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1 Introduction

The work described in this master thesis investigates the control of bipedal walking robots
based on the principle of passive dynamic walking. Inspired by the high performance of human
walking, which combines high robustness with high energy efficiency, the goal has been to use
variable leg stiffness to obtain variable walking gait while combining these two aspects. In
contrast, most existing systems are either energy efficient or robust.

The thesis consists mainly of two papers; the first investigates the use of variable leg stiffness
to obtain variable gait on the Spring-Loaded Inverted Pendulum (SLIP) model. The parameter
space in which gaits of a desired velocity exist is first explored and a normalised unique descrip-
tion of a SLIP gait is developed. Based on the control of variable leg stiffness, a gait switching
strategy is proposed that controls the system from one limit cycle walking gait to another in
order to change the walking speed. The strategy is shown to be able to control the system to
another gait within a limited number of steps, after which control action converges to zero.

The second paper investigates the Segmented Spring-Loaded Inverted Pendulum (S-SLIP)
model, which is different from the SLIP model in that it has legs with torsional stiffness knees,
which is more realistic as compared to existing robot designs, which use knees and leg retraction
to avoid food scuffing. It is shown that the S-SLIP model exhibits walking gait, and a control
strategy is developed that is able to stabilise the system after a disturbance. The gait switching
strategy is applied to this model and it is shown that the system can be controlled from one
limit cycle walking gait to another.

Furthermore, a realistic bipedal robot model is designed that uses Variable Stiffness Ac-
tuators (VSAs) to control the knee stiffness. The control is based on the strategy developed
for the S-SLIP model, and is extended with additional components to facilitate hip swing and
leg retraction, which arise due to the additional dynamics of this model. A reference gait is
obtained by using this model with constant leg stiffness. The variable knee stiffness is then
used to stabilise the system into this gait and to inject energy losses generated by foot impacts.
It is shown that this results in a stable limit cycle walking gait. The thesis concludes with a
discussion of results obtained and recommendations for future work.
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2 Paper 1: Variable Bipedal Walking Gait with Variable Leg
Stiffness

Submitted to ICRA 2014.

Abstract – The Spring-Loaded Inverted Pendulum (SLIP) model has been shown to exhibit
many properties of human walking, and therefore has been the starting point for studies on
robust, energy-efficient walking for robots. We address the problem of online gait variation on
the SLIP model by control of the leg stiffness and adjustment of the angle-of-attack in order to
switch between gaits and thus regulate walking speeds. We show that it is possible to uniquely
describe SLIP limit cycle gaits in fully normalised form. Using that description, we propose
both an instantaneous switching method and an interpolation method with an optimisation step
to switch between limit cycle SLIP gaits. Using simulations, we show that it is then possible to
transition between them online, after which the system converges back to zero-input limit cycle
walking.
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Variable Bipedal Walking Gait with Variable Leg Stiffness

W. Roozing, L.C. Visser, and R. Carloni

Abstract— The Spring-Loaded Inverted Pendulum (SLIP)
model has been shown to exhibit many properties of human
walking, and therefore has been the starting point for studies
on robust, energy-efficient walking for robots. We address the
problem of online gait variation on the SLIP model by control
of the leg stiffness and adjustment of the angle-of-attack in
order to switch between gaits and thus regulate walking speeds.
We show that it is possible to uniquely describe SLIP limit
cycle gaits in fully normalised form. Using that description,
we propose both an instantaneous switching method and an
interpolation method with an optimisation step to switch
between limit cycle SLIP gaits. Using simulations, we show that
it is then possible to transition between them online, after which
the system converges back to zero-input limit cycle walking.

I. INTRODUCTION

This work is inspired by the high performance of human
walking, which combines high robustness with high energy
efficiency. In contrast, most existing legged robotic systems
show either high robustness or energy efficiency.

Passive dynamic walking can be realised by designing
mechanics such that it has a walking gait as dynamic mode
[1]. However, while designs based on the principle of passive
dynamic walking show high energy efficiency, they are
not very robust against external disturbances. Other, highly
controlled systems show high robustness at the exchange
of energy efficiency [2]. Combining these two aspects has
proven difficult. Furthermore, these robots rely on compass
gaits, using either stiff legs or locking the knee during
walking, which does not resemble human legs.

It has been shown that human walking on flat terrain can
be accurately modeled by an inverted passive mass-spring
system. The Spring-Loaded Inverted Pendulum (SLIP) model
shows walking dynamics strongly comparable to human
walking in terms of hip trajectory, single- and double-support
phases and ground contact forces [3]. It exhibits self-stable
walking and running gait for a relatively large range of
system parameters. It can demonstrate walking with different
forward velocities as well as running [3], [4]. Although the
SLIP model exhibits self-stable walking gait for large ranges
of parameters on its own, it has been shown that the basin
of attraction can be enlarged by control of a variable leg
stiffness [5]. The Variable SLIP (V-SLIP) model significantly
increases robustness against external disturbances and, after
a disturbance, is able to restabilise the system into its original
gait by injecting or removing energy appropriately.

It is very desirable to be able to change the forward
velocity of legged robots, for example slowing down to save

W. Roozing and R. Carloni are with the Robotics And Mechatronics
group, MIRA Institute, University of Twente, The Netherlands. E-mail:
w.roozing@student.utwente.nl, r.carloni@utwente.nl

energy, or speeding up to travel large distances quickly. In
[6], it was shown that it is possible to change gait on the
SLIP model by controlling the angle-of-attack. However,
the method relies on imposing constant system energy, thus
significantly reducing achievable velocities by injecting or
removing energy in the system. In [7], the authors propose
velocity control of a four-link walking model with stiff
legs by changing step length and the frequency of the hip
actuation. By placing their robot on a slope, they negate the
loss of energy due to foot impacts and propose a velocity
control strategy by controlling the slope. The work done in
[8] shows in simulation and experiment that it is possible to
change velocity by changing step length and joint stiffnesses.
They use variable stiffness actuators in each joint, but lock
the stance leg knee to support the robot. A stiff-legged walker
is also used in [9], but the authors vary the pitch of a torso
to induce different walking speeds. These works rely on
compass gaits, using either stiff legs or locked knees during
stance.

The problem of online gait variation is addressed in this
work by the design of a control strategy for the V-SLIP model
that allows to switch between limit cycle gaits during walking
by actively controlling the leg stiffness and angle-of-attack.
We propose an optimisation criterion that aligns the two
gaits and then switches between them by changing control
references and system parameters appropriately, after which
the system converges back to zero-input limit cycle walking.
Energy is injected or removed from the system appropriately
to accommodate the new gait.

The remainder of this paper is outlined as follows. Section
II describes the SLIP model. Also, a normalised notation of
SLIP limit cycle gaits is introduced. Section III outlines the
control strategy to control the V-SLIP system and switch
between limit cycle gaits. Section V contains simulation
results of the proposed method. Lastly, Section VI concludes
on the work and proposes directions for future efforts.

II. THE SPRING-LOADED INVERTED PENDULUM
(SLIP) MODEL

A. SLIP Dynamics

The bipedal Spring-Loaded Inverted Pendulum (SLIP)
model is shown in Fig. 1. It consists of a hip point mass m,
which connects two massless telescopic legs. The legs consist
of springs with rest length L0 and stiffnesses k1 = k2 = k0.
Given properly chosen initial conditions, the SLIP model
shows stable passive walking gaits [3], [4].

1) Configuration Manifold & State Transitions: The con-
figuration of the system is given by the position of the hip
mass as (x, y) =: q ∈ Q, and its velocity by q̇ ∈ TqQ,
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Fig. 1. The SLIP model consists of a hip point mass m, with two massless
telescopic springs with stiffnesses k1 = k2 = k0 as legs. The model is
shown during double-support phase, with both legs touching the ground at
contact points c1 and c2.

the tangent space to Q at q. The system state is then given
as x := (q,p), with the momentum p := (px, py) = M q̇
and the mass matrix M = diag(m,m). A single step is
defined as a trajectory q(t) ∈ Q that starts with the system
in Vertical Leg Orientation (VLO), where the hip mass is
exactly above the supporting leg. The step ends when the
system again reaches VLO (Fig. 2), and the role of the legs
is then exchanged. We define the gait length Lg := x(T ),
i.e. the distance travelled after one step, where T is the gait
time period.

During a single step, two phases must be distinguished –
single-support (SS) and double-support (DS), during which
one and two legs are in touch with the ground respectively.
The transition from single- to double-support occurs when
the mass reaches the touch-down height ytd associated with
the angle-of-attack α0 and the swing leg touches the ground
(Fig. 2):

y = ytd := L0 sin(α0) (1)

The location of the leading contact point c2 is then calculated
as (Fig. 1):

c2 = x+ L0 cos(α0) (2)

Similarly, the transition from double- to single-support oc-
curs when either leg reaches its rest length:

√
(x− ci)2 + y2 = L0 , i ∈ {1, 2} (3)

At transition to single-support, the swing leg disappears and
reappears at the subsequent instance of touch-down, which
is possible because the leg is massless. In the nominal case,
only the trailing leg reaches its rest length and contact c2
is relabeled as c1 to correspond to the notation used during
single-support phase. We can now define two subsets of Q
which correspond to the single- and double-support phases
respectively:

QSS = {q ∈ Q | y > ytd , y < L0}
QDS = {q ∈ Q | y < ytd , y > 0} (4)

where y < L0 and y > 0 are included to avoid the remaining
cases, i.e. lift-off and fall respectively. Note that for a walking

ytd

Lg

VLOVLO

α0

DSSS SS

Fig. 2. A single step of the SLIP model, shown at the moment of
touchdown. The step starts and ends at VLO and has length Lg . Note that
at touchdown, the swing leg is at exactly α0 with the ground and has length
L0. At touchdown, the SLIP model goes into double-support (DS) phase,
shown by the touch-down height ytd, and returns into single-support (SS)
phase when the hip again crosses ytd and the trailing leg reaches length
L0.

gait q ∈ QSS ∪QDS . 1

2) System Dynamics: To derive the dynamic equations for
the system, we use the Hamiltonian approach. The kinetic
energy function is defined as K = 1

2p
TM−1p and the

potential energy function as

V = mgy +
1

2
k0 (L0 − L1)

2
+

1

2
k0 (L0 − L2)

2

where Li =

√
(x− ci)2 + y2 and g is the gravitational

acceleration. During single-support phase, we set L2 ≡ L0,
i.e. the swing leg is uncompressed and it exerts no force.
The dynamic equations are then defined by the Hamiltonian
energy function H = K + V as

d

dt

[
q
p

]
=

[
0 I
−I 0

][ δH
δq
δH
δp

]
(5)

Note that a solution q(t) of (5) is of class C2, due to the non-
differentiability of the leg forces at the moment of transition
between the single- and double-support phases.

B. Limit Cycle Gaits for the SLIP Model

It was shown [4] that, given the proper system param-
eters and initial conditions, the dynamics described by (5)
exhibit autonomous stable walking gait. A limit cycle gait
is a periodic walking gait which returns to the same state
periodically. From this point on, we refer to limit cycle gaits
of the SLIP model as natural gaits.

In our description of natural gaits we use the state at VLO
as initial conditions, i.e. x0 = (q,p)0 = (x, y, px, py)0, and,
during walking in natural gait, the system returns to this state
at every VLO. Since we can take at VLO x ≡ 0, a natural
gait can then be fully described as

Σ = (α0, k0, L0,m, y0, px,0, py,0) (6)

1Lift-off is also possible while q ∈ QSS ∪QDS . We take care of this in
simulation by checking L1 ≤ L0 ∨ L2 ≤ L0, i.e. there is always at least
one leg in contact with the ground.



Note that it is not possible to use the total system energy H
to uniquely describe a natural gait, because energy can be
stored in either potential or kinetic energy.

C. A Normalised Notation of SLIP Limit Cycle Gaits

k0 and H can be normalised, such that SLIP models with
different parameters can be compared easily:

k̃ = k0
L0

mg
H̃ =

H

L0mg
(7)

If we normalise x as x̃ := (q̃, p̃) = (x̃, ỹ, p̃x, p̃y) with

x̃ =
x

L0
ỹ =

y

L0
p̃x =

px
m
√
L0g

p̃y =
py

m
√
L0g

(8)

and use (7), we obtain a fully normalised unique description
Σ̃ of a natural gait:

Σ̃ =
(
α0, k̃, ỹ0, p̃x,0, p̃y,0

)
(9)

The gait trajectory can then be found by solving (5) for Σ̃.
Using this description, equal gaits on different SLIP systems
now result in the same normalised state trajectory x̃(t) =
(q̃(t), p̃(t)). Similarly to p̃x, p̃y , the velocities are normalised
as

˙̃x =
ẋ√
L0g

˙̃y =
ẏ√
L0g

(10)

Note that the normalisation ˙̃x is the Froude number Fr [8],
[9], used to compare the relative walking speeds of systems
with different leg lengths.

III. CONTROL DESIGN

By actively controlling the leg stiffness of the SLIP
model, the robustness of the system to external disturbances
can be significantly increased and, after a disturbance, the
system can be stabilised into its original gait by injecting
or removing energy appropriately [5]. The extended model,
called Variable-SLIP (V-SLIP), replaces the constant stiffness
legs by variable stiffness legs.

We use the ability to change the leg stiffness to transition
between gaits. The rationale is as follows. By considering a
gait switch as a disturbance to the system which has to be
rejected, the system can be controlled into any gait which
is within the basin of attraction of the closed loop system.
Furthermore, because there are large continuous regions of
self-stable natural gaits with different forward velocities [4],
the system can change into nearly any gait by using an
appropriate transition strategy. In this section, we discuss the
leg stiffness control that stabilises the system into a natural
gait. The next section will discuss the gait transition strategy.

The variable stiffness legs of the V-SLIP model have
stiffness ki = k0 + ui, with control inputs ui restricted
to subsets Ui = {ui ∈ R | 0 < k0 + ui < ∞}, such
that the result is physically meaningful. Given a natural
SLIP gait Σ̃ and corresponding state trajectory x̃(t), which
is a solution of (5), we intend to control the system such
that it converges to its natural gait, i.e. a reference x̃◦(t)
such that ui → 0 and ki → k0, i ∈ {1, 2}. However, as
the system is underactuated during the single-support phase,

these references cannot be tracked exactly, and as the system
lags behind the reference this may lead to instability. Because
x̃ was identified as a periodic variable, and required to be
monotonically increasing in time, the references may be
reparametrised in x̃. Due to the parametrisation in x̃, the
gait references are sufficiently described as

ỹ∗(x̃) = ỹo(x̃) ˙̃x∗(x̃) = ˙̃xo(x̃) (11)

However, as a general analytic expression for the spring-
loaded pendulum does not exist [10], a Fourier series expan-
sion approximation of the numerical solution is used.

To formulate the control strategy, we rewrite Eq. (5) in
standard form as

ẋ = f(x) +
∑

i

gi(x)ui (12)

and then define error functions h1 and h2 as

h1 = y − y∗
h2 = ẋ− ẋ∗ (13)

The control solution is then given as follows.
• For q ∈ QSS :

u1 =
1

Lg1Lfh1

(
−L2

fh1 − κdLfh1 − κph1
)

u2 ≡ 0

(14)

• For q ∈ QDS :
[
u1
u2

]
= A−1

[−L2
fh1 − κdLfh1 − κph1
−Lfh2 − κvh2

]
(15)

with

A =

[
Lg1Lfh1 Lg2Lfh1
Lg1Lfh2 Lg2Lfh2

]
(16)

where L2
fhi, Lfhi and LgiLfhi denote the (repeated) Lie-

derivatives of hi along the vector fields defined in (12) and
κd, κp, κv are tunable control parameters. The control inputs
(14), (15) ensure that the error h1 converges asymptotically
to zero and that the error h2 is at least bounded [5].

Remark: Due to the structure of the problem, the system
is not fully controllable during the single-support phase.
Because the error in y influences touch-down and lift-off
events, it is deemed more important. Thus, by design, only
h1 is controlled during the single-support phase (Eq. (14)).

Remark: During either single- or double-support, the con-
trol inputs u1 and u2 are continuous. However, their conti-
nuity is not guaranteed at the moment of phase transition.

IV. GAIT TRANSITION

A. Search of Stable Gaits

Suppose the system described by the SLIP model is in
some natural gait and it is commanded to change the velocity.
As natural gaits exist for large ranges of parameters, there
often exists a range of natural gaits that achieve that velocity.
This is shown in Fig. 3. Natural gaits exist for many values
of (α0, k̃), and a single set (α0, k̃) can in general achieve a
range of average forward velocities (vertical bar in Fig. 3).



α0

k
~

~xavg Natural gaits
for fixed (α0, k)

~

~
Values of (α0, k) for
which natural gaits exist

Fig. 3. Average forward velocities ˙̃xavg of natural gaits for different
values of (α0, k̃). Note that for given (α0, k̃), the average forward velocity
is proportional to the system energy H̃ .

In choosing (α0, k̃), there may be practical design con-
siderations. The range of stiffnesses obtainable in practice
is limited, and the range of acceptable angles of attack
is limited due to foot slip and energy loss due to high
ground impact forces and so forth. Exactly which values
of (α0, k̃) are chosen is arbitrary within the ranges of
natural gaits. The next sections describe a general method
for switching from some given gait Σ̃i to some other given
gait Σ̃j , independently of Σ̃i and Σ̃j . We do, however, make
a distinction between switching between gaits with equal
values of (α0, k̃) (Section IV-C.1) and gaits with different
(α0, k̃) (Section IV-C.2).

B. Optimisation Criterion for Gait Switching

1) Finding Optimal Points: Suppose that two natural gaits
Σ̃i and Σ̃j have been chosen and that we want the system
to switch from Σ̃i to Σ̃j . The parametrisation in x̃ of both
can be used to determine exactly how to transition from one
gait to the other. In each gait one point should be considered:
The point in Σ̃i at which the switch is executed and the point
in Σ̃j to switch into. Figure 4 shows example trajectories of
Σ̃i and Σ̃j . Any point x̃i ∈

[
0, L̃g,i

]
on one step of Σ̃i can

be associated with any point x̃j ∈
[
0, L̃g,j

]
on one step of

Σ̃j . A combination of two values (x̃i,opt, x̃j,opt) should exist
that minimises some criterion J . Intuitively, to minimise the
required control input for transition, we propose to transition
at a point at which both gaits have approximately equal
momentum of the hip mass, that is, pi(xi) ≈ pj(xj) (Figure
4). However, as m is constant, the velocities

(
˙̃x, ˙̃y
)

are used.
As the forward velocity is only controlled during double-
support phase, whereas the vertical position is controlled
during both single- and double-support, differences in ˙̃x are
penalised differently than in ˙̃y. Thus, both terms are included
separately. Additionally, we include the hip height ỹ, as
it would be beneficial to switch at a point at which the
trajectories are close together, such that the resulting error
h1 is smaller. We then define J(x̃i, x̃j) as follows:

J(x̃i, x̃j) = µ1 ‖ỹj(x̃j)− ỹi(x̃i)‖+

µ2

∥∥ ˙̃xj(x̃j)− ˙̃xi(x̃i)
∥∥+

µ3

∥∥ ˙̃yj(x̃j)− ˙̃yi(x̃i)
∥∥

(17)

By choosing the weights µ1,2,3, the different aspects of the
gait can be emphasised as to achieve a smooth response. The

0

0

y~ J(xi, xj)
~ ~

xi
~ xi,opt

~

J(xi,opt, xj,opt)
~ ~

Gait Σi
~

Lg,i
~

pj(xj)
~ ~

pi(xi)
~ ~

xj
~ xj,opt

~
Lg,j
~

Gait Σj
~

Fig. 4. Optimisation of the switching point from Σ̃i to Σ̃j . The point
x̃i is moved along one step of Σ̃i, and J(x̃i, x̃j) is then calculated for all
values of x̃j in one step of Σ̃j . Minimisation of J for both these parameters
then results in the optimal switching points (x̃i,opt, x̃j,opt). Note that the
gaits shown here are spatially separated, while in practice many gaits will
overlap, especially those with equal values of α0.

System

Aligned

xδ,j
~

xj,opt
~

xi,opt
~

Lg,i
~

Sopt
i,j~

Lg,j
~

Reference
Gait Σj

~

Reference
Gait Σi

~

Fig. 5. Aligning optimal points of Σ̃i and Σ̃j , with step lengths L̃g,i and
L̃g,j respectively. The trajectory of Σ̃j is shifted by x̃δ,j , such that x̃j,opt
aligns with x̃i,opt at the optimal switching distance S̃i,jopt. The dashed blue
lines indicate the natural gait references, the red line indicates an example
system response.

criterion J is then minimised numerically with respect to x̃i
and x̃j to obtain the optimal switching points:

min
x̃i,x̃j

J(x̃i, x̃j)→ (x̃i,opt, x̃j,opt) (18)

Note that multiple minima may exist, so we search for the
global minimum. Due to the use of normalised variables
the results are again identical for the same natural gaits on
different SLIP systems, and due to symmetry results obtained
for Σ̃i → Σ̃j are also valid for Σ̃j → Σ̃i.

2) Aligning optimal points: As gaits are parametrised as a
function of forward distance x̃, we define the gait transitions
in terms of forward distance as well. The switching strategy
for a single transition is then summarized as follows. Suppose
the system is commanded to switch into gait Σ̃j at a
distance Si,jcom [m], normalised as S̃i,jcom = Si,jcom/L0. We
then calculate the optimal switching distance S̃i,jopt, which is
the first occurrence of the point x̃i,opt after this commanded
distance (Fig. 5):

S̃i,jopt = S̃i,jcom − S̃i,jcom(modL̃g,i) + x̃i,opt (19)

If S̃i,jopt < S̃i,jcom, we make sure the switching distance is after
the commanded distance by calculating S̃i,jopt = S̃i,jopt + L̃g,i,
that is, delaying the switch by exactly one step. Once the
optimal point in the current gait has been reached, the system
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Fig. 6. State transitions during limit cycle walking and gait transition.
For a single gait, a transition from single-support to double-support and
back occurs every step. When switching gaits in single-support, the system
transitions to single-support of the new gait, and vice versa. A transition
from double-support of gait Σ̃i to single-support of gait Σ̃j (or vice versa)
is invalid, as that would require foot lift-off at the moment the controller
decides to switch gaits, which is infeasible.

can switch into the new gait by changing α0, k̃ and the
controller references appropriately.

To ensure the system switches from the optimal point in
the step of Σ̃i into the optimal point in the step of Σ̃j , the
trajectory of Σ̃j is shifted in such a way that the point x̃j,opt
aligns with S̃i,jopt in x̃. The shift x̃δ,j of Σ̃j is calculated as

x̃δ,j = S̃i,jopt − x̃j,opt (20)

By shifting the reference of Σ̃j by x̃δ,j , the optimal points
(x̃i,opt, x̃j,opt) are aligned in x̃ (Fig. 5).

C. Switching Strategy

At this point we outline the switching strategy. Although
the method is general, we make a distinction between switch-
ing between gaits with equal values of (α0, k̃) and gaits with
different (α0, k̃). The first case will be shown to be a special
case of the second.

Fig. 6 shows the possible states and transitions for some
gaits Σ̃i and Σ̃j . For a single gait, a transition from single-
support to double-support and back occurs every step, at
touch-down and lift-off respectively (i.e. when ỹ crosses
ỹtd). However, if the two gaits have different values of α0,
the current hip height may be defined as double-support in
Σ̃i, but as single-support in Σ̃j , i.e. ỹtd,i > ỹ > ỹtd,j .
This results in an invalid situation if the gait switching is
performed instantaneous at that point, as that would require
instantaneous foot lift-off at the instant of switching.

However, we do not want to rule out such points entirely
by modification of (17). Firstly, because at such points the
gait trajectories may be close together in terms of hip height
ỹ resulting in smaller error h1. Secondly, large variations in
α0 may cause gaits to be entirely separated in ỹ, such as in
Fig. 4, where the entire gait Σ̃j lies under the touch-down
height of Σ̃i. Therefore, for gaits with equal values of (α0, k̃)
instantaneous switching is used, and for gaits with different
(α0, k̃) gait interpolation is used, as outlined below.

1) Instantaneous Switching: As the values of (α0, k̃)
remain constant, we need only to define the controller

references
(
ỹ∗(x̃), ˙̃x∗(x̃)

)
as:

ỹ∗(x̃) =

{
ỹi(x̃) x̃ < S̃i,jopt
ỹj(x̃− x̃δ,j) x̃ ≥ S̃i,jopt

˙̃x∗(x̃) =

{
˙̃xi(x̃) x̃ < S̃i,jopt
˙̃xj(x̃− x̃δ,j) x̃ ≥ S̃i,jopt

(21)

2) Gait Interpolation: To avoid invalid gait transitions
(Fig. 6) caused by instantaneously changing the value of
α0, we need to ensure the value of α0 is continuous in
x̃. This way we avoid the invalid state transitions in Fig.
6. We extend (21) with a transition period, during which
the two gait references are interpolated, together with the
corresponding values of α0 and k̃:

ỹ∗(x̃) =





ỹi(x̃) β ≤ 0
(1− β)ỹi(x̃) + βỹj(x̃− x̃δ,j) 0 < β < 1
ỹj(x̃− x̃δ,j) β ≥ 1

˙̃x∗(x̃) =





˙̃xi(x̃) β ≤ 0

(1− β) ˙̃xi(x̃) + β ˙̃xj(x̃− x̃δ,j) 0 < β < 1
˙̃xj(x̃) β ≥ 1

α0 =





α0,i β ≤ 0
(1− β)α0,i + βα0,j 0 < β < 1
α0,j β ≥ 1

k̃ =





k̃i β ≤ 0

(1− β)k̃i + βk̃j 0 < β < 1

k̃j β ≥ 1
(22)

where the interpolation factor β is defined as β = (x̃ −
S̃i,jopt)/γ. The parameter γ ≥ 0 is the transition length. By
the definition of the normalised variables, γ effectively is
the number of leg lengths in x to interpolate for. Of course,(
ỹ∗, ˙̃x∗

)
in (22) converge to (21) as γ → 0. The reason we

use (21) for constant (α0, k̃) is that then we let the controller
handle the transition as quickly as it can, instead of forcing
a transition period of fixed length.

V. RESULTS

To demonstrate the effectiveness of the method for large
forward velocity differences, first achievable velocity ranges
for selected values of (α0, k̃) that result in symmetric natural
gaits is analysed. Simulations were performed in Mathworks
MATLAB R2012b, using the ode45 solver with absolute and
relative tolerances of 1e-10. The velocity ranges were found
by fixing the vertical velocity at VLO to zero, thus enforcing
symmetrical gaits [4], and incrementing the forward velocity
at VLO in small steps. The resulting velocity ranges are
shown in Table I, where ˙̃xavg denotes the normalised average
forward velocity and ẋavg denotes the average forward
velocity in [m s-1].

Two simulations are performed. In both cases, m = 80 kg
and L0 = 1 m. Furthermore, {µ1, µ2, µ3} = {15, 2, 5}. In
the first simulation (Section V-A), a constant value (α0, k̃) =
(70, 20) is chosen, and two gaits are selected: a slow gait with
average velocity of 0.238 (0.745 m s-1, using (8)) and a fast
gait with average velocity 0.372 (1.164 m s-1), an increase of
about 56%. Switching between these two gaits corresponds



(α0, k̃) ˙̃xavg [] ẋavg [m s-1]
(60, 8) 0.239–0.344 0.750–1.079
(62, 10) 0.236–0.364 0.739–1.140
(64, 11) 0.229–0.361 0.719–1.132
(66, 14) 0.233–0.379 0.730–1.187
(68, 16) 0.229–0.378 0.718–1.183
(70, 20) 0.219–0.387 0.687–1.211
(72, 23) 0.226–0.380 0.706–1.189

TABLE I
STABLE FORWARD VELOCITY RANGES FOR SYMMETRICAL GAITS WITH

SELECTED VALUES OF (α0, k̃).
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ỹ

Normalised trajectories + touch−down heights

 

 

Gait 1
Gait 2
ytd

Fig. 7. Hip trajectories for a single step of two gaits with (α0, k̃) =
(70, 20). The slow gait (1) is double-humped, whereas the faster gait (2) is
single-humped. The dotted line y td denotes the touch-down height, and
the solid dots denote the optimal points (x̃1,opt, x̃2,opt).

to moving up and down on one of the vertical bars in Fig.
3, and we use the instantaneous switching method (Section
IV-C.1).

In the second (Section V-B), a slow gait with an average
velocity of 0.232 (0.725 m s-1) and (α0, k̃) = (64, 11) and a
fast gait with an average velocity of 0.372 (1.164 m s-1) and
(α0, k̃) = (70, 20) are chosen, to demonstrate robustness
against changing the angle of attack. This corresponds to
switching from one point on a vertical bar to another point
on another bar in Fig. 3. Here we use the gait interpolation
with γ = 1.0 (Section IV-C.2).

In both cases, the system starts in the slow gait (gait 1),
commanded to change to fast gait (gait 2) at 1.0 m, and then
switch back to the slow gait (gait 3 = gait 1) at 5.5 m.

A. Constant (α0, k̃)

Fig. 7 shows the hip trajectory for a single step of both
gaits. The first, i.e. slow gait, is double-humped, whereas
the faster gait is single-humped. This likely results from
the fact that the natural frequency of the hip mass and
leg springs remains approximately constant, while the gait
period changes. Calculating J for these two gaits results in
(x̃1,opt, x̃2,opt) = (0.259, 0.244), which corresponds approx-
imately to the lowest point in both gaits. Of course, for the
switch back to the first gait we can use the same values but
interchanged. The found values result in optimal switching
distances S̃1,2

opt = 1.306 and S̃2,3
opt = 5.762 respectively (Eq.

(19)).
Fig. 8 shows the resulting hip trajectory with the desired

and optimal switching points indicated. The hip returns to a
periodic trajectory very quickly. Fig. 9 shows the resulting
hip height and forward velocity in time, as well as the
natural gait references. It can be seen that because the hip
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Fig. 8. Hip trajectory for the transition from slow to fast gait and back for
two gaits with constant (α0, k̃). For each pair of vertical dashed lines, the
first indicates the commanded switching distance, and the second indicates
the resulting optimal switching distance.
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Fig. 9. Hip height and forward velocity over time. The vertical hip
motion converges to the new reference within one step. The forward velocity
converges in approximately 5 steps.
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Fig. 10. Control input and error functions. The disturbances that arise from
the new references are rejected, after which the leg stiffnesses converge back
to their nominal values.
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Fig. 11. Energy balance. Most of the increase in total energy is used
in the kinetic energy of the system. Some of the additional energy results
increased vertical motion of the hip.
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Fig. 12. Hip trajectories for a single step of two gaits with (α0, k̃) =
(64, 11) and (70, 20) respectively. In contrast with Fig. 7, the gaits are
completely separated in ỹ and have different touch-down heights ytd,i. The
solid dots denote the optimal points (x̃1,opt, x̃2,opt).

height is controlled during both single- and double-support,
ỹ converges to the new reference within a single step. The
forward velocity ˙̃x converges to the new reference within
approximately 5 steps in both transitions. Fig. 10 shows
the control inputs and position and velocity errors. The
disturbance that arises from the new references is rejected
in approximately one second for the hip height and four
seconds for the forward velocity respectively, after which
the leg stiffnesses converge back to the nominal value. Fig.
11 shows the energy balance. The energy increases from
H̃1 = 0.993 to H̃2 = 1.041 after the first switch, which if all
converted to forward kinetic energy would result in a forward
velocity of ˙̃xavg = 0.388 (1.216 m s-1). This shows that not
all added energy is converted into forward momentum but
instead into a vertical motion (Fig. 7) and a minor increase
in average hip height.

Remark: The small periodic deviations in the inputs (Fig.
10) after convergence arise due to difference between the
approximated gait references using Fourier series and the
SLIP model dynamics.

B. Gaits with different (α0, k̃)

Fig. 12 shows the hip trajectory for a single step of both
gaits. It can be seen that due to the different values of α0 the
gaits are completely separated in hip height during the entire
step; this also results in a significantly smaller step length
for the higher gait. Again calculating J for these two gaits,
we find (x̃1,opt, x̃2,opt) = (0.509, 0.259). This corresponds
to approximately the highest point in the first gait and the
lowest point in the second gait, arising from the separation of
both gaits in terms of hip height. The found values result in
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Fig. 13. Hip trajectory for the transition from slow to fast gait and back for
two gaits with different (α0, k̃). For each pair of vertical dashed lines, the
first indicates the commanded switching distance, and the second indicates
the resulting optimal switching distance.

optimal switching distances S̃1,2
opt = 1.090 and S̃2,3

opt = 6.041
respectively.

Fig. 13 shows the resulting hip trajectory with the de-
sired and optimal switching points indicated. The trajectory
smoothly rises to the new hip height as its shape transforms
into that of the second gait. Inspecting the hip height and
forward velocity over time (Fig. 14), we see a similar image.
The hip oscillation frequency increases as α0 and forward
velocity increase. Note how the forward velocity suddenly
increases as the system transitions back to the first gait. This
is due to α0 decreasing, thus lowering touch-down height,
leaving more time for the hip mass to accelerate before
touch-down. Fig. 15 shows the corresponding control input
and error functions. On a few occasions, the leg stiffness
reaches the lower limit. After transition, the leg stiffnesses
converge to the new gait’s nominal k̃ value. Note that during
single-support, the stiffness of the swing leg is always equal
to k̃ (Eq. (22)), as ũ2 ≡ 0 in that case (Eq. (14)). The total
energy again increases to accommodate the faster gait. The
increase is converted in both kinetic and potential energy,
while the average elastic energy decreases. The latter can be
attributed to the higher, more stiff-legged walk of the second
gait.

VI. CONCLUSIONS & FUTURE WORK

A method was presented that allows to switch between
natural gaits by actively controlling the leg stiffness. Using
this method it is possible to vary the forward velocity during
walking by choosing appropriate natural gaits.

First, a normalised notation of natural gaits was intro-
duced. Next a control strategy was proposed that aligns two
chosen gaits by minimisation of a criterion, designed such
that the transition between the two results in minimal control
input. The switch was performed in one of two possible
ways; Instantaneous switching for gaits with equal values of
the angle of attack and leg stiffness, and gait interpolation
with gaits with different values.

It was shown that in both cases the system can be
controlled from gait to gait within approximately 5 steps.
In both cases, the hip trajectory converges within two steps,
but the forward velocity takes longer to converge. After the
transition, control action converges to zero as the system
converges into limit cycle walking.
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Fig. 14. Hip height and forward velocity over time. The vertical hip motion
and forward velocity converge to the new gait in approximately 3 steps.
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Fig. 15. Control input and error functions. The disturbances that arise from
the new references are rejected, after which the leg stiffness converges to a
constant value. Note that during single-support, the stiffness of the swing
leg is always equal to k̃, as ũ2 ≡ 0 in that case (Eq. (14)).
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Fig. 16. Energy balance. In the first gait, there is relatively much energy
stored as elastic energy, due to the lower leg stiffness. Compared to Fig.
11, there is a significant rise in the potential energy due to the increased
hip height of the second gait.

Future work should focus on analysing the robustness
of the system during gait transition. Furthermore, it could
include a study on more realistic models, such as those
including knees and feet, or non-zero leg mass.
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Abstract – This work investigates the control of bipedal walking robots based on the principle
of passive dynamic walking. We propose the Segmented Spring-Loaded Inverted Pendulum (S-
SLIP) model, and show that it exhibits walking gait and can be controlled from one limit
cycle walking gait to another using control of the knee stiffness. Furthermore, based on the
S-SLIP model, a realistic bipedal robot model is designed that uses Variable Stiffness Actuators
(VSAs) to control the knees and thus leg stiffness. The variable leg stiffness is then to stabilise
the system into a walking gait and to inject energy losses generated by friction and foot impacts.
It is shown that this results in a stable limit cycle walking gait.
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Bipedal Walking Gait with Segmented Legs and Variable Stiffness
Knees

W. Roozing and R. Carloni

Abstract— We use the Segmented Spring-Loaded Inverted
Pendulum (S-SLIP) model, and show that it exhibits walking
gait. We propose a control architecture that can control the
system from one limit cycle walking gait to another using
control of the knee stiffness. Furthermore, based on the S-SLIP
model, a realistic bipedal robot model is designed that uses
Variable Stiffness Actuators (VSAs) to control the knees and
thus leg stiffness. The variable leg stiffness is then to stabilise the
system into a walking gait and to inject energy losses generated
by friction and foot impacts. It is shown that this results in a
stable limit cycle walking gait.

I. INTRODUCTION

The high performance of human walking, which combines
high robustness with high energy efficiency, has long been
the inspiration of efforts to design robots based on the
principle of passive dynamic walking. In contrast, most
existing systems are either energy efficient or robust. Robots
based on the principle of passive dynamic walking show
high energy efficiency, but are not robust against external
disturbances [1]. Highly controlled systems – often based on
the concept of Zero Moment Point (ZMP) – are robust at the
exchange of energy efficiency [2].

It has been shown that humans walking on flat terrain can
be accurately modeled using inverted spring-mass systems.
The Spring-Loaded Inverted Pendulum (SLIP) has been
shown to exhibit autonomous stable limit cycle walking gait
[4] strongly comparable to human walking in terms of hip
trajectory, single- and double-support phases and ground
contact forces [3].

In this work we propose a control strategy for the Seg-
mented Spring-Loaded Inverted Pendulum (S-SLIP) model,
which is different from the SLIP model in that it has
segmented legs with torsional stiffness knees, which is more
realistic when compared with existing robot designs, which
use knees and leg retraction to avoid food scuffing. For the S-
SLIP model, the foot-hip stiffness is nonlinear, arising from
the two-link leg geometry. It has been shown that given
proper initial conditions, the uncontrolled S-SLIP model
exhibits autonomous stable limit cycle running gait [5].
However, the model also shows passive limit cycle walking
gait similar to the SLIP model. Fig. 1 shows an S-SLIP
walking gait, compared to a SLIP walking gait at an average
forward velocity of 1.00 m s-1. Both systems have equal mass
and leg lengths of ≈ 1.0 m. While the hip trajectories are
similar, there is a clear difference in forward velocity profiles.

W. Roozing and R. Carloni are with the Robotics And Mechatronics
group, MIRA Institute, University of Twente, The Netherlands. E-mail:
w.roozing@student.utwente.nl, r.carloni@utwente.nl
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Fig. 1. SLIP vs S-SLIP walking gaits at average velocities of 1.00 m
s-1. Both systems have equal mass and leg lengths of ≈ 1.0 m. While the
trajectories are comparable, there is a difference in forward velocity profile
due to high stiffness of the segmented leg just after impact.

The segmented leg has high stiffness just after impact due
to its configuration, which quickly decreases as the leg is
compressed. The result is that the forward velocity is reduced
during double support when compared to the linear leg of
the SLIP model.

The control strategy developed in this work uses variable
leg stiffness to stabilise the system after a disturbance and
from one limit cycle walking gait to another. The perfor-
mance of this strategy is shown by a simulated controlled
S-SLIP system that switches between two gaits with a large
forward velocity difference.

Furthermore, a realistic bipedal robot model is designed
that uses Variable Stiffness Actuators (VSAs) to control the
knees and thus leg stiffness. The control is based on the
developed strategy for the S-SLIP model, and is extended
with additional components to facilitate leg swing and leg
retraction, which arise due to the additional dynamics of this
model. A reference gait is obtained by using this model with
constant leg stiffness. The variable leg stiffness is then used
to stabilise the system into this gait and to inject energy
losses generated by foot impacts. It is shown that this results
in a stable limit cycle walking gait.

The remainder of this paper is outlined as follows. Section
II describes the S-SLIP model and its dynamics. The pro-
posed control design for the S-SLIP model is described in
Section III, followed by simulation results in Section IV. The
bipedal robot model is presented in Section V, its control in
Section VI, followed by simulation results in Section VII.
The paper concludes with conclusions and recommendations
for future work in Section VIII.
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Fig. 2. The S-SLIP model consists of a hip point mass, with two massless
segmented legs with links of length λ1 and λ2. In the knees with angles
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Fig. 3. A single step of the S-SLIP model, shown at touch-down. The
leg that has just touched down is at its rest length L0 and rest knee angle
β0, and the virtual leg from hip mass to foot contact (dashed line) is at an
angle α0 with the ground. The step starts and ends at VLO and has length
Lg . The virtual leg lengths are defined as L1 and L2. At touch-down, the
system transitions to double-support (DS) phase, during which both legs
are in contact with the ground. The transition back to single-support (SS)
occurs when the trailing virtual leg L1 reaches its rest length. Touch-down
and lift-off occur when the hip mass crosses the touch-down height ytd.

II. SEGMENTED SPRING-LOADED INVERTED PENDULUM
(S-SLIP)

In this Section the S-SLIP model is described. We describe
the configuration manifold and conditions for state transition.
Next the system dynamics are derived and we conclude with
a S-SLIP limit cycle gaits and a normalised description.

A. Configuration Manifold & State Transitions

The Segmented Spring-Loaded Inverted Pendulum (S-
SLIP) model is shown in Fig. 2. It consists of a hip point
mass m, connected to two massless segmented legs, each
composed of two links with upper leg length λ1 and lower
leg length λ2. Between the links there are torsional springs
with stiffnesses ζ1 and ζ2, and the knee angles are defined
as β1 and β2. The foot contact points are denoted by c1 and
c2.

The configuration of the system is given by the position
of the hip mass as (x, y) =: q ∈ Q, and its velocity by
q̇ ∈ TqQ, the tangent space to Q at q. The system state
is then given as x := (q,p), with the momentum p :=
(px, py) = M q̇ and the mass matrix M = diag(m,m).

As in [4] and [6], a single step is defined as a trajectory
q(t) ∈ Q that starts with the system in Vertical Leg
Orientation (VLO), where the hip mass is exactly above the
supporting leg. The step ends when the system again reaches
VLO (Fig. 3), and the role of the legs is then exchanged. We
define the gait length Lg := x(T ), where T is the gait time
period, i.e. q(t) = q(t+ T ) after which a new step starts.

Every step consists of two distinct phases, i.e. single-
support (SS) and double-support (DS) during which either
one or two legs are in contact with the ground, respectively.
The SS→DS transition occurs when the swing leg touches
down, when the length is equal to the rest length L0, that is,
the length of the leg when the knee is at its rest angle β0:

L0 =
√
λ21 + λ22 − 2λ1λ2 cos (β0) (1)

At this moment the hip mass is at the touch-down height ytd,
corresponding to the angle-of-attack α0, i.e. at touch-down
the leading leg is at an angle α0 with the ground so that
y = ytd := L0 sin(α0). At this moment, the foot contact
point is c2 = x+ L0 cos(α0).

Conversely, the DS→SS transition occurs when the trailing
leg reaches its rest length. The swing leg disappears, and
reappears at the subsequent moment of touch-down, which
is possible because the leg is massless. In the nominal case,
only the trailing leg reaches its rest length and contact c2 is
relabeled as c1 to correspond to the notation used during SS
phase. During SS, the swing leg knee is at its rest angle, i.e.
β2 ≡ β0 and the leg exerts no force. We can now define two
subsets of Q which correspond to the single- and double-
support phases respectively:

QSS = {q ∈ Q | y > ytd , y < L0}
QDS = {q ∈ Q | y < ytd , y > 0} (2)

where the conditions y < L0 and y > 0 assure to avoid the
remaining cases, i.e. lift-off and fall respectively. Note that
for a walking gait q ∈ QSS ∪QDS .

During contact, the length Li of each leg is given by

Li =

√
(x− ci)2 + y2 , i ∈ {1, 2} (3)

with corresponding knee angle βi

βi = cos−1

(
λ21 + λ22 − L2

i

2λ1λ2

)
, i ∈ {1, 2} (4)

Remark: Lift-off is also possible while q ∈ QSS ∪QDS . We
take care of this in simulation by checking L1 ≤ L0 ∨L2 ≤
L0, i.e. at least one leg is in contact with the ground.

B. System Dynamics

To derive the dynamic equations for the system, we use the
Hamiltonian approach. The kinetic energy function is defined
as K = 1

2p
TM−1p and the potential energy function as

V = mgy +
1

2
ζ1 (β0 − β1)

2
+

1

2
ζ2 (β0 − β2)

2



α0

ζ0

xavg Natural gaits
for fixed (α0, ζ0, β0)

Values of (α0, ζ0, β0) for
which natural gaits existβ0=150°

β0=170°

β0=...

Fig. 4. Average forward velocities ẋavg of natural gaits for different
values of (α0, ζ0, β0). Note that for given (α0, ζ0, β0), the average forward
velocity is proportional to the system energy H .

where g is the gravitational acceleration. The dynamic equa-
tions are then defined by the Hamiltonian energy function
H = K + V as

d

dt

[
q
p

]
=

[
0 I
−I 0

][ δH
δq
δH
δp

]
(5)

Note that a solution q(t) of (5) is of class C2, due to the non-
differentiability of the leg forces at the moment of transition
between the single- and double-support phases.

C. S-SLIP Limit Cycle Gaits

A limit cycle gait is a periodic walking gait, which returns
to the same state periodically. From this point on, we refer
to limit cycle walking gaits of the S-SLIP model as natural
gaits.

In the description of natural gaits, we use the state at VLO
as initial conditions, i.e. x0 = (q,p)0 = (x, y, px, py)0, and,
during walking in natural gait, the system returns to this state
at every VLO. Since we can take at every VLO x ≡ 0, a
natural gait can then be fully described as

Σ = (α0, ζ0, L0,m, β0, y0, px,0, py,0) (6)

where ζ0 is the nominal knee stiffness and ζ1 = ζ2 = ζ0.
Note that it is not possible to use the total system energy H to
uniquely describe a natural gait, because energy can be stored
in either potential (leg compression, hip height) or kinetic
(hip momentum) energy. As natural gaits exist for ranges of
parameters, there often exists a range of natural gaits that
achieve a desired forward velocity (Fig. 4). Conversely, a
single set (α0, ζ0, β0) can often achieve a range of average
forward velocities (vertical bar in Fig. 4).

D. Normalised Notation of S-SLIP Limit Cycle Gaits

The torsional knee stiffness ζ0 and energy H can be
normalised in dimensionless form as

ζ̃ =
ζ0

mgL0
H̃ =

H

mgL0
(7)

If we normalise x as x̃ := (q̃, p̃) = (x̃, ỹ, p̃x, p̃y) with

x̃ =
x

L0
ỹ =

y

L0
p̃x =

px
m
√
L0g

p̃y =
py

m
√
L0g

(8)

and use (7), we obtain a fully normalised unique descrip-
tion Σ̃ of a natural gait:

Σ̃ =
(
α0, ζ̃, β0, ỹ0, p̃x,0, p̃y,0

)
(9)

The gait trajectory can then be found by solving (5) for
Σ̃. Using this description, equal gaits on different S-SLIP
systems now result in the same normalised state trajectory
x̃(t) = (q̃(t), p̃(t)). Similarly to p̃x, p̃y , the velocities are
normalised as

˙̃x =
ẋ√
L0g

˙̃y =
ẏ√
L0g

(10)

Note that the normalisation ˙̃x is the Froude number Fr
[9], [10], used to compare the relative walking speeds of
systems with different leg lengths.

III. S-SLIP CONTROL DESIGN

The control design of the controlled S-SLIP model is
inspired by [6]. By actively controlling the leg stiffness of the
legs, the rejection of external disturbances to the system can
be significantly increased. Furthermore, after a disturbance,
the system can be stabilised into its original gait by injecting
or removing energy appropriately.

The knee stiffnesses are defined as ζi = ζ0+ui, i ∈ {1, 2}
(Fig. 2) with the control inputs ui restricted to subsets
Ui = {ui ∈ R | 0 < ζ0 + ui < ∞}, such that the result
is a meaningful stiffness value. We intend to control the
system towards a reference gait Σ̃ with normalised state
trajectory x̃(t), i.e. to a reference state trajectory x̃o(t) such
that ui → 0, i ∈ {1, 2}. However, during single-support
phase the system has only one control input and x̃o(t)
cannot be tracked exactly, which may lead to instability as
the system lags behind the reference. As x̃ was identified
to be a periodic variable and required to be monotonically
increasing in time, the references are reparametrised on x̃.
The references ỹ∗(x̃), ˙̃x∗(x̃) are then sufficiently described
as

ỹ∗(x̃) = ỹo(x̃) ˙̃x∗(x̃) = ˙̃xo(x̃) (11)

However, as a general analytic expression for the spring-
loaded pendulum does not exist [11], a Fourier series expan-
sion approximation of the numerical solution is used. We
extend Eq. (5) to obtain

d

dt

[
q
p

]
=

[
0 I
−I 0

] [ δH
δq
δH
δp

]
+

[
0
B

]
u (12)

with u = [u1, u2] the controlled part of the leg stiffness. The
input matrix B is given by

B =

[dφ1

dx
dφ2

dx

dφ1

dy
dφ2

dy

]
(13)

with

φi =
1

2
(β0 − βi)2 , i ∈ {1, 2} (14)



calculated from (3)–(4). To formulate the control strategy,
we rewrite Eq. (12) in standard form as

ẋ = f(x) +
∑

i

gi(x)ui (15)

and then define error functions h1 and h2 as

h1 = y − y∗
h2 = ẋ− ẋ∗ (16)

The control solution is then given as follows.
• For q ∈ QSS and |x− c1| ≤ ε:

u1 =
1

Lg1Lfh1

(
−L2

fh1 − κdLfh1 − κph1
)

u2 ≡ 0

(17)

• For q ∈ QSS and |x− c1| > ε:

u1 =
1

Lg1h2
(−Lfh2 − κvh2)

u2 ≡ 0

(18)

• For q ∈ QDS :
[
u1
u2

]
= A−1

[−L2
fh1 − κdLfh1 − κph1
−Lfh2 − κvh2

]
(19)

with
A =

[
Lg1Lfh1 Lg2Lfh1
Lg1Lfh2 Lg2Lfh2

]
(20)

where L2
fhi, Lfhi, Lgihi and LgiLfhi denote the (repeated)

Lie-derivatives of hi along the vector fields defined in (15),
κd, κp, κv are tunable control parameters and ε ∈ [0, 12Lg]
is the distance around VLO during which h1 should be
controlled instead of h2. The control inputs (17), (18), (19)
ensure that the error h1 converges asymptotically to zero and
that the error h2 is at least bounded [6].

Remark: Due to only one control input being available
during single-support phase, the system is not always fully
controllable. Because at VLO the velocity error cannot be
controlled due to leg orientation, we choose to control the
hip height error h1 around VLO and control the velocity
error h2 just after touch-down and just before lift-off.

A. Gait Switching

1) Finding Optimal Points: Suppose that two natural gaits
Σ̃i and Σ̃j , with step lengths L̃g,i, L̃g,j respectively, have
been chosen and that we want the system to switch from Σ̃i
to Σ̃j . The parametrisation of both can be used to determine
exactly how to transition from one gait to the other. In each
gait one point should be considered: The point in Σ̃i at which
the switch is executed and the point in Σ̃j to switch into. Any
point x̃i ∈

[
0, L̃g,i

)
on one step of Σ̃i can be associated with

any point x̃j ∈
[
0, L̃g,j

)
on one step of Σ̃j . To find this set

of points (x̃i,opt, x̃j,opt), we minimise the criterion J(x̃i, x̃j)
w.r.t. (x̃i, x̃j):

J(x̃i, x̃j) = µ1 |ỹj(x̃j)− ỹi(x̃i)|+
µ2

∣∣ ˙̃xj(x̃j)− ˙̃xi(x̃i)
∣∣+

µ3

∣∣ ˙̃yj(x̃j)− ˙̃yi(x̃i)
∣∣

(21)
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pi(xi)
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xj
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~
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Gait Σj
~

Fig. 5. Optimisation of the switching point from Σ̃i to Σ̃j . The point x̃i is
moved along one step of Σ̃i, and J(x̃i, x̃j) is then calculated for all values
of x̃j in one step of Σ̃j . Minimisation of J for both these parameters then
results in the optimal switching points (x̃i,opt, x̃j,opt).

By choosing the weights {µ1, µ2, µ3}, the different aspects
of the gait can be emphasised as to achieve a smooth
response. Note that multiple minima may exist, so we search
for the global minimum. Due to the use of normalised
variables the results are again identical for the same natural
gaits on different SLIP systems, and due to symmetry results
obtained for Σ̃i → Σ̃j are also valid for Σ̃j → Σ̃i. In the
next sections we outline the switching strategy. Although the
method is general, we make a distinction between switching
between gaits with equal values of (α0, ζ̃) and gaits with
different (α0, ζ̃). The first case will be shown to be a special
case of the second.

2) Instantaneous Switching: In the case in which (α0, ζ̃)
remain constant, we can switch the references of the S-SLIP
controller instantaneously at the desired point, and we need
only to redefine the controller references

(
ỹ∗(x̃), ˙̃x∗(x̃)

)
as:

ỹ∗(x̃) =

{
ỹi(x̃) x̃ < S̃i,jopt
ỹj(x̃− x̃δ,j) x̃ ≥ S̃i,jopt

˙̃x∗(x̃) =

{
˙̃xi(x̃) x̃ < S̃i,jopt
˙̃xj(x̃− x̃δ,j) x̃ ≥ S̃i,jopt

(22)

where S̃i,jopt is the normalised switching distance which
coincides with the point x̃i on the current gait. The reference
of Σ̃j is shifted by x̃δ,j such that the points (x̃i,opt, x̃j,opt)
align at S̃i,jopt.

3) Gait Interpolation: In the case the two gaits have
different values of (α0, ζ̃), we ensure the value of α0 is con-
tinuous in x̃. We extend (22) with a transition period, during
which the two gait references are interpolated, together with



the corresponding values of α0 and ζ̃:

ỹ∗(x̃) =





ỹi(x̃) β ≤ 0
(1− β)ỹi(x̃) + βỹj(x̃− x̃δ,j) 0 < β < 1
ỹj(x̃− x̃δ,j) β ≥ 1

˙̃x∗(x̃) =





˙̃xi(x̃) β ≤ 0

(1− β) ˙̃xi(x̃) + β ˙̃xj(x̃− x̃δ,j) 0 < β < 1
˙̃xj(x̃) β ≥ 1

α0 =





α0,i β ≤ 0
(1− β)α0,i + βα0,j 0 < β < 1
α0,j β ≥ 1

ζ̃ =





ζ̃i β ≤ 0

(1− β)ζ̃i + βζ̃j 0 < β < 1

ζ̃j β ≥ 1
(23)

where the interpolation factor β is defined as β = (x̃ −
S̃i,jopt)/γ. The parameter γ ≥ 0 is the transition length. By
the definition of the normalised variables, γ effectively is
the number of leg lengths in x to interpolate for. Of course,(
ỹ∗, ˙̃x∗

)
in (23) converge to (22) as γ → 0. The reason we

use (22) for constant (α0, ζ̃) is that then we let the controller
handle the transition as quickly as it can, instead of forcing
a transition period of fixed length.

IV. S-SLIP SIMULATION RESULTS

To demonstrate the effectiveness of the method for forward
velocity differences, a slow gait with an average velocity of
0.259 (0.811 m s-1) and (α0, ζ̃) = (70, 0.224) and a fast
gait with an average velocity of 0.457 (1.429 m s-1) and
(α0, ζ̃) = (65, 0.224) are chosen, to demonstrate robustness
against changing the angle of attack. Here we use the gait
interpolation with γ = 1.0 (Sec. III-A.3). Furthermore, m =
80 kg, λ1 = λ2 = 0.50 m, β0 = 170 deg (s.t. L0 ≈ 0.996
m), {µ1, µ2, µ3} = {15, 2, 5} and for the S-SLIP control
{ε, κp, κd, κv} = {0.1, 50, 25, 50}. From ζ̃ = 0.224 follows
ζ0 ≈ 175 N m rad-1 (Eq. (7)). Simulations were performed in
Mathworks MATLAB R2012b, using the ode45 solver with
absolute and relative tolerances of 1e-11. The velocity ranges
were found by fixing the vertical velocity at VLO to zero,
thus enforcing symmetrical gaits [4], and incrementing the
forward velocity at VLO in small steps. The system starts in
the slow gait (gait 1), is commanded to change to fast gait
(gait 2) at 1.0 m, and then to switch back to the slow gait
(gait 3 = gait 1) at 5.5 m.

Fig. 6 shows the resulting hip trajectory with the de-
sired and optimal switching points indicated. The trajectory
smoothly lowers to the new hip height as its shape transforms
into that of the second gait. Fig. 7 shows the hip height and
forward velocity over time, which converge to the new gait
in approximately 5 steps. Fig. 8 shows the corresponding
control input and error functions. On a few occasions, the
stiffness of the trailing leg reaches the lower limit due
to the system attempting to slow down. After transition,
the leg stiffnesses converge to the nominal ζ0 value. Note
that during single-support, the stiffness of the swing leg is
always equal to ζ0, as ũ2 ≡ 0 in that case (Eq. (17)–(18)).
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Fig. 6. Hip trajectory for the transition from slow to fast gait and back for
two gaits with different (α0, ζ̃). For each pair of vertical dashed lines, the
first indicates the commanded switching distance, and the second indicates
the resulting optimal switching distance.
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Fig. 7. Hip height and forward velocity over time. The system converges
to the new gait in approximately 5 steps.

Fig. 9 shows the energy balance. Most of the total energy
increase on transition is put into (forward) kinetic energy, to
accommodate the faster gait.

V. BIPEDAL ROBOT MODEL

The bipedal robot model is based on the mechanical design
of an existing bipedal walker [7] (Fig. 10). It is a four-link
model with segments of length λ1 and λ2 similar to the
S-SLIP model. However, the hip mass is replaced by two
separate upper-leg masses mh,l,mh,r – there is a small mass
difference between left and right on the physical robot due
to electronics and a guide rail – and two lower-leg masses
ml are added (Fig. 11). The hip joint position is denoted
(x, y), similar to the S-SLIP model. In the same way, the
knee joint angles are denoted βl, βr respectively. Conversely
to the S-SLIP model, the swing leg does not disappear during
swing, and we denote the angles of attack of the virtual legs
αl, αr. The angle-of-attack of the virtual stance leg (during
SS) or virtual leading leg (during DS) is always denoted as
α. The hip angle is denoted θ. There are three control inputs
to the system; hip torque τh, left knee torque τl and right
knee torque τr. The hip torque is generated by a realistic
motor & gearbox dynamics model and the knee torques are
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Fig. 8. Control input and error functions. The leg stiffness converges
to a constant value after rejection of the transition disturbances. Note that
during single-support, the stiffness of the swing leg is always equal to ζ0,
as ũ2 ≡ 0 in that case (Eq. (17)–(18)).
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Fig. 9. Energy balance. The total energy increases on transition to the
second gait, mostly reflected in kinetic energy resulting from the increased
forward velocity.

generated by simplified Variable Stiffness Actuator (VSA)
models (Sec. V-A). The foot contact points are denoted cl, cr,
similar to the S-SLIP model. The ground contact forces are
modeled using the Hunt-Crossley contact model. The robot
is constrained to the sagittal plane using constraint forces.

A. Variable Stiffness Actuator (VSA)

Variable Stiffness Actuators (VSAs) belong to a class of
actuators which are able to change their apparent output stiff-
ness K independently of their output equilibrium position by
proper control of their internal degrees of freedom z (Fig.
12).

The used design is based on the principle of a lever
arm with length d, with a movable pivot of which the
position is given by z1 ∈ [0, d] (Fig. 13), which changes
the transformation ratio between change in output position
and change in spring state. For the analysis we use the
port-Hamiltonian method, using a Dirac structure. For more
details, see [12]. For Fig. 13, the spring state s(z) with
z = [z1, z2] is given as

s =
d

q1
(d− z1) sin(r − z2) (24)

Fig. 10. The bipedal robot model is based on the mechanical design of a
bipedal walker in our lab, with realistic body dynamics, friction and ground
contact forces.
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Fig. 11. Bipedal robot model. The model is similar to the S-SLIP model,
with the hip mass replaced by two upper-leg masses and the addition of
two lower-leg masses.

in which small deflections are considered, i.e. r − q2 ≈ 0:

s ≈ d

z1
(d− z1)(r − z2) (25)

The apparent output stiffness K of the actuator is then
given by

K = k
d

z1
(d− z1) (26)

where k is the stiffness of the internal spring. It is clear
that for z1 = d,K ≡ 0 and for z1 = 0,K ≡ ∞. Eq. (26)
is not a function of z2, such that the equilibrium position

z2 rK(z1)

Fig. 12. Variable stiffness actuator with internal degrees of freedom z =
[z1, z2]. The stiffness K at the output link r is controlled independently of
the equilibrium position z2 by the stiffness controlling variable z1.

d

z1

s
r

Fig. 13. Output stiffness changing mechanism based on the principle of
changing the transformation ratio between an internal spring and the output
link. A lever with length d with movable pivot z1 connects the output r
with an internal spring with stiffness k and state s.



Fig. 14. Proposed controller structure. Joint angles and foot contact
measurements are used to obtain the robot configuration and phase. The
controller switches between constant-stiffness trajectory control or stiffness
control of each of the knees depending on the phase. During leg swing,
the hip and leg retraction trajectories are generated using minimum-jerk
trajectories.

Touch-downLift-off α
ρ=0 ρ=1

Fig. 15. During single-support phase the hip swing and leg retraction are
parametrised using the variable ρ such that ρ = 0 at lift-off and ρ = 1 at
the expected moment of touch-down.

and output stiffness can be easily be varied independently.
For simplification and analysis of VSA requirements, we
consider the control of z1, z2 such that they have asymptotic
convergence to their desired set points.

VI. BIPEDAL ROBOT CONTROL DESIGN

A. Controller Structure

The proposed controller structure of the bipedal robot is
shown in Fig. 14. The controller determines the robot config-
uration and phase from angle measurements and foot contact
sensors. For the SS stance leg and DS, the controller uses
stiffness control from the S-SLIP model. During stiffness
control the equilibrium position of both knees is set to β0,
i.e. the knee rest angle, to obtain the desired S-SLIP variable
spring behaviour. The swing leg is controlled using constant-
stiffness trajectory control of the knee for leg retraction. The
hip swing and leg retraction trajectories are generated using
minimum-jerk trajectories, parametrised by a variable ρ (Sec.
VI-B).

B. Step Parametrisation

For control of the hip swing and leg retraction, each step
is parametrised from lift-off to subsequent touch-down using
the variable ρ (Fig. 15). We define ρ ≡ 0 at lift-off, and
ρ ≡ 1 at the expected moment of touch-down. We define ρ
as a function of the angle-of-attack of the current stance leg
α, set to either α = αl (left stance) or α = αr (right stance):

ρ =





0 α ≤ αlo
(α− αlo)/(αtd − αlo) otherwise
1 α ≥ αtd

(27)
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Fig. 16. Leg retraction trajectory for a rest knee angle of β0 = 160o. In
our experiments, the retracted knee angle βret = 2.4 rad ≈ 137.5 deg.

such that given αtd > αlo, ρ ∈ [0, 1]. We calculate αlo = α
at the moment of lift-off to ensure continuous behaviour.
The value of α at the expected moment of touch-down is
obtained from the reference S-SLIP model as αtd. To ensure
continuous behaviour, the value of ρ is also calculated during
flight phase using the last stance leg.

C. Hip Swing

The desired hip trajectory θ∗(ρ) is generated using a
minimum-jerk trajectory, with boundary conditions:

(
θ∗(0)
θ∗(1)

)
=

(
θlo
θtd

)
(28)

Where θlo is the hip angle calculated at the moment of swing
leg lift-off and θtd is the hip angle expected to result in
the desired angle-of-attack of the swing leg, calculated as
θtd = α0 − αtd.

D. Leg Retraction

The leg retraction trajectory is generated similarly to the
hip swing. However, the leg is kept retracted for a period
during the swing to avoid foot scuffing.1 The desired knee
angle β of the swing leg is given as

β∗(ρ) =





r1(ρ) 0 < ρ < 0.3
βret 0.3 ≤ ρ ≤ 0.6
r2(ρ) 0.6 < ρ ≤ 0.85
β0 0.85 < ρ < 1

(29)

where βret is the retracted knee angle and r1(ρ), r2(ρ)
are minimum-jerk trajectories which control β∗ from β0
to βret and from βret to β0 respectively (Fig. 16). In our
experiments, βret = 2.4 rad ≈ 137.5 deg.

VII. BIPEDAL ROBOT MODEL RESULTS

The bipedal robot was modeled in the Controllab 20-
sim software package using the Vode Adams integrator
with absolute and relative tolerances of 1e-8. The system
parameters are as in Table I.

A. Gait Reference

To obtain the gait reference for the bipedal robot model,
the system was given a constant leg stiffness ζ0 (i.e. stiffness
control turned off) and a small push forward to start walking.
This way the system only controls the required leg swing and
leg retraction based on the value of ρ (Sec. VI-B), i.e. there

1Note that the moments of retraction and extension are tunable parameters
which may affect the system performance depending on lower leg mass.



mh,l 7.511 [kg] ml 0.779 [kg]
mhr 6.848 [kg] ζ0 196.6 [N m rad-1]
λ1 0.515 [m] λ2 0.495 [m]
β0 160 [deg] α0 70 [deg]
βret 2.4 [rad] αtd 98.3 [deg]

TABLE I
BIPEDAL ROBOT MODEL PARAMETERS
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Fig. 17. Walking behaviour with constant leg stiffness. Vertical dashed
lines indicate VLO. The shaded area indicates the step that was used for
reference gait approximation. As there is no dependency on a reference the
behaviour is mainly determined by leg swing dynamics. The average gait
velocity is decreasing as time progresses, and, eventually, the system will
come to a standstill.

is no dependency on some parametrised reference and the
behaviour is mainly determined by leg swing dynamics. The
resulting walking behaviour is shown in Fig. 17. Vertical
dashed lines indicate VLO. The system starts in left stance,
and there is a small difference between left and right stance
due to the slightly different masses (Sec. V). It was found
that walking gait is obtained for a range of leg swing angles
in this way. It is observed that the additional dynamics
of this system compared to the S-SLIP model results in a
different velocity profile. As the swing leg slows down at
the end of every swing, it pulls the hip forward which allows
the forward velocity to increase quickly before touch-down.
Compared to the S-SLIP model there is more variation of
forward velocity during a single step.

Walking starts with an average forward velocity of ≈ 0.7
m s-1, however the average gait velocity is decreasing as time
progresses, and, eventually, the system comes to a standstill.
Thus, only the hip swing is not injecting sufficient energy
that is lost on impact and due to friction. We approximate
the gait reference by the hip trajectory of the second step by
Fourier series (shaded area in Fig. 17).

B. Walking Results

We now enable the S-SLIP knee stiffness controller. In
(17)–(19) we set {ε, κp, κd, κv} = {0.1, 50, 25, 50}. Fig. 18
shows the walking behaviour of the system after walking for
some time. The system has converged to a stable walking
gait with constant average gait velocity. The stiffness control
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Fig. 18. Stable walking gait with controlled leg stiffness. The stiffness
control successfully injects the lost energy every step such that the average
gait velocity remains constant. Some asymmetry remains between left and
right stance due to the mass difference.

successfully injects the lost energy every step such that the
average gait velocity remains constant. Some asymmetry
remains between left and right stance, due to the mass
asymmetry (Sec. V). This is reflected in the inputs and errors
(Fig. 19); as the reference was created out of a step during
right stance there is a larger error and control inputs during
left stance. The hip height error is below 1.5 cm and the
velocity error is below 0.1 m s-1. The control inputs are
limited to ul, ur ∈ [−ζ0, 1000] N m rad-1.

The average forward velocity during the shown interval is
0.65 m s-1, corresponding to a Froude number Fr of ≈ 0.21.
In comparison, ”Meta” [10] achieves speeds ranging from an
Fr of 0.1 to 0.28, and ”Veronica” [9] achieves an Fr of 0.07
to 0.16.

The SS velocity control law (18) generates high control
inputs, especially during touch-down and left-foot push-off.
This results from the orientation of the leg in these cases
and low compression of the leg. It is likely these inputs
could be smaller, as they do not influence forward velocity
very much and significantly disturb hip height. During SS
position control (Eq. (17)), close to VLO, the control inputs
are generally small, as the reference was created out of the
natural dynamics of the system and the hip height disturbance
arising from foot push-off during velocity control is quickly
rejected. The actuator power corresponding to the control
inputs are shown in Fig. 20. Hip actuator power is below
60 W. VSA z1 power is generally below 20 W. z2 power
has peaks up to 150 W due to the short leg retraction and
extension time and low retraction angle (Fig. 16). These
values are within the limits of the motors of the physical
robot, although we did not account for efficiency overhead
of the mechanical implementation of the VSAs [12].

Important to the performance of the system is the moment
of touch-down. Due to the explicit dependency on a gait
reference parametrised in x, disturbances to the system can
result in the system running out of phase with the reference
due to different moments of touch-down.
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Fig. 19. Control inputs and errors. As the reference was created out of
a step during right stance, there is a larger error and control inputs during
left stance. The SS velocity control law (18) generates high control inputs,
especially during touch-down and left-foot push-off. During SS position
control (Eq. (17)) the control inputs are generally small, as the reference
was created out of the natural dynamics of the system and the hip height
disturbance arising from foot push-off during velocity control is quickly
rejected.
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Fig. 20. Hip and VSA power. Hip power is below 60 W. VSA z1 power
is generally below 20 W. z2 power has peaks up to 150 W due to the short
leg retraction and extension time and low retraction angle (Fig. 16).

VIII. CONCLUSIONS & FUTURE WORK

We have analysed the dynamics of the S-SLIP system and
developed a control strategy based on variable knee stiffness
that is able to reject external disturbances to the system and
can control the system from one limit cycle walking gait to
another. It was shown that the controller can switch gait by
injecting or removing energy from the system appropriately,
after which control inputs converge to zero.

Based on this, a control strategy was developed that is able
to stabilise a bipedal robot model with realistic dynamics
into a stable walking gait. To obtain the desired S-SLIP
variable stiffness behaviour together with adjustable knee
equilibrium position for leg retraction, we use a variable

stiffness actuator. The controller successfully injects energy
losses generated by friction and foot impacts. At the moment
just after touch-down and just after push-off, the chosen
strategy does result in high control inputs. This is due to the
current leg orientation and low compression of the leg. We
suspect these inputs could be smaller, as it does not influence
forward velocity very much and significantly disturbs hip
height.

The controller takes into account the additional dynam-
ics of the bipedal robot model such as hip swing and
leg retraction. The gait reference was obtained from the
constant-stiffness walking behaviour of the system. Our
results showed that the moment of touch-down is important,
mainly due to the explicit dependency on a gait reference
parametrised in forward position. In the case of disturbances
or inappropriate leg swing this may lead to the system
running out of phase with the reference. A future control
strategy should therefore be based on the current state of
the system as much as possible, perhaps by parametrisation
of the reference w.r.t. measured touch-down events. Addi-
tionally, an active hip swing set point generation strategy,
perhaps inspired by [8], should be considered that adjusts
the angle-of-attack of the swing leg on-line.

Furthermore, more limit cycle gaits on the bipedal robot
model should be explored. In the current results high knee
stiffness was used to obtain a reference gait, however gaits
with lower leg stiffness could make better use of the com-
pliant leg behaviour. Additionally, the leg swing behaviour
could be varied further.
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4 Conclusions

The efforts that led to this master thesis have been the investigation of the control of bipedal
walking robots based on the principle of passive dynamic walking. The goal has been to use
variable leg stiffness to obtain variable walking gait, while combining two goals that have thus
far been hard to realise simultaneously in walking systems – robustness and energy-efficiency.

Two conceptual models have been analysed – the Spring-Loaded Inverted Pendulum (SLIP)
and Segmented Spring-Loaded Inverted Pendulum (S-SLIP) models – that are some of the
simplest models that exhibit walking gait using compliant elements. Much of the initial work
focused on exploring the parameter space of the SLIP model, specifically, the achievable velocity
ranges given different combinations of system parameters. It was found that for many desired
velocities a range of gaits exists that can achieve the desired velocity. Normalised descriptions
of these natural gaits – limit cycle walking gaits – were developed for both the SLIP and S-SLIP
model, which allows for comparison of gaits across systems with different parameters.

Control strategies were developed for the systems that were able to stabilise their walking
gaits, and control the systems from one limit cycle walking gait to another. Linear interpolation
between two gait trajectories and their corresponding stiffness values and angles-of-attack during
transition was shown to be a successful strategy to change between gaits which have different
angles-of-attack. The results show that the concept of variable leg stiffness is not only suited to
stabilising a walking model into its existing gait, but also to inject or remove energy from the
system appropriately to switch between gaits, for example to change to a desired velocity.

Based on this work a bipedal robot model with realistic dynamics was developed that uses
Variable Stiffness Actuators (VSAs) to control the knees and thus leg stiffness. The S-SLIP
control strategy was used, extended with additional components to facilitate hip swing and leg
retraction arising from the additional dynamics.

Initial attempts at controlling the bipedal robot model used a reference obtained from the
S-SLIP model. However, the additional dynamics of the bipedal robot model required very
high control gains and well-tuned leg swing angles to result in stable gait. The result was not
robust and the large control inputs made the solution infeasible. It was therefore concluded
that the dynamics of the S-SLIP model are not close enough to that of our bipedal robot model
to enforce its behaviour as a reference. It was found that on the bipedal robot model there
exist walking patterns when using constant leg stiffness (i.e. without using stiffness control).
However, energy losses did not allow the system to converge to a limit cycle walking gait. The
stiffness control strategy developed for the S-SLIP model was shown to be able to successfully
inject the energy losses and stabilise the system into a limit cycle walking gait.

The goal of energy efficiency has not been thoroughly addressed in this work. The gait
reference was constructed such to attempt to use the passive dynamics of the system as much
as possible. However, while the power delivered by the hip and VSAs was generally low and
within actuator constraints for the physical system, the control has not been optimised for
energy efficiency. It is expected that by further development of the control architecture and
appropriate references the energy efficiency of the system can be significantly improved.
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5 Recommendations

• The gait switching strategy developed for the SLIP and S-SLIP models performs well,
however robustness should be analysed further. For example, it appears there are limits
to the maximally allowable difference in angle-of-attack between the two gaits. In this
case, an intermediate gait could be used in the interpolation to further stabilise the system.

• Neither the SLIP system nor the S-SLIP system exhibits limit cycle walking gaits that
are similar to the walking behaviour obtained from the bipedal robot model with constant
knee stiffness. Enforcing their behaviour on the bipedal robot model therefore does not
seem like a viable direction. A deeper exploration of the parameter space that leads to
limit cycle walking gaits on the bipedal robot model is essential in order to reach the
combined goal of robust, energy efficient walking. Specifically, gaits with lower nominal
knee stiffness than were shown here may lead to better use of the internal energy storage
and greater controllability of the system.

Additionally, adding a feed-forward foot push-off term may lead to limit cycle walking
gaits that are self-stable (i.e. the push-off injects the energy otherwise lost to friction and
foot impacts) without using the S-SLIP based knee stiffness control. In this case adding
the S-SLIP controller would improve robustness and allow control action to converge to
zero, similar to the S-SLIP simulation results.

• The variable stiffness actuator design inspired by the vsaUT-II appears to be suitable
for control of the bipedal robot. The power requirements are below the specifications
of the physical system, although the model was linearised for small deflections around
its equilibrium point and efficiency losses due to the specific mechanical implementation
have not been taken into account. Before implementation on the real set-up a more
detailed requirements study is necessary. From previous work it is known that there may
be problems with the current VSAs to adjust the stiffness while the actuator is loaded.
To negate this issue, an additional parallel spring could be added to the actuators that
unloads the VSA lever structure and provides a minimum stiffness value.

• We attempt to obtain energy efficiency by using the passive dynamics of the system as
much as possible. However, despite the use of VSAs, their control during stance was
not optimised for energy efficiency. Instead, they are controlled as pure variable stiffness
elements to obtain behaviour comparable to the S-SLIP model. However, by controlling
both internal degrees of freedom appropriately, it is possible to adjust the output stiffness
of a loaded VSA without changing the energy stored in the internal compliant element.
Doing so may increase the energy efficiency of the bipedal robot control as a whole.

• The present control architecture of the bipedal robot model explicitly depends on a gait
reference parametrised in the forward position of the robot. This results in a large de-
pendency on the exact moment of touch-down, which leads to problems in the case of
external disturbances to the system or inappropriate leg swing. Running out of phase
with the reference eventually leads to loss of performance or falling of the robot. A gait
reference could for example be parametrised w.r.t. the last double-support phase, the
angle-of-attack of the current stance leg, or touch-down or lift-off events.

• In the current control architecture, the hip is always swung to the same angle before touch-
down. An active hip swing set point generation strategy, that adjusts the angle-of-attack
of the swing leg on-line on every step, may be beneficial in terms of gait stabilisation and
switching of gaits, e.g. by putting the foot more forward to slow down.
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A Appendix: 20-sim models

In this appendix we describe the 20-sim model structure.

A.1 Main model

Fig. 1 shows the top-level view of the model. The 3D mechanics model (’clw’ ) implements the
walker 3D dynamics, and provides force/torque inputs and measurement outputs by which the
rest of the model interacts with the mechanics. The 3D mechanics model is shown in Fig. 2.
The constraint forces shown in Fig. 1 prevent the walker from moving out of the sagittal plane
(which is aligned with the x-z plane) or rotate around the x- and z-axes, respectively.

Shown in the top-right are the initial push forces, which act in the first simulated second
to initiate walking. The z-push was turned off in our experiments, and the x-push was 10
N for 0.5 s. Shown in the bottom-right are the ground reaction forces, which implement the
Hunt-Crossley contact model and friction to prevent foot sliding.

Shown just left of the centre are the actuators, joint friction and end stops. The knee end
stops were modeled as a spring-damper at knee angles of 1.0 rad (≈ 57 deg) and 2.9 rad (≈ 166
deg), respectively. The ’VSA L’ and ’VSA R’ blocks implement the Variable Stiffness Actuator
(VSA) models, described in the next sections. The hip actuator is modeled as an electric motor
with gearbox as in the physical system, with the ’Low Level IO’ block implementing the required
conversion from desired hip torque to motor current. Shown left is the ’Controller’ submodel,
detailed in the next section.

Figure 1: Top-level overview
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Figure 2: 3D mechanics model
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A.2 Controller

The controller structure is shown in Fig. 3. The controller receives position, attitude and veloc-
ity measurements of the hip, as well as hip and knee measurements in the ’RobotConfiguration’
submodel. This submodel calculates the current robot state, the phase (single-support (SS)
or double-support (DS) respectively) as well as ρ (see paper 2), foot contact positions, and
angles-of-attack.

The ’S SLIP References’ submodel describes the gait reference for use by the S-SLIP con-
troller, as well as provide values for the hip angle which is expected to lead to the desired
angle-of-attack at touch-down. Using these values, the ’S SLIP Control’ block calculates the
desired torsional knee stiffness for each of the legs during stance.

Additional components which facilitate hip swing and leg retraction are implemented in the
’hipControl’ and ’retractControl’ submodels. Using the phase and value of ρ, they generate
the appropriate minimum-jerk trajectories. The ’Switch’ block switches between the S-SLIP
knee stiffness control and trajectory following for each of the legs depending on the phase, and
controls the hip swing during single-support phase. During S-SLIP knee stiffness control, the
VSA equilibrium position is set to the rest angle of the knee to obtain the desired S-SLIP
variable knee stiffness behaviour.

Figure 3: Controller structure
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A.3 Variable Stiffness Actuator (VSA) model

The VSAs were implemented using the lever arm design of the vsaUT-II, which varies its
stiffness based on the change of the transmission ratio between the output link and an internal
compliant element. The model of the VSA used in our simulations is shown in Fig. 4. Note
that the model is linearised for small deflections around its equilibrium position, and does not
include efficiency losses due to the specific mechanical implementation. The desired value of
the pivot point q1 is calculated from the desired stiffness k star, and is controlled to its desired
setpoint exponentially using a flow source (which approximates an ideal servo motor) inside
the ’q1 control’ submodel. The equilibrium position q2 is controlled similarly with exponential
convergence to its desired position. The ’init’ submodel initialises all initial positions and
calculates the initial spring state from them (allowing the VSA to be loaded at t = 0).

Figure 4: Variable Stiffness Actuator (VSA) model showing the Dirac structure.
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