
July, 2014

Master Thesis

Improving Query Performance
of Holistic Aggregate Queries
for Real-Time Data Exploration

Dennis Pallett
(s0167304)

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

Chair Databases

Exam committee:
dr. ir. Maurice van Keulen
prof. dr. Peter M.G. Apers
dr. Andreas Wombacher
ing. Jan Flokstra

Abstract

This thesis reports on the research done into improving query performance for holistic aggregate queries
for real-time data exploration. There are three types of aggregate functions: distributive, algebraic and
holistic. Distributive and algebraic aggregate functions can be computed in a distributive manner thereby
making it possible to improve the performance of queries with such functions using the distributive
property. However holistic functions cannot be computed distributively which is why a different method
for improving the performance is needed. This research has been an attempt at this, for the ultimate
goal of improving the performance of such queries to allow real-time exploration of data sets and holistic
aggregate functions. Due to the complexity of such functions research has focused on a specific type,
namely the nth percentile functions whereby the median (i.e. the 50th percentile) is primarily used.

Existing research has primarily focused on optimizing holistic aggregate queries by computing approx-
imate results with a certain error bound or guarantee on the chance of an exact result. Most existing
algorithms use sampling or (wavelet) transformations to improve query performance but these tech-
niques will never be able to return exact results in every case. In this research focus has been on
finding methods for improving query performance whilst always returning exact correct results.

Results of this research has shown that the biggest factor that influences the performance of a database
query are disk operations, whereby two different types of disk operation can be differentiated: seeking
and scanning. A scanning operation is primarily limited by the bandwidth of the disk, i.e. how many
bytes can be read per second, whereas the seeking operation is limited by how fast the physical head
of the disk can be moved to the correct location. Any database query that requires fetching a lot of data
from disk will have its performance severely limited by the bandwidth of the disk. In most cases disk
seeking is very limited, provided the correct indexes are setup. Operations done in-memory, such as
sorting a very large dataset, can also have a negative effect on the performance of a query. Although
generally operations in-memory are considered very fast, they cannot be ignored when dealing with
query performance.

Investigation into the current performance of median queries has shown that the basic algorithm for
processing such queries, currently used by most database engines, has two main problems which are
the cause of bad query performance and poor scalability: (i) all the tuples needed to calculate the
median of a query must be fetched from disk and (ii) all these tuples must be stored and sorted in-
memory before the exact median can be returned. For very large datasets and large queries, involving
hundreds of thousands of individual tuples, this algorithm has very poor performance.

To solve these problems an alternative algorithm has been developed called the shifting algorithm. This
algorithm relies on pre-computed binary data streams and specific ”shift factors” to avoid the need to
fetch all tuples from disk or to do any in-memory storage or sorting. Experimental test results have
shown that this algorithm is able to improve the query performance of median queries by several orders
and improves the overall scalability of such queries.

Unfortunately the shifting algorithm is unsuitable for data sets with multiple dimensions, as is often the
case in the field of OLAP and data warehousing, due to the increased complexity of multiple dimensions.
Therefore another alternative algorithm called the full scanning algorithm has been developed. This
algorithm relies on a pre-computed pre-sorted binary stream of the full data set but does not require the
use of ”shift factors”. This algorithm does need to fetch all tuples from disk and store them in-memory
but does so in a more efficient way than the basic algorithm due to the pre-computed binary data stream.
Additional, this algorithm does not need to sort in-memory all the tuples to determine the median. This
algorithm is able to significantly improve the query performance of median queries but does not improve
the scalability of such queries.

To also improve the scalability a variant of the full scanning algorithm has been developed which de-
pends on calculating the number of tuples affected by a query before calculating the median. With this
extra piece of information (i.e. the tuple count) the full scanning algorithm is able to reduce the scanning

- i -

time and avoids the need to store all tuples in-memory. Test results have shown that this variant is able
to improve absolute query performance even further and also improves the scalability of median queries
in a similar way as the shifting algorithm. It is important to note however that this variant depends on
the availability of an efficient count operation.

Two additional optimizations have been developed which can be used together with all of the alternative
algorithms to further improve query performance. The first optimization, called the with-values optimiza-
tion, relies on including the actual measure values into the pre-computed data structures used by the
algorithms. This avoids the need to fetch the actual values, once the correct tuple has been identified
as the median, and allows the algorithms to process median queries without the need for the original
dataset. This is especially beneficial in an OLAP context, as it means that very large datasets can
remain in the data warehouse whilst the end-user can still explore this dataset using the much smaller
pre-computed data structure. Test results have shown that query performance can be improved with
this optimization but can also be deteriorated.

The second optimization, called the sub-groups optimization, is focused on improving the performance
of queries that cover a (very) small part of the full data set. Test results have shown that the performance
of such queries may actually worsen when one of the alternative algorithms are used instead of the basic
algorithm. To solve this problem the sub-groups optimization relies on pre-computed additional data
structures which are specifically tailored towards smaller queries thereby improving their performance.
Test results have shown however that this effect is quite limited and requires a lot of storage. Therefore
a very careful consideration must be made before deciding to use this optimization.

Finally a framework, the algorithm selection framework, has been developed to aid with the selection
of the right algorithm and optimizations. This framework is used to provide a clear guidance in which
case each algorithm and optimization should be used. It consists of an easy-to-use decision tree and
has a solid empirical background because it is based the experimental test results and evaluation of the
algorithms and optimizations. Using the framework the right algorithm and optimizations are selected
for every circumstance and/or data set.

This research has conclusively shown how the query performance and scalability of median aggregation
queries can be improved. Investigation has shown that there is no single algorithm that is suitable for
this task but instead a set of different algorithms, optimizations and a selection framework has been
developed that are able to improve query performance for a varying range of use-cases.

- ii -

Table of Contents

Abstract i

Table of Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 2
1.2 Research Question . 2
1.3 Structure of this document . 3

2 Related Work 4
2.1 Research fields . 4
2.2 Existing algorithms & techniques . 5
2.3 Approaches used by existing RDBMS products . 7
2.4 Current research of COMMIT/Work Package 5 . 9
2.5 Conclusion . 11

3 Query Performance 13
3.1 Performance factors . 13
3.2 Measuring performance . 14
3.3 Empirical verification . 15
3.4 Conclusion . 18

4 Experimental setup 19
4.1 Datasets . 19
4.2 Test queries . 21
4.3 Test platform . 22
4.4 Running experiments . 22

5 Algorithm development 25
5.1 Basic algorithm . 25
5.2 The shifting algorithm . 27
5.3 The full scanning algorithm . 30
5.4 Sub-groups optimization . 35
5.5 Conclusion . 37

6 Evaluation 39
6.1 Query performance . 39
6.2 Storage requirements . 51
6.3 Summary . 54
6.4 Conclusion . 55

7 Algorithm selection framework 57
7.1 Development of framework . 57
7.2 Evaluation . 59
7.3 Conclusion . 60

- iii -

TABLE OF CONTENTS

8 Conclusions 61
8.1 Research Questions . 61
8.2 Threats to Validity . 64
8.3 Future work . 65

Bibliography 66

- iv -

List of Figures

1.1 A simple aggegration example . 1

2.1 A screenshot of the Stairwalker prototype . 11

4.1 The Andelfingen sensor station near the river Thur . 20
4.2 The first screen: to select the test queries to run . 22
4.3 The second screen: where the database details and query options are set 23
4.4 The last screen: showing the progress of the tests as they are automatically executed . . 23

5.1 Results of the measurements with the basic algorithm and the 10MM PEGEL dataset . . 26
5.2 Pre-computed left- and right data streams for the sample dataset 28
5.3 Results of the measurements with the shifting algorithm and the 10MM PEGEL dataset . 28
5.4 Results of the shifting algorithm with values and the 10MM PEGEL dataset 29
5.5 Pre-computed full data stream for the sample dataset . 30
5.6 Results of the full scanning algorithm and the 10MM PEGEL dataset 31
5.7 Results of the count optimization and the 10MM PEGEL dataset 32
5.8 Results of the count optimization and the 1MM PEGEL dataset 32
5.9 Results with the full scan algorithm and the 10MM Twitter dataset 33
5.10 Results with the full scan algorithm and values and the 10MM Twitter dataset 34
5.11 Results with the count optimization and values and the 10MM Twitter dataset. 35
5.12 Pre-computed sub-group data stream for the sample dataset 36
5.13 Comparison of the shifting algorithm and the sub-groups optimization 36
5.14 Results of the full scanning algorithm and the sub-groups optimization 37
5.15 Results of the full scanning algorithm with count, values and sub-groups optimization . . . 37

6.1 Test results for the basic algorithm . 40
6.2 Test results for the shifting algorithm . 41
6.3 Test results for the shifting algorithm for the PEGEL dataset of various sizes 42
6.4 Test results for the full scanning algorithm . 43
6.5 Test results for the full scanning with count variant . 45
6.6 Test results showing the relationship between query performance and the dataset size . . 46
6.7 Test results for the with values optimization for the shifting algorithm 47
6.8 Test results for the with values optimization for the full scanning algorithm 48
6.9 Test results for the with values optimization for the full scanning with count algorithm . . . 49
6.10 Test results for the sub-groups optimization with the shifting algorithm 50
6.11 Test results of the full scanning algorithm and the sub-groups optimization 50
6.12 Test results of the full scanning with count algorithm and the sub-groups optimization . . . 51
6.13 Test results of the full scanning with count, values and sub-groups optimization 51
6.14 Query performance comparison for the PEGEL data set 54
6.15 Query performance comparison for the KNMI data set . 55
6.16 Query performance comparison for the Twitter data set . 55

7.1 Algorithm selection decision tree . 58

- v -

List of Tables

2.1 Sample dataset (level 0) . 10
2.2 Pre-aggregate level 1 of the sample dataset . 10
2.3 Pre-aggregate level 2 of the sample dataset . 10

3.1 Results for empirical verification of performance measures with PostgreSQL 16
3.2 Results for empirical verification of performance measures with MySQL 16
3.3 Results for empirical verification of performance measures with MonetDB 17

4.1 Overview of the three datasets used in our reserach . 19
4.2 Sample of the PEGEL dataset . 20
4.3 Sample of the KNMI dataset . 20
4.4 Sample of the Twitter dataset . 21
4.5 The different versions generated for each dataset . 21
4.6 Test queries for the PEGEL dataset . 21

5.1 Sample dataset . 27
5.2 Sample dataset with shift factors . 28

6.1 Storage requirements of the shifting algorithm . 52
6.2 Storage requirements of the full scanning algorithm . 52
6.3 Storage requirements of the including values optimization 53

- vi -

Chapter 1

Introduction

Analysis and exploration of data stored in a database management system often involves the use of
aggregation operations. A simple example of an aggregation operation, shown in figure 1.1, would be to
retrieve a list of total number of sales per shop (for a database that contains all the sales for a chain of
shops) whereby an aggregation function is used to count the number of sales for each unique shop. An
aggregation function is a function that is used to summarize a set of data tuples into a single value and
is often used in conjunction with a grouping operator to execute the aggregate function for a specific set
of groups, exactly as in the shops example. The most simple aggregation function is the count function
which counts all the tuples in the data set and returns a single integer value: the total count of all the
tuples or, if used in conjunction with a grouping operator, a count of tuples for each group.

Figure 1.1: A simple aggegration example

Aggregation functions can be divided into three distinct types [16]:

Distributive An aggregate function is distributive when it can be computed in a distributed manner.
For example, assume that a data set is partitioned into n sets. The distributive aggregate function
is applied to each set resulting in n aggregate values. If the aggregate value of the whole data
set can now be computed by applying the same aggregate function to all the set aggregate
values then the aggregate function is distributive. Examples of distributive aggregate functions
are sum(), count(), min(), and max().

Algebraic An aggregate function is algebraic if it can be computed by an algebraic function with M
arguments (where M is a bounded positive integer) whereby each argument can be obtained with
a distributive aggregate function. An example of an algebraic aggregate function is the average()
function, which can be computed with the following algebraic expression: sum()

count() , with both sum()
and count() being distributive.

Holistic An aggregate function is holistic if it cannot be described with an algebraic function with M
arguments. An example of a holistic aggregate function is the median() function, which cannot
be described by an algebraic expression or calculated in a distributive manner.

Aggregation operations are most often used for data warehousing, data mining and OLAP purposes [7].
One important aspect of these purposes is that they often concern large amounts of data, easily reach-

- 1 -

CHAPTER 1. INTRODUCTION

ing millions or billions of individual data tuples stored in the database [27]. Computing the results for a
database query with an aggregation function and possibly a grouping operator for these kinds of data
sets can take a long time, ranging from a few seconds to possibly minutes or hours depending on the
size of the data set and the complexity of the query [2]. Therefore if any (near) real-time analysis is
required the performance of these aggregation queries must be improved by several orders to make
this possible [19].

Many existing approaches for improving performance depend on pre-calculated structures (such as
indexes) or higher-level views of the full data set (i.e. pre-aggregated structures). However these
techniques are only suitable for distributive and algebraic aggregate functions because they rely on
the distributive property of the aggregation function, meaning that the result of the function can be
calculated using (pre-aggregated) sub-parts instead of all the individual elements thereby avoiding the
need to access all individual elements. This is not the case for holistic functions because the result of
any holistic function cannot be computed using pre-aggregated sub-parts and instead generally requires
access to all the individual elements. Many existing techniques for improving query performance for
these types of aggregation functions use approximation whereby an exact result is never computed but
an approximation with a certain error bound or guarantee. These techniques are most often based
on the usage of sampling and can be used for holistic aggregation functions but will never be able to
provide an exact result.

The goal of this research is to develop a new algorithm that will improve the performance of queries that
contain a holistic aggregate function without sacrificing accuracy of the results. Due to the complexity
of holistic functions it is assumed that a single algorithm that improves the performance for each holistic
aggregation function does not exist or delivers very little performance improvement. Therefore this
research focuses on a specific type of holistic function, namely finding the k th smallest element in a
dataset.The most well-known example for this type of function is the median, which always returns the
N
2 th smallest element for a dataset with N elements, i.e. the middle element or an average of the 2
middle elements when there are is even number of elements in the dataset. Other common examples
are quintiles (1st, 2nd, 3rd and 4th) and percentiles.

The direction of this research is primarily focused on reducing the need for the aggregation function to
access all the individual tuples, as is usually the case for holistic aggregation functions. Although holistic
functions cannot be calculated in a distributive way, and can therefore not rely on pre-aggregated sub-
parts, other (existing) techniques are likely to be available and can be combined to reduce or eliminate
the need to access all individual tuples.

1.1 Motivation

This research is part of the COMMIT project, which is a public-private research community aimed at
solving many great challenges in information and communication science [9].More specifically, this re-
search contributes a small part to Work Package 5 (WP5) [10] of the TimeTrails sub-project of the COM-
MIT project. This work package is focused on designing and developing query processing techniques
to support real-time trajectory exploration and data mining. Currently query processing techniques have
been developed and evaluated to support real-time exploration of data when a distributive or algebraic
aggregation is used. However the currently developed techniques cannot be used to support real-time
exploration of data when a holistic aggregation is used. The results of this thesis are aimed at making
this possible.

A concrete example whereby this work could be used is for exploring a dataset of railway incidents
overlaid over a country map. Currently it is already to possible to show the average number of incidents
per area but averages are very susceptible to outliers therefore it would be very useful to also include
the median number of incidents (or the 25th and 75th percentile to get a lower- and upper-bound) per
area to provide the end-user better insight into the data set.

1.2 Research Question

The main research question is as follows:

How can the performance of queries with the median aggregate function be improved whilst
still returning accurate results?

- 2 -

CHAPTER 1. INTRODUCTION

To be able to answer the main research question the following sub-questions will be considered as part
of this research:

What factors have an influence on the performance of a database query?
Before the performance of median aggregate queries can be improved it is absolutely necessary
to have a thorough understanding of the most important factors that have an influence on the
performance of database queries and how they can be measured as accurately as possible.

Which algorithms are able to deliver improved query performance?
The sub-question will lead to a clear description of several new algorithms that are able to com-
pute the exact results of a median query whilst improving the query performance.

Which algorithms are most suitable in different circumstances?
In this research several different data sets and test queries, each with their own characteristics,
will be used to simulate real-world conditions. It is very likely that these different data properties
will lead to several algorithms providing the best query performance in different circumstances,
therefore it is important to have a framework that is able to clearly define which algorithm is best
suited for specific situations.

1.3 Structure of this document

In chapter 2 existing research related to this research and existing approaches currently used by com-
mercial and open-source RDBMS packages will be discussed. This chapter will provide a conclusion
to the first sub-question. Then, in chapter 3 the concept of query performance will be discussed. In
specific, which factors influence query performance, how query performance can be measured and an
empirical verification of these factors and measures. Chapter 4 outlines the exact test setup used to run
experiments with regards to the datasets, test queries, hardware, RDBMS products, etc.

In chapter 5 the alternative algorithms and optimizations that have been developed as part of the re-
search are discussed and their advantages and disadvantages. This chapter provides a conclusion to
the second sub-question. In chapter 6 the alternative algorithms and optimizations are systematically
evaluated on two main points: query performance and storage requirements. This evaluation is based
on experimental test results and analysis. Based on the work discussed in chapter 5 and the results
of the evaluation as outlined in chapter 6, the algorithm selection framework is presented in chapter 7.
This chapter provides the conclusion to the third sub-question.

Finally, in chapter 8 this thesis is concluded by answering the research questions, discussing potential
threats to the validity of this research and outlining possible future research directions.

- 3 -

Chapter 2

Related Work

This chapter provides an overview of existing work that is related to database management systems and
efficient query processing with (holistic) aggregate functions. The first section contains short discussion
on the different fields of research that are related and how they differ. In the second section an overview
is provided of some of the most common techniques and algorithms. The final section of this chapter
will look into existing RDBMS products and their existing access methods for holistic aggregate queries,
if any.

2.1 Research fields

Current research into aggregation functions for finding the k th smallest element has primarily been done
in the field of data streams with a focus on maintaining continuous up-to-date statistics with regards
to various k, such as the median. Most of the research has concentrated on solutions that provide
approximations instead of exact answers, primarily because of the following reasons: (i) data streams
often tend to involve many tuples in short time periods whereby a certain degree of performance is
required which cannot be achieved when exact results are required and (ii) exact results are most
often not necessary to be able to use the statistical information for the desired purpose, which means
approximations are more than acceptable in most use-cases. Subsection 2.1.1 discusses the different
types of approximation techniques in further detail.

Research has also been done in the context of OLAP and data warehousing, although most of the focus
of this research is into improving the performance of distributive and algebraic aggregate functions with
very limited research into holistic aggregate functions. Subsection 2.1.2 discusses the existing state of
this research field.

2.1.1 Approximation techniques

Approximation techniques are most commonly used when computing aggregation statistics for data
streams. Data streams are different from data warehouses and therefore require different query pro-
cessing techniques. The most important difference between a regular database/data warehouse and a
data stream is that (i) the complete data set should be regarded as unbounded, i.e. new data is contin-
uously incoming [23], and (ii) often at a fixed interval (e.g. every second) with a high volume (e.g. 1000
new tuples per second) [14]. One of the implications of this is that it is impossible to pre-compute any
type of index, higher-level view of the data or other types of additional data structures to improve query
processing because the full data set is never known. However it is possible to maintain a separate
online data structure for improved query processing however this data structure must be maintained
(i.e. updated with new data tuples) during the processing of the data streams. This adds additional
restrictions on any new algorithm.

To be able to achieve the performance that is necessary to process data streams and process the de-
sired aggregation queries most query processing algorithms provide solutions for approximate answers.
The various solutions, some of which will be discussed in section 2.2, can be divided into one of the
following types:

- 4 -

CHAPTER 2. RELATED WORK

Sampling Algorithms based on sampling use a much smaller subset of the actual data set to pro-
cess aggregation queries. By using a much smaller subset the algorithms do not need to com-
plete a full pass over the whole data set every time new data is added but only need to complete a
pass over the subset. Sampling can be random or deterministic. The method of sampling tuples
to generate the subset greatly influences the actual result of the aggregation queries and is there-
fore generally the most important part of any sampling algorithm. An often-made improvement
to sampling techniques are the use of pre-computed samples which are continuously updated
during processing of the data streams. By maintaining a pre-computed subset of tuples query
results can be computed even faster.

Wavelets Algorithms based on wavelets involve the use of complex transformations to get a repre-
sentation of the full data set which is much smaller and can then be used to process aggregation
queries. The original data is no longer necessary to compute a result for an aggregation query
but any answer will always be an approximate answer.

Although approximation techniques can never return an accurate result, often an indication of the error
in the approximation is returned. This can either be a guarantee on the error of the answer, i.e. the
approximated answer is within 5% of the exact answer or a guarantee on the probability of a correct
answer, i.e. in 95% of the times the approximated answer is correct but it is not possible to know exactly
when. Some algorithms are able to provide both guarantees, i.e. in 95% of the times the approximated
answer is correct and when it is not then the error falls within a margin of 5%.

2.1.2 OLAP approaches

The previous section discussed the different types of approximation techniques which are most com-
monly used for data stream processing. However these same techniques (e.g. sampling) are often
also applied in the field of data warehousing, OLAP and decision support systems (DSS’s). However
they can often be optimized even further since in most cases the full data set is known before hand (a
priori) and updates are relatively infrequent, which generally means that the complexity of updates is
significantly simplified whilst the query processing part of any algorithm can be further optimized.

Since the full extent of the dataset is known a priori and updates are quite infrequent the use of additional
data structures are very common with algorithms for optimizing query performance for data warehouses.
These additional data structures come in all kinds of forms, such as trees, hash tables, lists, etc, and are
used by the query engine to be able to compute the answer for any aggregation query using the separate
data structures instead of the full data set, thereby achieving a (sub-)linear performance.

Subsection 2.2.3 outlines some existing algorithms for optimizing aggregation queries in data ware-
houses.

2.2 Existing algorithms & techniques

This section will provide a survey of existing techniques and algorithms based on sampling for optimizing
query processing for aggregate queries and in specific for computing k th smallest element queries on a
large dataset. Most of the algorithms outlined in this section do not fit the requirements exactly because
none of them are able to compute an exact result however they do provide a background.

Subsection 2.2.1 will first list some of the most prominent sampling algorithms. Then subsection 2.2.2
will discuss some techniques based on wavelets. Finally, subsection 2.2.3 will outline some algorithms
which are specific tailored towards OLAP purposes.

2.2.1 Sampling algorithms

This subsection will discuss some sampling algorithms for optimizing aggregation query performance.

In [24] Manku, Rajagopalan & Lindsay (1998) describe a general framework for single-pass approximate
quantile finding algorithms on large data sets and present several new algorithms based on this frame-
work with guaranteed error bounds. Only one of the described algorithms uses sampling, to reduce
the memory footprint of the algorithm. They conclude that their algorithms represent a clear trade-off in
accuracy and the memory requirements, which poses a challenging choice for users.

- 5 -

CHAPTER 2. RELATED WORK

In [25] Manku, Rajagopalan & Lindsay (1999) continue with their previous work from [24] and outline two
improvements on their original sampling method from their previous paper: (i) previously the length of
the data set had to be known to the algorithm beforehand, which is not very practical when dealing with
streams of data. In this paper they introduce a new sampling scheme that does not exhibit this property
and (ii) they introduce a new algorithm that is better optimized with regards to memory for estimating
extreme quantiles (i.e. quantiles with a value in the top 1% of the elements).

In [17] Greenwald & Khanna (2001) present a new online algorithm for computing quantile summaries of
large data sets, which also does not need knowledge of the size of the data set a priori. Their algorithm
is based on a pre-computed sorted data structure which consists of a subset of the complete data
set and is dynamically maintained during arrival of new data. At this moment the work by Greenwald &
Khanna is considered to be one of the best algorithms for quantile summary approximations [12].

In [15] Gilbert, Kotidis, Muthukrishnan & Strauss (2002) introduce a new algorithm for dynamically
computing quantiles whereby the algorithm observes all update operations and maintains a small-space
sample representation of the full data set. The results for all quantile queries are then computed using
the sample presentation with an accuracy to a user-specified precision. The main contribution of their
new algorithm is the ability to handle delete operations, which is generally not considered in previous
research because this is not a very common or frequent operation in most data stream contexts.

In [11] Cormode & Muthukrishnan (2005) offer a new algorithm which, similar to the work of Gilbert
et al., is also able to handle deletions and also maintains a representation of the full data set using a
different method resulting in a smaller size and therefore improved performance. At this moment this
work is considered to be one of the best algorithms which is also able to handle deletions from the data
set.

2.2.2 Wavelet-based algorithms

This subsection will highlight some well-known algorithms that are based on wavelets which are able
to provide an approximate result for aggregation queries. As with the algorithm from the previous
subsection these works are not directly suitable for the use-case of this research but they do provide
some insight into the existing work and related possibilities.

In [32] Vitter, Wang & Iyer (1998) present a technique based on multiresolution wavelet decomposition
to get an approximate and space-efficient representation of the data cube, which is used in OLAP
operations. Their technique results in approximate results for online range-sum queries with limited
space usage. Unfortunately their approach is currently only suitable for sum aggregations with no clear
way of applying it for k th smallest element queries.

In [6] Chakrabarti, Garofalakis, Rastogi, & Shim (2001) propose the use of multi-dimensional wavelets
for general-purpose approximate query processing (as oppossed to an algorithm that is suitable for a
very specific aggregation query). Their approach uses wavelet-coefficient synopses of the full data set
and uses these synopses to compute an approximate result for queries, enabling very fast response
times. Their results indicate that their approach provides a better quality approximation than sampling
approaches.

In [14] Gilbert, Kotidis, Muthukrishnan & Strauss (2001) present techniques for computing small-space
representations of large data streams using wavelet-based transformations, similar to the previous
works. Their work also shows that a high-quality approximation can be computed for aggregation
queries using wavelet-based representations of the full data set.

2.2.3 OLAP algorithms

This subsection will provide an overview of existing algorithms which try to optimize (aggregation)
queries in an OLAP context. Whereas most algorithms mentioned in the previous two subsections are
primarily directed towards data stream processing the algorithms reviewed in this subsection are very
much geared towards data warehousing, whereby the data set set has (i) a fixed size, which is known
beforehand and (ii) has relatively few updates or in batches and finally (iii) is often multi-dimensional,
which is not the case for most data streams.

In [16] Gray et al (1997) provide a global description of the data cube, which has become an essential
part of the OLAP landscape. Although they do not provide any specific algorithms for aggregation
queries in this paper it is still relevant, since it is very likely that the work done as part of the research

- 6 -

CHAPTER 2. RELATED WORK

described in this thesis will involve the use of data cubes. In this paper Gray et al explain what the data
cube is, how its fits in SQL and how it can be efficiently computed.

In [19] Ho et al (1997) present fast algorithms for range queries two types of aggregation operations:
SUM and MAX. Range queries are queries whereby a range is specified for a certain dimension (e.g.
time) and the aggregation is applied to the values within that range. This is exactly the goal of the
research of this thesis for holistic aggregation functions, such as the median, instead of distributive
functions as in this paper by Ho et al. Their approach is based on pre-computed sub-aggregate values
stored in a hierarchical tree structure to be able to compute the result for any aggregate query. Unfor-
tunately this approach is not (directly) suitable for the research described in this thesis because holistic
aggregation functions cannot be calculated in a distributed manner.

In [13] Gibbons & Matias (1998) introduce two new sampling-based techniques, concise samples and
counting samples, for computing approximate results for aggregation queries on data warehouses and
present techniques for maintaining the samples as new data is inserted into the data warehouse. The
main contribution of their work is the improvement in the accuracy of the computed results based on the
new sampling techniques.

In [28] Poosala & Ganti (1999) propose the use of multiple histograms to approximate the data cube
and compute the results for aggregation queries approximately using the summarized data (i.e. the his-
tograms) instead of the data cube itself, which results in approximate results but a much lower response
time.

In [7] Chaudhuri, Das & Narasayya (2001) present a solution based on sampling to approximately
answer aggregation queries. Their main contribution lies in identifying the most optimal samples based
on the (expected) query workload and they show how it can be implemented in a database system
(Microsoft SQL Server 2000). Although their work is not directly applicable for use-case of this thesis,
their approach to workload analysis and ”lifting” workload to improve performance does provide some
interesting solutions.

In [8] Chiou & Sieg present an approach for optimizing query plans for holistic aggregate queries. Their
work is very different from the previously seen research in that this work is actually quite fundamental
and provides a very broad optimization for improving query performance for any holistic aggregate
query. Although their approach does make it possible for query optimizers to generate improved query
plans it’s unlikely that this solution will make it possible to drastically improve the performance of holistic
queries in such as way that large data sets can be explored in real-time. Therefore their work might be
considered an additional improvement upon another algorithm.

In [22] Li, Cong & Wang extend the original work done by Lakshmanan, Pei & Han (2002) in [21] by
adding support for the median aggregation function to the Quotient Cube technique, which is a method
for summarizing the semantics of a data cube in smaller size and is used to improve the performance of
aggregate queries. Unfortunately the work done by Li, Cong & Wang is mostly focused on maintaining
the quotient cube whereas no attention is paid to the query performance improvement.

In [5] Braz et al outline some of the issues that are present when trying to compute an holistic aggrega-
tion query for a trajectory data warehouse. The holistic function they discuss is the presence function,
which returns the number of distinct trajectories in a particular spatio-temporal area. Their solution is
to replace the actual holistic function with two distributive aggregate functions which approximate the
actual function.

In [27] Nandi et al look at using the MapReduce framework to compute the data cube for holistic mea-
sures. Their approach is based on identifying a subset of holistic measures that are participially alge-
braic and use this property to make it easier to compute them in parallel. Unfortunately the class of
holistic functions investigated in this thesis are not partially algebraic and therefore the work of Nandi et
al is not directly applicable however their use of the MapReduce framework is something worth consid-
ering.

The next section will discuss existing techniques used by various RDBMS products to compute the
results of median aggregation queries.

2.3 Approaches used by existing RDBMS products

This section will outline existing techniques used by several open-source and commercial database
software products to compute the results of median aggregation queries to determine the current state-

- 7 -

CHAPTER 2. RELATED WORK

of-the-art algorithms for handling holistic aggregation queries. The following RDBMS products have
been investigated:

• PostgreSQL (9.1)

• MonetDB (Jan2014 release)

• MySQL (5.1.23)

• SQL Server (Express 2014)

The reason these products have been chosen is that they are some of the most popular database
products of the world and are continuously developed and improved upon. The exception to this is Mon-
etDB, but this database has been included in the investigation because it is an very high-performance
database often used in OLAP contexts and therefore relevant.

The next subsections will shortly discuss the existing approach used by each database.

2.3.1 PostgreSQL

PostgreSQL, as of version 9.3, does not come with a native implementation of the median aggregation
function or any k th element aggregation function. However there are some community-based user
defined functions that add this functionality to PostgreSQL. The best version is most likely the C-based
implementation by Dean Rasheed (2010) [29], as it is the most complete user-written median function
and offers the best performance. The algorithm behind this implementation is very simple; to calculate
the median of a set of tuples, all the tuples are first collected and stored in memory. Once all the tuples
have been collected they are sorted, counted, and then the median is collected by taking the middle
element(s). Clearly this is the most basic algorithm of finding the median and is not likely to offer very
good performance, especially as the data set increases. Since this approach is based on quicksort its
time complexity is O(nlogn) and its memory complexity is O(logn).

2.3.2 MonetDB

MonetDB has a native implementation of the median (or any other quantile) aggregation function and
the exact implementation is publicly available 1. This implementation is very similar to the user-created
implementation for PostgreSQL since it also relies on counting the number of tuples, sorting them and
then returning the middle tuple(s). The possible advantage of MonetDB is that it largely keeps its (active)
data in memory thereby avoiding the need to scan large blocks of tuples from disk. Theoretically it has
the same time and memory complexity as the implementation of PostgreSQL, however it is very likely
that its actual time complexity is much lower (due to the fact that data is read from memory instead of
disk) and its actual memory requirements much higher.

2.3.3 MySQL

MySQL also does not come with a native implementation of the median aggregation function thereby
requiring the use of a user-defined function. Several different versions are publicly available and a
C-based version 2 has been investigated. The algorithm used by this version is almost identical to
algorithm used by the UDF for PostgreSQL and the native implementation of MonetDB; all the tuples
are first collected and stored in memory. Then the list of tuples is sorted using quicksort and the
middle tuple(s) is returned as the median. Clearly the time complexity and memory complexity of this
implementation is exactly the same as the complexities of the PostgreSQL UDF.

2.3.4 SQL Server

SQL Server comes with a native implementation of the median aggregation function called the PER-
CENTILE DISC function, which can be used to compute any percentile for a set of tuples. According
to the documentation [26] this function first sorts the values and then returns the k th smallest element.

1MonetDB source code: http://dev.monetdb.org/hg/MonetDB/file/facde0cda494/gdk/gdk aggr.c#l2189
2MySQL C-based median UDF, available at http://mysql-udf.sourceforge.net/

- 8 -

CHAPTER 2. RELATED WORK

Based on this description it can be concluded that the algorithm behind this function is similar to all the
other implementations discussed in the previous subsections. Given this information it is safe to assume
that this function has a similar time and memory complexity as the other implementations.

2.3.5 Conclusion

This section investigated existing approaches used by several open-source and commercial RDBMS
products used to process median aggregation queries. Two of the databases investigated did not have
a native implementation to process median aggregation queries requiring the use of user-defined im-
plementations. In both cases several different existing user implementations were available but only
the C-based versions were investigated. The other two databases did have a native implementation to
process median aggregation queries.

All implementations that have been investigated are based on the same algorithm whereby all the data
is first sorted, counted and only then can the exact median value be retrieved. This algorithm is the
most basic algorithm that is available and is not optimized in any way. It is therefore quite apparent that
existing approaches do not offer the performance that is necessary for real-time exploration.

The next section will outline the current research done as part of Work Package 5 and its relevance.

2.4 Current research of COMMIT/Work Package 5

This section will outline the current progress of the research done in the context of Work Package 5
(WP5) [10] and discuss its relevance. WP5 is part of the TimeTrails sub-project of the COMMIT research
community, focused on spatiotemporal data warehouses for trajectory exploitation. The objectives of
Work Package 5 are as follows:

Design and develop trajectory-based stream storage and query processing techniques to
support real-time trajectory exploration and mining algorithms.

The research described in this thesis will primarily make a contribution to the second part of the objec-
tives: designing and developing query processing techniques to suport real time [trajectory] exploration
and mining algorithms. Additionally this thesis will not focus on stream-based purposes but on OLAP-
based goals for decision support systems and offline analysis.

Current research at the University of Twente as part of WP5 has produced a new algorithm, called the
Stairwalker algorithm, to optimize query performance for aggregation queries that are based on a dis-
tributive or algebraic function. In subsection 2.4.1 the Stairwalker algorithm is explained in further detail.
With the Stairwalker algorithm and custom extensions to the Geoserver software3 and the PostgreSQL
RDBMS software4 a prototype has been developed that allows real-time exploration of a dataset of
millions of Twitter messages overlaid over a map with their geolocations. However the Stairwalker al-
gorithm is unfit for holistic aggregation functions hence the reason for the research of this thesis: to
develop a similar algorithm to the Stairwalker algorithm which is able to accelerate holistic aggregation
functions.

The next subsection will discuss the Stairwalker algorithm in further technical detail.

2.4.1 Stairwalker algorithm

The Stairwalker algorithm, developed by van Keulen, Wombacher & Flokstra, is an algorithm that con-
sists of several distinct parts that are used together to drastically increase the performance of ag-
gregation queries with a distributive or algebraic function. It consists of the following two important
elements:

3GeoServer: available at http://geoserver.org/display/GEOS/Welcome.
4PostgreSQL: available at http://www.postgresql.org/

- 9 -

CHAPTER 2. RELATED WORK

Pre-aggregate structures

The pre-aggregate structures are supplementary data structures which are pre-computed a priory using
the full data set and a specifically written Java tool for this purpose. Each pre-aggregate structure groups
the full dataset into a smaller number of sub-aggregate values. Consider the sample data set shown in
table 2.1.

time 1 2 3 4 5 6 7 8

value 9 8 7 10 6 1 4 5

Table 2.1: Sample dataset (level 0)

Using the Java tool various pre-aggregate subsets can be generated for the sample dataset for a specific
aggregation function. Tables 2.2 and 2.3 show two different pre-aggregated subsets specifically suitable
for the sum function.

time 1-2 3-4 5-6 7-8

value 17 17 7 9

Table 2.2: Pre-aggregate level 1 of the sample dataset

time 1-4 5-8

value 44 16

Table 2.3: Pre-aggregate level 2 of the sample dataset

In the first pre-aggregate, listed in table 2.2, tuples 1-2, 3-4, 5-6 and 7-8 have been summed up and
the aggregated values are stored. In the second pre-aggregate structure, shown in table 2.3, tuples 1-4
and 5-8 have been summed and the aggregated value stored. The pre-aggregate structures are used
by the query engine, as discussed in the next subsection, to compute the results for any aggregation
query in the most efficient way.

Note that each pre-aggregate structure is only suitable for a specific aggregation function. In the exam-
ple the pre-aggregates can only be used to optimize queries with the sum function and are not suitable
for any other distributive or algebraic function.

Query engine

The query engine uses the pre-aggregate structures together with a complex algorithm to compute the
results of a query as efficiently as possible. Consider the example of the previous subsection and the
following (pseudo)query: give the sum of tuples 1-5. Without any pre-aggregates the query engine
would have to retrieve, possibly from disk, tuples 1 through 5 and add them together to compute the
result. However by using the pre-aggregates the query engine can take the first tuple of pre-aggregate
level 2 (which represents the sum of tuples 1-4) and then retrieve tuple 5 from the original dataset (level
0) and add the two together, thereby only needing 2 retrievals and additions.

The complexity lies in trying to find the most optimal way of computing the result for a query when there
are several different pre-aggregate levels. This complexity increases significantly for multi-dimensional
data, which is most often the case when dealing with (large) data warehouses and OLAP. In the example
the dataset is aligned along a single dimension but multiple dimensions changes the pre-aggregate
structures into multi-dimensional data structures, which increases the cardinality of possible ways of
computing the result for a query by multiple orders.

Calculating the possible ways of computing the result of a query has been implemented as a C exten-
sion for the PostgreSQL RDBMS software, which has been empirically shown to offer the best perfor-
mance.

- 10 -

CHAPTER 2. RELATED WORK

2.4.2 Protoype

As part of the research done at the University of Twente a prototype has also been developed that
demonstrates the ability of the Stairwalker algorithm to facilitate real-time data exploration. This proto-
type consists of a web-based geographical map, served by the Geoserver software, overlaid with a grid
whereby each grid cell contains the aggregation value for that part of the current geographical view, as
seen in figure 2.1.

Figure 2.1: A screenshot of the Stairwalker prototype

The data for this overlay is dynamically computed using the appropriate aggregation query and is re-
calculated as the user zooms in/out or pans the map. A custom extension for the Geoserver software
has been developed that generates the correct aggregation query, sends it to the database and trans-
forms the database results into the correct grid layer.

2.5 Conclusion

This chapter provided an overview of the related work that is relevant to the research outlined in this
thesis. First, this chapter discussed which existing research fields there are and the types of techniques
that are currently being researched. Most of the research in the past 20 years has focused on approxi-
mation instead of exact answers, primarily to achieve the desired performance when dealing with large
data sets or data streams.

There are several different types of approximation techniques, with sampling being the most common
and most often researched. However there are many different types of sampling techniques, such as
randomized sampling, determined sampling, online sampling, offline sampling and more. Sampling
is most often used in conjunction with data streams however some OLAP approaches also tend to
incorporate sampling to improve performance.

Another technique for approximation are wavelet transformations whereby the original dataset is trans-
formed into representations, which are then used to compute the results for aggregation queries. These
representations are small and therefore faster to process and store which results in improved query
performance. However they can never be used for exact results because this cannot be determined
with the wavelet representations.

In the field of data warehousing and OLAP the use of data cubes is very common. However data cubes
cannot be used to accelerate aggregation queries with a holistic function because these cannot be
computed in a distributive fashion, which is the basis for the data cube. This chapter outlined some
existing research approaches that try to improve upon the data cube to enable support for holistic
functions, albeit often in approximated or inefficient ways.

- 11 -

CHAPTER 2. RELATED WORK

An investigation has also been into existing approaches used by several open-source and commercial
databases to determine what kind of algorithms are used in practice to process median aggregation
queries. Some of the databases investigated did not have a native implementation, requiring the use
of external C extensions. In all implementations, native or user-based, the same basic algorithm lies
at the heart of each approach. This algorithm simply sorts all the tuples, counts the total number of
tuples and returns the middle tuple(s) as the median. Unfortunately this algorithm is unlikely to deliver
the performance that is necessary for any type of real-time exploration.

Finally, this chapter outlined the current research progress at the University of Twente in the context of
Work Package 5 of the TimeTrails/COMMIT project, which at this moment has resulted in the Stairwalker
algorithm. This algorithm is able to greatly improve the performance of aggregation queries with an dis-
tributive or algebraic function, making it possible to explore large datasets in real-time, which has been
demonstrated using a geographical prototype. Unfortunately this algorithm is unsuitable for aggregation
queries with a holistic function and therefore a different approach is needed.

Clearly there already has been a lot of research in the field of holistic aggregation queries, query per-
formance and large data sets. However most of the research has been focused on computing approxi-
mated results (with a certain error bound) in the shortest possible time. Whilst many of the techniques
are semi-relevant for the research of this thesis it is not directly applicable because the focus of this
research is on computing exact results.

The next chapter will discuss what factors influence the performance of an (holistic) aggregation query
and how these factors can be measured.

- 12 -

Chapter 3

Query Performance

This chapter analyzes the factors that influence the performance of a database query and how these
can be measured. It is important to have a clear understanding of exactly what factors influence query
performance before it is possible to develop an algorithm that will improve these factors.

The first section of this chapter will review existing research and literature to determine exactly what the
current knowledge is on factors that influence query performance. The second section of this chapter
will provide measures for each performance factor based on existing research. The third section will
discuss the empirical investigation into the factors that are believed to influence the performance of a
query to verify that performance is really influenced as expected. Finally this chapter will end with a
conclusion.

3.1 Performance factors

This section outlines the existing research into factors that affect the performance of database queries
with a focus on OLAP and data warehousing. The most common database operation in this context are
range queries that need to scan a majority part of the data set to compute the results for a query, most
often in aggregated form [18]. Therefore focus will be on the factors that influence the performance of
these types of queries, i.e. large read-only sequential scans.

The biggest factor that influences the performance of large sequantial scans of the data set are the
number of bytes read of the hard disk where the data is stored [18]. Therefore most algorithms that
focus on improving query performance are focused on reducing the number of bytes read of disk by
employing several strategies, such as compression, employing the use of indices, reducing the amount
of data that is needed to compute the final result, improving data layout, etc. There are several more
factors that have an influence on the performance of database queries, however their influence is very
small when compared to the number of bytes read from disk. Some other factors that can have an
influence are: CPU clock speed, CPU instructions-per-cycle efficiency [4], CPU data caches and CPU
bus speed [1].

Since disk access is the biggest factor that affects query performance this is discussed in further detail
in the next subsection.

3.1.1 Disk access

Disk access, or more specifically the number of bytes read from the disk, is the biggest factor for
query performance. There are two very specific aspects of disk access that can greatly influence the
performance of a query: disk bandwidth and seek time. Each are discussed in the following subsec-
tions.

Disk bandwidth

Disk bandwidth is an indication of the number of bytes that can be read from the disk per second. Most
modern hard disks are able, typically in a RAID-setup, to achieve a bandwidth of 300+ MB/s. Modern

- 13 -

CHAPTER 3. QUERY PERFORMANCE

Solid-State-Drive hard disks are able to achieve an even higher speed. For large sequential scans
of data the bandwidth of a disk is an indication of the expected time to scan all the data from disk,
e.g. a dataset of 10 GB will take to at least 34 seconds to be scanned once with a bandwidth of 300
MB/s. This immediately shows why an algorithm that improves performance is needed for real-time data
exploration.

Seek time

Seek time is the time that a hard drive needs to find the correct location for a piece of (requested) data
and physically move the head of the hard drive to the correct location, and usually takes between 5-10
ms [18]. This seeking is only required when data is required that is located on a physically different part
of the hard disk from the previously requested data. This is the main reason why the location of the
data is very important and can greatly influence the performance of a query. When a sequential scan is
executed the seek time is generally negligible, if and when the scan is aligned along the sort order of the
data. If the sequence that is requested is different from the order of the data then each individual tuple
is randomly retrieved from the hard disk which in turn can lead to a huge cost in seek time. This can
be illustrated with a quick example: for a dataset of 100.000 tuples and a seek time of approximately 7
ms the total seek time could be more than 1750 s if the complete dataset is scanned in random order.
It is clear that the seek time is a very important factor that must be considered. It is worth noting that
modern SSD hard disks have a seek time of less than 0.1 ms, thereby greatly reducing the impact of
seek time on the performance of database queries albeit not completely.

3.2 Measuring performance

This section will discuss the existing methods that are available for measuring query performance,
partly based on the factors that have been outlined in the previous section. First, several methods will
be discussed that are used to measure the disk access in terms such as bytes read, number of disk
accesses and seek times. Then, some methods will be examined that are used to measure the complete
performance of a database query, i.e. not only the disk access but complete result computation. This
section will end with an overview of the methods that have used in this research and the reasons for
choosing them.

3.2.1 Measuring disk access

Measuring the disk access of a query and its effect on the performance is actually a tricky process and
involves decomposing every step in the process of query execution. The only way to make this possible
is with the use of additional tools that are available for each specific RDBMS. One example of this is
the TKPROF tool, which is used to profile queries executed against an Oracle database which includes
information on the disk cost of the query in terms of bytes read, time spent on disk operations, etc
[30]. Another example of a profiling tool for a specific RDBMS is the Query Analyze tool for SQL Server
1.

Most RDBMS products also support the EXPLAIN SQL operation, which can be prefixed to any database
query and returns the query plan which will be used by the database to compute the result for the query.
Often, this query place also includes some indication of the cost of the query, usually in the form of the
number of reads (in blocks or pages) from the hard disk (or in-memory buffer). Unfortunately this cost
indication is often an approximate guess by the query engine of the database. Furthermore, cost of
CPU time are often also included in this cost factor, making it impossible to accurately measure the true
cost of the disk usage.

Another possibility is to monitor the performance of the disk usage at a lower level outside of the
RDBMS, for example with a utility like ”iotop” 2. This utility is able to provide much detail on the disk us-
age for a specific system process and can therefore be used to monitor the disk usage of the database
process.

A big downside of measuring the disk performance of a query is that it is very schema and database type
dependent thereby making any cross-schema or cross-database comparisons impossible. The number

1Overview of SQL Query Analyzer: http://technet.microsoft.com/en-us/library/aa216945(v=sql.80).aspx
2Iotop: http://guichaz.free.fr/iotop/

- 14 -

CHAPTER 3. QUERY PERFORMANCE

of bytes read varies greatly on the underlying data and also depends on how a database stores it data
(i.e. compressed or not). Therefore any measures on raw disk usage are only useful for comparisons
within a single dataset and database.

3.2.2 Measuring query performance

Measuring the overall query performance is generally performed by timing the execution time of a query,
i.e. the time it takes to compute the results of a query [3]. This can be done using a black-box approach
or a white-box approach. With the black-box approach an external application is used to time the
execution how a query whereby the timer is started as soon as the query is sent to the database and
the timer is stopped when the results are returned. However this approach suffers from the drawback
that other factors, such as network speed or client slowdowns, can affect the performance of the query
even though the database engine has no relation with these factors.

Therefore a white-box approach is likely to provide more accurate measurements than a black-box
approach. In a white-box approach the execution time is measured by the database itself thereby re-
moving any outside factors, such as network speed. Unfortunately, not all RDBMS products support this
functionality which means a black-box approach might be necessary for some types of database.

3.2.3 Choice of methods

The previous subsections have outlined several methods that are available for measuring the perfor-
mance of database queries ranging from measures that indicate a very specific performance metric,
e.g. disk bandwidth, to measures that give an indication of the overall performance of a query. In this
research the following methods have been employed to determine the performance of the test set of
aggregation queries:

White-box measuring of overall query performance
The overall performance of the aggregation queries has been measured using a white-box ap-
proach, because that’s what is most important for the goal of this research - real-time data ex-
ploration - and must therefore ultimately be improved. It’s not entirely unlikely that disk usage
might be improved but overall query performance actually decreases due to a massive increase
in CPU time or another performance factor. Preference goes to white-box measuring because
that provides the most accurate results however this might not possible for every database, in
which case black-box measuring will be used as a fall-back.

Given the results of the investigation into the query performance factors, this measure is sufficient
enough to be able to properly asses the performance of any query, and therefore makes it possible
to determine if the developed algorithms are able to improve the performance of holistic aggregation
queries.

Specific IO measures to get insight into disk usage performance have not been chosen because it is
too unreliable for two reasons: (i) disk IO might vary greatly between multiple executions of the same
query due to caching by the database itself, which is often difficult to detect and/or disable and (ii)
these measures cannot be used for any type of comparison between different datasets or database
types.

3.3 Empirical verification

This section describes the work that has been done as part of the empirical verification of the perfor-
mance factors and measures discussed in the previous sections. The first subsection gives an overview
of the test setup used. In the second subsection the results of the verification are shown and dis-
cussed in detail. Finally, in the last subsection of this section a conclusion of the empirical verification is
given.

3.3.1 Test setup

The test setup for empirical verification consists of the following parts:

- 15 -

CHAPTER 3. QUERY PERFORMANCE

Datasets
Multiple datasets have been generated of a varying number of tuples ranging from 1000 tuples up
to 10 million tuples, whereby each tuple consists of an unique id (as primary key) and a random
32-bit integer. Each dataset is ordered on its primary key in ascending order.

Test queries
A very simple aggregation query is used for verification which performs a sum over all the tuples
in the data set, as can be seen in listing 3.1. To compute the result for this query all the tuples in
the dataset must be processed, either from disk or in-memory cache.

1 SELECT SUM(value) FROM dataset ;

Listing 3.1: Test query used for verification of performance measures

Hardware
Verification has been done on a laptop computer with 8GB of memory, a dual-core CPU of 2.2
GHz and running Windows 7 64-bit.

Database software
Verification has been done with three different database software products: MonetDB, Post-
greSQL and MySQL. These three products have been chosen for their availability (all three are
open-source) or their suitability for OLAP purposes (MonetDB).

With these components empirical verification has been performed by executing each test query using a
client-side command-line database tool and taking the measurements as described in subsection 3.2.3.
The results of this verification are discussed in the next subsection.

3.3.2 Results

This subsection presents the results of the empirical verification of the performance measures to verify
that they are suitable for this research.

of tuples Execution time (ms)

1,000 0.18

10,000 1.50

100,000 15.00

1,000,000 155.00

10,000,000 1,775.00

Table 3.1: Results for empirical verification of performance measures with PostgreSQL

Table 3.1 lists the results of the empirical verification with PostgreSQL. The results show that the exe-
cution time measure is a good indication for overall query performance; as the dataset increases in size
with a certain factor the execution time increases with approximately the same factor. This means that
the computational complexity of the query is quite accurately indicated by the execution time.

of tuples Execution time (ms)

1,000 0.66

10,000 3.76

100,000 44.03

1,000,000 342.11

10,000,000 5,818.33

Table 3.2: Results for empirical verification of performance measures with MySQL

In table 3.2 the results of the empirical verification with MySQL are shown. These results show that
again the execution time is a good measure for an indication of the overall query performance. The

- 16 -

CHAPTER 3. QUERY PERFORMANCE

execution time is measure in a white-box approach, i.e. by MySQL itself as opposed to an 3rd-party
client. This is done with the use of MySQL’s profiling functionality and its usage is demonstrated in
listing 3.2.

1 SET p r o f i l i n g = 1; # tu rn on p r o f i l i n g
SELECT SUM(value) FROM dataset ; # execute t e s t query

3 SHOW PROFILES ; # r e t r i e v e query p r o f i l e s
SHOW PROFILE FOR QUERY 1; # re tu rns s p e c i f i c p r o f i l e i n f o rma t i on f o r query

Listing 3.2: Demonstration of the usage of MySQL’s profiling functionality

of tuples Execution time (ms)

1,000 233.23

10,000 236.02

100,000 231.75

1,000,000 2,226.08

10,000,000 2,234.02

Table 3.3: Results for empirical verification of performance measures with MonetDB

Table 3.3 shows the results of the empirical verification with MonetDB. These results are quite different
from the results of PostgreSQL and MySQL, because the relationship between the number of tuples and
the execution time is not directly related. The execution remains constant for the first 100.000 tuples
and then jumps drastically for the next measurement at 1 million tuples and then stays constant again.
This is most likely due to an internal mechanism of MonetDB, however it does have an influence on the
performance measure making it less reliable. Unfortunately MonetDB does not easily offer additional
measures for overall performance although it is possible to profile queries in much greater detail using
additional external tools, such as the stethoscope3 and tomograph4.

The execution time in MonetDB is measured in a white-box approach by enabling the query history in
MonetDB and retrieving information on the latest query, as in listing 3.3.

SET h i s t o r y = true ; # t u rn on query h i s t o r y
2 SELECT SUM(value) FROM dataset ; # execute t e s t query

SELECT query , exec FROM query log ORDER BY ct ime DESC LIMIT 1; # fe t ch execut ion time f o r query

Listing 3.3: Demonstration of the usage of MonetDB’s query history

3.3.3 Conclusion

This section has described the work that has been done in empirically verifying the query performance
factors and related measures that have been discussed earlier in this chapter. As part of this verification
a single test query has been executed against a dataset of varying size on multiple different types
of databases. For each database type it has been verified whether execution time is an appropriate
measure for query performance and looked at available additional type-specific measures.

Results have shown that the query response time is very suitable as an indicator of overall query per-
formance for PostgreSQL and MySQL, because a direct relationship exists between the complexity of
the query and the response time. For monetDB however the results did not conclusively show this and
additional measures are needed.

In all cases it was possible to measure the response time for the query using a white-box approach
using inbuilt functionality offered by each database. This means that the results do not suffer from any
external influences, such as network speed.It is assumed that other commercial database products (e.g.
Oracle, SQL Server) also offer such functionality.

3Stethoscope: http://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler/Stethoscope
4Tomograph: http://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler/tomograph

- 17 -

CHAPTER 3. QUERY PERFORMANCE

3.4 Conclusion

This chapter has analyzed the most important factors that influence the performance of a database
(aggregation) query and how they can be measured. Research into existing literature into query perfor-
mance has shown that the single most important factor that has a great influence on query performance
is disk IO, which can be further specified in disk bandwidth and seek time. Disk bandwidth indicates
how much data can be read per second (i.e. bytes/second) whereas seek time is the time a random
read of a tuple takes, which can take up to 5-10 ms for a single seek. Hence, improving performance
for holistic aggregate queries will most likely involve the reduction of disk IO.

This chapter has also discussed the methods that are available for measuring the performance fac-
tors, with a focus on two specific categories of measures: measuring disk IO and measuring overall
query performance. Although some methods have been found for measuring disk IO in conjunction
with database queries there are several downsides that make this a cumbersome process to use in
this research, namely (i) disk IO measures are schema and database dependent, which makes any
cross-schema or cross-database comparisons impossible and (ii) many IO measures are specific for a
specific database product. To measure the overall performance of a query only one method has been
found and that is to measure the execution time (in number of seconds) of the query until results are
returned, although this can be done using two different approaches: a white-box approach, whereby the
execution time is measured by the database itself, or a black-box approach, whereby the execution time
is measured by an external client. The second approach suffers from external factors, such as network
speed, and is therefore less reliable. However the white-box approach does require that a database is
able to time its own queries.

Based on the research into the query performance factors and the methods that are available for
measuring them a choice has been made to only measure the overall performance of aggregation
queries, preferably with a white-box approach, because this measure is the only measure that offers re-
liable results and is sufficient enough to be able to properly asses the performance of any aggregation
query.

This chapter ended with a description of the work done into empirically verifying the theoretical research
into performance factors with a test data set of varying size using a simple test query and three different
database types (PostgreSQL, MySQL and MonetDB). The results have shown that the execution time
of a query has a direct relationship with its complexity for PostgreSQL and MySQL but for MonetDB the
relationship is more complicated, which might necessitate additional database specific tools.

The next chapter will discuss the experiments setup used in this research to test various algorithms.

- 18 -

Chapter 4

Experimental setup

This chapter describes the exact setup used in this research to determine the performance of the default
basic median algorithm and the alternative developed algorithms. Section 4.1 outlines the datasets that
have been used for in the research and their unique characteristics. Then, section 4.2 discusses what
type of queries have been used to test algorithms and how these test queries have been created. Next,
section 4.3 describes the details of the platform which was used to run experiments on in terms of
hardware and software. Finally section 4.4 gives a detailed description of how the experiments are
actually run.

4.1 Datasets

In this research 3 different types of datasets have been used, each with different properties and data
distribution. All 3 datasets consist of a single table with multiple columns whereby some columns are
the dimensions of data and one or more columns are the actual measures. Table 4.1 gives an overview
of the three datasets used in this research.

Dataset name Number of
dimensions

Measure Number of tuples

PEGEL 1: time Waterheight (in cm) of the river Thur,
near Andelfingen

± 118,000

KNMI 2: time and
station

Temperature (in celcius) at specific sta-
tion locations in the Netherlands

± 12,500,000

Twitter 3: time and
location (x,y)

Text length of Dutch geo-tagged
Tweets, collected by the UTwente

± 15,000,000

Table 4.1: Overview of the three datasets used in our reserach

The next subsections will discuss each dataset in more detail.

4.1.1 PEGEL dataset

The PEGEL dataset consists of approximately 118,000 tuples with a single dimension and a single
measure. This dataset comes from a sensor station in Andelfingen, Switserland, as seen in figure 4.1,
which measures the height of the river Thur every 10 minutes. Table 4.2 shows a small sample of this
dataset. Since the dataset only has around 118,000 tuples the dataset has been duplicated multiple
times to get a dataset of up to 10 million tuples. This duplication has been done by increasing the
dimension (time) with the same interval as the rest of the dataset whilst taking an (existing) random
value for the measure (waterheight).

- 19 -

CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.1: The Andelfingen sensor station near the river Thur

ID Timestamp Time/date Waterheight (cm)

1 1167606600000 2007-01-01 00:10:00 354.851

2 1167607200000 2007-01-01 00:20:00 354.852

3 1167607800000 2007-01-01 00:30:00 354.852

4 1167608400000 2007-01-01 00:40:00 354.853

5 1167609000000 2007-01-01 00:50:00 354.854

Table 4.2: Sample of the PEGEL dataset

4.1.2 KNMI dataset

The KNMI dataset consists of approximately 12,5 million tuples with two dimensions and multiple mea-
sures, however in this research focus has been exclusively on a single measure, namely temperature.
The two dimensions of this dataset are time, similar to the PEGEL dataset albeit with a different interval
between each tuple, and station. The dataset consists of 10 distinct measuring stations, with each sta-
tion taking its own measurements. Table 4.3 shows a small sample of this dataset. Since this dataset
contains enough tuples no duplication has been performed. This dataset has been downloaded via the
website of the Royal Netherlands Meteorological Institute (KNMI) [20].

ID Station Timestamp Date/Time Temperature

1 1 946684800 2000-01-01 01:00:00 58

2 1 946685400 2000-01-01 01:10:00 60

3 1 946686000 2000-01-01 01:20:00 61

1001 2 946684800 2000-01-01 01:00:00 71

1002 2 946685400 2000-01-01 01:10:00 -24

1003 2 946686000 2000-01-01 01:20:00 -51

2001 3 946684800 2000-01-01 01:00:00 54

2002 3 946685400 2000-01-01 01:10:00 54

2003 3 946686000 2000-01-01 01:20:00 57

Table 4.3: Sample of the KNMI dataset

4.1.3 Twitter dataset

The Twitter dataset has approximately 15 million tuples whereby each tuple has 3 dimensions, time, an
x-coordinate and a y-coordinate and a single measure, the length of the Twitter message for each tuple.

- 20 -

CHAPTER 4. EXPERIMENTAL SETUP

The dataset has been collected by the Databases group of the University of Twente and is currently still
growing. Table 4.4 shows a small sample of this dataset. This dataset also has enough tuples for this
research therefore no duplication has been performed.

ID Timestamp Date/Time X-coordinate Y-coordinate Length

430788266552737793 978350401 2001-01-01 13:00:01 5.78581153 51.75877801 87

430788269983662080 978350402 2001-01-01 13:00:02 4.75604476 51.58726959 19

430788270801567744 978350403 2001-01-01 13:00:03 4.43317543 51.30735477 54

430788270449229824 978350404 2001-01-01 13:00:04 4.88858049 52.38793447 28

430788272651264000 978350405 2001-01-01 13:00:05 5.80288886 50.93610432 41

430788273414631424 978350406 2001-01-01 13:00:06 5.84096519 51.84279646 59

Table 4.4: Sample of the Twitter dataset

4.1.4 Different sizes

For each of the previously discussed datasets several versions of different sizes have been created
using the original dataset as the base dataset. The goal of this is to test the performance of various
median algorithms for a different number of tuples to get a clear picture of the behavior of the algorithms.
Table 4.5 lists the versions of the datasets that have been generated.

Name Size (nr. of tuples)

10k 10,000

100k 100,000

500k 500,000

1mm 1,000,000

10mm 10,000,000

Table 4.5: The different versions generated for each dataset

The next section will discuss the queries used during the experiments and how they have been cre-
ated.

4.2 Test queries

This section will outline the queries used in the experiments to determine the performance of the algo-
rithms.

For each version of each dataset a set of 5 queries has been generated that cover a random range
of a certain number of tuples within the dataset using a start and end value for the dimensions of that
dataset. Each query has been generated specifically to cover an exact number of tuples. Table 4.6
shows a few test queries for the 10mm version of the PEGEL dataset.

QueryID Start timestamp End timestamp Rows

1 5514262800000 5824312200000 500,000

2 6628554600000 6938625000000 500,000

3 6682747800000 6992793600000 500,000

Table 4.6: Test queries for the PEGEL dataset

For each version of each dataset the following sets of 5 queries have been generated, whereby the
percentage indicates the percentage of rows of the total dataset that are covered by the query:

- 21 -

CHAPTER 4. EXPERIMENTAL SETUP

• 5%

• 25%

• 50%

• 75%

• 95%

To illustrate this percentages above, test queries with the following sizes have been generated for the
10k version of the PEGEL dataset: 500 rows, 2500 rows, 5000 rows, 7500 rows and 9500 rows.

The next section will discuss the test platform which was used to run the experiments on.

4.3 Test platform

This section will outline the details of the test platform used to run the experiments on. The primary test
platform consists of a single server managed by the University of Twente. This server, commonly called
Silo1, has the following specifications:

• Dual quad-code Intel Xeon @ 2.33 GHz processor

• 8 GB of working memory

• Running OpenSUSE 10.3 32-bit

All the experiments have been done on this platform to ensure a stable environment between different
experiments.

The primary database engine to run experiments with is PostgreSQL 9.1 with the PL/Java extension
[31]. The main reason these products have been chosen is the fact that the PL/Java extension, which
is only suitable for PostgreSQL 9.1, has made it possible to develop prototype implementations of algo-
rithms with Java, which enables development at a very fast pace and provides an abstraction layer that
removes much complexity when developing implementations for experiments.

The next section will describe how the experiments have actually been executed.

4.4 Running experiments

This section will describe how the experiments have been performed. To ensure that each experiment is
run in exactly the same way a tool has been developed which runs a complete experiment automatically.
This tool first requires an initial setup whereby the correct dataset and associated test queries are
selected and the details of the database, as seen in figures 4.2 & 4.3. When the tool is setup the
experiment can be started, at which point the tool will run all the test queries against the dataset and
automatically records the execution time of each query as a measure of the query performance, as
demonstrated in figure 4.4.

Figure 4.2: The first screen: to select the test queries to run

- 22 -

CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.3: The second screen: where the database details and query options are set

Figure 4.4: The last screen: showing the progress of the tests as they are automatically executed

It is important to note some additional details with regards to the experiments. First of all, each test
query is run 3 times with a different grouping configuration, since part of this research is to investigate
aggregation functions in conjunction with a grouping operator. Therefore each test query is run as (i)
a single group, (ii) divided into 10 groups and (iii) divided into 100 groups to determine if and how the
performance of an algorithm changes depending on the grouping operator.

Secondly, during every experiment every step must be undertaken to ensure that caching, either by
the RDBMS itself or the underlying operation system, does not influence the results of the experiment.
Therefore the database server is restarted between each set of queries and each experiment to clear
any caching that is done by the RDBMS itself. Additionally, the disk cache of the operation system is
also emptied by executing the command in listing 4.1. This commands frees the pagecache, dentries
and inodes and empirical verification confirms that this does indeed clear the disk cache.

1 sync \&\& echo 3 > / proc / sys /vm/ drop caches

Listing 4.1: Command-line command to clear the disk cache of the operation system

- 23 -

CHAPTER 4. EXPERIMENTAL SETUP

The next chapter will discuss the work that has been done into developing new algorithms for determin-
ing the median.

- 24 -

Chapter 5

Algorithm development

This chapter describes the work that has been done into developing a new algorithm for determining
the median of a large dataset. This chapter will start by giving a clear description of the basic algorithm
for finding the exact median, currently used by most database engines, discuss the query performance
of this algorithm and its pros and cons. Then, several alternative algorithms will be discussed, each
with different pros and cons with regards to query performance. Finally, this chapter will finish with a
conclusion.

5.1 Basic algorithm

The basic algorithm for finding the median of a set of tuples, either a single set or multiple sets (in
case of a group/aggregation query), is a very simple algorithm and is currently used by most database
engines, as already described in section 2.2. To determine the median the algorithm performs the
following steps:

1. Fetch all the tuples within the range of the query or current group from disk and store these in
memory

2. Sort all the tuples in-memory using one of the many well-known sorting algorithms. Most com-
monly used is quicksort as it generally offers the best performance

3. After sorting, the median of the query or current group can now be directly returned by locating
the middle element or elements from the in-memory sorted set

Clearly this is a very simple algorithm, requires no pre-computed data structures (such as additional
tables or indexes) and is fairly data independent. However it is very likely that this algorithm is not able
to offer the query performance that is needed for real-time data exploration and is likely to scale very
poorly as the amount of data increases. As discussed in chapter 3 query performance is influenced by
several factors, with disk I/O being the primary factor whereby two different types of disk I/O, seek time
and bandwidth, can be differentiated.

For this algorithm all the tuples must be fetched from disk to be able to determine the median. As the
dataset becomes bigger the number of tuples affected by queries also grows thereby increasing the
number of tuples that must be fetched from disk. It is likely that these tuples can be fetched sequentially
from disk, thereby avoiding the costly seek operations, but this still means disk bandwidth is a limiting
factor for the query performance.

Another factor which likely has a negative impact on the query performance of this algorithm is the
necessity of storing and sorting all the tuples in-memory. Although generally in-memory operations
are regarded as very fast, especially when compared to disk operations, these cannot be ignored when
dealing with hundreds of thousands operations to store and sort a large dataset in-memory. Additionally
if the range of the current query or current group is very large, which is more likely with bigger datasets,
it is likely that the number of tuples exceeds the amount of memory available to the database engine
thereby necessitating the use of temporary tables on disk or memory swapping (on disk). This means
that the query performance is again negatively influenced by disk I/O, possibly even increasing seek
time.

- 25 -

CHAPTER 5. ALGORITHM DEVELOPMENT

From a theoretical standpoint therefore this basic algorithm has two main problems in determining the
median of a (group-aggregation) query, which are:

1. All the tuples affected by the query must be fetched from disk

2. All the tuples for the current query or group must be stored and sorted in-memory

Using the experimental setup described in the previous chapter the query performance of this algorithm
has been measured to determine if its performance matches the theory as described. Figure 5.1 shows
the results of a C implementation of the basic algorithm with the 10MM version of PEGEL dataset. On
the y-axis is the query execution (in seconds) as an inverse representation of the query performance
and on the x-axis are the number of tuples affected by the query. The graph has 3 distinct series of
measurements: a series whereby the query is grouped into a single group, a series whereby the query
is grouped and aggregated into 10 groups and a series whereby the query is grouped and aggregated
into 100 groups.

This graph shows a clear linear relationship between the query performance and the number of tuples
affected by a query, i.e. as the number of tuples increases the actual query performance worsens.
Based on this graph it is not clear what the underlying cause of this performance is, but it is likely that
this performance behavior is caused by the disk I/O needed to fetch all the tuples from disk and storing
and sorting them in-memory. These results suggest at this point there is no additional disk I/O caused
by out-of-memory conditions, because this would have to be indicated by a very clear difference in
the grouping series, which is not the case in this graph, i.e. all 3 series have almost identical query
performance.

Surprisingly, the group-10 queries consistently have the worst performance of the 3 query grouping
configurations. From a theoretical standpoint, the group-1 queries should have the worst performance,
since these queries require all tuples involved in the query to be stored and sorted in-memory whereas
with the group-10 and group-100 queries the tuples can be stored and sorted per-group. The exact
reason for this is unclear but one possible reason could be that the logic behind the grouping mechanism
of the database engine also has a certain performance overhead.

Figure 5.1: Results of the measurements with the basic algorithm and the 10MM PEGEL dataset

Two main theoretical problems have been identified with the basic algorithm and experimental measure-
ments confirm that these problems do affect the query performance for real queries and data. Therefore
an alternative algorithm is needed that does not suffer from these problems. The next section will dis-
cuss the work done into developing an algorithm whereby fetching all the tuples from disk is no longer
necessary nor in-memory storage and sorting.

- 26 -

CHAPTER 5. ALGORITHM DEVELOPMENT

5.2 The shifting algorithm

The first alternative algorithm for determining the median, called the shifting algorithm, tries to solve
the two main problems with the basic algorithm, as discussed in the previous section. The idea behind
the shifting algorithm is that the median of a query or group is calculated by shifting the (pre-calculated)
median of the whole dataset towards the median of the current query using (pre-calculated) shift factors.
This section will first describe how this alternative algorithm works and is able to solve the problems of
the basic algorithm. Then, the shortcomings of this algorithm are discussed and some actual measure-
ments of the query performance with the test data sets are outlined.

The two main problems that have been identified with the basic algorithm were (i) the necessity of
fetching all tuples from disk and (ii) the need to store and sort in-memory all the tuples to be able
to determine the median. The shifting algorithm solves these problems by employing the following
steps:

1. Calculate a priori the median of the whole dataset

2. Pre-compute, for each tuple in the dataset, the total number of tuples that are below the dataset
media minus the total number of tuples above the dataset median and before the current tuple
(dimension-wise). This is called the left shift factor.

3. Pre-compute, for each tuple in the dataset, the total number of tuples that are below the dataset
median minus the total number of tuples above the dataset median and after the current tuple
(dimension-wise). This is called the right shift factor.

4. Pre-compute a single binary stream of tuples that are below the dataset median and sorted by
value (instead of by the dimension). This is called the left data stream.

5. Pre-compute a single binary stream of tuples that are above the dataset median, also sorted by
value. This is called the right data stream.

6. To compute a range (aggregation) query the algorithm uses the left- and right shift factors together
with the binary streams to shift the dataset median towards the median of the query eventually
resulting in the exact median of the query.

With these key steps the shifting algorithm is able to exactly determine the median of a query or current
group without needing to fetch all the tuples from disk, storing them in-memory or sorting them thereby
solving the two main problems of the basic algorithm. This algorithm will be demonstrated with a simple
example. Consider the sample data shown in table 5.1, which has a single dimension (time) and a
single measure (value) and is sorted by its dimension.

time 1 2 3 4 5

value 9 8 7 10 6

Table 5.1: Sample dataset

Now consider the following query: give the median for all tuples that fall within the time range [1,4]. To
be able to answer this query with the shifting algorithm the following steps have to be pre-computed a
priori:

• The median of the whole dataset, which for the sample dataset is tuple with time=2 and value 8

• The left- and right shift factor of all the tuples in the dataset. These are listed in table 5.2.

• The left- and right data streams, as shown in figure 5.2. Only the binary data is actually stored
and the decimal values are for reference only. Note that these numbers refer to the time ID of
each tuple (and not the value). It’s also important to see that the left data stream is sorted by the
value of each tuple in a descending order and the right data stream is sorted by the value in an
ascending order.

- 27 -

CHAPTER 5. ALGORITHM DEVELOPMENT

time 1 2 3 4 5

value 9 8 7 10 6

left shift factor 0 -1 -1 0 -1

right shift factor +1 +1 0 +1 0

Table 5.2: Sample dataset with shift factors

Figure 5.2: Pre-computed left- and right data streams for the sample dataset

Having pre-computed these additional data structures the example query can now be answered by the
algorithm in the following way. First, calculate the query shift factor by adding the left shift factor of the
start of the query time range and the right shift factor of the end of the query time range. For this query
the left shift factor is 0 and the right shift factor is +1 making the query factor be +1. This means that the
median of the whole dataset must be shifted 1 position to the right. At this point the right data stream
is retrieved and used to scan 1 position to the right where tuple with time=1 is found. Since the number
of tuples affected by this query is even the median must consist of the values of two tuples, which are
the original dataset median (time=2) and the tuple 1 position to the right (time=1), which have values of
8 and 9 thereby making the median 8+9

2 = 8.5.

Since this algorithm no longer needs to fetch all the tuples from disk, thereby greatly limiting the amount
of disk I/O operations, the query performance should, from a theoretical standpoint, scale significantly
better as the number of involved tuples increases. Test measurements confirm that this is indeed
the case, as is clearly shown in figure 5.3. This graph shows that with the shifting algorithm there
is no longer a relationship between between the number of tuples affected by a query and the query
performance. Instead, there is now a linear relationship between the number of groups and the query
performance which is an indication that the actual shifting operation has a certain fixed cost per group
thereby making queries with many groups more costly.

Figure 5.3: Results of the measurements with the shifting algorithm and the 10MM PEGEL dataset

- 28 -

CHAPTER 5. ALGORITHM DEVELOPMENT

Although the shifting algorithm solves the two main problems of the basic algorithm and completely
changes the query performance profile it does have its own disadvantages. The biggest problem with
the shifting algorithm is its limited suitability for higher dimensional datasets. The PEGEL dataset only
has a single dimension (i.e. time) thereby making it simple to calculate the shift factor for a query, as
explained in the key steps earlier in this section. However for a dataset with two or more dimensions
the calculations necessary to determine the shift factor becomes increasingly more computationally
expensive and complex.

Therefore an alternative algorithm is necessary for datasets with multiple dimensions. Such an algo-
rithm will be discussed in the next section. But first another improvement on the shifting algorithm will
be outlined that has the potential to even further reduce the amount of disk I/O. With the current version
of the algorithm it is still necessary to fetch the actual measure value from disk (or disk buffer) once the
correct tuple has identified as being the median tuple. What if this could be avoided? For a query with
a single group this would likely have a negligible effect however for queries with many groups, such as
the group-100, this could avoid much disk seek time.

To be able to circumvent these (possibly) costly disk fetches the actual measure value is included in the
left- and right data streams instead of only the tuple key. This has the potential to increase the size of the
data streams, especially for complex values which take up a lot of size, however prevents the potentially
costly disk fetches. Actual test results have shown that this method of including the values into the data
streams slightly improves the query performance, although not nearly as much as expected.

Figure 5.4 shows the test results with the shifting algorithm and values included for the PEGEL dataset.
These results show that including the values can have a significant impact on the query performance
(up to 2x as fast) however this depends very much on the number of rows involved and the number of
groups, i.e. the effect is much larger for the group-100 queries than the group-1 queries, as seen in the
figure. Based on these results it seems likely that as the number of groups increases the performance
improvement also becomes bigger.

Figure 5.4: Results of the shifting algorithm with values and the 10MM PEGEL dataset

The shifting algorithm has a potential downside with regards to a certain specific type of queries. For
queries that cover a large part of the whole dataset, and are therefore affecting many tuples, the shifting
algorithm is likely to be much more efficient than the basic algorithm. However for queries that cover
only a very small part of the whole dataset there is the potential the shift factor is extremely high and
the full left- or right data stream must be (almost) fully scanned before the new median is determined.
Tests results support this because this effect is very easy to see when looking at the results for the
PEGEL dataset (figures 5.1 and 5.3) when the number of rows involved are between 0 and 1 million.
For these results, whereby the queries only cover a maximum of 10% of the whole dataset, the basic
algorithm outperforms the shifting algorithm, especially when looking at the group 10 and group 100
test results.

To overcome this problem an improvement has been devised that is able to limit this effect by computing
additional structures. This is further discussed later in this chapter in section 5.4. The next section will

- 29 -

CHAPTER 5. ALGORITHM DEVELOPMENT

first discuss a completely alternative algorithm that also works for multi-dimensional datasets.

5.3 The full scanning algorithm

The biggest downside of the shifting algorithm is its unsuitability for multi-dimensional datasets. To solve
this problem a completely alternative algorithm called the full scanning algorithm has been developed.
This algorithm solves the two main problems of the basic algorithm by pre-sorting the full dataset and
storing this pre-sorted secondary set as binary data streams thereby avoiding the necessity of fetching
each individual tuple from disk. This algorithm works in the following way:

1. Sort a priori the complete data set

2. Store the pre-sorted data set as a binary stream. Figure 5.5 shows the full binary stream for the
sample set, discussed in the previous section.

3. To compute a range query, scan the full pre-sorted binary stream and store in-memory all the
tuples that match the current query. After the binary stream has been completely scanned the
number of tuples in-memory are counted and the middle tuple(s) are return as the median.

Figure 5.5: Pre-computed full data stream for the sample dataset

This algorithm has two advantages when compared to the basic algorithm: (i) the data is pre-sorted
thereby avoiding the need to sort in-memory and (ii) scanning the binary stream is significantly faster
than scanning the individual tuples from disk. However this algorithm also has a very big potential
downside and that is that the full dataset must be scanned to be able to process any query. Additionally
this algorithm also needs to store all the tuples that are affected by the query in-memory, although there
is an optimization to prevent this, which is further discussed in the next sub-section.

Figure 5.6 shows the test results with the PEGEL data set and the full scanning algorithm. The figure
shows a (somewhat) linear relationship between the query performance and the number of affected
tuples by a query. Although the scanning time for each query is identical (i.e. the time it takes to
scan the full data stream) the decreasing query performance is most likely due to the need to store
the affected tuples in-memory. These results show that the shifting algorithm is much better in terms of
improving query performance but also in improving the time complexity of the query performance.

The next subsection discusses a variant of the full scanning algorithm that overcomes the need to
store all the affected tuples in-memory and provides similar performance improvements as the shifting
algorithm.

- 30 -

CHAPTER 5. ALGORITHM DEVELOPMENT

Figure 5.6: Results of the full scanning algorithm and the 10MM PEGEL dataset

5.3.1 Count optimization

The basic variant of the full scanning algorithm must store all the tuples that match the query or current
group in-memory to be able to determine the median. However if the total number of tuples affected
by the query is known before scanning then no data has to be stored in-memory and scanning can
be reduced significantly since it can be stopped as soon as the median tuple is scanned. By knowing
the exact number of affected tuples the exact position of the median is also known, since this must be
exactly the middle tuple(s), i.e. count

2 .

Generally counting the number of tuples is also a very expensive operation, because this would also
require fetching all the tuples from disk but counting is a distributive operation and can be optimized
in its own way. This is exactly what has been done already at the University of Twente in the form of
the Stairwalker algorithm, as discussed in subsection 2.4.1. Henceforth the counting operation will be
considered to be free of cost within the scope this research.

Figure 5.7 shows the test results with the full scanning algorithm and the count optimization for the
10MM version of the PEGEL dataset. This graph shows that the query performance is now almost
completely independent of the number of tuples affected by the query and is solely influenced by the
time it takes to scan the binary data stream. This becomes even more clear when looking at the results
for the 1 MM version of the PEGEL dataset, as seen in figure 5.8. The query performance is almost
identical except a factor 10 difference thereby pointing to a linear relationship between the complete
size of the dataset and the query performance.

- 31 -

CHAPTER 5. ALGORITHM DEVELOPMENT

Figure 5.7: Results of the count optimization and the 10MM PEGEL dataset

Figure 5.8: Results of the count optimization and the 1MM PEGEL dataset

Considering the full scanning algorithm is primarily meant for datasets with multiple dimensions it is
worth looking at the test results of the measurements for this algorithm and the Twitter dataset, which
consists of 3 dimensions. Figure 5.9 shows the results of the full scanning algorithm (top graph) and
the results of the full scanning algorithm with the count optimization (bottom graph). Both graphs have
the same axis. These graph show similar characteristics as the graphs for the single-dimension PEGEL
dataset thereby showing that this algorithm is indeed suitable for multi-dimensional datasets, although
looking at the absolute query performance it does perform somewhat worse. This is expected though
as scanning takes longer due to the fact that there is more data to scan, i.e. each additional dimension
must also be included in the full data stream.

- 32 -

CHAPTER 5. ALGORITHM DEVELOPMENT

(a) Full scanning algorithm, without count optimization

(b) Full scanning algorithm, with count optimization

Figure 5.9: Results with the full scan algorithm and the 10MM Twitter dataset

Since the full scanning algorithm also relies on the use of a binary data stream, just like the shifting
algorithm, it is also possible to further optimize this algorithm by including the actual tuple values into the
data stream instead of only including the tuple key. Figures 5.10 and 5.11 show the results of including
the values into the data streams for the basic version of the full scanning algorithm and the variant with
the count optimization respectively whereby the top graphs are the results without the values included
and the bottom graphs are the results with the values included respectively. These graphs show very
clearly that including the actual values in the data stream has the most effect for the full scanning
algorithm without the count optimization whereas it has very little effect for the count optimized version.
This is primarily due to a property of the Twitter dataset: the tuple keys in this dataset require 8 bytes
of storage per key whereas the actual values only require 2 bytes thereby decreasing the amount of
memory needed to store all the tuples in memory by the full scanning algorithm. Based on these results
and the results whereby the values where included with the shifting algorithm, it is evident that including
the values does not have a large influence on the actual disk I/O for a small number of groups.

- 33 -

CHAPTER 5. ALGORITHM DEVELOPMENT

(a) Full scanning algorithm without including the values

(b) Full scanning algorithm with inclusion of the values

Figure 5.10: Results with the full scan algorithm and values and the 10MM Twitter dataset

- 34 -

CHAPTER 5. ALGORITHM DEVELOPMENT

(a) Full scanning algorithm with count and without including the values

(b) Full scanning algorithm with count and with inclusion of the values

Figure 5.11: Results with the count optimization and values and the 10MM Twitter dataset.

Just like the shifting algorithm, the full scanning algorithm also suffers from the same disadvantage
whereby queries or groups that cover a small percentage of the full dataset will likely have worse query
performance than the basic algorithm. This problem is likely to be even worse for the full scanning
algorithm since the complete data stream must always be scanned or at least until the median has
been found (when the count optimization is used). This can be seen in the results when looking at
the query performance at the beginning of the graph, which shows that the basic algorithm generally
outperforms all the full scanning variants for all datasets when the number of affected tuples is low.
The next section discusses a technique that can be used by both the shifting algorithm as well as the
scanning algorithm to mitigate this problem and show that this works using test results.

5.4 Sub-groups optimization

This section discusses an optimization technique which is suitable for both the shifting algorithm and the
full scanning algorithm as well as all their optimized variants.This optimization technique is called the
sub-groups optimization. The goal of this technique is to improve the query performance for queries that
cover only a fraction of the full data set by pre-computing additional data streams that are specifically
tailored towards these smaller queries.

Consider the full scanning algorithm. As explained in the previous section this algorithm depends on the
use of a binary data stream that contains the full dataset in a pre-sorted state. To determine the median
of a query, even a query that for example only covers 2 individual tuples, will require the scanning of the
full data stream to be able to ensure that all tuples affected by the query are found. With the sub-groups
optimization two extra data streams would be pre-computed whereby the first extra data stream contains
the left half of the full dataset in a pre-sorted state and the second extra data stream contains the right

- 35 -

CHAPTER 5. ALGORITHM DEVELOPMENT

half of the full dataset. With these two extra data streams determining the median of smaller queries
can now be done with either extra data stream, thereby reducing the time for scanning in half.

Figure 5.12 demonstrates the use of this optimization technique for the sample dataset. The full binary
data stream has already been shown in the previous section. The additional ”lower” and ”upper” sec-
ondary data streams are pre-computed as part of the sub-groups optimization. A median query with
time range of for example [1,2] or [3,4] can now be computed with the use of the lower- and upper
secondary binary data streams respectively thereby lowering the scanning time.

Figure 5.12: Pre-computed sub-group data stream for the sample dataset

This optimization technique also works for the shifting algorithm in a similar way, whereby an additional
left- and right data stream is generated for each subgroup. Figure 5.13 shows test results for the sub-
groups optimization with the shifting algorithm and the 10MM version of the PEGEL dataset. The left
part of the figure are the results of the shifting algorithm without the optimization and the part of the
figure are the results of the algorithm with the sub-groups optimization. The effect of the optimization
is most clearly visible for the top line (which are the results of the group-100 queries) whereby the
query performance for the smallest queries, whereby the smallest number of tuples are affected, is
slightly improved by the optimization. The effect is even more clearly noticeable when looking at the
query performance with the full scanning algorithm and the KNMI dataset, as seen in figure 5.14 and
even more so when looking at the results with the full scanning algorithm with the count and values
optimizations for the Twitter dataset, as seen in figure 5.15.

Figure 5.13: Comparison of the shifting algorithm and the sub-groups optimization

- 36 -

CHAPTER 5. ALGORITHM DEVELOPMENT

Figure 5.14: Results of the full scanning algorithm and the sub-groups optimization

Figure 5.15: Results of the full scanning algorithm with count, values and sub-groups optimization

The downside of this optimization technique is that it requires more storage and more (pre-)processing
time. For each additional sub-group level the whole dataset must be pre-sorted and stored as additional
data streams. Each additional level of sub-groups is also only able to improve the query performance
for a (small) subset of queries but comes at a cost therefore a balance between the number of levels
and achievable query performance is necessary. In some cases it may be more advantageous to use
the basic algorithm for very small queries and switch to an alternative algorithm for queries that cover
a bigger range. In the next chapter the storage costs of the algorithms will be discussed in further
detail.

The next section will provide a conclusion of the analysis into the development of alternative algorithms
for determining the median.

5.5 Conclusion

This chapter has outlined and analyzed the development into finding new algorithms and various op-
timization variations for improving query performance for median (aggregation) queries. The starting
point of this development was the basic algorithm, which is at the moment the standard algorithm for
most database engines. Based on the test results and investigation into this algorithm two main prob-
lems have been identified with this algorithm that have a large negative effect on query performance:
(i) all tuples must be fetched from disk and (ii) to determine the median all tuples must be stored and
sorted in-memory.

To solve these problems an alternative algorithm has been developed called the shifting algorithm.
This algorithm no longer requires fetching all tuples from disk and storing and sorting them in-memory

- 37 -

CHAPTER 5. ALGORITHM DEVELOPMENT

thereby solving both main problems of the basic algorithm. Experiments with the test datasets and test
queries have indeed shown that this algorithm is able to greatly improve the query performance and is
able to deliver a near constant query performance independent of the number of tuples affected by the
query. This algorithm does require the use of two pre-computed binary data streams and for each tuple
extra information has to be pre-calculated before this algorithm is able to work as designed.

The major downside of the shifting algorithm is its unsuitability for datasets with multiple dimensions.
During this research tests have been done it with a 2-dimensional dataset (the KNMI dataset) however
this dataset has a very limited secondary dimension with only 10 distinct values. As the number of
dimensions increase, and the distinct values per dimension, the computational complexity of the shifting
algorithm increases very quickly thereby making it unsuitable.

That is why another algorithm, called the full scanning algorithm, has been developed, which is more
suitable for higher dimensional datasets. This algorithm depends on a single pre-computed binary data
stream, whereby the data is pre-sorted and stored so that this does not need to happen at query-time.
To be able to compute the results of a median query the full data stream is scanned to find all the tuples
that match the query and then the middle tuple is returned as median since all the tuples are already
pre-sorted.

The basic variant of this algorithm has to store all the tuples in-memory to be able to determine the
median. To solve this problem a variant of the full scanning algorithm has been developed whereby
the number of affected tuples is determined before actually scanning the binary data streams which
prevents the need to store all the tuples in-memory and reduces the scanning time because scanning
can be stopped as soon as the median tuple is found. This variant depends on being able to determine
the number of affected tuples (i.e. a count) in a very efficient way, for example with the Stairwalker
algorithm as previously discussed in sunsection 2.4.1. In test results this time has not been taken into
account.

An optimization technique for both the shifting and the full scanning algorithm has also been created
whereby the actual measure values is included into the binary data streams instead of only the key of
each tuple with the goal of reducing disk IO once the correct tuple has been identified as the median.
Test results have shown that this optimization has s mixed success rate and is primarily able to improve
the query performance if the storage size of the measure value is smaller (i.e. 2 bytes) than the tuple
key (i.e. 8 bytes). Test results also show that this optimization might reduce disk IO more significantly if
a query is grouped into many groups (i.e. number of groups >>100).

Finally an optimization has been developed which is used to improve the query performance for queries
that cover a small part of the full dataset, which generally have worse query performance with the
alternative algorithms than the basic algorithm. This optimization technique, called the sub-groups
optimization, relies on splitting the full dataset into multiple parts (e.g. halves, fourths, tenths, etc) and
pre-computing the data streams independently for each part of the dataset. If and when a small query
fits into one of the parts then this part is used to actually calculate the median instead of the data
stream for the full dataset. This generally results in improved query performance because the time to
scan the data stream is reduced due to the smaller size of the stream. Test results have shown that this
optimization is successful in improving the query performance for smaller queries.

The next chapter will evaluate this research in a structured way by analyzing, for each algorithm and
each optimization, the improvement in query performance and the storage requirements. This analysis
will be based on the test results, which have been partly discussed already in this chapter.

- 38 -

Chapter 6

Evaluation

This chapter will evaluate the developed algorithms and optimizations by systematically analyzing them
on two different criteria: query performance and storage requirements. The first section will analyze the
query performance of each algorithm and optimization and the second section will analyze the storage
requirements. In the third section the findings of the evaluation will be summarized. Finally the last sec-
tion of this chapter will provide a conclusion of the evaluation of each algorithm and optimization.

6.1 Query performance

This section will discuss the query performance of each algorithm and optimization, whereby there is
a focus on the time complexity of the query performance and the resulting scalability of this time com-
plexity. In the following subsections each algorithm, starting with the basic algorithm, and optimization
as outlined in the previous chapter will be analyzed.

All the test results in the following subsections have been collected using the experimental setup de-
scribed in chapter 4. This setup consists of three test data sets (the PEGEL dataset, the KNMI dataset
and the Twitter dataset), a set of randomly generated test queries for each data set, a fixed test platform
to run experiments on and a Java tool to automatically run all experiments in a standardized way. Each
test query has been executed with three different group-by queries: as a single group, divided into 10
groups and divided into 100 groups. Full details on this setup can be found in chapter 4.

6.1.1 Basic algorithm

The query performance of the basic algorithm serves as the baseline to which the performance of the
alternative algorithms are compared to. Figure 6.1 shows the query performance of the basic algorithm
for all three test datasets. All three graphs show a similar relationship between the number of affected
tuples affected by the query (the x-axis of the graphs) and the query performance (indicated by the query
execution time on the y-axis). This is a linear relationship: as the number of affected tuples increase the
query execution time increases at a similar rate (and therefore the query performance decreases). It is
important to note that the absolute query performance is almost the same for each test dataset despite
the difference in data distribution, number of dimensions and measure values.

The test results, as shown in figure 6.1, show that the grouping parameter of the aggregation queries
also has an influence on the query performance although this is a very unclear effect because in one
case the group-1 queries have the best query performance (e.g. for the PEGEL dataset) and in another
case the group-10 queries have the best performance (e.g. for the KNMI dataset). It is unclear sure why
this is, but one possible reason may be overhead of the internal grouping mechanism of the database
engine. For the Twitter dataset the group-100 queries had such bad performance that reliable test
results could not be obtained.

- 39 -

CHAPTER 6. EVALUATION

(a) PEGEL results

(b) KNMI results

(c) Twitter results

Figure 6.1: Test results for the basic algorithm

Having analyzed the query performance of the basic algorithm it is now possible to analyze the perfor-
mance of the alternative algorithms. The next subsection will evaluate the shifting algorithm.

6.1.2 Shifting algorithm

The test results of the shifting algorithm, as shown in figure 6.2 show that the relationship between the
number of tuples involved in a median (aggregate) query and the query performance no longer exists;
the affected number of tuples no longer has any effect on the query performance. This is shown in
figure 6.2 as the graphs are almost completely flat, especially when looking at the results of the group-1
and group-10 queries. The test results of the group-100 queries has an increase at around 5 MM rows,
which is an indication that at this point the actual shifting performed by the algorithm is at its highest.
This is most likely due to the actual data distribution of both data sets.

- 40 -

CHAPTER 6. EVALUATION

It is interesting to note the peaks at the beginning of both graphs. Clearly very small queries, covering
only a tiny part of the total data set, have the worst query performance for both datasets and all grouping
configurations. Most likely, this is due to the fact that for these queries the shift factor may be quite small
but the actual scanning of the binary streams takes much longer because the involved rows are spread
over the full binary streams.

Although the query performance is no longer linear related to the number of involved rows it does not
mean it is completely fixed. Instead, there is now a linear relationship between the size of the full
dataset and the query performance. This can be seen when looking at figure 6.3, which shows the
the test results with the 1 MM version of the PEGEL dataset (top graph) and the 10 MM version of the
PEGEL dataset (bottom graph). The query performance of the 10 MM version is approximately 2x as
slow as the query performance of the 1 MM version.

The test results also show a linear relationship between the number of groups of a query (e.g. group
into 1, 10 or 100 groups) and the query performance. For example when looking at figure 6.2b, the
test results for the group-100 queries are approximately 5x as slow as the tests results for the group-10
queries.

(a) PEGEL results

(b) KNMI results

Figure 6.2: Test results for the shifting algorithm

- 41 -

CHAPTER 6. EVALUATION

(a) PEGEL 1 MM results

(b) PEGEL 10 MM results

Figure 6.3: Test results for the shifting algorithm for the PEGEL dataset of various sizes

The next subsection will analyze the query performance of the full scanning algorithm and how it com-
pares to the baseline performance.

6.1.3 Full scanning algorithm

The test results of the query performance of the full scanning algorithm are shown in figure 6.4. These
test results show for all test datasets a very similar performance profile as the test results of the basic
algorithm, i.e. a linear relationship between the number of tuples and the query performance although
absolute query performance of the full scanning algorithm is approximately 10x better than the perfor-
mance of the basic algorithm.

Since these results show that the full scanning algorithm still has the same performance behavior as
the basic algorithm it is less likely to scale as well as the shifting algorithm. As already mentioned in
the previous chapter, this is likely due to the fact that the full scanning algorithm needs to (temporarily)
store all affected tuples in memory before being able to determine the median. Clearly this is a costly
operation and should be avoided.

Unlike the shifting algorithm, with the full scanning algorithm the grouping configuration has a positive
effect on the query performance, i.e. as the number of groups increases the query performance also
improves. This is exactly as expected, because only the tuples for the each group needs to be stored
in memory which means that for the group-1 queries all the tuples involved with the query need to be
stored in memory whereas for the group-100 queries only the tuples for a single group need to be stored
in memory. The test results in figures 6.4a and 6.4b confirm that this is indeed the case although the
results in figure 6.4c do not fully support this.

- 42 -

CHAPTER 6. EVALUATION

(a) PEGEL results

(b) KNMI results

(c) Twitter results

Figure 6.4: Test results for the full scanning algorithm

The next subsection will evaluate the query performance of the variant of the full scanning algorithm
whereby the tuple count is known beforehand thereby avoiding the requirement to store all the tuples in
memory.

6.1.4 Full scanning with count variant

Figure 6.5 shows the test results of the query performance measurements with the count variant of
the full scanning algorithm. These graphs show that, similar as with the shifting algorithm, the linear
relationship between the query performance and the number of tuples affected by the query has disap-
peared. The query performance is no longer affected directly by the number of tuples but instead it is
now determined by the total size of the dataset, as clearly shown by figure 6.6. This figure shows the
results of the full scanning with count algorithm with the 1 MM version (top graph) and 10 MM version

- 43 -

CHAPTER 6. EVALUATION

of the PEGEL data set (bottom graph). Although not very clearly visible in the graphs, this relationship
is an linear relationship, i.e. as the size of the dataset increases the query performance decreases in a
linear fashion. The shifting algorithm also has a linear relationship between the query performance and
the size of the full dataset but it’s linear growth is more gradual.

It’s interesting to note that the grouping configuration has the opposite effect on the query performance
with this variant when compared to effect it has with the basic variant of the full scanning algorithm.
Now the query performance degrades as the number of groups increases, as clearly shown in all three
graphs in figure 6.5 by comparing the query performance of the group-100, group-10 and group-1
queries.

All three graphs also show high deviations at the beginning, which involves smaller queries (i.e. number
of involved rows less than 2 MM). This is due to the fact that the tuples involved with these smaller
queries are likely to be spread all over the binary stream, which means there is a high chance that a
very large part of the binary stream must be scanned before the median tuple is found and scanning
can be aborted. This is exactly the use-case for which the sub-groups optimization has been developed,
which is evaluated later on in this chapter in sub-section 6.1.6.

- 44 -

CHAPTER 6. EVALUATION

(a) PEGEL results

(b) KNMI results

(c) Twitter results

Figure 6.5: Test results for the full scanning with count variant

- 45 -

CHAPTER 6. EVALUATION

(a) PEGEL 1 MM results

(b) PEGEL 10 MM results

Figure 6.6: Test results showing the relationship between query performance and the dataset size

The next subsection will evaluate the effect of optimizing the shifting algorithm and the full scanning
algorithm whereby the actual measure values are included into the data streams instead of the tuple
keys.

6.1.5 Including values optimization

Figure 6.7 shows the test results of the query performance for the shifting algorithm without and with the
values included. These results show that this optimization has a mixed effect on the query performance
and on the time complexity of the performance. For the PEGEL data set the query performance now
actually improves as the number of involved tuples increases although this effect is primarily seen with
the group-100 and group-10 queries. This is an indication that the use of this optimization does have
some effect in reducing the additional index lookups for fetching the actual measure values. However,
it does not have this effect on the KNMI data set although the query performance for the KNMI data set
is improved by approximately 25%. Therefore it is difficult to definitively conclude that this optimization
has the desired effect as theorized in section 5.2.

It is important to note that in some cases the query performance is actually degraded, for instance when
looking at the beginning of figure 6.7b, which shows that the query performance of the smaller queries
is worse than the query performance of the same queries when the values are not included into the
binary streams. This is due to the fact that these queries tend to require much more scanning of the
streams and this takes longer when the values are included, especially for the PEGEL dataset since
this dataset does not require the inclusion of an additional artificial tuple key. This becomes even more
evident when looking at the result for the KNMI dataset, which does not suffer from this problem since
scanning the streams actually becomes faster for this dataset since the artificial tuple keys are replaced
by the (smaller) measure values in the binary streams.

- 46 -

CHAPTER 6. EVALUATION

(a) PEGEL results without values (b) PEGEL results with values

(c) KNMI results without values (d) KNMI results with values

Figure 6.7: Test results for the with values optimization for the shifting algorithm

This optimization can also be used with the full scanning algorithm. Test results of this are shown in
figure 6.8. These results show that the impact of including the values into the binary streams can either
worsen query performance (e.g. for the PEGEL dataset, as seen in figures 6.8a - 6.8b) or improve
query performance by more than 50% (e.g. for the Twitter dataset, as seen in figure 6.8e - 6.8f). This
is primarily dependent on whether the actual measure value takes up less storage than the artificial key
or not which in turns leads to decreased or increased scanning time.

- 47 -

CHAPTER 6. EVALUATION

(a) PEGEL results without values (b) PEGEL results with values

(c) KNMI results without values (d) KNMI results with values

(e) Twitter results without values (f) Twitter results with values

Figure 6.8: Test results for the with values optimization for the full scanning algorithm

This optimization can also be used with the count variant of the full scanning algorithm. Test results of
this are shown in figure 6.9. These results unfortunately show that including the values has very little
effect on the time complexity of the query performance or the query performance for the full scanning
with count algorithm.

- 48 -

CHAPTER 6. EVALUATION

(a) PEGEL results without values (b) PEGEL results with values

(c) KNMI results without values (d) KNMI results with values

(e) KNMI results without values (f) KNMI results with values

Figure 6.9: Test results for the with values optimization for the full scanning with count algorithm

The next subsection will analyze the effects on the query performance of the sub-groups optimiza-
tion.

6.1.6 Sub-groups optimization

This subsection will evaluate the effects of the sub-groups optimization on the query performance for the
shifting algorithm and the count variant of the full scanning algorithm. Figure 6.10 shows the test results
of the query performance of the shifting algorithm without the sub-groups optimization (left graph) and
with the sub-groups optimization (right graph) for the PEGEL dataset. Due to technical issues test
results of this optimization with the shifting algorithm for the KNMI dataset are not available.

The effect on the query performance is fairly minor and can only really be seen when looking at the
results of the top line (these are the results of the group-100 queries) whereby the beginning shows
improved (absolute) query performance. Clearly, for the shifting algorithm this does not change the time
complexity of the algorithm at all. Oddly enough the test results of the right graph show a new peak
for the group-1 and group-10 queries at around 0.5 MM rows involved, which is not present in the left
graph. The exact cause of this has not been systematically investigated but based on the mechanism
behind the shifting algorithms works it is likely that this specific deviation occurs because of an increase
in the shifting factor and/or scanning time due to the location of the median of the sub-group versus the
median of the full data set.

- 49 -

CHAPTER 6. EVALUATION

Figure 6.10: Test results for the sub-groups optimization with the shifting algorithm

The test results for the sub-groups optimization in conjunction with the fullscan algorithm and its count
variant show more promise. Figure 6.11 shows the test results of the sub-groups optimization with the
basic variant of the full scanning algorithm and the KNMI dataset. These test results clearly show that
the optimization has a positive effect on the query performance of smaller queries (i.e. whereby the
number of rows is less than 5 MM).

This is also very clearly seen when looking at the test results of the sub-groups optimization with the
count variant of the full scanning algorithm, as seen in figure 6.12. Again these results show that this
optimization is able to significantly improve the query performance of smaller queries, although the
effect is clearly no longer visible when the number of involved rows is more than 5 MM. Test results
of this optimization in conjunction with the optimization whereby the values are included, as shown in
figure 6.13 show a similar improvement in query performance.

Test results of the sub-groups optimization has clearly shown that this optimization is able to signifi-
cantly improve query performance of smaller queries and is able to reduce high deviations in query per-
formance for such queries. However the effect of this optimization is strictly limited to smaller queries,
although the exact definition of a ”smaller” query is not entirely fixed.

Figure 6.11: Test results of the full scanning algorithm and the sub-groups optimization

- 50 -

CHAPTER 6. EVALUATION

Figure 6.12: Test results of the full scanning with count algorithm and the sub-groups optimization

Figure 6.13: Test results of the full scanning with count, values and sub-groups optimization

This section has discussed, analyzed and evaluated the effects of each algorithm and optimization
on the query performance, the relationship between the query performance and the number of tuples
involved in a query, the time complexity of this relationship and the relationship between the total size
of the dataset and the query performance. Test results have clearly shown that the algorithms, variants
and optimizations that have been developed have a very mixed effect on the query performance.

The next section will analyze the storage requirements for each algorithm and optimization, which is an
important part of the evaluation of this research because there is a very high dependence on the use of
pre-computed data structures and streams to improve the query performance.

6.2 Storage requirements

This section will evaluate the storage required by each alternative algorithm and optimization necessary
to improve query performance of median (aggregation) queries. The storage requirements of each
algorithm and optimization will be discussed separately in the following subsections, starting with the
basic algorithm.

- 51 -

CHAPTER 6. EVALUATION

6.2.1 Basic algorithm

The basic algorithm has no (additional) storage requirements besides the original dataset and its related
indexes (i.e. a B-tree index on the dimensions of the dataset) because it does not use any pre-computed
data to improve query performance; only the original data is used to calculate the median.

6.2.2 Shifting algorithm

The shifting algorithm depends on the use of two types of pre-computed data structures: (i) left- and
right shift factors for each tuple per dimension and (ii) left- and right binary data streams. Table 6.1 lists
the storage requirements for both types of structures in a percentage of the total size of the original data
set for both the PEGEL and the KNMI datasets.

Dataset Size of data streams Size of shift factors Total size

PEGEL 6.5% 9.5% 16.0%

KNMI 15.0% 9.5% 24.5%

Table 6.1: Storage requirements of the shifting algorithm

The figures in table 6.1 show that the additional storage needed by the shifting algorithm lies between
approximately 15% and 25% of the original dataset. This algorithm needs less storage for the PEGEL
dataset than the KNMI dataset because the dimension values, which must be encoded in the data
streams, are also used as the unique key of each tuple due to their uniqueness property (i.e. only
1 tuple at each specific time). This is not possible for the KNMI dataset since multiple tuples have
the same time value thereby requiring the inclusion of an additional (artificial) tuple key into the data
streams.

The figures for the size of the shift factors are somewhat misleading, because it seems like the size of the
shift factors are the same irrespective of the number of dimensions. This is only the case for the KNMI
dataset because, although is has twice the number of dimensions as the PEGEL dataset, the second
dimension of the KNMI dataset (the station dimension) has a very limited number of distinct values,
i.e. only 10 unique values, and therefore only a very limited number of shift factors for this dimension.
This is not the case for datasets with multiple dimensions, each with a large number of distinct values,
whereby the storage size of the shift factors could increase greatly for each dimension. This is another
reason why the shifting algorithm is less suitable for datasets with multiple dimensions.

The next subsection will evaluate the storage requirements of the full scanning algorithm.

6.2.3 Full scanning algorithm & with count variant

The full scanning algorithm only depends on a single pre-computed data structure: the pre-sorted binary
data stream. Table 6.2 lists the storage figures for the binary data streams for the test data sets as a
percentage of the original data set. These figures show that the storage required by this algorithm is
quite substantial although it is still surprisingly small, since the binary data streams are almost an exact
copy of the original dataset except for the actual measure value. Clearly by storing the data as a binary
stream the overhead of the database engine is saved in storage space.

Dataset Size of data streams

PEGEL 6.5%

KNMI 15.0%

Twitter 30.0%

Table 6.2: Storage requirements of the full scanning algorithm

The variant of the full scanning algorithm whereby the count is available before query time does not
require additional storage space and uses the same binary data streams as the basic full scanning

- 52 -

CHAPTER 6. EVALUATION

algorithm. However this variant depends on the availability of an efficient count operation, such as
the Stairwalker algorithm, which has its own storage requirements, most likely in the form of additional
pre-computed data structures (i.e. pre-aggregates). Concrete figures for this are not available.

The next subsection will evaluate the storage requirements of the optimization technique whereby the
values are included in the binary data streams.

6.2.4 Including values optimization

This optimization is based on including the actual measure values into the binary data streams for both
the shifting and full scanning algorithms. The previous two subsections have shown that the binary data
streams require the same size for both algorithms therefore they can considered to be the same for the
analysis into the storage requirements of the values optimization.

Table 6.3 shows the storage sizes of the binary data streams with the values included for each data set.
The most interesting about these figures is the fact that the size of the streams for the KNMI and Twitter
data sets has actually decreased, despite the fact that they now include the actual measure values. This
seems contradictory but has a very logical explanation: the actual value has replaced the tuple keys in
the data streams. Clearly, these tuple keys need more space than the actual values thus resulting in a
decrease in storage space if these keys are replaced with the actual values. For the PEGEL dataset the
size of the data streams slightly increase because for this data set the values do not replace the tuple
keys, since these were never part of the data stream.

Dataset Size of data streams

PEGEL 8.0%

KNMI 8.0%

Twitter 24.5%

Table 6.3: Storage requirements of the including values optimization

The binary data streams whereby the value is included allow the median to be calculated without the
need for the original dataset, thereby the original dataset does not need to be available. This means
that the original dataset can remain somewhere external, e.g. in the data warehouse, whilst the binary
data streams are updated nightly and used by the end-user to explore the data set. This means that this
technique can be used as an compression technique, since the binary streams are significantly smaller
than the original data sets.

The next subsection will analyze the storage requirements of the sub-groups optimization.

6.2.5 Sub-groups optimization

The sub-groups optimization is based on generating additional data structures of smaller parts of the
full dataset which is then used to calculate the median for smaller queries. Concretely this means for
the shifting algorithm that for each additional level of sub-groups new data streams and shifting factors
must be calculated and stored. For the full scan algorithm only the additional data streams must be
stored.

Hence for each additional level of sub-groups the storage requirements as discussed in the previous
subsections increase linearly. For example, if an additional level of sub-parts is generated for the PEGEL
data set for the shifting algorithm the storage requirements increase from 16% of the full dataset to 32%
of the full dataset. This also implies that the best algorithm to use the sub-groups optimization with is
the algorithm that uses the least amount of storage space which is the full scanning algorithm with the
values optimization.

Since this optimization is only able to improve the performance for smaller queries and the storage re-
quirements are quite steep, especially compared to the benefits it provides, a very careful consideration
must be done before employing this optimization to determine if the advantages outweigh the disad-
vantages. Analysis of the frequency of smaller queries and the performance of the basic algorithm with
regards to smaller queries is necessary before this optimization should be used.

- 53 -

CHAPTER 6. EVALUATION

This subsection finishes the evaluation into the storage requirements of the algorithms and optimizations
that have been developed. The next section will provide a summary of the evaluation.

6.3 Summary

This section summarizes the outcome of the evaluation of the developed algorithms and optimizations.
Evaluation has been done on two criteria: (i) query performance, with a focus on the time complexity of
the performance and (ii) storage requirements. The evaluation has shown that:

• The shifting algorithm is the best algorithm to improve the query performance and provides the
best scalability with regards to the query performance

• For highly dimensional data sets the best alternative is the count variant of the full scanning
algorithm although this algorithm has less effect than the shifting algorithm

• The optimization whereby the values are included into the data streams has a mixed effect on the
query performance

• The sub-groups optimization also has little effect on the query performance or its scalability but is
able to improve the performance of a (subset) of smaller queries

• The shifting algorithm needs more storage than the full scanning algorithm because the shift
factors must also be stored

• The optimization to include the values is able to reduce the storage space needed by the algo-
rithms and makes it possible to process median queries without the original dataset

• The sub-groups optimization has a high storage cost when compared to the limited improvement
in query performance and therefore should be very carefully considered before use.

Figures 6.14-6.16 show a comparison of the query performance for each algorithm/optimization (except
the sub-groups optimization) for a median query of 9.5 million rows for each of the three data sets.
These charts show the difference in query performance improvement of each algorithm for each data
set. Clearly the shifting algorithm is able to provide the best improvement in query performance. But
these charts also confirm that the best alternative is the count variant of the full scanning algorithm,
since this algorithm is still able to significantly improve the query performance, as clearly visible in the
figures. The charts also corroborate the fact that the optimization whereby the values are included has
a mixed effect on the query performance; in some cases it is able to improve the query performance
and in other cases it actually degrades the performance.

The next section will provide a conclusion of the evaluation of the algorithms and optimizations.

Figure 6.14: Query performance comparison for the PEGEL data set

- 54 -

CHAPTER 6. EVALUATION

Figure 6.15: Query performance comparison for the KNMI data set

Figure 6.16: Query performance comparison for the Twitter data set

6.4 Conclusion

In this research several alternative algorithms and optimizations have been developed that are designed
to improve the query performance of median (aggregation) queries. This chapter these algorithms and
optimizations have been evaluated on two points: actual improvement to the query performance with a
focus on the improvement to the time complexity of the query performance instead of actual absolute
query performance and the storage requirements. All evaluation has been based on actual test results,
done with the experimental setup whereby all external variables have been kept constant.

First, the query performance of each algorithm has been evaluated. Careful analysis of the basic
algorithm has shown that there is a clear linear relationship between the number of tuples involved in
a median (aggregation) query and the query performance. This relationship is distinctly visible in the
graphs of the test measurements.

Next, test results of the shifting algorithm were analyzed. Since this algorithm is not very suitable for

- 55 -

CHAPTER 6. EVALUATION

multi-dimensional data sets evaluation of this algorithm could only be done for the PEGEL and KNMI
data sets. Analysis has shown that this algorithm is able to greatly improve the query performance and
completely remove the relationship between the query performance and the number of tuples affected
by the query. Instead there is now a linear relationship between the total size of the full dataset and
the query performance. Since this linear relationship has a more gradual growth-rate it is able to scale
better than the original linear relationship of the basic algorithm.

Test results for the shifting algorithm also showed that the query performance noticeably decreases as
the number of groups of a query increases at a linear pace. For a query with many groups (i.e. nr. of
groups >>100) this could have a large negative effect on the query performance.

Then, the test results of the basic variant of the full scanning algorithm were evaluated, which showed
that, although the absolute query performance was almost 10x better than the basic algorithm, there is
still a similar linear relationship between the number of affected tuples and the performance of a query.
Hence, this algorithm does not improve the scalability of processing median queries.

After that the count variation of the full scanning algorithm was evaluated. The rest results of this
algorithm show similar effects as with the shifting algorithm, i.e. the relationship between the number
of affected tuples and the performance of a query no longer exists and a new relationship has arisen
between the size of the total dataset and the query performance. For this algorithm however the linear
relationship between the size of the total dataset and the query performance is steeper than the shifting
algorithm. This means that the scalability of this algorithm is less than the shifting algorithm. It is
very clear however that this variant of the full scanning algorithm is able to deliver much better query
performance than the basic variant. It must not be forgotten however that this variant depends on the
availability of a very efficient count operation and that this also has a performance penalty, unlike the
shifting algorithm.

Then, the two optimizations were evaluated to determine their effect on further optimizing the query
performance. Test results have shown that the with-values optimization has a very mixed effect on the
query performance and the time complexity. In some cases the time complexity and/or query perfor-
mance is significantly improved and in other cases it is actually worsened. The sub-groups optimization
is able to improve the performance of smaller queries however its effect is limited to very small queries,
as demonstrated by the test results.

The storage requirements of each algorithm and optimization have also been analyzed.This has shown
that the shifting algorithm needs at least 15% additional storage space to store its pre-computed data
structures and that this figure increases as the number of dimensions increases, which is another indi-
cation that the shifting algorithm is less suitable for highly dimensional data sets.

Both variants of the full scanning algorithm require less storage space than the shifting algorithm be-
cause it does not require storing shifting factors in addition to data streams. The results have shown
that this algorithm needs up to 30% additional storage space although this figure can be less (e.g. for
the PEGEL dataset it is only 6.5%).

Most surprisingly were the results of the analysis into the store requirements when applying the opti-
mization whereby the values are included into the data streams. This optimization actually reduces the
storage space that is needed in most cases, depending on the size of the actual value and the tuple
keys. In addition, this optimization makes it possible to process median (aggregation) queries using only
the data streams thereby avoiding the need to actually have the full dataset available online. This could
be especially useful in OLAP contexts whereby original data sets are commonly maintained separately
in the data warehouse and the front-end application is served by subsets of data (cubes).

This chapter also looked at the storage requirements of the sub-groups optimization. Investigation has
showed that this optimization has a linear relationship between the amount of storage it requires and the
number of additional levels that are generated for the sub-groups of data, since for each additional level
the full data set is again pre-processed into data streams and shift factors (for the shifting algorithm)
albeit into n sub-parts but this has no direct effect on the storage required. Therefore this optimization
has a high cost for potentially little effect, since it is only able to improve the performance of smaller
queries and each additional level has a decreasing return on (storage) investment because as the sub-
parts get smaller the amount of queries matching a sub-part also gets smaller.

Finally this chapter with a summary of the most important insights that the evaluation of the algorithms
and optimization has provided. Based on these insights a framework has been developed for selecting
the best algorithm and/or optimization in various circumstances. This is discussed in further detail in
the next chapter.

- 56 -

Chapter 7

Algorithm selection framework

This chapter will outline the work that has been done into developing a framework that can be used
to determine which algorithm and optimization will provide the best query performance for different
circumstances. This framework has been developed as part of the research into the alternative median
algorithms and the evaluation of these algorithms and related optimizations.

The next section will discuss how the framework has been developed and provide the actual framework.
Then, the framework will be evaluated and its strengths and weaknesses discussed. Finally this chapter
will end with a conclusion.

7.1 Development of framework

This section will first outline the most important factors that have driven the development of the algorithm
selection framework. Then the framework will be provided and with an explanation on its usage.

Based on the insights of the evaluation of the alternative algorithms and optimization in chapter 6 and
summarized in section 6.3, the following factors have to been determined to play a role when choosing
which algorithm or optimization should be used:

• How many dimensions does the data set have?

• Is there an efficient count operation available?

• Is the storage size of the actual measure value smaller than the storage size of the artificial tuple
key?

• Does the expected query work load contain many queries that are grouped into significantly more
than 100 groups?

• Does the expected query work load contain many smaller queries?

Based on these factors a decision tree has been developed which encapsulates the different possibilities
into a single framework. This can be seen in figure 7.1.

The selection tree consists of three distinct selection phases. The initial phase, start situation, con-
sists of the basic algorithm, which works in every circumstance but does not offer any improved query
performance. The next phase, algorithm selection, involves the selection of the correct algorithm for
improved query performance. The first decision in this phase is determining the number of dimensions
of the data set. If the number of dimensions is two or less test results have shown that the shifting
algorithm should be used for the best query performance. If the number of dimensions is more than two
however then the decision tree points to either the full scanning algorithm or the full scanning with count
algorithm, depending on the availability of an efficient count operation. Test results have shown that the
full scanning with count algorithm has the best performance of the two.

The next phase, optimization selection, determines which additional optimization should be selected
for further improving query performance and/or reducing storage requirements. The first decision in
this phase is to determine if the storage size of the actual measure values is smaller than the storage
size of the (artificial) tuple keys or if the expected work load is expected to have many queries whereby
the number of groups is significantly bigger than 100. In the first case the required storage space can

- 57 -

CHAPTER 7. ALGORITHM SELECTION FRAMEWORK

Figure 7.1: Algorithm selection decision tree

be reduced by including the values and in the second case test results have shown that by including
the values the query performance is improved when dealing with queries with many groups. If neither
case is true then there is no real benefit in using the values optimization and therefore should not be
used.

The second decision in this phase is to forecast the number of expected small queries that cover only
very small parts of the complete data set. Since the test results have shown that the developed al-
gorithms tend to have worse query performance for very small queries the sub-groups optimization is
used to overcome this drawback. However the test results have also shown that this optimization is
only suitable for very small queries and has a high cost. Therefore only a very large number of small
queries make this optimization feasible. If the expected workload does not have this property then this
optimization should not be selected.

With this selection tree the correct algorithm and optimizations are easily selected for every circum-
stance. The next section will evaluate the strengths and weaknesses of this selection tree.

- 58 -

CHAPTER 7. ALGORITHM SELECTION FRAMEWORK

7.2 Evaluation

This section will briefly discuss the strengths and weaknesses of the algorithm selection framework, as
outlined in the previous section. First the benefits of the selection tree will be covered and then the
weaknesses and outstanding issues.

Based on the research into the development and usage of the selection tree it has been established
that it offers the following benefits:

Usable in every circumstance / data set
The decision tree is suitable for every circumstance irrespective of the specific data set and/or
expected work load. By starting with the basic algorithm, which already offers a solution for
every circumstance, and systematically moving onto several alternative algorithms/optimizations
a suitable combination of algorithm and optimization is always available. This means that query
performance can always be improved for every circumstance.

Easy to select correct algorithm/optimization
The selection tree is very concise and small, making it easy to follow and select the correct
algorithm/optimization. By keeping it simple the likelihood of actually using the decision tree is
much higher as opposed to a very complex framework, which is likely to remain unused in many
circumstances.

Based on actual test results
The decision tree is based on the experimental tests results of this research. Therefore the
decision tree has a strong empirical backing and guarantees similar performance improvements
if correctly used.

In addition to the above benefits the current version of the selection tree still suffers from a few potential
issues and drawbacks, primarily due to the lack of research into specific problems. These are:

Depends on a priori knowledge of the expected work load
Several decision splits in the selection tree depend on a priori knowledge of the expected query
work load, e.g. does it have many smaller queries or many queries with a high number groups. In
some cases this a priori knowledge may not be available or may not be an accurate prediction of
the future work load therefore this is a weakness in the decision tree and may lead to the selection
of an optimization which has a negative effect on the query performance or storage requirements.
Fortunately this dependence only occurs in the optimization selection phase of the tree and has
no influence on the selection of the actual algorithm.

Unclear on number of groups for with-values optimization
At present the decision tree has a decision split whereby the split (partly) depends on whether
the number of groups (that queries are grouped into) is significantly bigger than 100. However
there is no clear definition of significantly bigger and this is left up to the readers interpretation.
Clearly this is a weakness in the decision tree but unfortunately a thorough investigation into this
area has not been part of this research thus a more accurate number cannot be provided.

Unclear how many smaller queries are needed for sub-groups optimization
Similar to the previous drawback, the decision tree has a decision split which depends on whether
there are many smaller queries in the expected query work load. However a clear definition of
”many smaller queries” cannot be given because the test results do not support a more accurate
definition. An extensive investigation into this specific phenomena is likely to lead to a more
accurate definition. This weakness may lead to significantly increased storage requirements or
decreased query performance if the incorrect decision is made due to uncertainty.

Although the decision tree clearly has some unresolved drawbacks these are concentrated in the op-
timization selection phase of the selection tree. Given this, its strengths outweigh its problems and
offers a good framework for selecting the most optimal algorithm and optimization in every circum-
stance.

The next section will provide a conclusion to this chapter.

- 59 -

CHAPTER 7. ALGORITHM SELECTION FRAMEWORK

7.3 Conclusion

This chapter introduced a framework for selecting the right algorithm and optimization for improving
query performance for different circumstances. This framework depends on several factors that are
based on the research into and evaluation of alternative median algorithms and optimizations.

These factors have lead to the development of a decision tree, which is separated into three distinct
phases: the start situation, the algorithm selection and lastly the optimization selection. The start situ-
ation consists of the basic algorithm, which is suitable for every circumstance and can always be used
but offers no improvement in query performance. The algorithm selection phase leads to the correct
selection of an algorithm and improved query performance. Finally the optimization selection phase
is used to select additional optimizations which can further improve query performance or decrease
storage requirements.

The decision tree offers several benefits: ease of use in selecting the right algorithm and optimization(s)
for every circumstance and a solid empirical backing. However the current version has some draw-
backs in the optimization selection phase whereby there is a dependence on a priori knowledge of the
expected query work load and vague definitions of certain crucial factors influencing the selection of
optimizations. Further research is likely to reduce or eliminate these drawbacks.

Given this information, the current algorithm selection framework can reliably be used to determine the
correct algorithm and optimizations for different circumstances.

The next chapter will conclude this thesis by answering the research question and subquestions, discuss
potential issues that may exist with this research and outline possible future research directions.

- 60 -

Chapter 8

Conclusions

This chapter provides a conclusion to this thesis into improving query performance for holistic aggre-
gate queries for real-time data exploration, whereby there has been a focus on the median aggregation
function. The first section will provide a conclusive answer to the research question and related sub-
questions. The second section will analyze the work that has been done and outline some potential
threats to the validity of the research. Finally the last section will discuss possible future directions of
research.

8.1 Research Questions

This section will provide an answer to the main research question and subquestions. First the sub-
questions of the research will be answered in the following subsections. Then, this section will finish by
answering the main research question.

8.1.1 What factors influence the query performance?

The theoretical investigation into the factors that have an influence on the query performance has shown
that there are two factors that have the biggest influence on the performance: (i) disk seek time and (ii)
disk bandwidth. Disk seek time is the time that it takes for a hard drive to physically move the disk head
to the correct location of the desired data. Disk bandwidth is the amount of data that can be transferred
per time unit, i.e. megabytes per second. Other factors, such as CPU clock speed, (amount of) memory
have a much smaller influence on the performance of a query than disk operations [1]. A complete
discussion of the factors related to query performance can be found in chapter 3.

When considering a median query that covers a large range it is likely to involve many individual tuples.
During this research it has been shown (in section 5.1) that actual seek time is not a big influence for
types of queries because, with the correct clustering of the dataset, the tuples can be fetched from disk
in one continuous scan. Therefore the query performance is partly determined by the time it takes to
fetch all the tuples from disk, i.e. the amount of disk bandwidth available.

Tests results have shown that in-memory operations also have an influence on the performance of the
query. Generally in-memory operations are considered to be several orders faster than disk operations
however the performance cost of in-memory operations cannot be completely disregarded, especially
when dealing with large datasets

Therefore, in the scope of this research, it has been determined that the following factors have the
biggest influence on the performance of median (aggregation) queries:

• Disk bandwidth, i.e. the time it takes to fetch all tuples from disk

• Speed of in-memory operations

Section 3.3 outlines the empirical investigation into these factors whereby it has been shown that they
indeed have the biggest influence on the performance of database queries for the database engines
that have been tested.

The next subsection will provide a conclusion to the second subquestion.

- 61 -

CHAPTER 8. CONCLUSIONS

8.1.2 Which algorithms improve query performance?

Research into existing algorithms used by database engines, as further outlined in section 2.3, has
shown that most database engines use a basic algorithm to process median queries. This algorithm
has been analyzed and its query performance and scalability tested, which has lead to the conclusion
that this basic algorithm offers poor performance and does not scale well primarily because of two
reasons: (i) all tuples must be fetched from disk to be able to calculate the median and (ii) all tuples
must be stored and sorted in-memory whereby especially the sorting has a high performance cost.
More discussion about this basic algorithm can be found in section 5.1 and test results of this algorithm
are found in section 6.1.1.

To solve these two problems an alternative algorithm called the shifting algorithm has been developed.
This algorithm is able to process median queries without needing to fetch all tuples from disk or use
in-memory operations. This algorithm depends on the use of pre-computed, i.e. before query-time,
binary data streams which contain all the data in a pre-sorted state and pre-calculated shift factors for
each tuple in the dataset. With this extra data the shifting algorithm is able to determine the location
of the median of a query and quickly scan towards the correct tuple, thereby returning an exact result.
More details about the shifting algorithm can be found in section 5.2.

Test results of this algorithm, outlined in more detail in section 6.1.2, have shown that it is indeed
able to greatly improve the performance of median (aggregation) queries and improve the scalability of
such queries. Due to its method of operation this algorithm is less suitable for datasets with multiple
dimensions. To solve this problem another alternative algorithm has been developed, namely the full
scanning algorithm.

The full scanning algorithm is a simpler algorithm that is also suitable for higher dimensional data
sets. This algorithm relies on the use of a single pre-computed binary data stream that contains the full
data set in a compact pre-sorted state. This offers two advantages in processing a median aggregation
query: (i) the data no longer needs to be sorted thereby reducing in-memory operations and (ii) the
binary data streams are much compacter than the original dataset and is therefore much faster to read
from disk. More details of this algorithm can be found in section 5.3.

Two variants of this algorithm has been developed: a basic variant whereby the full data stream must
always be scanned and all the tuples matching the query or current group (when processing a group-
by/aggregation query) must be stored in memory to find the median and an improved variant whereby
the total number of tuples affected by the query is available before processing avoiding the need to store
any tuples in memory and drastically reducing the full scanning time. This second variant, called the full
scanning with count algorithm, relies on the availability of a very efficient count operation, such as
the count operation made available by the Stairwalker algorithm developed at the University of Twente
(as discussed in section 2.4.1). Section 5.3.1 covers this second variant in more detail.

Test results with the two variants of the full scanning algorithm, as discussed in sections 6.1.3 and
6.1.4, have shown that both variants greatly improve the query performance however the basic variant
still demonstrates a linear relationship between the query performance and the number of tuples af-
fected by a query which means that the scalability of the algorithm is the similar as the basic algorithm.
The second variant of the full scanning algorithm however shows much more promise with regards to
scalability and is able to offer a fixed query performance irrespective of the number of tuples affected by
a query although query performance is now linearly related to the full size of the dataset.

Two additional optimizations have been developed that can be used in conjunction with the shifting algo-
rithm and both full scanning algorithm variants. One optimization, called the with values optimization,
relies on including the actual measure values into the binary data streams instead of only including only
the dimensions and a tuple key. This has the potential to reduce the amount of additional lookups when
actually calculating the median after the correct tuple key(s) for the median have been determined by
the algorithms. Test results have shown that this optimization has a mixed effect on the performance of
aggregation queries; in some cases it significantly improves the performance and in other cases in may
actually deteriorate the performance. See section 6.1.5 for more details.

The second optimization, called the sub-groups optimization, is used to improve the performance of
queries with a small range that only cover a small part of the total dataset. Test results have shown
that these types of queries potentially have worse performance with both the shifting and full scanning
algorithm when compared with the basic algorithm. By employing the sub-groups optimization this effect
is reduced. It relies on generating additional pre-computed binary data streams and shift factors (for the
shifting algorithm) for smaller parts of the full data set, for example an additional set of streams could
be generated for the first and second half of the full dataset separately. These would then be used

- 62 -

CHAPTER 8. CONCLUSIONS

to process smaller median queries and provide improved query performance due to the decreased
scanning and shifting times. This optimization is discussed in more detail in section 5.4.

Test results have shown that the effect of this optimization is very strictly limited to smaller queries.
Although the effect is very clearly visible, it has a high storage cost (i.e. each additional level linearly
increases the amount of storage necessary) and aggregation queries are quickly too big or do not
fit exactly into a sub-group. Therefore very careful analysis of these types of queries is necessary
before being able to successfully employ this optimization. Section 6.1.6 discusses the effect of this
optimization in greater detail.

This subsection has provided an answer to the second subquestion whereby several alternative al-
gorithms for processing median queries and two possibly further optimization techniques have been
outlined. Each algorithm and optimization has its own pros and cons, hence it is important to have a
good understanding when each algorithm and optimization is able to provide the best performance and
scalability improvement. This will be covered in the next subsection.

8.1.3 Which algorithms are best suitable for different circumstances?

The answer to this subquestion lies in the algorithm selection framework which has been developed as
part of this research. This framework, covered in more detail in chapter 7, is based on the test results of
the algorithms and optimizations that have been developed and evaluated. This has resulted in a list of
several key factors which should be considered when selecting the correct algorithm and optimizations
for a specific circumstance. The specific factors can be found in section 7.1.

Based on these key factors a decision tree has been developed which is encapsulates these factors
and can be used as a framework for selecting the correct algorithm and optimizations for a specific
circumstance. This decision tree can also be found in section 7.1, together with an explanation on how
to use this tree.

Evaluation of the decision tree has shown that it is usable for every type of circumstance and/or data
set and provides an easy-to-use framework for selecting the correct algorithm and optimizations. At
present however it does have some unclear definitions of certain factors which may lead to an incor-
rect algorithm selection. Further details of the strengths and weaknesses of this tree can be found in
section 7.2.

The next subsection will present the conclusion to the main research question.

8.1.4 Main research question

This subsection will provide a clear and definitive conclusion to the main question of this research. The
main research question is as follows:

How can the performance of queries with the median aggregate function be improved whilst
still returning accurate results?

Research has shown that the query performance of queries with the median aggregate function is
largely dependent on two main factors: disk I/O operations and in-memory operations, and therefore
to improve the performance of such queries these factors must be minimized. The basic algorithm for
processing median queries, as used by most current database engines, is largely dependent on these
performance factors and thus has very poor query performance and does not scale well.

To reduce the impact of these performance factors several new algorithms and optimizations have been
developed that are still able to compute the median and return an exact result. These algorithms are
primarily able to do so by making extensive use of pre-computed additional data structures, such as
extra database columns with information and supplementary binary data streams. Three alternative
algorithms, each with their own pros and cons have been developed. These are the shifting algo-
rithm, the full scanning algorithm and the full scanning with count algorithm. In addition, two
optimizations for further performance improvement have been developed. These are the with values
optimization and the sub-groups optimization. More comprehensive discussion about the develop-
ment of these algorithms and optimizations can be found in chapter 5.

Experimental tests, which are fully discussed in chapter 6, have shown that the shifting algorithm is the
best algorithm for two reasons: (i) it is able improve the query performance the most and, even more
important (ii) it is able to increase the scalability of the query performance the best. This algorithm

- 63 -

CHAPTER 8. CONCLUSIONS

removes the linear relationship between the query performance and the number of tuples involved in
a query, as is the case for the basic algorithm, and changes this into a linear relationship between the
query performance and the size of the full dataset. This does have a possible negative effect on very
small queries (i.e. covering a small number of tuples) but a positive effect on larger queries.

Unfortunately the shifting algorithm is less suitable for data sets with multiple dimensions due to its
complexity. For multi-dimensional data sets the full scanning algorithm is better suited and able to
improve query performance. The basic variant of this algorithm has a similar relationship between
number of affected tuples and query performance as the basic algorithm and is therefore able to improve
the scalability less than the shifting algorithm. However the count variant of this algorithm has a similar
time complexity as the shifting algorithm.

The two optimizations can be used in conjunction with all the algorithms and offer an additional query
performance improvement but do very little for the scalability of such queries. However the with values
optimization is very suitable to be used in OLAP contexts, because this optimization allows the algo-
rithms to process median queries without the use of the full dataset, only requiring the pre-computed
data structures. As such, these pre-computed data structures can act as disposable data marts for the
end-user to explore the data.

Finally an algorithm selection framework has been developed to determine which algorithm and op-
timization is best suitable for improving query performance and scalability for different circumstances
and data sets. This framework provides a mechanism, in the form of an easy-to-use decision tree, for
selecting the right algorithm and optimizations for improving the performance of queries with the median
aggregate function.

The next section will discuss potential threats to the validity of the results of this research.

8.2 Threats to Validity

This section will discuss some potential issues that may be potential threats for the validity of this
research and the conclusions. There are several issues that could possibly have such an influence on
this research that the conclusions are not longer trustworthy. These are the following issues:

Unexpected caching
In this research, issues related to caching and buffering by the database engine used in the exper-
imental tests has been taken into account, however it is still conceivable that some caching has
managed to occur thereby influencing the results of the tests. Considering the results however
there is no indication that caching has had a big influence.

External load on the primary test platform
The primary test platform for the experimental tests is a computer maintained by the University
of Twente and used by several members of the Database Group. Hence, there was no exclusive
access to this platform, making it possible that additional load was generated by another person
during one or multiple of the experiments. This could have had an influence on the tests results
of these experiments however there is no way to determine if this has happened. Since the
experiments have been ran multiple times over a longer period any erroneous results due to
external load have likely been discarded.

Optimized for specific data sets
It is possible that query performance has been improved specifically for a certain data set or type
of data sets. The likelihood of this happening has been minimized by using 3 distinctly different
data sets in the experimental tests, each with their own characteristics. However it is possible
that there may have been an optimization towards a specific situation and this may surface at a
later stage when the results of this research are used more widely in a production environment.

Optimized for a specific database engine
Similar to the previous problem, it is very possible that the alternative algorithms are very specif-
ically tailored towards the database engine used in the experiments (i.e. PostgreSQL). From a
theoretical standpoint for example a (partially) in-memory database such as MonetDB is unlikely
to benefit as much as PostgreSQL from the binary data streams technique, which is heavily used
by the algorithms, since all the data is generally kept in memory already anyway by those types
of databases. However considering the test results it is very likely that this result will still have a
positive impact on the query performance but on a smaller scale.

- 64 -

CHAPTER 8. CONCLUSIONS

The above issues have been identified as the main problems that could weaken or undermine the validity
of this research. However, considering the additional precautions undertaken during this research it is
likely that these potential risks have been minimized or eliminated.

The next section will discuss possible future research directions.

8.3 Future work

This section discusses some possible directions for future researched based on the work that has
been done in this research, which has laid the groundwork for further investigation into optimization
median aggregation queries but also other types of holistic aggregation queries. The following research
directions are most worth exploring further:

Implementation/testing with other database engines
It would be very interesting to spend additional effort into implementation prototype versions of
the algorithms and optimizations for other database engines (e.g. MySQL, SQL Server, Ora-
cle, MonetDB, etc) and re-running the experimental tests to determine the influence with other
database engines. This would remove one potential threat to the validity of this research, as dis-
cussed in the previous section, and provide a greater understanding of the potential for improving
query performance of each algorithm and optimization.

Commercial/production implementation
An actual commercial/production-worthy implementation of one or several of the algorithms would
allow for further research with more data sets and additional use-cases. It is likely that this would
lead to new insights into better ways of improving query performance for median (aggregation)
queries.

More investigation into the shifting algorithm with regards to multiple dimensions
This research has shown that the shifting algorithm is the best algorithm for improving query per-
formance and scalability however it was not possible to fully apply this algorithm for data sets with
multiple dimensions. Hence, more investigation into this specific algorithm and its applicability to-
wards higher-dimensional data sets shows much promise.

Applying the results towards other holistic aggregate functions
In this research focus has been on the median aggregation function, which is a specific holistic
aggregate function. It would be very interesting to investigate if the developed algorithms can
also applied, likely in a modified way, towards other holistic aggregate functions. It is already
possible to use this work for other nth percentile functions, since the median is really just an alias
for the 50th percentile, but investigation into the use of the work for other holistic functions, such
as the top k aggregate function, would be most interesting.

Comparison with approximate algorithms
Several algorithms have been developed that are able to calculate the exact median of various
data sets whilst trying to improve query performance to make real-time data exploration possible.
Existing research into this field whereby the focus is on an exact median is very limited however
much research has focused on employing algorithms that provide an approximate answer, as out-
lined earlier in section 2.2. It could be worthwhile to compare the test results of this research with
test results of similar experiments with existing algorithms that provide an approximate answer to
determine the cost, in terms of query performance and storage, of calculating an exact answer
instead of an approximate answer.

The above five possible future research directions show the most promise and are likely to improve
upon the foundation laid by this research into improving the query performance for holistic aggregate
functions.

This section ends this thesis. On the next page you will find the bibliography, containing a list of all the
references used in this thesis.

- 65 -

Bibliography

[1] Anastassia Ailarnaki, David DeWitt, Mark Hill, and David Wood. DBMSs on modern processors:
Where does time go? VLDB, 1999.

[2] Daniel Barbar and Xintao Wu. Using approximations to scale exploratory data analysis in dat-
acubes. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’99, page 382386, New York, NY, USA, 1999. ACM.

[3] Dina Bitton, David J DeWitt, and Carolyn Turbyfill. Benchmarking database systems: A systematic
approach. In VLDB, volume 83, page 819, 1983.

[4] Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: hyper-pipelining query execution.
In CIDR, volume 5, page 225237, 2005.

[5] F Braz, Salvatore Orlando, Renzo Orsini, A Raffaela, Alessandro Roncato, and Claudio Silvestri.
Approximate aggregations in trajectory data warehouses. In Data Engineering Workshop, 2007
IEEE 23rd International Conference on, page 536545. IEEE, 2007.

[6] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Approximate query
processing using wavelets. The VLDB JournalThe International Journal on Very Large Data Bases,
10(2-3):199223, 2001.

[7] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. A robust, optimization-based approach for
approximate answering of aggregate queries. In ACM SIGMOD Record, volume 30, page 295306.
ACM, 2001.

[8] Andy S Chiou and John C Sieg. Optimization for queries with holistic functions. In Database Sys-
tems for Advanced Applications, 2001. Proceedings. Seventh International Conference on, page
327334. IEEE, 2001.

[9] COMMIT. COMMIT, 2014.

[10] COMMIT. Community tagging | commit, 2014.

[11] Graham Cormode and S Muthukrishnan. An improved data stream summary: the count-min sketch
and its applications. Journal of Algorithms, 55(1):5875, 2005.

[12] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. Mining data streams: a
review. ACM Sigmod Record, 34(2):1826, 2005.

[13] Phillip B Gibbons and Yossi Matias. New sampling-based summary statistics for improving approx-
imate query answers. In ACM SIGMOD Record, volume 27, page 331342. ACM, 1998.

[14] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin Strauss. Surfing wavelets on streams:
One-pass summaries for approximate aggregate queries. In VLDB, volume 1, page 7988, 2001.

[15] Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. How to summarize the
universe: Dynamic maintenance of quantiles. In Proceedings of the 28th international conference
on Very Large Data Bases, page 454465. VLDB Endowment, 2002.

[16] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao,
Frank Pellow, and Hamid Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1):2953, 1997.

[17] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile sum-
maries. In ACM SIGMOD Record, volume 30, page 5866. ACM, 2001.

- 66 -

BIBLIOGRAPHY

[18] Stavros Harizopoulos, Velen Liang, Daniel J Abadi, and Samuel Madden. Performance tradeoffs
in read-optimized databases. In Proceedings of the 32nd international conference on Very large
data bases, page 487498. VLDB Endowment, 2006.

[19] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant. Range queries in
OLAP data cubes, volume 26. 1997.

[20] KNMI. Uurgegevens van het weer in nederland - download, 2014.

[21] Laks V. S. Lakshmanan, Jian Pei, and Jiawei Han. Quotient cube: How to summarize the semantics
of a data cube. In Proceedings of the 28th International Conference on Very Large Data Bases,
VLDB ’02, page 778789, Hong Kong, China, 2002. VLDB Endowment.

[22] Cuiping Li, Gao Cong, Anthony KH Tung, and Shan Wang. Incremental maintenance of quotient
cube for median. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, page 226235. ACM, 2004.

[23] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data streams. In
Proceedings of the 28th international conference on Very Large Data Bases, page 346357. VLDB
Endowment, 2002.

[24] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate medians and
other quantiles in one pass and with limited memory. In ACM SIGMOD Record, volume 27, page
426435. ACM, 1998.

[25] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Random sampling techniques
for space efficient online computation of order statistics of large datasets. ACM SIGMOD Record,
28(2):251262, 1999.

[26] Microsoft. MSDN - PERCENTILE DISC (transact-SQL), 2014.

[27] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu Ramakrishnan. Distributed cube materializa-
tion on holistic measures. In Data Engineering (ICDE), 2011 IEEE 27th International Conference
on, page 183194. IEEE, 2011.

[28] Viswanath Poosala and Venkatesh Ganti. Fast approximate answers to aggregate queries on
a data cube. In Scientific and Statistical Database Management, 1999. Eleventh International
Conference on, page 2433. IEEE, 1999.

[29] Dean Rasheed. wip: functions median and percentile, 2010.

[30] Roger Schrag. Use EXPLAIN PLAN and TKPROF to tune your applications, November 2014.

[31] Tada AB. PL/Java, 2014.

[32] Jeffrey Scott Vitter, Min Wang, and Bala Iyer. Data cube approximation and histograms via
wavelets. In Proceedings of the seventh international conference on Information and knowledge
management, page 96104. ACM, 1998.

- 67 -

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Question
	Structure of this document

	Related Work
	Research fields
	Existing algorithms & techniques
	Approaches used by existing RDBMS products
	Current research of COMMIT/Work Package 5
	Conclusion

	Query Performance
	Performance factors
	Measuring performance
	Empirical verification
	Conclusion

	Experimental setup
	Datasets
	Test queries
	Test platform
	Running experiments

	Algorithm development
	Basic algorithm
	The shifting algorithm
	The full scanning algorithm
	Sub-groups optimization
	Conclusion

	Evaluation
	Query performance
	Storage requirements
	Summary
	Conclusion

	Algorithm selection framework
	Development of framework
	Evaluation
	Conclusion

	Conclusions
	Research Questions
	Threats to Validity
	Future work

	Bibliography

