait
for these earlier inserted Normal bundles to be transmitted as well. When all bundles are classified as
Keep Most Recent bundles, we see a rapid decline in delay as the creation rate increases, as at a high
enough c, every timeslot the complete buffer will be wiped and replaced by the newly created bundles,
creating a bound on delay. The only bundles that will arrive in this scenario are the ones generated
when node B is right between nodes A and C, resulting in an end-to-end connection. We also see this
bound differs very little from the stationary mobility model.
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(a)
Normal 90%,

Keep Most Recent 10%

(b)
Normal 30%,

Keep Most Recent 70%

(c)
Normal 0%,

Keep Most Recent 100%

Figure 6.11: Measured loss using the linear mobility model and deterministic bundle creation for different
distributions of Normal and Keep Most Recent traffic
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(a) Normal 80%, Keep Most Recent 20% (b) Normal 50%, Keep Most Recent 50%

(c) Normal 30%, Keep Most Recent 70% (d) Normal 0%, Keep Most Recent 100%

Figure 6.12: Measured delay using the linear mobility model and deterministic bundle creation for dif-
ferent distributions of Normal and Keep Most Recent traffic
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(a) Never Delete 80%, Keep Most Recent 20% (b) Never Delete 20%, Keep Most Recent 80%

Figure 6.13: Measured loss using the linear mobility model and deterministic bundle creation for different
distributions of Never Delete and Keep Most Recent traffic

Comparing the Keep Most Recent and Never Delete bundles, we again see similar behaviour as
comparing the Normal and Keep Most Recent bundles, shown in Figure 6.13. Similar to the stationary
model, the Never Delete bundles show no network loss whereas the Normal bundles do show network
loss. Different from the stationary model, however, is that in this case, the loss of the Keep Most Recent
bundles does not increase when comparing similar distributions of Keep Most Recent and Never Delete
bundles to Keep Most Recent and Normal bundles. In this case, less medium resources are wasted
for unnecessary transmissions compared to the distribution with only Normal and Keep Most Recent
bundles. The delay shows similar behaviour to the distributions of Keep Most Recent and Normal
bundles.

6.1.3 Non-linear mobility model

The last model we analyse is the non-linear mobility model. The ORWAR protocol reverts to best-effort
transmissions once it is in contact with a node for which its calculated contact window has already
expired. In the case of best-effort transmission, ORWAR ceases to try to reorder its transmission buffer
based on the utility-per-bit and will start transmitting all bundles in the buffer in sequence. When we only
use retention priorities and an uniform size, bundles are transmitted in a FIFO manner as the utility-per-
bit is equal for all bundles. This also means that best-effort transmission is similar to ORWAR’s ordered
transmission using only retention classes. The contact windows between the nodes is kept equal in
both the linear and non-linear mobility models. As a result, the behaviour in the non-linear model is
equal to the linear model when we use bundles of equal size and transmission priority.

6.2 Retention classes with transmission priorities

6.2.1 Stationary model

Now that we have a basic comparison of the influences of the different retention classes on network
metrics, it is time to observe what happens when transmission priorities are added. Bundlesizes are still
kept equal, therefore a bundle’s transmission priority is the only factor influencing its place in the trans-
mission buffer; high priority bundles will always be transmitted before low priority ones. The addition
of these priorities however, allows bundles to delete bundles of a lower priority in case the buffer fills
up. In addition, unlike the previous scenario, bundles are not transmitted in an absolute FIFO manner
anymore. Within each transmission priority however, FIFO scheduling still occurs as bundle sizes are
kept equal and thus the marginal utility within a priority is equal for all bundles.

The behaviour shown when adding transmission priorities will already be close to normal ORWAR,
though there is a limited number of marginal utilities, resulting in little variation in bundle scheduling
as the lowest priority bundles will always be transmitted last. In turn, this may result in starvation of
low priority bundles. The bundlesize is kept equal however for simplicity. In these experiments we
analyse what influence the combination of priority scheduling and retention classes has on network
performance. While we used a deterministic approach in the previous section to determine behaviour,
we now use Poisson distributed creation rates for more realistic results.
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(a) Loss per retention class (b) Loss per transmission priority

Figure 6.14: Loss in normal ORWAR with transmission priorities and constant bundle size for the sta-
tionary mobility model

Basic ORWAR performance using constant bundle sizes

In Figure 6.14 the loss in normal ORWAR with transmission priorities in the stationary mobility model
is shown. When we compare Figures 6.2 and 6.14a we notice some differences introduced by the
transmission priorities. While loss only starts to occur at a creation rate ≥ 10 similar to the case without
transmission priorities, we also notice that the split between total loss and network loss occurs at a
later time in Figure 6.14a. At first, the total loss is equal to the network loss as low priority bundles get
replaced by higher priority bundles. This ensures there always being enough space in the buffer for new
bundles to be injected. New bundles will therefore not get dropped before insertion, hence the total loss
equalling the network loss. This behaviour is also evidenced in Figure 6.14b where it is shown that the
first loss that occurs is only due to lowest priority bundles being overwritten.

This behaviour continues until the loss of Priority 1 bundles reaches 100%. At this point, the total
loss starts exceeding the network loss as these bundles will be dropped before injection once the buffer
is full. We also start seeing loss of Priority 2 bundles at this point. For creation rates ≥ 13, Priority
1 bundles will be inserted at first, but never transmitted due to the limited bandwidth. Higher priority
bundles will be inserted in front of these bundles, effectively starving the already existing low priority
bundles. After a while, the tail of the buffer will be full of Priority 1 bundles. Newly generated Priority
1 bundles will be dropped and existing bundles will be replaced by higher priority bundles as they are
generated. Therefore, the difference between total loss and network loss is based on the number of
Priority 1 bundles dropped.

We see this behaviour repeat itself at a creation rate ≥ 20, when in addition to Priority 1, also
Priority 2 bundles are not delivered anymore and loss occurs of Priority 3 bundles. What is noticeable
here however is the slight drop in network loss while the total loss increases. At a creation rate of
20 bundles/sec, on average there will be 5 bundles generated per second of each priority. We have
already established that the effective transmission rate at node A equals 10 bundles/sec. This means
that after a while, the first 10 bundles in the buffer will be of transmission Priorities 3 and 4, with the last
90 being of transmission Priority 2. Once this stage is reached, the order in which bundles are inserted
determine whether bundles are dropped before injection or replaced after injection. Low priority bundles
may be inserted, but will be immediately replaced by higher priority bundles. In addition, Priority 1 and
2 bundles are also at a high risk of being dropped as they are not allowed to replace existing bundles.
The network loss metric will therefore be slightly lower as less bundles will be actually injected, skewing
this value. A similar drop will occur as the creation rate ≥ 40, when also no Priority 3 bundles will be
transmitted anymore and loss of Priority 4 bundles will occur.

The delay in this scenario is shown in Figure 6.15. Comparing this to the version without transmis-
sion priorities shown in Figure 6.3, we notice that the mean delay is significantly lower when transmis-
sion priorities are introduced. As evidenced in Figure 6.15b, however, this reduced mean delay comes
at the cost of a very high delay for low transmission priorities. The dips in the mean delay coincide with
the points where the total loss of a transmission priority nears 100%. At this point, the delay of these
priorities cannot be measured and therefore the measured delay is only based on the higher priority
bundles which will in general be transmitted with a lower delay.

Once the creation rate gets high enough however, the network will only be able to transmit Priority 4
bundles. As bundlesizes are kept equal, this means that the situation reverts to that of equal transmis-
sion priority and equal bundle size. In other words, the delay will reach its maximum value of 9 seconds
as explained in Section 6.1.1.

Page 49



(a) (b)

Figure 6.15: Mean delay in normal ORWAR with transmission priorities and constant bundle size for the
stationary mobility model

What can also be seen in this situation, is that the higher the transmission priority, the longer the
delay stays at its upper bound defined by the bundle’s TTL. As long as the loss is not 100%, the delay
can be measured. Higher priority bundles will reach the 100% loss rate at a slower pace, as bundles are
deleted back-to-front. This means newly inserted low-priority bundles get deleted first if space has to
be freed in the buffer. The higher priority a bundle has, the less bundles are allowed to delete it from the
buffer as equal priorities cannot remove one another from the buffer. High priority bundles may therefore
be transmitted with a high delay. However, as long as there are not enough higher priority bundles to
delete or starve them from the buffer, they will be transmitted eventually. Once the creation rate is high
enough such that only Priority 4 bundles are inserted, the mean delay will again be upper bound by 9
seconds, similar to Figure 6.3, as now all inserted bundles will have equal transmission priorities again.

Never Delete bundles in combination with Normal bundles

In contrast to the previous cases where we do not take transmission priorities in account, the Never
Delete retention class shows different behaviour to the Normal retention class when transmission pri-
orities are involved. The loss and delay statistics for a network only transmitting Never Delete bundles
are shown in Figure 6.16. The total loss is again similar to the Normal retention classes. This is not
surprising as the total loss is determined by the network capacity, in terms of transmission capacity,
buffer capacity and the total number of bundles generated.

The network loss however is lower and does not increase as the load increases when we transmit
only Never Delete bundles. Never Delete bundles show similar behaviour to the case where we only
tested retention classes. In both cases, regardless of transmission priority, these bundles are not al-
lowed to remove one another from the buffer. This means that as long as a bundle is inserted on the
network, it will never be deleted by another bundle. This means that even high priority bundles may get
dropped before insertion if the buffer is full.

The network loss, while at a stable level, is still higher than the network loss measured in Figures 6.2
and 6.4. In these previous measurements, the network loss was only caused by the bundles remaining
in the buffer after our simulations have completed, meaning it would be 0% as t → ∞. In this case
however, there is some actual network loss occurring during the simulation.

While never delete bundles may not be allowed to delete one another upon insertion, the transmis-
sion priorities still lead to bundles being ordered within the buffer. Bundles with a low priority can still
be inserted presuming there is enough space in the buffer, however they will never be transmitted when
the creation rate is high. As a result of this, these bundles will suffer from starvation and get deleted
anyway as their TTL expires. This is evidenced in Figure 6.16b, where we observe the lowest priority
bundles suffering from 100% loss.

In contrast to the Normal retention class, we see that Priority 2 bundles do not suffer a similar
network loss increase as Priority 1 reaches 100% loss. Priority 1 bundles will always get inserted if
there is free space in the buffer, but they will always subsequently starve. However, the time that they
are still in the buffer, they will occupy storage space and cannot be removed by higher priority bundles.
As the buffer fills up, new bundles need to wait for these bundles to starve before they can be inserted,
regardless of transmission priority. This limits the insertion rate of new bundles once the buffer is full.
As a result, there will never be enough high priority bundles inserted for Priority 2 bundles to suffer
from similar starvation. In addition, as bundles of the same priority are served in a FIFO manner, any
new Priority 2 bundles inserted reduce the waiting time of the oldest priority 2 bundles by reducing the
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Figure 6.16: Loss in ORWAR with transmission priorities and constant bundle size using only Never
Delete retention for the stationary mobility model

(a) Never Delete 50%, Normal 50% (b) Never Delete 80%, Normal 20%

Figure 6.17: Loss per transmission priority in ORWAR with constant bundle size, using the stationary
mobility model for different combinations of Never Delete and Normal bundles

number of available slots in the buffer for higher priority bundles. Should the buffersize increase and/or
the transmission rate decrease, we will see similar starvation for other priorities.

In Figure 6.17 we see that increasing the percentage of Never Delete traffic decreases the loss of
lower transmission priority bundles as the bundle creation rate c increases, with the exception of Priority
1 bundles. Especially the network loss is greatly reduced. However, this behaviour comes at the cost
of increased loss for higher priority bundles and most loss being caused by bundles not being inserted
on the network. As soon as Priority 1 bundles reach 100% loss, all other priorities start to show loss as
they will not be inserted in the buffer. This is detrimental for the performance of high-priority bundles as
they will now suffer from loss at a significantly lower creation rate.

The mean delay using Never Delete bundles is displayed in Figure 6.18. There is a significant
difference whether or not Normal bundles are inserted as well. When 100% of the bundles is Never
Delete, we notice a very low mean delay compared to normal ORWAR. In addition, there are always
some Priority 1 bundles still received by the destination, as evidenced by the delay being unequal to
0. The network loss for these bundles is still very high however and this delay is likely measured from
just a few bundles. As soon as we introduce Normal bundles as well, we see that these lowest priority
bundles will suffer from 100% loss at a high enough c as some of these low priority bundles may now
be overwritten by higher priority bundles.

When comparing Figures 6.18c and 6.18d, we notice that increasing the percentage of Never Delete
bundles created reduces the mean delay in addition to reducing the delay of Priority 2 and Priority 3
bundles. This is caused by these bundles not being starved or overwritten and always being served
eventually. The cost for this reduced delay however is the increased loss for these priorities caused
by bundles dropped before they are inserted in the source buffer. Therefore we can conclude that if
bundles are inserted in the source buffer, they are transmitted with a relatively low delay, however less
bundles are actually inserted compared to normal ORWAR without retention classes.
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Figure 6.18: Mean delay in ORWAR with transmission priorities and constant bundle size for the sta-
tionary mobility model, using varying distributions of Never Delete: 100%(a and b), 50% (c) and 80%
(d)
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(a) Keep Most Recent 100%

(b) Keep Most Recent 100% (c) Keep Most Recent 40%, Normal 60%

Figure 6.19: Loss in ORWAR with transmission priorities and constant bundle size, using the stationary
mobility model and Keep Most Recent bundles

Keep Most Recent bundles in combination with Normal bundles

Next, we analyse the loss and delay for the combination of Keep Most Recent and Normal bundles.
Figure 6.19 shows the loss for different percentages of Keep Most Recent traffic. In figures 6.19a
and 6.19b the loss is shown when all traffic is Keep Most Recent traffic. Again we see the same values
for total loss compared to Normal and Never Delete traffic when c ≥ 13 as it is linked to the network’s
capacity. At this point, in the Normal and Never Delete scenarios, the total loss starts to differ from
network loss. What is different in the Keep Most Recent traffic though, is that loss starts occurring at a
much earlier moment. This is mainly due to the Poisson distributed nature of the generated traffic. At
some times the inserted traffic is larger than the number of bundles that can be served by the network
even at a c < rb. When this happens, the bundles left behind may be removed by newly inserted
bundles.

Similar to the case where we do not add transmission priorities, all the loss occurring in Keep Most
Recent bundles is network loss. Bundles which are not immediately transmitted will likely be removed
and replaced by a newer bundle before the buffer is full. Newly created bundles will therefore never be
dropped before insertion.

What we also notice is that it requires a larger creation rate before low priority bundles reach 100%
loss compared to the Normal and Never Delete retention classes. High priority bundles however, show
loss at a smaller creation rate than in normal ORWAR. This is due to the fact that even the low priorities
can remove high priority bundles if they belong to the same stream ID. Still, these high priority bundles
will show loss at a higher creation rate than low priority bundles, as due to their priority they rarely stay
in the buffer longer than needed. Still, due to replacing bundles with a higher priority when available,
this allows lower priority bundles to arrive at the destination for higher values of c. As we can see in
Figure 6.19c however, this behaviour for network loss does not require a high percentage of Keep Most
Recent bundles and varies vary little as it increases.

The mean delay of bundles when we add Keep Most Recent traffic is reduced compared to normal
ORWAR, as shown in Figure 6.20. The explanation for this is twofold. First of all, as we have explained in
the previous section, Keep Most Recent bundles need to be delivered with low delay to their destination,
otherwise they will get replaced by more recent bundles. We can see this in Figure 6.20a as the delay is
extremely low when all bundles are Keep Most Recent bundles. Second, this also reduces the delay for
Normal bundles. As Keep Most Recent bundles can be removed by newer versions regardless of their
transmission priority, this allows Normal bundles with unaffected stream IDs to move up in the queue,
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(a)
Keep Most Recent 100%

(b)
Keep Most Recent 80%,

Normal 20%

(c)
Keep Most Recent 50%,

Normal 50%

Figure 6.20: Delay in ORWAR with transmission priorities and constant bundle size, using the stationary
mobility model and Keep Most Recent bundles

allowing them to be transmitted with reduced delay. It is important to note here that Keep Most Recent
bundles are not inserted at the location where an obsolete bundle was removed as bundles are served in
a FIFO manner within each transmission priority and one Keep Most Recent bundle may delete multiple
obsolete bundles. The location where a Keep Most Recent bundle is inserted is therefore dependent
on its transmission priority. The cost for this reduced delay is the increased bundle loss, even of high
priority bundles.

Keep Most Recent bundles in combination with Never Delete bundles

When we analyse the combination of Keep Most Recent and Never Delete bundles, we see little differ-
ence in the aforementioned behaviour. In terms of loss, it is very similar to a distribution of Normal and
Never Delete bundles, however loss of high priority bundles occurs at a lower value of c and it takes
longer for low priority bundles to reach 100% loss, in accordance to the behaviour of Keep Most Recent
bundles.

In terms of delay, the delay per retention priority is comparable to the combination of Keep Most
Recent and Normal bundles as the Keep Most Recent bundles will also reduce the delay of Never
Delete bundles in a similar way it reduces delay for Normal bundles. The delay per transmission priority
on the other hand is comparable to the combination of Normal and Never Delete bundles as Priority 2
bundles will rarely suffer from starvation, even though Priority 1 bundles may still suffer from starvation
due to Never Delete bundles not being removed by either a higher priority or a Keep Most Recent bundle
matching its stream ID. The loss and delay for the combination of Keep Most Recent and Never Delete
traffic is shown in Figure 6.21

6.2.2 Linear mobility model

Basic ORWAR performance

Analogous to Section 6.1.2, we analyse the influence of mobility on our combination of transmission
priority and retention classes. When introducing linear mobility, the loss in normal ORWAR changes to
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Figure 6.21: Loss and delay in ORWAR for an equal distribution of Keep Most Recent and Never Delete
bundles with transmission priorities and constant bundle size, using the stationary mobility model

the loss shown in Figure 6.22. Immediately noticeable is the significant increase in total loss compared
to Figure 6.14. The total loss in Figure 6.22 is comparable to that in Figure 6.9. Furthermore, the
network loss shows different behaviour compared to Figure 6.14, with no dips in network loss showing
once mobility is introduced. In addition, loss starts occurring for high priority bundles at a lower creation
rate than in the stationary model.

This behaviour can be explained by the phenomenon we observed in the previous section when
confronted with mobility. As node B moves out of range of node A, A’s buffer will start to fill up. In
addition, it will still have the bundles in its buffer it just transmitted to node B. It will have to wait for node
B to return to its transmission range so it can receive acknowledgements for these bundles. Compared
to the stationary model, in this model node A’s buffer will fill up at a higher rate.

As soon as the buffer starts to fill up, high priority bundles will start to replace low priority bundles.
However, as high priority bundles may still occupy the buffer before either their TTL expires or node
B finishes its round-trip between nodes A and C, the creation rate threshold for each priority before it
suffers loss will be lower. The dips in network also do not occur as most loss can be accredited to
bundles being replaced by higher priority bundles or dropped before insertion rather than starvation. A
bundle’s TTL may expire at node A, but these bundles will generally still have been delivered by node B.
This situation will only occur if the bundle’s priority is too high to be replaced by newer bundles and it is
still waiting on node B to return with an acknowledgement. In this case, the TTL expiring does not count
as loss.

The delay for this model is shown in Figure 6.23. This delay shows different behaviour compared
to the stationary model shown in Figure 6.15. In the stationary model, delay would only occur if the
creation rate was high enough for loss to occur. In this case, not all generated bundles per second were
able to be transmitted immediately after creation, resulting in these bundles having to wait until they
could get served. This delay was exclusive for the bundles with a transmission priority suffering some
loss, higher priorities would still have no delay.

Using the linear mobility model however, every bundle will suffer some delay as they wait for node B

to move within transmission range and deliver them, regardless of priority. The only exception are those
bundles transmitted when node B is exactly between nodes A and C, allowing end-to-end connectivity
after it has just visited node C and c < 10. In this situation, node B’s buffer will be empty as it just
delivered everything to node C. At this moment, the network will temporarily behave as in the stationary
mobility model. The delay in the linear model will average around 9 seconds as that is the time it takes
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Figure 6.22: Loss in normal ORWAR with transmission priorities and constant bundlesize using the
linear mobility model

(a) (b)

Figure 6.23: Mean delay in normal ORWAR with transmission priorities and constant bundlesize using
the linear mobility model
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Figure 6.24: Loss in ORWAR transmitting only Never Delete bundles with transmission priorities and
constant bundlesize using the linear mobility model

before node B moves out of node A’s transmission range again and starts transmitting bundles to node
C. Depending on the number of bundles in B’s buffer as it enters node C’s transmission range, it may not
be able to completely empty its buffer as soon as it enters node C’s range. Lower priority bundles may
then suffer from additional delay as they have to wait for their turn to be transmitted to node C.

In Figure 6.23, we also notice a peak in delay for the different transmission priorities after which it
will temporarily decrease before rising again. These peaks coincide with the starting occurrence of loss
for these priorities. The reduced delay after this peak is caused by only recent bundles for this priority
arriving as older lower-priority bundles will be replaced by newer higher-priority bundles. The valley
following this peak is coinciding at the point where network loss starts to seem to be unchanged for a
while. These points occur where due to the mobility of node B, the increased load does not increase
network loss for that specific priority. Due to the transmission priorities being uniformly distributed,
increasing c may not significantly increase the number of higher priority bundles created relative to a
specific transmission priority while node B is making a round-trip. As long as no higher-priority bundles
are inserted, the network loss remains relatively unchanged. This also explains why this “stable” loss
level spans a larger interval of c as the transmission priority increases. However, in this situation the few
lower-priority bundles that do get transmitted, will be well at the back of node B’s transmission buffer,
increasing their delay again as they will have to await their turn to be transmitted to node C.

Behaviour of Never Delete bundles

For Never Delete bundles, we notice that the network delay is smaller than in the stationary model,
evidenced in Figure 6.24. What is also noticeable here, is how the network loss for all priorities is lower
than the stationary model with only Never Delete bundles as well. In the stationary model, bundles
would be removed from node A as it received a periodic KDM-vector update. This would mean that
every second, it would clear the delivered bundles from its buffer. In turn, as c > rb, this would mean
that while the buffer fills up, higher priority bundles would be inserted and transmitted before lower
priority bundles. In the end this would lead to starvation of low-priority bundles as they would never
receive a transmission opportunity.

In the linear model however, bundles will only be removed through the KDM-vector once node B fin-
ishes its round-trip between the two other nodes. When all bundles are classified as Never Delete, only
the bundle’s TTL and acknowledgements can remove a bundle. This means that low priority bundles
also may receive a transmission opportunity as they are not constantly pre-empted by higher priority
bundles as node A’s buffer will have finite capacity.

We also notice there is a slight window where the network loss > 0%. To explain this loss, we need
to be aware of the fact that node A’s buffer will still get new bundles injected as node B is out of its range,
presuming there is storage space left. Loss starts occurring when node A’s buffersize is too small to
accommodate all bundles created during one round-trip of node B. In our simulation, node B takes 16
seconds to finish one round-trip between the nodes; 8 seconds in node A’s range, and 8 in node C’s.
In a deterministic model, this means loss will start to occur at c ≥ 100/16 ≈ 6 bundles/sec. We see
this loss occurring at an earlier moment due to our insertion rate being a Poisson process rather than
deterministic.

Still, while this explains why loss occurs at all, it does not explain why network loss is occurring
for Never Delete bundles. To explain this, we need to explain why at higher loads, this network loss
disappears. If node A’s buffer is not completely full of bundles before node B moves out of range,
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Figure 6.25: Mean delay in ORWAR transmitting only Never Delete bundles with transmission priorities
and constant bundlesize using the linear mobility model

bundles will be injected which have to wait until node B moves back into range of node A and then back
to node C again before they can be delivered. However, if node A’s buffer is full as soon as node B moves
out of range, it means that all of these bundles will be delivered as node B’s buffersize is equal to that
of node A. Newly created bundles will be dropped while node B is making its deliveries as the buffer is
already full. As the time spent within range of node A is 8 seconds, the network loss will disappear at
c ≥ 100/8 = 12.5 bundles/sec. Again, due to using a Poisson distribution, the values from our simulation
differ.

The network loss before this point is explained due to bundles having to wait longer before they
can be transmitted to node C. In a worst-case scenario, it takes a bundle 16 seconds before it can be
transmitted to the destination. This occurs when a bundle is inserted just as node B leaves node A’s
range. If c is high enough such that enough bundles can be generated to fill > 80% of node B’s buffer
in one round-trip in our experiments, low priority bundles may not be delivered in time. To illustrate this
behaviour, presume we have a bundle bX , with Priority 1 and injected just as node B moves out of range.
It will then have to wait at least 16 seconds before it can be transmitted to node C. Our transmission rate
is 20 bundles/sec, which means that if a bundle is in the last 20% of node B’s buffer, it takes 5 seconds
from entering node C’s range until actually transmitting the bundle. If c is high enough, bX can be in this
20% segment of the buffer as it has low priority. In this case, it will have to wait 16 seconds to get within
node C’s range and then wait another 5 seconds before it is transmitted by node B. However, this means
the total delay will be 16 + 5 = 21 seconds, which is larger than the TTL of this bundle, resulting in it
expiring before delivery. Once bundles can only be inserted within the 8 seconds node B is in range of
node A, this behaviour cannot occur anymore and all network loss disappears.

Total loss is still dependant on the network capacity and will therefore not differ from a network with
only Normal classed bundles. The only difference between Normal and Never Delete in this regard, is
as soon as a buffer fills up whether the newly created bundle is dropped or an already existing bundle
is dropped. For lower priority bundles, the loss is more favourable when using Never Delete traffic at
the cost of the loss of higher priority bundles. For higher priority bundles, 100% Normal traffic performs
better in terms of both total and network loss.

The delay of Never Delete bundles in the linear mobility model also shows a different behaviour than
Normal bundles, as evidenced in Figure 6.25. We again see a peak in delay here, coinciding with the
point where loss starts to occur. This high delay is caused by bundles being created while node B is out
of range of node A, but c is low enough so that node A’s buffer is not full yet. In this case, bundles may
have to wait a complete round-trip of node B before they can be transmitted to their destination. As c
increases from this point onwards, the delay will get reduced again as the number of bundles showing
this behaviour are reduced. In addition, as explained earlier, some bundles may expire before delivery,
improving the mean delay.

Once it reaches a low point for each transmission priority, it will increase in delay again. This low
point is reached as the load is of a sufficiently high value that node A’s buffer will be full as node B

moves out of range. At this point, as the load increases, only bundles inserted the first seconds after
node B moves within node A’s range will get transmitted. After these first few seconds, node A’s buffer
will be full and now new bundles added. Now the newly inserted bundles will have to wait longer till
they enter node C’s transmission range, increasing delay. This will finally result in a maximum delay of
dA + dC = 8 + 5 = 13 seconds for low priority and a minimum delay of dA + dC = 8 + 1 = 9 seconds for
high priority bundles. Here we declare dA and dC as the delays caused by having to wait within nodes
A and C’s transmission range respectively.
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(a) Keep Most Recent 50%, Normal 50%

(b) Keep Most Recent 100%

Figure 6.26: Loss in ORWAR for different proportions of Normal and Keep Most Recent bundles with
transmission priorities and constant bundlesize using the linear mobility model

Behaviour of Keep Most Recent bundles

Finally, we observe what happens when we increase the number of Keep Most Recent bundles relative
to Normal bundles. The loss shows some interesting behaviour, shown in Figure 6.26. As we increase
the percentage of Keep Most Recent bundles created, we notice that loss for all priorities increases
rapidly until it reaches a stable value for the highest transmission priority. At this point onwards we
also start observing a difference between total and network loss. Furthermore, the behaviour becomes
similar to using only Normal bundles, although all priorities have a slower increase in loss as c increases
compared to transmitting only Normal bundles.

This behaviour does not occur in the stationary model as bundles are transmitted end-to-end in said
model. When bundles are transmitted end-to-end, loss only occurs at the source node as lower priority
bundles have to wait until they are served. As the proportion of Keep Most Recent bundles increases,
bundles that are not immediately transmitted are at increased risk of being replaced by newer bundles,
regardless of transmission priority.

When we introduce mobility however, bundles will not be transmitted end-to-end and therefore even
transmitted bundles are not immune to being replaced by a newer bundle. While node B is still only
within node A’s transmission range, bundles in both nodes can be replaced by newer copies as node B

has not had the opportunity yet to transfer its buffer contents to node C. For a high enough c, this means
that only the last created bundles before node B moves out of node A’s range will be delivered to C. Of
course, this is only valid for bundles which have a stream ID that allows Keep Most Recent bundles.
This will start happening at a relatively low mean creation rate as the proportion of Keep Most Recent
bundles increases, as there are only four distinct stream IDs which allow Keep Most Recent bundles.
Similarly, as soon as node B leaves node A’s transmission range, newly inserted bundles are at a high
risk of being replaced as there is no node to transfer them to. This results in a near 100% loss for all
transmission priorities as the proportion of Keep Most Recent bundles reaches 100%.

After this stable loss level is reached, the additional loss behaviour is caused by the Normal bundles
which do not have a stream ID which can contain Keep Most Recent bundles. These bundles follow the
same loss patterns as traffic using only Normal bundles, based on the network capacity. The reason
why their loss increase is slower than when transmitting only Normal bundles is that the Keep Most
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(a) Keep Most Recent 50%, Normal 50%

(b) Keep Most Recent 100%

Figure 6.27: Mean delay in ORWAR for different proportions of Normal and Keep Most Recent bundles
with transmission priorities and constant bundlesize using the linear mobility model

Recent bundles increase the time necessary for a buffer to completely fill up by periodically removing
older bundles. It will therefore take longer before lower priority bundles will need to be replaced by
higher priority ones. Furthermore, it reduces the risk of a bundle expiring before it can be delivered by
moving it forward in the buffer by deleting obsolete bundles before it.

As we look at the delay in this scenario, shown in Figure 6.27, we notice similar behaviour as to
when no transmission priorities are used. In general, the mean delay is less than using only Normal
bundles, at a cost of increased loss. Also, Figure 6.27b backs up the earlier claim that only the bundles
last inserted as node B moves out of range of node A get transmitted, even at a relatively low c. This is
evidenced by the very low delay for all bundles, generally between 0 and 1 second, while in a normal
scenario this delay is significantly larger as bundles have to wait for node B to return. In addition we also
see that transmission priority has little to no influence on this metric in this scenario.

Once Normal bundles are also added to the mix, shown in Figure 6.27a, we still see a lower mean
delay for all bundles. The difference in delay between transmission priorities is caused by Normal
bundles which do not have a stream ID which can contain Keep Most Recent bundles. The delay for
all priorities is still lower as bundles move to the front of the buffer as obsolete bundles are removed.
In addition, the buffers of nodes A and B will not be as full as when using only Normal bundles further
decreasing delay.

We again do not discuss the non-linear mobility model in this subsection as its performance is similar
to the linear model. While the utility-per-bit value is not equal for every bundle as we add transmission
priorities, we still have a constant bundlesize. This means that regardless of a proper contact window
estimation, we can still only transmit a fixed number of bundles every contact window. In the next
subsection we also vary the individual bundlesizes which means a proper contact window estimation is
required to efficiently transfer data. Attempting to transmit a bundle with too high a bundlesize relative
to the remaining contact window will be detrimental to performance. Only when proper contact window
estimation is required will the performance differ between the linear and non-linear model.
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(a) Normal

(b) Never Delete (c) Keep Most Recent

Figure 6.28: Loss per transmission priority in ORWAR for different retention priorities using the station-
ary mobility model

6.3 Retention classes with transmission priorities and varying sizes

For our final simulations using the simplified mobility models, we also vary the bundlesizes. This means
that for 100% Normal traffic, behaviour is similar to normal ORWAR, including the utility-per-bit schedul-
ing of bundles. As we now introduce different bundlesizes, we may not make optimal use of the available
contact window anymore. Previously our bundles had a constant size of 5 bytes; with a transmission ca-
pacity of either 10 or 20 bundles/sec, this means there was no risk of incomplete bundle transmissions
or idle time as no bundles would fit in the remaining time. Furthermore, in this situation the estimation
of contact window actually matters as it will determine whether bundles have to wait or will be trans-
mitted. In these experiments we therefore analyse the difference in performance of ORWAR with and
without retention classes in a predictable environment. Using the results from this analysis, we attempt
to provide some indication of an optimum distribution of retention classes on the network for use in the
realistic mobility model.

In the stationary model, the contact window is ∞. The scheduling of which bundles to transmit is
therefore similar to the situation where bundlesize is equal for all bundles, though bundles are ordered
by utility-per-bit rather than only their transmission priority. The results of this scheduling can be seen
in Figure 6.28 for the three different retention classes.

We notice that the behaviour is similar to the case where we used a constant bundlesize. The main
differences we see here is that the average loss is lower and no transmission priority suffers from 100%
loss. This lack of 100% loss is caused by the fact that even low priority bundles may be transmitted if
its size is small enough, rather than expiring or getting replaced by a higher priority and/or more recent
bundle. Still, these lower priority bundles will still suffer from loss at a lower c than higher priorities as the
range of utility-per-bit values a low priority bundle can attain is lower than that of a high-priority bundle.
Therefore, the majority of these low-priority bundles will still end up at the rear of the buffer.

The delay however shows different behaviour when adding different bundlesizes. This is most sig-
nificant for Normal bundles, where the delay is not only significantly reduced but also shows completely
different behaviour, evidenced in Figure 6.29. This is easily explained by the fact that lower priority
bundles do not suffer from starvation by definition. Even low priority bundles may be transmitted with a
low delay if their size is small enough. When using equal bundlesizes, the delay of the lowest priority
would be maximal, while delay of higher priorities was kept to a minimum, until its loss reached 100%.
At this point, the loss of the next highest priority would increase along with its delay. Now there still is a
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(b) Never Delete (c) Keep Most Recent

Figure 6.29: Mean delay in ORWAR for different retention classes, using the stationary mobility model

difference in delay between low and high priorities, yet the difference is not that big anymore, with even
high priority bundles able to suffer from delay at lower creation rates.

When observing the loss of ORWAR using the linear mobility model, we again notice that the be-
haviour is very similar to the behaviour when using constant bundlesizes. Again, similar to the stationary
model, we see that there is no 100% loss for any transmission priority. Another difference compared to
the constant bundlesize scenario we notice, is that loss occurs for Priority 4 bundles at a much lower
creation rate. We already stated that due to node B’s mobility, loss occurs at a lower creation rate com-
pared to the stationary model as the buffer fills up. Due to the varying bundlesizes, Priority 4 bundles
may still end up in the rear of the buffer if their size is large enough. These bundles will then be replaced
by bundles with a more favourable utility-per-bit until bundles can be transmitted to node B again.

Furthermore, when we compare the loss of Never Delete and Normal bundles compared to the
scenario using constant bundlesizes, we observe a significant reduction in loss. For Keep Most Recent
bundles however, the loss reduction is less significant. This is due to different bundlesizes not affecting
the fact that only the bundles inserted just before node B leaves node A’s range have a chance at arriving
at the destination.

Similarly, the delay when introducing varying bundlesizes differs very little from constant bundlesizes.
The main factor for delay in the linear mobility model is the travelling time of node B between nodes A

and C. Transmissions from source to destination are still done in bursts, with node A first transmitting its
buffer contents to node B after which node B will transmit these contents to node C. The average delay
of each burst is equal, dependent on the round-trip time of node B. Only for Never Delete bundles we
see a slight decrease in delay. This is likely caused by newly inserted bundles not necessarily being
inserted at the back of the buffer based on their relative transmission priority, increasing their delay.

When comparing the linear and non-linear mobility model, shown in Figure 6.32, we actually notice
little to no difference compared to the linear mobility model. We expected to see increased loss as
ORWAR reverts to best-effort transmission due to incorrectly estimating the contact window. Due to
this best-effort transmission, some bundles may suffer from loss as the contact window ends mid-
transmission. This however does not seem to be the case in this scenario.

One possible explanation for this is we chose our bundlesize to be smaller than the transmission
rate of the network. This would decrease the number of incomplete transmissions relative to all trans-
missions due to a wrong estimation of contact window. For every transmission that may be interrupted,
there is at least one other that was correctly transmitted. Increasing the bundlesize will also increase
the risk of incomplete transmissions. In addition, the actual contact window with node B relative to the
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Figure 6.30: Loss per transmission priority in ORWAR for different retention priorities using the linear
mobility model

(a) Normal

(b) Never Delete (c) Keep Most Recent

Figure 6.31: Mean delay per transmission priority in ORWAR for different retention priorities using the
linear mobility model
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(a) Normal

(b) Never Delete (c) Keep Most Recent

Figure 6.32: Loss in ORWAR for different retention classes using the non-linear mobility model

transmission rate is large enough for a node to completely transmit its buffer contents during the contact
window. The buffersize of all nodes is 500 bytes, furthermore we have a transmission capacity of 100
bytes/second. During one contact opportunity, we can transmit 8 ∗ 100 = 800 bytes, which is more than
enough to transmit the complete buffer. Therefore there is barely any difference between best-effort
mode and an accurate contact-window estimation. For reduced performance to occur, nodes A or B
should not be able to transmit its complete buffer contents during one contact opportunity.

6.4 Summary

In this section we have analysed multiple traffic scenarios using different mobility models. By first
removing the transmission priorities and keeping an equal bundlesize, we were able to determine some
characteristics of ORWAR and our retention classes. By adding the transmission priorities first and then
also varying the bundlesize, we were able to analyse the impact of our retention classes on ORWAR’s
performance.

First of all we found that that ORWAR needs to periodically exchange KDM-vectors in case nodes
are stationary or have very long contact windows. If this is not done, bundles will be kept in the source
buffer for too long and newer bundles may not be inserted onto the network.

We also notice the importance of including transmission priorities in combination with our retention
classes. Not only do transmission priorities reduce the mean bundle delay, but without transmission
priorities, there will be no distinction in performance between Never Delete and Normal bundles. Sub-
sequently, having a variable bundlesize will aid in the scheduling of bundles, reducing the probability of
total starvation of low priority traffic.

When using Never Delete bundles, having too high a percentage of Never Delete traffic with regards
to total traffic will reduce your storage efficiency and increase loss as bundles are not inserted on the
network due to storage buffers reaching maximum capacity. However, the loss suffered by bundles
classed as Never Delete which are actually inserted on the network is kept to a minimum.

Keep Most Recent traffic on the other hand, suffers large loss but offers greatly reduced delay for
all traffic. Through the use of stream IDs, bundles can be divided into two groups: those that are, and
those that are not affected by Keep Most Recent bundles. For the former group, delay is reduced as
waiting in a buffer for too long increases the probability of being deleted by a more recent Keep Most
Recent bundle. This ensures that only those bundles which are propagated fast enough will eventually
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reach their destination. The latter has their delay reduced as the deleting of obsolete bundles reduces
the waiting time of all bundles in a buffer, reducing delay. Still, the percentage of total traffic classed
as Keep Most Recent traffic should not be too high as values greater than 50% will offer no significant
improvements in delay, but greatly increase loss. This threshold value may change dependent on the
stream ID distribution.

The mobility of nodes also plays a key factor in ORWAR’s performance. By simulating intermittent
connectivity between nodes, we have shown the need for an acknowledgement retention time to not
only make bundle transmissions delay-tolerant, but acknowledgement transmissions as well. Similarly,
bundles may occupy a node’s buffer for long periods of time while they wait for an acknowledgement
to be received. This occupation of buffer space, while not transmitting, can result in the non-injection
of newly created bundles on to the network. Using transmission priorities in combination with varying
bundle sizes however can alleviate this issue as less important bundles are removed to free storage
space.

The performance of ORWAR, with or without retention classes, is dependent on the following key
aspects:

• Use of transmission priorities and varying bundle sizes

• Storage buffer size

• TTL of bundles, and

• Mobility of nodes (servicing times and travel patterns)

Lastly, we have determined that the contact window need not always be calculated accurately. This
depends on the average bundlesize and the calculated contact window. Should the average bundlesize
be significantly smaller than the total amount of data which can be faultlessly transmitted during a
contact window, an inaccurate estimation will only have minor influence on performance. Having a
bundle size too small however, may limit the amount of goodput on a network due to increased overhead.
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Chapter 7

Results using the realistic mobility
model

In the previous section we analysed the behaviour of ORWAR and the influence of our different retention
classes through the use of some simplified mobility models. This section deals with the performance of
ORWAR with and without retention classes in a more realistic mobility model as described in Section 5.1.
The results gained in this section are reliant on too many variables to fully describe the behaviour.
Instead, we compare the performance of normal ORWAR to our version with the implemented retention
classes.

7.1 Retention class parameters

First of all, we need to determine the retention class parameters for which to test our QoS-enabled
ORWAR. In the previous section, we have observed how the different retention classes behave and
influence each other. However, we have only compared two classes at a time, not all three at once.
Aside from network performance metrics, we should also take storage efficiency into account. This
leads us to determine that we should not have too high a proportion of Never Delete bundles as they
can cause a buffer to fill up rapidly by not replacing bundles with more important or more up-to-date
bundles. As the required TTL in military networks is at least 24 hours, this poses a great risk. Should
a buffer fill up with Never Delete bundles, it prevents newly created bundles from being injected into the
network. This could have dire consequences as high priority messages may not be injected.

Never Delete bundles improve performance for low-priority bundles in a non-stationary network at
the cost of high priority bundles. We therefore propose the Never Delete retention class is only adopted
by Priority 1 and 2 bundles. High priority bundles are already at reduced risk of being removed due to
their position in the buffer. This in turn also reduces the total number of Never Delete bundles on the
network by limiting the bundles it can apply to. By not applying Never Delete to high priority bundles we
also reduce the risk of high priority bundles not being injected.

Keep Most Recent bundles on the other hand, would increase loss of all priorities due to delet-
ing of obsolete bundles, though would also ensure severely reduced delay. This behaviour is generally
favoured for high priority, near real-time communications. Keep Most Recent classes are best applied to
bundles which will be transmitted in the near future as waiting in a node’s buffer increases the probabil-
ities of it being replaced by a newer version. Applying this to low-priority traffic is therefore sub-optimal.
A low priority bundle with the Keep Most Recent retention class can delete high-priority traffic, but has
no guarantee it will be transmitted soon itself. In addition to being deleted by a newer Keep Most Recent
bundle, a low-priority Keep Most Recent bundle is also at risk of being deleted by any higher priority
bundle. This may result in data unnecessarily getting lost on the network. We therefore propose that
the Keep Most Recent class is only applied to Priority 3 and 4 bundles.

The major advantage of Keep Most Recent bundles is its delay reduction. In the simplified mobility
models we found the delay does not change significantly anymore as the proportion of Keep Most
Recent traffic ≥ 50%. However, increasing Keep Most Recent traffic beyond 50% does increase loss.
Therefore, Keep Most Recent traffic be ≤ 50% of the total network traffic. Higher values will delete too
many bundles before they can be propagated over the network.

These analyses result us to determine that for optimum efficiency using these retention classes, the
majority of all traffic should still be classed Normal, with Keep Most Recent traffic being≤ 50% and Never
Delete traffic having a significant minority share of the traffic based on network load and buffersizes.
Furthermore, the Normal class can be used for all four transmission priorities, while Keep Most Recent
is used solely for high-priority traffic and Never Delete for low-priority traffic. As transmission priority
is not independent of retention class anymore, this results in the transmission classes not necessarily
being uniform distributed based on the proportions of Keep Most Recent and Never Delete traffic. If the
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Figure 7.1: Loss and mean delay in ORWAR using the realistic mobility model

proportion of Keep Most Recent traffic is unequal to the Never Delete traffic, transmission priorities are
not uniform distributed over the network anymore. Within each individual retention class, transmission
priorities are still uniform distributed. In this thesis we want to analyse the influence of retention classes
on performance, therefore we do not force a network-wide uniform distribution of transmission priorities.

7.2 Basic ORWAR performance

For reference, we first run the realistic model for normal ORWAR without different retention classes. The
results of this simulation can be seen in Figure 7.1. As expected, the behaviour shown here is similar to
that of figures 6.30a and 6.31a. There are two main differences between these two. First, the creation
rate at which the difference between network and total loss starts to increase. Second, the mean delay
is significantly lower in the realistic model.

Regarding the loss, we see that while the total loss in both models differ very little, the network loss
in the realistic model is significantly higher. In the realistic model, bundles can be inserted at any node
of the network and can have any other node in the network as its destination. The mean creation rate
is the creation rate per node, this means that while in previous experiments the creation rate was also
the total number of bundles created on the network, now this is not the case anymore. The number of
bundles created on the network is the creation rate multiplied by the number of nodes on the network.
The total loss is still relatively unchanged as this is dependent on the network capacity. Network loss
will increase however, as with more bundles on the network, the probability to be replaced by a more
important or more recent bundle increases. In addition, when nodes meet, both nodes may already
have a number of bundles in the buffer, meaning there may not be enough space for all bundles to
be transferred from one node to another. Combined with the more random movement patterns also
increases the number of bundles which are removed due to their TTL expiring.

In regards to the delay, even though we notice that the mean delay is lower in our realistic model,
we also notice that the highest priority bundles also seem to have the highest delay as the creation rate
increases, especially as c ≥ 13. This behaviour is caused by only those low-priority bundles which had
a low delay actually being delivered while others are lost. For a low priority bundle to be delivered in
the original version of ORWAR, it has to either have a small size or does not have to traverse multiple
hops to its destination. Either of these two scenarios ensures the bundle is relatively at the front of the
transmission buffer, either due to a favourable utility-per-bit or the next hop being the destination.
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Figure 7.2: Loss and mean delay in ORWAR using the realistic mobility model
70% Normal, 15% Keep Most Recent, 15% Never Delete

7.3 QoS-enabled ORWAR performance

As we have determined the relative proportions between the different retention classes, we repeat this
simulation but now add the retention classes using different distributions. We set the number of Normal
bundles to be 70% as we determined it has to still hold the majority share of bundles, but use different
proportions for the other two classes. The results from these experiments are shown in Figures 7.2, 7.3
and 7.4.

In terms of loss, we notice little difference between these three, though loss values seem to be
slightly favourable when Keep Most Recent traffic outweighs Never Delete traffic. In this case, the total
loss is lower even though network loss is slightly increased. As the difference between network and total
loss is determined by bundles which are created but not injected, we find a lower total loss favourable
over lower network loss. However, in all cases, the differences are minimal.

When Keep Most Recent bundles outweigh the Never Delete bundles however, we also notice that
the loss of Normal and Never Delete bundles has a lower value than the total loss over all retention
classes. These are the two retention classes we also prefer reduced loss for. Loss in Keep Most Recent
traffic is accepted as the loss is required to transmit more recent versions of a bundle.

Furthermore, when comparing these to normal ORWAR’s performance, we notice that network loss
is larger compared to normal ORWAR. This is understandable as with the Keep Most Recent class
behaviour, bundles are more often deleted instead of only when a node’s buffer is full. Furthermore,
the loss of Priority 1 bundles is lower when adding retention classes at the cost of increasing the loss
for Priority 4 bundles. Priorities 2 and 3 are now closer to the total loss on the network. In effect, the
difference between transmission classes in terms of loss has been reduced, with every class having
been moved closer to the loss measured over all traffic.

In terms of delay, we again notice little difference between the three distributions, though again
Keep Most Recent outweighing Never Delete bundles offers favourable delay metrics, even though it
is a small improvement. All three metrics however, offer a reduced mean delay compared to normal
ORWAR. Again this is explained due to the Keep Most Recent class behaviour, it is possible for a single
bundle to delete many other bundles simply because it is newer, even if the buffer is not full. Only Never
Delete bundles are immune to this behaviour, however only a minority of the bundles are assigned this
retention class. We have already shown that this pre-emptive deleting of bundles will reduce delay both
by reducing the waiting time of a bundle within a buffer, as well as ensuring only those bundles that are
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Figure 7.3: Loss and mean delay in ORWAR using the realistic mobility model
70% Normal, 20% Keep Most Recent, 10% Never Delete

Figure 7.4: Loss and mean delay in ORWAR using the realistic mobility model
70% Normal, 10% Keep Most Recent, 20% Never Delete
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Figure 7.5: Loss and mean delay in ORWAR using the realistic mobility model
30% Normal, 35% Keep Most Recent, 35% Never Delete

transmitted with a low delay arrive at the destination.
Furthermore, comparing the delay per transmission priority to normal ORWAR, we also notice dif-

ferent behaviour. In normal ORWAR, as the creation rate increased, the delay per transmission priority
converged to the mean delay measured over all traffic. When we add retention classes however, we
notice a more distinct difference between high and low priority bundles. The highest priority bundles
have a delay lower than the total traffic mean delay, while lower priorities have a higher value. Still,
within the high- and low-priorities groups we see little difference in delay between the priorities, similar
to when we compare all priorities in normal ORWAR.

What we therefore see is exactly what we required from the different retention classes. For low
priority traffic, we see higher than average delay, though its loss is reduced. For high priority traffic we
see exactly the opposite. Though we have some increased loss, delay for these classes is significantly
reduced.

When we reduce the proportion of Normal bundles on the network, performance suffers. As shown
in Figure 7.5, mean delay does not significantly improve if we add more Never Delete and Keep Most
Recent bundles compared to Normal bundles. Loss however is drastically increased. There is almost
no distinction between transmission priorities anymore in terms of loss. Especially at high creation
rate values, Priority 1 bundles show almost identical total loss to Priority 3 bundles. However, the loss
measured over all traffic has increased. This means that for no added benefit in terms of delay, more
bundles are lost on the network. This supports our assumptions on which distributions of retention
classes to use.

It should be noted however that these experiments are based on a small network with intermittent
connectivity. As a network’s size increases, or the number of applications/stream IDs changes, different
parameters for Keep Most Recent and Never Delete traffic may be vital. In general, if the probability
of replacing a bundle with a newer version using Keep Most Recent traffic is large, it may be better to
reduce the number of bundles that can have this class. The values for Keep Most Recent we determined
were based on 4 stream IDs which can contain Keep Most Recent bundles out of 16 total stream IDs.
We have already shown that increasing Keep Most Recent traffic too much for these parameters will
only increase loss and not reduce delay. At which proportion of Keep Most Recent traffic we see this
tipping point is different for each network. We expect that as a network size increases, Keep Most
Recent traffic becomes more effective to use. Bundles will generally have multiple paths available to
them as the size increases. The probability of a bundle getting dropped completely from the network

Page 71



is smaller as it is copied along multiple nodes. Keep Most Recent bundles can however aid in clearing
unnecessary bufferspace of some nodes containing an older bundle. This older bundle may still be
delivered through an alternate route however.

Similarly, the Never Delete proportion should be based on network connectivity, buffersize and
bundlesize. Choosing a Never Delete proportion too high for these parameters will result in large loss
as buffers will not be cleared fast enough. Also, as the network size increases, but moreover network
density increases, the proportion of Never Delete bundles should be reduced. As there are more nodes
to transmit traffic, the odds of a buffer filling up with bundles that cannot be cleared increase. There-
fore, we assume that as a network’s size and density increases, Keep Most Recent bundles should
outnumber Never Delete bundles by a larger difference in proportions.

Of course, these results only describe part of the network’s performance. We should also take
throughput and/or arrival rate of bundles in consideration. Preferably, rather than measuring raw values
we should relate this to different application streams or data types. This should give us a more accurate
view whether the required performance is also met. For instance, even though we state that high priority
traffic has reduced delay at the cost of increased loss, we do not know at what interval messages of a
single stream arrive and if this is beneficial for the higher level application’s performance. Fine-tuning of
the proportion of Keep Most Recent and Never Delete traffic is therefore important for each individual
scenario depending on the traffic and application requirements.
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Chapter 8

Conclusions & Future work

8.1 Summary

In military networks, DTN can be used to significantly improve connectivity by dealing with some of
the issues imposed on MANETs. To facilitate DTN functionality, special DTN replication based routing
protocols have to be used along with the DTN bundle protocol. One such protocol is the ORWAR
routing protocol. This protocol was chosen as a possible solution for routing within a military network as
it attempts to optimize bandwidth use and limit power consumption.

Military networks contain several different data types, though all this traffic in general is transmitted
to improve C2 in a military unit. Not all of this data can be transmitted using DTN, as some data types
have too stringent delay requirements, such as voice communications

Based on these requirements, we define four transmission priorities which are used for bundle
scheduling within ORWAR. Furthermore, we define three retention classes: Normal, Never Delete and
Keep Most Recent. Normal bundles behave as if they have no special retention needs. These bundles
will be removed if buffer storage should be freed to accommodate a higher priority bundle. Never Delete
bundles do not affect other bundles already present upon insertion, but once inserted into a buffer, it
may never be removed by any other incoming bundle. Keep Most Recent bundles are used to limit
transmissions on the network of obsolete data, for instance obsolete position updates. These bundles
will delete older related stored bundles from the buffer upon receiving.

To optimize bandwidth use, the ORWAR protocol calculates the contact window time between two
nodes and schedules bundles accordingly as to minimize incomplete transmissions. This scheduling is
based on the marginal utility of a bundle, defined as its utility per bit. Furthermore, it limits the number
of copies of a bundle available on the network. To calculate the contact window time, nodes exchange
geodata, acquired through for instance GPS signals.

To propagate bundle acknowledgements over the network, it stores bundle IDs in a KDM-vector.
During handshaking, these vectors are exchanged between nodes and used to remove already arrived
bundles from the buffer. The contents of these vectors will expire based on the TTL of the corresponding
bundles. However, in addition to storing values in the KDM-vector for as long as the original bundle’s
TTL, a retention time τ is added. This value determines how long an acknowledgement should continue
to exist in the KDM-vector when the original bundle would already have expired due to its TTL.

Our added retention classes have a significant impact on both the loss and delay of traffic on the
network. Using Normal classed bundles, we would observe the different transmission priorities suffering
more loss as the network load increases. This loss starts occurring at different loads for different
priorities, with high priority messages able to suffer a far greater load before showing significant cost.
In the meantime, the mean end-to-end delay of all traffic would stay roughly equal for increasing loads,
presuming bundle sizes are variable.

Never Delete bundles, while their delivery accuracy is high, also increases the probability of later
created/received bundles not being inserted in a node’s buffer as these bundles will consume all avail-
able buffer storage and only free space once their TTL expires or an acknowledgement is received. In
addition, all transmission priorities show roughly equal loss at every load. Even high priorities will suffer
loss at lower load thresholds than when using only Normal classed bundles. Similar to Normal bundles
however, the mean end-to-end delay would not vary much for increasing network load.

Keep Most Recent bundles show greatly increased loss as the network load increases. Every second
a bundle stays in a buffer increases the probability of it being overwritten by a more recent bundle.
Especially low transmission priorities will therefore suffer from increased loss. Only bundles that are
transmitted fast from hop-to-hop, i.e. high transmission priority, do not suffer from the increased loss. As
network load increases, the mean end-to-end delay is sharply reduced for Keep Most Recent bundles.
At relatively high network loads, this behaviour results in only bundles with a high transmission priority
which can be transmitted using an end-to-end connection being reliably transmitted. This goes against
the principle of DTN where end-to-end connectivity should never be required.
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The number of Keep Most Recent bundles which can effectively be used on a network seems to be
be based on the network’s size. As the network size increases, Keep Most Recent traffic becomes more
and more effective to use. Using more Keep Most Recent bundles as the network size increases not
only helps to improve the accuracy and delay of other bundles by removing obsolete buffer contents,
but also does so at reduced risk of increased end-to-end loss.

One criticism of Keep Most Recent bundles however, is its tendency to let transmissions be for
nought as the transmitted bundle is replaced by a newer version shortly after. This may be considered
wasted bandwidth. However, this decreased performance only happens on a hop-by-hop basis. By
replacing a bundle with a newer version, it saves potential resources down the line by not wasting it on
transmissions of obsolete bundles.

Should this however become too much of a problem and end-to-end loss increases by too much as
bundles will get replaced halfway during transmission, the application settings regarding the creation
of these bundles should be adjusted. Keep Most Recent traffic in general is periodic information. By
increasing the delay between two subsequent transmissions, end-to-end accuracy will be improved.
For instance, if position updates are injected every second, but only arrive every five seconds due
to obsolete updates being replaced halfway, these updates can also be transmitted once every five
seconds. Fine tuning all settings for each individual network is therefore very important.

All in all, when comparing the normal ORWAR protocol to our QoS-enabled ORWAR protocol using
appropriate traffic distributions, we notice that the loss of all measured traffic is roughly equal, though
mean delay is significantly reduced. This conclusion however does not provide us with the total picture
as for a true performance evaluation we need to also take into account the actual bandwidth use and
application-specific requirements to decide whether some of the proposed trade-offs are worth it. How-
ever, it does show us that the current limited QoS provisioning in ORWAR using marginal utilities can
be improved.

8.2 Conclusions

During this research we were able to make some discoveries regarding the ORWAR protocol and its
performance on the network. Similarly, our designed retention classes have significant impact on the
network performance compared to ORWAR without support for these classes. We can therefore split
our conclusions into different affected areas.

8.2.1 Traffic class definitions and distributions

• Traffic on military networks that can be transmitted using DTN can be split in Command data,
Situational Awareness data and Reports. Each traffic type however, poses different requirements
on the network in regards to transmission and retention.

• To support traffic classes in network, ORWAR’s inherent utility values are replaced by transmission
priorities. Furthermore, its receive algorithm is edited to provide functionality for the different
retention classes.

• For this purpose, we also define a new bundle block which stores a bundle’s stream ID to ensure
only related bundles are removed by Keep Most Recent bundles. In addition, this bundle block
also stores the number of copies remaining of a bundle.

• We recommend using the Never Delete retention class only for low-priority messages and the
Keep Most Recent class for high-priority messages.

• The proportion of all traffic which can have a specific retention class should be fine tuned for every
specific network. Using the wrong proportions will have a detrimental effect on performance.

• In our simulations, we found that Normal-classed bundles should still outnumber the combination
of Never Delete and Keep Most Recent bundles.

• Keep Most Recent bundles should in turn outnumber Never Delete bundles. The number of Keep
Most Recent bundles which can effectively be used on a network seems to be be based on the
network’s size. As the network size increases, Keep Most Recent traffic becomes more and more
effective to use.

• The number of Never Delete bundles on a network should be kept relatively low depending on a
buffer’s storage capacity. These bundles will possible occupy a node’s buffer for a long period of
time, wasting storage resources.
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8.2.2 General ORWAR performance

• ORWAR is a good routing protocol choice for a network that is very sparsely connected with
frequent topology changes, provided some elements are improved.

• The retention of acknowledgements allows the acknowledgement propagation to also be delay-
tolerant, providing the source node with a means to receive an acknowledgement, even though
the bundle itself may already have expired.

• The protocol as it is currently researched has its share of limitations:

– Neighbours’ buffer contents unknown.

– Contact window use limitations

– Limited buffer maintenance

– Limited acknowledgement support

• In addition, ORWAR as it currently stands has no support for multiple nodes sharing a medium at
the same time, its associated issues are:

– Different contact windows for different neighbours

– Different buffer contents of different neighbours

– Insufficient acknowledgement propagation

– Unable to determine next-hop node

• To overcome these issues, the following improvements have been made to the ORWAR protocol:

– Exchange of buffer contents during handshaking, in case a node has multiple neighbours, a
threshold is used to determine which bundles should be transmitted.

– Periodic recalculation of contact windows with current neighbours. When a node has multiple
neighbours, it uses the largest available contact window to determine its transmission buffer.
A new contact window will only be used if it differs from the old window by a certain threshold.
Lastly, an effective contact window is introduced to deal with multiple nodes sharing one
medium.

– Before transmissions, a bundle’s TTL will be checked, not just during handshaking.

– We propose the use of negative acknowledgements to prevent retransmissions of bundles
rejected by the receiver. Furthermore, KDM-vectors are both periodically exchanged and
requested again by a node from its neighbours when it reorders its transmission buffer. An
acknowledgement will also be returned by an intermittent node if it receives a bundle it al-
ready has stored in its KDM. Lastly, acknowledgements are transmitted using single-hop
broadcasts to inform multiple nodes about a bundle’s arrival.

– All transmissions to intermittent nodes will be done using single-hop broadcasts to promote
propagation and remove the problem of determining the next-hop node of a bundle.

• When observing the behaviour of ORWAR in different networks, we found node mobility, network
transmission rate, node buffersize and bundle size, along with a bundle’s TTL to influence the
performance of different transmission and retention classes.

• It is evident that ORWAR is designed for networks with nodes only having small contact windows.
When the contact window time increases, or when nodes are stationary, we notice that the perfor-
mance of the originally researched ORWAR suffers.

• Contact window time estimation needs not to be very accurate when the average bundlesize is
significantly smaller than the maximum amount of data that can be transmitted during one contact
window. However using bundles of such small size can result in unnecessary overhead. This
will waste bandwidth and therefore a bundlesize should be fine tuned to the networking needs to
minimize incomplete transmissions without adding too much overhead. When optimizing bundle
size however, aside from the influence of node mobility and transmission rate, one also would
need to factor in whether application messages fragmented into many bundles can eventually
be reconstructed successfully at the destination. It is not feasible to fragment messages to re-
duce the probability of incomplete transmissions if not enough fragments will eventually reach the
destination.
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8.2.3 Performance of ORWAR with traffic classes

• Deleting obsolete bundles significantly improves the performance of bundles unaffected by its
mechanisms, due to being classed Never Delete or not having the same stream ID. As bundles
are constantly deleted from the buffer, other bundles may be transmitted at a sooner opportunity
than before, improving both their delivery accuracy and delay.

• When using the suggested traffic proportions in a realistic military network running the QoS-
enabled ORWAR protocol, we notice some differences compared to the original ORWAR protocol.

– As load increases, the measured loss of all transmission priorities deviate less from the mean
accuracy than when using normal ORWAR.

– Delay however is increased for lower-priority messages and decreased for higher-priority
messages when compared to the mean delay.

– In addition, the mean delay for all bundles is significantly lower than in the original ORWAR
as buffer contents are reduced through the use of Keep Most Recent traffic, reducing waiting
time in a buffer.

• Frequency of inserted Keep Most Recent traffic should be adjusted if too many bundles get re-
moved during transit, reducing the delivery frequency of this traffic.

• Loss of all measured traffic is roughly equal, though mean delay is significantly reduced.

8.3 Research Questions

At the start of this thesis, we have set up some research questions to answer. The main question asked
was

Can we improve ORWAR to better support QoS provisioning for use in military MANETs?

Where we defined the following sub-questions:

1. What traffic classes can be distinguished in military MANETs and what requirements do they
impose?

2. Does the current design of ORWAR support a separation in transmission priority QoS and buffer
management QoS?

3. How can the required QoS be implemented in ORWAR?

4. How does the implemented QoS perform in comparison to non-QoS ORWAR?

These questions will be answered below.

What traffic classes can be distinguished in military MANETs and what requirements do they
impose?

In military MANETs we can distinguish several kinds of data to improve C2 in a military unit. This data
can be divided in three main groups:

• Command Data

• Situational Awareness Data

• Reports

The data in these groups can take many forms, from database updates to text and imagery. Different
traffic types, even within one of the above groups, can impose different requirements. These require-
ments can be divided into some traditional metrics as priority, delay-tolerance and required delivery
accuracy. In addition to these traditional metrics however, we can also add another stating whether the
receiver is only interested in the most recent transmission of a source. This is the case for periodic
updates and location information such as BFT where the receiver is only interested in the most recent
position update or database synchronization. This extra metric is however only relevant to DTN as
transmissions will not always occur end-to-end. When transmissions occur end-to-end, the source may
choose to stop transmission of obsolete data as the application generates newer data. When they do
not occur end-to-end however, intermediate nodes also need to know if obsolete data should be further
transmitted once a path to the destination becomes available again.

To accommodate all the above requirements, we have split the traffic class in a transmission priority
and retention class. The transmission priority determines which bundle to transmit first and can play
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a factor in deciding which bundles to delete should a storage buffer reach its maximum capacity. The
retention class describes the behaviour within a node’s storage buffer. We have defined three retention
classes: Normal, Never Delete and Keep Most Recent. Normal bundles can always be deleted by
bundles with a higher priority-per-bit or a more recent Keep Most Recent bundle. Never Delete bundles
can only be removed from a buffer by their TTL expiring or upon receiving an acknowledgement. This
class is useful for bundles with high delay-tolerance but also a high required delivery accuracy. Keep
Most Recent bundles serve the purpose of deleting obsolete data. As soon as a Keep Most Recent
bundle is received, obsolete bundles belonging to the same traffic flow are removed from storage. This
class will generally be used for periodic updates and synchronizations.

Does the current design of ORWAR support a separation in transmission priority QoS and
buffer management QoS?

The current design of ORWAR has some limitations which need to be addressed before it can be
applied to a practical scenario such as military MANETs before addressing QoS support, mentioned
in Section 8.2.2. Once these issues are addressed however, ORWAR provides a decent framework to
add our intended separation of transmission priority and buffer management. The implementation of
transmission priorities is easy as ORWAR already assigns a utility value to bundles which is used for
priority scheduling. By using this utility value to define our transmission priorities, we can order bundles
within the buffer accordingly. ORWAR offers no inherent support for the retention classes, however by
making some modifications to the receive algorithm we can add this support, mentioned below.

How can the required QoS be implemented in ORWAR?

As we stated above, transmission priorities can be implemented through the use of ORWAR’s existing
utility values. To add support for retention classes, the receive algorithm needs to be modified. First of
all, ORWAR needs to detect the retention class of a bundle, which will be stored in a bundle’s header
information. When ORWAR is looking for bundles to delete as the storage buffer reaches maximum
capacity, it should ignore bundles marked as Never Delete. Furthermore, when it receives a Keep Most
Recent bundle, it should first check if enough space can be freed by deleting bundles which would be
obsoleted by the incoming bundle. These obsoleted bundles need to be deleted upon accepting a Keep
Most Recent bundle, regardless of whether the bundle had reached maximum capacity before accepting
the bundle.

To support the deleting of obsolete bundles, we added a stream ID to bundles which identifies the
data flow they belong to, to make sure Keep Most Recent bundles can only delete relevant obsolete
bundles. This stream ID is also needed to prevent a node from accepting obsolete bundles. As nodes
forward copies of bundles rather than the bundle itself, it is possible for a bundle to receive a bundle
it has already deleted as an obsolete bundle from another intermittent node. By storing the creation
timestamp of the most recent received Keep Most Recent bundle for a given stream ID, a node can
reject obsolete incoming bundles. It should however be noted that even though a Keep Most Recent
bundle will remove obsolete bundles and cause the node to reject future incoming obsolete bundles, it
cannot remove or cause the rejection of Never Delete bundles.

How does the implemented QoS perform in comparison to non-QoS ORWAR?

We see some significant differences in behaviour between QoS-enabled and non-QoS ORWAR. How
the QoS-enabled ORWAR performs on a network is however very dependent on the distribution of
retention classes on the network. This distribution should be fine-tuned to the requirements of a network
or performance will suffer. The advantage of Never Delete bundles is their very high delivery accuracy
which is especially advantageous to low-priority bundles. However this comes at the cost of reduced
storage efficiency. Should the number of Never Delete bundles be too high, loss on the network will
increase as nodes will be forced to reject incoming or newly created bundles due to insufficient storage
available.

Keep Most Recent bundles on the other hand are very effective for storage and ensures that those
bundles that do get delivered, get delivered with little delay. This however comes at the cost of increased
loss and a bad configuration of number of Keep Most Recent bundles on the network will be detrimental
to performance as less bundles will reach their final destination as they will get deleted somewhere
during transmission. The advantage of deleting obsolete bundles before reaching the final destination
however is that it frees up node resources for other bundles unaffected by the incoming Keep Most
Recent bundle, improving both their delivery accuracy and delay.

When using a distribution of retention classes deemed advantageous to our specific network, we
see a change in both loss and delay compared to non-QoS ORWAR. In non-QoS ORWAR, different
transmission priorities would arrive with little variation in delay, but a larger variation in loss, with low
priority messages suffering greater losses as network load increases. When adding our QoS, we see the
opposite happen. While low priority messages still suffer a greater loss than high priority messages, all
priorities are closer to the mean loss of all priorities combined. This means that high priority messages
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suffer a greater loss in general than non-QoS normal. This extra loss however is caused by bundles
being removed somewhere during transmission through Keep Most Recent bundles.

The mean delay of all transmission priorities however is reduced when using QoS-enabled ORWAR.
As Keep Most Recent bundles delete obsolete bundles from intermittent nodes, resources are freed for
other bundles. Furthermore, while in non-QoS ORWAR the delay was roughly equal for all transmission
priorities, we see a clear distinction between high and low priority bundles in terms of delay in the
QoS-enabled version. Here low-priority bundles will have a significantly longer delay than high-priority
bundles. This is caused by the Never Delete bundles, which improves a low priority’s accuracy, i.e.
reducing loss, however it does not improve its priority. It therefore may have to wait longer in a buffer
before it is transmitted, but has a larger probability of actually being transmitted compared to non-QoS
ORWAR.

This leads us back to the main question:

Can we improve ORWAR to better support QoS provisioning for use in military MANETs?

It is possible to adapt ORWAR to support QoS provisioning, however it is unclear whether or not it
is an improvement in relation to the military MANET’s requirements. While in terms of accuracy and
delay it is an improvement, other factors need to be taken into consideration as well. For instance,
we have not determined whether an individual application’s performance has improved through this
QoS provisioning. In addition, other metrics need to be taken into account as well, such as network
throughput and goodput.

However, based on the results we have generated in this research, we can state that in terms of
accuracy and delay we have improved upon ORWAR to better suit the requirements of military MANETs.
In addition, other than applying our traffic classes we have shown how ORWAR can be significantly
improved to function in a practical scenario.

8.4 Future Work

While we have attempted to improve upon ORWAR by adding QoS using transmission priorities and
retention classes, there is still a lot left to do. We have defined some parameters and protocol behaviour,
though these choices may not always have been optimal. The three main issues that should be validated
are the decision in which contact window to use, the contact window threshold and the neighbour’s buffer
contents threshold. We have chosen to use the largest available contact window and the thresholds
based on reasoning and estimating fair values, however further experiments should be performed to
determine their influence on performance and obtain optimal values.

We have used our neighbour’s buffer contents threshold to determine whether or not a bundle should
be transmitted. This threshold will become more lenient if a node cannot fill its transmission buffer to
make use of its full contact window. Being too lenient with the required threshold to be added to the
transmission buffer can be suboptimal. When increasing the leniency of the threshold, a node may be
using the medium for a bundle already well-propagated over the network while one of its neighbours
may have a bundle waiting which has not propagated at all. It might therefore be better not to use the
medium for the well-propagated bundle but allow the new bundle to be transmitted instead.

Not adjusting the threshold and being too strict however, may result in the medium not being used
at all and/or bundles not being propagated enough. If nodes may not have enough bundles to add to its
transmission buffer to fill its contact window due to the threshold, the medium will stay idle. Increasing
the leniency of the threshold will however result in the medium being used. Furthermore, if a node
will communicate very often with a subset of neighbouring nodes, it may result in bundles not being
propagated enough as they will not meet the threshold when these neighbours are in range and already
have this bundle. An optimal algorithm should be developed to determine the threshold in different
situations.

In ORWAR, the number of copies of a message is limited and when transmitting a bundle, a sender
sends half the copies to a neighbouring node. When broadcasting bundles rather than unicasting, if
a node broadcasts half the copies it has, after the transmission there may be even more copies on
the network than before transmitting. This may reduce performance as the network increases in size
and also reduce storage efficiency. Reducing the number of copies transmitted based on the number of
neighbours, for instance broadcasting 1/3 of the copies while keeping 1/3 when a node has 2 neighbours
might result in inefficient propagation and reduced delivery accuracy. Further research should determine
a proper distribution of copies on the network.

In addition, the relation between the number of copies and the bundle’s utility was researched for
three different utility values. When using four priorities, a better optimum should be determined. In our
simulations this has not been an issue as the simulated network was too small to limit the number of
copies on the network.

We have also made some assumptions regarding the distribution of retention classes on the network
based on preliminary research. These distributions seemed to increase performance on our specific
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network model. When adding more nodes, different traffic flows and different mobility models, the
distribution should change. Further research may determine an algorithm to optimize these distributions
per network.

Lastly, we have stated that this research does not provide the complete picture in terms of how much
an improvement it offers on non-QoS ORWAR. Aside from our used metrics, different metrics should
also be checked and compared to the requirements. Some examples include the throughput/goodput
on the network and application performance. DTN tends to add more aspects and accompanying
requirements to normal MANET networking, e.g. the storage efficiency of a node. Only by analysing
the various aspects of network performance in DTN can an overall conclusion whether the performance
is improved be reached.
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