
MASTER THESIS PROJECT

Implementation of the

MUSIC Algorithm in CλaSH

Xiaopeng Jin

Faculty of Electrical Engineering, Mathematics and

Computer Science

Xiaopeng Jin

Faculty of Electrical Engineering, Mathematics and

Computer Science

Implementation of the MUSIC

Algorithm in CλaSH

Supervisors:

Dr.ir. A.B.J. Kokkeler
Dr.ir. J. Kuper
Ir. E. Molenkamp
Dr.ir. J. Broenink

Supervisors:

Dr.ir. A.B.J. Kokkeler
Dr.ir. J. Kuper
Ir. E. Molenkamp
Dr.ir. J. Broenink

1

Table of Contents
 Abstract .. 3

1. Introduction ... 4

1.1 Motivation ... 4

1.2 Methodology ... 4

1.3 Report Outline ... 5

2. CλaSH ... 6

2.1 Introduction ... 6

2.2 Hardware Description in Haskell ... 6

2.2.1 Functions ... 6

2.2.2 Types .. 8

2.2.3 Polymorphism .. 8

2.2.4 Choices... 9

2.2.5 Higher-order Functions ... 10

2.2.6 Recursive Functions ... 12

2.3 The CλaSH Compiler .. 12

3. MUSIC Algorithm ... 15

4. Hardware Implementation .. 17

4.1 Pretreatment ... 17

4.2 Covariance Matrix Calculation ... 17

4.3 Eigenvalue Decomposition .. 18

4.3.1 The CORDIC Algorithm ... 19

4.3.2 The Classical Jacobi Method .. 21

4.3.3 The Improved Jacobi Method .. 23

4.3.4 Systolic Array ... 26

4.4 Spectral Peak Search ... 28

5. CλaSH Implementation of MUSIC .. 31

5.1 Covariance Matrix Calculation ... 31

5.1.1 CλaSH Implementation .. 31

5.1.2 Testing ... 32

5.2 Eigenvalue Decomposition .. 33

2

5.2.1 CλaSH Implementation .. 33

5.2.2 Testing ... 38

5.3 Spectral Peak Search ... 39

5.3.1 CλaSH Implementation .. 39

5.3.2 Testing ... 42

6. Evaluation .. 44

6.1 Hardware Description .. 44

6.2 Synthesis .. 46

7. Conclusions .. 48

References ... 49

Appendix A: CλaSH code of cmc ... 50

Appendix B: CλaSH code of evd .. 50

Appendix C: CλaSH code of sps .. 55

Appendix D: CλaSH & VHDL code of pipelined CORDIC_A ... 58

3

Abstract

CλaSH is a hardware description language based on the functional programming language

Haskell. The CλaSH implementation of a hardware design can be translated to synthesizable

VHDL code by the CλaSH compiler. The MUSIC algorithm is a classic subspace-based DOA

estimation method that performs an eigen-decomposition on the covariance matrix. To achieve

real-time performance in practical applications of the MUSIC algorithm, a number of hardware

implementations have been developed. In this master project, the MUSIC algorithm is

implemented in CλaSH to investigate the advantages and disadvantages of using this language

for the hardware implementation of an algorithm. The CλaSH implementation is evaluated in

several aspects such as the conciseness of the descriptions, development time and the synthesis

result of the generated VHDL code.

4

1. Introduction

This is the final report of the master thesis project on the implementation of the MUSIC

(Multiple Signal Classification) algorithm in CλaSH (CAES Language for Synchronous Hardware).

1.1 Motivation

CλaSH (pronounced as “clash”) is a functional hardware description language developed by the

CAES (Computer Architecture for Embedded Systems) group at University of Twente. It borrows

both the syntax and semantics from the functional programming language Haskell.

“Polymorphism and higher-order functions provide a level of abstraction and generality that

allow a circuit designer to describe circuits in a more natural way than possible with the

language elements found in the traditional hardware description languages.”[1] Circuit

descriptions can be translated to synthesizable VHDL code by the CλaSH compiler. As CλaSH is a

new developed language, it still needs to be evaluated and improved.

DOA (Direction of Arrival) estimation of wireless signals is one of the techniques that is

frequently used in smart antenna technology. Smart antennas are used in many fields such as

radar, sonar and mobile communications. The MUSIC algorithm estimates the DOA by

performing an EVD (eigenvalue decomposition) on the covariance matrix of the signal data.

Although MUSIC shows a good performance in DOA estimation, it is achieved at a high cost in

computation and storage. To achieve a real-time performance in practical applications, several

methods have been proposed to implement MUSIC on hardware.

As MUSIC is a non-trivial algorithm for hardware implementation, it is interesting to use it as a

test case of CλaSH. In this project, the MUSIC algorithm is implemented in CλaSH to investigate

the advantages and disadvantages of using CλaSH for hardware implementations.

1.2 Methodology

Figure 1 presents the research strategy of this project. First, we have to get familiar with CλaSH

language and study the MUSIC algorithm as well as its hardware implementation methods. Then

the MUSIC algorithm is implemented in CλaSH according to the hardware designs described in

[1]. The CλaSH implementation is evaluated by comparing it with a VHDL implementation in

several aspects such as the conciseness of descriptions, namely the amount of code,

development time and the synthesis result including maximum clock frequency (Fmax) and the

amount of hardware resources. To compare synthesis results, VHDL code was provided by the

author of [1]. However, it is likely that the provided VHDL code does not exactly implement the

hardware designs described in [1] as its synthesis result turned out to be very different from the

results presented in [1], which makes it not comparable with our CλaSH implementation.

Therefore, it is decided to make a new VHDL implementation for a small part of the MUSIC

algorithm and compare its synthesis result with the result of the corresponding CλaSH

implementation. Finally, we can reach a conclusion based on that evaluation.

5

Figure 1. Research strategy

1.3 Report Outline

This report is basically organized according to the research strategy shown in Figure 1. Following

the introduction chapter, Chapter 2 is an introduction of the CλaSH language and its compiler.

The MUSIC algorithm and its hardware implementation are studied in Chapter 3 and Chapter 4

respectively. Chapter 5 describes how the MUSIC algorithm is implemented in CλaSH and

presents the simulation results of the CλaSH implementation. An evaluation of the CλaSH

implementation is carried out in Chapter 6. Finally, the conclusions are presented in Chapter 7.

6

2. CλaSH

2.1 Introduction

Unlike some high-level programming languages, the traditional HDLs (Hardware Description

Languages) do not have properties such as function overloading and polymorphism, which

makes it cumbersome in expressing higher-level abstractions that are needed for today’s large

and complex circuit designs. In an attempt to raise the abstraction level, a great number of

approaches based on functional languages have been proposed. “Functional languages are

especially well suited to describe hardware because combinational circuits can be directly

modeled as mathematical functions and functional languages are very good at describing and

composing these functions.”[2]

CλaSH is a functional hardware description language that borrows both its syntax and semantics

from the functional programming language Haskell. As a subset of Haskell, CλaSH inherits from

Haskell such advanced features as polymorphic typing, user-defined higher-order functions and

pattern matching. These features provide great convenience for high-level abstractions and

allow circuit specifications to be written in a very concise way. Recursive functions, a crucial

aspect of a functional language, are not completely supported by CλaSH yet. CλaSH extends

Haskell with some hardware-related elements such as state and vector. With the support of

these elements within the CλaSH compiler, the CλaSH code can be translated to synthesizable

VHDL.

2.2 Hardware Description in Haskell

This section introduces the basic language elements of Haskell and describes how they are

related to hardware.

2.2.1 Functions

Two basic elements of a functional programming language are functions and function

applications. The main reason of using a functional programming language to describe hardware

is that a function is conceptually close to a combinational circuit in hardware: both transform

input values to output values. The CλaSH compiler translates every function to a component in

VHDL, every argument/output to an input/output port, and function applications to component

instantiations.

Figure 2 is the block diagram of a half adder which is described as a function called halfAdd in

Haskell as shown in Listing 1. The halfAdd function takes two input arguments a and b and

presents the outputs sum and carry in a tuple. The where clause describes the operations on

the input values where xor and and are predefined functions that perform a bitwise “exclusive

or” and a bitwise “and” operation respectively.

7

Figure 2. Half adder circuit

halfAdd a b = (sum, carry)

 where

 sum = xor a b

 carry = and a b

Listing 1. Half adder

A sequential circuit can also be described as a function in Haskell with a basic premise that it is

modeled as a Mealy machine to make it a synchronous circuit. There is one implicit global clock

affecting all delay components in the circuit. As shown in Figure 3, a Mealy machine consists of

combinational logics and memory elements. The output of a Mealy machine in each clock cycle

depends on both the input and the content of the memory elements which is also called the

current state.

Figure 3. Mealy machine

Figure 4 illustrates the circuit of an accumulator which requires a register to store the

intermediate values temporarily. It is described as a function called acc in Haskell as shown in

Listing 2, where s and s’ denote the old and new state respectively. CλaSH treats the old state

as an additional input and the new state as an additional output, while many other functional

HDLs model signals as a stream of values over time and state is then modeled as a delay on this

stream of values [2]. The synchronous sequential circuits can be simulated by the simulate

function which will be introduced in Sec. 2.2.6.

8

Figure 4. Accumulator circuit

 acc s inp = (s’, sum)
 where

 s’ = s + inp

 sum = s’

Listing 2. Accumulator in Haskell

2.2.2 Types

“Haskell is a statically-typed language, meaning that the type of a variable or function is

determined at compile-time.”[2] Not all Haskell constructs have a direct structural counterpart

in hardware. For instance, some Haskell types such as Integer and list cannot be translated

into hardware because they do not have a fixed size at compile time. Therefore, CλaSH provides

the following built-in types that have a clear correspondence to hardware:

Bit: It can be either of the two values: High and Low, representing the two possible states of

a digital device, for instance, a flip-flop.

Bool: It is a basic logic type with two possible values: True or False. It is required in if-

then-else expressions.

Signed, Unsigned: They represent the signed and unsigned integers with a static size. For

example, Signed 8 represents an 8-bit signed integer. They will wrap around when an

overflow occurs.

Vec: It denotes a vector that contains elements of any type. It is defined in CλaSH to replace

the List type which has a dynamic length. The length of a vector is static and parameterized.

For example, Vec 4 Bit denotes a vector of 4 bits. The Vec type plays an important role in

CλaSH as it is used in many built-in higher-order functions which will be discussed in Sec. 2.2.5.

Haskell allows a designer to create a new type with the data keyword and type synonyms can

be introduced using the type keyword. As shown in Listing 3, the Color type can be Red,

Green or Blue, and the Pixel type is a tuple of 3 Color elements.

data Color = Red | Green | Blue

type Pixel = (Color, Color, Color)

Listing 3. User-defined types

2.2.3 Polymorphism

A value is polymorphic if it can have more than one type. Polymorphism is an important and

powerful feature of Haskell. Most polymorphism in Haskell falls into one of two broad

categories: parametric polymorphism and ad-hoc polymorphism.

Parametric polymorphism allows functions to be defined without specifying the data types and

these functions can be used for arbitrary types. The annotation shown in Listing 4 means that

the function first takes a tuple of an a-type element and a b- type element as input and the

output is of type a, where a and b are not concrete types but parameterized ones that can be

9

any type. As we know, VHDL is a strongly typed language, meaning that the type of every

variable has to be explicitly declared. Haskell is also strongly typed but the compiler can infer

the variables’ types from the functions’ types. For example, if the first function is applied

with an input (arg1, arg2), arg1 and arg2 will automatically have the a and b types.

This somewhat reduces the verbosity of the source code. With parametric polymorphism, a list

operation can be used for lists that have different lengths and different element types. It is the

fundamental of the built-in higher-order functions which will be introduced in Sec. 2.2.5.

first :: (a, b) -> a

Listing 4. Parametric polymorphism

Another type of polymorphism is ad-hoc polymorphism. It refers to functions that work with

types in the same type class. Listing 5 indicates that the type of the add function is a->a->a

and a must be a member of Num which is the class of numeric types including all real numbers.

add :: Num a => a -> a -> a

add a b = a + b

Listing 5. Ad-hoc polymorphism

CλaSH supports both parametric polymorphism and ad-hoc polymorphism with one constraint:

the arguments of the top-level cannot be polymorphic as there is no way to infer their concrete

types.

2.2.4 Choices

In Haskell, choices can be described in several forms: case expressions, if-then-else

expressions, pattern matching and guards. All the four forms can be mapped to multiplexers.

Pattern matching is a user-friendly and also powerful form of choice that is not found in the

traditional HDLs. As shown in Listing 6, a function called muxPatterns is defined in multiple

clauses with different patterns. When the function is applied with the input values that match

one of the patterns, the corresponding clause will be used: if the first argument of

muxPatterns is Low, the output will be the first element of the tuple; otherwise, the output

will be the second element of the tuple. Figure 5 illustrates the corresponding circuit.

muxPatterns Low (x, y) = x

 muxPatterns High (x, y) = y

Listing 6. Pattern matching

10

Figure 5. Multiplexer circuit

2.2.5 Higher-order Functions

Higher-order function is a powerful abstraction mechanism in a functional programming

language. A higher-order function is a function that takes one or more functions as arguments. A

function to be passed to the higher-order function as an argument is called a first-class function.

Haskell provides a number of built-in higher-order functions such as map, zipWith and foldl.

map is a higher-order function that can be found in many functional languages. Listing 7 means

that the first-class function f is applied to each element of the xs list and ws is a list of the

results, as shown in Figure 6.

ws = map f xs

Listing 7. map

Figure 6. map

In Haskell, the first-class function can be written in another two ways: partial application and

lambda expression. Partial application means applying a function with fewer arguments than it

needs, which produces a new function. As shown in Listing 8, (add 1) is a partial application

of the add function with the value 1 and it is again a function that takes one input and adds 1 to

it. The new function (add 1) is applied to every element in the list xs, as shown in Figure 7.

map (add 1) xs

Listing 8. Partial application

11

Figure 7. map (add 1)

A lambda expression allows the designer to introduce a function in any expression without first

defining that function. Such a function is also called an anonymous function since it does not

have a name. The expression (λx -> x + 1) in Listing 9 is an example of lambda expression

which describes the same function as (add 1).

 map (λx -> x + 1) xs

Listing 9. Lambda expression

zipWith is a higher-order function that applies a function pairwise to the elements of two

lists. For example, Listing 10 means that the elements of xs and ys are pairwise multiplied and

ws is a list of the results, as shown in Figure 8.

 ws = zipWith (*) xs ys

Listing 10. zipWith

Figure 8. zipWith

Another very useful higher-order function is foldl. Listing 11 means that a binary operator (+)

is iteratively applied to an element of the ws list and a value initialized with 0 till the end of the

list, as shown in Figure 9.

 z = foldl (+) 0 ws

Listing 11. foldl

Figure 9. foldl

12

These higher-order functions are polymorphic as they accept lists with different lengths and

different types as long as the first-class function can handle these types. Since lists cannot be

translated to hardware, map, zipWith and foldl are replaced by vmap, vzipWith and

vfoldl respectively in CλaSH. These functions work with vectors instead of lists.

2.2.6 Recursive Functions

Recursion plays an important role in Haskell. As shown in Listing 12, a typical example of

recursion is the factorial function which cannot be translated to hardware by the CλaSH

compiler. A translatable function must have a clear correspondence to a static amount of

hardware resources at compile time. However, the amount of multipliers fac requires depends

on the input value, namely n, which cannot be known at compile time.

fac ：： Int -> Int

fac 0 = 1

fac (n+1) = (n+1) * fac n

Listing 12. Factorial in Haskell

On the other hand, many frequently used functions in CλaSH are defined recursively, such as

vmap, vzipWith and vfoldl. Listing 13 shows the definition of the vmap function, where

the :> operator is used to add an element to the head of a vector and Nil denotes an empty

vector. This function is supported by the CλaSH compiler because the amount of hardware

resources is determined by the length of the vector xs, namely n. As we discussed in Sec. 2.2.2,

n is a static value which is known by the compiler.

vmap :: (a -> b) -> Vec n a -> Vec n b

vmap _ Nil = Nil

vmap f (x :> xs) = f x :> vmap f xs

Listing 13. Definition of vmap

2.3 The CλaSH Compiler

The CλaSH compiler is basically a front-end of the Glasgow Haskell Compiler (GHC) extended

with a Haskell library that can compile circuit descriptions written in Haskell to VHDL. Figure 10

illustrates the compiling mechanism according to [3].

13

Figure 10. CλaSH pipeline

The GHC front-end performs parsing, type checking and desugaring to the original Haskell code.
Haskell is a rather large language, containing many different syntactic constructs. Haskell
provides a lot of “syntactic sugar” to be easy for humans to read and write, and the programmer
can choose the most appropriate one from a wide range of syntactic constructs. However, the
flexibility for the user leads to the complexity for the compiler because there are often several
ways to describe the same meaning. For example, an if-else-then expression is identical in

meaning to a case expression with True and False branches. Therefore the GHC front-end
removes all the syntactic sugar and translates the original Haskell code into a much smaller
typed language called Core.

A description in core can still contain elements which have no direct translation to hardware,

such as polymorphic types and function-valued arguments. The second stage of the compiler

repeatedly applies a set of rewrite rules on the Core description till it is in a normal form, which

corresponds directly to hardware. This set of transformations includes β-reduction, η-expansion,

unfolding higher-order functions to first order function, specifying the polymorphic types with

concrete types and function inlining. The final step in the compiler pipeline is to translate the

normal form to a VHDL description, which is a straightforward process due to the resemblance

of a normalized description and a set of concurrent signal assignments.

Figure 11 shows the circuit of an arithmetic logic unit (ALU) and it is modeled as a function called

alu, as defined in Listing 14. The alu function performs addition (ADD), multiplication (MUL) or

subtraction (SUB) according to the opCode. Listing 15 presents the normalized description of

the alu function. It becomes a lambda function with a let-in expression. The normalized

description has a clear correspondence to the circuit in Figure 11: 1) Every variable indicates a

signal (wire). 2) λ and in denote the input and output signals respectively. 3) The internal logics

are described in the let clause where every syntactic construct has a direct translation in

hardware, for instance, an adder or a multiplexer.

14

Figure 11. ALU circuit

data opCode = ADD | MUL | SUB

alu ADD x y = x + y

alu MUL x y = x * y

alu SUB x y = x - y

Listing 14. Haskell definition of alu

alu = λc x y. let p = x + y

 q = x * y

 r = x - y

 out = case c of

 ADD -> p

 MUL -> q

 SUB -> r

 in out

Listing 15. alu in normal form

15

3. MUSIC Algorithm

As shown in Figure 12, a far-field narrowband signal with a wavelength of arrives at an N-

element antenna array. Each element of the array is spaced by which is equal to . The

angle of incidence is . If the received signal at sensor 1 is () (), then it is received

earlier at sensor by
()

, where is the propagation speed, so the received signal

at sensor is () ()
()

 (). The signals received at all sensors can

form a vector as:

 ()

[

 ()

 ()

 ()

 ()]

[

()

]

 () () () (1)

where () is called a “steering vector”.

Figure 12. Uniform linear array

If there are independent source signals and Gaussian white noise is (), the signal model can

be depicted as:

 () () () (2)

where () () () ()

 () () () ()

 () () () ()

 () () ()

Then the covariance matrix can be calculated as:

 { () ()}
 (3)

16

where { () ()}, is the noise variance and is the identity matrix. The rank

of defines the dimension of the signal subspace.

For , the matrix
 is singular, so

 = 0, which implies

that is an eigenvalue of . Since the dimension of the null space of
 is , has

 eigenvalues that are equal to . Since is a positive definite Hermitian matrix, there

are other eigenvalues and .

If is the eigenvector of corresponding to , then
 (

), which implies that

 {

()

 (4)

The N-dimensional eigenvector space can be partitioned into the signal subspace and the

noise subspace , as shown in Eq. (5) where the eigenvectors are in descending order.

 (5)

Since both and are full-rank matrices, meaning that () and
 exist, Eq. (4) can

be transformed to
 ()

 , so

 () (6)

which means the noise subspace is orthogonal to each column of the steering matrix .

According to this orthogonality, a spatial spectrum function can be constructed as

 ()

‖ () ‖

 (7)

Since the above deduction is based on some assumptions to build an idealized mathematical

model, the denominator of the function can never be exactly 0 in reality. The values of that

maximize () are corresponding to the DOAs of all source signals. In other words, the DOA’s of

all source signals can be estimated by peak detection of the spatial spectrum.

17

4. Hardware Implementation

Figure 13 illustrates the system architecture of a MUSIC hardware implementation. First, a

pretreatment will be performed on the signal data after A/D conversion. The purpose of the

pretreatment is to get rid of complex computations and make it easier to be implemented on a

FPGA. The FPGA implementation consists of three modules: Covariance Matrix Calculation

(CMC), Eigen-decomposition (EVD) and Spectrum Peak Search (SPS).

Figure 13. System hardware architecture

4.1 Pretreatment

As the steering matrix contains complex elements, the MUSIC algorithm requires a large

amount of complex-valued computations which make the hardware implementation complex

and time-consuming especially for the EVD. To reduce the computational load, [4] introduces a

pretreatment method to obtain a real-valued covariance matrix by a unitary transformation as

 () () (8)

where

√
[

] if there is an even number of antennas in the array, is a

identity matrix and is a

 anti-identity matrix (permutation matrix with all its anti-diagonal

elements being 1). In this method, is assumed to be an even number. After the pretreatment,

we can obtain a real-valued steering vector as

 () (

) (

) (

()

)

 (

) (

) (

()

) (9)

where .

4.2 Covariance Matrix Calculation

According to Eq. (3), the covariance matrix calculation is basically the multiplication of a vector

and its transpose. After the pretreatment, the data vector () is real-valued. Each element of

the covariance matrix can be calculated as

18

∑ ()

 () (10)

where is the element in row , column of the covariance matrix, () and () denote the

n-th data of the i-th and the j-th antennas respectively, and is the number of snapshots. The

calculations of the entire covariance matrix can be done in parallel by multiply-

accumulate (MAC) units. As shown in Figure 14, a MAC unit multiplies the two input values and

adds the multiplication result with the previous output which is stored in a register. Since is a

symmetric matrix, the upper triangle is sufficient for the implementation of the MUSIC

algorithm. Therefore,
 ()

 MAC units are required.

Figure 14. mac circuit

Figure 15 is the block diagram of the Covariance Matrix Calculation (CMC) module. Each input

signal is combined with itself and the others. For example, with two elements a and b, the

combinations will be (a,a), (a,b) and (b,b). Therefore, input signals make
 ()

combinations and each combination is the input of a MAC unit.

Figure 15. Covariance matrix calculation

4.3 Eigenvalue Decomposition

The Jacobi eigenvalue algorithm is an iterative method to calculate the eigenvalues and

eigenvectors of a real symmetric matrix such as the covariance matrix. The Jacobi method

repeatedly performs rotations (orthogonal transformations) until the matrix becomes almost

diagonal.

19

4.3.1 The CORDIC Algorithm

Before discussing more about the Jacobi method, it is necessary to introduce the CORDIC

(Coordinate Rotation Digital Computer) algorithm since it plays an important role in the

implementation of the Jacobi method. CORDIC is a simple and efficient algorithm to calculate

trigonometric functions. It is commonly used when no hardware multiplier is available (e.g.,

simple microcontrollers and FPGAs) as the only operations it requires are addition, subtraction,

bit shift and table lookup.

Suppose a vector () is rotated by an angle α, the resulting vector () can be calculated as:

 [

] [

] [

] (11)

 Eq. (11) can be rewritten as:

 [

] [

] [

] (12)

If , this rotation can be decomposed to iterative rotations by the angle

 (). Each iteration can be depicted as:

 [
 ()

 ()] [

] [

 ()

 ()] ()

with () , () .

Suppose is chosen such that , then

 (14)

 ∑

 () (15)

Table 1 lists the possible values of which can be stored in a look–up table (LUT). The accuracy

of the final result of CORDIC is determined by the number of iterations, i.e. the number of angle

values in the table. Eq. () can be rewritten as:

 [
 ()

 ()] () [

] [
 ()

 ()] ()

Now the calculations do not require multiplications but only bit shifts, except for the first factor

in Eq. (): ()

√
.

Table 1. Angles for CORDIC rotation

20

The progress of a CORDIC rotation is tracked by an angle accumulator:

 () () (17)

The product of () can be depicted as

 where ∏ √

 and

converges to 1.647 [5]. Therefore, we can ignore () in each iteration and finally

the original vector will be scaled by a factor of . Eq. (18) is a summary of the equations in the

CORDIC algorithm.

 () ()
 ()

 ()
 () ()

 () ()

 (18)

There are two computing modes of CORDIC: rotation mode and vectoring mode. In a rotation-

mode CORDIC, the sign of is determined by the angle accumulator: when () and

 otherwise. With the following initial values:

 {
 ()
 ()

 ()

 (19)

the final result will be:

 () ()

 () ()

 ()

 (20)

In a vectoring-mode CORDIC, the sign of depends on (): when () and

when () . With the following initial values:

 {
 ()
 ()

 ()

 (21)

the final result will be:

 () √

 ()

 () (

)

 (22)

Figure 16 presents a CORDIC architecture which can be used for both the two modes. The left

part of this architecture performs bit shifts according to Eq.() and the right part is an angle

accumulator corresponding to Eq. (17).

21

Figure 16. Iterative CORDIC architecture

4.3.2 The Classical Jacobi Method

 () is symmetric and similar to , if is an real symmetric matrix and ()

is a rotation matrix of the form:

[

]

 (23)

where and . All the diagonal elements of are unity except for the two

elements in rows (and columns) and . All the off-diagonal elements of are zeros except the

two elements in row , column and row , column .

The elements of () are calculated as

{

()

()

()

()

 () ()

()

()

()

()

()

 (24)

Since is a symmetric matrix, we can concentrate on the upper triangle. One of the off-diagonal

elements will be annihilated if
()

 is set to 0, which means

 ()

 (25)

i

j

i j

22

If ,

 .

The Jacobi method performs a sequence of orthogonal similarity transformations as shown in Eq.

(26). Each transformation (a Jacobi rotation) is a plane rotation that annihilates one of the off-

diagonal elements. Successive transformations undo the previously set zeros, but the off-

diagonal elements nevertheless get smaller and smaller, until the matrix is almost diagonal.

The iterations of the Jacobi method can be depicted as

{

 ()

 ()
 ()

 ()
 ()

 (26)

where L denotes the number of iterations, so

 () (27)

where

 and .

After iterations, () is almost diagonal. The diagonal elements of () are approximations of

the eigenvalues and the corresponding eigenvectors are the columns of .

The original Jacobi method searches the whole upper triangle in each iteration and sets the

largest off-diagonal element to zero. “This is a reasonable strategy for hand calculation, but it is

prohibitive on a computer since the search alone makes each Jacobi rotation a process of order

 instead of .”[6] For a hardware implementation,
()

which is the off-diagonal element to

be annihilated in the n-th iteration, is determined by traversing the upper triangle in a fixed

order, for example, in a symmetric matrix:

One such set of () Jacobi rotations is called a sweep. The diagonalization of the matrix

will be finished after a few sweeps when all off-diagonal elements are smaller than a predefined

threshold.

Eq. (24) can be rewritten as

23

{

()
 () ()

()

 () ()

()

()

()

()

()

()

()

 (28)

By comparing Eq. (28) with the results of the rotation-mode CORDIC (Coordinate Rotation Digital

Computer) in Eq. (20), it can be concluded that the calculations of the off-diagonal elements
()

and
()

 can be done by a CORDIC rotation. The diagonal elements
()

 and
()

 can be

calculated by performing the CORDIC rotation twice. And the rotation angle can be computed

by the vectoring-mode CORDIC according to Eq. (22) and Eq. (25).

According to Eq. (27), the calculations of are iterative multiplications of the Jacobi rotation

matrices. Eq. (29) shows an example of the first iteration.

 [

] [

] [

] (29)

where , represent the cosine and sine values in the first iteration and , represent the

cosine and sine values in the second iteration. It can be concluded that as long as the second

matrix is of the form shown in Eq. (23), only column and column of the first matrix are

changed during the multiplication of these two matrices. The result of each multiplication can

be depicted as Eq. (30), where and represent the old values of column and , while

and are the new values.

 [

] [

] [

] (30)

Eq. (30) is actually equivalent to a CORDIC rotation as shown in Eq.(20), which means that the
calculation of can be done by a rotation-mode CORDIC.

4.3.3 The Improved Jacobi Method

As discussed in the previous section, the classic Jacobi method uses CORDIC 3 times (2 rotation-

mode CORDIC and 1 vector-mode CORDIC) in each Jacobi rotation. An improved design that uses

CORDIC only once will be presented in this section. It can significantly improve the efficiency of

the Jacobi method.

The angle in each iteration of a CORDIC rotation is determined by the equation:

 ∑

 , where () and { } . The rotation direction

 is determined by the sign of . For the Jacobi method, the rotation angle can be

24

restricted within [7], so is also determined by the sign of . By applying the

trigonometric identities, can be calculated as

 ()

 ()

 (31)

With

 ,

 and

 , Eq. (31) can be rewritten as

()

()

 (32)

Figure 17 illustrates the block diagram of a modified CORDIC algorithm used for calculating the

off-diagonal elements. The CORDIC_A section computes the values of and according to Eq.

(31) where the sign of is determined by the sign of

. The CORDIC_B section is a rotation-

mode CORDIC that rotates in the direction indicated by the sign of .

Figure 17. Modified CORDIC

With the following initial values:

{

 (33)

the results of the modified CORDIC after iterations will be:

25

{
 ()

 ()
 (34)

According to Eq. (24), the new off-diagonal elements
()

 and
()

 can be calculated by scaling

 and with a factor of . As shown in Figure 18, the scaling is implemented according to the

approximation:

 (35)

Figure 18. CORDIC scaling

For the diagonal elements, according to [6], it can be derived from Eq. (25) and (28) that

 {

()

()

()

()

()

()

 (36)

The value of can be stored in a look-up table in which a set of is mapped to , as

shown in Figure 19. In a hardware implementation, is considered as 0.

Figure 19 Look-up table of tangent

26

4.3.4 Systolic Array

According to Eq. (24), each Jacobi rotation affects only row (and column) and , which offers an

opportunity of parallel processing. A systolic array design is proposed in [7] to implement the

parallel Jacobi algorithm. Figure 20 shows a systolic array used for the EVD of a symmetric

matrix. Each PE (processing element) contains a sub-matrix of the upper triangle of the

matrix. For example, “12” in PE1 represents the element in row 1, column 2. The PEs on the

diagonal line, namely PE1 and PE3, are called the diagonal processors and PE2 is called the off-

diagonal processor. Using the CORDIC_A algorithm shown in Figure 17, the diagonal processors

update the four diagonal elements in parallel (“12” and “34” are set to 0) and broadcast the

values of to the right and the top, as indicated by the wide arrows in Figure 20. Each off-

diagonal processor has to wait for the arrivals of from the left and the bottom to update the

off-diagonal elements using CORDIC_B. After all the elements are updated, they will be

relocated along the thin arrows and then the PEs will start the next iteration. Compared with the

classical Jacobi method, the systolic array can significantly reduce the total computation time of

EVD, especially for a big matrix.

Figure 20. Systolic array for EVD

Since the systolic array annihilates 2 off0diagonal elements in each iteration, one sweep of a

 symmetric matrix can be done by 3 iterations. In Figure 21, each off-diagonal element in

the upper triangle of a 4 symmetric matrix is marked with a number that indicates in which

iteration it will be annihilated. There are no conflicts between the calculations of the diagonal

elements in each iteration. For example, according to Eq. (24), the diagonal elements (1, 1) and

(2, 2) are required and will be changed to annihilate (1, 2) which is marked with ‘1’. To annihilate

(3, 4) which is also marked with ‘1’, the diagonal elements (3, 3) and (4, 4) are required and will

be changed. So the two rotations do not affect the diagonal elements of each other. According

to Eq. (24), both the two rotations affect the 4 elements in PE2, which means PE2 has to

perform the CORDIC rotation twice in each iteration.

27

Figure 21. Parallel processing of a 4x4 matrix

Figure 22 shows the hardware architecture of EVD of a symmetric matrix. MUX is a

multiplexer that chooses from the input and the previous output stored in the memory unit

REG1. A diagonal processor consists of a CORDIC_A and an update block. The output of the

CORDIC_A block is a set of the direction signals, namely or which are then used by the

update block to get the tangent value from an internal look-up table and update the diagonal

elements. An off-diagonal processor consists of 4 CORDIC_B blocks that update the off-

diagonal elements. The EX1 block performs data exchanges between two iterations and stores

the results in a memory unit called REG1. After a few iterations, the upper triangle of a

diagonalized matrix will be found in REG1 and its diagonal elements are the eigenvalues of the

input matrix (upper triangle).

Figure 22. EVD (eigenvalue) architecture

Figure 23 is an extension to Figure 22. With this extension the eigenvectors can be calculated at

the same time. There are 8 CORDIC_B blocks running in parallel: 4 take and the other 4

28

take . The memory unit REG2 is initialized with an identity matrix. The 4 CORDIC_B blocks

in the left pairwise update the elements in column 1 and column 2 and the 4 CORDIC_B blocks

in the right pairwise update the elements in column 3 and column 4. Then EX2 will perform the

data exchanges between the columns as shown in Figure 24, where each block represents a

column. The result will be stored in REG2 for next iteration. When the eigenvalues calculation

is finished, the corresponding eigenvectors can be found in REG2.

Figure 23. EVD (eigenvector) architecture

Figure 24. Column exchange

4.4 Spectral Peak Search

According to Eq. (7), the spectrum peaks can be detected by finding the minimum square of the

2-norm of () , which is equivalent to finding the maximum of the 2-norm of

 () where the signal space consists of the eigenvectors corresponding to the largest

eigenvalues. The latter can reduce the amount of computations when the number of source

signals is much smaller than the number of noises. Figure 25 presents the block diagram of the

spectral peak search module. First, the EigSort block sorts the eigenvalues in a descending

order and outputs the corresponding eigenvectors of the first eigenvalues, making the signal

space , where indicates the number of source signals. The Norm block takes the signal

space from EigSort and a steering vector () from the SvLUT block to calculate the 2-

norm of () . For a hardware implementation, the angle can be chosen from a

29

predefined set of angles, for example:

. According to Eq. (9), the steering vectors

will be:

 () (

) (

) (

) (

)

 () (

) (

) (

) (

)

 () (

) (

) (

) (

) (37)

where

 . These steering vectors are stored in SvLUT as constants.

The result of the norm calculation will be sent to the Compare block and compared with the

previous results to find out the peaks which indicate the DOAs.

Figure 25. Spectral peak search

As shown in Figure 26, the Norm block first calculates the dot product of a steering vector and

each eigenvector in the signal space. Then each dot product is squared and the output is the

sum of the squares.

Figure 26. Norm calculation

The Compare block is elaborated in Figure 27. First Comp1 compares with and

simultaneously. If and then Comp2 will compare with 2 (depends on

30

the number of signal sources) current maximums and output the indexes of the maximums.

Finally the DOA’s can be found according to the indexes after traversing the entire angle set.

Figure 27. Architecture of the Compare block

31

5. CλaSH Implementation of MUSIC

This chapter describes the CλaSH implementation of the MUSIC algorithm according to the
hardware designs shown in Chapter 4 and presents the simulation results. Each module of the
MUSIC algorithm, such as Covariance Matrix Calculation (CMC), Eigen-decomposition (EVD) and
Spectral Peak Search (SPS), is separately implemented in CλaSH. A two-step design method is
proposed in [8] to implement a DSP application on an FPGA: firstly, the mathematical definition
is translated to Haskell; secondly, minor changes are applied to the Haskell implementation so
that it is accepted by the CλaSH compiler. For example, lists are replaced by vectors and map is
replaced by vmap. The pure Haskell code is more concise and easier to use as it is free of the
hardware-related restrictions in CλaSH. For example, in Haskell we can use double precision
floating point operations while in CλaSH we use fixed point operations. Therefore, this chapter
will use the Haskell code to describe the implementation of the MUSIC algorithm and the
corresponding CλaSH code can be found in the Appendix. In this project, we assume that the
number of antennas is 4 and the number of source signals is 1.

5.1 Covariance Matrix Calculation

5.1.1 CλaSH Implementation

According to the description in Sec. 4.2, the Covariance Matrix Calculation (CMC) module is

modeled as a top-level function called cmc and the multiply-accumulate (MAC) circuit is

modeled as a function called mac which is used in the top level. As shown in Listing 16, mac is a

stateful function as the MAC circuit requires a register to store the current result temporarily for

the next iteration. s and s’ indicate the old and new states respectively.

1 mac s (x, y) = (s’, out)

2 where

3 s’ = x*y + s
4 out = s

Listing 16. Definition of mac

Figure 28 illustrates a graphical representation of the cmc function according to its definition

shown in Listing 17. First, it makes 10 combinations of the input signals in a list pairs by

indexing the same list ys with two different index numbers i1 and i2 (Line 3-4) where !! is

the indexing operator of lists in Haskell. Then it applies mac pairwise to the elements of ss and

pairs where ss is a list of the old states: , ,…, . The output of cmc are two lists: ss’

and rs (Line 5) where ss’ is a list of the new states: , ,…, and rs is the upper triangle

of the covariance matrix.

32

Figure 28. Structure of cmc

1 cmc ss ys = (ss’,rs)

2 where

3 pairs = [(ys !! i1, ys !! i2) |

4 i1 <- [0..3], i2 <- [0..3], i1 <= i2]

5 (ss’,rs) = unzip $ zipWith mac ss pairs
Listing 17. Definition of cmc

5.1.2 Testing

In Haskell, a function that represents a sequential synchronous circuit can be simulated by the

simulate function as defined in Listing 18. It recursively applies a function f to the state s

and an element of the list (x:xs)till the end of the list, where the : operator adds an

element to the head of a list. The list (x:xs)imitates an input signal that lasts for several clock

cycles and each application of f simulates the behavior of the synchronous circuit in one clock

cycle.

1 simulate f s [] = []

2 simulate f s (x : xs) = y : simulate f s’ xs

3 where

4 (s’, y) = f s x

Listing 18. Definition of simulate

As shown in Listing 19, the cmc function is simulated by the simulate function with an initial

state s_init which is a list of 10 zeros (Line 1). inps (Line 2) is a list of lists where each

sub-list is an input of cmc. Figure 29 shows the content of test which is a list of the

simulation results in GHCI, a GHC (Glasgow Haskell Compiler) interactive environment. Note that

the output is delayed by one clock cycle: the first output is the initial state. Therefore, the third

sub-list of inps, i.e. [7,8,9,10], does not affect the simulation result.

1 s_init = replicate 10 0

2 inps = [[1,2,3,4],[5,6,7,8],[7,8,9,10]]

3 test = simulate cmc s_init inps

Listing 19. Simulation of cmc in Haskell

33

Figure 29. Simulation result of cmc in Haskell

Since the covariance matrix calculation is in principle the multiplication of a vector and its

transpose, the simulation results can be verified with the transpose operator ' in MATLAB, as

shown in Listing 20.

 inp = [1,2,3,4;5,6,7,8]
 outp = inp'*inp

Listing 20. CMC in MATLAB

After the CλaSH implementation is tested, the corresponding VHDL code is generated as well as

a test bench. Figure 30 shows the simulation result of the generated VHDL code in ModelSim

where clk1000 is a 1 MHz clock signal, inp_i1 contains the 4 input values and topLet_o

is the output signal. In the test bench, the input values are assigned to be 1,2,3,4 at 100 ns (in

the first clock cycle) and 5,6,7,8 after 1200 ns (in the second clock cycle). According to the

definition of mac shown in Listing 16, each output of cmc is also the current state. Therefore,

the output values are updated on every rising edge of the clock signal, as shown in Figure 30.

Figure 30. Simulation result of CMC in ModelSim

5.2 Eigenvalue Decomposition

5.2.1 CλaSH Implementation

The eigen-decomposition (EVD) module is modeled as a top-level function called evd. As shown

in Listing 21, the evd function takes a list rs containing the upper triangle produced by the

cmc function to calculate its eigenvalues evals and eigenvectors evecs. s indicates a state

containing the intermediate results of each iteration. As shown in Figure 31, the EVD module

34

consists of several components such as CORDIC_A, update and CORDIC_B. Each component

is modeled as a function which is used in the top level. The complete definition of evd can be

found in Appendix B.

 evd s rs = (s’, (evals, evecs))

Listing 21. Definition of evd

Figure 31. EVD architecture

As defined in Listing 22, the ca1 function describes one iteration of the CORDIC_A algorithm

according to Eq. (32). In the CλaSH implementation, the power of two operations in Line 3-4 will

be implemented with the bit shift functions shiftR and shiftL. The getSign function

(Line 8-9) determines the rotation direction di according to the signs of the two inputs.

1 ca1 (ri,ui) i = ((ri’,ui’),di’)
2 where

3 ri’ = (1-2^(-2*i))*ri - di*(2^(1-i))*ui

4 ui’ = (1-2^(-2*i))*ui + di*(2^(1-i))*ri

5 di = getSign ri ui

6

7 getSign x y = if x/y >= 0 then 1

8 else -1
Listing 22. Haskell definition of cordica

35

Figure 32 illustrates a graphical representation of a CORDIC_A implementation with 10

iterations of the ca1 function. As mentioned in Sec. 4.3.1, the accuracy of the CORDIC algorithm

depends on the number of iterations. In this project, we perform 10 iterations as it shows a

satisfactory accuracy. The structure shown in Figure 32 can be described by foldl with a slight

modification to the function definition of ca1 because foldl requires that the first input and

the output of the function are of the same type. The input of ca1 is a 2-tuple but the output is a

3-tuple. As shown in Listing 23, the first input of the modified ca1, namely ca2, is a 3-tuple

of which the third element is a list dsi and the output is also a 3-tuple. The operator : (Line 7)

appends the new direction value di’ to the list dsi and the new list dsi’ is the third element

of the output. Figure 33 shows the structure of the CORDIC_A implementation with the ca2

function and it can be described by the cordic_a function as shown in Listing 24, where ids

is a list of index numbers in the range of 0 to 9 and ds is initialized with [], an empty list.

Figure 32. Structure of CORDIC_A

1 ca2 (ri,ui,dsi) i = (r’,u’,dsi’)
2 where

3 ri’ = (1-2^(-2*i))*ri - di*(2^(1-i))*ui

4 ui’ = (1-2^(-2*i))*ui + di*(2^(1-i))*ri

5 di = getSign r u

6 dsi’ = di : dsi

7

8 getSign x y = if x/y >= 0 then 1

9 else -1
Listing 23. Haskell definition of modified cordica

Figure 33. Modified structure of CORDIC_A

1 cordic_a r u = ds

2 where

3 ids = [0..9]

4 (r’,u’,ds) = foldl ca2 (r,u,[]) ids
Listing 24. Definition of cordic_a with foldl

36

In fact, the structure shown in Figure 32 can be directly described by another built-in higher-

order function: mapAccumL without modifying the definition of ca1, as shown in Listing 25.

The mapAccumL function behaves like a combination of map and foldl. It applies a function

which is ca1 in this case, to each element of a list ids, passing an accumulating parameter (r,

u)from left to right, and returning a final value of this accumulator together with the new list

ds.

1 cordic_a r u = ds

2 where

3 ids = [0..9]

4 ((r’,u’),ds) = mapAccumL ca1 (r,u) ids
Listing 25. Definition of cordic_a with mapAccumL

Listing 26 shows the definition of the update function which takes a list ds produced by

cordic_a and updates the diagonal elements b and c according to Eq. (36). tanv is a tangent

value obtained from a list of tangent values created by the lut function and the index ind is

an integer converted from ds (Line 5).

1 update (a, b, c) ds = (b’, c’)

2 where

3 b’ = b + tanv * a

4 c’ = c - tanv * a

5 ind = toInt ds
6 tanv = (lut 10) !! ind

Listing 26. Haskell definition of update

Figure 34 is a graphical representation of the lut function defined in Listing 27. First, the css

function creates a list of lists by recursively applying list comprehension and concatenation (Line

3-4). According to the results of css 1 and css 2 shown in Listing 28, it can be concluded

that css n creates a list of lists where each sub-list contains values being either 1 or -1.

Then each sub-list produced by css is applied with the tangent function (Line 6) to calculate

the corresponding tangent value, where bs is a list of rotation angles in radians (Line 7-8) and

the $ symbol is used to replace the brackets. Note that the implementation of lut will remain

pure Haskell in the CλaSH implementation because it creates a list of constant numbers that are

known at compile time.

1 lut n = map tangent (css n)

2

3 css 0 = [[]]

4 css n = concat [[-1:cs, 1:cs] | cs <- css (n-1)]

5

6 tangent cs = tan $ sum $ zipWith (*) bs cs
7 as = [45.0,26.6,14.0,7.1,3.6,1.8,0.9,0.4,0.2,0.1]

8 bs = [pi/180*x | x <- as]

Listing 27. Haskell definition of lut

37

Figure 34. lut

1 css 1 = concat [[-1:cs,1:cs] | cs <- [[]]]

2 = concat [[[-1],[1]]]

3 = [[-1],[1]]

4

5 css 2 = concat [[-1:cs,1:cs] | cs <- css 1]

6 = concat [[[-1,-1],[1,-1]],[[-1,1],[1,1]]]
7 = [[-1,-1],[1,-1],[-1,1],[1,1]]

Listing 28. Examples of css

Listing 29 presents the definition of the cordic_b function which implements the CORDIC_B

algorithm. As shown in Figure 35, cordic_b iteratively applies the cb function with an

element of the list ds which is produced by cordic_a to update the off-diagonal elements

x and y. The cb function, as defined in Listing 30, describes one iteration of the CORDIC_B

algorithm according to Eq. (18).

1 cordic_b (x, y) ds = (x', y')

2 where

3 ids = [0..9]

4 (x', y') = foldl cb (x, y) (zip ids ds)
Listing 29. Definition of cordic_b

Figure 35. Structure of cordic_b

1 cb (xi, yi) (i, di) = (xi’, yi’)
2 where

3 xi’ = xi - di*(2^(-i))*yi

4 yi’ = yi – di*(2^(-i))*xi
Listing 30. Definition of cb

38

5.2.2 Testing

Since evd is a stateful function, it can be simulated by the simulate function as shown in

Listing 31 where s_init indicates an initial state and rs is the upper triangle shown in Eq. ().

Figure 36 presents the simulation results of the first 10 clock cycles. As shown in Figure 37, the

simulation result of each clock cycle consists of three components: a list of eigenvalues (

denotes a list), a list of eigenvectors (each eigenvector is a sub-list) and an additional output

end. When end becomes 1, meaning all the off-diagonal elements are (nearly) zeros, the EVD

computation is finished. In this case, it takes 8 clock cycles to finish the computation. Note

that the eigenvectors are initialized with an identity matrix multiplied by 1000, therefore the

results of the eigenvectors are also scaled by 1000.

1 inps = replicate 10 rs

2 test = simulate evd s_init inps
Listing 31. Simulation of evd

[

]

 ()

Figure 36. Simulation results of evd

Figure 37. Components of simulation result

The simulation results can be verified in MATLAB with the built-in function eig, as shown in

Listing 32. evals, as shown in Eq. (39), is a diagonal matrix of which the diagonal elements

are the eigenvalues of the matrix R and evecs, as shown in Eq. (40), is a matrix of which each

column is a corresponding eigenvector. It can be observed that the simulation result of the

Haskell code is very close to the result in MATLAB and the average error is about which is

mainly caused by the fixed-point operations such as bitwise right shifts.

39

 [evecs, evals] = eig (R)

Listing 32. EVD in MATLAB

[

]

 (39)

[

]

 (40)

The VHDL code generated from the CλaSH implementation is simulated in ModelSim with the

same input. As shown in Figure 38, inp_i1 is an input signal which contains the upper triangle

shown in Eq. (). The output signal topLet_0 consists of 3 components: product9_sel0

contains the eigenvalues, the corresponding eigenvectors are presented in product9_sel1

and product9_sel2 becomes high when the EVD computation is finished. As clk1000 is a

1 MHz clock signal, it takes 8 clock cycles to finish the computation. The simulation result of the

VHDL code is also very close to the result in MATLAB.

Figure 38. Simulation result of EVD

5.3 Spectral Peak Search

5.3.1 CλaSH Implementation

The spectral peak search module is modeled as a top-level function called sps which takes the

eigenvalues evals and eigenvectors evecs produced by the evd function and outputs the

index of the DOA (Direction of Arrival), as shown in Listing 33. First, the eigsort function finds

the index of the maximum eigenvalue and the corresponding eigenvector evec is taken from

evecs with this index (Line 3). Then the norm function calculates the norm based on evec

40

and sv which is a steering vector with the index s3 stored in the look-up table svlut. The

comp1 function finds the peak from 3 consecutive norm values (one is the current norm value

and the other two are the previous values stored in the state s1) and comp2 compares the

current peak with the previous one stored in s2. The second element of s2’, i.e., the index of

the maximum peak, is the output of sps (Line 10).

1 sps (s1,s2,s3) (evals, evecs) = ((s1’,s2’,s3’), ind)

2 where

3 evec = evecs !! (eigsort evals)

4 sv = svlut !! s3

5 normv = norm evec sv

6 tmp = comp1 s1 (normv, s3)

7 s1’ = init & (normv, s3) : 1

8 s2’ = comp2 s2 tmp

9 s3’ = s3 + 1

10 ind = snd s2’
Listing 33. Definition of sps

The eigsort function defined in Listing 34 sorts the eigenvalues in the list evals and outputs

the index of the maximum one. eigsort has a foldl structure as shown in Figure 39 where

the sort function iteratively inserts each element of ys which contains an eigenvalue with its

index (Line 4) to a sorted list which is initialized with an empty list [] and outputs the new

sorted list. The sort function itself also has a foldl structure as shown in Figure 40, where

the cswap function (Line 5-6, Listing 35) iteratively compares y with each element of vsi and

inserts the larger one into a list which is initialized with an empty list.

1 eigsort evals = ind

2 where

3 inds = [0..3]

4 ys = zip evals inds

5 vs’ = foldl sort [] ys

6 ind = snd $ last vs’

Listing 34. Definition of eigsort

Figure 39. Structure of eigsort

1 sort vsi y = vsi’

2 where

3 (y’,vsi’) = foldl cswap (y,[]) vsi

4

5 cswap (yi, ts) vi = if fst yi > fst vi then (vi, yi : ts)

6 else (yi, vi : ts)

Listing 35. Definition of sort

41

Figure 40. Structure of sort

The svlut function shown in Listing 36 creates a list of steering vectors according to Eq. (41).

The ++ operator (Line 1) is used to append two lists.

1 svlut = [[cos $ (a*) $ sin b | a <- as] ++

2 [sin $ (a*) $ sin b | a <- as] | b <- bs]

3

4 as = [(2*n-1]*pi/2 | n <- [1,2]]

5 bs = [n/512*pi | n <- [0..255]]

Listing 36. SvLUT implementation

 () (

) (

) (

) (

) (41)

Listing 37 shows the definition of the function norm which calculates the norm, i.e. the square

of the dot product of two lists. Figure 41 is a graphical representation of the dot product

function dotp (Line 3-5) which pairwise multiplies the elements of two lists and outputs the

sum of the multiplication results.

1 norm xs ys = (dotp xs ys)^2

2

3 dotp xs ys = foldl (+) 0 ws

4 where

5 ws = zipWith (*) xs ys

Listing 37. Haskell definition of norm

Figure 41. Dot product

The comp1 function (Line1-2, Listing 38) finds the peak by comparing three consecutive input

values x1, x2 and x3: if x2 is larger than both x1 and x3, the output will be x2 with its index,

otherwise the output is (0, 0). Then comp2 (Line 5-6, Listing 38) compares the current peak p2

with the previous peak p1 and outputs the index of the larger one.

1 comp1 (x1, x2) (x3, ind3) = if x2 > x3 && x2 > x1

2 then (x2, ind2)

42

3 else (0,0)

4

5 comp2 (p1,ind1) (p2,ind2) = if p2 > p1 then ind2

6 else ind1

Listing 38. comp1 and comp2 in Haskell

5.3.2 Testing

To simulate the sps function, a signal model is created in MATLAB as shown in Listing 39 where

the source signal has a DOA of

 (Line 4) and the final results are the eigenvalues and

eigenvectors of the covariance matrix (Line 14) based on this signal model. Since sps is also a

stateful function, it can be simulated by the simulate function as shown in Listing 40, where

evals and evecs are the results of the MATLAB program and they are applied to sps 256

times since there are 256 possible DOAs according to Sec. 4.4. Figure 42 presents the simulation

result which is 89. The corresponding angle value can be calculated as

 according to

Eq. (37).

1 M = 4; % number of antennas

2 N = 256; % number of snapshots

3 d = 0.5;

4 theta = pi/6; % DOA

5 f = 0.2;

6 snr = 10; % SNR = 10 dB

7 s = cos(2*pi*f*n); % source signal

8 alpha = pi*d*sin(theta);

9 % steering vector

10 A = [cos(alpha),cos(3*alpha),sin(alpha),sin(3*alpha)]';

11 x0 = A*s;

12 x = sqrt(10^(snr/10))*x0+randn(M,N) % signal data matrix
13 R = x*x'/N; % covariance matrix
14 [V,D] = eig (R) % EVD

Listing 39. Signal model in MATLAB

1 inps = replicate 256 (evals, evecs)

2 test = last $ simulate sps s_init inps

Listing 40. Simulation of sps

Figure 42. Simulation result of sps

The VHDL code generated from the CλaSH implementation is simulated in ModelSim with the

same eigenvalues and eigenvectors produced by the MATLAB program. As shown in Figure 43,

the input signal inp_i1 has 2 components: product3_sel0 and product3_sel1 which

contains the eigenvalues and the corresponding eigenvectors respectively. topLet_o presents

the final result which is also 89.

43

Figure 43. Simulation result of SPS in ModelSim

44

6. Evaluation

6.1 Hardware Description

In this section, we will discuss about the advantages and disadvantages of using CλaSH for

hardware descriptions based on the implementation of the MUSIC algorithm presented in

Chapter 5.

It can be found in Chapter 5 that the built-in higher-order functions such as map, foldl and

zipWith play an important role in the implementation of the MUSIC algorithm. Many

commonly used hardware structures can be described by these higher-order functions in a high

abstraction level, which significantly reduces the amount of code. For example, if the CMC

(Covariance Matrix Calculation) module is implemented in VHDL, each MAC (Multiply-

accumulate) component has to be instantiated, which requires a large amount of code. In

Haskell it can be implemented by the zipWith function in one line as shown in Listing 17.

Although one can use a for-generate expression in VHDL to finish the instantiations in a for-

loop, it is still not as concise as the higher-order function. Sometimes the same algorithm can be

described by different built-in higher-order functions: as we discussed about the

implementation of the CORDIC_A algorithm in Sec. 5.2.1, it can be implemented by either the

mapAccumL function or the foldl function with a slight modification to the ca1 function.

Besides the built-in higher-order functions, a user-defined function can also take other functions

as parameters, which is a very powerful feature of CλaSH. Figure 44 is a graphical representation

of the dotp function which calculates the dot product of two vectors, as defined in Listing 41. If

the * operator and the + operator are represented by f and g respectively, as shown in Figure

45, this architecture can be described by the arch function defined in Listing 42 where f and g

are taken as two parameters. Then the dotp function becomes an instance of the arch

function, as shown in Listing 43. As f and g can be any function that takes two input values and

outputs one value, the arch function can be used to describe all the hardware circuits with this

architecture, which can reduce the amount of code and save the development time.

1 dotp xs ys = z

2 where

3 ws = zipWith (*) xs ys

4 z = foldl (+) 0 ws

Listing 41. Definition of dotp

Figure 44. Architecture of dotp

45

Figure 45. dotp-like architecture

1 arch f g a xs ys = z

2 where

3 ws = zipWith f xs ys

4 z = foldl g a ws

Listing 42. Definition of arch

 dotp xs ys = arch (*) (+) 0 xs ys

Listing 43. Definition of dotp with arch

In the implementation of the EVD module, a look-up table (LUT) of tangent values is created by

list comprehension. Listing 44 shows a simple example which creates a LUT of tangent values of

256 angles in the range of . The VHDL implementation of such a LUT usually takes two

steps: first, calculate the tangent values in MATLAB (or other tools); secondly, assign these

values to an array in VHDL. An alternative way is to use the TAN function provided by the

MATH_REAL package. Unlike the tan function in Haskell, the TAN function in VHDL does not

accept a parameterized input, which means each angle value has to be calculated first. Both the

two ways in VHDL are not as easy as the Haskell implementation and are more time-consuming.

 [tan pi/512*x | x <- [0..255]

Listing 44. LUT of tangent values

The CλaSH complier which is based on the GHC (Glasgow Haskell Compiler) provides an

interactive user interface where one can test the Haskell implementation with the simulate

function. In contrast, to test a VHDL implementation, one has to make a test bench which is

then simulated in a simulation tool such as ModelSim.

Although CλaSH has many advantages, it still needs to be improved. Currently the CλaSH

complier updates the state of a sequential circuit on every rising edge of the clock signal, while

in VHDL one can also choose to update the state on the falling edges. Therefore, VHDL is better

at describing the timing behavior. As some Haskell syntactic constructs such as list

comprehensions are not supported by CλaSH (yet), in many cases, the conversion from a Haskell

implementation to a CλaSH implementation is not straightforward. According to Sec. 5.1.1, a list

comprehension is used in the Haskell implementation of the cmc function, as shown in Listing

45. It is difficult for the compiler to predict the hardware cost of this list comprehension as there

is a filter i1 <= i2, which means it cannot be directly used in CλaSH. The solution to this

problem can be found in Appendix A. On the other hand, list comprehensions without a filter

46

should be supported by CλaSH as they have predictable hardware cost at compile time. And the

CλaSH compiler is not very efficient in generating VHDL code.

 pairs = [(ys !! i1, ys !! i2) |

 i1 <- [0..3], i2 <- [0..3], i1 <= i2]
Listing 45. List comprehension with a filter

According to the above discussion, the comparison between the CλaSH implementation and the

VHDL implementation is summarized in Table 2 where ++ means “very good”, + means “good”

and - means “not good".

 Conciseness
Development

Time
Description of

Timing behavior

CλaSH ++ + -

VHDL - - ++

Table 2. CλaSH vs VHDL

6.2 Synthesis

To evaluate the synthesis results of the CλaSH implementation, a VHDL implementation has

been provided by the author of [1] for comparison. However, it is likely that the provided VHDL

code does not exactly implement the algorithm according to the hardware designs described in

[1] as its simulation result turns out to be very different from the result presented in [1], which

makes it not comparable with our CλaSH implementation. The solution is to focus on a smaller

design, for example, CORDIC_A, instead of the complete MUSIC algorithm. The CλaSH

implementation of the CORDIC_A algorithm shown in Sec. 5.2.1 is a non-pipelined design which

finishes the 10 iterations in a long combinational path. However, a pipelined design is chosen for

the evaluation of the synthesis result because the synthesis tool which is Quartus II cannot

calculate the maximum clock frequency for a pure combinational circuit. As shown in Figure 46,

the pipelined CORDIC_A has 10 stages and the result of each stage is stored in a register. Both

the CλaSH and VHDL implementations of the pipelined CORDIC_A can be found in Appendix D.

As presented in Table 3, the synthesis results of these two implementations are approximately

equivalent. The CλaSH implementation uses a few more logic resources and registers than the

VHDL implementation but achieves a little higher maximum clock frequency.

Figure 46. Pipelined CORDIC_A

47

Fmax
(MHz)

Logic utilization
(in ALMs)

Registers Pins

VHDL 170.68 331 (<1%) 402 76

CλaSH 174.34 342 (<1%) 412 76

Table 3. Synthesis result of CORDIC_A

48

7. Conclusions
In this project, the MUSIC algorithm is successfully implemented in CλaSH. As the MUSIC

algorithm has many non-trivial aspects in hardware implementation, it proves the usability of

CλaSH in hardware descriptions. With a higher abstraction level, the CλaSH implementation

shows a better code conciseness than the VHDL implementation. The higher-order functions are

found very useful in hardware descriptions as they can describe most of the commonly used

hardware architectures in a very natural and concise way. Since a higher-order function takes

other functions as parameters, the function definition can be reused for many different

hardware designs as long as they have the same architecture, which significantly reduces the

amount of code and saves the development time. The fact that the CλaSH compiler is also an

interactive user interface where the designer can easily simulate the functions makes it more

convenient to test a CλaSH implementation than a VHDL implementation which requires a test

bench and a simulation tool. Although CλaSH has a limitation in describing the timing behaviors

as it updates all states on every rising edge of the clock signal, in most cases this limitation is not

a fatal defect. In the future, list comprehensions without a filter should be supported by CλaSH

and the efficiency in generating the VHDL code needs to be improved. In general, CλaSH is a very

suitable language for hardware descriptions.

49

References

[1] Tao Wang, “FPGA Implementation of the MUSIC Algorithm,” Master’s thesis, University of

Electronic Science and Technology, Chengdu, China, May 2010. [Online] Available:

http://www.docin.com/p-656385779.html

[2] Christiaan Baaij, Matthijs Kooijman, Jan Kuper, Arian Boeijink and Marco Gerards, “CλaSH:

Structural Descriptions of Synchronous Hardware using Haskell,” in Proceedings of the 13th

Conference on Digital System Design (DSD), Lille, France, Sept 1-3, 2010. pp. 714-721. IEEE

Computer Society. ISBN 978-0-7695-4171-6.

[3] Jan Kuper, “Hardware Specification with CλaSH,” in DSL 2013. Cluj, Romania, July 2013.

Available: http://dsl2013.math.ubbcluj.ro/files/DSL13-CLASH.pdf

[4] Keh-Chiarng Huarng and Chien-Chung Yeh, “A Unitary Transformation Method for Angle-

of-Arrival Estimation,” Signal Processing, IEEE Transactions on vol. 39, issue 4, pp. 975-977,

Apr, 1991.

[5] Sabih Gerez, “The CORDIC Algorithm and CORDIC Architectures,” March, 2009. [Online].

Available: http://wwwhome.ewi.utwente.nl/~gerezsh/sendfile/sendfile.php/idsp-

cordic.pdf?sendfile=idsp-cordic.pdf

[6] Zdzislaw Meglicki, “Jacobi Transformations of a Symmetric Matrix,” Feb, 2001. [Online].

Available: http://beige.ucs.indiana.edu/B673/node24.html

[7] Tao Wang and Ping Wei, “Hardware Efficient Architectures of Improved Jacobi Method to

Solve the Eigen Problem,” in Computer Engineering and Technology, 2010 2nd International

Conference on vol. 6, pp. 22-25, April 2010.

[8] Rinse Wester, Christiaan Baaij, Jan Kuper, “A Two Step Hardware Design Method Using

CλaSH,” in Proceedings of the 22nd International Conference on Field Programmable Logic

and Applications (FPL), Aug 29-31, 2012, Oslo, Norway. pages 181-188. IEEE Computer

Society. ISBN 978-1-4673-2257-7.

50

Appendix A: CλaSH code of cmc

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module CMC (topEntity) where

3

4 import CLaSH.Prelude

5

6 type CMCI = Vec 4 (Signed 16)

7 type CMCS = Vec 10 (Signed 16)

8 type CMCO = CMCS

9

10 cmcInit :: CMCS

11 cmcInit = vcopyI 0

12

13 topEntity = cmc

14

15 cmc ys = rs

16 where

17 rs = (cmcCore <^> cmcInit) ys

18

19 cmcCore :: CMCS -> CMCI -> (CMCS, CMCO)

20 cmcCore ss ys = (ss', rs)

21 where

22 inds = vreverse

$(v([(0,0),(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,2),(2,3),(3,

3)] :: [(Int, Int)]))

23 pairs = vmap (pair ys) inds

24 (ss', rs) = vunzip $ vzipWith mac ss pairs

25

26 mac s (x,y) = (s', out)

27 where

28 s' = x*y + s

29 out = s

30

31 pair ys (i1,i2) = (ys ! i1, ys ! i2)

Appendix B: CλaSH code of evd

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module EVD (topEntity) where

3

4 import CLaSH.Prelude

5 import CordicA

6 import CordicB

7 import Update

8

9 type Ev = Vec 4 (Signed 16)

10 type Col = (Signed 16, Signed 16, Signed 16, Signed 16)

11 type EvdS = (Bit,EvdI,Matrix,Bit)

12 type EvdI = ((Signed 16,Signed 16,Signed 16,Signed 16),

51

13 (Signed 16,Signed 16,Signed 16),

14 (Signed 16,Signed 16),

15 Signed 16)

16 type EvdO = (Ev,Evecs,Bit)

17 type Matrix = (Col,Col,Col,Col)

18 type Evecs = Vec 4 Ev

19

20 topEntity = evd

21

22 uptri_init :: EvdI

23 uptri_init = ((0,0,0,0),(0,0,0),(0,0),0)

24

25 evsinit :: Matrix

26 evsinit = (1000,0,0,0),(0,1000,0,0),(0,0,1000,0),(0,0,0,1000))

27

28 evd inp = outp

29 where

30 outp = (evdCore <^> (L,uptri_init,evsinit,L)) inp

31

32 evdCore :: EvdS -> EvdI -> (EvdS,EvdO)

33 evdCore (rst,uptri,evs,end) inp =

((rst',uptri',evs',end'),(evals,evecs,end'))

34 where

35 rst' = H

36 ((e11,e12,e13,e14),

37 (e22,e23,e24),

38 (e33,e34),

39 e44) = mux rst inp uptri

40

41 r1 = 2*e12

42 u1 = e22 - e11

43 r2 = 2*e34

44 u2 = e44 - e33

45

46 ds1 = cordic_a r1 u1

47 ds2 = cordic_a r2 u2

48 (e11',e22') = update (e12, e22, e11) ds1

49 (e33',e44') = update (e34, e44, e33) ds2

50 (e13_tmp,e23_tmp) = cordic_b (e13,e23) ds1

51 (e14_tmp,e24_tmp) = cordic_b (e14,e24) ds1

52 (e13',e14') = cordic_b (e13_tmp,e14_tmp) ds2

53 (e23',e24') = cordic_b (e23_tmp,e24_tmp) ds2

54

55 (e12', e34') = (0, 0)

56

57 uptri_tmp = ((e11',e13',e14',e12'),

58 (e33',e34',e23'),

59 (e44',e24'),

60 e22')

61

62 uptri' = mux end' uptri_tmp uptri

52

63

64 evals = e11 :> e22 :> e33 :> e44 :> Nil

65

66 ((v11,v21,v31,v41),

67 (v12,v22,v32,v42),

68 (v13,v23,v33,v43),

69 (v14,v24,v34,v44)) = evs

70

71 evs' = mux end' ((v11',v21',v31',v41'),

72 (v13',v23',v33',v43'),

73 (v14',v24',v34',v44'),

74 (v12',v22',v32',v42')) evs

75

76 (v11',v12') = cordic_b (v11,v12) ds1

77 (v21',v22') = cordic_b (v21,v22) ds1

78 (v31',v32') = cordic_b (v31,v32) ds1

79 (v41',v42') = cordic_b (v41,v42) ds1

80

81 (v13',v14') = cordic_b (v13,v14) ds2

82 (v23',v24') = cordic_b (v23,v24) ds2

83 (v33',v34') = cordic_b (v33,v34) ds2

84 (v43',v44') = cordic_b (v43,v44) ds2

85

86 evec1 = v11 :> v21 :> v31 :> v41 :> Nil

87 evec2 = v12 :> v22 :> v32 :> v42 :> Nil

88 evec3 = v13 :> v23 :> v33 :> v43 :> Nil

89 evec4 = v14 :> v24 :> v34 :> v44 :> Nil

90

91 evecs = evec1 :> evec2 :> evec3 :> evec4 :> Nil

92

93 end' = if (e12,e13,e14,e23,e24,e34)==(0,0,0,0,0,0)

then H

94 else L

95

96 mux s a b = if s == L then a

97 else b

98

99 stimuli = (replicate 10 ((1261,-401,859,247),(1403,-

715,189),(-160,87),541))

100 test = simulate (pack.evd.unpack)stimuli :: [EvdO]

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module CordicA (cordic_a) where

3

4 import CLaSH.Prelude

5 import Resize

6

7 type CordicI = (Signed 16, Signed 16)

8 type CordicO = Vec 10 Bit

53

9

10 dsinit :: Vec 10 Bit

11 dsinit = vcopyI H

12

13 cordic_a :: Signed 16 -> Signed 16 -> CordicO

14 cordic_a r u = ds

15 where

16 ids = $(v ([1..10]::[Int]))

17 ((r',u'),ds) = vmapAccumL ca (r,u) ids

18 --(r',u',ds) = vfoldl ca (r,u,dsinit) ids

19

20 -- core function

21 ca (ri,ui) i = ((ri',ui'),di)

22 where

23 p1 = myshiftR ri ((i-1)*2)

24 q1 = ri - p1

25 q2 = myshiftR ui i

26 q3 = myshiftR ri i

27 p2 = myshiftR ui ((i-1)*2)

28 q4 = ui - p2

29 di = getSign ri ui

30 ri' = addSub di q1 (shiftL q2 2)

31 ui' = addSub (complement di) q4 (shiftL q3 2)

32

33 -- rotate according to the direction : H/L

34 addSub L a b = a + b

35 addSub H a b = a - b

36

37 -- determine rotation direction

38 getSign x y = if vhead (toBV x) == vhead (toBV y) then H

39 else L

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module Update (update) where

3

4 import CLaSH.Prelude

5 import TanLUT

6 import Resize

7

8 type UpdateI1 = (Signed 16, Signed 16, Signed 16)

9 type UpdateI2 = Vec 10 Bit

10 type UpdateO = (Signed 16, Signed 16)

11

12 update :: UpdateI1 -> UpdateI2 -> UpdateO

13 update (a, b, c) ds = (b', c')

14 where

15 tanv = getTan (fromBV (vreverse ds))

16 tmp = mytrunc $ scale $ (myext a)*(myext tanv)

17 b' = b + tmp

54

18 c' = c - tmp

19

20 getTan :: Unsigned 10 -> Signed 16

21 getTan n = vreverse $(v (lut 10)) ! n

22

23 scale x = shiftR x 10

1 module TanLUT (lut) where

2

3 css 0 = [[]]

4 css n = concat [[-1:cs, 1:cs] | cs <- css (n-1)]

5

6 tangent cs = truncate $ 1024 * (tan $ sum $ zipWith (*) bs cs)

7

8 lut :: Int -> [Int]

9 lut n = map tangent (css n)

10

11 as = [45.0, 26.6, 14.0, 7.1, 3.6, 1.8, 0.9, 0.4, 0.2, 0.1]

12 bs = [pi/180*x | x<-as]

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module CordicB (cordic_b) where

3

4 import CLaSH.Prelude

5

6 type CordicI1 = (Signed 16, Signed 16)

7 type CordicI2 = Vec 10 Bit

8 type CordicO = (Signed 16, Signed 16)

9

10 cordic_b :: CordicI1 -> CordicI2 -> CordicO

11 cordic_b (x, y) ds = (x', y')

12 where

13 ids = $(v ([1..10]::[Int]))

14 (xtmp,ytmp) = vfoldl cb (x, y) (vzip ids ds)

15 x' = scale xtmp

16 y' = scale ytmp

17

18 cb (xi,yi) (ind,di) = (xi',yi')

19 where

20 q5 = shiftR yi (ind-1)

21 q6 = shiftR xi (ind-1)

22 xi' = addSub di xi q5

23 yi' = addSub (complement di) yi q6

24

25 -- scale by 1/K = 0.6073

26 scale x = y

27 where

28 s1 = shiftR x 1

55

29 s2 = shiftR x 3

30 s3 = shiftR x 6

31 s4 = shiftR x 9

32 s5 = shiftR x 13

33 m1 = s1 + s2

34 m2 = s3 + s4 + s5

35 y = m1 - m2

36

37 -- rotate according to the direction : H/L

38 addSub L a b = a + b

39 addSub H a b = a - b

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module Resize (myshiftR,myext,mytrunc) where

3

4 import CLaSH.Prelude

5

6 myshiftR :: Signed 16 -> Int -> Signed 16

7 myshiftR inp n | n == 0 = inp

8 | n > 15 = 0

9 | (toBV inp)!(n-1) == H = (shiftR inp n)+1

10 | otherwise = (shiftR inp n)

11

12

13 myext :: Signed 16 -> Signed 32

14 myext x = resize x

15

16 mytrunc:: Signed 32 -> Signed 16

17 mytrunc x = resize x

Appendix C: CλaSH code of sps

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module SPS (topEntity) where

3

4 import CLaSH.Prelude

5 import SvLUT

6 import Norm

7 import EigSort

8

9 topEntity = sps

10

11 type Row = Vec 4 (Signed 16)

12 type Matrix = Vec 4 Row

13 type SPSS = (Comp1S,Comp2S,Unsigned 8)

14 type SPSI = (Row,Matrix)

15 type SPSO = Unsigned 8

56

16 type Comp1S = Vec 2 (Signed 16, Unsigned 8)

17 type Comp2S = (Signed 16, Unsigned 8)

18

19 comp1Init :: Comp1S

20 comp1Init = vcopyI (0, 0)

21 comp2Init :: Comp2S

22 comp2Init = (0, 0)

23

24 sps inp = outp

25 where

26 outp = (spsCore <^> (comp1Init,comp2Init,0)) inp

27

28 spsCore :: SPSS -> SPSI -> (SPSS,SPSO)

29 spsCore (s1,s2,s3) (evals,evecs) = ((s1',s2',s3'), ind)

30 where

31 evec = (vreverse evecs) ! (eigsort evals)

32 sv = vreverse $(mv svlut) ! s3

33 normv = norm evec sv

34 tmp = comp1 s1 (normv,s3)

35 s1' = (normv,s3) +>> s1

36 s2' = comp2 s2 tmp

37 s3' = s3+1

38 ind = snd s2'

39

40 -- comp1

41 comp1 s (x3,ind3) = outp

42 where

43 (x2, ind2) = vhead s

44 (x1, ind1) = vlast s

45 outp = compPattern (x2,ind2) (x2>x3) (x2>x1)

46

47 compPattern c True True = c

48 compPattern c _ _ = (0,0)

49

50 -- comp2

51 comp2 s inp = if fst inp > fst s then inp

52 else s

53

54 -- pi/6 index:84

55 evals = $(v ([11,1,1,1]::[Int]))

56 ev1 = $(v ([49,-50,52,49]::[Int]))

57 ev2 = $(v ([47,80,37,-5]::[Int]))

58 ev3 = $(v ([56,-32,-12,-76]::[Int]))

59 ev4 = $(v ([-48,-10,76,-43]::[Int]))

60

61 -- pi/3 index:171

62 --evals = $(v ([11,1,1,1]::[Int]))

63 --ev1 = $(v ([-16,40,-70,57]::[Int]))

64 --ev2 = $(v ([28,69,59,31]::[Int]))

65 --ev3 = $(v ([-10,-57,32,75]::[Int]))

66 --ev4 = $(v ([94,-20,-26,8]::[Int]))

57

67

68 -- pi/4 index:127

69 --evals = $(v ([11,1,1,1]::[Int]))

70 --ev1 = $(v ([-32,70,-63,11]::[Int]))

71 --ev2 = $(v ([-76,18,61,13]::[Int]))

72 --ev3 = $(v ([55,54,42,48]::[Int]))

73 --ev4 = $(v ([-14,-42,-24,86]::[Int]))

74

75 stimuli = (evals,ev1:>ev2:>ev3:>ev4:>Nil)

76

77 test = simulate (sps.unpack) (replicate 256 stimuli) ::[SPSO]

1 {-# LANGUAGE GADTs, ScopedTypeVariables, TemplateHaskell,

DataKinds #-}

2 module EigSort (eigsort) where

3

4 import CLaSH.Prelude

5

6 type SortI = Vec 4 (Signed 16)

7 type Vinit = Vec 4 (Signed 16, Unsigned 8)

8 type SortO = Unsigned 8

9

10 vInit :: Vinit

11 vInit = vcopyI (0,0)

12

13 eigsort :: SortI -> SortO

14 eigsort evals = ind

15 where

16 inds = $(v ([0..3]::[Int]))

17 ys = vzip evals inds

18 vs' = vfoldl sort vInit ys

19 ind = snd $ vhead vs'

20

21 sort vsi y = vsi'

22 where

23 (y', vsi') = vfoldl cswap (y,vInit) vsi

24

25 cswap (a,xs) b = if fst a > fst b then (b, xs <<+ a)

26 else (a, xs <<+ b)

27

28 stimuli = $(v ([6,19,10,4]::[Int]))

29 test = eigsort stimuli

1 {-# LANGUAGE TemplateHaskell #-}

2 module SvLUT (svlut,mv) where

3

4 import CLaSH.Prelude

5

6 as = [(2*n-1)*pi/2 | n <- [1,2]]

58

7 bs = [n/512*pi | n <- [0..255]]

8

9 svlut = [[round $ (128*) $ cos $ (a*) $ sin b | a <-

as]++[round $ (128*) $ sin $ (a*) $ sin b | a <- as] | b <-

bs]

10

11 mv [] = [| Nil |]

12 mv (r:rs) = [| $(v r) :> $(mv rs) |]

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module Norm (norm) where

3

4 import CLaSH.Prelude

5

6 type NormI = Vec 4 (Signed 16)

7 type NormO = Signed 16

8

9 norm :: NormI -> NormI -> NormO

10 norm xs ys = outp

11 where

12 dp = shiftR (dotp xs ys) 7

13 outp = dp*dp

14

15 -- dot product

16 dotp xs ys = vfoldl (+) 0 ws

17 where

18 ws = vzipWith (*) xs ys

Appendix D: CλaSH & VHDL code of pipelined CORDIC_A

CλaSH code:

1 {-# LANGUAGE ScopedTypeVariables, TemplateHaskell, DataKinds

#-}

2 module CordicA (topEntity) where

3

4 import CLaSH.Prelude

5

6 type CordicS = Vec 10 (Signed 16, Signed 16, Vec 10 Bit)

7 type CordicI = (Signed 16, Signed 16)

8 type CordicO = (Signed 16, Signed 16, Vec 10 Bit)

9

10 topEntity = cordic_a

11

12 cordic_a inp = outp

59

13 where

14 outp = (cordicA_core <^> sInit) inp

15

16 -- initial state

17 dsinit :: Vec 10 Bit

18 dsinit = vcopyI H

19 sInit :: CordicS

20 sInit = vcopyI (0,0,dsinit)

21

22 -- core function

23 cordicA_core :: CordicS -> CordicI -> (CordicS, CordicO)

24 cordicA_core s (ri,ui) = (s',outp)

25 where

26 ids = $(v ([1..10]::[Int]))

27 pipeIns = vzip ids ((ri,ui,dsinit) +>> s)

28 s' = vmap ca pipeIns

29 outp = vlast s

30

31 -- pipeline component

32 ca (pipeId,(ri,ui,dsi)) = (ro,uo,dso)

33 where

34 p1 = shiftR ri ((pipeId-1)*2)

35 q1 = ri - p1

36 q2 = shiftR ui pipeId

37 q3 = shiftR ri pipeId

38 p2 = shiftR ui ((pipeId-1)*2)

39 q4 = ui - p2

40 d = getSign ri ui

41 dso = d +>> dsi

42 ro = addSub d q1 (shiftL q2 2)

43 uo = addSub (complement d) q4 (shiftL q3 2)

44

45 -- rotate according to the direction : H/L

46 addSub L a b = a + b

47 addSub H a b = a - b

48

49 getSign x y = if vhead (toBV x) == vhead (toBV y) then H

50 else L

VHDL code:

1 LIBRARY IEEE;

2 USE IEEE.std_logic_1164.ALL;

3 USE ieee.numeric_std.ALL;

4

5 ENTITY CordicA IS

6 PORT(rst : IN STD_LOGIC;

7 clk : IN STD_LOGIC;

8 ri : IN SIGNED (15 DOWNTO 0);

9 ui : IN SIGNED (15 DOWNTO 0);

10 ro : OUT SIGNED (15 DOWNTO 0);

60

11 uo : OUT SIGNED (15 DOWNTO 0);

12 ds : OUT STD_LOGIC_VECTOR (9 DOWNTO 0));

13 END CordicA;

14

15 ARCHITECTURE struct OF CordicA IS

16

17 TYPE inds IS ARRAY (0 TO 9) OF INTEGER RANGE 1 TO 10;

18 TYPE ris IS ARRAY (0 TO 10) OF SIGNED (15 DOWNTO 0);

19 TYPE uis IS ARRAY (0 TO 10) OF SIGNED (15 DOWNTO 0);

20

21 CONSTANT inds1 : inds:= (1,2,3,4,5,6,7,8,9,10);

22 SIGNAL ris1 : ris;

23 SIGNAL uis1 : uis;

24

25 COMPONENT ca

26 PORT (rst : IN STD_LOGIC;

27 clk : IN STD_LOGIC;

28 ind : IN INTEGER RANGE 1 TO 10;

29 ri : IN SIGNED (15 DOWNTO 0);

30 ui : IN SIGNED (15 DOWNTO 0);

31 ro : OUT SIGNED (15 DOWNTO 0);

32 uo : OUT SIGNED (15 DOWNTO 0);

33 d : OUT STD_LOGIC

34);

35 END COMPONENT;

36

37 BEGIN

38

39 cordics : FOR i IN 0 TO 9 GENERATE

40 cordica_x : ca

41 PORT MAP (rst,

42 clk,

43 inds1(i),

44 ris1(i),

45 uis1(i),

46 ris1(i+1),

47 uis1(i+1),

48 ds(i)

49);

50 END GENERATE;

51

52

53

54 process (rst,clk)

55 BEGIN

56 if (rst = '1') then

57 ro <= (others => '0');

58 uo <= (others => '0');

59 ris1(0) <= (others => '0');

60 uis1(0) <= (others => '0');

61 elsif (rising_edge(clk)) then

61

62 ris1(0) <= ri;

63 uis1(0) <= ui;

64 ro <= ris1(10);

65 uo <= uis1(10);

66 end if;

67 end process;

68

69 END struct;

1 LIBRARY IEEE;

2 USE IEEE.std_logic_1164.ALL;

3 USE IEEE.numeric_std.ALL;

4 ENTITY ca IS

5 PORT(rst : IN STD_LOGIC;

6 clk : IN STD_LOGIC;

7 ind : IN INTEGER RANGE 1 TO 10;

8 ri : IN SIGNED (15 DOWNTO 0);

9 ui : IN SIGNED (15 DOWNTO 0);

10 ro : OUT SIGNED (15 DOWNTO 0);

11 uo : OUT SIGNED (15 DOWNTO 0);

12 d : OUT STD_LOGIC

13);

14 END ca;

15

16 ARCHITECTURE behavioral OF ca IS

17

18 SIGNAL p1 : SIGNED (15 DOWNTO 0);

19 SIGNAL q1 : SIGNED (15 DOWNTO 0);

20 SIGNAL q2 : SIGNED (15 DOWNTO 0);

21 SIGNAL q3 : SIGNED (15 DOWNTO 0);

22 SIGNAL p2 : SIGNED (15 DOWNTO 0);

23 SIGNAL q4 : SIGNED (15 DOWNTO 0);

24 SIGNAL ro_tmp : SIGNED (15 DOWNTO 0);

25 SIGNAL uo_tmp : SIGNED (15 DOWNTO 0);

26

27 BEGIN

28

29 compute : PROCESS (ri,ui,ind,p2,p1,q1,q2,q3,q4)

30 BEGIN

31 p1 <= shift_right(ri,2*(ind-1));

32 q1 <= ri - p1;

33 q2 <= shift_right(ui,ind);

34 q3 <= shift_right(ri,ind);

35 p2 <= shift_right(ui,2*(ind-1));

36 q4 <= ui - p2;

37 if ri(15) = ui(15) then

38 ro_tmp <= q1 - (shift_left(q2,2));

39 uo_tmp <= q4 + (shift_left(q3,2));

40 d <= '1';

41 else

62

42 ro_tmp <= q1 + (shift_left(q2,2));

43 uo_tmp <= q4 - (shift_left(q3,2));

44 d <= '0';

45 end if;

46

47 END PROCESS;

48

49 update : PROCESS (clk,rst)

50 BEGIN

51 if (rst = '1') then

52 ro <= (others => '0');

53 uo <= (others => '0');

54 elsif (rising_edge(clk)) then

55 ro <= ro_tmp;

56 uo <= uo_tmp;

57 end if;

58

59 END PROCESS;

60

61 END behavioral;

	Table of Contents
	Abstract
	1. Introduction
	1.1 Motivation
	1.2 Methodology
	1.3 Report Outline

	2. CλaSH
	2.1 Introduction
	2.2 Hardware Description in Haskell
	2.2.1 Functions
	2.2.2 Types
	2.2.3 Polymorphism
	2.2.4 Choices
	2.2.5 Higher-order Functions
	2.2.6 Recursive Functions

	2.3 The CλaSH Compiler

	3. MUSIC Algorithm
	4. Hardware Implementation
	4.1 Pretreatment
	4.2 Covariance Matrix Calculation
	4.3 Eigenvalue Decomposition
	4.3.1 The CORDIC Algorithm
	4.3.2 The Classical Jacobi Method
	4.3.3 The Improved Jacobi Method
	4.3.4 Systolic Array

	4.4 Spectral Peak Search

	5. CλaSH Implementation of MUSIC
	5.1 Covariance Matrix Calculation
	5.1.1 CλaSH Implementation
	5.1.2 Testing

	5.2 Eigenvalue Decomposition
	5.2.1 CλaSH Implementation
	5.2.2 Testing

	5.3 Spectral Peak Search
	5.3.1 CλaSH Implementation
	5.3.2 Testing

	6. Evaluation
	6.1 Hardware Description
	6.2 Synthesis

	7. Conclusions
	References
	Appendix A: CλaSH code of cmc
	Appendix B: CλaSH code of evd
	Appendix C: CλaSH code of sps
	Appendix D: CλaSH & VHDL code of pipelined CORDIC_A

