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Abstract 

CλaSH is a hardware description language based on the functional programming language 

Haskell. The CλaSH implementation of a hardware design can be translated to synthesizable 

VHDL code by the CλaSH compiler. The MUSIC algorithm is a classic subspace-based DOA 

estimation method that performs an eigen-decomposition on the covariance matrix. To achieve 

real-time performance in practical applications of the MUSIC algorithm, a number of hardware 

implementations have been developed. In this master project, the MUSIC algorithm is 

implemented in CλaSH to investigate the advantages and disadvantages of using this language 

for the hardware implementation of an algorithm. The CλaSH implementation is evaluated in 

several aspects such as the conciseness of the descriptions, development time and the synthesis 

result of the generated VHDL code.  
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1. Introduction  

This is the final report of the master thesis project on the implementation of the MUSIC 

(Multiple Signal Classification) algorithm in CλaSH (CAES Language for Synchronous Hardware).  

1.1 Motivation 

CλaSH (pronounced as “clash”) is a functional hardware description language developed by the 

CAES (Computer Architecture for Embedded Systems) group at University of Twente. It borrows 

both the syntax and semantics from the functional programming language Haskell. 

“Polymorphism and higher-order functions provide a level of abstraction and generality that 

allow a circuit designer to describe circuits in a more natural way than possible with the 

language elements found in the traditional hardware description languages.”[1] Circuit 

descriptions can be translated to synthesizable VHDL code by the CλaSH compiler. As CλaSH is a 

new developed language, it still needs to be evaluated and improved. 

DOA (Direction of Arrival) estimation of wireless signals is one of the techniques that is 

frequently used in smart antenna technology. Smart antennas are used in many fields such as 

radar, sonar and mobile communications. The MUSIC algorithm estimates the DOA by 

performing an EVD (eigenvalue decomposition) on the covariance matrix of the signal data. 

Although MUSIC shows a good performance in DOA estimation, it is achieved at a high cost in 

computation and storage. To achieve a real-time performance in practical applications, several 

methods have been proposed to implement MUSIC on hardware. 

As MUSIC is a non-trivial algorithm for hardware implementation, it is interesting to use it as a 

test case of CλaSH. In this project, the MUSIC algorithm is implemented in CλaSH to investigate 

the advantages and disadvantages of using CλaSH for hardware implementations.  

1.2 Methodology 

Figure 1 presents the research strategy of this project. First, we have to get familiar with CλaSH 

language and study the MUSIC algorithm as well as its hardware implementation methods. Then 

the MUSIC algorithm is implemented in CλaSH according to the hardware designs described in 

[1]. The CλaSH implementation is evaluated by comparing it with a VHDL implementation in 

several aspects such as the conciseness of descriptions, namely the amount of code, 

development time and the synthesis result including maximum clock frequency (Fmax) and the 

amount of hardware resources. To compare synthesis results, VHDL code was provided by the 

author of [1]. However, it is likely that the provided VHDL code does not exactly implement the 

hardware designs described in [1] as its synthesis result turned out to be very different from the 

results presented in [1], which makes it not comparable with our CλaSH implementation. 

Therefore, it is decided to make a new VHDL implementation for a small part of the MUSIC 

algorithm and compare its synthesis result with the result of the corresponding CλaSH 

implementation. Finally, we can reach a conclusion based on that evaluation.  
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Figure 1. Research strategy 

1.3  Report Outline 

This report is basically organized according to the research strategy shown in Figure 1. Following 

the introduction chapter, Chapter 2 is an introduction of the CλaSH language and its compiler. 

The MUSIC algorithm and its hardware implementation are studied in Chapter 3 and Chapter 4 

respectively. Chapter 5 describes how the MUSIC algorithm is implemented in CλaSH and 

presents the simulation results of the CλaSH implementation. An evaluation of the CλaSH 

implementation is carried out in Chapter 6. Finally, the conclusions are presented in Chapter 7.  
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2. CλaSH 

2.1 Introduction 

Unlike some high-level programming languages, the traditional HDLs (Hardware Description 

Languages) do not have properties such as function overloading and polymorphism, which 

makes it cumbersome in expressing higher-level abstractions that are needed for today’s large 

and complex circuit designs. In an attempt to raise the abstraction level, a great number of 

approaches based on functional languages have been proposed. “Functional languages are 

especially well suited to describe hardware because combinational circuits can be directly 

modeled as mathematical functions and functional languages are very good at describing and 

composing these functions.”[2]  

CλaSH is a functional hardware description language that borrows both its syntax and semantics 

from the functional programming language Haskell. As a subset of Haskell, CλaSH inherits from 

Haskell such advanced features as polymorphic typing, user-defined higher-order functions and 

pattern matching. These features provide great convenience for high-level abstractions and 

allow circuit specifications to be written in a very concise way. Recursive functions, a crucial 

aspect of a functional language, are not completely supported by CλaSH yet. CλaSH extends 

Haskell with some hardware-related elements such as state and vector. With the support of 

these elements within the CλaSH compiler, the CλaSH code can be translated to synthesizable 

VHDL.  

2.2  Hardware Description in Haskell 

This section introduces the basic language elements of Haskell and describes how they are 

related to hardware. 

2.2.1 Functions 

Two basic elements of a functional programming language are functions and function 

applications. The main reason of using a functional programming language to describe hardware 

is that a function is conceptually close to a combinational circuit in hardware: both transform 

input values to output values. The CλaSH compiler translates every function to a component in 

VHDL, every argument/output to an input/output port, and function applications to component 

instantiations.  

Figure 2 is the block diagram of a half adder which is described as a function called halfAdd in 

Haskell as shown in Listing 1. The halfAdd function takes two input arguments a and b and 

presents the outputs sum and carry in a tuple. The where clause describes the operations on 

the input values where xor and and are predefined functions that perform a bitwise “exclusive 

or” and a bitwise “and” operation respectively.  
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Figure 2. Half adder circuit 

halfAdd a b = (sum, carry) 

           where 

 sum = xor a b 

   carry = and a b 

Listing 1. Half adder 

A sequential circuit can also be described as a function in Haskell with a basic premise that it is 

modeled as a Mealy machine to make it a synchronous circuit. There is one implicit global clock 

affecting all delay components in the circuit. As shown in Figure 3, a Mealy machine consists of 

combinational logics and memory elements. The output of a Mealy machine in each clock cycle 

depends on both the input and the content of the memory elements which is also called the 

current state.  

 

Figure 3. Mealy machine 

Figure 4 illustrates the circuit of an accumulator which requires a register to store the 

intermediate values temporarily. It is described as a function called acc in Haskell as shown in 

Listing 2, where s and s’ denote the old and new state respectively. CλaSH treats the old state 

as an additional input and the new state as an additional output, while many other functional 

HDLs model signals as a stream of values over time and state is then modeled as a delay on this 

stream of values [2]. The synchronous sequential circuits can be simulated by the simulate 

function which will be introduced in Sec. 2.2.6. 
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Figure 4. Accumulator circuit 

     acc s inp = (s’, sum) 
        where    

           s’ = s + inp                                                                                                         

           sum = s’      

Listing 2. Accumulator in Haskell 

2.2.2 Types 

“Haskell is a statically-typed language, meaning that the type of a variable or function is 

determined at compile-time.”[2] Not all Haskell constructs have a direct structural counterpart 

in hardware. For instance, some Haskell types such as Integer and list cannot be translated 

into hardware because they do not have a fixed size at compile time. Therefore, CλaSH provides 

the following built-in types that have a clear correspondence to hardware: 

Bit: It can be either of the two values: High and Low, representing the two possible states of 

a digital device, for instance, a flip-flop. 

Bool: It is a basic logic type with two possible values: True or False. It is required in if-

then-else expressions. 

Signed, Unsigned: They represent the signed and unsigned integers with a static size. For 

example, Signed 8 represents an 8-bit signed integer. They will wrap around when an 

overflow occurs. 

Vec: It denotes a vector that contains elements of any type. It is defined in CλaSH to replace 

the List type which has a dynamic length. The length of a vector is static and parameterized. 

For example, Vec 4 Bit denotes a vector of 4 bits. The Vec type plays an important role in 

CλaSH as it is used in many built-in higher-order functions which will be discussed in Sec. 2.2.5. 

Haskell allows a designer to create a new type with the data keyword and type synonyms can 

be introduced using the type keyword. As shown in Listing 3, the Color type can be Red, 

Green or Blue, and the Pixel type is a tuple of 3 Color elements. 

data Color = Red | Green | Blue 

type Pixel = (Color, Color, Color) 

Listing 3. User-defined types 

2.2.3 Polymorphism 

A value is polymorphic if it can have more than one type. Polymorphism is an important and 

powerful feature of Haskell. Most polymorphism in Haskell falls into one of two broad 

categories: parametric polymorphism and ad-hoc polymorphism.  

Parametric polymorphism allows functions to be defined without specifying the data types and 

these functions can be used for arbitrary types. The annotation shown in Listing 4 means that 

the function first takes a tuple of an a-type element and a b- type element as input and the 

output is of type a, where a and b are not concrete types but parameterized ones that can be 
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any type. As we know, VHDL is a strongly typed language, meaning that the type of every 

variable has to be explicitly declared. Haskell is also strongly typed but the compiler can infer 

the variables’ types from the functions’ types. For example, if the first function is applied 

with an input (arg1, arg2), arg1 and arg2 will automatically have the a and b types. 

This somewhat reduces the verbosity of the source code. With parametric polymorphism, a list 

operation can be used for lists that have different lengths and different element types. It is the 

fundamental of the built-in higher-order functions which will be introduced in Sec. 2.2.5. 

first :: (a, b) -> a 

Listing 4. Parametric polymorphism 

Another type of polymorphism is ad-hoc polymorphism. It refers to functions that work with 

types in the same type class. Listing 5 indicates that the type of the add function is a->a->a 

and a must be a member of Num which is the class of numeric types including all real numbers. 

add :: Num a => a -> a -> a 

add a b = a + b 

Listing 5. Ad-hoc polymorphism 

CλaSH supports both parametric polymorphism and ad-hoc polymorphism with one constraint: 

the arguments of the top-level cannot be polymorphic as there is no way to infer their concrete 

types. 

2.2.4 Choices 

In Haskell, choices can be described in several forms: case expressions, if-then-else 

expressions, pattern matching and guards. All the four forms can be mapped to multiplexers. 

Pattern matching is a user-friendly and also powerful form of choice that is not found in the 

traditional HDLs. As shown in Listing 6, a function called muxPatterns is defined in multiple 

clauses with different patterns. When the function is applied with the input values that match 

one of the patterns, the corresponding clause will be used: if the first argument of 

muxPatterns is Low, the output will be the first element of the tuple; otherwise, the output 

will be the second element of the tuple. Figure 5 illustrates the corresponding circuit. 

muxPatterns Low (x, y) = x 

 muxPatterns High (x, y) = y 

Listing 6. Pattern matching 
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Figure 5. Multiplexer circuit 

2.2.5 Higher-order Functions 

Higher-order function is a powerful abstraction mechanism in a functional programming 

language. A higher-order function is a function that takes one or more functions as arguments. A 

function to be passed to the higher-order function as an argument is called a first-class function. 

Haskell provides a number of built-in higher-order functions such as map, zipWith and foldl. 

map is a higher-order function that can be found in many functional languages. Listing 7 means 

that the first-class function f is applied to each element of the xs list and ws is a list of the 

results, as shown in Figure 6.  

ws = map f xs 

Listing 7. map 

 

Figure 6. map 

In Haskell, the first-class function can be written in another two ways: partial application and 

lambda expression. Partial application means applying a function with fewer arguments than it 

needs, which produces a new function. As shown in Listing 8, (add 1) is a partial application 

of the add function with the value 1 and it is again a function that takes one input and adds 1 to 

it. The new function (add 1) is applied to every element in the list xs, as shown in Figure 7. 

map (add 1) xs 

Listing 8. Partial application 
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Figure 7. map (add 1) 

A lambda expression allows the designer to introduce a function in any expression without first 

defining that function. Such a function is also called an anonymous function since it does not 

have a name. The expression (λx -> x + 1) in Listing 9 is an example of lambda expression 

which describes the same function as (add 1). 

  map (λx -> x + 1) xs 

Listing 9. Lambda expression 

zipWith is a higher-order function that applies a function pairwise to the elements of two 

lists. For example, Listing 10 means that the elements of xs and ys are pairwise multiplied and 

ws is a list of the results, as shown in Figure 8.   

  ws = zipWith (*) xs ys 

Listing 10. zipWith 

 

Figure 8. zipWith 

Another very useful higher-order function is foldl. Listing 11 means that a binary operator (+) 

is iteratively applied to an element of the ws list and a value initialized with 0 till the end of the 

list, as shown in Figure 9. 

  z = foldl (+) 0 ws 

Listing 11. foldl 

 

Figure 9. foldl 
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These higher-order functions are polymorphic as they accept lists with different lengths and 

different types as long as the first-class function can handle these types. Since lists cannot be 

translated to hardware, map, zipWith and foldl are replaced by vmap, vzipWith and 

vfoldl respectively in CλaSH. These functions work with vectors instead of lists.  

2.2.6 Recursive Functions 

Recursion plays an important role in Haskell. As shown in Listing 12, a typical example of 

recursion is the factorial function which cannot be translated to hardware by the CλaSH 

compiler. A translatable function must have a clear correspondence to a static amount of 

hardware resources at compile time. However, the amount of multipliers fac requires depends 

on the input value, namely n, which cannot be known at compile time.  

fac ：： Int -> Int 

fac 0 = 1 

fac (n+1) = (n+1) * fac n 

Listing 12. Factorial in Haskell 

On the other hand, many frequently used functions in CλaSH are defined recursively, such as 

vmap, vzipWith and vfoldl. Listing 13 shows the definition of the vmap function, where 

the :> operator is used to add an element to the head of a vector and Nil denotes an empty 

vector. This function is supported by the CλaSH compiler because the amount of hardware 

resources is determined by the length of the vector xs, namely n. As we discussed in Sec. 2.2.2, 

n is a static value which is known by the compiler. 

vmap :: (a -> b) -> Vec n a -> Vec n b 

vmap _ Nil = Nil 

vmap f (x :> xs) = f x :> vmap f xs 

Listing 13. Definition of vmap 

2.3 The CλaSH Compiler 

The CλaSH compiler is basically a front-end of the Glasgow Haskell Compiler (GHC) extended 

with a Haskell library that can compile circuit descriptions written in Haskell to VHDL. Figure 10 

illustrates the compiling mechanism according to [3]. 
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Figure 10. CλaSH pipeline 

The GHC front-end performs parsing, type checking and desugaring to the original Haskell code. 
Haskell is a rather large language, containing many different syntactic constructs. Haskell 
provides a lot of “syntactic sugar” to be easy for humans to read and write, and the programmer 
can choose the most appropriate one from a wide range of syntactic constructs. However, the 
flexibility for the user leads to the complexity for the compiler because there are often several 
ways to describe the same meaning. For example, an if-else-then expression is identical in 

meaning to a case expression with True and False branches. Therefore the GHC front-end 
removes all the syntactic sugar and translates the original Haskell code into a much smaller 
typed language called Core. 

A description in core can still contain elements which have no direct translation to hardware, 

such as polymorphic types and function-valued arguments. The second stage of the compiler 

repeatedly applies a set of rewrite rules on the Core description till it is in a normal form, which 

corresponds directly to hardware. This set of transformations includes β-reduction, η-expansion, 

unfolding higher-order functions to first order function, specifying the polymorphic types with 

concrete types and function inlining. The final step in the compiler pipeline is to translate the 

normal form to a VHDL description, which is a straightforward process due to the resemblance 

of a normalized description and a set of concurrent signal assignments.  

Figure 11 shows the circuit of an arithmetic logic unit (ALU) and it is modeled as a function called 

alu, as defined in Listing 14. The alu function performs addition (ADD), multiplication (MUL) or 

subtraction (SUB) according to the opCode. Listing 15 presents the normalized description of 

the alu function. It becomes a lambda function with a let-in expression. The normalized 

description has a clear correspondence to the circuit in Figure 11: 1) Every variable indicates a 

signal (wire). 2) λ and in denote the input and output signals respectively. 3) The internal logics 

are described in the let clause where every syntactic construct has a direct translation in 

hardware, for instance, an adder or a multiplexer.  
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Figure 11. ALU circuit 

data opCode = ADD | MUL | SUB 

 

alu ADD x y = x + y 

alu MUL x y = x * y 

alu SUB x y = x - y 

Listing 14. Haskell definition of alu 

alu = λc x y. let p = x + y 

                  q = x * y 

                  r = x - y  

                  out = case c of 

                         ADD -> p 

                         MUL -> q 

                         SUB -> r 

               in out           

Listing 15. alu in normal form 
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3. MUSIC Algorithm  

As shown in Figure 12, a far-field narrowband signal with a wavelength of   arrives at an N-

element antenna array. Each element of the array is spaced by   which is equal to    . The 

angle of incidence is  . If the received signal at sensor 1 is   ( )   ( ), then it is received 

earlier at sensor   by     
(   )     

 
, where   is the propagation speed, so the received signal 

at sensor   is   ( )          ( )       
(   )     

  ( ). The signals received at all   sensors can 

form a vector as: 

  ( )  

[
 
 
 
 
  ( )

  ( )

  ( )
 

  ( )]
 
 
 
 

  

[
 
 
 
 
 

 

    
     

 

    
      

 

 

    
(   )     

 ]
 
 
 
 
 

 ( )    ( ) ( )   (1) 

where  ( ) is called a “steering vector”.   

 

Figure 12. Uniform linear array 

If there are   independent source signals and Gaussian white noise is  ( ), the signal model can 

be depicted as: 

  ( )    ( )   ( )      (2)                                             

where  ( )     ( )   ( )     ( )    

              ( )     ( )   ( )     ( )    

              ( )      ( )   ( )     ( )    

                 (  )  (  )    (  )   

Then the covariance matrix can be calculated as: 

                                                   { ( )  ( )}      
                  (3)                
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where      { ( )  ( )},    is the noise variance and   is the     identity matrix. The rank 

of    defines the dimension of the signal subspace. 

For      , the matrix     
  is singular, so         

                 = 0, which implies 

that    is an eigenvalue of   . Since the dimension of the null space of     
  is    ,     has 

    eigenvalues that are equal to   . Since    is a positive definite Hermitian matrix, there 

are   other eigenvalues    and         . 

If    is the eigenvector of    corresponding to   , then           
              (  

       ), which implies that  

     
    {

(     )                                       
                                                    

          (4) 

The N-dimensional eigenvector space can be partitioned into the signal subspace    and the 

noise subspace    , as shown in Eq. (5) where the eigenvectors are in descending order. 

                                     (5) 

Since both     and    are full-rank matrices, meaning that (   ) and   
   exist, Eq.  (4) can 

be transformed to   
  (   )         

     , so 

           (             )                 (6)              

which means the noise subspace is orthogonal to each column of the steering matrix  . 

According to this orthogonality, a spatial spectrum function can be constructed as 

  ( )  
 

‖  ( )     ‖ 

      (7) 

Since the above deduction is based on some assumptions to build an idealized mathematical 

model, the denominator of the function can never be exactly 0 in reality. The values of   that 

maximize  ( ) are corresponding to the DOAs of all source signals. In other words, the DOA’s of 

all source signals can be estimated by peak detection of the spatial spectrum.   
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4. Hardware Implementation 

Figure 13 illustrates the system architecture of a MUSIC hardware implementation. First, a 

pretreatment will be performed on the signal data after A/D conversion. The purpose of the 

pretreatment is to get rid of complex computations and make it easier to be implemented on a 

FPGA. The FPGA implementation consists of three modules: Covariance Matrix Calculation 

(CMC), Eigen-decomposition (EVD) and Spectrum Peak Search (SPS). 

 

Figure 13. System hardware architecture 

4.1  Pretreatment 

As the steering matrix   contains complex elements, the MUSIC algorithm requires a large 

amount of complex-valued computations which make the hardware implementation complex 

and time-consuming especially for the EVD. To reduce the computational load, [4] introduces a 

pretreatment method to obtain a real-valued covariance matrix by a unitary transformation as 

  ( )      ( )                  (8)                                                            

where    
 

√ 
[
   
    

] if there is an even number of antennas in the array,   is a 
 

 
 

 

 
 

identity matrix and   is a 
 

 
 

 

 
 anti-identity matrix (permutation matrix with all its anti-diagonal 

elements being 1). In this method,   is assumed to be an even number. After the pretreatment, 

we can obtain a real-valued steering vector as  

                     (  )      (
       

 
)     (

        

 
)       (

(    )       

 
)    

    (
       

 
)     (

        

 
)       (

(    )       

 
)    (9) 

where            .  

4.2  Covariance Matrix Calculation 

According to Eq. (3), the covariance matrix calculation is basically the multiplication of a vector 

and its transpose. After the pretreatment, the data vector  ( ) is real-valued. Each element of 

the covariance matrix can be calculated as  
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∑   ( ) 

     ( )                    (10)           

where     is the element in row  , column   of the covariance matrix,   ( ) and   ( ) denote the 

n-th data of the i-th and the j-th antennas respectively, and   is the number of snapshots. The 

calculations of the entire covariance matrix can be done in parallel by     multiply-

accumulate (MAC) units. As shown in Figure 14, a MAC unit multiplies the two input values and 

adds the multiplication result with the previous output which is stored in a register. Since   is a 

symmetric matrix, the upper triangle is sufficient for the implementation of the MUSIC 

algorithm. Therefore, 
  (   )

 
 MAC units are required.  

  

Figure 14. mac circuit 

Figure 15 is the block diagram of the Covariance Matrix Calculation (CMC) module. Each input 

signal is combined with itself and the others. For example, with two elements a and b, the 

combinations will be (a,a), (a,b) and (b,b). Therefore,   input signals make 
  (   )

 
 

combinations and each combination is the input of a MAC unit.  

 

Figure 15. Covariance matrix calculation 

4.3  Eigenvalue Decomposition 

The Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues and 

eigenvectors of a real symmetric matrix such as the covariance matrix. The Jacobi method 

repeatedly performs rotations (orthogonal transformations) until the matrix becomes almost 

diagonal.  
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4.3.1 The CORDIC Algorithm 

Before discussing more about the Jacobi method, it is necessary to introduce the CORDIC 

(Coordinate Rotation Digital Computer) algorithm since it plays an important role in the 

implementation of the Jacobi method. CORDIC is a simple and efficient algorithm to calculate 

trigonometric functions. It is commonly used when no hardware multiplier is available (e.g., 

simple microcontrollers and FPGAs) as the only operations it requires are addition, subtraction, 

bit shift and table lookup. 

Suppose a vector (   ) is rotated by an angle α, the resulting vector (     ) can be calculated as: 

 [
  
  

]  [
         
        

] [
 
 ] (11)                  

 Eq. (11) can be rewritten as: 

 [
  
  

]      [
      

     
] [

 
 ]               (12) 

If            , this rotation can be decomposed to iterative rotations by the angle 

   (           ). Each iteration can be depicted as: 

 [
 (   )

 (   )]       [
       

      
] [

 ( )

 ( )] (  ) 

with  ( )   ,  ( )   . 

Suppose    is chosen such that           , then 

               (14) 

   ∑     
 
    (     )                                 (15)      

Table 1 lists the possible values of    which can be stored in a look–up table (LUT). The accuracy 

of the final result of CORDIC is determined by the number of iterations, i.e. the number of angle 

values in the table. Eq. (  ) can be rewritten as: 

 [
 (   )

 (   )]     (         ) [
     

  

   
   

] [
 ( )

 ( )] (  ) 

Now the calculations do not require multiplications but only bit shifts, except for the first factor 

in Eq. (  ):    (         )  
 

√      
.  

 

Table 1. Angles for CORDIC rotation     
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The progress of a CORDIC rotation is tracked by an angle accumulator: 

    (   )   ( )                       (17)          

The product of    (         )  can be depicted as 
 

 
 where   ∏ √       

    and   

converges to 1.647 [5].  Therefore, we can ignore    (         ) in each iteration and finally 

the original vector will be scaled by a factor of  . Eq. (18) is a summary of the equations in the 

CORDIC algorithm.     

 (   )   ( )     
   ( )

 (   )     
   ( )   ( )

                         (   )   ( )                                        

                                     (18) 

There are two computing modes of CORDIC: rotation mode and vectoring mode. In a rotation-

mode CORDIC, the sign of    is determined by the angle accumulator:       when  ( )    and 

      otherwise. With the following initial values: 

   {
  ( )   
  ( )   

  ( )   

                                                 (19)        

the final result will be: 

 ( )   (           )

 ( )   (           )

  ( )                                     

                                                    (20) 

In a vectoring-mode CORDIC, the sign of    depends on  ( ):       when  ( )    and      

when  ( )   . With the following initial values: 

  {
  ( )   
  ( )   

  ( )   

         (21) 

the final result will be: 

 ( )   √     

  
   ( )                         

 ( )        (
 
 )

                                                                     (22) 

Figure 16 presents a CORDIC architecture which can be used for both the two modes. The left 

part of this architecture performs bit shifts according to Eq.(  ) and the right part is an angle 

accumulator corresponding to Eq. (17).  
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Figure 16. Iterative CORDIC architecture 

4.3.2 The Classical Jacobi Method 

 ( )        is symmetric and similar to  , if   is an     real symmetric matrix and  (     ) 

is a rotation matrix of the form: 

 

                                                           

[
 
 
 
 
 
 
 
 
 
       

     

       

     

        

     

       ]
 
 
 
 
 
 
 
 
 

  (23)  

where        and       . All the diagonal elements of   are unity except for the two 

elements in rows (and columns)   and  . All the off-diagonal elements of   are zeros except the 

two elements in row  , column   and row  , column  .   

The elements of  ( ) are calculated as 

    

{
 
 
 
 

 
 
 
     

( )
                                               

    
( )

                                               

    
( )

       
( )

 (     )      (        )

   
( )

     
( )

                                  

   
( )

     
( )

                                  

   
( )

                                                        

              (24) 

Since   is a symmetric matrix, we can concentrate on the upper triangle. One of the off-diagonal 

elements will be annihilated if    
( )

 is set to 0, which means  

     (  )   
    

        
   (25) 

i 

j 

i j 
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If          ,     
 

 
 .  

The Jacobi method performs a sequence of orthogonal similarity transformations as shown in Eq. 

(26). Each transformation (a Jacobi rotation) is a plane rotation that annihilates one of the off-

diagonal elements. Successive transformations undo the previously set zeros, but the off-

diagonal elements nevertheless get smaller and smaller, until the matrix is almost diagonal. 

The iterations of the Jacobi method can be depicted as 

  

{
 
 

 
   ( )     

                    

  ( )     
  ( )             
 

  ( )     
  (   )        

  (26) 

where L  denotes the number of iterations, so  

   ( )                                              (27)                                      

where        
   

     
  and             . 

After   iterations,   ( ) is almost diagonal. The diagonal elements of   ( ) are approximations of 

the eigenvalues and the corresponding eigenvectors are the columns of   . 

The original Jacobi method searches the whole upper triangle in each iteration and sets the 

largest off-diagonal element to zero. “This is a reasonable strategy for hand calculation, but it is 

prohibitive on a computer since the search alone makes each Jacobi rotation a process of order 

   instead of  .”[6] For a hardware implementation,    
( )

which is the off-diagonal element to 

be annihilated in the n-th iteration, is determined by traversing the upper triangle in a fixed 

order, for example, in a     symmetric matrix: 

                        

One such set of  (   )   Jacobi rotations is called a sweep. The diagonalization of the matrix 

will be finished after a few sweeps when all off-diagonal elements are smaller than a predefined 

threshold. 

Eq. (24) can be rewritten as 
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{
 
 
 
 

 
 
 
      

( )
   (         )   (         )                         

    
( )

   (         )   (         )                         

      
( )

       
( )

                                                                     

      
( )

     
( )

                                                     

    
( )

     
( )

                                                    

   
( )

                                                                         

 (28) 

By comparing Eq. (28) with the results of the rotation-mode CORDIC (Coordinate Rotation Digital 

Computer) in Eq. (20), it can be concluded that the calculations of the off-diagonal elements    
( )

 

and     
( )

 can be done by a CORDIC rotation. The diagonal elements     
( )

 and    
( )

 can be 

calculated by performing the CORDIC rotation twice. And the rotation angle   can be computed 

by the vectoring-mode CORDIC according to Eq. (22) and Eq. (25).  

According to Eq. (27), the calculations of    are iterative multiplications of the Jacobi rotation 

matrices. Eq. (29) shows an example of the first iteration. 

 [

       
      
    
    

]  [

       
    
      
    

]  [

             
            
      
    

]     (29) 

where   ,    represent the cosine and sine values in the first iteration and   ,    represent the 

cosine and sine values in the second iteration. It can be concluded that as long as the second 

matrix is of the form shown in Eq. (23), only column   and column   of the first matrix are 

changed during the multiplication of these two matrices. The result of each multiplication can 

be depicted as Eq. (30), where     and     represent the old values of column   and  , while      

and      are the new values.  

 [
    

    
]   [

     

    
]  [

   

   

]                                           (30) 

Eq. (30) is actually equivalent to a CORDIC rotation as shown in Eq.(20), which means that the 
calculation of    can be done by a rotation-mode CORDIC.  

4.3.3 The Improved Jacobi Method 

As discussed in the previous section, the classic Jacobi method uses CORDIC 3 times (2 rotation-

mode CORDIC and 1 vector-mode CORDIC) in each Jacobi rotation. An improved design that uses 

CORDIC only once will be presented in this section. It can significantly improve the efficiency of 

the Jacobi method. 

The angle    in each iteration of a CORDIC rotation is determined by the equation:       

 ∑     
   
    , where          (     )             and    {    } . The rotation direction 

   is determined by the sign of     . For the Jacobi method, the rotation angle   can be 
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restricted within     [7], so    is also determined by the sign of         . By applying the 

trigonometric identities,        can be calculated as 

          (           ) 

                         
   (     )          

                  
                                                  (31) 

With         
    

       ,         
  

  
 and           

    

    
  , Eq. (31)  can be rewritten as  

  

  
  

(      )        
       

(      )        
       

                                                        (32) 

Figure 17 illustrates the block diagram of a modified CORDIC algorithm used for calculating the 

off-diagonal elements. The CORDIC_A section computes the values of    and    according to Eq. 

(31) where the sign of    is determined by the sign of 
  

  
. The CORDIC_B section is a rotation-

mode CORDIC that rotates in the direction indicated by the sign of   .  

 

Figure 17. Modified CORDIC 

With the following initial values:   

{
 

 
                

                          
               
               

                                                                         (33) 

the results of the modified CORDIC after   iterations will be: 
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{
    (               )

    (               )
                                                               (34) 

According to Eq. (24), the new off-diagonal elements    
( )

 and     
( )

 can be calculated by scaling 

   and    with a factor of  . As shown in Figure 18, the scaling is implemented according to the 

approximation: 

 

 
                                                                        (35) 

 

Figure 18. CORDIC scaling 

For the diagonal elements, according to [6], it can be derived from Eq. (25) and (28) that  

  {
     

( )
     

(   )
    

(   )
      

     
( )

     
(   )

    
(   )

     

                                      (36) 

The value of       can be stored in a look-up table in which a set of    is mapped to      , as 

shown in Figure 19. In a hardware implementation,       is considered as 0. 

  

Figure 19 Look-up table of tangent 



 

26 
 

4.3.4  Systolic Array 

According to Eq. (24), each Jacobi rotation affects only row (and column)   and  , which offers an 

opportunity of parallel processing. A systolic array design is proposed in [7] to implement the 

parallel Jacobi algorithm. Figure 20 shows a systolic array used for the EVD of a     symmetric 

matrix. Each PE (processing element) contains a     sub-matrix of the upper triangle of the 

matrix. For example, “12” in PE1 represents the element in row 1, column 2. The PEs on the 

diagonal line, namely PE1 and PE3, are called the diagonal processors and PE2 is called the off-

diagonal processor. Using the CORDIC_A algorithm shown in Figure 17, the diagonal processors 

update the four diagonal elements in parallel (“12” and “34” are set to 0) and broadcast the 

values of    to the right and the top, as indicated by the wide arrows in Figure 20. Each off-

diagonal processor has to wait for the arrivals of    from the left and the bottom to update the 

off-diagonal elements using CORDIC_B. After all the elements are updated, they will be 

relocated along the thin arrows and then the PEs will start the next iteration. Compared with the 

classical Jacobi method, the systolic array can significantly reduce the total computation time of 

EVD, especially for a big matrix.  

 

Figure 20. Systolic array for EVD  

Since the systolic array annihilates 2 off0diagonal elements in each iteration, one sweep of a 

    symmetric matrix can be done by 3 iterations. In Figure 21, each off-diagonal element in 

the upper triangle of a 4   symmetric matrix is marked with a number that indicates in which 

iteration it will be annihilated. There are no conflicts between the calculations of the diagonal 

elements in each iteration. For example, according to Eq. (24), the diagonal elements (1, 1) and 

(2, 2) are required and will be changed to annihilate (1, 2) which is marked with ‘1’. To annihilate 

(3, 4) which is also marked with ‘1’, the diagonal elements (3, 3) and (4, 4) are required and will 

be changed. So the two rotations do not affect the diagonal elements of each other. According 

to Eq. (24), both the two rotations affect the 4 elements in PE2, which means PE2 has to 

perform the CORDIC rotation twice in each iteration. 
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Figure 21. Parallel processing of a 4x4 matrix 

Figure 22 shows the hardware architecture of EVD of a     symmetric matrix. MUX is a 

multiplexer that chooses from the input and the previous output stored in the memory unit 

REG1. A diagonal processor consists of a CORDIC_A and an update block. The output of the 

CORDIC_A block is a set of the direction signals, namely     or     which are then used by the 

update block to get the tangent value from an internal look-up table and update the diagonal 

elements. An off-diagonal processor consists of 4 CORDIC_B blocks that update the off-

diagonal elements. The EX1 block performs data exchanges between two iterations and stores 

the results in a memory unit called REG1. After a few iterations, the upper triangle of a 

diagonalized matrix will be found in REG1 and its diagonal elements are the eigenvalues of the 

input matrix   (upper triangle).   

 

Figure 22. EVD (eigenvalue) architecture 

Figure 23 is an extension to Figure 22. With this extension the eigenvectors can be calculated at 

the same time. There are 8 CORDIC_B blocks running in parallel: 4 take     and the other 4 
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take    . The memory unit REG2 is initialized with an identity matrix. The 4 CORDIC_B blocks 

in the left pairwise update the elements in column 1 and column 2 and the 4 CORDIC_B blocks 

in the right pairwise update the elements in column 3 and column 4. Then EX2 will perform the 

data exchanges between the columns as shown in Figure 24, where each block represents a 

column. The result will be stored in REG2 for next iteration. When the eigenvalues calculation 

is finished, the corresponding eigenvectors can be found in REG2. 

 

Figure 23. EVD (eigenvector) architecture 

 

Figure 24. Column exchange 

4.4 Spectral Peak Search 

According to Eq. (7), the spectrum peaks can be detected by finding the minimum square of the 

2-norm of   ( )     , which is equivalent to finding the maximum of the 2-norm of 

  ( )     where the signal space       consists of the eigenvectors corresponding to the largest 

eigenvalues. The latter can reduce the amount of computations when the number of source 

signals is much smaller than the number of noises. Figure 25 presents the block diagram of the 

spectral peak search module. First, the EigSort block sorts the eigenvalues in a descending 

order and outputs the corresponding eigenvectors of the first   eigenvalues, making the signal 

space    , where   indicates the number of source signals. The Norm block takes the signal 

space    from EigSort and a steering vector   ( ) from the SvLUT block to calculate the 2-

norm of   ( )     . For a hardware implementation, the angle   can be chosen from a 
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predefined set of angles, for example: 
 

   
 

 

   
   

 

 
. According to Eq. (9), the steering vectors 

will be: 
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where      
  

   
             . These steering vectors are stored in SvLUT as constants. 

The result of the norm calculation will be sent to the Compare block and compared with the 

previous results to find out the peaks which indicate the DOAs. 

 

Figure 25. Spectral peak search 

As shown in Figure 26, the Norm block first calculates the dot product of a steering vector and 

each eigenvector in the signal space. Then each dot product is squared and the output is the 

sum of the squares.  

 

Figure 26. Norm calculation 

The Compare block is elaborated in Figure 27. First Comp1 compares      with    and      

simultaneously. If         and           then Comp2 will compare      with 2 (depends on 
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the number of signal sources) current maximums and output the indexes of the maximums. 

Finally the DOA’s can be found according to the indexes after traversing the entire angle set. 

 

Figure 27. Architecture of the Compare block 
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5. CλaSH Implementation of MUSIC  

This chapter describes the CλaSH implementation of the MUSIC algorithm according to the 
hardware designs shown in Chapter 4 and presents the simulation results. Each module of the 
MUSIC algorithm, such as Covariance Matrix Calculation (CMC), Eigen-decomposition (EVD) and 
Spectral Peak Search (SPS), is separately implemented in CλaSH. A two-step design method is 
proposed in [8] to implement a DSP application on an FPGA: firstly, the mathematical definition 
is translated to Haskell; secondly, minor changes are applied to the Haskell implementation so 
that it is accepted by the CλaSH compiler. For example, lists are replaced by vectors and map is 
replaced by vmap. The pure Haskell code is more concise and easier to use as it is free of the 
hardware-related restrictions in CλaSH. For example, in Haskell we can use double precision 
floating point operations while in CλaSH we use fixed point operations. Therefore, this chapter 
will use the Haskell code to describe the implementation of the MUSIC algorithm and the 
corresponding CλaSH code can be found in the Appendix. In this project, we assume that the 
number of antennas is 4 and the number of source signals is 1. 

5.1 Covariance Matrix Calculation 

5.1.1 CλaSH Implementation 

According to the description in Sec. 4.2, the Covariance Matrix Calculation (CMC) module is 

modeled as a top-level function called cmc and the multiply-accumulate (MAC) circuit is 

modeled as a function called mac which is used in the top level. As shown in Listing 16, mac is a 

stateful function as the MAC circuit requires a register to store the current result temporarily for 

the next iteration. s and s’ indicate the old and new states respectively.  

1   mac s (x, y) = (s’, out) 

2      where 

3         s’  = x*y + s   
4         out = s 

Listing 16. Definition of mac 

Figure 28 illustrates a graphical representation of the cmc function according to its definition 

shown in Listing 17. First, it makes 10 combinations of the input signals in a list pairs by 

indexing the same list ys with two different index numbers i1 and i2 (Line 3-4) where !! is 

the indexing operator of lists in Haskell. Then it applies mac pairwise to the elements of ss and 

pairs where ss is a list of the old states:   ,   ,…,    . The output of cmc are two lists: ss’ 

and rs (Line 5) where ss’ is a list of the new states:    ,    ,…,      and rs is the upper triangle 

of the covariance matrix. 
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Figure 28. Structure of cmc 

1 cmc ss ys = (ss’,rs) 

2   where  

3       pairs  = [(ys !! i1, ys !! i2) |  

4                  i1 <- [0..3], i2 <- [0..3], i1 <= i2] 

5     (ss’,rs) =  unzip $ zipWith mac ss pairs 
Listing 17. Definition of cmc 

5.1.2 Testing 

In Haskell, a function that represents a sequential synchronous circuit can be simulated by the 

simulate function as defined in Listing 18. It recursively applies a function f to the state s 

and an element of the list (x:xs)till the end of the list, where the : operator adds an 

element to the head of a list. The list (x:xs)imitates an input signal that lasts for several clock 

cycles and each application of f simulates the behavior of the synchronous circuit in one clock 

cycle. 

1 simulate f s [] = [] 

2 simulate f s (x : xs) = y : simulate f s’ xs  

3     where 

4        (s’, y) = f s x  

Listing 18. Definition of simulate 

As shown in Listing 19, the cmc function is simulated by the simulate function with an initial 

state s_init which is a list of 10 zeros (Line 1). inps (Line 2) is a list of lists where each 

sub-list is an input of cmc. Figure 29 shows the content of test which is a list of the 

simulation results in GHCI, a GHC (Glasgow Haskell Compiler) interactive environment. Note that 

the output is delayed by one clock cycle: the first output is the initial state. Therefore, the third 

sub-list of inps, i.e. [7,8,9,10], does not affect the simulation result. 

1 s_init = replicate 10 0 

2 inps = [[1,2,3,4],[5,6,7,8],[7,8,9,10]] 

3 test = simulate cmc s_init inps 

Listing 19. Simulation of cmc in Haskell 
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Figure 29. Simulation result of cmc in Haskell 

Since the covariance matrix calculation is in principle the multiplication of a vector and its 

transpose, the simulation results can be verified with the transpose operator ' in MATLAB, as 

shown in Listing 20. 

     inp = [1,2,3,4;5,6,7,8] 
  outp = inp'*inp 

Listing 20. CMC in MATLAB 

After the CλaSH implementation is tested, the corresponding VHDL code is generated as well as 

a test bench. Figure 30 shows the simulation result of the generated VHDL code in ModelSim 

where clk1000 is a 1 MHz clock signal, inp_i1 contains the 4 input values and topLet_o 

is the output signal. In the test bench, the input values are assigned to be 1,2,3,4 at 100 ns (in 

the first clock cycle) and 5,6,7,8 after 1200 ns (in the second clock cycle). According to the 

definition of mac shown in Listing 16, each output of cmc is also the current state. Therefore, 

the output values are updated on every rising edge of the clock signal, as shown in Figure 30. 

 

Figure 30. Simulation result of CMC in ModelSim 

 

5.2 Eigenvalue Decomposition 

5.2.1 CλaSH Implementation 

The eigen-decomposition (EVD) module is modeled as a top-level function called evd. As shown 

in Listing 21, the evd function takes a list rs containing the upper triangle produced by the 

cmc function to calculate its eigenvalues evals and eigenvectors evecs. s indicates a state 

containing the intermediate results of each iteration. As shown in Figure 31, the EVD module 
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consists of several components such as CORDIC_A, update and CORDIC_B. Each component 

is modeled as a function which is used in the top level. The complete definition of evd can be 

found in Appendix B. 

   evd s rs = (s’, (evals, evecs)) 

Listing 21. Definition of evd 

 

Figure 31. EVD architecture 

As defined in Listing 22, the ca1 function describes one iteration of the CORDIC_A algorithm 

according to Eq. (32). In the CλaSH implementation, the power of two operations in Line 3-4 will 

be implemented with the bit shift functions shiftR and shiftL. The getSign function 

(Line 8-9) determines the rotation direction di according to the signs of the two inputs.  

1       ca1 (ri,ui) i = ((ri’,ui’),di’) 
2      where 

3         ri’  =  (1-2^(-2*i))*ri - di*(2^(1-i))*ui 

4         ui’  =  (1-2^(-2*i))*ui + di*(2^(1-i))*ri 

5         di   =  getSign ri ui 

6  

7   getSign x y = if x/y >= 0 then 1 

8                 else -1  
Listing 22. Haskell definition of cordica  
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Figure 32 illustrates a graphical representation of a CORDIC_A implementation with 10 

iterations of the ca1 function. As mentioned in Sec. 4.3.1, the accuracy of the CORDIC algorithm 

depends on the number of iterations. In this project, we perform 10 iterations as it shows a 

satisfactory accuracy. The structure shown in Figure 32 can be described by foldl with a slight 

modification to the function definition of ca1 because foldl requires that the first input and 

the output of the function are of the same type. The input of ca1 is a 2-tuple but the output is a 

3-tuple. As shown in Listing 23, the first input of the modified ca1, namely ca2, is a 3-tuple 

of which the third element is a list dsi and the output is also a 3-tuple. The operator : (Line 7) 

appends the new direction value di’ to the list dsi and the new list dsi’ is the third element 

of the output. Figure 33 shows the structure of the CORDIC_A implementation with the ca2 

function and it can be described by the cordic_a function as shown in Listing 24, where ids 

is a list of index numbers in the range of 0 to 9 and ds is initialized with [], an empty list.  

 

Figure 32. Structure of CORDIC_A 

1     ca2 (ri,ui,dsi) i = (r’,u’,dsi’) 
2      where  

3         ri’  =  (1-2^(-2*i))*ri - di*(2^(1-i))*ui 

4         ui’  =  (1-2^(-2*i))*ui + di*(2^(1-i))*ri 

5         di   =  getSign r u 

6         dsi’ =  di : dsi   

7  

8   getSign x y = if x/y >= 0 then 1 

9                 else -1  
Listing 23. Haskell definition of modified cordica  

 

Figure 33. Modified structure of CORDIC_A 

1  cordic_a r u = ds 

2    where 

3      ids = [0..9] 

4      (r’,u’,ds) = foldl ca2 (r,u,[]) ids 
Listing 24. Definition of cordic_a with foldl 
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In fact, the structure shown in Figure 32 can be directly described by another built-in higher-

order function: mapAccumL without modifying the definition of ca1, as shown in Listing 25. 

The mapAccumL function behaves like a combination of map and foldl. It applies a function 

which is ca1 in this case, to each element of a list ids, passing an accumulating parameter (r, 

u)from left to right, and returning a final value of this accumulator together with the new list 

ds. 

1 cordic_a r u = ds 

2   where 

3      ids = [0..9] 

4      ((r’,u’),ds) = mapAccumL ca1 (r,u) ids 
Listing 25. Definition of cordic_a with mapAccumL 

Listing 26 shows the definition of the update function which takes a list ds produced by 

cordic_a and updates the diagonal elements b and c according to Eq. (36). tanv is a tangent 

value obtained from a list of tangent values created by the lut function and the index ind is 

an integer converted from ds (Line 5).  

1   update (a, b, c) ds = (b’, c’) 

2       where 

3            b’ = b + tanv * a 

4            c’ = c - tanv * a 

5          ind  = toInt ds  
6          tanv = (lut 10) !! ind 

Listing 26. Haskell definition of update 

Figure 34 is a graphical representation of the lut function defined in Listing 27. First, the css 

function creates a list of lists by recursively applying list comprehension and concatenation (Line 

3-4). According to the results of css 1 and css 2 shown in Listing 28, it can be concluded 

that css n creates a list of    lists where each sub-list contains   values being either 1 or -1. 

Then each sub-list produced by css is applied with the tangent function (Line 6) to calculate 

the corresponding tangent value, where bs is a list of rotation angles in radians (Line 7-8) and 

the $ symbol is used to replace the brackets. Note that the implementation of lut will remain 

pure Haskell in the CλaSH implementation because it creates a list of constant numbers that are 

known at compile time. 

1   lut n = map tangent (css n) 

2      

3   css 0 = [[]] 

4   css n = concat [[-1:cs, 1:cs] | cs <- css (n-1)] 

5            

6   tangent cs = tan $ sum $ zipWith (*) bs cs                      
7   as = [45.0,26.6,14.0,7.1,3.6,1.8,0.9,0.4,0.2,0.1] 

8   bs = [pi/180*x | x <- as] 

Listing 27. Haskell definition of lut 
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Figure 34. lut 

1   css 1 = concat [[-1:cs,1:cs] | cs <- [[]]] 

2         = concat [[[-1],[1]]]  

3         = [[-1],[1]] 

4    

5   css 2 = concat [[-1:cs,1:cs] | cs <- css 1]            

6         = concat [[[-1,-1],[1,-1]],[[-1,1],[1,1]]] 
7         = [[-1,-1],[1,-1],[-1,1],[1,1]] 

Listing 28. Examples of css 

Listing 29 presents the definition of the cordic_b function which implements the CORDIC_B 

algorithm. As shown in Figure 35, cordic_b iteratively applies the cb function with an 

element of the list ds which is produced by cordic_a to update the off-diagonal elements 

x and y. The cb function, as defined in Listing 30, describes one iteration of the CORDIC_B 

algorithm according to Eq. (18).  

1  cordic_b (x, y) ds = (x', y') 

2     where  

3         ids = [0..9] 

4         (x', y') = foldl cb (x, y) (zip ids ds) 
Listing 29. Definition of cordic_b 

 

Figure 35. Structure of cordic_b 

1    cb (xi, yi) (i, di) = (xi’, yi’) 
2     where  

3        xi’ = xi - di*(2^(-i))*yi 

4        yi’ = yi – di*(2^(-i))*xi  
Listing 30. Definition of cb  
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5.2.2 Testing 

Since evd is a stateful function, it can be simulated by the simulate function as shown in 

Listing 31 where s_init indicates an initial state and rs is the upper triangle shown in Eq. (  ). 

Figure 36 presents the simulation results of the first 10 clock cycles. As shown in Figure 37, the 

simulation result of each clock cycle consists of three components: a list of eigenvalues (    

denotes a list), a list of eigenvectors (each eigenvector is a sub-list) and an additional output 

end. When end becomes 1, meaning all the off-diagonal elements are (nearly) zeros, the EVD 

computation is finished. In this case, it takes 8 clock cycles to finish the computation. Note 

that the eigenvectors are initialized with an identity matrix multiplied by 1000, therefore the 

results of the eigenvectors are also scaled by 1000. 

1  inps = replicate 10 rs  

2  test = simulate evd s_init inps 
Listing 31. Simulation of evd 

   

[
 
 
 
 
              

           

      

   ]
 
 
 
 

 (  ) 

 

Figure 36. Simulation results of evd 

 

Figure 37. Components of simulation result 

The simulation results can be verified in MATLAB with the built-in function eig, as shown in 

Listing 32. evals, as shown in Eq. (39), is a diagonal matrix of which the diagonal elements 

are the eigenvalues of the matrix R and evecs, as shown in Eq. (40), is a matrix of which each 

column is a corresponding eigenvector. It can be observed that the simulation result of the 

Haskell code is very close to the result in MATLAB and the average error is about      which is 

mainly caused by the fixed-point operations such as bitwise right shifts. 



 

39 
 

  [evecs, evals] = eig (R) 

Listing 32. EVD  in MATLAB 

        

[
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  (39) 
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           ]
 
 
 
 

  (40) 

The VHDL code generated from the CλaSH implementation is simulated in ModelSim with the 

same input. As shown in Figure 38, inp_i1 is an input signal which contains the upper triangle 

shown in Eq. (  ). The output signal topLet_0 consists of 3 components: product9_sel0 

contains the eigenvalues, the corresponding eigenvectors are presented in product9_sel1 

and product9_sel2 becomes high when the EVD computation is finished. As clk1000 is a 

1 MHz clock signal, it takes 8 clock cycles to finish the computation. The simulation result of the 

VHDL code is also very close to the result in MATLAB. 

 

Figure 38. Simulation result of EVD 

5.3 Spectral Peak Search 

5.3.1 CλaSH Implementation 

The spectral peak search module is modeled as a top-level function called sps which takes the 

eigenvalues evals and eigenvectors evecs produced by the evd function and outputs the 

index of the DOA (Direction of Arrival), as shown in Listing 33. First, the eigsort function finds 

the index of the maximum eigenvalue and the corresponding eigenvector evec is taken from 

evecs with this index (Line 3). Then the norm function calculates the norm based on evec 
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and sv which is a steering vector with the index s3 stored in the look-up table svlut. The 

comp1 function finds the peak from 3 consecutive norm values (one is the current norm value 

and the other two are the previous values stored in the state s1) and comp2 compares the 

current peak with the previous one stored in s2. The second element of s2’, i.e., the index of 

the maximum peak, is the output of sps (Line 10).  

1 sps (s1,s2,s3) (evals, evecs) = ((s1’,s2’,s3’), ind) 

2    where 

3       evec = evecs !! (eigsort evals) 

4         sv = svlut !! s3    

5      normv = norm evec sv 

6        tmp = comp1 s1 (normv, s3) 

7        s1’ = init & (normv, s3) : 1 

8        s2’ = comp2 s2 tmp 

9        s3’ = s3 + 1 

10        ind = snd s2’ 
Listing 33. Definition of sps 

The eigsort function defined in Listing 34 sorts the eigenvalues in the list evals and outputs 

the index of the maximum one. eigsort has a foldl structure as shown in Figure 39 where 

the sort function iteratively inserts each element of ys which contains an eigenvalue with its 

index (Line 4) to a sorted list which is initialized with an empty list [] and outputs the new 

sorted list. The sort function itself also has a foldl structure as shown in Figure 40, where 

the cswap function (Line 5-6, Listing 35) iteratively compares y with each element of vsi and 

inserts the larger one into a list which is initialized with an empty list. 

1  eigsort evals = ind 

2      where  

3         inds = [0..3] 

4           ys = zip evals inds 

5          vs’ = foldl sort [] ys 

6          ind = snd $ last vs’ 

Listing 34. Definition of eigsort  

 

Figure 39. Structure of eigsort 

1  sort vsi y = vsi’ 

2      where  

3         (y’,vsi’) = foldl cswap (y,[]) vsi 

4    

5  cswap (yi, ts) vi = if fst yi > fst vi then (vi, yi : ts) 

6                      else (yi, vi : ts)     

Listing 35. Definition of sort        
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Figure 40. Structure of sort 

The svlut function shown in Listing 36 creates a list of steering vectors according to Eq. (41). 

The ++ operator (Line 1) is used to append two lists. 

1 svlut = [[cos $ (a*) $ sin b | a <- as] ++  

2          [sin $ (a*) $ sin b | a <- as] | b <- bs] 

3  

4 as = [(2*n-1]*pi/2 | n <- [1,2]]  

5 bs = [n/512*pi | n <- [0..255]] 

Listing 36. SvLUT implementation 

   (  )      (
 

 
     )     (

  

 
     )     (

 

 
     )     (

  

 
     )   (41) 

Listing 37 shows the definition of the function norm which calculates the norm, i.e. the square 

of the dot product of two lists. Figure 41 is a graphical representation of the dot product 

function dotp (Line 3-5) which pairwise multiplies the elements of two lists and outputs the 

sum of the multiplication results. 

1   norm xs ys = (dotp xs ys)^2    

2  

3   dotp xs ys = foldl (+) 0 ws 

4      where 

5         ws = zipWith (*) xs ys      

Listing 37. Haskell definition of norm 

 

Figure 41. Dot product 

The comp1 function (Line1-2, Listing 38) finds the peak by comparing three consecutive input 

values x1, x2 and x3: if x2 is larger than both x1 and x3, the output will be x2 with its index, 

otherwise the output is (0, 0). Then comp2 (Line 5-6, Listing 38) compares the current peak p2 

with the previous peak p1 and outputs the index of the larger one.  

1 comp1 (x1, x2) (x3, ind3) = if x2 > x3 && x2 > x1                                                  

2                             then (x2, ind2) 
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3                             else (0,0) 

4  

5 comp2 (p1,ind1) (p2,ind2) = if p2 > p1 then ind2 

6                             else ind1 

Listing 38. comp1 and comp2 in Haskell 

5.3.2 Testing 

To simulate the sps function, a signal model is created in MATLAB as shown in Listing 39 where 

the source signal has a DOA of 
 

 
 (Line 4) and the final results are the eigenvalues and 

eigenvectors of the covariance matrix (Line 14) based on this signal model. Since sps is also a 

stateful function, it can be simulated by the simulate function as shown in Listing 40, where 

evals and evecs are the results of the MATLAB program and they are applied to sps 256 

times since there are 256 possible DOAs according to Sec. 4.4. Figure 42 presents the simulation 

result which is 89. The corresponding angle value can be calculated as  
  

   
    

 

 
 according to 

Eq. (37).  

1 M = 4;                             % number of antennas  

2 N = 256;                           % number of snapshots 

3 d = 0.5; 

4 theta = pi/6;                      % DOA  

5 f = 0.2;                                   

6 snr = 10;                           % SNR = 10 dB     

7 s = cos(2*pi*f*n);                  % source signal 

8 alpha = pi*d*sin(theta); 

9 % steering vector 

10 A = [cos(alpha),cos(3*alpha),sin(alpha),sin(3*alpha)]';      

11 x0 = A*s; 

12 x = sqrt(10^(snr/10))*x0+randn(M,N)    % signal data matrix 
13 R = x*x'/N;                            % covariance matrix        
14 [V,D] = eig (R)                        % EVD  

Listing 39. Signal model in MATLAB 

1  inps = replicate 256 (evals, evecs) 

2  test = last $ simulate sps s_init inps 

Listing 40. Simulation of sps 

 

Figure 42. Simulation result of sps 

The VHDL code generated from the CλaSH implementation is simulated in ModelSim with the 

same eigenvalues and eigenvectors produced by the MATLAB program. As shown in Figure 43, 

the input signal inp_i1 has 2 components: product3_sel0 and product3_sel1 which 

contains the eigenvalues and the corresponding eigenvectors respectively. topLet_o presents 

the final result which is also 89.  



 

43 
 

 

Figure 43. Simulation result of SPS in ModelSim 
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6. Evaluation 

6.1 Hardware Description 

In this section, we will discuss about the advantages and disadvantages of using CλaSH for 

hardware descriptions based on the implementation of the MUSIC algorithm presented in 

Chapter 5.   

It can be found in Chapter 5 that the built-in higher-order functions such as map, foldl and 

zipWith play an important role in the implementation of the MUSIC algorithm. Many 

commonly used hardware structures can be described by these higher-order functions in a high 

abstraction level, which significantly reduces the amount of code. For example, if the CMC 

(Covariance Matrix Calculation) module is implemented in VHDL, each MAC (Multiply-

accumulate) component has to be instantiated, which requires a large amount of code. In 

Haskell it can be implemented by the zipWith function in one line as shown in Listing 17. 

Although one can use a for-generate expression in VHDL to finish the instantiations in a for-

loop, it is still not as concise as the higher-order function. Sometimes the same algorithm can be 

described by different built-in higher-order functions: as we discussed about the 

implementation of the CORDIC_A algorithm in Sec. 5.2.1, it can be implemented by either the 

mapAccumL function or the foldl function with a slight modification to the ca1 function. 

Besides the built-in higher-order functions, a user-defined function can also take other functions 

as parameters, which is a very powerful feature of CλaSH. Figure 44 is a graphical representation 

of the dotp function which calculates the dot product of two vectors, as defined in Listing 41. If 

the * operator and the + operator are represented by f and g respectively, as shown in Figure 

45, this architecture can be described by the arch function defined in Listing 42 where f and g 

are taken as two parameters. Then the dotp function becomes an instance of the arch 

function, as shown in Listing 43. As f and g can be any function that takes two input values and 

outputs one value, the arch function can be used to describe all the hardware circuits with this 

architecture, which can reduce the amount of code and save the development time.  

1 dotp xs ys = z 

2   where 

3      ws = zipWith (*) xs ys 

4       z = foldl (+) 0 ws 

Listing 41. Definition of dotp 

 

Figure 44. Architecture of dotp 
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Figure 45. dotp-like architecture 

1 arch f g a xs ys = z 

2   where 

3      ws = zipWith f xs ys 

4       z = foldl g a ws 

Listing 42. Definition of arch 

  dotp xs ys = arch (*) (+) 0 xs ys 

Listing 43. Definition of dotp with arch 

In the implementation of the EVD module, a look-up table (LUT) of tangent values is created by 

list comprehension. Listing 44 shows a simple example which creates a LUT of tangent values of 

256 angles in the range of        . The VHDL implementation of such a LUT usually takes two 

steps: first, calculate the tangent values in MATLAB (or other tools); secondly, assign these 

values to an array in VHDL. An alternative way is to use the TAN function provided by the 

MATH_REAL package. Unlike the tan function in Haskell, the TAN function in VHDL does not 

accept a parameterized input, which means each angle value has to be calculated first. Both the 

two ways in VHDL are not as easy as the Haskell implementation and are more time-consuming.  

 [tan pi/512*x | x <- [0..255] 

Listing 44. LUT of tangent values 

The CλaSH complier which is based on the GHC (Glasgow Haskell Compiler) provides an 

interactive user interface where one can test the Haskell implementation with the simulate 

function. In contrast, to test a VHDL implementation, one has to make a test bench which is 

then simulated in a simulation tool such as ModelSim. 

Although CλaSH has many advantages, it still needs to be improved. Currently the CλaSH 

complier updates the state of a sequential circuit on every rising edge of the clock signal, while 

in VHDL one can also choose to update the state on the falling edges. Therefore, VHDL is better 

at describing the timing behavior. As some Haskell syntactic constructs such as list 

comprehensions are not supported by CλaSH (yet), in many cases, the conversion from a Haskell 

implementation to a CλaSH implementation is not straightforward. According to Sec. 5.1.1, a list 

comprehension is used in the Haskell implementation of the cmc function, as shown in Listing 

45. It is difficult for the compiler to predict the hardware cost of this list comprehension as there 

is a filter i1 <= i2, which means it cannot be directly used in CλaSH. The solution to this 

problem can be found in Appendix A. On the other hand, list comprehensions without a filter 
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should be supported by CλaSH as they have predictable hardware cost at compile time. And the 

CλaSH compiler is not very efficient in generating VHDL code. 

 pairs  = [(ys !! i1, ys !! i2) |  

                 i1 <- [0..3], i2 <- [0..3], i1 <= i2] 
Listing 45. List comprehension with a filter 

According to the above discussion, the comparison between the CλaSH implementation and the 

VHDL implementation is summarized in Table 2 where ++ means “very good”, + means “good” 

and - means “not good".  

 Conciseness 
Development 

Time 
Description of 

Timing behavior 

CλaSH ++ + - 

VHDL - - ++ 

Table 2. CλaSH vs VHDL 

6.2 Synthesis  

To evaluate the synthesis results of the CλaSH implementation, a VHDL implementation has 

been provided by the author of [1] for comparison. However, it is likely that the provided VHDL 

code does not exactly implement the algorithm according to the hardware designs described in 

[1] as its simulation result turns out to be very different from the result presented in [1], which 

makes it not comparable with our CλaSH implementation. The solution is to focus on a smaller 

design, for example, CORDIC_A, instead of the complete MUSIC algorithm. The CλaSH 

implementation of the CORDIC_A algorithm shown in Sec. 5.2.1 is a non-pipelined design which 

finishes the 10 iterations in a long combinational path. However, a pipelined design is chosen for 

the evaluation of the synthesis result because the synthesis tool which is Quartus II cannot 

calculate the maximum clock frequency for a pure combinational circuit. As shown in Figure 46, 

the pipelined CORDIC_A has 10 stages and the result of each stage is stored in a register. Both 

the CλaSH and VHDL implementations of the pipelined CORDIC_A can be found in Appendix D. 

As presented in Table 3, the synthesis results of these two implementations are approximately 

equivalent. The CλaSH implementation uses a few more logic resources and registers than the 

VHDL implementation but achieves a little higher maximum clock frequency.  

 

Figure 46. Pipelined CORDIC_A 
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Fmax 
(MHz) 

Logic utilization 
(in ALMs) 

Registers Pins 

VHDL 170.68 331 (<1%) 402 76 

CλaSH 174.34 342 (<1%) 412 76 

Table 3. Synthesis result of CORDIC_A 
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7. Conclusions  
In this project, the MUSIC algorithm is successfully implemented in CλaSH. As the MUSIC 

algorithm has many non-trivial aspects in hardware implementation, it proves the usability of 

CλaSH in hardware descriptions. With a higher abstraction level, the CλaSH implementation 

shows a better code conciseness than the VHDL implementation. The higher-order functions are 

found very useful in hardware descriptions as they can describe most of the commonly used 

hardware architectures in a very natural and concise way. Since a higher-order function takes 

other functions as parameters, the function definition can be reused for many different 

hardware designs as long as they have the same architecture, which significantly reduces the 

amount of code and saves the development time. The fact that the CλaSH compiler is also an 

interactive user interface where the designer can easily simulate the functions makes it more 

convenient to test a CλaSH implementation than a VHDL implementation which requires a test 

bench and a simulation tool. Although CλaSH has a limitation in describing the timing behaviors 

as it updates all states on every rising edge of the clock signal, in most cases this limitation is not   

a fatal defect. In the future, list comprehensions without a filter should be supported by CλaSH 

and the efficiency in generating the VHDL code needs to be improved. In general, CλaSH is a very 

suitable language for hardware descriptions. 
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Appendix A:  CλaSH code of cmc 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module CMC (topEntity) where 

3  

4 import CLaSH.Prelude 

5  

6 type CMCI = Vec 4 (Signed 16) 

7 type CMCS = Vec 10 (Signed 16) 

8 type CMCO = CMCS 

9  

10 cmcInit :: CMCS 

11 cmcInit = vcopyI 0 

12  

13 topEntity = cmc 

14  

15 cmc ys = rs 

16  where 

17   rs = (cmcCore <^> cmcInit) ys 

18  

19 cmcCore :: CMCS -> CMCI -> (CMCS, CMCO)  

20 cmcCore ss ys = (ss', rs) 

21  where 

22       inds = vreverse 

$(v([(0,0),(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,2),(2,3),(3,

3)] :: [(Int, Int)])) 

23          pairs = vmap (pair ys) inds 

24      (ss', rs) = vunzip $ vzipWith mac ss pairs     

25         

26 mac s (x,y) =  (s', out) 

27    where 

28     s' = x*y + s 

29     out = s 

30  

31 pair ys (i1,i2) = (ys ! i1, ys ! i2)       

Appendix B:  CλaSH code of evd 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module EVD (topEntity) where 

3  

4 import CLaSH.Prelude 

5 import CordicA 

6 import CordicB 

7 import Update 

8  

9 type Ev = Vec 4 (Signed 16) 

10 type Col = (Signed 16, Signed 16, Signed 16, Signed 16) 

11 type EvdS = (Bit,EvdI,Matrix,Bit) 

12 type EvdI = ((Signed 16,Signed 16,Signed 16,Signed 16), 



 

51 
 

13                        (Signed 16,Signed 16,Signed 16), 

14                                  (Signed 16,Signed 16), 

15                                             Signed 16) 

16 type EvdO = (Ev,Evecs,Bit) 

17 type Matrix = (Col,Col,Col,Col) 

18 type Evecs = Vec 4 Ev 

19  

20 topEntity = evd 

21  

22 uptri_init :: EvdI 

23 uptri_init = ((0,0,0,0),(0,0,0),(0,0),0) 

24  

25 evsinit :: Matrix 

26 evsinit = (1000,0,0,0),(0,1000,0,0),(0,0,1000,0),(0,0,0,1000)) 

27  

28 evd inp = outp 

29     where 

30         outp = (evdCore <^> (L,uptri_init,evsinit,L)) inp 

31  

32 evdCore :: EvdS -> EvdI -> (EvdS,EvdO) 

33 evdCore (rst,uptri,evs,end) inp = 

((rst',uptri',evs',end'),(evals,evecs,end')) 

34     where 

35         rst' = H 

36         ((e11,e12,e13,e14), 

37              (e22,e23,e24), 

38                  (e33,e34), 

39                       e44) = mux rst inp uptri 

40  

41         r1 = 2*e12 

42         u1 = e22 - e11 

43         r2 = 2*e34 

44         u2 = e44 - e33 

45  

46         ds1 = cordic_a r1 u1 

47         ds2 = cordic_a r2 u2 

48         (e11',e22') = update (e12, e22, e11) ds1 

49         (e33',e44') = update (e34, e44, e33) ds2 

50         (e13_tmp,e23_tmp)  = cordic_b (e13,e23) ds1  

51         (e14_tmp,e24_tmp)  = cordic_b (e14,e24) ds1 

52         (e13',e14')        = cordic_b (e13_tmp,e14_tmp) ds2 

53         (e23',e24')        = cordic_b (e23_tmp,e24_tmp) ds2 

54  

55         (e12', e34') = (0, 0) 

56  

57         uptri_tmp = ((e11',e13',e14',e12'), 

58                           (e33',e34',e23'), 

59                                (e44',e24'), 

60                                      e22') 

61  

62         uptri' = mux end' uptri_tmp uptri 
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63          

64         evals = e11 :> e22 :> e33 :> e44 :> Nil 

65  

66         ( (v11,v21,v31,v41), 

67           (v12,v22,v32,v42), 

68           (v13,v23,v33,v43), 

69           (v14,v24,v34,v44) ) = evs 

70  

71         evs' = mux end' ( (v11',v21',v31',v41'), 

72                           (v13',v23',v33',v43'), 

73                           (v14',v24',v34',v44'), 

74                           (v12',v22',v32',v42') ) evs 

75  

76         (v11',v12') = cordic_b (v11,v12) ds1 

77         (v21',v22') = cordic_b (v21,v22) ds1 

78         (v31',v32') = cordic_b (v31,v32) ds1 

79         (v41',v42') = cordic_b (v41,v42) ds1 

80  

81         (v13',v14') = cordic_b (v13,v14) ds2  

82         (v23',v24') = cordic_b (v23,v24) ds2 

83         (v33',v34') = cordic_b (v33,v34) ds2  

84         (v43',v44') = cordic_b (v43,v44) ds2  

85  

86         evec1 = v11 :> v21 :> v31 :> v41 :> Nil 

87         evec2 = v12 :> v22 :> v32 :> v42 :> Nil 

88         evec3 = v13 :> v23 :> v33 :> v43 :> Nil 

89         evec4 = v14 :> v24 :> v34 :> v44 :> Nil 

90  

91         evecs = evec1 :> evec2 :> evec3 :> evec4 :> Nil 

92  

93         end' = if (e12,e13,e14,e23,e24,e34)==(0,0,0,0,0,0) 

then H 

94                else L 

95                        

96 mux s a b = if s == L then a             

97             else b  

98  

99  stimuli = (replicate 10 ((1261,-401,859,247),(1403,-

715,189),(-160,87),541)) 

100 test = simulate (pack.evd.unpack)stimuli :: [EvdO]       

 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module CordicA (cordic_a) where 

3  

4 import CLaSH.Prelude  

5 import Resize 

6  

7 type CordicI = (Signed 16, Signed 16)                 

8 type CordicO = Vec 10 Bit  
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9  

10 dsinit :: Vec 10 Bit 

11 dsinit = vcopyI H 

12  

13 cordic_a :: Signed 16 -> Signed 16 -> CordicO 

14 cordic_a r u = ds 

15  where 

16   ids = $(v ([1..10]::[Int])) 

17   ((r',u'),ds) = vmapAccumL ca (r,u) ids 

18   --(r',u',ds) = vfoldl ca (r,u,dsinit) ids 

19    

20 -- core function 

21 ca (ri,ui) i = ((ri',ui'),di) 

22  where 

23   p1 = myshiftR ri ((i-1)*2) 

24   q1 = ri - p1  

25   q2 = myshiftR ui i 

26   q3 = myshiftR ri i 

27   p2 = myshiftR ui ((i-1)*2) 

28   q4 = ui - p2 

29   di = getSign ri ui 

30   ri' = addSub di q1 (shiftL q2 2) 

31   ui' = addSub (complement di) q4 (shiftL q3 2) 

32  

33 -- rotate according to the direction : H/L  

34 addSub L a b = a + b  

35 addSub H a b = a - b 

36  

37 -- determine rotation direction 

38 getSign x y = if vhead (toBV x) == vhead (toBV y) then H 

39             else L 

 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module Update (update) where 

3  

4 import CLaSH.Prelude 

5 import TanLUT 

6 import Resize 

7  

8 type UpdateI1 = (Signed 16, Signed 16, Signed 16) 

9 type UpdateI2 = Vec 10 Bit 

10 type UpdateO  = (Signed 16, Signed 16) 

11  

12 update :: UpdateI1 -> UpdateI2 -> UpdateO 

13 update (a, b, c) ds = (b', c') 

14     where 

15      tanv = getTan (fromBV (vreverse ds))  

16      tmp = mytrunc $ scale $ (myext a)*(myext tanv) 

17         b' = b + tmp 
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18         c' = c - tmp 

19  

20 getTan :: Unsigned 10 -> Signed 16 

21 getTan n = vreverse $(v (lut 10)) ! n 

22  

23 scale x = shiftR x 10 

 

1 module TanLUT (lut) where 

2  

3 css 0 = [[]] 

4 css n = concat [[-1:cs, 1:cs] | cs <- css (n-1)] 

5  

6 tangent cs = truncate $ 1024 * (tan $ sum $ zipWith (*) bs cs) 

7  

8 lut :: Int -> [Int] 

9 lut n = map tangent (css n) 

10  

11 as = [45.0, 26.6, 14.0, 7.1, 3.6, 1.8, 0.9, 0.4, 0.2, 0.1] 

12 bs = [pi/180*x | x<-as] 

 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module CordicB (cordic_b) where 

3  

4 import CLaSH.Prelude 

5  

6 type CordicI1 = (Signed 16, Signed 16) 

7 type CordicI2 = Vec 10 Bit 

8 type CordicO = (Signed 16, Signed 16) 

9  

10 cordic_b :: CordicI1 -> CordicI2 -> CordicO 

11 cordic_b (x, y) ds = (x', y') 

12  where  

13         ids = $(v ([1..10]::[Int])) 

14         (xtmp,ytmp) = vfoldl cb (x, y) (vzip ids ds) 

15         x' = scale xtmp 

16         y' = scale ytmp 

17           

18 cb (xi,yi) (ind,di) = (xi',yi')  

19  where 

20   q5 = shiftR yi (ind-1) 

21   q6 = shiftR xi (ind-1) 

22   xi' = addSub di xi q5 

23   yi' = addSub (complement di) yi q6  

24  

25 -- scale by 1/K = 0.6073 

26 scale x = y 

27  where 

28   s1 = shiftR x 1 
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29   s2 = shiftR x 3 

30   s3 = shiftR x 6 

31   s4 = shiftR x 9 

32   s5 = shiftR x 13 

33   m1 = s1 + s2 

34   m2 = s3 + s4 + s5 

35   y  = m1 - m2   

36  

37 -- rotate according to the direction : H/L  

38 addSub L a b = a + b  

39 addSub H a b = a - b 

 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module Resize (myshiftR,myext,mytrunc) where 

3  

4 import CLaSH.Prelude 

5  

6 myshiftR :: Signed 16 -> Int -> Signed 16 

7 myshiftR inp n | n == 0     = inp 

8                | n > 15     = 0 

9                | (toBV inp)!(n-1) == H  = (shiftR inp n)+1 

10                | otherwise         = (shiftR inp n) 

11  

12  

13 myext :: Signed 16 -> Signed 32 

14 myext x = resize x 

15  

16 mytrunc:: Signed 32 -> Signed 16 

17 mytrunc x = resize x 

 

Appendix C:  CλaSH code of sps 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module SPS (topEntity) where 

3  

4 import CLaSH.Prelude 

5 import SvLUT 

6 import Norm 

7 import EigSort 

8  

9 topEntity = sps 

10  

11 type Row = Vec 4 (Signed 16) 

12 type Matrix = Vec 4 Row 

13 type SPSS = (Comp1S,Comp2S,Unsigned 8) 

14 type SPSI = (Row,Matrix) 

15 type SPSO = Unsigned 8 
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16 type Comp1S = Vec 2 (Signed 16, Unsigned 8) 

17 type Comp2S = (Signed 16, Unsigned 8) 

18  

19 comp1Init :: Comp1S 

20 comp1Init = vcopyI (0, 0) 

21 comp2Init :: Comp2S 

22 comp2Init = (0, 0) 

23  

24 sps inp = outp 

25  where 

26          outp = (spsCore <^> (comp1Init,comp2Init,0)) inp 

27  

28 spsCore :: SPSS -> SPSI -> (SPSS,SPSO) 

29 spsCore (s1,s2,s3) (evals,evecs) = ((s1',s2',s3'), ind) 

30  where 

31   evec = (vreverse evecs) ! (eigsort evals) 

32   sv = vreverse $(mv svlut) ! s3 

33   normv = norm evec sv  

34   tmp = comp1 s1 (normv,s3) 

35   s1' = (normv,s3) +>> s1 

36   s2' = comp2 s2 tmp 

37   s3' = s3+1 

38   ind = snd s2' 

39    

40 -- comp1 

41 comp1 s (x3,ind3) = outp 

42  where  

43   (x2, ind2) = vhead s 

44   (x1, ind1) = vlast s 

45   outp = compPattern (x2,ind2) (x2>x3) (x2>x1) 

46  

47 compPattern c True True = c 

48 compPattern c _ _ = (0,0)   

49  

50 -- comp2 

51 comp2 s inp = if fst inp > fst s then inp 

52               else s    

53  

54 -- pi/6 index:84 

55 evals = $(v ([11,1,1,1]::[Int])) 

56 ev1 = $(v ([49,-50,52,49]::[Int])) 

57 ev2 = $(v ([47,80,37,-5]::[Int])) 

58 ev3 = $(v ([56,-32,-12,-76]::[Int])) 

59 ev4 = $(v ([-48,-10,76,-43]::[Int]))  

60  

61 -- pi/3 index:171 

62 --evals = $(v ([11,1,1,1]::[Int])) 

63 --ev1 = $(v ([-16,40,-70,57]::[Int])) 

64 --ev2 = $(v ([28,69,59,31]::[Int])) 

65 --ev3 = $(v ([-10,-57,32,75]::[Int])) 

66 --ev4 = $(v ([94,-20,-26,8]::[Int])) 
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67  

68 -- pi/4 index:127 

69 --evals = $(v ([11,1,1,1]::[Int])) 

70 --ev1 = $(v ([-32,70,-63,11]::[Int])) 

71 --ev2 = $(v ([-76,18,61,13]::[Int])) 

72 --ev3 = $(v ([55,54,42,48]::[Int])) 

73 --ev4 = $(v ([-14,-42,-24,86]::[Int])) 

74  

75 stimuli = (evals,ev1:>ev2:>ev3:>ev4:>Nil) 

76  

77 test = simulate (sps.unpack) (replicate 256 stimuli) ::[SPSO] 

 

1 {-# LANGUAGE GADTs, ScopedTypeVariables, TemplateHaskell, 

DataKinds #-} 

2 module EigSort (eigsort) where 

3  

4 import CLaSH.Prelude 

5  

6 type SortI = Vec 4 (Signed 16) 

7 type Vinit = Vec 4 (Signed 16, Unsigned 8) 

8 type SortO = Unsigned 8 

9  

10 vInit :: Vinit 

11 vInit = vcopyI (0,0) 

12  

13 eigsort :: SortI -> SortO 

14 eigsort evals = ind 

15  where 

16   inds = $(v ([0..3]::[Int])) 

17   ys = vzip evals inds 

18   vs' = vfoldl sort vInit ys 

19   ind = snd $ vhead vs' 

20    

21 sort vsi y = vsi' 

22  where 

23   (y', vsi') = vfoldl cswap (y,vInit) vsi 

24  

25 cswap (a,xs) b = if fst a > fst b then (b, xs <<+ a) 

26                          else (a, xs <<+ b)    

27  

28 stimuli = $(v ([6,19,10,4]::[Int])) 

29 test = eigsort stimuli                          

 

1 {-# LANGUAGE TemplateHaskell #-} 

2 module SvLUT (svlut,mv) where 

3  

4 import CLaSH.Prelude 

5  

6 as = [(2*n-1)*pi/2 | n <- [1,2]]  
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7 bs = [n/512*pi | n <- [0..255]]    

8  

9 svlut = [[round $ (128*) $ cos $ (a*) $ sin b | a <- 

as]++[round $ (128*) $ sin $ (a*) $ sin b | a <- as] | b <- 

bs]   

10  

11 mv []     = [| Nil |] 

12 mv (r:rs) = [| $(v r) :> $(mv rs) |] 

 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module Norm (norm) where 

3  

4 import CLaSH.Prelude 

5  

6 type NormI = Vec 4 (Signed 16) 

7 type NormO = Signed 16 

8  

9 norm :: NormI -> NormI -> NormO 

10 norm xs ys = outp 

11  where 

12   dp = shiftR (dotp xs ys) 7 

13   outp = dp*dp 

14    

15 -- dot product 

16 dotp xs ys = vfoldl (+) 0 ws 

17  where 

18   ws = vzipWith (*) xs ys 

 

 

 

Appendix D:  CλaSH & VHDL code of pipelined CORDIC_A 

CλaSH code: 

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds 

#-} 

2 module CordicA (topEntity) where 

3  

4 import CLaSH.Prelude  

5  

6 type CordicS = Vec 10 (Signed 16, Signed 16, Vec 10 Bit)   

7 type CordicI = (Signed 16, Signed 16)                     

8 type CordicO = (Signed 16, Signed 16, Vec 10 Bit)    

9  

10 topEntity = cordic_a     

11  

12 cordic_a inp = outp 



 

59 
 

13  where 

14   outp = (cordicA_core <^> sInit) inp 

15  

16 -- initial state 

17 dsinit :: Vec 10 Bit 

18 dsinit = vcopyI H 

19 sInit :: CordicS  

20 sInit = vcopyI (0,0,dsinit) 

21  

22 -- core function 

23 cordicA_core :: CordicS -> CordicI -> (CordicS, CordicO) 

24 cordicA_core s (ri,ui) = (s',outp) 

25  where 

26   ids = $(v ([1..10]::[Int])) 

27   pipeIns = vzip ids ((ri,ui,dsinit) +>> s) 

28   s' = vmap ca pipeIns 

29   outp = vlast s 

30    

31  -- pipeline component 

32 ca (pipeId,(ri,ui,dsi)) = (ro,uo,dso) 

33  where 

34   p1 = shiftR ri ((pipeId-1)*2) 

35   q1 = ri - p1  

36   q2 = shiftR ui pipeId 

37   q3 = shiftR ri pipeId 

38   p2 = shiftR ui ((pipeId-1)*2) 

39   q4 = ui - p2 

40   d = getSign ri ui 

41   dso = d +>> dsi 

42   ro = addSub d q1 (shiftL q2 2) 

43   uo = addSub (complement d) q4 (shiftL q3 2) 

44    

45 -- rotate according to the direction : H/L  

46 addSub L a b = a + b  

47 addSub H a b = a - b 

48  

49 getSign x y = if vhead (toBV x) == vhead (toBV y) then H 

50             else L 

 

VHDL code: 

1 LIBRARY IEEE; 

2 USE IEEE.std_logic_1164.ALL; 

3 USE ieee.numeric_std.ALL; 

4  

5 ENTITY CordicA IS 

6  PORT(rst : IN STD_LOGIC; 

7          clk : IN STD_LOGIC; 

8    ri  : IN SIGNED (15 DOWNTO 0); 

9    ui  : IN SIGNED (15 DOWNTO 0); 

10    ro  : OUT SIGNED (15 DOWNTO 0); 
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11    uo  : OUT SIGNED (15 DOWNTO 0); 

12    ds  : OUT STD_LOGIC_VECTOR (9 DOWNTO 0)); 

13 END CordicA; 

14  

15 ARCHITECTURE struct OF CordicA IS 

16  

17 TYPE inds IS ARRAY (0 TO 9) OF INTEGER RANGE 1 TO 10; 

18 TYPE ris IS ARRAY (0 TO 10) OF SIGNED (15 DOWNTO 0); 

19 TYPE uis IS ARRAY (0 TO 10) OF SIGNED (15 DOWNTO 0); 

20  

21 CONSTANT inds1 : inds:= (1,2,3,4,5,6,7,8,9,10); 

22 SIGNAL ris1  : ris; 

23 SIGNAL uis1  : uis; 

24  

25 COMPONENT ca  

26  PORT ( rst : IN STD_LOGIC; 

27      clk : IN STD_LOGIC; 

28      ind : IN INTEGER RANGE 1 TO 10; 

29      ri  : IN SIGNED (15 DOWNTO 0); 

30      ui  : IN SIGNED (15 DOWNTO 0); 

31      ro  : OUT SIGNED (15 DOWNTO 0); 

32      uo  : OUT SIGNED (15 DOWNTO 0); 

33      d   : OUT STD_LOGIC 

34   ); 

35 END COMPONENT; 

36  

37 BEGIN 

38  

39  cordics : FOR i IN 0 TO 9 GENERATE 

40           cordica_x : ca  

41           PORT MAP (rst, 

42                    clk, 

43                    inds1(i), 

44                    ris1(i), 

45                    uis1(i), 

46                    ris1(i+1), 

47                    uis1(i+1), 

48                    ds(i)  

49                    ); 

50  END GENERATE; 

51  

52  

53  

54  process (rst,clk) 

55  BEGIN  

56       if (rst = '1') then 

57          ro <= (others => '0'); 

58          uo <= (others => '0'); 

59          ris1(0) <= (others => '0'); 

60          uis1(0) <= (others => '0'); 

61       elsif (rising_edge(clk)) then  



 

61 
 

62           ris1(0) <= ri; 

63           uis1(0) <= ui;   

64     ro <= ris1(10); 

65     uo <= uis1(10); 

66       end if; 

67  end process;      

68     

69  END struct; 

 

1 LIBRARY IEEE; 

2 USE IEEE.std_logic_1164.ALL; 

3 USE IEEE.numeric_std.ALL; 

4 ENTITY ca IS 

5  PORT(  rst : IN STD_LOGIC; 

6      clk : IN STD_LOGIC; 

7      ind : IN INTEGER RANGE 1 TO 10; 

8      ri  : IN SIGNED (15 DOWNTO 0); 

9      ui  : IN SIGNED (15 DOWNTO 0); 

10      ro  : OUT SIGNED (15 DOWNTO 0); 

11      uo  : OUT SIGNED (15 DOWNTO 0); 

12      d   : OUT STD_LOGIC 

13   );    

14 END ca; 

15  

16 ARCHITECTURE behavioral OF ca IS 

17  

18 SIGNAL p1 : SIGNED (15 DOWNTO 0); 

19 SIGNAL q1 : SIGNED (15 DOWNTO 0); 

20 SIGNAL q2 : SIGNED (15 DOWNTO 0); 

21 SIGNAL q3 : SIGNED (15 DOWNTO 0); 

22 SIGNAL p2 : SIGNED (15 DOWNTO 0); 

23 SIGNAL q4 : SIGNED (15 DOWNTO 0); 

24 SIGNAL ro_tmp : SIGNED (15 DOWNTO 0); 

25 SIGNAL uo_tmp : SIGNED (15 DOWNTO 0); 

26  

27 BEGIN  

28   

29  compute : PROCESS (ri,ui,ind,p2,p1,q1,q2,q3,q4) 

30   BEGIN     

31        p1 <= shift_right(ri,2*(ind-1)); 

32      q1 <= ri - p1; 

33      q2 <= shift_right(ui,ind); 

34      q3 <= shift_right(ri,ind); 

35      p2 <= shift_right(ui,2*(ind-1)); 

36      q4 <= ui - p2; 

37         if ri(15) = ui(15) then 

38           ro_tmp <= q1 - (shift_left(q2,2)); 

39           uo_tmp <= q4 + (shift_left(q3,2)); 

40             d  <= '1'; 

41         else 
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42           ro_tmp <= q1 + (shift_left(q2,2)); 

43             uo_tmp <= q4 - (shift_left(q3,2)); 

44             d <= '0';  

45         end if;   

46            

47  END PROCESS;     

48  

49  update : PROCESS (clk,rst) 

50   BEGIN 

51         if (rst = '1') then 

52             ro <= (others => '0'); 

53             uo <= (others => '0'); 

54         elsif (rising_edge(clk)) then 

55             ro <= ro_tmp; 

56             uo <= uo_tmp;           

57         end if; 

58  

59   END PROCESS;             

60  

61 END behavioral; 
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