
MASTER’S THESIS

Towards a Unifying Framework for
Modelling and Executing

Model Transformations

Ivo van Hurne

18th June, 2014

Supervisors: dr. L. Ferreira Pires
dr. C.M. Bockisch

Faculty of EEMCS
Department of Computer Science

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Science in Computer Science

at the

University of Twente

Enschede, June 2014

Abstract

Model-driven engineering is a software engineering technique which relies heavily
on the use of models. They are not just used as documentation, but actually define
the system. Transformations on the models are described using model transformation
languages. There are a lot of different model transformation languages available, all
having a different approach to model transformation.

We show that these languages are actually not that different at all. Based on the
analysis of a varied selection of transformation languages we define a small number of
primitive transformation operations that can be used to describe model transformations
written in any transformation language. We define our own primitive transformation
language, using just these operations, and verify our analysis by implementing a few
well-known transformation languages in our own language, including a language not
considered in the initial analysis.

We design an interpreter for our primitive language and show that the execution of
model transformations with our interpreter is on par with their original interpreter.

v

Acknowledgements

I would like to thank a few people for their support during the writing of this thesis.
First of all, I would like to thank Luís Ferreira Pires and Christoph Bockisch for taking
over the supervision of the project. Without their help it probably would not have been
possible to complete this thesis. I would also like to thank my fellow students at the
SE-lab for their valuable feedback and support.

I’m indebted to Edwin Vlieg and Joost Diepenmaat for giving me the final push
necessary to finish the project. Finally, I’m grateful to my family and friends for their
never-ending support.

vii

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives . 2
1.3. Research Questions . 2
1.4. Research Approach . 2
1.5. Outline . 3

2. Model Transformation Languages 5
2.1. Models . 5
2.2. Eclipse Modeling Framework . 5
2.3. Model Transformation . 6
2.4. Model Transformation Pattern . 7
2.5. Transformation Languages . 7

2.5.1. Transformation Approach . 7
2.5.2. Rule Application Strategy . 8
2.5.3. Model Representation . 9
2.5.4. Tracing . 9

2.6. Languages to Consider . 10
2.7. Conclusions . 10

3. Transformation Execution Algorithms 11
3.1. Graph Transformation . 11
3.2. Controlled Graph Transformation . 12

3.2.1. GROOVE . 12
3.2.2. Henshin . 12

3.3. Term Rewriting . 16
3.4. ATL . 20
3.5. Analysis of Commonality and Variability 21

3.5.1. Rule Level . 21
3.5.2. Transformation Level . 21

ix

x Contents

3.6. Conclusions . 23

4. Primitive Model Transformation Language 25
4.1. Language Definition . 25

4.1.1. Model Navigation Operations . 25
4.1.2. Collection Operations . 26
4.1.3. Logical and Arithmetic Operations 26
4.1.4. Functions . 26
4.1.5. Exception Handling . 27
4.1.6. Transformation-level Operations 27
4.1.7. Rule-level Operations . 27
4.1.8. Operations not included . 28

4.2. Application of the Primitive Language . 29
4.2.1. Graph Transformation . 29
4.2.2. Henshin . 30
4.2.3. Term Rewriting . 31
4.2.4. Declarative ATL . 31
4.2.5. Imperative ATL . 31

4.3. Related Work . 32
4.4. Conclusions . 32

5. Transforming Model Transformations 35
5.1. Architecture . 35
5.2. Interpreter Implementation . 35
5.3. Transformation Language Implementation 37
5.4. Conclusions . 40

6. Model Transformation Scenarios 41
6.1. Common Use Cases . 41
6.2. Object-oriented Class to Relational Table 42

6.2.1. Implementation . 42
6.2.2. Results . 42

6.3. Pull Up Class Attribute to Superclass . 44
6.3.1. Implementation . 44
6.3.2. Results . 44

6.4. Conclusions . 44

7. Conclusions and Future Work 47
7.1. A Common Execution Environment . 47
7.2. Execution in the Common Environment 48
7.3. Limitations of the Common Environment 48
7.4. Looking ahead . 49

Contents xi

A. Primitive Representations of the Algorithms 51
A.1. Single-Pushout Graph Transformation . 51
A.2. Henshin . 53
A.3. Stratego . 56
A.4. Declarative ATL . 57
A.5. Imperative ATL . 59

B. Thrascias Implementations of the Algorithms 61
B.1. SimpleGT . 61
B.2. Declarative ATL . 64

C. Implementations of the Mapping Scenario 67
C.1. SimpleGT . 67
C.2. Declarative ATL . 70

D. Implementations of the Refactoring Scenario 73
D.1. SimpleGT . 73
D.2. Declarative ATL . 75

List of Figures

2.1. Kernel of Ecore model [1] . 6
2.2. Model Transformation Pattern . 7
2.3. Model transformation pattern (including metamodel) [2] 8

3.1. Simple graph transformation example . 13
3.2. Henshin transformation units [3] . 18

5.1. Model Transformation Pattern . 36
5.2. Transformation engine architecture . 36
5.3. Thrascias Trace structure . 37
5.4. Thrascias abstract syntax . 38

6.1. Metamodels for mapping scenario [4] . 42
6.2. EMF ‘extlibrary’ metamodel (adapted from [5]) 43
6.3. ‘extlibrary’ model after Pull Up Class Attribute transformation 43
6.4. Model for refactoring scenario . 44

xiii

List of Tables

3.1. Language constructs in GROOVE control language 15
3.2. A selection of Stratego language constructs 19
3.3. Comparison of transformation operations at the rule level. 23
3.4. Comparison of transformation operations at the transformation level. . 24

4.1. Primitive transformation language operations 29
4.2. Comparison of transformation primitives 33

5.1. Thrascias operations . 39

xv

List of Algorithms

3.1. Pseudo-code representation of single-pushout graph transformation. . . 14
3.2. Pseudo-code representation of Henshin’s execution algorithm. 17
3.3. Pseudo-code representation of the Stratego rule application algorithm. . 19
3.4. Pseudo-code representation of Stratego’s cascading transformation strategy. 20
3.5. Pseudo-code representation of the ATL transformation algorithm. . . . 22

xvii

1
Introduction

1.1. Motivation

The Model-Driven Architecture (MDA) [6] was introduced in 2001 by the Object Manage-
ment Group (OMG) to aid the integration, interoperability and evolution of software
systems. MDA is an approach to specifying software systems that separates specifica-
tion of functionality from its implementation on a specific technology platform.

Kent [7] introduced the term Model-Driven Engineering (MDE), which in a sense
extends MDA. MDE is not only concerned with the separation of platform-independent
from platform-specific, but also with the development process and extra dimensions
like versioning. Contrary to MDA, MDE is not necessarily based on OMG standards.
Instead it uses general standard-independent modelling concepts.

MDE relies heavily on the use of models. They are not just used as documentation
but define the system at a high abstraction level, omitting any technology-specific
information. A model can describe, for example, the structure or the behaviour of a
system. The actual implementation of the system can be generated from such a model
via a model transformation. Transformations can also be used for reverse engineering
(implementation to model) and the transfer of information between systems.

In MDE, model transformations are usually defined using a model transformation
language. Research has led to the creation of several transformation languages and at
present new languages continue to appear.

New model transformation languages can be useful to test and demonstrate novel
ideas, and to specify languages tailored for a given domain. However, the development
of these languages is a time-consuming process, as most of them are implemented from
scratch and as such they are difficult to extend and adapt.

1

2 1. Introduction

1.2. Objectives

Although the languages all have their own particular approach and features, they have
the same main purpose. This means they are likely to share some common features. For
example, in all transformation languages, models can be manipulated and navigated
in some way (e.g. using OCL [8]). Languages often share common structures like
transformation rules, and may provide control over the execution order of these rules.

The objective of this work is to create a unifying framework for executing trans-
formation languages that exploits the commonalities between a set of languages, while
being able to execute of each one of them. This would enable faster prototyping of new
ideas, easier reuse of (parts of) transformations and the composition of transformations
written in different languages.

1.3. Research Questions

How can we execute different model transformation languages in a common envir-
onment, while retaining the variability between the languages?

This question has been decomposed into three subquestions:

1. What should a common execution environment for model transformation lan-
guages look like?

2. How do we build support for executing different transformation languages in
this common environment?

3. What are the limitations of executing transformation languages in a common
environment?

1.4. Research Approach

• We first take a look at the principles of models and model transformation lan-
guages. Out of the vast amount of transformation languages available, we select
a few representative languages for a more detailed analysis.

• Second, we investigate the execution algorithms of these languages. We look
into the commonalities and variabilities, which results in a set of primitive
transformation operations.

• Third, we define a language for specifying transformation languages in our
common environment.

• Fourth, we implement an interpreter for our language in order to execute the
specified languages.

• Finally, we present a number of test cases to validate our framework and identify
its limitations.

1.5. Outline 3

1.5. Outline

This thesis is organized as follows. Chapter 2 introduces model transformation and
transformation languages. Chapter 3 analyses the commonalities and variabilities
between the languages, and take a look at their execution algorithms. Chapter 4 defines
our language for specifying transformation languages in our framework. Chapter
5 introduces our implementation of the framework and its architecture. Chapter 6
discusses test cases for validating the implementation and its limitations. Chapter 7
draws conclusions about the results and sketches future work.

2
Model Transformation Languages

We start with an introduction to model transformation and provide an overview of
existing transformation languages.

2.1. Models

We mentioned before that models are the cornerstone of MDE. The word model is used
to describe lots of different concepts in different contexts. We will use the definition by
Kurtev [9], which summarizes some of the existing definitions: “A model represents a
part of the reality called the object system and is expressed in a modelling language. A
model provides knowledge for a certain purpose that can be interpreted in terms of the
object system.”

Most models conform to a metamodel, which is a model of a modelling language and
basically describes its abstract syntax. Because a metamodel is itself a model, it is an
instance of another metamodel (also known as a meta-metamodel).

2.2. Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a framework for modelling and code
generation of applications based on structured data models [5]. In EMF, metamodels
are defined as instances of the Ecore model. Additionally, the Ecore model itself is
defined as an Ecore model.

Figure 2.1 shows the main part of the Ecore model [1]. EClasses are used to define
classes along with their attributes (EAttribute) and references (EReference). EPackages
can be used to group the classes.

5

6 2. Model Transformation Languages

ENamedElement EAnnotation

EModelElement

0..n
+eAnnotations
0..n

+eModelElement

ETypedElement EPackage

0..n

+eSubpackages

0..n

+eSuperPackage

EParameter

EClassifier

0..1

+eType

0..1

0..n

+ePackage+eClassifiers

0..n

EOperation

0..n

+eOperation +eParameters

0..n

EReference
0..1

+eOpposite

0..1

EDataType

EAttribute

+eAttributeType 11

EClass 0..n

+eSuperTypes

0..n

0..n

+eContainingClass

+eOperations

0..n

0..n

+eReferences

0..n

0..n

+eAttributes

0..n

EStructuralFeature

+eContainingClass

+eStructuralFeatures

0..n0..n

Figure 2.1.: Kernel of Ecore model [1]

EMF provides basic Java code generation for its models, including a simple editor,
support for basic model modification operations and persistence.

2.3. Model Transformation

In the Object Management Group’s MDA Guide, model transformation is defined
as “the process of converting one model to another model of the same system” [6].
However, this definition does not include the specification of a transformation and
unnecessarily restricts transformations to models of the same system. Additionally, it
does not take into account transformation to and from multiple models.

We therefore use the definition by Mens and van Gorp [10]: “A model transformation
is a process of automatic generation of one or multiple target models from one or
multiple source models, according to a transformation definition, which is expressed in
a model transformation language.”

2.4. Model Transformation Pattern 7

Figure 2.2.: Model Transformation Pattern

2.4. Model Transformation Pattern

Model transformations can be described using the pattern shown in Figure 2.2. We
have a source model Ma, a target model Mb and a transformation definition Tab. The
transformation definition is written in a transformation language TL. When executed,
Tab transforms Ma to Mb.

As mentioned before multiple source and target models can be used in the same
transformation, extending the pattern accordingly.

As a model is an instance of a metamodel, we can extend the pattern to include the
metamodels (Figure 2.3). Some transformation languages do not need metamodels
because they operate on generic graphs or ASTs (e.g. GROOVE, Stratego). Other
languages do need metamodels.

2.5. Transformation Languages

There are many different model transformation languages available, but they can never-
theless be classified into a number of categories. Because we are mainly interested in
the execution algorithms of model transformation languages, we consider four aspects
for classification: transformation approach, rule application strategy, model representation
and tracing [11].

2.5.1. Transformation Approach

Mens and van Gorp [10] state that the most important distinction between the languages
is whether they use a declarative or an operational approach.

8 2. Model Transformation Languages

Figure 2.3.: Model transformation pattern (including metamodel) [2]

Declarative Approach The declarative approach is also known as the relational ap-
proach. Developers specify relations between elements of the source and target models.
The transformation language has to figure out the necessary transformation steps by
itself. Examples of declarative languages are Henshin [3] and QVT Relations [12].

Imperative Approach The imperative approach is also known as the operational ap-
proach. Developers specify the exact operations that have to be performed to transform
source models to target models. An example of an imperative transformation language
is QVT Operational Mappings [12].

Hybrid Approach A third approach has yet to be mentioned: the hybrid approach.
Strictly speaking this is not an approach separate from declarative or imperative, but
simply makes both available to the developer in a single language. An example of a
hybrid language is ATL [13].

2.5.2. Rule Application Strategy

A transformation usually consists of a number of units. In most languages these units
are rules [11]. Rules can appear in many guises, for example a rewrite rule with a
left-hand side and a right-hand side; or a function that takes an input pattern and
produces output by using an expression.

The rules in a transformation can often be applied in different orders. Furthermore,
rules can match at multiple model regions at the same time. Transformation languages

2.5. Transformation Languages 9

therefore use a strategy to choose the order in which transformation rules should be
applied and at which model region. There are two kinds of strategies [11]:

Deterministic A deterministic strategy can either be explicit or implicit. In the first
case the application order is defined by an explicit strategy, possibly separate from the
transformation rules themselves (example: Stratego [14]).

In the second case the developer has but indirect control over the application order.
The result of the transformation is deterministic, but can be changed by changing the
matching patterns and logic of the rules (example: ATL [13]).

Non-deterministic In a non-deterministic strategy a rule and/or application location is
chosen randomly from matching rules or model regions (example: graph transformation
languages [15]). It is important to note that even if the application strategy is non-
deterministic, the result of the transformation can still be deterministic, in case all the
different application orders result in the same output model.

2.5.3. Model Representation

Models used by transformation languages can be represented in various ways. Some
possibilities are graphs (e.g. graph transformation), abstract syntax trees (e.g. Stratego)
and Eclipse Modelling Framework models [16] (e.g. Henshin, ATL).

2.5.4. Tracing

Traces record information about the execution of a transformation. Commonly traces
are used to map source elements to target elements [11]. They can be used for analysing
how changes in the source model affect the target models, for synchronizing models
and for debugging.

There are various types of traces:

• Different kinds of information can be recorded, such as, the rule that created a
trace or the time of creation.

• Information can be recorded at different abstraction levels, for example, only for
top-level transformations.

• Information can be recorded for different scopes, for example, only for particular
transformation rules.

• Traces can be stored in a number of locations, such as, in the source model, target
model or in a separate location.

Some transformation languages provide support for tracing in the language itself, or
even create traceability links automatically (ATL, QVT). In other languages tracing has
to be done manually as part of the transformation definition.

10 2. Model Transformation Languages

2.6. Languages to Consider

We choose to analyse five declarative model transformation languages. Based on
the classification above, they have significantly different characteristics and they are
well-known representatives of their kind.

Graph transformation Not really a language as such, but rather a class of transformation
languages with graph-based models, a non-deterministic rule application strategy
and no inherent tracing support.

GROOVE Graph transformation language extended with explicit deterministic rule
application strategy. No inherent tracing support.

Henshin Eclipse modelling framework-based language with explicit deterministic rule
application strategy. No inherent tracing support.

Stratego Abstract syntax tree-based term-rewriting language with explicit deterministic
rule application strategy. No inherent tracing support.

ATL EMF-based language with implicit deterministic rule application strategy and
inherent tracing support. Although ATL is a hybrid language we only consider
its declarative part.

We discuss these languages in detail in Chapter 3. We choose only declarative languages,
so we can validate our analysis later on using a language with a different transformation
approach (imperative ATL).

2.7. Conclusions

We have briefly introduced models and model transformation concepts. We have shown
that there are many model transformation languages with different characteristics.
Furthermore we have explained our choice of languages for analysis. Next, we discuss
the execution algorithms of the chosen languages.

3
Transformation Execution Algorithms

In Chapter 2 we have selected five transformation languages for further analysis: graph
transformation, GROOVE, Henshin, Stratego and declarative ATL. In this chapter we
take a look at the way they are executed and try to find commonalities between them.

3.1. Graph Transformation

The first execution algorithm we consider is the algorithm used in graph transformation.
In this kind of transformation a model is described as a graph. There are multiple
ways to do this, the most simple being the mapping of entities to nodes and relations
to edges. However, once more complicated relations are used (e.g. multiplicity) more
complicated mappings are necessary [17]. This, however, is outside the scope of this
thesis.

To transform a model, graph rules can be defined that specify pre-conditions for the
application of a rule (called left-hand side) and post-conditions that have to be satisfied
after the application of a rule (right-hand side) [15].

There are actually a number of different approaches to graph transformation that
can be used. The way in which new elements are added and old elements are removed
is slightly different for these approaches, but the general idea is the same. In this thesis
we illustrate graph transformation using the single-pushout approach (SPO).

Algorithm 3.1 describes the approach in pseudo-code. We first select an arbitrary
transformation rule. We try to find an arbitrary occurrence of its left-hand side L
(Figure 3.1a) in a graph G (Figure 3.1b). This happens in line 10 of Algorithm 3.1 using
G.getMatches(). During the matching that is taking place here, any possible negative
application conditions are also taken into account. Negative application conditions
are conditions under which a rule should not be applied. For example, one could add

11

12 3. Transformation Execution Algorithms

a condition to the rule in Figure 3.1a that prevents guests from occupying multiple
rooms.

Once matches have been found, we iterate over them in a non-deterministic order.
All graph elements that exist in L but not in R are then deleted from G (lines 12-14).
Subsequently, we check for any dangling edges in G, and delete them (lines 16-19).
Finally in lines 21-23, we add the objects that exist in R but not in L to G (Figure 3.1c)
[18].

If a transformation rule has been applied successfully, the transformation is restarted
and we again start to look for matches for an arbitrary transformation rule. If no matches
were found for a transformation rule we try a different rule. The transformation ends
when none of the transformation rules can be applied.

Because of the non-deterministic choice of rules there is no guaranteed confluence.
This means executing the transformation multiple times on the same model does not
necessarily yield the same result. Moreover, termination of a transformation is not
guaranteed and a rule might not be executed even if there exists a match for this rule
in the graph.

3.2. Controlled Graph Transformation

In a graph transformation, rules are self-contained units that specify the exact pre-
conditions for their application [19]. Rule ordering is often a major reason for specifying
these conditions. Because the conditions can be very complex and rules can implicitly
depend on other rules, the transformation is not always easy to understand. A possible
solution is to move the complex pre-conditions out of the rules, specifying them using
so-called control expressions. In other words: an explicit deterministic rule application
strategy is introduced.

3.2.1. GROOVE

Staijen has defined a language for specifying such strategies for the GROOVE graph-
transformation toolkit [20].

Table 3.1 lists the language constructs available in this language. The constructs take
one or more expressions, which can be either rules or other constructs.

3.2.2. Henshin

Another language for graph transformations with explicit rule application strategy is
Henshin [21], developed by Arendt et al. [3]. Henshin operates on EMF models, but
the models are represented as graphs.

The application strategy is defined using transformation units (Figure 3.2). A rule
is itself the most basic transformation unit. Other kinds of transformation units can
have subunits that are executed in a particular order, or under particular circumstances.
A transformation unit can be applicable, which means it will be executed during the
transformation. Arendt et al. discuss some of these transformation units in their articles:

3.2. Controlled Graph Transformation 13

(a) Graph transformation rule

(b) Graph before transformation application

(c) Graph after transformation application

Figure 3.1.: Simple graph transformation example

14 3. Transformation Execution Algorithms

Algorithm 3.1 Pseudo-code representation of single-pushout graph transformation.

1 InputModel G
2 Transformation transformation
3
4 // Continue until no application is possible
5 while True:
6 boolean ruleApplied = false
7
8 forall rule in transformation.getRules():
9 // Find occurences of rule in graph

10 forall oL in G.getMatches(rule.getL()):
11 // Find elements in L \ R
12 Set deletedElements = oL - rule.getR()
13 // Delete elements from G, creating D
14 Model D = G - deletedElements
15 // Check for dangling edges
16 forall e in D.edges():
17 if e.source == null || e.target == null:
18 // Delete edge if dangling
19 D = D - e
20 // Find elements in R \ L
21 Set addedElements = rule.getR() - oL
22 // Glue new elements to D, creating new G (H)
23 G = D + addedElements
24 ruleApplied = true
25 break
26
27 if ruleApplied:
28 // rule applied, start from beginning
29 break
30
31 if !ruleApplied:
32 // no rules left, stop execution
33 break

3.2. Controlled Graph Transformation 15

Table 3.1.: Language constructs in GROOVE control language

Construct Description

ruleName Execute a rule.

true Behaves like a rule that is always successful and does
not change the underlying structure.

E1 | E2 Non-deterministic choice. Execute either E1 or E2.

E1 ; E2 Sequential composition. First execute E1, then E2.

E* Execute E an arbitrary number of times.

alap E Repeat the execution of E as long as it applies.

try E1 Execute E1, skip if it does not apply.

try E1 else E2 First try to execute E1, then execute E2 only if E1
fails.

if (E1) E2 First execute E1, then afterwards E2 if E1 succeeds.

if (E1) E2 else E3 First execute E1, then afterwards E2 if E1 succeeds. If
E1 fails, execute E3.

while (E1) do E2 Execute E1 and afterwards E2, and again E1 until the
execution of E1 fails.

until (E1) do E2 Try to execute E1, then execute E2 and again E1 if E1
fails.

16 3. Transformation Execution Algorithms

Rule A transformation rule [3]. It is applicable if there is a match for its left-hand side
in the model.

IndependentUnit Non-deterministic execution of its subunits. An IndependentUnit is
always applicable. Subunits may be applied repeatedly. The IndependentUnit
terminates if no applicable subunit remains [3].

PriorityUnit Execution of a subunit that is applicable and has the highest priority. A
PriorityUnit is always applicable. Subunits may be applied repeatedly. The
PriorityUnit terminates if no applicable subunit remains [22].

SequentialUnit Execution of its subunits in a predefined sequence. A SequentialUnit
is only applicable if if all subunits are applicable in the given order. The
SequentialUnit terminates if all subunits terminate [3].

CountedUnit Execution of its subunit a specified number of times. It is only applicable
if its subunit is applicable the given number of times. It terminates if the subunit
terminates [22].

ConditionalUnit Conditional execution using references to subunits called if, then,
and else. It terminates if its subunits terminate [3].

AmalgamationUnit Allows for the definition of multiple rules with common parts. It
consists of a kernel rule and a set of multi-rules [3].

• The kernel rule is matched only once and serves as a common partial match
for each multi-rule.

• The multi-rules are matched as often as possible.

Algorithm 3.2 describes the execution algorithm for Henshin in pseudo-code. Henshin
supports the passing of parameters between transformation units, but we omit this in
the pseudo-code.

3.3. Term Rewriting

The next transformation language we discuss is called Stratego. It was developed
by Visser [14] and is based on term rewriting. Instead of graphs, term-rewriting
transformations use abstract syntax trees (AST) to represent the model. Abstract syntax
trees consist of terms, i.e. applications C(t1, . . . , tn) of a constructor C to terms ti, lists,
strings or integers.

An AST can be transformed by replacing its terms with other terms in a manner
specified by term rewriting rules. However, as with graph transformation, a term
rewriting system does not necessarily terminate, or yield the same result if rules are
applied in a different order (confluence). Therefore, extra rules are often added to specify
where rules should be applied and in what order.

3.3. Term Rewriting 17

Algorithm 3.2 Pseudo-code representation of Henshin’s execution algorithm.

1 Transformation transformationSystem
2
3 forall unit in transformationSystem:
4 processUnit(unit)
5
6
7 function processUnit(unit):
8 if unit instanceof Rule:
9 Match match = unit.findMatch()

10 if match != null:
11 unit.applyRule(match)
12
13 else if unit instanceof IndependentUnit:
14 // Works in the same way as the
15 // basic graph transformation algorithm
16
17 else if unit instanceof PriorityUnit:
18 TransformationUnit nextUnit = unit.getNextSubUnit()
19 boolean success = false
20 while nextUnit != null && !success:
21 success = processUnit(nextUnit)
22 nextUnit = unit.getNextSubUnit()
23
24 else if unit instanceof SequentialUnit:
25 TransformationUnit nextUnit = unit.getNextSubUnit()
26 boolean success = true
27 while nextUnit != null && success:
28 success = processUnit(nextUnit)
29 nextUnit = unit.getNextSubUnit()
30
31 else if unit instanceof CountedUnit:
32 int counter = unit.getCount()
33 boolean success = true
34 while counter > 0 && success:
35 success = processUnit(unit.getSubUnit())
36 counter--
37
38 else if unit instanceof AmalgamationUnit:
39 Match kernelMatch = unit.getKernelRule().findMatch()
40 if kernelMatch != null:
41 if unit.getKernelRule().applyRule(kernelMatch):
42 forall multiRule in unit.getMultiRules():
43 forall match in multiRule.findMatch():
44 multiRule.applyRule(match)
45
46 else if unit instanceof ConditionalUnit:
47 boolean success = processUnit(unit.getIf())
48 if success:
49 processUnit(unit.getThen())
50 else if unit.getElse() != null:
51 processUnit(unit.getElse())

18 3. Transformation Execution Algorithms

Figure 3.2.: Henshin transformation units [3]

In Stratego the rule application strategy is specified explicitly using higher-order
rewriting rules. That is, the developer can specify rules that combine other rules and
execute them in a particular order.

Stratego has a number of language constructs to facilitate this, described in Table 3.2.

Algorithm 3.3 describes Stratego’s rule execution algorithm in pseudo-code. First a
rule is matched against the source model and its variables are bound to specific terms.
Afterwards any possible rule preconditions are checked and additional variables are
bound. Finally the rule is applied, transforming the model.

Visser provides a number of transformation idioms to illustrate the rule application
strategies that could be expressed using Stratego. We take a look at one of them, namely
cascading transformation.

Cascading transformation is the most basic strategy for term rewriting (Algorithm 3.4).
Small independent transformations are cumulatively applied in order to reach a desired
result. The strategy tries to apply any of the rules, starting at the bottom of the abstract
syntax tree. Each successful application restarts this process. If no rule can be applied,
the algorithm moves to a higher level in the tree. This continues until we reach the root
and there are no rules left that apply.

Listing 3.1 shows how this strategy can be expressed in Stratego notation. We first
traverse the tree to get to the bottom level using bottomup(s). We try to apply the
sequence of rules R1 to Rn until one of the rules succeeds. If a successful rule application
has taken place, innermost(s) restarts the transformation on the current subtree. Once
no applicable rules remain, bottomup(s) moves us to the next level of the tree.

3.3. Term Rewriting 19

Table 3.2.: A selection of Stratego language constructs

Construct Description

ruleName : l -> r
where s

Define a rewrite rule with label ruleName, left-hand
side l and right-hand side r. Optionally,
preconditions s for the rule can be specified by
adding a where part to the rule.

ruleName Execute the rewrite rule labelled ruleName.

E1 ; E2 Sequential composition. Execute E1 and after that E2.

E1 <+ E2 Deterministic choice. First try E1, execute E2 only if
E1 fails.

E1 + E2 Non-deterministic choice. The same as <+, but the
first expression to try is chosen randomly.

E1 < E2 + E3 Guarded choice. If E1 succeeds, execute E2. If E1
fails, execute E3.

where(E) Test whether E applies, but ignore the result of the
application.

not(E) Negation. Succeeds if E fails to apply.

id Identity. Always succeeds with the original term as
the result.

all(E) Apply E to each direct subterm.

one(E) Apply E to one direct subterm.

try(E) = E <+ id Try to execute E, continue if the execution fails.

repeat(E) = try(E;
repeat(E))

Repeat the execution of E until it fails.

Algorithm 3.3 Pseudo-code representation of the Stratego rule application algorithm.

1 function applyRule(Rule rule, AST tree):
2 // check for match and collect variable bindings
3 Set bindings = rule.l.match(tree)
4 // check extra preconditions
5 if rule.s != null:
6 Set precondition_bindings = rule.s.match(tree)
7 if rule.s == null || precondition_bindings != null:
8 bindings += precondition_bindings
9 if bindings != null:

10 // replace variables in term and replace tree
11 tree = rule.r.replaceVars(bindings)

20 3. Transformation Execution Algorithms

Algorithm 3.4 Pseudo-code representation of Stratego’s cascading transformation
strategy.

1 // cascading transformations
2 function cascade(Set rules, AST tree):
3 // traverse bottom-up
4 forall child in tree.getChildren():
5 cascade(rules, child)
6
7 // try to apply rules
8 forall rule in rules:
9 if applyRule(rule, tree):

10 // successful application => start applying all
11 // rules again bottom-up
12 cascade(rules, tree)
13 break

Listing 3.1: Cascading transformation expressed in the Stratego language. [14]
1 bottomup(s) = all(bottomup(s)); s
2
3 innermost(s) = bottomup(try(s; innermost(s)))
4
5 simplify = innermost(R1 <+ ... <+ Rn)

3.4. ATL

The last transformation language we discuss in this chapter is ATL [13]. Although
ATL is a hybrid language we only consider its declarative part here. As explained in
Chapter 2, we use the imperative part for validation purposes in Chapter 4.

Declarative ATL has three kinds of transformation rules: matched, lazy and unique
lazy.

Matched rules Matched rules match a specific type of source elements, possibly further
restricted by a guard condition. A developer specifies the target elements that have to
be created from these source elements, and how their properties should be initialized.
Each source element may only be matched by a single matched rule.

ATL executes matched rules automatically in an arbitrary order. It also creates
traceability links between source and target elements.

Lazy rules Lazy rules are matched rules that are not executed automatically. They
can be triggered by other rules as many times as necessary. Traceability links are not
created for these rules.

3.5. Analysis of Commonality and Variability 21

Unique lazy rules Unique lazy rules are lazy rules that are applied at most once for a
specific match. If triggered more than once, they return the target elements that were
already created earlier.

Algorithm 3.5 describes ATL’s transformation execution algorithm in pseudo-code.
First, rules are matched and a list of matches is created. Second, the target elements are
created. Last, the properties of the target elements are initialized.

Although we do not explicitly include the execution algorithm for (unique) lazy rules
here, the algorithm for matched rules sans the matching can easily be reused for those
kinds of rules.

3.5. Analysis of Commonality and Variability

Now that we have introduced the transformation execution algorithms of the various
transformation languages, we proceed by analysing their commonalities and variabilit-
ies. Looking at the execution of a model transformation, we can distinguish two levels
at which the execution takes place: the rule level and the transformation level.

3.5.1. Rule Level

At the rule level we look at the operations that take place during rule execution. As
we are considering declarative languages, developers do not explicitly specify most of
these operations, i.e. they happen ‘behind the scenes’.

The transformation operations we identified are listed in Table 3.3. In every language
the source model is navigated and elements from the source patterns are matched.
Creating elements and setting properties is also something that every language is
capable of.

In contrast, deleting elements or properties is not always possible. In ATL it is not
possible to navigate the target model, and consequently it is not possible to delete parts
of this model. Deletion of elements is possible when using ATL’s refining mode, but this
mode can only be used if source and target models conform to the same metamodel.
Moreover, some language features are disabled in this mode.

ATL does have two operations that are not available in other languages, namely for
creating and querying a trace. Traces can be created in other languages, but are not
supported natively in the implementation of these languages. Instead, they have to be
specified explicitly in the transformation definition using a custom-made metamodel.

3.5.2. Transformation Level

At the transformation level we look at operations that make up a rule application
strategy. The operations we identified are listed in Table 3.4.

The most basic operation in such a strategy is executing a rule. In some languages
(e.g. Stratego) it is possible to check if there are matches for a rule in the source model,

22 3. Transformation Execution Algorithms

Algorithm 3.5 Pseudo-code representation of the ATL transformation algorithm.

1 Transformation transformation
2 InputModel inputModel
3 List matches
4 List targetElements
5 Dictionary traces
6
7 // match rules
8 forall rule in transformation.getMatchedRules():
9 forall match in inputModel.getMatches(rule):

10 matches += match
11
12 // execute matched rules
13 forall match in matches:
14 // create target elements
15 forall t in match.getRule().getTargets():
16 Object target = new (t.getType())()
17 targetElements += target
18 // create trace links
19 traces[match.getSource()] = target
20
21 // initialize target-element properties
22 forall target in targetElements:
23 forall property in target.getProperties():
24 // if primitive , assign directly
25 if isPrimitive(property.getContent()):
26 target.setProperty(property.getName(), property.getContent())
27 else:
28 // if source element, resolve, then assign
29 Trace trace = traces[property.getContent()]
30 if trace != null:
31 target.setProperty(property.getName(), trace)
32
33 // if trace query, resolve, then assign
34 else if isQuery(property.getContent()):
35 Trace trace = traces[property.getContent().getSource()]
36 target.setProperty(property.getName(), trace)
37
38 // if target element, assign directly
39 else:
40 target.setProperty(property.getName(), property.getContent())

3.6. Conclusions 23

Table 3.3.: Comparison of transformation operations at the rule level.
Operations GT GROOVE Henshin Stratego ATL
Navigate model X X X X X
Match pattern X X X X X
Create element X X X X X
Delete element X X X X
Set property X X X X X
Delete property X X X X
Create trace X
Query trace X

but not actually execute the rule. ATL is a special case: this feature is not available to
developers, but is nonetheless an essential part of the language’s execution algorithm.

Other available operations are:

• Choosing a rule non-deterministically (i.e. randomly) from the available rules in
a transformation.

• Executing a rule under the condition that a certain other rule does not apply.

• Executing a sequence of rules in some predefined order.

• Executing a sequence of rules in an undefined order. ATL’s execution algorithm
works in this way: all matched rules are executed once for each match, in an
undefined order.

• Executing a rule an undefined number of times.

• Executing a rule a specified number of times.

• Repeating the execution of a rule as long as possible. After executing the rule, we
check whether or not the rule still applies. If so, we execute it again.

• Trying to execute a rule, but continue if it fails to apply. One of its uses is to
stop recursion over a list once all elements have been processed, and continue the
execution at a higher level.

3.6. Conclusions

We analysed the structure and primitive operations within the execution algorithms
of five different transformation languages. We described the commonalities and
variabilities between them. In the next chapter we define, based on this analysis, our
own language for defining model transformation languages in our common execution
environment.

24 3. Transformation Execution Algorithms

Table 3.4.: Comparison of transformation operations at the transformation level.
Primitive GT GROOVE Henshin Stratego ATL
Execute rule X X X X X
Match rule (no execution) X ∗
Choose a rule
non-deterministically

X X X X

Execute a rule conditionally X X X
Specify a sequence of rules
with defined order

X X

Specify a sequence of rules
with undefined order

X

Execute rule an undefined
number of times

X

Execute rule a specified
number of times

X

Repeat execution of a rule as
often as it is possible

X X X X

Continue if rule fails to apply X X

4
Primitive Model Transformation Language

Using our observations discussed in the previous chapter, we can now define our own
model transformation language, consisting of just a few primitive operations, in which
all of the afore discussed transformation execution algorithms can be expressed.

4.1. Language Definition

4.1.1. Model Navigation Operations

First of all we need basic model navigation operations. The navigation operations
available are quite dependent on the representation of the model in an actual im-
plementation. Because the availability of such operations is not related to the way
a transformation is executed, we assume that all operations necessary to navigate a
model efficiently are available. Some example model navigation operations that are
used in our primitive representations of the execution algorithms are described below.

transformation.getRules() Retrieve the rules in a transformation (graph transformation).

transformation.getSourceModel() Retrieve the source model of a transformation (graph
transformation).

transformation.getTransformationUnits() Retrieve the transformation units in a trans-
formation (Henshin).

transformation.getRules() Retrieve the rules in a transformation (Stratego).

rule.getTransformation() Retrieve the transformation to which a rule belongs (graph
transformation).

25

26 4. Primitive Model Transformation Language

rule.getTarget() Retrieve the target elements of a rule (graph transformation).

rule.getPreconditions() Retrieve the preconditions for a rule (Stratego).

unit.getSubUnits() Retrieve the subunits of a transformation unit (Henshin).

tree.getChildren() Retrieve the children of an AST element (Stratego).

4.1.2. Collection Operations

Second, we assume that basic operations to navigate and manipulate collections are
also available. Some example collection operations that we use in our primitive
representations of the execution algorithms are described below.

collection.add(element) Add an element as the last element of a collection.

collection.unshift() Add an element as the first element of a collection.

collection.shift() Remove the first element from a collection and return the element.

collection.remove(element) Remove an element from a collection.

collection.get(index) Retrieve the element at the specified index of a collection.

collection.contains(element) Check if a collection contains an element. Returns a
boolean.

collection.copy() Returns a deep copy of a collection.

4.1.3. Logical and Arithmetic Operations

Third, we assume support for basic logical and arithmetic operations. Some examples
of these operations are:

== Equals
!= Not equal to
> Greater than
< Less than
= Assignment

+ Addition
- Subtraction
∗ Multiplication
/ Division

4.1.4. Functions

Fourth, we assume that functions are supported. Strictly speaking, functions are
not primitives, but we use them to structure the algorithms and to enable recursion.
Functions can have parameters that pass references. A function does not return any
value. A function named myFunction with a parameter named parameter1 and type
TypeX can be specified as follows:
function myFunction(TypeX parameter1):

operation

4.1. Language Definition 27

4.1.5. Exception Handling

Fifth, we have exception handling. This was not observed in any of the selected
transformation algorithms, but can be useful to convey information about errors
during the transformation execution. An exception is raised using raise(). The
raise primitive is never applicable and thus causes the execution to return to a higher
level. The exception can be caught using catch(), which is applicable if the specified
exception has been raised and was not yet caught.

4.1.6. Transformation-level Operations

The primitive transformation operations are summarized in Table 4.1. We discuss them
one by one.

Find match for rule match_rule(rule[, model]) returns Set of matches
Searches the source model for elements that match the left-hand side of the specified

rule. It returns a set of matches. If the model parameter is provided, the specified
(sub)model is searched instead of the source model.

We do not define the search algorithm that is used to search the model. The choice
of search algorithm is left to the implementers of the primitive language.

Non-deterministic choice nd_choice(set of expressions) returns expression
Chooses one element of the set of expressions at random and returns the element.

An expression can be an operation, a call to a function or a literal value (eg. 42).

Ordered sequence expression ; expression

Executes the expressions in the defined order. If the first expression fails to execute,
the second will not be executed.

Continue on failure try { expression }

Tries to execute the expression. If it fails, continue as if the execution was successful.

Conditional execution try { expression } else { expression }

Tries to execute the first expression. If it fails, try to execute the second expression.

4.1.7. Rule-level Operations

Create element model.add(element) create_element(class)

The first operation (add) adds an element to a model. This is used in algorithms that
make copies of target elements and include the copies in the target model.

The second operation (create_element) creates a new element that is an instance of
the specified class.

28 4. Primitive Model Transformation Language

Delete element model.remove(element)

Deletes an element from a model.

Set property element.setProperty(name, value)

Sets the value of the property ‘name’ on the element to ‘value’.

Delete property element.deleteProperty(name)

Deletes (or nullifies) the property ‘name’ on the element.

Create trace add_trace(rule, sourceElement, targetElement)

Creates a trace that connects the source element to the target element in the context
of a rule.

Query trace match_trace_source(sourceElement) returns Trace
Looks for a trace with the specified source element and returns it. The execution of

this operation fails if no trace is found. A Trace object contains a reference to a rule, a
source element and a target element.

4.1.8. Operations not included

Some of the operations observed earlier are not included in our primitive language:

• Execute a rule. This is a primitive operation at the transformation level, but
one that is tied closely to the execution algorithm that is used. For example, in
graph transformation, rules are executed on a per-rule basis, while in ATL the
execution is split into three phases (match, create, initialize) and all rules have
to be processed before the next phase is started. Therefore we cannot provide a
single language construct that can be used in all algorithms.

• Execute rule an undefined number of times. This operation is only present in
GROOVE and was most likely added to the language because of its roots in
defining automata. We see no practical use for this operation in a general-purpose
transformation language and it can be emulated with the other primitives anyway.

• Execute a rule a specified number of times. This is another operation that can be
emulated using the other primitives on a per-algorithm basis, for example:

function for(Rule r, int n):
try { n > 0 ; executeRule(r) ; for(r, n-1) } else { n == 0 }

In this example executeRule() is the function the algorithm in question uses to
execute a transformation rule.

• Repeat execution of a rule as often as it is possible. This can be achieved by means
of recursion, for example:

4.2. Application of the Primitive Language 29

Table 4.1.: Primitive transformation language operations

Operation Representation

Function function functionName(TypeX parameter1):

Find match for rule match_rule(rule [, model]) returns Set of matches

Non-deterministic choice nd_choice(set of expressions) returns expression

Ordered sequence expression ; expression

Continue on failure try { expression }

Conditional execution try { expression } else { expression }

Create element model.add(element)
create_element(class)

Delete element model.remove(element)

Set property element.setProperty(name, value)

Delete property element.deleteProperty(name)

Create trace add_trace(rule, sourceElement, targetElement)

Query trace match_trace_source(sourceElement) returns Trace

Raise exception raise(exceptionName)

Catch exception catch(exceptionName)

function repeat(Rule r): try { executeRule(r) ; repeat(r) }

• Specify a sequence of rules with undefined order. This can be emulated by
choosing rules non-deterministically and removing them from a set (or from the
transformation model) once they have been executed.

4.2. Application of the Primitive Language

We have defined our primitive model transformation language for specifying trans-
formation algorithms, and we now express all of the aforediscussed algorithms using
our own language.

4.2.1. Graph Transformation

An implementation of the single-pushout graph transformation algorithm in our
primitive language is included in Appendix A.1. We compare this implementation (PL)
to the pseudo-code version (PC) described in Algorithm 3.1 in Chapter 3.

30 4. Primitive Model Transformation Language

First, we select an arbitrary transformation rule (PL line 11, PC line 8). We search for
all occurrences of the rule’s left-hand side in the source model (PL line 12, PC line 10)
and select an arbitrary match (PL line 14, PC line 10).

We execute the rule with this match (PL lines 22-30, PC lines 11-25). We remove all
matched source elements that do not exist in the rule’s right-hand side (PL line 26, PC
lines 12-14). We add the elements that exist in rule’s right-hand side but not in the
rule’s left-hand side (PL line 28, PC lines 21-23). Finally, we restart the transformation
(PL line 5, PC lines 25-29).

If no match is found for a rule, we try matching another rule (PL lines 15-19, PC
lines 8-10). When no rule matches, the transformation is complete (PL lines 3-6, PC
lines 31-33).

4.2.2. Henshin

An implementation of Henshin’s execution algorithm in our primitive language is
included in Appendix A.2. This implementation reuses the executeRule() function
from the graph transformation algorithm implementation. Again we compare this
implementation (PL) to the pseudo-code version (PC) described in Algorithm 3.2 in
Chapter 3.

We process all transformation units that are subunits of the Transformation one at a
time (PL lines 6-8, PC lines 3-4).

• If the unit is a Rule, we look for a match in the source model and execute the
Rule if one is found (PL lines 12-15, PC lines 8-11).

• If the unit is an IndependentUnit, we execute its subunits using the graph
transformation algorithm (PL lines 17-9, 46-63; PC lines 13-15).

• If the unit is a PriorityUnit, we execute its subunits according to their priorities
(PL lines 21-23, 65-73; PC lines 17-22).

• If the unit is a SequentialUnit, we execute its subunits in the predefined sequence
(PL lines 25-27, 75-82; PC lines 24-29).

• If the unit is a CountedUnit, we execute its subunits the specified number of times
(PL lines 30-31, 84-91; PC lines 31-36).

• If the unit is an AmalgamationUnit, we first try to find a match for the kernel
rule (PL lines 33-35, 93-94; PL lines 38-41). If a match is found, we try to find
matches for the multi-rules and execute them (PL lines 95-101, PC lines 42-44).

• If the unit is a ConditionalUnit, we first try to execute the if subunit (PL lines 37-
38, 103-105; PC lines 46-47). If the execution of if succeeds, we execute the then
subunit next (PL line 106, PC lines 48-49). If the execution of if fails, we execute
the else subunit next (PL lines 107-109, PC lines 50-51).

4.2. Application of the Primitive Language 31

4.2.3. Term Rewriting

An implementation of Stratego’s cascading transformation strategy in our primitive lan-
guage (PL) is included in Appendix A.3. The pseudo-code version (PC) was described
in Algorithm 3.4 in Chapter 3.

To start, we traverse the AST to get to the bottom level (PL lines 4-6, PC lines 2-5).
We try to execute the first rule in the list (PL lines 7-13, PC lines 8-9) and continue with
the next rule if the first fails to execute (PL lines 16-20, PC lines 8-9). Once a successful
rule execution has taken place, we restart the transformation on the current subtree (PL
lines 14-15, PC lines 12-13). When no executable rules remain we move to the next level
of the tree (PL lines 6-8, PC lines 4-5).

The execution of a rule was described in Algorithm 3.3 in Chapter 3. We look for
matches of the left-hand side of the rule in the source model (PL line 25, PC line 3).
We bind its variables to the source elements that matched (PL line 26, PC line 3). If
appropriate, we check if the rule’s preconditions match and bind additional variables
to source elements (PL lines 27-32, PC lines 5-8). Finally, we replace the bound source
elements by their respective target elements from the right-hand side of the rule (PL
line 33, PC lines 9-11).

4.2.4. Declarative ATL

An implementation of the declarative ATL algorithm in our primitive language (PL)
is included in Appendix A.4. The pseudo-code version (PC) was described in Al-
gorithm 3.5 in Chapter 3.

The execution consists of three phases. First, we match the left-hand side of all rules
to elements in the source model and save the matches using traces (PL lines 2, 6-15,
37-45; PC lines 7-10). Second, we create the right-hand side elements of the rule in the
target model (PL lines 3, 17-25, 47-57; PC lines 12-19). Third, we initialize the properties
of the target elements we just created (PL lines 4, 27-35, 59-94; PC lines 22-40).

4.2.5. Imperative ATL

We use the imperative ATL algorithm to validate that our primitive pseudo language
can indeed express other kinds of transformation languages that were not considered
while defining our language.

Imperative ATL uses called rules instead of matched rules. Called rules are not
executed automatically, they must be called explicitly from another rule. Instead of
defining the left-hand side and right-hand side of a rule, one defines a right-hand side
and a ‘do section’. The do section can contain imperative statements, namely:

• A call to a another called rule or lazy (unique) rule. Parameters can be passed to
the called rule.

• An assignment statement target <- expression that assigns the result of an
expression to a transformation module property target.

32 4. Primitive Model Transformation Language

• A conditonal statement: if(condition) { statements1 } else { statements2 }

• An iteration statement that iterates over a collection, executing statements one
time for each element of the collection assigned to iterator:

for(iterator in collection) { statements }

An implementation of the imperative ATL algorithm in our primitive language is
included in Appendix A.5. An imperative ATL transformation starts at the entry
point rule (line 2). When a called rule is executed, we first create the target elements
and initialize their properties (lines 6-8). Second, all statements in the do section are
executed (line 10-55). If another rule is a called, we execute this rule with the passed
parameters (lines 17-18). For assignment statements we evaluate the expression and
assign its result to the specified module property (lines 22-23).

For conditional statements we first evaluate the condition (lines 27-29). If the condi-
tion is true, we execute the first group of statements (line 31). If not, we execute the
second group of statements (lines 32-34).

For iteration statements we iterate over the provided collection, adding the first
element of the collection to the execution context of the enclosed statements each time
(lines 37-55).

It should be noted that our implementation reuses some of the functions of our
declarative ATL implementation. Additionally, the official ATL implementation does
not create traces when executing imperative ATL. Our implementation does create
traces, because it enables us to reuse part of the declarative algorithm. We consider this
an implementation detail.

4.3. Related Work

Syriani and Vangheluwe [23] have conducted a similar deconstruction of transform-
ation languages into primitives. Their primitives are objects (for instance a Matcher,
Rewriter, Iterator) that perform parts of the transformation and exchange messages.
A rough comparison between their and our primitives can be found in Table 4.2.
Unfortunately, they do not motivate their choice of primitives.

Syriani and Vangheluwe do include support for parallel processing, an aspect of
model transformation that we do not deal with in this thesis.

Our language includes primitives for creating and querying traces, while they do not
provide support for tracing in their language.

4.4. Conclusions

We have defined our own model transformation language consisting of just a few
primitive model transformation operations. We specified the transformation execution
algorithms of five transformation languages in our own language, including a language

4.4. Conclusions 33

Table 4.2.: Comparison of transformation primitives

Syriani and Vangheluwe [23] Our primitives

Matcher Match rule

Rewriter Create/delete element, set/delete property

Iterator Conditional execution, functions

Resolver Conditional execution, exception handling

Rollbacker Continue on failure

Selector Non-deterministic choice

Synchronizer

Composer Ordered sequence

Create/query trace

with a transformation approach not initially considered. In the next chapter we work
towards a transformation framework that can actually execute these specifications.

5
Transforming Model Transformations

Having defined our own primitive transformation language in Chapter 4, we can build
a transformation framework that can actually transform models using transformation
execution specifications written in this language.

5.1. Architecture

As mentioned before, model transformations can be described using the pattern shown
in Figure 5.1. We have a source model Ma, a target model Mb and a transformation
definition Tab. The transformation definition is written in a transformation language
TL. When executed, the transformation engine runs Tab, which transforms Ma to Mb.

Our transformation engine architecture is shown in Figure 5.2. Instead of interpreting
Tab directly, we use it as input model for transformation Tpl . Tpl is a transformation
written in our primitive language PL. It contains rules for interpreting TL transforma-
tions.

Tpl itself is interpreted by our primitive language interpreter Ipl .
Since the transformation language is itself implemented as a transformation, it is

relatively easy to add support for new languages and extend existing languages.

5.2. Interpreter Implementation

The transformation engine is implemented as a plug-in for the Eclipse platform [24].
This gives us access to the Eclipse Modeling Framework [5] and related libraries.

Though the syntax of PL as described in Chapter 4 works fine for defining trans-
formation languages, it became clear switching to a more established syntax would
ease the implementation of the PL interpreter significantly. Implementing the Chapter

35

36 5. Transforming Model Transformations

Figure 5.1.: Model Transformation Pattern

Figure 5.2.: Transformation engine architecture

5.3. Transformation Language Implementation 37

ThrTrace
rule: String
source: List<EObject>
target: List<EObject>

Figure 5.3.: Thrascias Trace structure

4 syntax would mean implementing our own OCL [8] engine, which is required for
model navigation and collection operations. This is not a small task and out of scope
for this thesis.

We decided to use a syntax based on Mistral [9], a general purpose model transform-
ation language and to use its implementation of OCL. We use only a small subset of
Mistral’s syntax, which is much more elaborate. Our implementation is called Thrascias.

Thrascias’ abstract syntax (MMpl) is defined as an ECore model, shown in Figure 5.4.

The concrete syntax is described in Table 5.1. It comprises OCL for expressions,
operations for defining which models are used, a function definition and the primitive
operations described in Chapter 4. In addition to the input and output models, two
other metamodels are always present: the EMF metamodel Ecore and Thrascias. The
Thrascias metamodel contains the Trace class which the interpreter uses for managing
traces. The structure of this class is shown in Figure 5.3.

For reflective purposes, the model of the transformation currently being executed is
accessible as _Transformation_.

We map the concrete syntax to the abstract syntax using EMFText [25]. It also provides
an editor and syntax checker for the language. The interpreter itself is implemented as
a standard interpreter pattern with a stack.

5.3. Transformation Language Implementation

We implement two of the analysed transformation languages in our framework: graph
transformation and ATL. The implementation of the other languages is left as further
work. The implementations are included in Appendix B.1 and Appendix B.2.

When implementing graph transformation there are lots of different graph trans-
formation languages to choose from, all with different syntax and slightly different
semantics. We select SimpleGT [26], because it integrates well with the Eclipse Model-
ling Framework and its semantics are similar to the graph transformation algorithm we
analysed.

38 5. Transforming Model Transformations

Figure
5.4.:Thrascias

abstract
syntax

5.3. Transformation Language Implementation 39

Table 5.1.: Thrascias operations

Operation Representation

Define transformation transform transformationName

Specify input model inputModel modelName: metamodelName

Specify output model outputModel modelName: metamodelName

Function functionName ModelElementRule {
source [parameter1: TypeX]
target [result1: TypeY = expression]

}

Model navigation OCL and Ecore

Collection operations OCL

Find match for element in set match(element, elementSet) returns
Sequence(Set(OclAny))

Non-deterministic choice collection->any(true)

Ordered sequence expression and expression

Conditional execution expression or expression
if expr then expr else expr endif

Continue on failure Using ModelElementRule

Create element create_element(eClass)

Delete element delete element

Set property update element {property=value}

Delete property update element {delete property}

Create trace add_trace(rule, [sourceElements[,
targetElements]])

Query trace match_trace_source(sourceElement) returns Trace

Raise exception raise(exception)

Catch exception catch(exception)

40 5. Transforming Model Transformations

5.4. Conclusions

We have explained the architecture and syntax of our transformation framework, and
the rationale behind them. We wrote implementations for two transformation languages
using our framework. In the next chapter we will validate our implementations with a
number of common model transformation scenarios.

6
Model Transformation Scenarios

We validate our implementation by executing two different model transformation
scenarios, namely transforming object-oriented classes to relation tables and pulling
up subclass attributes to a superclass. First, we implement the model transformations
using SimpleGT and declarative ATL. Second, we execute these implementations with
both their original interpreter and our own transformation framework. Third, we
compare the results of the executions.

6.1. Common Use Cases

The use cases in which model transformations are most commonly applied can be
categorized into five scenarios [11]:

• Generating lower-level models and source code from higher-level models

• Reverse engineering higher-level models from lower-level models or source code

• Generating views from a model using a query

• Mapping and synchronizing models

• Model evolution or refactoring

The first three scenarios usually involve generating and parsing source code files or
other documents without an explicit metamodel. Because our research focuses on
model-to-model transformations, we validate our implementation using the last two
scenarios.

41

42 6. Model Transformation Scenarios

name : String

NamedElt

isAbstract : boolean

Classifier

ClassDataType

multivalued : boolean

Attribute

1

attr

*

*

type

1

super

*

sub *

(a) Object-oriented class

-name : String

Named

Table Column

0..1 key *

1

col

*

Type

*

type

1

(b) Relational table

Figure 6.1.: Metamodels for mapping scenario [4]

6.2. Object-oriented Class to Relational Table

For the model mapping use case, we choose one of the classic examples of model
transformation: the mapping of an object-oriented class diagram to a relational database
table model.

6.2.1. Implementation

Both models are shown in Figure 6.1. In the class metamodel (Figure 6.1a) a Class has
a name (inherited from the abstract NamedElt) and a number of Attributes. These
Attributes may be multivalued. Class inherits from Classifier, which allows us to
declare the type of Attributes.

In the table metamodel (Figure 6.1b) a Table has a name (inherited from the abstract
Named) and a number of Columns and keys. A Column has a Type and belongs to a
Table (its owner) and might be a key of another Table.

The implementations of this transformation in SimpleGT and declarative ATL are
included in Appendix C.

6.2.2. Results

We apply the transformations to an example model of a book library [5] and verify the
results manually. The structure of the model is shown in Figure 6.2. Unfortunately it is
hard to visualize the model before and after the transformation, because its structure
essentially stays the same (as it should). In our manual verification we found no
differences in transformation result between the original interpreters of SimpleGT or
ATL and our own implementations.

6.2. Object-oriented Class to Relational Table 43

Figure 6.2.: EMF ‘extlibrary’ metamodel (adapted from [5])

Figure 6.3.: ‘extlibrary’ model after Pull Up Class Attribute transformation

44 6. Model Transformation Scenarios

MySecondSubClass
eSuperTypes: List
eAttributes: List
myAttribute: int

MySuperClass
eSuperTypes: List
eAttributes: List

MyFirstSubClass
eSuperTypes: List
eAttributes: List
myAttribute: int

(a) Before transformation

MySecondSubClass
eSuperTypes: List
eAttributes: List

MySuperClass
eSuperTypes: List
eAttributes: List
myAttribute: int

MyFirstSubClass
eSuperTypes: List
eAttributes: List

(b) After transformation

Figure 6.4.: Model for refactoring scenario

6.3. Pull Up Class Attribute to Superclass

For the second use case, model refactoring, we choose to refactor an object oriented
class hierarchy. We take an attribute that is present on all subclasses of a certain class
and move the attribute to the superclass. This is also known as ‘pulling up’ a class
attribute.

6.3.1. Implementation

We move an attribute called myAttribute from a class to its superclass (Figure 6.4).
The model conforms to the Ecore metamodel. Prerequisite for this refactoring is an
attribute which is present in all subclasses of a certain superclass, and is not present in
the superclass itself.

The implementations of this transformation in SimpleGT and declarative ATL are
included in Appendix D.

6.3.2. Results

Again we apply the transformations to our example book library model (Figure 6.2).
We move the attributes name of all the subclasses of Person to their superclass. The
result of the transformation is shown in Figure 6.3. Verifying the results manually,
we find no differences in transformation result between the original interpreters of
SimpleGT or ATL and our own implementations.

6.4. Conclusions

We have introduced a number of common model transformation scenarios. We imple-
mented two of the scenarios in SimpleGT and ATL. We then ran the transformations on

6.4. Conclusions 45

an example model using both the original interpreters and our own implementations.
In our manual verification we found no difference in transformation result.

In the next chapter we summarize the results of our research and look at possible
future directions of research.

7
Conclusions and Future Work

In Chapter 1 we introduced the problem of having many different model transformation
languages, all with their own unique approach. We recognized that, despite their
differences, they have some features in common. We asked the question: “how can we
execute different model transformation languages in a common environment, while
retaining the variability between the languages?”. We can now answer this question
based on our research.

7.1. What should a common execution environment for model
transformation languages look like?

In Chapter 2 we explored models and model transformations. We categorized transform-
ation languages based on properties like transformation approach and rule application
strategy. Using this categorization, we selected five significantly different transform-
ation languages for further investigation: graph transformation, GROOVE, Henshin,
Stratego and declarative ATL.

In Chapter 3 we took a closer look at the execution algorithms of the selected
languages. We analysed the commonality and variability between them, both at the
rule level and the transformation level.

In Chapter 4 we defined our own primitive model transformation language based on
the analysis of commonality and variability. We expressed the execution algorithms for
all analysed languages in our primitive language.

Subsequently, we took a look at imperative ATL. It has a completely different
transformation approach, one not considered during the design of our primitive
language. Nevertheless we were able to express its execution algorithm, demonstrating

47

48 7. Conclusions and Future Work

that our language can be used to describe the execution algorithm of any transformation
language.

7.2. How do we build support for executing different
transformation languages in this common environment?

In Chapter 5 we discussed the implementation of a model transformation framework
based on our primitive transformation language. We described the architecture, syntax
and interpreter design. We implemented two model transformation languages in our
framework: SimpleGT and declarative ATL.

In Chapter 6 we tested our transformation framework by executing two common
model transformations in both our own interpreter and the original interpreter for the
transformation language. For our humble test scenarios, the result turned out to be the
same regardless of the interpreter used.

7.3. What are the limitations of executing transformation
languages in a common environment?

We have shown that, despite the variability between them, transformation languages
have lots of commonalities. Their execution algorithms can be described using less
than fifteen primitive operations. Based on these findings we have implemented our
own transformation framework for executing model transformation written in these
languages. However, our implementation has some limitations.

Model representation To ease the implementation of our framework, we require all
models to be represented as EMF Ecore models. In some of the discussed transformation
languages models are usually represented differently. Future work could include
creating an abstraction layer which maps these model representations to Ecore.

OCL for navigation and collection manipulation Another generalization is the use of
OCL for model navigation in all languages. Other navigation languages can be used,
but one would have to add an interpreter for such a language either to the Thrascias
interpreter or to the transformation language implementation.

Multiple source and target models To prevent the example implementations from
becoming overly complex we did not consider transforming from multiple source
models, or transforming to multiple target models. This however does not mean there
is any theoretical or practical impediment to implement this.

7.4. Looking ahead 49

Limited number of implemented languages We implemented just two of the five lan-
guages analysed. Furthermore there are many more transformation languages available.
Future work could include the implementation of the other three languages mentioned
in this thesis, or any other available transformation language.

Limited number of test scenarios We performed tests using two relatively simple
transformation scenarios. Testing larger and more advanced transformations can be
considered future work.

7.4. Looking ahead

Besides addressing some of the limitations of our implementation, we take a moment
to look at possible directions for future research.

We have shown that different transformation languages can be interpreted with a
single interpreter. A logical next step would be the composition of transformations
written in different transformation languages into a single transformation. This would
enable one to create libraries of transformations for common transformation tasks that
can be used in no matter which language. Moreover a separate transformation language
could be chosen for each transformation subproblem. Combining transformation
languages introduces a host of new problems, like different composition strategies and
conflict resolution between rules in different languages.

A second direction for future research could be parallel processing. Our framework
does not take advantage of multiple processing units at the moment. Additional
language constructs might be necessary for operations like synchronization of parallel
threads.

Performance improvement is a possible third direction of future research. Although
we have not conducted any testing for processing speed or memory usage, we expect
our prototype implementation to be slower than the original interpreters for most
languages.

A
Primitive Representations of the Algorithms

A.1. Single-Pushout Graph Transformation

1 function executeTransformation(Transformation transformation):
2 // repeat as often as possible
3 try {
4 transformGraph(transformation.getRules()) ;
5 executeTransformation(transformation)
6 }
7
8 function transformGraph(Set rules):
9 try {

10 // choose random rule and find match
11 Rule rule = nd_choice(rules) ;
12 Set matches = match_rule(rule) ;
13 // execute this rule
14 executeRule(rule, nd_choice(matches))
15 } else { // no matches
16 // remove rule from list
17 rules = rules.remove(rule) ;
18 // try again
19 transformGraph(rules)
20 }
21
22 function executeRule(Rule rule, Match match):
23 // make temporary copy of graph
24 Model D = rule.getTransformation().getSourceModel().copy() ;
25 // remove elements not in target
26 removeOldElements(D, rule, match.copy()) ;
27 // add elements not in source
28 addNewElements(D, match, rule.getTarget()) ;
29 // replace graph by changed copy

51

52 A. Primitive Representations of the Algorithms

30 rule.getTransformation().setSourceModel(D)
31
32 function removeOldElements(Model D, Rule rule, Match match):
33 try {
34 ModelElement element = nd_choice(match.getSource()) ;
35 try {
36 rule.getTarget().contains(element)
37 } else {
38 D.remove(element)
39 } ;
40 removeOldElements(D, rule, match.remove(element))
41 }
42
43 function addNewElements(D, match, rhs):
44 try {
45 ModelElement element = nd_choice(rhs) ;
46 try {
47 match.getSource().contains(element)
48 } else {
49 D.add(element)
50 } ;
51 addNewElements(D, rhs.remove(element))
52 }

A.2. Henshin 53

A.2. Henshin

1 function executeTransformation(Transformation transformation):
2 processAllUnits(transformation.getTransformationUnits())
3
4 function processAllUnits(Set units):
5 try {
6 TransformationUnit unit = nd_choice(unit) ;
7 processUnit(unit) ;
8 processAllUnits(units.remove(unit))
9 }

10
11 function processUnit(TransformationUnit unit):
12 try {
13 unit.isRule() ;
14 Set rule_matches = match_rule(unit) ;
15 executeRule(unit, nd_choice(matches))
16 } else {
17 try {
18 unit.isIndependentUnit() ;
19 processIndependentUnit(unit)
20 } else {
21 try {
22 unit.isPriorityUnit() ;
23 processPriorityUnit(unit, null)
24 } else {
25 try {
26 unit.isSequentialUnit() ;
27 processSequentialUnit(unit)
28 } else {
29 try {
30 unit.isCountedUnit() ;
31 processCountedUnit(unit, unit.getCount())
32 } else {
33 try {
34 unit.isAmalgamationUnit() ;
35 processAmalgamationUnit(unit)
36 } else {
37 unit.isConditionalUnit() ;
38 processConditionalUnit(unit)
39 }
40 }
41 }
42 }
43 }
44 }
45
46 function processIndependentUnit(IndependentUnit unit):
47 // repeat as often as possible
48 try {
49 processIndependentSubUnits(unit.getSubUnits()) ;
50 processIndependentUnit(unit)
51 }

54 A. Primitive Representations of the Algorithms

52
53 function processIndependentSubUnits(Set units):
54 try {
55 // process random unit
56 TransformationUnit unit = nd_choice(units) ;
57 processUnit(unit)
58 } else {
59 // remove unit from list
60 units = units.remove(unit) ;
61 // try again
62 processIndependentSubUnits(units)
63 }
64
65 function processPriorityUnit(PriorityUnit unit, TransformationUnit

currentSubUnit):
66 try {
67 TransformationUnit nextSubUnit = unit.getNextSubUnit(currentSubUnit)

;
68 try {
69 processUnit(nextSubUnit)
70 } else {
71 processPriorityUnit(unit, nextSubUnit)
72 }
73 }
74
75 function processSequentialUnit(SequentialUnit unit, TransformationUnit

currentSubUnit):
76 try {
77 TransformationUnit nextSubUnit = unit.getNextSubUnit(currentSubUnit)

;
78 processUnit(nextSubUnit) ;
79 processSequentialUnit(unit, nextSubUnit)
80 } else {
81 nextSubUnit == null
82 }
83
84 function processCountedUnit(CountedUnit unit, Integer counter):
85 try {
86 counter > 0 ;
87 processUnit(unit.getSubUnit()) ;
88 processCountedUnit(unit, counter - 1)
89 } else {
90 counter == 0
91 }
92
93 function processAmalgamationUnit(AmalgamationUnit unit):
94 processUnit(unit.getKernelRule()) ;
95 processMultiRules(unit.getMultiRules())
96
97 function processMultiRules(Set rules):
98 try {
99 processIndependentSubUnits(rules) ;

100 processMultiRules(rules)
101 }

A.2. Henshin 55

102
103 function processConditionalUnit(ConditionalUnit unit):
104 try {
105 processUnit(unit.getIf()) ;
106 processUnit(unit.getThen())
107 } else {
108 processUnit(unit.getElse())
109 }

56 A. Primitive Representations of the Algorithms

A.3. Stratego

1 function executeTransformation(Transformation transformation):
2 cascade(transformation.getRules(), transformation.getSourceModel())
3
4 function cascade(List rules, AST tree):
5 try {
6 cascade(rules, nd_choice(tree.getChildren()))
7 } ;
8 applyAndRestart(rules, tree, rules)
9

10 function applyAndRestart(List rules, AST tree, List allRules):
11 Rule rule = rules.shift() ;
12 try {
13 applyRule(rule, tree) ;
14 cascade(allRules , tree) ;
15 raise(BreakException)
16 } else {
17 try {
18 catch(BreakException)
19 } else {
20 applyAndRestart(rules, tree, allRules)
21 }
22 }
23
24 function applyRule(Rule rule, AST tree):
25 Match m = nd_choice(match_rule(rule, tree)) ;
26 Set bindings = m.getBindings() ;
27 try {
28 Match s = match_rule(rule.getPreconditions(), tree) ;
29 bindings.append(s.getBindings())
30 } else {
31 rule.getPreconditions() == null
32 } ;
33 tree = rule.getTarget().replaceVars(bindings)

A.4. Declarative ATL 57

A.4. Declarative ATL

1 function executeTransformation(Transformation transformation):
2 matchAllRules(transformation.getRules()) ;
3 createElements(transformation.getAllTraces()) ;
4 initElements(transformation.getAllTraces())
5
6 function matchAllRules(Set rules):
7 try {
8 // choose rule randomly
9 Rule rule = nd_choice(rules) ;

10 // find matches and save them
11 Set rule_matches = match_rule(rule) ;
12 findMatches(rule, rule_matches) ;
13 // match next rule
14 matchAllRules(rules.remove(rule))
15 }
16
17 function createElements(Set traces):
18 try {
19 // choose trace (= match) randomly
20 Trace trace = nd_choice(traces) ;
21 // create targets for trace
22 createTargets(trace, trace.getRule().getTarget().copy()) ;
23 // proceed with next trace
24 createElements(traces.remove(trace))
25 }
26
27 function initElements(Set traces):
28 try {
29 // choose trace randomly
30 Trace trace = nd_choice(traces) ;
31 // init its targets
32 initTargets(trace.getTarget().copy()) ;
33 // proceed with next trace
34 initElements(targets.remove(targetElement))
35 }
36
37 function findMatches(Rule rule, Set matches):
38 try {
39 // get match
40 Match match = nd_choice(matches)
41 // add trace with empty target
42 add_trace(rule, match.getSource(), null) ;
43 // process next match
44 findMatches(rule, matches.remove(match))
45 }
46
47 function createTargets(Trace trace, Set targets):
48 try {
49 // choose target element randomly
50 ModelElement targetElement = nd_choice(targets) ;
51 // create empty target element

58 A. Primitive Representations of the Algorithms

52 Object t = trace.getRule().getTransformation().getTargetModel()
53 .add(create_element(targetElement.class)) ;
54 // set target element for trace
55 trace.getTarget().add(t) ;
56 createTargets(trace, targets.remove(targetElement))
57 }
58
59 function initTargets(Set targets):
60 try {
61 ModelElement targetElement = nd_choice(targets) ;
62 initProperties(targetElement , targetElement.getProperties().copy()) ;
63 initTargets(targets.remove(targetElement))
64 }
65
66 function initProperties(ModelElement target, Set properties):
67 try {
68 // choose property randomly
69 ModelElementProperty property = nd_choice(properties) ;
70 try {
71 // if primitive , assign directly
72 property.getContent().isPrimitive() ;
73 target.setProperty(property.getName(), property.getContent())
74 } else {
75 try {
76 // if source element, resolve, then assign
77 Trace trace = match_trace_source(property.getContent()) ;
78 target.setProperty(property.getName(),

trace.getTarget().get(0))
79 } else {
80 try {
81 // if trace query, resolve, then assign
82 property.getContent().isQuery() ;
83 Trace trace = match_trace_source(property.getContent()
84 .getSource()) ;
85 target.setProperty(property.getName(), trace.getTarget()
86 .get(property.getContent().getPattern()))
87 } else {
88 // if target element, assign directly
89 target.setProperty(property.getName(),

property.getContent())
90 }
91 }
92 } ;
93 initProperties(target, properties.remove(property))
94 }

A.5. Imperative ATL 59

A.5. Imperative ATL

1 function executeTransformation(Transformation transformation):
2 executeRule(transformation.getEntryPointRule(), null)
3
4 function executeRule(Rule rule, List parameters):
5 // Execute ’to’ block
6 Trace trace = add_trace(rule, null, null) ;
7 createTargets(trace, rule.getTarget().copy()) ;
8 initTargets(trace.getTarget().copy()) ;
9 // Execute ’do’ block

10 executeStatements(rule, parameters , rule.getStatements())
11
12 function executeStatements(Rule rule, List parameters , List statements):
13 try {
14 Statement s = statements.get(0) ;
15 try {
16 // Call another rule
17 s.isCallStatement() ;
18 executeRule(s.getRule(), s.getParameters())
19 } else {
20 try {
21 // Assign module property
22 s.isAssignmentStatement() ;
23 rule.getModule().setProperty(s.getTarget(),

s.getExpression())
24 } else {
25 try {
26 // Execute ’if’ statement
27 s.isIfStatement() ;
28 try {
29 s.getCondition() ;
30 // Condition = true
31 executeStatements(rule, parameters ,

s.getStatements1())
32 } else {
33 // Condition = false
34 executeStatements(rule, parameters ,

s.getStatements2())
35 }
36 } else {
37 try {
38 // Execute ’for’ statement
39 s.isForStatement() ;
40 executeForStatement(rule, parameters ,

s.getCollection(),
41 s.getStatements())
42 }
43 }
44 }
45 } ;
46 executeStatements(rule, parameters , statements.unshift())
47 }

60 A. Primitive Representations of the Algorithms

48
49 function executeForStatement(Rule rule, List parameters , Collection

collection ,
50 List statements):
51 try {
52 List newParameters = parameters.copy().add(collection.get(0)) ;
53 executeStatements(rule, newParameters , statements) ;
54 executeForStatement(rule, parameters , collection.unshift(),

statements)
55 }

B
Thrascias Implementations of the Algorithms

B.1. SimpleGT

1 transform simplegt
2 inputModel SimpleGT : simplegt
3 outputModel Out : simplegt
4
5 executeTransformationRule ModelElementRule {
6 source [transformation: SimpleGT!Module]
7 target [
8 -- run transformation , resulting in a new model
9 transformStep: Tuple() =

transformGraphRule(OrderedSet{transformation.models}
10 ->first(), transformation.elements),
11 -- replace old source model by new model
12 update transformation {models = OrderedSet{transformStep.newModel}},
13 -- if a rule was applied, we run the transformation again
14 result: SimpleGT!OclModel =
15 if not transformStep.newModel.oclIsUndefined() then
16 executeTransformationRule(transformation)
17 else
18 transformation.models ->first()
19 endif
20]
21 }
22
23 transformGraphRule ModelElementRule {
24 source [sourceModel: SimpleGT!OclModel, rules: OrderedSet(SimpleGT!Rule)]
25 target [
26 -- select a random rule and try to find a match
27 rule: SimpleGT!Rule = rules ->asSet()->any(true),
28 matches: Set(Set(OclAny)) =

61

62 B. Thrascias Implementations of the Algorithms

29 if not rule.oclIsUndefined() then
30 match(rule.input.elements, sourceModel)
31 else
32 -- no rules left
33 Set{}
34 endif,
35 newModel: SimpleGT!OclModel =
36 if matches ->notEmpty() and not

hasApplicableNacRule(sourceModel , rule).result
37 then
38 -- match found, execute the rule for this match
39 executeRule(sourceModel , rule, matches ->any(true)).result
40 else
41 -- no match, remove this rule from the set and try again
42 transformGraphRule(rules ->excluding(rule)).newModel
43 endif
44]
45 }
46
47 hasApplicableNacRule ModelElementRule {
48 source [sourceModel: SimpleGT!OclModel, rule: SimpleGT!Rule]
49 target [
50 result: Boolean = rule.nac ->exists(n | match(n.elements,

sourceModel) ->notEmpty())
51]
52 }
53
54 executeRule ModelElementRule {
55 source [sourceModel: SimpleGT!OclModel, rule: SimpleGT!Rule, match:

Set(OclAny)]
56 target [
57 -- remove elements that are not in the target graph
58 D: OrderedSet(ECore!EObject) = removeOldElementsRule(sourceModel ,

rule, match)
59 .result,
60 -- check for dangling edges
61 updatedObjectSet: OrderedSet(ECore!EObject) =
62 if hasDanglingEdgeRule(D ->select(o|

o.oclIsKindOf(ECore!EReference)))
63 .result then
64 -- abort rule execution
65 sourceModel.elements
66 else
67 -- add elements that are not in the source graph
68 D ->union(rule.output.elements ->collect(e|

create_element(e.eClass()))
69 ->asOrderedSet())
70 endif,
71 -- update model
72 update sourceModel {elements = updatedObjectSet},
73 result: SimpleGT!OclModel = sourceModel
74]
75 }
76

B.1. SimpleGT 63

77 removeOldElementsRule ModelElementRule {
78 source [sourceModel: SimpleGT!OclModel, rule: SimpleGT!Rule, match:

Set(OclAny)]
79 target [
80 oldElements: Set(OclAny) = match - rule.output.elements ,
81 result: OrderedSet(ECore!EObject) = sourceModel.elements -

oldElements
82]
83 }
84
85 hasDanglingEdgeRule ModelElementRule {
86 source [edges: Collection(ECore!EReference)]
87 target [
88 result: Boolean = edges ->exists(e| e.eContainer.isOclUndefined()
89 or e.getEType().isOclUndefined())
90]
91 }

64 B. Thrascias Implementations of the Algorithms

B.2. Declarative ATL

1 transform atl
2 inputModel ATL: atl
3 outputModel Out: atl
4
5 executeTransformationRule ModelElementRule {
6 source [transformation: ATL!Module]
7 target [
8 matches: Tuple() =

matchAllRulesRule(OrderedSet{transformation.inModels}->first(),
9 OrderedSet{transformation.elements->select(e|

e.oclIsKindOf(ATL!MatchedRule))},
10 elements: Tuple() = createElementsRule(OrderedSet{matches.traces}),
11 result: Tuple() = initElementsRule(OrderedSet{matches.traces})
12]
13 }
14
15 -- Find all matches for rules and save them using traces
16 matchAllRulesRule ModelElementRule {
17 source [sourceModel: ATL!OclModel, rules: OrderedSet(ATL!MatchedRule}]
18 target [
19 rule: ATL!MatchedRule = rules ->asSet()->any(true),
20 matches: Sequence(Set(OclAny)) =
21 if not rule.oclIsUndefined() then
22 -- match rule in source model
23 match(rule.inPattern.elements, sourceModel)
24 else
25 -- no rules left to match
26 Sequence{}
27 endif,
28 -- create trace with empty target
29 traces: Bag(Thrascias!Trace) = matches ->collect(m| add_trace(rule,

m)),
30 result: Bag(Thrascias!Trace) =
31 if rules ->size() > 1 then
32 -- match next rule
33 matchAllRulesRule(sourceModel , rules

->excluding(rule))->including(matches)
34 else
35 Bag{}
36 endif
37]
38 }
39
40 -- Create all new elements using the traces
41 createElementsRule ModelElementRule {
42 source [traces: OrderedSet(Thrascias!Trace)]
43 target [
44 result: Collection(Tuple()) = traces ->collect(tr|
45 tr.target ->collect(ta| createTargetsRule(tr, ta,
46 OrderedSet{tr.rule.module.outModels}->first()))
47)

B.2. Declarative ATL 65

48]
49 }
50
51 -- Create new element for trace in output model
52 createTargetsRule ModelElementRule {
53 source [trace: Thrascias!Trace, targetElement: Ecore!EObject, outModel:

ATL!OclModel]
54 target [
55 -- create empty target element
56 newElement: OclAny = create_element(targetElement.eClass()),
57 -- set target element for trace
58 update trace {target = trace.target ->including(newElement)},
59 -- add element to output model
60 update outModel {elements = outModel.elements

->including(newElement)}
61]
62 }
63
64 -- Initialize properties for all new elements
65 initElementsRule ModelElementRule {
66 source [traces: OrderedSet(Thrascias!Trace)]
67 target [
68 result: OclAny = traces ->collect(tr|
69 tr.source ->collect(s|
70 -- find input pattern element for trace
71 let ipElement: ATL!InPatternElement = match(s,

rule.inPattern.elements)
72 ->any(m| m.notEmpty()) in
73 -- find target elements and initialize their properties
74 ipElement.mapsTo -> collect(opElement|
75 initTargets(opElement , match(opElement , tr.target)
76 ->any(m| m.notEmpty()))
77)
78)
79)
80]
81 }
82
83 -- Initialize all properties of a target element
84 initTargets ModelElementRule {
85 source [outputElement: ATL!OutPatternElement , targetElement:

Ecore!EObject]
86 target [
87 result: Bag(Tuple()) = outputElement.bindings ->collect(b|
88 resolvePropertyRule(targetElement , b))
89]
90 }
91
92 -- Resolve the value of a property
93 resolvePropertyRule ModelElementRule {
94 source [targetElement: Ecore!EObject, property: ATL!Binding]
95 target [
96 result: OclAny = if property.value.type.oclIsKindOf(ATL!Primitive)

then

66 B. Thrascias Implementations of the Algorithms

97 -- property has primitive value, initialize directly
98 initPropertyRule(targetElement , property, property.value)
99 else

100 -- if property has source element value, resolve, then
initialize

101 let trace: Thrascias!Trace =
match_trace_source(property.value) in

102 if not trace.oclIsUndefined() then
103 initPropertyRule(targetElement , property,

trace.target)
104 else
105 -- if property has trace query value, resolve, then

initialize
106 -- example: resolveTemp(source_element ,

target_pattern)
107 if property.value.oclIsKindOf(ATL!OperationCallExp)

and
108 property.value.operationName = ’resolveTemp’ then
109 let trace: Thrascias!Trace =
110 match_trace_source(property.value.arguments

->at(1)) in
111 let sourceObject: Ecore!Object =
112 OrderedSet{trace.target}->first() in
113 initPropertyRule(targetElement , property,

sourceObject
114 .eGet(sourceObject.eClass().getEAllStructuralFeatures()
115 ->any(f| f.getName() =

property.value.arguments
116 ->at(2))))
117 else
118 -- if property has target element value,

initialize directly
119 initPropertyRule(property, property.value)
120 endif
121 endif
122 endif
123]
124 }
125
126 -- Initialize the value of a property
127 initPropertyRule ModelElementRule {
128 source [targetElement: Ecore!EObject, property: ATL!Binding, value:

OclAny]
129 target [
130 -- find structural feature for property
131 feature: ECore!EStructuralFeature = targetElement.eClass()
132 .getEAllStructuralFeatures() ->any(f| f.getName() =

property.propertyName),
133 -- set value of feature
134 result: Boolean = targetElement.eSet(feature, value)
135]
136 }

C
Implementations of the Mapping Scenario

C.1. SimpleGT

1 module Class2Relational;
2
3 metamodel Class;
4 metamodel Relational;
5 transform C: Class, R: Relational;
6
7 rule Class2Table {
8 from c : Class!Class
9 to t : Relational!Table (

10 name =~ c.name,
11 col =~ Sequence {key}->union(c.attr->select(e | not

e.multivalued)),
12 key =~ Set{key}
13),
14 key : Relational!Column (
15 name =~ ’objectId’,
16 type =~ Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
17)
18 }
19
20 rule DataType2Type {
21 from dt : Class!DataType
22 to t : Relational!Type (name =~ dt.name)
23 }
24
25 rule DataTypeAttribute2Column {
26 from a : Class!Attribute (
27 type =~ dt,

67

68 C. Implementations of the Mapping Scenario

28 multivalued =~ false
29),
30 dt : Class!DataType
31 }
32
33 rule MultivaluedDataTypeAttribute2Column {
34 from a : Class!Attribute (
35 type =~ dt,
36 multivalued =~ true
37),
38 dt : Class!DataType
39 to t : Relational!Table (
40 name =~ a.owner.name + ’_’ + a.name,
41 col =~ Sequence{id, value}
42),
43 id : Relational!Column (
44 name =~ a.owner.name + ’Id’,
45 type =~ Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
46),
47 value : Relational!Column (
48 name =~ a.name,
49 type =~ a.type
50)
51 }
52
53 rule ClassAttribute2Column {
54 from a : Class!Attribute (
55 type =~ c,
56 multivalued =~ false
57),
58 c : Class!Class
59 to foreignKey : Relational!Column (
60 name =~ a.name + ’Id’,
61 type =~ Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
62)
63 }
64
65 rule MultivaluedClassAttribute2Column {
66 from a : Class!Attribute (
67 type =~ c,
68 multivalued =~ true
69),
70 c : Class!Class
71 to t : Relational!Table (
72 name =~ a.owner.name + ’_’ + a.name,
73 col =~ Sequence{id, foreignKey}
74),
75 id : Relational!Column (
76 name =~ a.owner.name + ’Id’,
77 type =~ Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
78),

C.1. SimpleGT 69

79 foreignKey : Relational!Column (
80 name =~ a.name + ’Id’,
81 type =~ Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
82)
83
84 }

70 C. Implementations of the Mapping Scenario

C.2. Declarative ATL

1 -- Adapted from ATL Modeling Zoo [27]
2
3 module Class2Relational;
4 create OUT : Relational from IN : Class;
5
6 rule Class2Table {
7 from
8 c : Class!Class
9 to

10 out : Relational!Table (
11 name <- c.name,
12 col <- Sequence {key}->union(c.attr->select(e | not

e.multivalued)),
13 key <- Set {key}
14),
15 key : Relational!Column (
16 name <- ’objectId’,
17 type <- Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
18)
19 }
20
21 rule DataType2Type {
22 from
23 dt : Class!DataType
24 to
25 out : Relational!Type (
26 name <- dt.name
27)
28 }
29
30 rule DataTypeAttribute2Column {
31 from
32 a : Class!Attribute (
33 a.type.oclIsKindOf(Class!DataType) and not a.multivalued
34)
35 to
36 out : Relational!Column (
37 name <- a.name,
38 type <- a.type,
39 owner <- thisModule.resolveTemp(a.owner, ’key’)
40)
41 }
42
43 rule MultivaluedDataTypeAttribute2Column {
44 from
45 a : Class!Attribute (
46 a.type.oclIsKindOf(Class!DataType) and a.multivalued
47)
48 to
49 out : Relational!Table (

C.2. Declarative ATL 71

50 name <- a.owner.name + ’_’ + a.name,
51 col <- Sequence {id, value}
52),
53 id : Relational!Column (
54 name <- a.owner.name + ’Id’,
55 type <- Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
56),
57 value : Relational!Column (
58 name <- a.name,
59 type <- a.type
60)
61 }
62
63 rule ClassAttribute2Column {
64 from
65 a : Class!Attribute (
66 a.type.oclIsKindOf(Class!Class) and not a.multivalued
67)
68 to
69 foreignKey : Relational!Column (
70 name <- a.name + ’Id’,
71 type <- Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
72)
73 }
74
75 rule MultivaluedClassAttribute2Column {
76 from
77 a : Class!Attribute (
78 a.type.oclIsKindOf(Class!Class) and a.multivalued
79)
80 to
81 t : Relational!Table (
82 name <- a.owner.name + ’_’ + a.name,
83 col <- Sequence {id, foreignKey}
84),
85 id : Relational!Column (
86 name <- a.owner.name + ’Id’,
87 type <- Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
88),
89 foreignKey : Relational!Column (
90 name <- a.name + ’Id’,
91 type <- Class!DataType.allInstances()->select(e | e.name =

’Integer’)->first()
92)
93 }

D
Implementations of the Refactoring Scenario

D.1. SimpleGT

1 module PullUpAttribute;
2
3 metamodel Ecore;
4 transform IN: Ecore, OUT: Ecore;
5
6 rule AddAttributeToSuperclass {
7 from sc : Ecore!EClass,
8 c : Ecore!EClass (
9 eSuperTypes =~ sc,

10 eAttributes =~ a
11),
12 a : Ecore!EAttribute (
13 name =~ ’myAttribute’
14)
15 not sc : Ecore!EClass (
16 eAttributes =~ a
17),
18 c2 : Ecore!EClass (
19 eSuperTypes =~ sc,
20 eAttributes =~ c2.eAttributes ->excluding(a)
21)
22 to out : Ecore!EClass (
23 name =~ sc.name,
24 eSuperTypes =~ sc.eSuperTypes ,
25 eAttributes =~ sc.eAttributes ->including(a)
26)
27 }
28
29 rule RemoveAttributeFromSubclass {

73

74 D. Implementations of the Refactoring Scenario

30 from sc : Ecore!EClass,
31 c : Ecore!EClass (
32 eSuperTypes =~ sc,
33 eAttributes =~ a
34),
35 a : Ecore!EAttribute (
36 name =~ ’myAttribute’
37)
38 not sc : Ecore!EClass (
39 eAttributes =~ a
40),
41 c2 : Ecore!EClass (
42 eSuperTypes =~ sc,
43 eAttributes =~ c2.eAttributes ->excluding(a)
44)
45 to out : Ecore!EClass (
46 name =~ c.name,
47 eSuperTypes =~ c.eSuperTypes ,
48 eAttributes =~ c.eAttributes ->excluding(a)
49)
50 }

D.2. Declarative ATL 75

D.2. Declarative ATL

1 module PullUpAttribute;
2 create OUT : Ecore from IN : Ecore
3
4 rule AddAttributeToSuperclass {
5 from
6 c : Ecore!EClass (
7 Ecore!EClass.allInstances()->forAll(e|
8 c.isSuperTypeOf(e) implies e.getEAttributes()->exists(a|

a.name = ca.name))
9 and not c.getEAttributes()->exists(a| a.name = ca.name)

10),
11 ca : ECore!EAttribute (
12 ca.name = ’myAttribute’
13)
14 to
15 out : Ecore!EClass (
16 name <- c.name,
17 eSuperTypes <- c.eSuperTypes ,
18 eAttributes <- Sequence{c.getEAttributes()}->including(ca)
19)
20 }
21
22 rule RemoveAttributeFromSubclass {
23 from
24 c : Ecore!EClass (
25 c.eAttributes ->exists(a| a.name = ca.name) and
26 c.eSuperTypes ->exists(s|
27 Ecore!EClass.allInstances()->forAll(e| s.isSuperTypeOf(e)

implies (
28 e.getEAttributes()->exists(a| a.name = ca.name)
29 and not s.getEAttributes()->exists(a| a.name = ca.name)
30)))
31),
32 ca : Ecore!EAttribute (
33 ca.name = ’myAttribute’ and
34 ca.eContainer() = c
35)
36 to
37 out : ECore!EClass (
38 name <- c.name,
39 eSuperTypes <- c.eSuperTypes ,
40 eAttributes <- Sequence{c.getEAttributes()}->excluding(ca)
41)
42 }

Bibliography

[1] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and E. Weiss, “Graphical
definition of in-place transformations in the Eclipse Modeling Framework,”
in Model Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science, O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, Eds.
Springer Berlin / Heidelberg, 2006, vol. 4199, pp. 425–439. [Online]. Available:
http://dx.doi.org/10.1007/11880240_30

[2] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation
tool,” Science of Computer Programming, vol. 72, no. 1–2, pp. 31 – 39, 2008. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167642308000439

[3] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin: ad-
vanced concepts and tools for in-place EMF model transformations,” Model Driven
Engineering Languages and Systems, vol. 6394, pp. 121–135, 2010.

[4] M. Lawley, K. Duddy, A. Gerber, and K. Raymond, “Language features for re-use
and maintainability of mda transformations,” in Workshop on Best Practices for
Model-Driven Software Development, 2004.

[5] The Eclipse Foundation. (2014, May) Eclipse Modeling Framework project.
[Online]. Available: http://www.eclipse.org/modeling/emf/

[6] J. Miller and J. Mukerji, “MDA guide,” Object Management Group, Tech. Rep.,
2003.

[7] S. Kent, “Model driven engineering,” in IFM, 2002, pp. 286–298.

[8] Object Constraint Language, Object Management Group Std., Rev. 2.0, Jun. 2005.

[9] I. Kurtev, “Adaptability of model transformations,” Ph.D. dissertation, University
of Twente, Enschede, 2005. [Online]. Available: http://doc.utwente.nl/50761/

[10] T. Mens and P. van Gorp, “A taxonomy of model transformation,” Electronic Notes
in Theoretical Computer Science, vol. 152, no. 0, pp. 125 – 142, 2006. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1571066106001435

[11] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation
approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

77

http://dx.doi.org/10.1007/11880240_30
http://www.sciencedirect.com/science/article/pii/S0167642308000439
http://www.eclipse.org/modeling/emf/
http://doc.utwente.nl/50761/
http://www.sciencedirect.com/science/article/pii/S1571066106001435

78 Bibliography

[12] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Object Man-
agement Group Std., Rev. 1.1, Jan. 2011.

[13] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite Events at the
MoDELS 2005 Conference. Springer, 2006, pp. 128–138.

[14] E. Visser, “Program transformation with Stratego/XT,” in Domain-Specific Program
Generation, ser. Lecture Notes in Computer Science, C. Lengauer, D. Batory,
C. Consel, and M. Odersky, Eds. Springer Berlin / Heidelberg, 2004, vol. 3016, pp.
315–349. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-25935-0_013

[15] L. Baresi and R. Heckel, “Tutorial introduction to graph transformation: A
software engineering perspective,” in Proceedings of the First International Conference
on Graph Transformation, ser. ICGT ’02. London, UK: Springer-Verlag, 2002, pp.
402–429. [Online]. Available: http://dl.acm.org/citation.cfm?id=647562.730670

[16] F. Budinsky, D. Steinberg, M. Paternostro, and E. Merks, EMF: Eclipse Modeling
Framework, 2nd ed., ser. Eclipse series. Addison-Wesley, 2009.

[17] A. Rensink, “The edge of graph transformation – graphs for behavioural
specification,” in Graph Transformations and Model-Driven Engineering, ser. Lecture
Notes in Computer Science, G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and
B. Westfechtel, Eds. Springer Berlin / Heidelberg, 2010, vol. 5765, pp. 6–32.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-17322-6_2

[18] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe, Algebraic
approaches to graph transformation. Part I: basic concepts and double pushout approach.
River Edge, NJ, USA: World Scientific Publishing Co., Inc., 1997, pp. 163–245.
[Online]. Available: http://dl.acm.org/citation.cfm?id=278918.278928

[19] T. Staijen, “Graph-based specification and verification for aspect-oriented
languages,” Ph.D. dissertation, University of Twente, Enschede, June 2010, iPA
Dissertation Series ; 2010-04. [Online]. Available: http://doc.utwente.nl/71550/

[20] A. Rensink, “The GROOVE simulator: A tool for state space generation,”
in Applications of Graph Transformations with Industrial Relevance (AGTIVE), ser.
Lecture Notes in Computer Science, J. Pfaltz, M. Nagl, and B. Böhlen, Eds.,
vol. 3062. Berlin: Springer Verlag, 2004, pp. 479–485. [Online]. Available:
http://doc.utwente.nl/66357/

[21] (2014, May) The Henshin project. Eclipse Foundation. [Online]. Available:
http://www.eclipse.org/modeling/emft/henshin/

[22] C. Ermel, E. Biermann, J. Schmidt, and A. Warning, “Visual modeling of controlled
EMF model transformation using HENSHIN,” ECEASST, vol. 32, 2010.

[23] E. Syriani and H. Vangheluwe, “De-/re-constructing model transformation lan-
guages,” ECEASST, vol. 29, pp. 1–14, 2010.

http://dx.doi.org/10.1007/978-3-540-25935-0_013
http://dl.acm.org/citation.cfm?id=647562.730670
http://dx.doi.org/10.1007/978-3-642-17322-6_2
http://dl.acm.org/citation.cfm?id=278918.278928
http://doc.utwente.nl/71550/
http://doc.utwente.nl/66357/
http://www.eclipse.org/modeling/emft/henshin/

Bibliography 79

[24] The Eclipse Foundation. (2014, May) Eclipse platform. [Online]. Available:
http://www.eclipse.org/

[25] (2014, May) EMFText concrete syntax mapper. [Online]. Available: http:
//www.emftext.org

[26] D. Wagelaar. (2014, May) SimpleGT graph transformation language for EMFTVM.
[Online]. Available: http://code.google.com/a/eclipselabs.org/p/simplegt/

[27] Eclipse Foundation. (2014, May) ATL modeling zoo. [Online]. Available:
http://www.eclipse.org/atl/atlTransformations/

http://www.eclipse.org/
http://www.emftext.org
http://www.emftext.org
http://code.google.com/a/eclipselabs.org/p/simplegt/
http://www.eclipse.org/atl/atlTransformations/

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Objectives
	Research Questions
	Research Approach
	Outline

	Model Transformation Languages
	Models
	Eclipse Modeling Framework
	Model Transformation
	Model Transformation Pattern
	Transformation Languages
	Transformation Approach
	Rule Application Strategy
	Model Representation
	Tracing

	Languages to Consider
	Conclusions

	Transformation Execution Algorithms
	Graph Transformation
	Controlled Graph Transformation
	GROOVE
	Henshin

	Term Rewriting
	ATL
	Analysis of Commonality and Variability
	Rule Level
	Transformation Level

	Conclusions

	Primitive Model Transformation Language
	Language Definition
	Model Navigation Operations
	Collection Operations
	Logical and Arithmetic Operations
	Functions
	Exception Handling
	Transformation-level Operations
	Rule-level Operations
	Operations not included

	Application of the Primitive Language
	Graph Transformation
	Henshin
	Term Rewriting
	Declarative ATL
	Imperative ATL

	Related Work
	Conclusions

	Transforming Model Transformations
	Architecture
	Interpreter Implementation
	Transformation Language Implementation
	Conclusions

	Model Transformation Scenarios
	Common Use Cases
	Object-oriented Class to Relational Table
	Implementation
	Results

	Pull Up Class Attribute to Superclass
	Implementation
	Results

	Conclusions

	Conclusions and Future Work
	A Common Execution Environment
	Execution in the Common Environment
	Limitations of the Common Environment
	Looking ahead

	Primitive Representations of the Algorithms
	Single-Pushout Graph Transformation
	Henshin
	Stratego
	Declarative ATL
	Imperative ATL

	Thrascias Implementations of the Algorithms
	SimpleGT
	Declarative ATL

	Implementations of the Mapping Scenario
	SimpleGT
	Declarative ATL

	Implementations of the Refactoring Scenario
	SimpleGT
	Declarative ATL

