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Abstract

Increasingly, global chemistry transport models are used to estimate sources and
sinks (fluxes) of CO2 with a data-assimilation (DA) approach. A recent transport
model intercomparison study shows that vertical mixing, implemented differently in
the various transport models, strongly influences the estimated carbon fluxes. There-
fore, improving vertical (and horizontal) transport in such models is required. In this
study, we focus on horizontal transport in the global chemistry Transport Model, ver-
sion 5 (TM5) with simulations of the anthropogenic compound SF6. As many other
transport models, TM5 simulates too slow interhemispheric mixing of trace gasses,
and hence overestimates the observed concentration gradient between the Northern
and Southern Hemispheres. To tackle the problem, we firstly examine the perfor-
mance of a DA system, namely the Ensemble Kalman Filter, in estimating fluxes
and transport properties in a 1-D advection-diffusion model. Hereafter, we improve
transport in TM5 by tuning horizontal difusivity of the numerical scheme. Lastly,
we aim to capture an actual process that represents (extra) horizontal transport, and
parameterize it as a diffuse process in strong convective areas. We demonstrate an
optimal value for the transport parameter by optimization with the Carbon Tracker
Data Assimilation System (CTDAS). Both the numerical adjustment and the pa-
rameterization improve interhemispheric mixing in TM5, as we also validate with
independent aircraft data.
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Chapter 1

Introduction

The Industrial Revolution, starting halfway the 18th century, led to a cascade of tech-
nological developments in different fields, a process that continues up to the present
day. Already from the 19th century, but even more evident from the mid 20th century,
human activities lead to a significant increase of carbon dioxide (CO2) concentrations
in the atmosphere. Main causes are emissions released by the combustion of fossil
fuels - such as coal, natural gas, and oil - for energy use and transportation purposes,
but industrial processes or land use change (e.g. deforestation or the conversion of
forest into agricultural land) play a role as well. These ‘anthropogenic’ emissions are
still growing and start to affect the human environment, a concept that is known
as ‘climate change’. Well-known consequences are the worldwide observed trends of
temperature increase and sea level rise over the past decades, but these are not the
only problems. Increasing atmospheric CO2 concentrations are tightly linked with
for instance ocean acidification and the loss of marine biodiversity. Also, melting of
permafrost soils - due to temperature increase - will release large amounts of CO2,
and in this way accelerate the process.

Luckily for us humans, the globe is believed to have a strong buffering capacity.
About half of the anthropogenic CO2 emissions are taken up by the terrestrial bio-
sphere and the oceans each year. Unfortunately, the location and (future) magnitude
of the uptake are still unknown and require a better understanding of the global car-
bon cycle. The atmospheric concentration of CO2 is determined by sources, adding
CO2 to it (positive flux), and sinks, taking up CO2 (negative flux). Increasingly,
data-assimilation systems are used to estimate these carbon fluxes. They incorporate
observations and simulated values of CO2, and infer the fluxes via inverse modeling.
Transport models are an important part of data-assimilation since they calculate the
atmospheric transport of trace gasses (less common gasses in Earth’s atmosphere,
e.g. CO2).

Even though data-assimilation systems are under development for many years, the
outcomes concerning the size and distribution of CO2 fluxes remain uncertain (Gurney
et al., 2002). This uncertainty is particularly caused by the variety of transport
models that is contained in the assimilation methods (Denning et al., 1999). For
instance, different transport models use different difusivity to transport trace gasses
and no consensus on the right transport settings is reached yet. That improvement of
transport models in this respect is important is stated in a recent paper by Stephens
et al. (2007). With an inter-comparison study they show that large variations in
estimated northern and tropical land fluxes exist between different model studies.
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Most importantly, they demonstrate that these variations are systematically related
to the vertical gradient - of CO2 in the Northern Hemisphere - that is used in the
different transport models. The main cause is the tight link between atmospheric
mixing, surface CO2 fluxes, and spatial gradients in the inversion method of data-
assimilation systems. For instance, when the magnitude of a source (emitter of the
trace gas) is estimated via inverse modeling, a transport model with weak vertical
mixing (such that a relatively large amount of tracer is trapped near the surface)
would infer weaker emissions to match surface observations than a transport model
with strong vertical mixing (and lower concentrations near the surface). Vice versa,
sink regions require a stronger uptake when estimated with weak mixing in a transport
model, than with strong mixing.

In this way, biases in (vertical) transport in the tracer transport models auto-
matically result in biases in estimated fluxes of CO2 (Stephens et al., 2007). The
recommendation of Stephens et al. (2007) is therefore to further investigate, and im-
prove, vertical and horizontal transport of trace gasses in transport models. This is
what we do in this research. Specifically, we focus on the fifth version of the global
chemistry Transport Model (TM5), and its horizontal transport properties. Namely,
a main problem in TM5, and in most other transport models as well, is too slow
interhemispheric mixing (mixing of air between the Northern and Southern Hemi-
spheres, also ‘meridional’ or ‘north-south’ transport) of trace gasses. By optimizing
horizontal transport with the CarbonTracker Data Assimilation System (CTDAS) we
aim to improve this property in TM5, and contribute to better carbon dioxide flux
estimates in the future.

The main objectives of this study are:

1. To assess the performance of CTDAS in optimizing specific (transport) param-
eters in a simplified transport model.

Chapter 2 explains the theory behind CTDAS (the Ensemble Kalman Filter). We
design a simplified transport model, and describe it in Chapter 3. Chapter 4 combines
the theory and transport model, and evaluates the performance of CTDAS in an
experiment.

2. To determine methods to enhance horizontal transport in TM5.

From the simplified model, we switch to TM5. Chapter 5 explains its main pro-
perties, and the two relevant tracer transport routines: the advection and convection
routine. In Chapter 6, we provide background information on the chemical tracer sul-
fur hexafluoride (SF6), and herewith illustrate the problem of slow interhemispheric
transport in TM5. Also, we explain two methods that we use to enhance horizontal
transport. The first tunes horizontal numerical diffusion in the model, whereas the
second aims to capture the physical process with a parameterization.

3. To optimize the transport parameter (determining the strength of horizontal
transport in the parameterization scheme) with SF6 simulations in CTDAS.

Chapter 7 explains the setup of the CTDAS optimizations. First, we optimize one
global transport parameter, and aim to capture temporal variations in transport.
Second, we investigate the optimization of multiple transport parameters in order to
capture spatial variations. From both evaluations, we determine a suitable parameter
value to parameterize horizontal diffusion in TM5.
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4. To validate the results with independent observations.

Chapter 8 verifies that the transport parameter value we determine does not only
improve SF6 simulations for observations that are used in the optimization, but for
independent measurements as well.

In Chapter 9 we look back at this research, discuss assumptions we made in the
methods, and evaluate relevant details in the results. Also, we identify points of
attention in the procedure and outcomes of the CTDAS optimizations. Chapter 10
states the conclusions. Chapter 11 lists our recommendations for further research.



Chapter 2

The CarbonTracker
data-assimilation system

The method that the CarbonTracker data-assimilation system, from here on referred
to as CTDAS, uses to assimilate parameters (these are specified later) is called the
Ensemble Kalman Filter (EnKF). Evensen (1994a,b) presented the initial method,
and additionally wrote a paper providing an overview of the implementation and use
of the filter (Evensen, 2003). We use these, and papers presented by Houtekamer and
Mitchell (1998), and by Peters et al. (2005), to give an introduction to the Ensemble
Kalman Filter.

Section 1 presents a cost function, that describes the relation between observa-
tions, a priori, and current state vector parameters, and explains how to minimize
the costs involved with a state vector update. Furthermore, Section 2 discusses the
use of an ensemble to represent covariances of a priori parameters.

1 Cost function and state vector update

A state vector contains the parameters that are optimized by the Ensemble Kalman
Filter. This vector is the input of the transport model, and thus determines the mod-
eled concentrations. The purpose of the data-assimilation system is to find parameter
values that minimize the error between observed and modeled concentrations, regard-
ing the observational uncertainty. However, the parameter values should not deviate
too much from the a priori known/assumed state, regarding uncertainty of the a pri-
ori values. A a cost function J , forming the basis of the filter’s analysis, considers
both parts:

J(x) = (x− x0) T ·P-1 · (x− x0) + (y −H(x)) T ·R-1 · (y −H(x)) . (2.1)

Here, the cost function J is a function of a state vector x [m × 1]. It considers
the difference between the state vector x and its a priori known/assumed version
x0 [m × 1], regarding covariances in the a priori parameter values in P [m × m].
Furthermore, the second term indicates the difference between observations y [n× 1]
and the modeled concentrations H(x) [n × 1]. The diagonal of R [n × n] contains
the variances of observations at the different measurement stations. Finally, H is the

6
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transport model that provides (modeled) concentrations given a certain state vector
input.

Section 2 explains that the state vector x0 with covariance P are actually ap-
proximated by multiple state vectors that are distributed according to a Gaussian
probability density function (PDF). Still, it is important to state in this section al-
ready, since it assures that maximizing the probability of the state vector is equivalent
with minimizing the cost function J (Chatterjee and Michalak, 2013):

∇J(xopt) = 0. (2.2)

The solution to (2.2) is calculated with a least squares approach such that:

P0
-1 · (xopt − x0)−HTR-1 · (y −H(xopt)) = 0. (2.3)

Here, xopt is the state vector that optimizes the cost function, considering its initial
state x0. Furthermore, H [m × n] is the linearized matrix form of the operator (or
transport model) H. Note that P, R, and y are the same as before.

Evaluation of (2.3) provides that:

xopt = x0 + K (y −H(x0)) , (2.4)

with
K = P0HT(HP0HT + R)T. (2.5)

Since K [m×n] determines the update of the state vector, it is often referred to as the
‘Kalman gain matrix’. Besides, it determines the update of the a priori covariance
matrix:

Popt = (I−KH)P0. (2.6)

We explain the derivation of this update by expressing P in terms of the a priori and
observational errors. Therefore, we define:

εp = x0 − xreal s.t. E[εpεp
T] = P;

εr = y −H(xreal) s.t. E[εrεr
T] = R,

(2.7)

with εp the error between the prior and the real state, and εr the error between the
observations and modeled concentrations obtained with the real state vector.

By combining (2.4) and (2.7), we find that:

εopt = xopt − xreal,
= εp + K (y −H(x0)) ,
= εp + K (y −H(xreal) + H(xreal − x0)) ,
= (I−KH)εp + Kεr.

(2.8)

Note that we linearizeH in the second step. To obtain the updated covariance matrix,
we do:

Popt = E
[
εoptεopt

T
]
,

= E
[
(I−KH)εpεp

T(I−KH)T + Kεrεp
T(I−KH)T

+ (I−KH)εpεr
TKT + Kεrεr

TKT ] ,
= (I−KH)P(I−KH)T + KRKT.

(2.9)

The last step is allowed, since the errors in a priori states and observations are
independent: E[εpεr

T] = E[εpεr
T] = 0.

By proving that:

−(I−KH)PHTKT + KRKT = 0, (2.10)

we arrive at the covariance matrix update as in (2.6).
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2 Ensemble members

When the filter from Section 1 optimizes a state vector with many (m) parameters,
one can imagine that especially steps (2.5) and (2.6) become computationally expen-
sive, if not impossible. To avoid this problem, the Ensemble Kalman Filter represents
the covariance matrix P in fewer (N) dimensions. The ensemble created consists of
N state vector members, divided in a mean (of the ensemble) and deviations from
the mean:

xi = x̄ + x′i, (2.11)

for i = 1, . . . , N members.
Of (2.11), mainly the deviations are important, since they represent the spread in

the ensemble. They are obtained by taking the square root of P:

P = XXT. (2.12)

Here, X is a [m×N ] matrix and the ensemble of deviations is chosen such that:

X = 1√
N−1

(x1 − x̄,x2 − x̄, . . . ,xN − x̄)T,

= 1√
N−1

(x′1,x
′
2, . . . ,x

′
N )T.

(2.13)

The representation of P as in (2.12) and (2.13) is an approximation that improves
with N , and becomes exact for an infinite number of ensemble members (N → ∞).
The ensemble members are chosen according to a normal distribution and hence
define the Gaussian PDF of the state vector x with covariance P. In this way, the
spread in the ensemble for each element represents the variance of the corresponding
element in the state vector.

The ensemble representation of P is used to approximate two terms of the Kalman
gain matrix. In this way, K - and hence updates of the state vector and covariance
matrix - is computed more efficiently. The approximations in the EnKF are:

HPHT ≈ 1

N − 1
(H(x′1),H(x′2), . . . ,H(x′N )) (H(x′1),H(x′2), . . . ,H(x′N )) T, (2.14)

and

PHT ≈ 1

N − 1
(x′1,x

′
2, . . . ,x

′
N ) (H(x′1),H(x′2), . . . ,H(x′N )) T. (2.15)

Note that the linearized operator H is no longer needed in the calculations, since its
place is taken by the actual transport model H. This in itself is an advantage of the
EnKF, but moreover allows the use of non-linear transport models.

Once the Kalman gain matrix is obtained, the state vector and covariance matrix
are updated according to (2.4) and (2.6). The ensemble of state vector members is
updated as well:

x′opt,i = x′0,i − k̃H(x′0,i). (2.16)

Here, x′0,i are the prior ensemble members, and x′opt,i the ensemble members after

optimization, for i = 1, . . . , N . The vector k̃ [m×1] is the product of K and a scalar:

k̃ = K ·

(
1 +

√
R

HP0HT + R

)−1

(2.17)
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After all previously explained steps, one arrives with an updated state vector,
ensemble of state vectors, and covariance matrix. With the first, corresponding
concentration distributions can be calculated with the transport model. However,
following this straightforward procedure, is rather expensive for many observations,
since the transport model has to run many times. Actually, concentrations should be
sampled at the places and times of the observations (in order to compare them later
on), and this is more easily done with the following calculations (performed for each
observation (i = 1, . . . , n)):

H(xopt)i = H(x0)i + HiK(y −H(x0)), (2.18)

for the updated state vector. And for the updated ensemble of state vectors:

H(x′opt)i = H(x′0)i −Hik̃H(x′0). (2.19)

From (2.18) and (2.19) it seems as if the linearized operator is used to sample the
modeled concentrations, but this is not the case. For both equations, only the product
of H and K (recall that k̃ is a product of K and a scalar) is calculated. Actually, the
product of H with the first term of K, ‘PHT’, is approximated as before in (2.14).
The other terms are known from previous steps in the analysis.

As shown above, the Ensemble Kalman Filter combines knowledge on observations
and a priori estimates to optimize a state vector. The state vector parameters can
describe multiple processes, as is illustrated in the experiment of Chapter 4. They
determine, via the transport model, the distribution of trace gas concentrations. The
optimized concentrations are sampled at locations and times where observations are
available. Comparing these values is useful to assess the quality of the transport
model and/or the update of the state vector parameters.



Chapter 3

A simplified transport model:
explanation and
implementation

As stated in the first objective of this study, we assess the performance of CTDAS
in optimizing parameters of a transport model, and the aim of this research is to
do this for the transport model TM5. However, to get a first understanding of
the Ensemble Kalman Filter in relation to optimizing tracer transport, we design
a simplified transport model. Section 1 presents a brief overview of the processes
included in the model. Furthermore, it describes how these processes are implemented
numerically, and gives special attention to the numerical scheme and stability issues.
Section 2 evaluates Peclet number analysis and a realistic scenario, in order to set up
‘default settings’. These settings assure that all relevant processes - that are contained
in the simplified model - contribute to the evolution of the concentration profile, and
can be assessed in the experiment later on in Chapter 4.

1 Implementation

Section 1.1 discusses the processes that we include in the simplified transport model.
Section 1.2 explains the numerical scheme, and Section 1.3 presents a time step
criterion to assure stable numerics.

1.1 Relevant processes

Like with TM5, the simplified transport model transports concentrations of a trace
gas, such as CO2 or SF6, through the atmosphere over specified time periods. How-
ever, the atmosphere is a one-dimensional concentration field. The base concentra-
tion w of the tracer evolves in time because of the following processes:

• advection: a wind is blowing through the domain carrying the tracer on its way.
The value of the advection coefficient u represents the strength of the wind, the
sign its direction. Since we are dealing with a one-dimensional domain the wind
can blow two ways: to the left (u is negative) and to the right (u is positive).

10



CHAPTER 3. A SIMPLIFIED TRANSPORT MODEL 11

• diffusion: due to concentration differences within the domain, tracer is moved
from high to low concentrations. The strength of this transport is modeled by
the diffusion coefficient D. Throughout this report, with ‘diffusion’ we do not
refer to molecular diffusion, since this is a very slow process, but to transport
of tracer that is sub grid scale and hence unresolved by the model. One can
think of transport in convective cells or transport by turbulent motions.

• sources and sinks: sources emit amounts of tracer - increasing its concentration
in the atmosphere -, whereas sinks take it up - decreasing the concentration.
The transport model contains two sources and/or sinks, of which the strength
is determined by s1 and s2. If si is positive, a source is represented, for si
negative, a sink instead.

These processes are the input parameters of the transport model, and contained
in the state vector (x = (w, u,D, s1, s2)). It defines the transport and resulting
concentration distribution of the tracer.

1.2 Numerical scheme(s)

The advection-diffusion equation, including sources and/or sinks, for a one dimen-
sional space domain is described by:

ct + u · cx = D · cxx + S. (3.1)

Here, ct represents the change of concentration in time. The advection term is given
by the wind speed u multiplied by the change of concentration in space, cx. Diffusion
is represented by the product of the diffusion coefficient D and the second derivative of
the concentration w.r.t. space: cxx. Finally, the sources and/or sinks are represented
by S. Concentrations (c) are in mol ·m−3. Assuming a fixed volume (atmosphere)
the units of u, D, and S are ms−1, m2s−1, and mol ·m−3s−1, respectively.

We discretize equation (3.1) by a forward difference in time, a first order upwind
scheme in space, and a second order central difference scheme in space for the first
three terms of equation (3.1). Assuming that Cnj is the concentration at node j at
time step n, we have:

Cn+1
j −Cn

j

∆t + u
Cn

j+1−C
n
j

∆x = D
Cn

j+1−2Cn
j +Cn

j−1

(∆x)2 + Sj if u ≥ 0;

Cn+1−Cn

∆t + u
Cn

j −C
n
j−1

∆x = D
Cn

j+1−2Cn
j +Cn

j−1

(∆x)2 + Sj if u < 0.
(3.2)

Rewriting the above equations results in the following concentration update, that is
applied each at time step:

Cn+1
j =

{
Cnj − u · ν1 · (Cnj − Cnj−1) +D · ν2 · (Cnj+1 − 2Cnj + Cnj−1) + Sj if u ≥ 0;

Cnj − u · ν1 · (Cnj+1 − Cnj ) +D · ν2 · (Cnj+1 − 2Cnj + Cnj−1) + Sj if u < 0.
(3.3)

For convenience we use ν1 = ∆t
∆x and ν2 = ∆t

(∆x)2 .

Note that the concentration update at node j not only requires the current con-
centration at this node, but the value at node j − 1 and j + 1 as well. We define
periodic boundaries by assuming Dirichlet boundary conditions:

c(0, t) = c(L, t) ∀t, (3.4)
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and:
cx(0, t) = cx(L, t) ∀t. (3.5)

Hence, the first, but also higher, order derivatives at the boundaries are smooth.
Now, for nx + 1 nodes (starting from node 0 up to node nx) we have C0 = Cnx,
and thus C−1 = Cnx−1, and C1 = Cnx+1. Periodic boundaries close the system
and concentrations can flow smoothly through the domain. This is suitable for the
experiment of Chapter 4, since there we do not want concentrations to rebound from
the boundaries of the domain.

1.3 Stability criterion

To assure stability of the numerical scheme, an appropriate time step needs to be
determined for each grid size. We apply the Fourier method that defines:

Cnj = λnexp(ikj∆x), (3.6)

with Cnj the concentration at node j at time step n, k any value, and λ the ‘ampli-

fication factor’ such that Cn+1
j = λCnj (Morton and Mayers, 2005). We substitute

(3.6) in (3.3) and obtain:

λ(k) =

{
1− (u · ν1 + 2D · ν2) (1− cos(k∆x)) + u · ν1 · i sin(k∆x) if u ≥ 0;

1 + (u · ν1 − 2D · ν2) (1− cos(k∆x)) + u · ν1 · i sin(k∆x) if u < 0.
(3.7)

We leave out the term Sj since it does not affect the stability of the scheme. Note
that ν1 and ν2 are the same as before.

For stability, we require:

|λ(k)n| ≤ K, for n∆t ≤ tF ,∀k, (3.8)

which assures that the growth in a finite time (tF ) is bounded. We test |λ(k)| < 1 for
any value of k to assure that the concentration at node j converges in time. Analysis
on (3.7) provides constraints on the time step such that the stability condition is
satisfied:

∆t <
(∆x)2

2D + u∆x
if u ≥ 0, (3.9)

and for the opposite wind direction:

∆t <
(∆x)2

2D − u∆x
if u < 0. (3.10)

2 Default settings

Section 2.1 briefly discusses how to use the Peclet number as a measure for relative
contribution of advection and diffusion in the simplified transport model. Section 2.2
evaluates a realistic example of a system with advection, diffusion and sources and/or
sinks. In Section 2.3 we determine, on basis of this scenario, appropriate default
settings that are used and examined in the experiment in Chapter 4.
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2.1 Peclet analysis

To determine the relative contribution of advection and diffusion on concentrations
of a certain tracer, we scale the relevant terms of equation (3.1). For advection we
find:

u
δc

δx
∼ U C

L
,

and for diffusion:

D
δc

δx2
∼ D C

L2
.

Here, C is a typical concentration value, L the approximate domain length, U a
typical value for wind speed, and D for tracer transport. The ratio of advection and
diffusion is determined:

advection

diffusion
=

U · C/L
D · C/L2

=
U · L
D

. (3.11)

The ratio of (3.11) is known as the Peclet number, Pe. If one finds Pe � 1 (or
Pe > 10) the contribution of advection on the concentration field is larger than the
contribution of diffusion, which can therefore be neglected. Vice versa, diffusion is
the dominant process for Pe� 1 (or Pe < 0.1), and advection may be neglected. For
the experiment in Chapter 4 we need a more or less equal contribution of advection
and diffusion, and we aim for a Peclet number close or equal to 1.

2.2 A realistic scenario

Figure 3.1 illustrates a realistic scenario, containing advection, diffusion, and sources
and sinks of CO2, that can be simulated with the transport model. In the model,
two source/sink terms are allowed: s1 and s2. Let’s assume that the first one is a
source of CO2, represented by a factory, and the other one a sink, represented by a
forest. The factory and the forest are 5 km apart. Due to the periodic boundaries of
our system, this 5 km distance occurs on both sides of the source and sink. Hence
the total length of the domain is 10 km: L = 1.0e4 m. Assuming that the domain
is located in the Netherlands, we obtain an annual mean wind speed of 3-4 ms−1

(Yin, 2000). Furthermore, we assume a wind that carries CO2 along from the left
to the right of the domain with a constant velocity scale of U = 3.0 ms−1. Lastly,
turbulent motions cause mixing of relatively high CO2 concentrations around the
factory with low concentrations around the forest. Pisso et al. (2009) determine
turbulent diffusion coefficients in the free troposphere. For the horizontal direction
they find Dh = 1.0e4 m2s−1, which we use for D.

To see whether in this case both advection and diffusion are important for the
distribution of CO2 concentrations, we calculate the Peclet number:

Pe =
3.0 ms−1 · 1.0e4 m

1.0e4 m2s−1
= 3.0.

Recall from Section 2.1 that 0.1 < Pe < 10 indicates that neither advection, nor
diffusion is dominating, and that a Peclet number around 3.0 is suitable (for our later
experiment) to represent the realistic scenario as explained above.
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Figure 3.1: An example case of a source (factory) emitting CO2 and a sink (forest)
taking up CO2. Concentrations are affected by a wind (advection), blowing from left
to right through the domain, and turbulent mixing of tracer (dispersion).

2.3 Setup test experiment

The next step is to convert the realistic scenario of the previous section into settings
for our test experiment in the next chapter. We consider the Peclet number, and
require a balance between the domain length, advection, and diffusion such that x ·
u/D = 3.0. Furthermore, we place the source and sink in accordance with Section 2.2.
Finally, we determine an appropriate run time and time step.

The domain is set to x = [0, 1], division into 50 intervals gives ∆x = 0.02. Con-
sidering that Pe = 3.0, we set u = 3.0 and D = 1.0. We want the source and sink to
contribute to the concentration changes as well and therefore we have s1 = 0.1, and
s2 = −0.1. They have equal magnitude, but opposite sign. Recall that the source
adds concentration at each time step and therefore is positive. Vice versa for the sink.
Important to mention is that we neglect the eventual effect of CO2 fertilization, that
would prescribe the sink to take up more CO2 if more is available. In our model we
assume the uptake by the sink is not dependent on the concentration. The source and
sink are placed at x = 0.25 and x = 0.75 respectively. Note that in both directions,
the source and sink are 0.5 apart, which is comparable to the realistic scenario. For
the base concentration we may choose any value since we are not interested in the
magnitude of concentrations, but in its change driven by advection, diffusion, and
sources and sinks. The simplified transport model does not preserve positive concen-
trations (whereas TM5 does). To avoid negative concentrations we choose a value
fairly greater than zero: w = 10.0.

In short, we define the following values for the state vector:

x = (10.0, 3.0, 1.0, 0.1,−0.1), (3.12)

and refer to this as the ‘default settings’.
Finally, an appropriate run time and time step for the experiment need to be de-

termined. By the method of separation of variables for partial differential equations
and dimensional analysis of (3.1) we find that t0 = 0.0 and tend = 0.1 are appropriate
to capture the exponential decay, caused by diffusion, without reaching the steady
state too early in the experiment. This avoids that concentrations at a fixed location
remain constant throughout the experiment. The derivation of t0 and tend is elabo-
rated in Appendix A. Here, we infer an appropriate time step of ∆t = 1.0e-4 from
restriction (3.9) and the settings of (3.12).
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Figure 3.2 displays evolution in time of the concentration profile for the default
settings. The source and sink are visible, as are their advected and collapsing plumes.
To illustrate the influence of transport by diffusion on the concentration profile, we
observe cases for a relatively low and high D - representing weak and strong mix-
ing respectively. Resulting Figures 3.3(a) and 3.3(b) show that weak mixing causes
stronger gradients over the domain, and that the opposite is true for strong mixing.

Figure 3.2: Concentration in time for a source (s1 = 0.1) at x = 0.25 and a sink
(s2 = −0.1) at x = 0.75 for the ‘default’ diffusion coefficient D = 1.0.

To summarize, we implement a simplified transport model according to the advection-
diffusion equation in (3.1). It calculates the distribution of a tracer’s concentrations
over a one-dimensional domain with periodic boundaries, depending on a base con-
centration (w), advection (u), diffusion (D), and a source (s1) and a sink (s2). Based
on Peclet analysis, and a realistic scenario, we determined default settings. These are
suitable to examine the influence of diffusion properties in the transport model on
(flux) estimates, obtained by a data-assimilation system. In Chapter 4, we elaborate
on this experiment.
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(a) D = 0.5 (b) D = 1.5

Figure 3.3: Concentration in time for a source (s1 = 0.1) at x = 0.25 and a sink
(s2 = −0.1) at x = 0.75 for a small and a large diffusion coefficient D.



Chapter 4

A data-assimilation test
experiment

By combining the Ensemble Kalman Filter and the simplified transport model of the
previous chapter, we define our so-called ‘toy-model’. With the toy-model, we aim
to obtain insight in optimizing (transport) parameters of a transport model with the
CTDAS procedure, and hence optimize (some of the) state vector parameters of the
transport model: x = (w, u,D,s1,s2). Recall from Chapter 3 that these represent the
base concentration, advection, diffusion, a first source or sink, and a second source
or sink of tracer, respectively.

This chapter discusses the results of the experiment with the toy-model. In line
with CO2 flux estimations using TM5, we first estimate the source and sink strength
(s1 and s2) with the toy-model. Section 1 shows that this results in good, but
highly correlated, estimated fluxes. In Section 2, we mimic errors/biases in transport
properties of transport models, as discussed by Stephens et al. (2007), by estimating
fluxes as before, but using incorrect diffusion coefficients. Significant under- and
overestimations of the fluxes illustrate the importance of correct tracer transport.
Finally, to solve the problem of Section 2, we optimize the three relevant parameters
(diffusion, the source, and the sink) at the same time. Section 3 identifies that this
does not necessarily lead to improved transport properties.

Every section is divided in two parts: the data-assimilation with one measurement
station (tested at three different locations) is followed by the optimization with an
observational network.

We assure that sufficient accuracy of the results is guaranteed by using 20 observa-
tions and 100 ensemble members in all optimizations in this chapter. This is necessary
to estimate one to five parameters. Furthermore, we verified that the toy-model works
properly for two simplified cases. In the first, we observe that parameters of which
the covariance is set to nearly zero (1.0e-7), stay fixed during the optimization, as
they should. Note that the covariance never can be exactly zero. This would make P
a singular matrix, which is problematic for in the EnKF (see equation( 2.2)). Second,
we verify that the model is able to estimate one parameter at a time, even when its
a priori estimate deviates significantly from the true value.

17
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1 Estimating the source and sink parameters

This section discusses the estimation of the two flux parameters: a source s1 and a sink
s2. We did not estimate w, u, or D for different reasons. The concentration of tracers,
such as CO2 and SF6, is conserved in the atmosphere and should not be changed
unless the effect is explained by the influence of a source or sink. Hence, w should
not be estimated. Optimizing advection is not an option as well. In the toy-model we
assume a constant wind, but in reality advection changes over time. Transport models
are fed with meteorological data every few hours to represent accurate conditions, and
optimization of u could violate these circulation patterns. We do optimize D, but
this is examined later in Section 3. Hence, the base concentration, advection and
diffusion are fixed to the default values as determined in Section 2.3 of Chapter 3.
Table 4.1 displays the corresponding settings.

Table 4.1: Settings to test assimilation of both s1 and s2. Other parameters are fixed
to their default values. Note that Pii represent the covariances - actually variances,
since they are placed on the diagonal of P - belonging to parameter i = 1 to 5.

w
[
mol
m3

]
u
[
m
s

]
D
[
m2

s

]
s1

[
mol
m3·s

]
s2

[
mol
m3·s

]
real values 10.0 3.0 1.0 0.1 -0.1
a priori values 10.0 3.0 1.0 0.0 0.0
Pii 1.0e-7 1.0e-7 1.0e-7 0.04 0.04

1.1 One measurement station

The optimization of s1 and s2 with one measurement station is performed at three
locations in the domain: one on the right side of the source (x = 0.4), another around
the middle of the domain (x = 0.6), and the last one close to the sink (x = 0.8).
The first station is mainly affected by the source, the last by the sink and the middle
station not much by either of them. Namely, this station is located relatively far away
from the source, and at the same time on the left side of the sink. Concentrations
carried by advection first pass the station before reaching the sink, such that its
influence can hardly be measured. Table 4.2 displays the results.

Table 4.2: Results for optimization of s1 and s2, with r the correlation coefficient of
s1,opt and s2,opt, RMSD is the root mean squared difference (RMSD) between model
and observations, and J is the cost function.

station(s) s1,0= s2,0 s1,opt s2,opt r RMSD0 RMSDopt J0 Jopt

x = 0.4 0.0 ± 0.2 0.10 ± 0.01 -0.10 ± 0.01 -0.96 25.1 0.002 2514 0.7
x = 0.6 0.0 ± 0.2 0.10 ± 0.02 -0.10 ± 0.01 -0.99 1.3 0.004 126 0.9
x = 0.8 0.0 ± 0.2 0.10 ± 0.01 -0.10 ± 0.00 -0.91 59.5 0.001 5946 0.6
random 0.0 ± 0.2 0.10 ± 0.00 -0.10 ± 0.00 -0.67 23.8 0.001 2377 0.6

We find accurate estimates of s1 and s2 for all three measurement stations. In
fact, this is not surprising since we use the correct base concentration, advection and
diffusion in the transport model. The location of the measurement stations - and
their proximity to either the source or sink - did not affect the results.
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Furthermore, we find a strong negative correlation between s1,opt and s2,opt. This
makes sense, since increasing (strengthening) the source leads to higher concentra-
tions, and hence a decrease (strengthening) of the sink is needed to match observa-
tions.

Finally, we find that both the root mean squared difference (RMSD) between
model and observations and the cost function decrease significantly by the optimiza-
tion, which means that the new solution improved compared to the prior. We observe
this in all further runs in the experiment, and so we show only the optimized values
of RMSD and J from here on.

1.2 An observational network

From the results in Table 4.2 we see that the flux estimates using an observational
network (20 observations at random locations in the domain) are accurate, and com-
parable to single station estimates. Different is the correlation between s1,opt and
s2,opt, which is significantly lower for the network. Hence, by including observations
at many locations, the estimate for either the source or sink is less constrained by
the estimate of the other one. Overall, we conclude that the toy-model is well able to
estimate fluxes of tracer if it knows the true values of the base concentration, wind
speed, and diffusion coefficient. Also, a sufficient amount of observations is required.

2 The influence of unresolved transport

As mentioned before, transport properties are of main importance when estimating
fluxes of CO2. Differences in transport between the models result in biases in flux
estimates (Stephens et al., 2007), which are not desirable. With the toy-model we
address this problem of inaccurate transport and how it affects the flux estimates by
optimizing s1 and s2 as before, but now feed the toy-model with a diffusion coefficient
D0 that is different from the real value. We distinguish between two cases: too little
transport of tracer (case 1: D0 = 0.5, see also Figure 3.3(a)) and too strong transport
(case 2: D0 = 1.5, see also Figure 3.3(b)). One has to keep in mind that the diffusion
examined in the toy-model includes horizontal transport only.

Settings used for this experiment are equal to the ones in Table 4.1, only the a
priori values of D are 0.5 and 1.5 for case 1 and 2, respectively.

2.1 One measurement station

Table 4.3 presents the results of testing the influence of inaccurate transport.
It is clear that the estimates of s1 and s2 are not accurate and that the prescribed

uncertainty range is often not enough to capture the real solution. Keep in mind,
that the values of s1 and s2 are added to the concentrations at x = 0.25 and x =
0.75, respectively, at each time step. Considering 1000 time steps (tend = 0.1s and
∆t = 1.0e−4s), an error of 0.01 mol

m3·s in the estimates results in a total concentration

deviation of 10 mol
m3·s .

In this case, the errors are dependent on the location of the measurement station.
Too weak diffusion in the model causes that concentrations are less mixed over the
domain, and that the concentration profile shows stronger gradients than the profile
of observations. At the station close to the source (x = 0.4) too high concentrations,
compared to observations, are found by the model. To match the observations, the
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Table 4.3: Results for optimization of s1 and s2 with too weak tracer transport (case
1: D0 = 0.5) and too strong transport (case 2: D0 = 1.5). Here, r is the correlation
coefficient of s1,opt and s2,opt, RMSD is the root mean squared difference between
model and observations, and J is the cost function. Note that for the last two, only
the optimized values are shown.

station(s) s1,0= s2,0 s1,opt s2,opt r RMSDopt Jopt

case 1

x = 0.4 0.0 ± 0.2 0.07 ± 0.00 -0.15 ± 0.02 -0.93 0.12 13.1
x = 0.6 0.0 ± 0.2 0.07 ± 0.02 -0.09 ± 0.02 -0.99 0.02 2.7
x = 0.8 0.0 ± 0.2 0.12 ± 0.01 -0.07 ± 0.00 -0.86 0.08 8.2
random 0.0 ± 0.2 0.06 ± 0.00 -0.07 ± 0.00 -0.41 0.64 64.3

case 2

x = 0.4 0.0 ± 0.2 0.12 ± 0.01 -0.09 ± 0.02 -0.98 0.02 2.6
x = 0.6 0.0 ± 0.2 0.12 ± 0.02 -0.11 ± 0.02 -0.99 0.01 1.6
x = 0.8 0.0 ± 0.2 0.10 ± 0.01 -0.13 ± 0.00 -0.93 0.03 4.1
random 0.0 ± 0.2 0.14 ± 0.00 -0.14 ± 0.00 -0.81 0.22 23.1

model can do two things. First, underestimating the source and overestimating the
sink to bring concentrations at x = 0.4 to a lower level. And second, underestimating
the source and underestimating the sink (this is prescribed by the negative correlation
between s1,opt and s2,opt

1.). Which of the two properties is preferred by the toy-model
follows from the strength of the correlation coefficient. Strong (negative) correlations
(see for instance x = 0.6) are in favor of the last effect, and give little freedom for
the sink to amplify, because the source does not. On the other hand, for weaker
correlations (x = 0.4/x = 0.8) the strength of s2/s1 is overestimated - even though
s1/s2 is underestimated - to bring concentrations at the specific stations down/up.
The opposite occurs for strong diffusion.

Most important, we learn that wrong transport properties lead to wrong source
and sink estimates.

2.2 An observational network

The bias in flux estimations caused by inaccurate transport cannot be overcome by
the use of an observational network. However, from the results in Table 4.3 we obtain
that the errors of single measurement stations reduce. For instance, increasing the
sink strength in order to lower concentrations at x = 0.4 is not an option, since
measurements around the sink are available. This results in equally estimated source
and sink strengths, even though their correlation is smaller than found in Section 2.1.

It stands out that for too weak diffusion, the model underestimates both the
source and sink, whereas these are overestimated for too strong diffusion. Considering
that low/high diffusion results in stronger/weaker concentration gradients than in
observations, it is logical that s1 and s2 are under/overestimated.

Overall, we conclude that correct transport properties in the model are essential
to obtain accurate source and sink strengths.

1See Section 1.1.
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3 Estimating the source, the sink, and the trans-
port parameters

The exact settings to represent sub grid transport processes in reality are unknown.
Fixing them to a certain (possibly wrong) value is not a good option, as is illustrated
in the previous section. A possible solution is to optimize not only the fluxes (s1 and
s2) but the transport by diffusion (D) as well:

Table 4.4: Settings to test assimilation of both D, s1, and s2. Other parameters
are fixed to their default values. Note that Pii represent the covariances - actually
variances, since they are placed on the diagonal of P - belonging to parameter i = 1
to 5.

w
[
mol
m3

]
u
[
m
s

]
D
[
m2

s

]
s1

[
mol
m3·s

]
s2

[
mol
m3·s

]
real values 10.0 3.0 1.0 0.1 -0.1
a priori values 10.0 3.0 1.25 0.0 0.0
Pii 1.0e-7 1.0e-7 0.0625 0.04 0.04

3.1 One measurement station

Table 4.5 displays the results of the optimized source, sink, and transport parameters.

Table 4.5: Results for optimization of s1, s2, and D. Jopt is the optimized cost
function. Its value is directly related with RMSDopt, that therefore is not shown.

station(s) D0 Dopt s1,0= s2,0 s1,opt s2,opt Jopt

x = 0.4 1.25 ± 0.25 1.28 ± 0.25 0.0 ± 0.2 0.10 ± 0.01 -0.11 ± 0.03 72.2
x = 0.6 1.25 ± 0.25 1.29 ± 0.23 0.0 ± 0.2 0.10 ± 0.03 -0.10 ± 0.02 1.4
x = 0.8 1.25 ± 0.25 1.25 ± 0.24 0.0 ± 0.2 0.10 ± 0.01 -0.11 ± 0.01 38.7
random 1.25 ± 0.25 1.28 ± 0.23 0.0 ± 0.2 0.10 ± 0.01 -0.10 ± 0.01 78.9

From the results, we see that optimizing both D, s1, and s2 at the same time is
not suitable to test diffusion properties. The optimization is successful in the sense
that the simulated concentrations are improved by the assimilation (Figure 4.1 illus-
trates this for the observational network, but also for single measurement stations the
concentration field improves). This is caused by the estimations of s1 and s2, that are
accurate and contain the real solution within the uncertainty range. However, opti-
mized diffusion values hardly change compared to the prior, as does the uncertainty
range. This suggest that the diffusion parameter does not gain information from the
optimization, and that the system prefers to match observations by adjusting the
source and sink. Hence, it is difficult to examine transport properties (diffusion) in
an experiment where it is optimized together with the fluxes (source/sink).

3.2 An observational network

From Table 4.5 it is evident that the estimations, using an observational network,
are comparable to the ones of single stations. Figure 4.1 shows that indeed the
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optimization improves the match with observations compared to the prior. However,
the use of the an observational network can not prevent that the optimization is
dominated by adjustments to the fluxes. Especially if the true values of D, s1, and s2

are unknown, it is difficult to verify whether the optimization improves the transport
property, or that its combination with specific source and sink strengths is the best
way to match observations.

Figure 4.1: Modeled (solid line) and observed (black dots) concentrations with prior
parameter values and optimized parameter values in the top and bottom figure, re-
spectively. The dashed lines indicate the standard deviation of the simulated ensemble
members (H(x′)). The error bars on the dots illustrate the uncertainty of the obser-
vations (also known as ‘model-data-mismatch’). Multiple stations are used such that
the profile is not as smooth as it would be for a single station.

To conclude, improved transport properties in tracer transport models should be
obtained by solely optimizing this process. Hence, the magnitude and distribution of
sources and sinks in the domain need to be known. Since CO2 is not a suitable tracer
in this respect, we switch to another tracer: SF6. How we assess transport properties
in TM5 using SF6 is discussed in the next chapters.



Chapter 5

Transport in TM5

From the simplified transport model of the toy-model, we now switch to TM5. Sec-
tion 1 provides a brief introduction to the model. Section 2 and 3 explain the main
properties the advection and convection routine, respectively. This research focuses
on atmospheric transport, and will not examine or discuss the chemistry routine.

1 Main properties

First, special about TM5 is its use of two-way nested zooming. The grid size over a
specific region can be refined, and simulations can be performed with higher accuracy
in this region. Boundary conditions for the refined (zoom) region are provided by the
coarser parent grid. Moreover, this relation works in two ways, since results of the
zoom region are communicated back to the parent grid as well (Krol et al., 2005).
This research does not use the zooming ability of TM5, and performs all simulations
on a (parent) grid of 6◦ × 4◦.

Furthermore, TM5 uses offline input data to represent meteorological conditions,
such as weather, ocean-wave and land-surface conditions. For this research we use
the ERA-Interim (ERA-I) reanalysis data from the European Centre for Medium-
Range Weather Forecasts (ECMWF). Dee et al. (2011) state that ERA-I reanalysis
provides a ‘multivariate, spatially complete, and coherent record of the global atmo-
spheric circulation’ in the form of 3-hourly surface parameters and 6-hourly upper-air
parameters (vertical levels represent the the atmosphere up to 0.1 hPa). They fur-
ther explain that the data represent available observations, match the basic dynami-
cal fields, and are consistent with the laws of physics as well. ERA-I is obtained via
data-assimilation with the 4D-Var method, and a forecast model that can extrapolate
observed parameters to nearby locations and forward in time (Dee et al., 2011) - as
TM5 does for trace gasses. To assure consistency of the data, ERA-I reanalysis data
is produced with a single version of the data-assimilation system and forecast model:
IFS release Cy31r2, that was used as operational forecasting system at ECMWF from
12 December 2006 until 5 June 2007 (Dee et al., 2011).

To verify that our results do not entirely depend on the choice of the input mete-
orology data set, we perform simulations with Operational Data (OD) of ECMWF as
well. The data is produced via data-assimilation, like ERA-I, but uses the operational
IFS releases (most up to date data-assimlation system and forecasting model at the
time) instead of one fixed version for the whole data set (Dee et al., 2011). Hence,
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OD data generally has higher accuracy, but is less consistent than ERA-I data.
Lastly, transport of tracers in the model is calculated via so-called ‘operator split-

ting’. This means that the relevant processes are separated and performed once in a
certain specified order, and a second time in reversed order. The advantage is that no
small time steps are needed for the stiff chemistry calculations (Verwer et al., 1999).
Processes that are distinguished in TM5 are horizontal (X,Y) and vertical (Z) ad-
vection, parameterized vertical transport by deep convection and diffusion (V), and
chemistry (C). The order of the calculations in the TM5 parent grid is: XYZVC-
CVZYX (Krol et al., 2005).

2 The advection routine

The advection scheme in TM5 we refer to as the ‘slopes scheme’, since it describes
tracer mass within each grid box as a mean concentration and a ‘slope’, representing
the spatial gradient of concentration in the grid box (Russell and Lerner, 1981). The
slopes scheme is used in TM3 (Berkvens et al., 1999), and later on in TM5 as well. In
this section, we explain the implementation of slopes in the advection routine based
on the papers of Berkvens et al. (1999) and Russell and Lerner (1981).

An illustration of tracer mass in a grid box with the slopes scheme is depicted
in the left side of Figure 5.1 (Berkvens et al., 1999). The right hand side shows an
upwind scheme, which actually is a version of the slopes scheme with slopes set to
zero. Note that the representation of advection is in 1-D, and that the three directions
(X, Y, and Z) are calculated similarly and subsequently in TM5. One finds the air
mass m, and mixing ratio of tracer χ on the horizontal and vertical axes respectively.
The dot represents the average mixing ratio in the grid box, which we will call χ̃
from here on. The line through the average mixing ratio is characterized by the slope
s, and indicates the spatial concentration gradient within the grid box. The linear
distribution of mixing ratio in grid box i is formulated by:

χi = χ̃i + si ·mi (5.1)

The total mass of tracer in the grid box is the integral of (5.1). For the upwind
scheme this is rather straightforward since the area under the slope is a square, and
hence for grid box i we have: area = mi · χ̃i = µi.

The air mass that is transported by advection is denoted by A. As seen from
grid box i, air mass Ai−1/2 is entering the box from the left, and air mass Ai+1/2 is
leaving the grid box on the right side. The time-step update for the total air mass in
grid box i is therefore:

mn+1
i = mn

i +Ani−1/2 −A
n
i+1/2. (5.2)

To obtain the amount of tracer that is transported with this air mass, one needs to
determine the area bounded by the slope, the grid box boundary, and Ai+1/2. Note
that only the outgoing flux needs to be determined since the incoming flux of box
i is the outgoing flux of box i − 1. We illustrate the determination of the fluxes by
defining three regions (A, B, and C) in grid box i as illustrated in Figure 5.2.

Recall that the total mass of tracer in the grid box is equal to the area under the
slopes line. Hence, the outgoing mass flux of tracer is the shaded area in Figure 5.2,
which is the sum of regions A and B. The surface of area A is easily calculated:

A = Ai+1/2 · χ̃i;
= Ai+1/2 · µi

mi
,

(5.3)
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Figure 5.1: The slopes scheme as implemented in TM5. On the horizontal axis is
given the total air mass m, on the vertical axis the mixing ratio of tracer χ. The dots
represent the average mixing ratio in the grid box (χ̃), the line through it represents
the slope si, i.e. the spatial concentration gradient within the box. The advected air
masses are given by Ai−1/2 and Ai+1/2. The open dot and dashed line are the mean
mixing ratio and slope at the next time step, respectively. The figure is taken from
Berkvens et al. (1999).

Figure 5.2: Zoomed-in view of Figure 5.1 of grid box i. Note that the solid line is
added to this figure to represent the upwind scheme (with zero slopes). The area that
indicates the outgoing flux of tracer mass is the sum of the areas A and B.

with Ai+1/2, χ̃i, µi, and mi as indicated above. To obtain the surface of B, we first
determine the surface of B+C and then subtract the area of C. For the combined
areas we find:

B + C = 1
2 ·

1
2mi · 1

2misi;
= 1

8m
2
i si.

(5.4)

And for the area of C:

C = 1
2 · (

1
2mi −Ai+1/2) · ( 1

2mi −Ai+1/2)si;
= 1

8m
2
i si − 1

2miAi+1/2si + 1
2A

2
i+1/2si.

(5.5)

The mass flux of tracer in box i follows by summing the area of A and B, so calculate
A+ (B +C)−C from equations (5.3), (5.4), and (5.5). We define σi = 1

2sim
2
i , since

it is stored this way in the array rxm in TM51. By changing rxm, the slopes, and

1Note that this statement in (Berkvens et al., 1999) is written as σi =
1
2
simi, but that this must
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hence the spatial gradients in the model can be adjusted. This leads to the following
update for the outgoing tracer mass flux at each time step:

Fni+1/2 =


An

i+1/2

mn
i

(
µni +

(
1− An

i+1/2

mn
i

)
σni

)
if Ani+1/2 ≥ 0;

An
i+1/2

mn
i+1

(
µni+1 −

(
1 +

An
i+1/2

mn
i+1

)
σni+1

)
if Ani+1/2 < 0.

(5.6)

Using the tracer mass flux of (5.6), update for the tracer mass at each time step is
given by:

µn+1
i = µni + Fni−1/2 − F

n
i+1/2. (5.7)

The tracer mass of a grid box is stored in the array rm in TM5.
Lastly, the slopes are updated. The new slope is calculated by a least squares fit

of the old slopes in the domain [− 1
2mi − Ai−1/2,

1
2mi − Ai+1/2]. Note that the ‘old’

slope in this domain is a piecewise linear function, since the domain includes two grid
boxes:

f(m) =

{
χ̃ni + sni−1 ·m for − 1

2mi −Ai−1/2 ≤ m < − 1
2mi;

χ̃ni+1 + sni ·m for − 1
2mi ≤ m ≤ 1

2mi −Ai+1/2.
(5.8)

In Figure 5.1, the updated slope is shown as the dashed line. Note that it intersects
the updated average mixing ratio, which is represented by the open dot. The update
for the slopes at each time step is:

σn+1
i = σni + 1

mn+1
i

·
{
Pni−1/2 − P

n
i+1/2 − (Ani−1/2 −A

n
i+1/2)σni

+3[(Ani−1/2 +Ani+1/2)µn+1
i − (Fni−1/2 + Fni+1/2)mn

i ]
}
,

(5.9)
with

Pni+1/2 =


Ani+1/2

(
σni

(
An

i+1/2

mn
i

)2

− 3Fni+1/2

)
if Ani+1/2 ≥ 0;

Ani+1/2

(
σni+1

(
An

i+1/2

mn
i+1

)2

− 3Fni+1/2

)
if Ani+1/2 < 0.

(5.10)

Together, equations (5.2), (5.6), (5.7), (5.9), and (5.10) form the basis of tracer
transport by advection in TM5. It is important to realize that this routine is used
alike in the three dimensions of advection (X, Y, and Z).

3 The convection routine

After the calculation of advection in X, Y, and Z direction, TM5 continues with
vertical mixing (V). The basis of this routine, to which we refer as the convection
routine, is explained in this section.

Where advection includes the - mostly horizontal - transport of trace gasses driven
by the mean flow of air (wind), convection transports parcels vertically, and is driven
by the heating of surface. Warm air parcels (close to the surface) have a lower density
than the cold surrounding parcels and start to rise. Furthermore, a warm parcel of
air can contain more moisture than a cold one. Once a parcel rises it cools down, and

be a typo. Namely, only for σi = 1
2
sim

2
i , their update is in line with the original slopes scheme

determined by Russell and Lerner (1981).
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part of the moisture condenses. In this way, clouds may form, which in turn enhance
the transport of air as will be explained later on.

Vertical transport in the convection routine is done by redistributing tracer mass
in the vertical column, and adjusting the slopes - as discussed previously in Section 2 -
in three dimensions. The redistribution of the tracer mass depends on the flow of air
masses throughout the vertical column, which is given in a [lmax × lmax] matrix C,
also referred to as the ‘convection matrix’. The entry C(l, k) represents the fraction of
air of layer k that is transported to layer l. The maximum layer to which convection
is taken into account is lmax, and determines the size of the matrix. Realize that the
air mass of each layer needs to be conserved, and that hence the sum of each column
in C is equal to 1. Furthermore, the diagonal elements of C represent the fraction of
air that remains in the same layer despite the convection. Since the concentrations of
tracer are different between the layers, the mass of tracer in layer l after convection is
calculated as the weighted average of the tracer masses in the upper and lower layers:

µn+1
l =

lmax∑
k=1

C(l, k) · µnk . (5.11)

As an example we discuss a vertical column of three layers (see Figure 5.3). The
tracer mass before convection is 10.0, 4.0, and 1.0 (arbitrary units) in layer 1, 2, and
3, respectively. By convection, layer 1 looses 40% of its air mass to layer 2, and 20%
to layer 3. Layer 2 transports 20% of its mass to layer 3, and 10% back to layer 1.
Lastly, 10% of layer 3 is transported downwards to layer 2, such that the convection
matrix is as follows:

C =

0.4 0.1 0.0
0.4 0.7 0.1
0.2 0.2 0.9

 (5.12)

Following (5.11), the distribution of tracer mass after convection is calculated by:

µnew1 = 0.4 · 10.0 + 0.1 · 4.0 + 0.0 · 1.0 = 4.4;
µnew2 = 0.4 · 10.0 + 0.7 · 4.0 + 0.1 · 1.0 = 6.9;
µnew3 = 0.2 · 10.0 + 0.2 · 4.0 + 0.9 · 1.0 = 3.8.

(5.13)

Figure 5.3: Example of vertical transport by the convection routine for a three-layer
column. The tracer mass in each layer is given by µ, the air masses interchanging
between the layers are stated next to the arrows and are expressed as the fraction of
the total air mass of the originating layer.
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After redistributing the tracer mass, slopes are updated in the convection routine
as well (actually, σ = 1

2sm
2 is updated). The horizontal slopes (σx, σy) are adjusted

differently than the vertical ones (σz). For the first, the same procedure as with
the tracer mass update is applied. Hence, the horizontal slopes are calculated as a
weighted average of the horizontal slopes in the upper and lower layers:

σn+1
x,l =

lmax∑
k=1

C(l, k) · σnx,k. (5.14)

Here, σx,l is the horizontal slope (x = [x, y]) in layer l. Matrix C is as before.
In convective areas, transport in the vertical is more efficient than in the hori-

zontal. Hence, the vertical slopes are decreased slightly stronger than the horizontal
ones:

σn+1
z,l = C(l, l) · σnz,l, (5.15)

with σz,l the vertical slope, and C as before. Instead of the weighted average of all
layers, only the air mass that remaining in layer l itself determines the slope’s update.

Overall, equations (5.11), (5.14), and (5.15) are the basis of the convection routine.
How we adjusted and tested this routine to enhance transport in TM5 is explained
in the next Chapter.



Chapter 6

Global SF6 concentrations,
problems and approach

Chapter 4 presents the conclusion that the optimization of a certain parameter in
a transport model is done best for that parameter alone. Hence, either fluxes, or
diffusion/transport should be optimized in our further optimizations, and not both at
the same time. A tracer that can meet this requirement, since its emissions (fluxes) are
quite well known, is the anthropogenic compound sulfur hexafluoride (SF6). Section 1
discusses other, and beneficial, properties of SF6 as well, and we identify this tracer
suitable for our CTDAS optimizations. With a first SF6 simulation in Section 2, we
illustrate that interhemispheric transport in TM5 is too slow. Hereafter, Section 3
presents two methods to tackle the problem. Both enhance horizontal transport, and
decrease the simulated concentration gradient that exist between the hemispheres.
However, the first method tunes numerical diffusion that occurs due to the numerical
scheme, whereas the second method aims to improve the actual physical process to
explain enhanced horizontal transport.

1 The tracer SF6

The trace gas SF6 is a chemical compound that is released from high voltage electrical
transformers. Emissions are purely anthropogenic, and hence quite well known. Be-
sides, SF6 has a long atmospheric lifetime (∼ 3000 years) (Ravishankara et al., 1993),
a sufficient number of observations, and does not interact with biological processes
(Denning et al., 1999). Due to the last, SF6 has only sources, and no sinks. Other
favorable properties of SF6 are its emissions that do not have seasonal variations,
and a nearly constant increase of global atmospheric concentrations. The rate of this
increase has an average of 0.20 ppt·yr−1 over the past decade (Peters et al., 2004).
Considering all these properties, SF6 is a suitable tracer to optimize transport pro-
perties in TM5 with. Some constraints on global SF6 concentrations - that ideally are
met by model simulations - are determined from observations by Gloor et al. (2007):

• The difference in concentrations between the Northern (NH) and Southern
Hemispheres (SH), from here on referred to as the ‘north-south gradient’, is
large at the surface. The gradient is steepest in the band between 25◦N and
10◦S. Between 30◦N and 50◦N, the latitudes where most SF6 is emitted, large

29
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concentration differences occur over short distances. At other latitudes, SF6

concentrations are distributed nearly uniform with latitude.

• The steep north-south gradient at the surface is much reduced in the upper
troposphere. On shorter time scales, only part of the emissions - that mostly
occur near the surface in the NH - reaches the upper layers of the atmosphere,
and hence the difference with the SH is smaller at higher altitudes.

• Keeping in mind previous constraints, it is not surprising that the vertical pro-
files of SF6 differ between the Northern and Southern Hemisphere. Emissions
occur mostly in northern latitude regions, and cause high concentrations near
the surface. Since the concentration of SF6 in those regions is decreasing with
altitude, a negative vertical gradient is observed. In the Southern Hemisphere,
however, vertical profiles are opposite. Almost no emissions near the surface oc-
cur, ànd most of the SF6 is transported to the south via the upper troposphere,
such that positive vertical gradients are observed.

• Surface observations of SF6 are sensitive to large scale atmospheric (seasonal)
phenomena. For instance, vertical transport in the continental boundary layer is
enhanced during summer due to more heating of the surface and hence stronger
convection. Strong convection transports significant amounts of SF6 to high al-
titudes, and surface observations have lower values than in winter. Another ex-
ample is the seasonal undulation of the Intertropical Convergence Zone (ITCZ).
The ITCZ is indicated as the region where the trade winds from both hemi-
spheres come together and cause the strong updraft movements of the Hadley
cell. In this way, air of the Northern Hemisphere is separated from air of the
Southern Hemisphere. Seasonal movement of the ITCZ can bring ’Northern
Hemisphere air’, that is rich in SF6, below the equator into the SH and vise
versa.

In line with the constraints on atmospheric SF6 as mentioned above, Peters et al.
(2004) explain the mechanism by which SF6 is transported from the Northern to the
Southern Hemisphere. Namely, its transport over the equator mainly takes place in
the free troposphere, where air from the northern Hadley cell ‘leaks’ into the southern
Hadley cell. Even though this is a small amount for the NH (less than ∼ 5% of the SF6

transported into the tropics), it is the main input of SF6 for the SH (∼ 95%) (Peters
et al., 2004). Although this mechanism is well understood, north-south transport
of trace gasses is one of the main obstacles in transport models’ simulations. Their
performance, and that of TM5 in particular, is discussed in the next section.

2 Overestimation of the north-south gradient by
TM5

Accurately simulating observed north-south transport of tracers is a challenge to
most transport models. For instance, TM5 performs well in capturing temporal
variability of SF6 on all timescales, shows no large biases in its vertical profiles,
but overestimates the interhemispheric gradient by 19% (Peters et al., 2004). This
finding from literature is easily verified from the SF6 simulations that we present in
Figure 6.1. Plotted are SF6 concentrations, modeled and observed, averaged over the
year 2009 as a function of the sampled latitudes. Model values are only sampled at
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(marine) ‘background stations’, that measure the average background concentration
of SF6 rather than local variabilities - for instance caused by (land) emissions. We
initialize our simulation with a concentration field of SF6 in 2006, and consider one
year as spin-up time for the model. In the subsequent years, the modeled gradient
between northern and southern latitudes significantly overestimates the gradient of
observations. The gradient in 2009 is provided in the figure. Note that SF6 values
are plotted relative to South Pole observations, such that the gradients of different
years can be easily compared.

Figure 6.1: North south gradient of SF6 averaged over 2009. Run time of the exper-
iment is 2006 − 2009. The dots are observations at the selected stations (these are
indicated with (B) in Appendix B), the blue line shows modeled values produced by
TM5 as it is currently used. The average observed SF6 concentration at the South
Pole (SPO) in 2009 is subtracted from both observations and model samples.

In literature, different solutions to improve north-south transport of trace gasses
are suggested. In their paper, Denning et al. (1999) state that - in line with their
simulated vertical SF6 profiles, and the differences between estimated gradients over
land and sea - vertical trapping of trace gasses might be more controlling the north-
south gradient than meridional transport itself. This conclusion is strengthened by
the work of Stephens et al. (2007), that demonstrates a significant relation between
estimated CO2 fluxes and vertical transport in transport models. However, their
analysis shows as well that TM3, which is the predecessor of TM5, is among the top
three transport models concerning the simulation of annual mean vertical profiles
of CO2. The difficulty to achieve much improvement in TM5’s vertical transport
properties was already demonstrated by Peters et al. (2004). In this study, the
northern Hadley cell’s ‘leakage1’ is made more efficient by doubling the strength
of convection in the transport model. By doing so, vertical transport is enhanced and
more SF6 might be transported from the NH to the SH. However, the overestimation
of the north-south gradient (originally ∼ 19%) decreased with only two percent.

1This is explained in Section 1.



CHAPTER 6. GLOBAL SF6: PROBLEMS AND APPROACH 32

At the end of their paper, Stephens et al. (2007) state that besides vertical trans-
port, horizontal transport (aloft) should be investigated as well. An early research
- investigating (horizontal) transport of CFCs by transport models - suggests that
sub grid diffusion should be introduced to improve simulation of the observed in-
terhemispheric gradient of tracers, while its impact on the dynamics of the global
circulation model is small (Prather et al., 1987). The parameterized diffusion should
represent horizontal transport - occurring on sub grid scale - associated with deep
convection in the vertical. Namely, horizontal transport of trace gasses in areas with
deep organized convection can extent up to a few hundred kilometers (Zipser, 1969).

We use the approach of Prather et al. (1987) as a lead in this research: enhance
horizontal transport, preferably in areas with strong convection, to improve north-
south transport of trace gasses in TM5.

3 Methods for enhanced horizontal transport

We enhance horizontal transport in TM5 in two different ways. Section 3.1 explains
how we adjust the horizontal slope’s update in the convection routine, and presents
the improved north-south gradient of SF6. However, a precise match with obser-
vations is not reached still, and we address further enhancement of transport with
the suggestion of Prather et al. (1987). In Section 3.2 we introduce explicitely para-
meterized sub grid diffusion, and link it to strong convective updrafts, analogous to
their work. Actual optimization of the transport parameter will be discussed later in
Chapter 7.

3.1 Adjustment of the slopes

A main advantage of the slopes scheme2 in TM5 is that concentration gradients within
grid boxes are accounted for, such that the model is more spatially detailed without
actually increasing resolution. Furthermore, these spatial gradients can be maintained
in time in contrast to the diffuse upwind scheme. By tuning the (horizontal) slopes
to enhance horizontal tracer transport, one actually tunes TM5 between a strong
conservative slopes numerical scheme and a less conservative upwind scheme. This
should be done with caution. We find an inconsistency between the horizontal and
vertical slopes update, and hence consider an adjustment suitable. Recall that the
time step update of horizontal slopes is a weighted average of the slopes in upper and
lower layers (see equation (5.14)). For vertical slopes, however, only the fraction of
air and the current slope determine the slope’s update (see equation (5.15)). This
update is less conservative, and thus allows more transport.

We consider it arguable that due to convection slopes in all directions are mixed
equally, and not differently, for the horizontal and vertical direction. To align the
updates at each time step, and to enhance horizontal transport, we propose to use
the less conservative slope update of the vertical in horizontal directions as well.
Hence, we implement:

σn+1
x,l = C(l, l) · σnx,l, (6.1)

with σx,l the slopes in horizontal (x = [x, y]) direction, and C the convection matrix
as before.

2Recall from Chapter 5, Sections 2 and 3.
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Even though implementation of the above might seem a rather basic adjustment,
the impact on north-south transport of SF6 is significant. In Figure 6.2 we show SF6

concentrations as a function of latitude, with the setup as before. From the plot,

Figure 6.2: North south gradient of SF6 averaged over 2009. Runtime of the experi-
ment is 2006− 2009. The black dots are observations at the selected stations (these
are indicated with (B) in Appendix B). The blue line shows TM5 as it is currently
used, whereas the red line contains TM5 with the adjusted horizontal slope update
of equation (6.1). The average observed SF6 concentration at the South Pole (SPO)
in 2009 is subtracted from both observations and model samples.

it is clear that the observations (black dots) are better represented with enhanced
horizontal transport (red line) than with the old slopes scheme (blue line). This con-
clusion is strengthened by a decrease in the RMSD between model and observations
from 0.070 to 0.047.

From here on, we equip TM5 with the slopes update of (6.1), and refer to this
as the ‘basecase’. Now, we examine if more improvement of transport is possible by
further tuning of the slopes. We implement the reduction by scaling the horizontal
slopes update with a factor α that can take values between 0 and 1:

σn+1
x,l = α · C(l, l) · σnx,l. (6.2)

Here, σx,l represent the slopes in horizontal (x = [x, y]) direction, C the convection
matrix as before, and α the reduction factor. As explained in Section 2, we aim to
link horizontal transport to deep convective areas in order to explain the process. We
therefore set the condition that only if:

C(l, l) < 0.95, (6.3)

is satisfied (an indication for convective movement, since more than 5% of the air
in the box originates from upper and lower layers), the slopes reduction of (6.2)
is activated, otherwise the slopes are updated according to (6.1). However, TM5
appears to be rather insensitive to (a change in) α in regions where C(l, l) already
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has a value smaller than 0.95. Only in regions where C(l, l) = 1 (no convection
occurs), the reduction with α < 1 is effective. It is precisely in those regions that we
do not wish to enhance horizontal transport, and we consider the method unsuitable
for our purpose.

Besides, further reduction of the slopes is doubtful, since this would negate the
function of the slopes numerical scheme with its ability to capture gradients within
grid boxes (especially important in emission regions, where strong spatial gradients
occur). We consider returning to the upwind scheme as undesirable, and hence reject
the enhancement of horizontal transport via a slopes reduction factor.

3.2 Explicitly parameterized diffusion

Since we consider the previous method unsuitable, we implement another approach
in the convection routine, that is largely analogous to the one of Prather et al. (1987).
The theory behind the parameterization starts with large updraft movements that oc-
cur in strong convective areas, and often cause the formation of clouds. The updrafts
are balanced by downdraft movements to maintain a mass balance, but also at the
edge of the clouds, turbulent transport of air takes place. When air is mixed into the
cloud, this is called ’entrainment’. On the contrary, ‘detrainment’ is associated with
air that moves from the interior of the cloud to the surrounding air. An illustration
of this process is provided in Figure 6.3.

Figure 6.3: Updraft and downdraft movements in a deep convective cell. Entrainment
and detrainment of air occur at the cloud edge. The figure is adjusted from the website
of the Center for Multiscale Modeling of Atmospheric Processes (2013).

In this research we aim to enhance horizontal transport of tracer in regions with
strong convective motions as in Figure 6.3. We assume that the entrainment and
detrainment fluxes in a grid box are a good proxy for the strength of such motions,
and we use them to determine a diffusion coefficient K - not to be confused with the
Kalman gain matrix as explained in Chapter 2. Later on, this coefficient is used to
parameterize horizontal transport as a diffuse process. We obtain Ki,j,l by summing
the entrainment and detrainment fluxes in layer l in grid box i, j, scaling it with the
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surface area of the box, and the total air mass. More specifically, entrainment and de-
trainment at the cloud base determine the diffusion coefficient under the cloud. In the
cloud, Ki,j,l is calculated for each layer separately - with the entrainment/detrainment
fluxes of the cloud layers:

Ki,j,l =

{
Ai,j

mi,j,cbase
· (Ei,j,cbase

+Di,j,cbase
) for l = 1, . . . , cbase;

Ai,j

mi,j,l
· (Ei,j,l +Di,j,l) for l = cbase + 1, . . . , ctop.

(6.4)

Here, Ai,j is the surface area of the grid box in m2, mi,j,l its total mass in kg, and
Ei,j,l and Di,j,l represent the total entrainment and detrainment fluxes in kg · s−1,
respectively. This results in a diffusion coefficient in m2 · s−1, which is in accordance
with the units of the - differently - determined coefficient by Prather et al. (1987).

Typical values of K vary from ∼ 3.5e7m
2

s in the tropics to ∼ 1.0e7m
2

s in the mid-

latitudes (∼ 1.3e7m
2

s in summer, and ∼ 0.7e7m
2

s in winter), and to 0-5e4m
2

s in the
polar regions. Values are highest near the surface and decrease with altitude.

To ensure that horizontal transport is only affected in strong convective areas,
calculations of Ki,j,l as in (6.4) are only done for vertical columns that contain deep
convective clouds. We define:

ctop − cbase > 500 hPa (6.5)

as the lower bound for cloud depths to activate enhanced transport in the convection
routine. Here, cbase and ctop are the height of the cloud base and cloud top in hPa,
respectively. In columns where (6.5) does not hold - and where we assume that no
deep convection occurs - we set Ki,j,l = 0 for all l in the column.

A short remark: the diffusion coefficient is equal in both horizontal directions,
such that:

Kx,i,j,l = Ky,i,j,l = Ki,j,l. (6.6)

Once the diffusion coefficient is determined, it is used as a measure for horizontal
transport of trace gasses. The larger K, the more tracer is transported between
adjacent grid boxes. The actual mass fluxes of tracer are obtained similarly to the
fluxes by Prather et al. (1987). Namely, the average diffusion coefficient of two
adjacent grid boxes is multiplied with their average mass, and with the difference in
trace mass fraction between the boxes. Lastly, this product is scaled with the time
step and a length scale. In the west-east horizontal direction (x) we have:

Fx,i+1/2 =
∆t

∆x2
· Ki +Ki+1

2
· mi +mi+1

2
·
(
µi
mi
− µi+1

mi+1

)
, (6.7)

with ∆t the time step (in s), and ∆x the length of the grid box (in m). Other symbols
are as defined previously. Calculation in the south-north horizontal direction (y) is
done similarly:

Fy,j−1/2 =
∆t

∆y2
· Kj +Kj+1

2
· mj +mj+1

2
·
(
µj
mj
− µj+1

mj+1

)
. (6.8)

Combined, (6.7) and (6.8) determine the in- and outgoing horizontal fluxes of tracer
for a grid box in column i, j as illustrated in Figure 6.4. Hence, the update for the
tracer mass at each time step is:

µn+1
i,j = µni,j + Fnx,i−1/2 − F

n
x,i+1/2 + Fny,j−1/2 − F

n
y,j+1/2. (6.9)
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Figure 6.4: Fluxes (F ) of tracer in the horizontal domain for grid box i, j.

To be consistent with the mass transport, the slopes are updated according to the
work of Prather et al. (1987). Namely, they are decreased by a factor that corresponds
with the strength of the diffusion coefficient:

σn+1
x,i = σnx,i ·max

{
0, 1− 2 ·K · ∆t

∆x2

}
, (6.10)

for the west-east direction, and:

σn+1
y,j = σny,j ·max

{
0, 1− 2 ·K · ∆t

∆y2

}
, (6.11)

for south-north direction. It is important to realize that (6.9), (6.10), and (6.11) are
calculated for each vertical layer l separately.

The diffusion coefficient K is a measure for the strength of convection, and hence
suitable to indicate the strength of the enhanced transport. However, to obtain
realistic values for the mass fluxes (equations (6.7) and (6.8)) and slope updates
(equations (6.10) and (6.11)), it needs to be scaled by a factor. Herefore, we introduce
the parameter δ in equations (6.7), (6.8), (6.10), and (6.11). They become:

Fx,i+1/2 =
∆t

∆x2
· δ · Ki +Ki+1

2
· mi +mi+1

2
·
(
µi
mi
− µi+1

mi+1

)
, (6.12)

Fy,j−1/2 =
∆t

∆y2
· δ · Kj +Kj+1

2
· mj +mj+1

2
·
(
µj
mj
− µj+1

mj+1

)
, (6.13)

σn+1
x,i = σnx,i ·max

{
0, 1− 2 · δ ·K · ∆t

∆x2

}
, (6.14)

and:

σn+1
y,j = σny,j ·max

{
0, 1− 2 · δ ·K · ∆t

∆y2

}
, (6.15)

respectively. With CTDAS, we aim to optimize the scaling factor, or ‘transport
parameter’, δ, in order to improve horizontal transport in TM5.

To verify that the scheme is indeed suitable to enhance north-south transport of
SF6, we test different diffusion scaling parameters. Figure 6.5 provides the resulting
north-south gradients for some relevant δ.

Obviously, the dashed magenta line in the figure illustrates that disregarding a
scaling factor for K (δ = 1.0) leads to a model bias in horizontal transport. Values
around δ = 0.1, and δ = 0.2 are more appropriate, and show a better match with
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Figure 6.5: North south gradient of SF6 averaged over 2009. Run time of the ex-
periment is 2006 − 2009. The dots are observations at the selected stations (these
are indicated with (B) in Appendix B), the colored lines show modeled values for
different diffusion scaling parameters δ. Note that δ = 0.0 is equal to our previously
defined basescase. The average observed SF6 concentration at the South Pole (SPO)
in 2009 is subtracted from both observations and model samples.

observations. RMSD values of these runs are comparable (0.033 and 0.031), but
parameterizing transport with δ = 0.2 overestimates observations at the South Pole,
where these were underestimated before. Hence, we consider δ = 0.1 as the most
suitable prior for further optimizations with CTDAS.

Overall, TM5, with the slopes update of (6.1) included in the convection routine,
has stronger horizontal transport than before, and is considered as our basecase.
Figure 6.5 shows that interhemispheric transport can be further enhanced by pa-
rameterizing horizontal diffusion. In this scheme, a transport parameter scales the
diffusion to obtain the actual strength of enhanced transport. We propose to optimize
this transport parameter with CTDAS in order to obtain improved interhemispheric
mixing in TM5.



Chapter 7

Optimization of transport:
setup and results

Section 1 discusses the optimization of one global transport parameter to improve
interhemispheric transport in TM5. Section 2 aims to obtain knowledge on the spatial
variation in horizontal transport, by dividing the world into five regions, and hence
optimizing five transport parameters.

1 One global transport parameter

Section 1.1 presents the optimization setup of CTDAS for one global transport pa-
rameter. Hereafter, Section 1.2 evaluates the results, and Section 1.3 presents interim
conclusions on a suitable value for the transport parameter.

1.1 Setup

Recall from Chapter 2 that observations, model-data-mismatch - representing the
covariance of the observations -, a priori state vector estimates, and (the number
of) ensemble members - representing the covariance of the a priori estimates - are
important factors for the CTDAS setup. Also, the cycle length, determining the
interval over which the state vector is optimized, should be taken into account. We
identify the following setup for one global parameter optimizations with CTDAS:

• Observations;

We obtain SF6 observations from the National Oceanic and Atmospheric Adminis-
tration (NOAA) surface flask network. Hereof, we only select so-called ‘background
stations’. These stations mostly are located in the marine boundary layer (over the
oceans), far away from the sources on land. Hence, they measure large scale - back-
ground - concentrations rather than local variations. Appendix B provides details on
the selected background stations, as well as on the total network.

We validate our model results with NOAA (surface/aircraft) flask data, but
more importantly with independent data of the HIAPER Pole-to-Pole Observations
(HIPPO) project as well (Wofsy et al., 2012). The scientist in this project collected
measurements of many greenhouse gases, including SF6, at all latitudes and many
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altitudes (from 300 up to 14.000 meter) during several pole-to-pole flights in the years
2009-2011.

• Model-data-mismatch;

Uncertainty of observations is considered in the data assimilation system, and repre-
sented by the covariance matrix R. The diagonal elements of R represent the model-
data-mismatch of the different stations, and indicate an uncertainty range (σ) around
observations which modeled values should account for. We determine this uncertainty
for each station separately by fitting its SF6 time series (2006-2011) with a second
order polynomial, and subtracting the trend. The standard deviation of the residuals
is taken as the model-data-mismatch at that specific station. Since only background
stations are selected, observations are rather accurate, and the uncertainty values
range between 0.02 and 0.12 ppt.

• A priori estimate;

One global transport parameter is assimilated with CTDAS, such that the state vector
has length one as well. Section 3.2 of Chapter 6 identifies 0.1 as an appropriate value
for the transport parameter δ (in the EnKF stated as as x), and we take this as the
a priori estimate of the state vector: x0 = 0.1.

Usually, the optimized state vector is propagated as the a priori estimate of the
next cycle. Besides, we test another propagation of the state vector, that is useful
to avoid instability of the transport parameters. In these simulations, we set the a
priori estimate to its first prior value every cycle, and we refer to them as ‘fixed prior’
simulations.

• Ensemble members;

Uncertainty of the a priori estimate is accounted for in data assimilation as well, this
time in the covariance matrix P . Special about CTDAS is that an ensemble of state
vectors (ensemble members) represent P , as is stated with equations (2.11), (2.12),
and (2.13) previously. Actually, the a priori state vector is considered as the mean of
the ensemble, and the different members represent the (co-)variance around it. They
are taken from a normal distribution around 0, and added to the prior.

To avoid negative diffusion in TM5, we do not allow negative transport parameters
(x0
′), and hence use a semi-exponential probability destiny function (PDF) for the

ensemble members (Bergamaschi et al., 2009). A dummy value a is taken from a
normal distribution with µa = 0.0, and σa = 0.5. Herewith, the (positive) ensemble
members are calculated:

x0
′ =

{
x0 · expa if a < 0;
x0 · (1 + a) if a ≥ 0.

(7.1)

An ensemble member is indicated with x0
′, the a priori state vector with x0. Note

that by this modification the actual covariance of the ensemble members is approxi-
mately:

σx0
′ ≈ x0 · σa = 0.1 · 0.5 = 0.05. (7.2)

Figure 7.1 depicts the PDF of the semi-exponential distributed ensemble members,
where members created with a < 0 are distributed between zero and the mean (0.1).
Since this is a smaller domain than originally (between −∞ and the mean), a peak
in the PDF next to the mean occurs.
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Figure 7.1: Probability density function (PDF) of the ensemble members (red line),
values below zero do not occur due to the semi-exponential distribution. Note that
the PDF is comparable to a distribution with µ = 0.1, and σ = 0.05 (blue line).

Now, values of δ range between 0.0 and 0.25 (99.85% of values is smaller than
x0 + 2σx0

′) for all members. This covariance range is suitable for the optimization
of δ, since we previously concluded that δ = 0.0 induced too weak, and δ = 0.25
too strong horizontal transport in TM5. The optimal value we propose to find with
CTDAS must lie in between.

Since we optimize one global transport parameter, and abundant observations
are available, 10 ensemble members are used to represent the a priori state vector’s
covariance.

• Cycle length and lag;

The cycle length in CTDAS determines the interval over which the state vector is
optimized. Additionally, the system can be used as a ‘filter’, or a ‘smoother’. With
the first, the relation between model and observations is exactly evaluated within
the cycle length period (lag = 1). With CTDAS as a smoother (lag = 2, 3, 4, . . .),
the state vector is still updated every cycle, but the effect on the concentration field
is considered for a longer time span. For instance, an optimization with a cycle
length of 90 days, and lag = 2, calculates an updated state vector every season, while
taking into account its effect on the concentrations over half a year. For a detailed
explanation of the smoother in CTDAS we refer to the paper by Peters et al. (2005).
However, CTDAS as a smoother has only a minor role in this research, since its results
do not differ significantly from the filter optimizations. Hence we optimize for both
yearly transport parameters (cycle length is 365 days), and seasonally parameters
(cycle of 90 days).

• Emissions:

The SF6 emissions that are fed to the model are of main importance for our opti-
mizations. Namely, we do not want CTDAS to correct TM5’s transport for biases
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in emissions. We use SF6 emissions from the EDGAR (2009) for the years 2006-
2007, and extrapolate these to obtain emissions for the years 2008-2009. Herefore, we
scale 2007 emissions with the average observed annual growth rate (which is rather
constant for SF6) at two background stations, Mauna Loa (MLO) and South Pole
(SPO), divided by the rate of 2007. In this way, we assure that our emissions match
the annual global trend in SF6, and that the total concentration in the atmosphere
is correct. We verify that indeed no systematic biases in our emissions exist by an-
alyzing modeled and observed SF6 time series at different stations. In all cases, the
observed trend in concentrations is captured well. At some stations a (small) offset
occurs though, but this can be related to incorrect transport in TM5.

• Resolution;

All optimizations are performed on a 6◦ × 4◦ grid. Hence, the whole globe consists
of 60 grid boxes in the zonal and 45 boxes in the meridional direction.

1.2 Results

Table 7.1 displays the results of one global transport parameter optimizations for
different configurations. The simulations are initialized in 2006 with a concentration
field that closely matches observations. Hence, one year of spin-up time is sufficient,
and we use the optimized values of δ of the three consecutive years (2007-2009) for
our analysis. Figure 7.2 displays the evolution in time of the transport parameter.

Table 7.1: Results of one global transport parameter optimizations. The cycle length
is given in days; the column ‘fixed prior’ indicates whether or not the state vector is
propagated in the optimization; CTDAS is used as a filter (lag = 1) in most cases,
sometimes as a smoother (with lag = 2). The average and standard deviation of δ
over the years 2007-2009 is provided under µ and σ, respectively.

ERA-Interim Operational Data
Nr. Cycle length Fixed prior Lag µδ σδ µδ σδ

1 365 No 1 0.15 0.03 0.10 0.01
2 365 Yes 1 0.14 0.02 0.12 0.02
3 90 No 1 0.08 0.04 - -
4 90 Yes 1 0.09 0.03 0.08 0.06
5 90 No 2 0.08 0.03 0.06 0.02
6 90 Yes 2 0.09 0.02 0.08 0.02

Parameter values deviate from cycle to cycle, yet no large outliers are present.
We average the values of δ over 2007-2009, and present them with their standard
deviation in Table 7.1. Recall that for each simulation we obtain two values, as we
consider two types of meteo data (ERA-Interim and Operational Data).

We check that our simulations are robust by assimilating with a double amount of
ensemble members (20 instead of 10), such that the a priori covariance is better rep-
resented. Also, we perform a simulation with different (fixed) a-prior estimates. Both
tests provide comparable results with the original simulations, confirming that the
transport parameter is assimilated properly. Moreover, we find that using a lag does
not change our optimizations, and we will not assess it further in this research. Fix-
ing or propagating the prior also does not impact the optimized transport parameters
significantly, provided that this prior is close enough to the optimal solution.
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Figure 7.2: Yearly (top figure) and seasonally (bottom figures) optimization of one
global transport parameter δ. The numeration of the simulations matches the config-
urations as stated in Table 7.1. Mean values of δ over the years 2007-2009 are given
next to the plots.

From Table 7.1, we find that δ is estimated largest for yearly optimized transport,
and somewhat smaller for seasonally transport. We can explain this from a data-
assimilation perspective, as well as from the perspective of atmospheric transport
itself. To explain the first, we assume that the transport model’s sampled deviations
(H(x′)) are sensitive for long cycle lengths, since the state vector deviations (x′) are
then propagated over a long time period. This might result in a sensitive, and possibly
larger, Kalman gain matrix (K), such that rather rigorous state vector updates, and
higher values, can occur.

Yet, we consider as best explanation the impact of the so-called ‘rectifier effect’.
This effect is known as the combination of covariances in both atmospheric transport
and the (biospheric, in the case of CO2) flux (Chan et al., 2008). For example, Chan
et al. (2008) explain that variations in transport and CO2 concentrations have a dif-
ferent timing, and that this causes a higher annual mean of CO2 in northern high
latitudes. Namely, meridional transport in winter is twice as strong as it is in sum-
mer, since the large temperature gradient between the tropics and the poles in winter
drives strong horizontal transport of air by large-scale eddies. At the same time, CO2

concentrations in the atmosphere are relatively high in winter, due to plant respira-
tion, and relatively low in summer, due to photosynthetic uptake of the biosphere.
Combining these temporal variances, low CO2 concentrations are transported less,
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whereas high concentrations in winter are transported more efficiently, resulting in
the high annual mean in the northern polar region (Chan et al., 2008).

Applying the concept of the rectifier effect on our SF6 simulations, we state that,
although atmospheric concentrations do not change throughout the year, the variance
in transport patterns explains the difference between the relatively high and low
values of δ for yearly and seasonally optimizations, respectively. At first, we argue
that, in accordance with the work of Chan et al. (2008), meridional transport in
winter is strong, such that (extra) transport in the form of parameterized diffusion
is less needed than in summer. Moreover, strong convective updrafts occur less in
winter, and our parameterization scheme, activated by deep convective clouds, is most
effective in the summer season. Apparently, parameterizing enhanced transport in
certain periods (mainly in summer, as displayed in Figure 7.2) is sufficient to improve
the SF6 concentration distribution in TM5, and can be achieved with a seasonally
assimilated transport parameter. A yearly cycle length cannot capture these temporal
variabilities and requires an overall higher δ.

Lastly, we find from Table 7.1, that results of the two meteorological data types
are comparable for the different configurations. Transport parameters estimated with
ERA-Interim, however, are slightly larger than the parameters estimated with Oper-
ational Data, indicating that optimizing transport cannot be done completely inde-
pendent of the meteorological data input. We verify that the north-south gradient of
SF6 concentrations, as displayed in Figure 6.1 for ERA-I, is slightly better with OD
meteo data. This suggests that horizontal transport is better represented in the OD
meteorology, such that less ‘extra’ horizontal diffusion is required in TM5 than for
ERA-I meteorology.

1.3 Interim conclusion on one transport parameter

Because the implementation of a (yearly/seasonally) varying parameter is impractical
in TM5, we determine one parameter value from Table 7.1 is most suitable to enhance
horizontal transport in TM5. We deem the yearly estimated transport less suitable
than the other simulations, since it captures no seasonal variations, and requires
stronger impacts to TM5 by the diffusion parameterization. Figure C.1 in Appendix C
illustrates this with the average RMSD at all measurement stations over the year 2009,
of simulations using δ = 0.15, δ = 0.1, and δ = 0.08 (the two extreme values of ERA-
I, and the prior). It is clear that δ = 0.15 gives a better match with observations at
northern latitudes (Alert (Canada), Azores (Portugal), Storhofdi (Iceland), Summit
(Greenland), and Ny-Alesund (Norway and Sweden)) than δ = 0.08. Yet, the effect
on the Southern Hemisphere is opposite, and δ = 0.15 overestimates most stations
there.

Overall, we conclude that δ = 0.09 improves concentrations in the NH, without
overestimating concentrations in the SH, and we propose to use δ = 0.09 in the
parameterization scheme with one global transport parameter. We realize that the
distinction between δ = 0.08, δ = 0.09, or the prior δ = 0.1 cannot be made, since the
standard deviation range on the optimized parameters captures all three solutions,
and the global concentration distribution is comparable for these parameters. Hence,
we may validate our results for δ = 0.1 (instead of δ = 0.09), as we will do in
Chapter 8.
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2 Five transport parameters

Besides seasonal variation in (one) transport (parameter), as evaluated in the pre-
vious section, spatial variation might be relevant as well. Section 2.1 presents the
setup of simulations to capture this variation by using five, instead of one, transport
parameters. Section 2.2 discusses the results, whereafter Section 2.3 presents some
first conclusions.

2.1 Setup

To capture spatial variability in the parameterization of transport, we determine
five regions by separating the globe at the latitude bands 60◦N, 30◦N, 30◦S, and
60◦S. The new state vector consists of five elements (δi, with i = 1, . . . , 5), and
each element represents the transport parameter in one of the regions. The data-
assimilation system now contains four more degrees of freedom, and hence we increase
the number of ensemble members representing the a priori covariance to 25.

Whereas the optimization of one transport parameter was rather constraint (be-
cause this one parameter was applied over the whole globe), the five transport pa-
rameters are updated separately, and mainly try to match observations within their
reach (the specific region they are linked to). From first optimizations, it turns out
that δ2 increases after each optimization cycle. High transport parameters mean high
diffusion coefficients, that might drain all SF6 out of grid boxes. This causes negative
concentrations in TM5, and a crash of the system is unavoidable. From previous
simulations we learned that fixing the prior does not impact one optimized transport
parameter, provided that the prior is close enough to the optimal solution. Since
only δ2 intended to increase after each cycle, we consider it suitable to apply a fixed
prior of 0.1 to all parameters. This avoids the instability of δ2, without influencing
the outcome of the other parameters.

Lastly, CTDAS is used as a filter (lag = 1) in all simulations. The remaining
factors of the setup are equal to our previous simulations.

2.2 Results

In Table 7.2, we present the results of regional transport parameter assimilations.
Figure 7.3 displays the propagation in time of the parameters.

Table 7.2: Results of the optimizations of five transport parameters. The cycle length
is given in days. The a priori estimates are fixed (x0 = [0.1, 0.1, 0.1, 0.1, 0.1]), and
CTDAS is used as a filter (lag = 1) in all cases. The average and standard deviation
of δ over the years 2007-2009 is provided under µ and σ, respectively.

δ1 δ2 δ3 δ4 δ5
Nr. Cycle

length
Meteo µ σ µ σ µ σ µ σ µ σ

7 365
ERA-I 0.15 0.02 0.37 0.04 0.10 0.03 0.13 0.06 0.13 0.02

OD 0.09 0.02 0.38 0.08 0.07 0.01 0.19 0.06 0.13 0.01

8 90
ERA-I 0.10 0.01 0.18 0.04 0.07 0.03 0.10 0.02 0.10 0.01

OD 0.11 0.02 0.16 0.02 0.06 0.03 0.10 0.02 0.10 0.02
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Figure 7.3: Yearly (top figures) and seasonally (bottom figures) optimization of five
transport parameters δi. The numeration of the simulations matches the configura-
tions as stated in Table 7.2. Mean values of δi over the years 2007-2009 are given
next to the plots.

The most striking result are the high values for δ2, the transport parameter in
the northern mid-latitude region (between 30◦ and 60◦ N). Other parameters stay
rather close to their prior value. However, results of parameters δ1, δ4, and δ5 are
misleading. Namely, their covariance after optimization (recall the matrix Popt as in
(2.7), not to be confused with the standard deviation provided in Table 7.2) did not
decrease compared to the a priori covariance (recall matrix P0 or P as in (2.12). This
suggests that these parameters did not gain information from the assimilation, and
are updated randomly.

In order to explain the above, we evaluate the representation of convective pre-
cipitation (on 1 × 1◦ grid resolution), and the resulting cloud depth (on 6 × 4◦ grid
resolution) in the ERA-I meteorological data. Appendix D displays both on a global
map for a winter and a summer month (in 2008). From the maps we identify that,
especially in Northern Hemisphere winter, (almost) no deep convection occurs in re-
gions 1, 4, and 5. In these regions, the diffusion parameterization scheme cannot
be triggered, and the parameters cannot be optimized with CTDAS. Hence, only
transport in the tropics and northern mid-latitude regions, represented by δ2 and δ3
respectively, can be assessed further.

In accordance with our previous results, simulations with cycles of 365 days show
larger transport parameters than simulations with cycles of 90 days. We use the same
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reasoning as in Section 1.2.
Interestingly, the seasonally optimized transport parameters show temporal vari-

ations, whereby δ2 and δ3 seem to be correlated. Indeed, correlation coefficients
between δ2 and δ3 range from ∼ 0, mostly obtained in winter, to −0.4, mostly ob-
tained in summer. Abundant deep convection in NH summer assures that horizontal
transport is most efficiently enhanced in the tropics (peak in δ3) in this period. Linked
to this, less enhancement in northern mid-latitudes is required (dip in δ2). In NH
winter, however, enhancement in the tropic is less required/efficient, such that δ3
drops to lower values. At the same time, most deep convection disappears in north-
ern mid-latitudes, while enhanced transport is needed still. With the few convective
clouds triggering the parameterization scheme, CTDAS tries to enhance transport in
the region, such that δ2 is estimated as high as possible (it is constrained though by
the fixed prior at 0.1).

2.3 Interim conclusion on five transport parameters

To determine whether spatial variation in horizontal transport parameterization can
improve the global distribution of SF6 concentrations, we again observe the RMSD
at all measurement stations for the simulations, and compare them to the a priori
estimate. Figure C.2 in Appendix C shows that δ = [0.10, 0.18, 0.07, 0.10, 0.10] (sim-
ulation 9) does not significantly change the match with observations compared to the
prior. Results of simulation 8 (δ = [0.15, 0.37, 0.10, 0.13, 0.13]), however, are compa-
rable to the prior at the SH, and slightly improve the match with observations at
high latitude station in the NH.

Overall, parameters of simulation 8 capture seasonal variability in the transport
parameter, but cannot compete with the strong enhanced transport in northern mid-
latitudes of simulation 7 (δ2 = 0.37). We state that indeed spatial variation in para-
meterized diffusion can improve transport in TM5. Yet, the improvement we obtain
with our optimized values is small, and more research on correlations, appropriate
regions and/or parameter values is required.



Chapter 8

Validation

In Chapter 6 we tuned the difusivity of TM5’s numerical scheme, and Figure 6.2
justifies that this enhances horizontal mixing effectively. Hereafter, in Chapter 7, we
found δ = 0.09 as a suitable value to parameterize horizontal transport on a 6◦ × 4◦

grid. We identified that δ = 0.1 is a proper solution within the uncertainty range,
and use it in this chapter to validate our results. The spatial variations in δ, that we
tested with CTDAS as well, did not result in applicable transport parameter values,
and we discuss them more extensively in the discussion (Chapter 9) instead.

First, we compare a simulation of TM5 as it is currently used (we refer to this as
the ‘current’ TM5 configuration) with a simulation of reduced slopes plus parame-
terized transport with δ = 0.1 (‘new’ TM5 configuration). Table 8.1 and Figure 8.1
display the RMSD between model and observations and the actual timeseries at three
measurement stations (Alert (ALT), Mauna Loa (MLO), and South Pole (SPO)) for
the years 2006− 2009, respectively.

Table 8.1: RMSD (in ppt) between modeled concentrations and observations for three
NOAA (surface) measurement stations. Values with the current TM5 configuration
are stated in the left column, values with the new configuration in the right.

RMSD
Abbr. Current TM5 New TM5

ALT 0.108 0.056
MLO 0.049 0.047
SPO 0.046 0.033

It is clear that SF6 simulations improve on both hemispheres (ALT on NH, SPO
on SH) using the new TM5 configuration. In the tropics (MLO), observations were
simulated accurately already, and only a minor change is visible. Although these
timeseries look promising, we realize that checking three stations is not sufficient to
draw conclusion on global SF6 concentrations. Besides, observations of ALT, MLO,
and SPO are used in the assimilation, and it would be better to check our results
with independent data.

As a first step, we evaluate timeseries of three independent NOAA aircraft data
sets. Table 8.2 provides details on the flights, Table 8.3 displays the RMSD between
the modeled and observed concentrations, and Figure 8.2 shows the time series.

For all of them, simulations show a better match with observations using the
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Table 8.2: Details on three flights of NOAA aircraft measurement network.

Abbr. Full name Country Latitude Longitude

DND Dahlen, North Dakota United States 47.50 -99.24
PFA Poker Flat, Alaska United States 65.07 -147.29
RTA Rarotonga Cook Islands -21.25 -159.83

Table 8.3: RMSD (in ppt) between modeled concentrations and observations for the
NOAA aircraft flights from Table 8.2. Values with the current TM5 configuration
are stated in the left column, values with the new configuration in the right.

RMSD
Abbr. Current TM5 New TM5

DND 0.092 0.069
PFA 0.057 0.057
RTA 0.051 0.044

new configuration of TM5, and hence suggest that also at high altitudes transport
is improved. Yet, the aircrafts flew at specific locations, and conclusions on global
concentrations cannot be drawn.

A solution to this is the three-year flight campaign that is known as the HIAPER
Pole-to-Pole Observations (HIPPO) project (Wofsy et al., 2012). From 2006 to 2009,
an aircraft, equipped to collect data of many different trace gasses (also SF6), flies
from pole to pole and back, along as much longitude bands as possible. On the route,
the aircraft deviates its altitude, ranging from 300 up to 14.000 meters. Hereby, Wofsy
et al. (2012) present well monitored observations, perfectly suitable to establish a
global profile of - in our case - SF6, which we use to validate our results.

For one of the flights in 2009 we compare observed with modeled SF6 concen-
trations (we did not simulate SF6 for subsequent years, and hence did not consider
other flights). Figure 8.3 presents a cross section of the difference between model
and observations at different altitudes (up to 11.000m) and a wide range of latitudes
(between 70◦S and 80◦N). Red colors indicate that observed minus modeled values
are negative, and that TM5 overestimates measured SF6 concentrations. Reversely,
blue colors indicate an underestimation of the model.

The top figure of the HIPPO data, representing the current configuration of TM5,
clearly illustrates the overestimation of observed SF6 in the NH, and the underestima-
tion in the SH. Reducing the slopes and parameterizing horizontal transport dimin-
ish these biases at most altitudes, as the lighter colors in the bottom figure suggest.
Moreover, the spatial pattern of over- and underestimation has changes from a sharp
gradient into more spread out through the atmosphere.

Overall, we conclude that the new configuration we established for TM5 is suitable
to enhance horizontal transport, and hereby improves the global distribution of SF6.
We realize that the match with observations is not perfect yet (slight overestimation
in the polar regions, and underestimation in the tropics), and discuss this in the next
chapter.
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Figure 8.1: Timeseries of SF6 concentrations, observed and simulated, at three dif-
ferent measurement stations over the years 2006− 2009. From top to bottom: Alert,
Nunavut (ALT), Mauna Loa, Hawaii (MLO), and South Pole, Antarctica (SPO). On
the left hand side, simulations with the current TM5 configuration are shown. The
right hand side displays simulations with the new configuration.
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Figure 8.2: Timeseries of SF6 concentrations, observed and simulated, from free
NOAA aircraft flights in the years 2006 − 2009. From top to bottom: Poker Flat,
Alaska (PFA), Dahlen, North Dakota (DND), and Rarotonga (RTA). On the left hand
side, simulations with the current TM5 configuration are shown. The right hand side
displays simulations with the new configuration.
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Figure 8.3: Cross sections of SF6 concentration differences between model and ob-
servations at latitudes from 70◦S up to 80◦N, and altitudes up to 11.000 meters.
Concentration differences (observations - modeled values) are given in ppt. The top
and bottom figure display SF6 simulations with the current and new TM5 configura-
tion, respectively.



Chapter 9

Discussion

In this chapter we reflect on the research’s setup and results. Section 1 evaluates the
methods we used to improve interhemispheric transport in TM5. In Section 2 we
discuss assumptions for and results from the optimization procedure with the data-
assimilation system (CTDAS). Lastly, Section 3 indicates that horizontal diffusion is
not sufficient to solve all transport biases in TM5, and that also vertical transport
ought to be considered.

1 Consideration on methods

To enhance horizontal transport in TM5 we firstly increased the difusivity of the
numerical scheme (in the convection routine). Slopes, determining spatial gradients
within a grid box, are updated at each time step. A conservative update results
in low difusivity, a less conservative update - that is closer to an upwind scheme -
allows more diffusion of tracer. Currently, the slopes in vertical direction are reduced
stronger than horizontal ones. We argued that convective updrafts do not distinguish
between the direction of the slopes, however, and set the horizontal update equal to
the - less conservative - vertical one. We consider equal slope updates as a reasonable
argument, and this solves part of the required extra north-south transport of SF6 as
well. Yet, it is not proven that the slopes update that we use for our basecase is the
best, and more research is needed to determine the most suitable balance between a
conservative slope and a diffuse upwind scheme.

As a second method to enhance interhemispheric mixing, we introduce a para-
meterization for sub grid scale horizontal diffusion, partly analogous to the work of
Prather et al. (1987). According to their work, sub grid horizontal transport occurs
near strong convective updrafts, and should be linked to this processes in the model.
Herefore, we set a constraint for cloud depth (see equation (6.5)) to trigger the para-
meterization. This constraint can be considered as a strength, but as a weakness as
well. It is good that horizontal transport is enhanced in regions where it occurs in real-
ity. On the other hand, the method works well for tropical and northern mid-latitude
regions, but has little impact in southern mid-latitude and polar regions due to the
‘lack’ of deep convection in these areas. Figure 8.3 shows that enhanced transport
improves the global SF6 distribution. Yet, the overestimation in the polar regions
verifies that indeed SF6 concentrations cannot be transported sufficiently here. Sim-
ilarly, abundant deep convection in the tropics might cause too strong transport by
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the parameterization, resulting in the underestimation, represented by the light blue
colors. Hence, it might be worth to relax the constraint on cloud depth to allow
parameterized transport in polar regions. Furthermore, optimizing transport entirely
without the cloud constraint could be useful as well to examine the spatial variation
in the diffusion coefficient K (recall that it decreases from the tropics towards the
poles and with altitude).

Finally, the diffusion parameterization scheme is resolution dependent. When
reducing the grid size, for instance to 3◦ × 2◦ (meaning 120 zonal and 90 meridional
boxes), we find two opposite effects. On the one hand, a smaller grid size can explicitly
solve diffusion, that was sub grid scale before. Extra horizontal transport is less
needed, and the parameterization would suffice with a smaller transport parameter.
On the other hand, considering equations (6.4), (6.12), and (6.13), reducing the grid
box surface area by a factor 4, reduces the diffusion constant, and hence the calculated
fluxes as well. A larger transport parameter is needed to account for this.

We briefly tested an optimization of one transport parameter on a 3◦ × 2◦ grid.
The combination of factors, as explained above, result in a larger δ than found in the
same experiment on the larger grid. However, more research is needed to be certain
on this, and to find how the dependency applies on other grid sizes.

2 Consideration on optimizing transport

We optimized the transport parameter via data-assimilation with CTDAS. By doing
so, we obtained insight in both spatial and temporal variations in horizontal trans-
port linked to convective updrafts, and claim that δ = 0.09 is a suitable transport
parameter to implement in TM5 on a 6◦ × 4◦ grid. Yet we realize that we had to
make certain assumptions in the uptimization procedure, that might have influence
the results. We briefly discuss them in this section.

Since we did not want to optimize both fluxes and transport, SF6 emission fields
were fed to the data-assimilation system. The growth rate of SF6 is rather constant
throughout and over the years, and we consider our strategy to match emission fields
with the yearly growth rate legitimate. However, we realize that the exact magnitude
of emissions, as well as the spatial distribution, is difficult to prescribe exactly. Hence,
testing the sensitivity of CTDAS to different emission input files, would be a valuable
addition to this research, and could provide better insight in spatial variations in
horizontal transport.

Other input data for CTDAS are the weather conditions, provided by ERA-
Interim and Operational Data. We verified that the observed concentration gra-
dient of SF6 between the NH and SH was less overestimated using OD meteorology,
than ERA-I. This suggest that, possibly due to higher accuracy in OD, horizontal
transport is better represented in OD than in ERA-I. As could be expected, optimized
transport parameter values deviated slightly in magnitude between the two data sets.
Trends between different CTDAS configurations, however, were comparable. Overall,
we state that optimizing transport cannot be done totally independently of meteoro-
logical input data. For further TM5 simulations or optimizations with CTDAS, the
choice for meteorological input should be considered with care.

Furthermore, optimizations with multiple transport parameters are dependent on
the regions in which the parameters are defined. This problem is tightly linked with
the cloud depth constraint, as regions without deep convection do not take part in
the optimizations procedure. In this research, it was a main reason for the small
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improvement in simulated concentrations, comparing five to one transport parame-
ter(s). Hence, we state that implementing the five transport parameters, as we found
from CTDAS optimizations, gains information on spatial variability of transport, but
is not worth the effort of implementation in TM5. However, we believe that there
is room for improvement, and that evaluating different regions, in combination with
different cloud depth constraints, is a good way to go.

Lastly, we performed our simulations with the gas SF6. We deem this tracer
suitable to test transport in TM5, but strongly suggest to evaluate our procedures
and results for other trace gasses (preferably with well known fluxes) as well.

3 Horizontal transport does not solve it all

In this research, solely observations of background stations are used in the assimilation
procedure, because they best represent the global distribution of SF6. Herewith, we
determined transport parameters that improve simulated SF6 concentrations, but
cannot eliminate all over- or underestimations. As a test, we assimilate one global
transport parameter as before, but now include the - previously independent - NOAA
aircraft measurements. In this way, observations at multiple altitudes are represented,
which alters the transport parameter’s magnitude. Aircraft observations dominate
the surface flask network and assimilate transport parameter values up to 0.34 (a
factor three higher than without the aircraft data). More mixing is TM5 is required to
match observations at high altitudes, but, as we have shown previously, values larger
than δ = 0.1 are not suitable to represent surface SF6. This suggest that stronger
transport in TM5 is required, and moreover, that horizontal diffusion cannot solve it
all. Hence, we suggest to also investigate the impact of vertical transport in TM5.



Chapter 10

Conclusion

In this research, we evaluate two methods to improve interhemispheric transport of
SF6 in the global chemistry transport model TM5. We show that, by enhancing
meridional transport, both overestimations of observed SF6 concentrations in the
Northern Hemisphere, and underestimations of observed SF6 concentrations in the
Southern Hemisphere diminish. Moreover, we find improvements at all latitudes, and
in the vertical column (up to 11.000m) as well.

Our first method adjusts the update of horizontal slopes - that determine spatial
gradients within a grid box - in the convection routine, to make the numerical scheme
more diffuse. This improves TM5’s match with observations, but the observed gra-
dient of SF6 concentrations between the NH and SH is overestimated still. We assume
that (unresolved) sub grid transport can solve this problem, and introduce a horizon-
tal diffusion parameterization scheme, largely analogous to the work of Prather et al.
(1987). Only in grid boxes where deep convective clouds occur, entrainment and de-
trainment fluxes (these are turbulent motions, associated with convective updrafts)
determine a diffusion coefficient, that is scaled by an arbitrary transport parameter
δ to obtain realistic tracer mass fluxes. We aim to find a suitable value for δ, and
gain knowledge on temporal and spatial variation in transport as well, by optimizing
it with a data-assimilation system (the CarbonTracker Data Assimilation System).

Considering temporal variation, we find that enhancing horizontal transport with
the parameterization scheme is most required, and most efficient, in summer months.
We explain this process as the ‘rectifier effect’ (Chan et al., 2008), and identify that it
is best captured with seasonally optimized transport (resulting in values of δ slightly
smaller, or equal to 0.1). Also, we assess temporal variability by dividing the globe
into five regions, and optimize a transport parameter for each of them. The link
with convective clouds (as a constraint to trigger the parameterization) prohibits the
optimization of transport in the Southern mid-latitudes, and polar regions. Hence,
the regions that we determined are not suitable to obtain spatial variation in transport
parameters, and more research on the concept is needed.

Overall, we conclude that both the adjusted slopes update and the parameterized
diffusion, using one global transport parameter with value δ = 0.1, improve inter-
hemispheric transport in TM5 on a 6◦ × 4◦ grid. The parameterization is resolution
dependent, and to determine δ for other grid sizes we recommend to iterate our pro-
cedures. Lastly, we realize that horizontal transport cannot solve the problem of slow
interhemispheric mixing in TM5 alone, and we strongly suggest to explore the impact
of vertical diffusion.
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Recommendations

Already in the discussion and conclusion we draw attention to topics that should be
researched further. We shortly list them below.

For further research on (improving) interhemispheric mixing in the TM5 transport
model, we recommend:

• to (re)consider the slopes update that determines the difusivity of the numerical
scheme. We argue that equal updates in all directions should be used, contrary
to the current implementation. Which of the updates is most suitable in TM5
should be evaluated in further research.

• further explore the spatial variation in the transport parameter by testing dif-
ferent regions in the optimizations. Possibly, relaxation of the cloud depth con-
straint may help, since this avoids that certain regions (with little convection)
are excluded in the assimilation.

• to test the diffusion parameterization on different grid resolutions. The op-
timization procedure with CTDAS could be repeated to determine a suitable
transport parameter for the desired grid.

• to examine differences between ERA-Interim and Operational Data in (horizon-
tal) transport, and how these might have influenced our transport parameter
optimizations.

• to investigate the impact of vertical transport in TM5. We found that TM5’s
transport bias cannot be solved solely by the enhancement horizontal transport,
and we suggest that in addition the role of vertical transport is considered.
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Appendix A

Derivation of an appropriate
run time

In Chapter 3 we set up a simple transport model, that is used later on in a data-
assimilation test experiment. Besides the default settings, as determined in Section 2,
an appropriate run time and time step are required. They need to be such such that
the exponential decay of the concentration is captured, without reaching the steady
state too early in the experiment. Herefore, we performed a dimensional analysis of
the advection-diffusion equation. The resulting derivation for tend, assuming t0 = 0.0,
is explained below.

We start off with a commonly used method for partial differential equations:
separation of variables. The concentration is written as the product of a function of
space and a function of time:

c(x, t) = X(x) · T (t). (A.1)

Here, c(x, t) is the concentration for a point in space x, and in time t.
Substituting this into equation (3.1) provides:

T ′

T
= D

X ′′

X
− uX

′

X
, (A.2)

with T ′ the first derivative of T with respect to t, X ′ and X ′′ the first and second
derivatives of X with respect to x, respectively.

Since the left hand side of (A.2) depends on t, and the right hand side on x, they
are independent terms. For them to be equal, they must be a constant value, say −λ.
From this, we obtain two ordinary differential equations:

T ′ + λT = 0, (A.3)

for the left hand side, and:

DX ′′ − uX ′ + λX = 0, (A.4)

for the right hand side. Recall that u is the advection, and D the diffusion coefficient.
Now, we derive the boundary conditions by substituting (A.1) in (3.4) and (3.5):

c(0, t) = c(L, t) ∀t;
⇔ X(0) · T (t) = X(L) · T (t) ∀t;
⇔ X(0) = X(L),

(A.5)

i
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and:
cx(0, t) = cx(L, t) ∀t;

⇔ X ′(0) · T (t) = X ′(L) · T (t) ∀t;
⇔ X ′(0) = X ′(L).

(A.6)

With these boundary conditions, we can solve the differential equation for X. The
general form would be:

X(x) = d1e
r1x + d2e

r2x, (A.7)

with d1 and d2 arbitrary constants. The according characteristic equation for the
differential equation is:

Dr2 − ur + λ = 0, (A.8)

such that:

r1, r2 =
u±
√
u2 − 4Dλ

2D
. (A.9)

For the default settings of our simple transport model, this becomes:

r1, r2 =
3±
√

9− 4λn
2

, (A.10)

Evaluating (A.7) for the boundary conditions, provides the following constraints:

er1x = 1 or er2x = 1;
⇔ r1L = 0 + 2inπ or r1L = 0 + 2inπ;

⇔ u+
√
u2−4Dλn

2D = 2niπ
L or u−

√
u2−4Dλn

2D = 2niπ
L .

(A.11)
From this, we determine the eigenvalues λn (∀n ∈ N) for a general case, followed by
the eigenvalues for the default settings of Section 2:

λn = u2−(4inpiD/L−u)2

4D ,

= 4n2π2D
L2 + 2inπ

L ,
= 4n2π2 + 6inπ,

(A.12)

Since λn > 2.5 for n > 1, we find from (A.10) that r1 are r2 are imaginary numbers.
Hence, we may write:

Xn(x) = d1e
(α+iβ)x + d2e

(α−iβ)x,
= eα

(
d1e

iβx + d2e
−iβx) ,

= d3 · cos(βx),
(A.13)

with d3 an arbitrary constant, α = 3
2 , and β = 1

2

√
9− 4λn.

Next step is to solve the differential equation for T . It has the general form:

Tn(t) = d4e
−λnt,

= d4e
−(4n2π2+6inπ)t,

= d4 (cos(6nπt)− i sin(6nπt)) e−4n2π2t,

(A.14)

with again d4 an arbitrary constant. From the solutions for X and T we obtain the
overall solution for the concentration as follows:

c(x, t) =

∞∑
n=1

d̃n cos

(√
9− 4λn

2
· x
)

(cos(6nπt)− i sin(6nπt)) e−4n2π2t, (A.15)
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with d̃n constants determined by d3, d4, and the initial condition. From (A.15) we see
that the concentration is in two ways dependent on time. The first are oscillations,
caused by the sine and cosine function. Besides, we have an exponential decay of
concentration, caused by the negative exponential. The last is of main interest, when
considering the run time for the experiment. Namely, we would like to see clearly
the decay of concentrations, without arriving at the steady state far before the end
time. The smallest (real part of the) eigenvalue, 4n2π2, determines the slowest decay.
For instance, e−2t decreases faster than e−t. For our case we find that the decay of
concentrations is slowest for n = 1, such that we have: e−4π2t. The characteristic
time scale, which is one divided by the smallest (real part of the) eigenvalue, should
be of the same order as the end time in order to accomplish our requirements. We
find 1

4π2 ≈ 0.025, but realize that in our experiment different values for D are used.
This will shorten or extend the characteristic time scale for those experiments. To
be sure to capture the whole decay, we take a large value for tend that still remains
within the order of the characteristic time scale: tend = 0.1.

Lastly, we provide a short remark on the oscillations. In order not to miss them
in the concentration profile, it is important that the time step is much smaller than
the length of one period divided by the argument of the sine and cosine:

∆t� 2π

6π
=

1

3
. (A.16)

Verifying with Section 2 shows that ∆t = 1.0e-4 is indeed a suitable time step to
capture the oscillations.

It is important to realize that the above time step is calculated for n = 1. For
higher n, one would expect a smaller time step. However, the negative exponential
would then dominate the effect of oscillations, such that the time step length is just
important for the stability of the numerical scheme, but not so much for the effect of
oscillations.



Appendix B

NOAA surface flask network

Here, we provide an overview of the NOAA surface flask network’s stations for SF6.
Abbreviations and full names are listed below. On the next page we show the loca-
tions of the stations in a global map. Note that the red stations are considered as
background stations (indicated with B below), and hence included in the optimiza-
tions. The blue dots are not, since they are influenced by local SF6 sources.

Table B.1: Overview of measurement stations (Part 1).

Abbr. Full name Country Latitude Longitude

ABP Arembepe, Bahia Brazil -12.77 -38.17
ALT (B) Alert, Nunavut Canada 82.45 -62.51
ASC (B) Ascension Island United Kingdom -7.97 -14.40
ASK (B) Assekrem Algeria 23.18 5.42
AZR (B) Terceira Island, Azores Portugal 38.77 -27.38
BAL Baltic Sea Poland 55.35 17.22
BHD (B) Baring Head Station New Zealand -41,41 174,87
BKT (B) Kototabang Indonesia -0.20 100.32
BME St. Davids Head, Bermuda United Kingdom 32.37 -64.65
BMW (B) Tudor Hill, Bermuda United Kingdom 32.26 -64.88
BRW (B) Barrow, Alaska United States 71.32 -156.61
BSC Black Sea, Constanta Romania 44.18 28.66
CBA (B) Cold Bay, Alaska United States 55.21 -162.72
CGO (B) Cape Grim, Tasmania Australia -40.68 144.69
CHR (B) Christmas Island Republic of Kiribati 1.70 -157.15
CPT Cape Point South Africa -34.35 18.49
CRZ (B) Crozet Island France -46.43 51.85
EIC (B) Easter Island Chile -27.16 -109.43
GMI (B) Mariana Islands Guam 13.39 144.66
HBA (B) Halley Station, Antarctica United Kingdom -75.61 -26.21
HPB Hohenpeissenberg Germany 47.80 11.02
HUN Hegyhatsal Hungary 46.95 16.65
ICE (B) Storhofdi, Vestmannaeyjar Iceland 63.40 -20.29
IZO (B) Tenerife, Canary Islands Spain 28.31 -16.50

iv
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Table B.2: Overview of measurement stations (Part 2).

Abbr. Full name Country Latitude Longitude

KEY Key Biscayne, Florida United States 25.67 -80.16
KUM (B) Cape Kumukahi, Hawaii United States 19.52 -154.82
KZD Sary Taukum Kazakhstan 44.08 76.87
KZM Plateau Assy Kazakhstan 43.25 77.88
LLB Lac La Biche, Alberta Canada 54.95 -112.45
LMP Lampedusa Italy 35.52 12.62
MEX High Altitude Global Cli-

mate Observation Center
Mexico 18.98 -97.31

MHD Mace Head, County
Galway

Ireland 53.33 -9.90

MID Sand Island, Midway United States 28.21 -177.38
MKN Mt. Kenya Kenya -0.06 37.30
MLO (B) Mauna Loa, Hawaii United States 19.54 -155.58
NMB (B) Gobabeb Namibia -23.58 15.03
NWR Niwot Ridge, Colorado United States 40.05 -105.59
OXK Ochsenkopf Germany 50.03 11.81
PAL Pallas-Sammaltunturi,

GAW Station
Finland 67.97 24.12

POC (B) Pacific Oceann - - -
PSA (B) Palmer Station, Antarctica United States -64.92 -64.00
PTA Point Arena, California United States 38.95 -123.74
RPB (B) Ragged Point Barbados 13.16 -59.43
SEY (B) Mahe Island Seychelles -4.68 55.53
SGP Southern Great Plains,

Oklahoma
United States 36.61 -97.49

SHM (B) Shemya Islands, Alaska United States 52.71 174.13
SMO (B) Tutuila American Samoa -14.25 -170.56
SPO (B) South Pole, Antarctica United States -89.98 -24.80
STM Ocean Station M Norway 66.00 2.00
SUM (B) Summit Greenland 72.60 -38.42
SYO (B) Syowa Station, Antarctica Japan -69.00 39.58
TAP Tae-ahn Peninsula Republic of Korea 36.74 126.13
TDF Tierra Del Fuego, Ushuaia Argentina -54.85 -68.31
THD Trinidad Head, California United States 41.05 -124.15
UTA Wendover, Uta United States 39.90 -113.72
UUM Ulaan Uul Mongolia 44.45 111.10
WIS WIS Stations, Negev

Desert
Israel 30.86 34.78

WLG Mt. Waliguan Peoples Rep. China 36.29 100.90
ZEP (B) Ny-Alesund, Svalbard Norway and Sweden 78.91 11.89
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Figure B.1: NOAA surface flask network for SF6. Red dots represent background
stations (indicated with (B) in Table B.1 and B.2), of which observations are included
in the optimization. Observations of others, shown as blue dots, are not. Note that
’POC’ is a ship, and its measurements are collected throughout the Pacific Ocean.



Appendix C

RMSD after optimization

Figure C.1: RMSD of forward runs with one transport parameter: δ = 0.15 (blue),
δ = 0.1 (yellow), and δ = 0.08 (red).

Figure C.2: RMSD of forward runs with five transport parameters: δ =
[0.15, 0.37, 0.10, 0.13, 0.13] (blue), δ = [0.1, 0.1, 0.1, 0.1, 0.1] (yellow), and δ =
[0.10, 0.18, 0.07, 0.10, 0.10] (red).
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Appendix D

Cloud meteorology in
ERA-Interim

Figure D.1: Convective precipitation in 10−7m
s on a 1◦ × 1◦ grid in January (left)

and July (right) 2008. Maps are obtained from ERA-Interim meteorological data and
representative for the same months in other years.

Figure D.2: Cloud depth in hPa as calculated in TM5 on a 6◦ × 4◦ grid in January
(left) and July (right) 2008, but representative for other years as well.
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