

Communication-Centric Debug of
Systems-on-Chip using

Networks-on-Chip

Master thesis

March - August 2006

Report number: 069.020/2006

Author Supervisors
R. van Steeden Dr. ir. H.G. Kerkhoff (University of Twente)

Ir. H.G.H. Vermeulen (NXP Semiconductors)
Dr. K.G.W. Goossens (NXP Semiconductors)

Ir. M.T. Bennebroek (Philips Research)

Communication-Centric Debug of
Systems-on-Chip using

Networks-on-Chip

Master thesis

March - August 2006

Report number: 069.020/2006

 CADTES
SOC Architectures and Infrastructure Faculty of Electrical Engineering
NXP Semiconductors University of Twente
High Tech Campus 5 P.O. Box 217
5656 AE Eindhoven 7500 AE Enschede
The Netherlands The Netherlands

Author Supervisors
R. van Steeden Dr. ir. H.G. Kerkhoff (University of Twente)

Ir. H.G.H. Vermeulen (NXP Semiconductors)
Dr. K.G.W. Goossens (NXP Semiconductors)

Ir. M.T. Bennebroek (Philips Research)

Philips Restricted TN-2006-01234

Title: Communication-Centric Debug of Systems-on-Chip using Networks-on-
Chip

Author(s): Remco van Steeden

Reviewer(s): Hans Kerkhoff, Bart Vermeulen

Technical Note: TN-2006-01234

Additional
Numbers:
Subcategory:

Project: Æthereal

Customer: Philips Research

Keywords: Communication-Centric, Debug, System-on-Chip, Network-on-Chip, Æthe-
real

Abstract: This report explores the possibilities of combining debug methodologies and
communication-centric design using NoCs. It also describes an implemen-
tation of a debug architecture for the Philips Æthereal NoC, which is fully
integrated in the Æthereal design flow.

Conclusions: Networks-on-Chip emerge as the new type of interconnect for next-
generation systems-on-chip. They overcome the upcoming deep sub-micron
effects, the increasing design complexity and the lack of scalability of busses.
However NoCs can also assist in SoC debug as this report shows.

Looking at the communication of SoCs helps the debugging proces of
prototype ICs. Raising the abstraction level from bits to transactions make it
easier to interpret and compare what happens inside the NoC with a software
transaction level model.

The proposed debug architecture and strategy can speed up the localiza-
tion of erroneous IP cores and the time at which errors occur. Subsequently
the malfunctioning IP core can be stopped at the right moment using the
breakpoint hardware added to the NoC. Using the IP cores’ debug facilities
and the controlled data supply from the NoC side, the error can then be found
more quickly.

The proposed communication-centric debug solution adds around 4% of
the NoC area to the design and is fully integrated in the Æthereal design flow.
However to determine whether it really decreases the debug-time-to-root-
cause, it must be tested on e.g. an Field Programmable Gate Array (FPGA).
This can only be done when the debugger tools are adapted to support the pre-
sented communication-centric debug method and transaction-level stepping.
More advanced breakpoint generators are needed as well.

c© Koninklijke Philips Electronics N.V. 2006 iii

TN-2006-01234 Philips Restricted

iv c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Contents

Preface 1

1 Introduction 3
1.1 Motivation . 3
1.2 Objective . 3
1.3 Related Work . 4
1.4 Structure . 4

2 Network-on-Chip 5
2.1 Introduction . 5
2.2 Æthereal NoC . 7
2.3 Æthereal Network Interface . 9
2.4 The Æthereal Router . 10
2.5 DTL Protocol . 11

3 Debug 13
3.1 Introduction . 13
3.2 Debug Strategy for SoCs using NoCs . 14
3.3 Debug Requirements for SoCs using NoCs . 15

3.3.1 Stop Operation . 17
3.3.2 Dump and Recover State . 17
3.3.3 Single Step and Continue Operation 18

4 Debug Architecture Design 21
4.1 Overview . 21
4.2 Choices . 22

4.2.1 Introduction . 22
4.2.2 Stop Signal Distribution . 22
4.2.3 Protocol Adapter . 24

4.3 Stop Module . 24
4.4 Core-based Scan Architecture . 28

5 Debug Architecture Implementation 29
5.1 Overview . 29
5.2 Clock Control Slice . 30
5.3 Breakpoint Hardware . 30
5.4 Stop Module . 31
5.5 Protocol Adapter . 31

c© Koninklijke Philips Electronics N.V. 2006 v

TN-2006-01234 Philips Restricted

6 Results 33

7 Conclusions and Future Work 37
7.1 Conclusions . 37
7.2 Future Work . 37

References 41

A Clock Control Slice Implementation 43

B Breakpoint Hardware Implementation 45

C Stop Module Implementation 47

D Protocol Adapter Implementation 49

E Æthereal Design Flow Changes 51

F Getting Started 53

G List of Acronyms 55

vi c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Preface

This master’s thesis report concludes my education in electrical engineering at the University
of Twente, the Netherlands. The project Communication-Centric Debug of Systems-on-Chip
using Networks-on-Chip was carried out from March till August 2006 at the IC Design / Digital
Design & Test department of Philips Research Laboratories Eindhoven, the Netherlands, under
the supervision of:

• Bart Vermeulen (NXP Semiconductors, SOC Architectures and Infrastructure)

• Kees Goossens (NXP Semiconductors, SOC Architectures and Infrastructure)

• Martijn Bennebroek (Philips Research, IC Design Group)

• Hans Kerkhoff (University of Twente, CADTES)

I would like to thank all of them for providing me this project, I really enjoyed working on it.
Our discussions have broaden the view of certain problems and possibilities, which definitely
contributed to the success of this project. Also the help of Bart with respect to debug and the
integration with Incide was of great value.

Besides my supervisors I would like to thank Martijn Coenen for all his technical support
regarding the Æthereal network-on-chip and the Æthereal design flow.

El Puerto de Santa María, October 1, 2006

Remco van Steeden

c© Koninklijke Philips Electronics N.V. 2006 1

TN-2006-01234 Philips Restricted

2 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 1

Introduction

This chapter first treats the motivation behind and the objective of this master thesis project in
1.1 and 1.2 respectively. Related work in the area of system-on-chip debug is summarized in 1.3
and the structure of this report is given in 1.4.

1.1 Motivation

Modern integrated circuits consist of a lot of Intellectual Property (IP) cores, like processor
cores, memory blocks, peripherals, I/O resources and interconnects. Until now, the intercon-
nects were mostly (bridged) busses and point-to-point connections. However with the increasing
complexity of System-on-Chips (SoCs), the upcoming Deep Sub-Micron (DSM) effects and a
lack of scalability, these busses become a bottleneck in next-generation chips.

A solution to this interconnect problem is a Network-on-Chip (NoC) [1, 2, 3, 4, 5, 6, 7]. A
Network-on-Chip is a packet-switched network consisting of Routers (Rs) and Network Inter-
faces (NIs). It allows IP cores to communicate with each other in a parallel manner and separates
computation from communication.

Network-on-chip introduces new possibilities for debugging systems-on-chip. Debug is nec-
essary because first-time-right SoC designs are still an utopia. An increasing number of cores
and components within cores cause that, despite all the Computer Aided Design (CAD) tools
and the reuse of cores, hardly any prototype chip returns without errors. Errors include incorrect
functional timing of signals, incorrect hardware design, incorrect programming of hardware (e.g.
wrong addresses, registers or read/write pointers) and incorrect scheduling of actions (resulting
in e.g. data loss).

Traditional debug is done from a core-based perspective. Philips wanted to explore the pos-
sibilities of combining debug methodologies and communication-centric design using networks-
on-chip. It is believed that this integration will bring significant advantages in terms of shorter
debug-time-to-root-cause and shorter time-to-market.

1.2 Objective

At Philips, a network-on-chip called Æthereal has been designed, which provides guaranteed
throughput and latency services. The objective of this project was to implement a communication-
centric debug architecture using the Æthereal NoC, which is generated automatically in the
Æthereal design flow.

c© Koninklijke Philips Electronics N.V. 2006 3

TN-2006-01234 Philips Restricted

Goals of the project:

• Defining the requirements and possibilities for communication-centric debug.

• Implementing a concept in VHDL.

• Integrating the concept with the Æthereal design flow.

• Demonstrating the capabilities of the implemented concept by means of a simulation.

1.3 Related Work

In the field of network-on-chip a lot of research is going on [8], however only Arteris is offering
a commercial solution [9] at the moment.

Present solutions for system-on-chip debug are all core-based, e.g. ARM’s CoreSight [10]
and DAFCA’s Flexible Silicon Debug Infrastructure [11]. Within Philips also a core-based ap-
proach is being used [12].

As far as I know there are no communication-centric debug solutions (using networks-on-
chip) for systems-on-chip yet. There are however some articles about monitoring services for
networks-on-chip [13, 14, 15, 16, 17]. Also there is an article about the verification implications
of bringing communication networks on chip [18].

1.4 Structure

The structure of this report is as follows:

• Chapter 2: An introduction to network-on-chip, the basics of the Æthereal NoC
and Philips’ DTL protocol are treated.

• Chapter 3: An introduction to debug and a definition of the requirements for
communication-centric debug using NoCs are given.

• Chapter 4: The design of the debug architecture is presented and the choices which
are made to come to this design are discussed.

• Chapter 5: This chapter focuses on the implementation details of the design.

• Chapter 6: The results obtained with the implementation are presented.

• Chapter 7: Conclusions are drawn and issues that need to be treated in the future are
pointed out.

4 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 2

Network-on-Chip

This chapter introduces the network-on-chip concept (2.1), discusses the Æthereal NoC (2.2)
consisting of the Æthereal network interface (2.3) and the Æthereal router (2.4) and treats the
Philips’ DTL communication protocol (2.5).

2.1 Introduction

The prediction of Gordon Moore in 1965 that the transistor density of semiconductor chips
would double every 18 months still holds true. Designers can not keep pace with the increas-
ing design complexity which results in a design productivity gap between the chip complex-
ity growth (doubling every 18 months) and the productivity growth (doubling roughly every
4 years), see Figure 2.1. A possible solution to this problem is reuse of IP cores on a chip.
However as Figure 2.1 shows, this is not sufficient. Platform-based design is needed, where
not only the IP cores are reused but also the communication, test and debug infrastructure and
environment [19].

1981 1985 1989 1993 1997 2001 2005 2009
Year

10,000,000

1,000,000

100,000

10,000

1,000

100

10

1

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

D
ev

ic
e

si
ze

 (K
 tr

an
si

st
or

s)

D
es

ig
ne

r p
ro

du
ct

iv
ity

 (t
ra

ns
is

to
rs

/m
on

th
)

Reuse

Potential design
limitation to growth rate

21% / year compound
productivity growth rate

58% / year silicon
chip complexity growth rate

Figure 2.1: Design productivity crisis: the divergence of potential design complexity and de-
signer productivity (Source: Sematech, 1995).

Another consequence of the increasing design complexity is the problem of deep sub-micron

c© Koninklijke Philips Electronics N.V. 2006 5

TN-2006-01234 Philips Restricted

effects. The integration of an ever-increasing number of transistors on a chip leads to smaller
gate delays but also to bigger wire delays, see Figure 2.2. With increasing operating frequencies
the propagation delay of busses will exceed the clock period [2]. Traditional busses and point-to-
point connections become a bottleneck in next-generation chips because of these DSM effects,
the productivity gap and a lack of scalability.

0

5

10

15

20

25

30

35

40

45

650 500 350 250 180 130 100
Generation (nm)

Delay Al
Cu
SiO2
Low κ
Al & Cu
Al & Cu Line

3.0 –cm
1.7 –cm
κ = 4.0
κ = 2.0
.8 Thick
43 Long

Interconnect Delay, Cu & Low κ

Interconnect Delay, Al & SiO2

Sum of Delays, Cu & Low κ

Sum of Delays, Al & SiO2

Gate Delay

(ps)

Gate wi Cu
& Low κ

Gate wi Al & SiO2

Gate

Figure 2.2: Calculated gate and interconnect delay versus technology generation illustrating the
dominance of interconnect delay over gate delay as feature sizes approach 100 nm (Source:
National Technology Roadmap for Semiconductors, 1997).

A new kind of interconnect, called network-on-chip, can solve the upcoming problems. A
network-on-chip is a packet-switched network consisting of routers and network interfaces, see
Figure 2.3 for a comparison between a traditional bus system and a NoC. IP cores can commu-
nicate with each other by sending messages. The network interfaces packetize/depacketize the
messages and send/receive them to/from the switching fabric, which routes packets from source
to destination.

A Network-on-Chip has the following properties:

• It separates computation (IP cores) from communication (NoC).

• It has predictable physical and electrical properties.

• It supports standard communication interfaces.

• It allows for parallel communication.

• It can be dynamically reconfigured.

• It is scalable.

• It is reusable.

6 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

R R

RR

NI

NI

NI

NI

NI NI

NI NI

IP

IP

IP

IP

IP IP

IP IP

NoC

IP

IP

IP

IP

B
us

 1

B
us

 2
IP

IP

IP

IP

Bridge

(a) (b)

Figure 2.3: Traditional bridged bus system (a) and an example of a network-on-chip (b).

2.2 Æthereal NoC

The Quality of Service (QoS) offered by a network-on-chip is of great importance, however
services also have their costs in terms of speed, area and power consumption [20]. Æthereal,
Philips’ network-on-chip solution [21, 22, 23], aimes to offer Guaranteed Services (GSs). GSs
need resource reservation and in order to increase resource utilization, Æthereal also imple-
ments Best Effort Services (BESs). GSs serve critical communication (e.g. real-time or stream-
ing data), called Guaranteed Throughput (GT) traffic. BESs serve non-critical communication,
called Best Effort (BE) traffic. For GT communication, Æthereal provides guaranteed through-
put, latency, jitter and in-order uncorrupted delivery. For BE communication latency can be es-
timated, and in case of a fair scheduler and a deadlock-free network it can also be bounded [21].

In Æthereal, communication is performed on the basis of connections (GT or BE). A connection
is always between two or more Network Interface Ports (NIPs); one Master NIP (MNIP) at the
side of the producer IP core and one or more Slave NIPs (SNIPs) at the side of the consumer IP
core(s). IP cores can have multiple ports connected to different NIs and on its turn NIs can have
NIPs connected to different IP cores. There are three types of connections:

• Simple: between one MNIP and one SNIP.

• Narrowcast: between one MNIP and one or more SNIPs (but one SNIP at a time).

• Multicast: between one MNIP and multiple SNIPs (no response messages allowed).

Connections are made up of one or more channels. A channel supports communication
between two NIPs, but only in one direction. Figure 2.4 shows an example connection of type

c© Koninklijke Philips Electronics N.V. 2006 7

TN-2006-01234 Philips Restricted

simple with two channels, a request channel (from MNIP to SNIP) and a response channel (from
SNIP to MNIP). A channel on its turn consists of links, physical connections between routers or
a NI and a router.

Router Network Network InterfaceNetwork Interface
Network-on-Chip

IP
Core

D
T
L

DTL
Adapter

cmd
wr
rd

NI

Kernel

req
resp

req
resp

IP
Core

D
T
L

DTL
Adapter

cmd
wr
rd

NI

Kernel

req
resp

req
resp

Router
resp
req

Router
LLFC LLFCLLFC

E2EFC

TargetInitiatorInitiator Target

Producer Consumer

MNIP SNIP

Figure 2.4: Æthereal simple connection example.

On a connection transactions (such as read, write, flush, test and set) take place. A transaction
exists of one or more messages, e.g. a write exists only of one message (the command and write
data), a read exists of two messages (the request message sent over the request channel and the
response message sent over the response channel). A message consists of a Message Header
(MH) with information about the command (write or read) and the blocksize to be sent (write
request) or received (read request), an address and possibly write data, see Figure 2.5 b.

payload 0size

id

payload 1eop

2 bit

32 bit

25 bit

cmd length (n)

6 bit1 bit

write data 1

…

write data n

credit qid path

5 bit 5 bit 22 bit

1 000111

address

write data 1

write data 2

write data 3

10

10

00

2 bit 32 bit

00010 00001 path

11

10

01

write data 4

write data 5

write data 6

00

10

10

write data 7

empty01

10

10 00010 00001 path

fli
t

fli
t

fli
t

fli
t

pa
yl

oa
d

pa
yl

oa
d

pa
ck

et
pa

ck
et

m
es

sa
ge

(a)

(b) (c)

PH
PH

M
H

address

Figure 2.5: Æthereal flit format (a), message format (b) and example of packetized message (c).

Messages are sent over the router network using packets. Packets can contain one, more than

8 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

one or only a part of a message. A packet consists of a Packet Header (PH) and payload, see
Figure 2.5 c. The packet header has information about the path to be followed by the routers, a
qid (queue id) for selecting the right queue in the receiving NI and credits used for end-to-end
flow control.

Packets exist of a limited number of flits, the smallest data units on which flow control can
be executed. In Æthereal a flit comprises three 32-bit data words each with two sideband bits,
see Figure 2.5 a. The first two sideband bits show whether the flit is empty (00), GT (01) or BE
(10). The second two sideband bits contain the number of valid payload words in the flit. The
last two bits indicate whether it is the last flit of a packet or not.

Current Æthereal implementations have the following properties:

• In 0.13 µm CMOS it runs at 500 MHz and offers a raw link (32-bit) bandwidth of 2 GB/s.

• After giving the communication and architecture requirements the Æthereal NoC is auto-
matically generated with the Æthereal design flow [24, 25].

• It supports real-time communication.

• It is run-time programmable.

2.3 Æthereal Network Interface

The Æthereal network interface [26] implements the interface between the IP core and the router
network. A network interface is composed of a NI kernel and NI shells, see Figure 2.6. Pro-
tocol adapters convert the IP’s port protocol format into the Æthereal message format and vice
versa. The current Æthereal implementation only supports the Philips’ Device Transaction level
(DTL) protocol [27], see section 2.5. In the future protocols like OCP International Partnership’s
Open Core Protocol (OCP) [28] and ARM’s AMBA Advanced eXtensible Interface (AXI) pro-
tocol [29] will be supported as well. Behind the protocol adapters are possibly other NI shells
like multicast or narrowcast shells, depending on the connection type as discussed in the previ-
ous section.

The NI kernel puts request messages coming from the NI shells into asynchronous FIFO’s,
where clock domain crossing (from IP clock to NoC clock) is taking place. It performs round-
robin arbitration on the BE messages to solve contention [22]. After packetization messages
are sent into the network as soon as there is enough space at the other side. This is ensured by
End-to-End Flow Control (E2EFC). E2EFC (used for both GT and BE) is implemented using
credits and a counter which is initiated with the remote buffer size. The counter is decremented
when data is sent and incremented when data is consumed, which is observed by credits coming
back in the PHs, see Figure 2.5 a.

Besides E2EFC, BE traffic also has Link-Level Flow Control (LLFC) to avoid BE buffer
overflow and works in a similar way as E2EFC. GT traffic does not need LLFC because it has
separate GT buffers and resource reservation, using Time Division Multiple Access (TDMA).
So once a GT flit is inserted into the router network it is guaranteed that it hops one router further
each three clock cycles (a flit contains three words and each clock cycle one word is sent) and
need not wait.

Response messages coming from the router network are first depacketized and delivered to
the NI shells which do transaction ordering (only for narrowcast connections) and convert the
message format into the IP’s port protocol format.

c© Koninklijke Philips Electronics N.V. 2006 9

TN-2006-01234 Philips Restricted

P
ro

to
co

l a
da

pt
er

P
ro

to
co

l a
da

pt
er

M
ul

tic
as

t N
ar

ro
w

ca
st

NI Shells NI Kernel

Kernel

Network Interface

Router

IP
Core

IP
Core

NIPs

Figure 2.6: Æthereal network interface, consisting of NI shells and a NI kernel.

2.4 The Æthereal Router

In Æthereal, packets are transported from one NI to another over a network of routers. Routers
use wormhole routing and input queuing and can be connected in any topology, however mesh
is mostly used. Wormhole routing splits packets into flits and each of those flits is sent indepen-
dently over the same channel. Depending on the programming model (centralized or distributed)
the router architecture contains a so called Slot Table Unit (STU) for resource reservation. The
current implementation uses centralized programming as NoCs are expected to stay relatively
small over the next few years. As a result there is no STU in the routers and the area is reduced
by about 30% [26] at the expense of introducing headers for GT traffic (source routing).

rabssorC
hctiws

stekcaP

wolF
lortnoc

ataD ataDeueuqEB

eueuqTG

redaeH
gnisrap

tinu

redaeH
gnisrap

tinu

redaeH
gnisrap

tinu

eueuqEB

eueuqTG

eueuqEB

eueuqTG

…

…

wolF
lortnoc

rellortnocdnaretibrA… …

… …

Figure 2.7: Router architecture when using a centralized programming model (Source: [30]).

10 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Figure 2.7 shows the router architecture as implemented in Æthereal [30]. From packets
coming into the routers, first the PH is examined to see what the destination is and which type of
traffic it is (GT or BE). Then flits are put into the right FIFO’s. BE queues can contain eight flits
and GT queues only one (more is not necessary because GT flits need not be queued). The arbiter
and controller then determine, using the PH information and incoming LLFC information, which
flits are switched onto which links.

2.5 DTL Protocol

DTL is Philips’ communication protocol for busses and NoCs. It can be used by a DTL initiator
and a DTL target, see Figure 2.8. In the producing IP core there is a DTL initiator communicat-
ing with a DTL target, which is the protocol adapter in the NI in Figure 2.4. This DTL target is
communicating with a DTL initiator in the receiving NI, which is connected to a DTL target in
the consuming IP core.

As can be seen, there are a number of groups of signals. The most important are the com-
mand, write and read groups. Each of these three groups uses handshaking. As soon as one port
indicates valid data and the other port accepts, there is a transfer.

DTL supports four types of application:

• Memory Mapped Input/Output (MMIO): used for status and control type of communi-
cation (low bandwidth, but may be latency critical). MMIO ports only support single
element transfers.

• Memory Mapped Block Data (MMBD) flow: used to move blocks of data between an IP
core and memory (both bandwidth and latency critical)

• Memory Mapped Streaming Data (MMSD) flow: used to move data between IP cores and
memory (bandwidth critical and latency is less important). The stream is a sequence of
commands transferring single elements.

• Peer to Peer Streaming Data (PPSD) flow: used to move data between two IP cores (band-
width is more critical than latency). The stream typically includes many elements.

Further details about the DTL protocol can be found in [27].

c© Koninklijke Philips Electronics N.V. 2006 11

TN-2006-01234 Philips Restricted

© Koninklijke Philips Electronics N.V.

Status: Approved 14 February 2005 11 of 48

Philips Semiconductors Device Transaction Level

DTL Protocol Specification

Notes:

1. The values of the parameters a, b, c, e, and n are not specified. However, the parameters b, c,
and n are related. For example, when n is 31, b must be 3 and c must be 1.

err_wr Target Error During Write

The target informs the initiator that an error has occurred during a write operation using the err_wr
signal. This signal is active for one clock cycle and cancels all pending commands and data
phases. The err_wr signal may not be asserted before the command transfer (cmd_valid/
cmd_accept high) or after the last data element reaches the destination. For ports with no write
buffer (e.g. MMIO), the err_wr signal can only be asserted during command transfer. See
Section 4.7 on page 25 for additional information.

This signal is not used in read-only DTL ports.

abort_all Initiator Abort All Transactions and Reinitialize

This signal causes the initiator and target to abort all outstanding transactions. Previously trans-
ferred data may be discarded by the target. The initiator must drive cmd_valid, wr_valid,
rd_accept, tag, and flush all low whenever abort_all is driven high.

Figure 2: Example DTL Connections

Table 1: Signal Definition

Name Driver Description

dtl_p1_clk

dtl_p1_rst_an

dtl_p1_cmd_valid

dtl_p1_cmd_accept

dtl_p1_cmd_addr[]

dtl_p1_cmd_trans

dtl_p1_cmd_read

dtl_p1_cmd_block_size[]

dtl_p1_cmd_data_size[]

dtl_p1_cmd_rd_mask[]

dtl_p1_wr_valid

dtl_p1_wr_accept

dtl_p1_wr_data[]

dtl_p1_wr_mask[]

dtl_p1_rd_valid

dtl_p1_rd_accept

dtl_p1_rd_data[]

dtl_p1_rd_last

dtl_p1_tag

dtl_p1_flush

dtl_p1_tag_ack

dtl_p1_err_rd

dtl_p1_err_wr

dtl_p2_clk

dtl_p2_rst_an

dtl_p2_cmd_valid

dtl_p2_cmd_accept

dtl_p2_cmd_addr[]

dtl_p2_cmd_trans

dtl_p2_cmd_read

dtl_p2_cmd_block_size[]

dtl_p2_cmd_data_size[]

dtl_p2_cmd_rd_mask[]

dtl_p2_wr_valid

dtl_p2_wr_accept

dtl_p2_wr_data[]

dtl_p2_wr_mask[]

dtl_p2_rd_valid

dtl_p2_rd_accept

dtl_p2_rd_data[]

dtl_p2_rd_last

dtl_p2_tag

dtl_p2_flush

dtl_p2_tag_ack

dtl_p2_err_rd

dtl_p2_err_wr

clk rst_an

DTL Initiator DTL Target

Command
Group

Write
Group

Read
Group

Error/Abort
Group

System
Group

Buffer
Management

Group

dtl_p1_abort_all dtl_p2_abort_all

dtl_p1_wr_last dtl_p2_wr_last

Figure 2.8: DTL signals (Source: [27]).

12 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 3

Debug

This chapter starts with an introduction to silicon debug in general (3.1). Subsequently a debug
strategy (3.2) and debug requirements (3.3) are given for the debugging of SoCs using NoCs.

3.1 Introduction

When designing complex Integrated Circuits (ICs), different types of errors can occur during the
design stages. Figure 3.1 shows for each design phase (in the middle) which errors can occur
(on the left) and which verification techniques help to find them (on the right).

manufacturing errors

undetected design &
manufacturing errors

undetected
design errors

design errors simulation,
formal methods

high level
source

synthesis errors
(e.g. timing, logic)

simulation, formal methods,
timing verification

gate-level
netlist

design rule
violations

DRC (Design Rule Checker),
LVS (Layout Vs. Schematic)

layout

manufacturing test

debug

Figure 3.1: Digital design flow (Source: [31]).

However despite all these verification techniques more than 40% of the current IC designs
contain design and/or manufacturing errors in the prototype [31]. The reason is that the pre-
silicon verification methods are applied to a model of the IC. It is not possible to model the

c© Koninklijke Philips Electronics N.V. 2006 13

TN-2006-01234 Philips Restricted

complete, physical behavior, because of the associated computational costs. Errors that are in
the prototype IC must be found as soon as possible because of time-to-market pressure. Design-
for-Debug (DfD) assists in finding errors in the failing prototypes more quickly.

An error is mostly detected when the IC is on an application board. To find the error, a debug
engineer would try to reproduce the error on a tester. There it is a lot easier to stimulate the IC
and record responses than when it is on an application board (in-situ). It is also hard to create
deterministic behavior on an application board. So to efficiently debug and decrease debug-time-
to-root-cause, controllability and internal observability are of great importance. DfD is used to
improve these aspects for both tester-based and in-situ debug.

To find the physical location and the location in time of an error, the state of the IC over time
must be known. The observed values of the memory elements (e.g. flipflops, registers, memo-
ries) can then be compared with expected values from a golden reference. There are two ways
of observing the memory elements, time-intrusive observability and real-time observability [31].
Often a combination of both is seen.

With real-time observability internal signals are captured at-speed through external pins or in
an on-chip trace memory. Examples are Philips’ SPY method [32] and DAFCA’s Logic Debug
Module [11]. The advantage is that a selected group of signals can be observed just as in pre-
silicon simulation. The disadvantage is that it is only for a selected group and not for all signals.
Also it is costly in terms of effort (selecting useful signals and how many), area (multiplexers
and trace memories) and chip-pins.

With time-intrusive observability the state of (part of) the IC can be captured, but only after
stopping the application. Widely used is scan-based observability. After stopping the clocks of
(part of) the IP cores, the state of the IC can be read out by reusing the scan-chains, inserted for
manufacturing test. With this method the contents of all scannable flipflops and scan-accessible
memories can be obtained. The advantage of scan-based observability is that it is not too costly,
because scan-chains can be reused as well as the Test Access Port (TAP). The disadvantage is
that it only takes a snapshot of the state. So to know what happened in the IC, multiple snapshots
must be made, which can be time consuming.

A typical scan-based debug flow is shown in Figure 3.2. After the application is reset,
the breakpoints in the IC are programmed. Then the IC is reset and in functional mode until
a breakpoint stops the clocks. Using the TAP the state can be dumped in an off-chip memory,
where it will be analysed by debugger software. This process is repeated until the error is located
in time and place.

3.2 Debug Strategy for SoCs using NoCs

Networks-on-chip allow for communication-centric debug in addition to the traditional core-
based debug. Communication-centric debug speeds up the localization of the IP core which
causes the error and the point in time it occurs. A debug strategy for SoCs using NoCs is shown
in Figure 3.3.

An error becomes visible at the IC pins, from where it must be traced back to the root cause.
IC pins are either connected to an IP core or to the NoC. For each case there are two scenarios:

• An error is observed on an IC pin connected to the NoC. Examine all connections related
to this pin and find out that either:

1. the NoC causes the error itself, or
2. the NoC gets erroneous data from a certain IP core.

14 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

application reset

program breakpoints

wait until
breakpoint hit

reset chip

access registers

done

Figure 3.2: Traditional scan-based debug flow (Source: [31]).

• An error is observed on an IC pin connected to a certain IP core. Examine all connections
with this IP core and find out that either:

3. the IP core causes the error itself, or
4. the IP core gets erroneous data from the NoC (find out whether it is scenario 1 or 2).

As can be seen the NoC will be examined first to determine whether it causes the error itself
and if not which IP core does. Once the malfunctioning IP core (NoC included) is found it can
be debugged with its built-in debug hardware (traditional core-based debug).

The big advantage of NoC is that it can raise the level of examination from bits to packets,
messages or transactions. This makes it a lot easier to interpret what happens inside the IC. It
also offers the possibility to compare it with a hardware-software co-simulation of the applica-
tion, because at the lowest levels of software design abstraction, also Transaction Level Models
(TLMs) are used [33].

3.3 Debug Requirements for SoCs using NoCs

A recent paper [13] shows that it is possible to automatically insert monitors with the Æthereal
design flow, covering 100% of the channels. Each monitor is connected to a router and can select
one of its links at a time and has four abstraction levels, called analyzer modes. These modes
are physical raw, logical connection-based, transaction-based and transaction event-based [14].
An Æthereal NoC with a NoC Monitoring Service (NoCMS), to be used for transaction level
debug, has an average area overhead of 15% [13].

As discussed in the previous section, a debug session mostly starts by examining particular
connections of the NoC. The monitor presented in [14] is very useful for this purpose. It can

c© Koninklijke Philips Electronics N.V. 2006 15

TN-2006-01234 Philips Restricted

ERROR DETECTED

ERROR LOCATED

NoC is OK? IP is OK?

Expect the fault to be
(visible) in the NoC

Expect the fault to be
in a certain IP

Error found
in the NoC

Error found
in an IP

Search for faulty behavior
 in/of the NoC

Search for faulty behavior
 in a certain IP core

Try another IP
 or NoC?

Error must be
in an IP

NoC

No

Yes

No

Yes

IP

Figure 3.3: Debug strategy for SoCs using NoCs.

in real-time compare connection data with a hardware-software co-simulation. However there
are some restrictions which make the NoCMS not sufficient to completely rely on for debug of
SoCs using NoCs. These restricitons are:

• Monitors are not suitbale for observing internal router and NI state information.

• Monitors must be programmed via the network, so they cannot be used for initialization
problems or when the network or monitor configuration is broken.

• Monitors can only observe one link per router at a time.

• Monitors are not capable of sending raw link data real-time [14].

There are also some possibilities introduced by communication-centric design, which are not
supported by monitors:

• NoC makes it possible to stop IP cores and the NoC itself on well defined points in time,
by stopping on transactions instead of clock cycles.

• NoC can assist in IP core debugging by controlling the input data from the NoC.

To support the above-mentioned features time-intrusive debug methods are needed in addi-
tion to the monitors. This implies stopping the operation (3.3.1), dumping and recovering state
information (3.3.2), and single stepping and continuing operation (3.3.3).

16 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

3.3.1 Stop Operation

Traditional debug stops after a number of clock cycles or e.g. after a certain address has passed a
number of times. NoC allows for stopping on transactions which has the following advantages:

• Both NoC and IP cores stop in a well defined state.

• It is easier for a debug engineer to determine where to stop using the software’s TLM.

• It is more robust in non-deterministic systems, where the point of time a transaction occurs
can vary.

NoC separates all IP cores from each other and uses handshaking to communicate with them.
By suppressing the valid and accept signals making up the handshake, the NoC will not accept
data from IP cores or deliver data to IP cores. This stops the NoC functionally (i.e. it comes
in some kind of idle mode, no data flow) so that its state can be dumped. The IP cores are still
running in the meanwhile, with the exception that they cannot communicate with the network.
After the NoC state is dumped, the valid and accept signal suppression can be removed and the
application continues in a valid way.

Note that when only the clock of the NoC is stopped, the valid and accept signals keep their
value. The consequence is that IP cores mistakenly assume that the NoC is producing valid
data (when the valid signal was high) or it is accepting data (when the accept signal was high).
This can result in loss of data coming from the IP cores and insertion of erroneous data into the
IP cores. Therefore the above-mentioned method of supressing valid and accept signals at the
border of the NoC is a prerequisite.

With the proposed stopping method, data in the NoC first ripples to the output buffers before
it is functionally stopped. Clockgating can be applied in addition to stop the NoC more accurate.

3.3.2 Dump and Recover State

There are two possiblities to dump and recover the state of the NoC: (1) by scan chains (using
IEEE 1149.1 also Joint Test Action Group (JTAG)) or (2) by using the network itself (e.g. by
sending it to the Monitoring Service Access (MSA) point). The disadvantage of using scan
chains is that it is slow, typically they are read out serially at 10 MHz. Advantages of scan
chains are:

• It is a known technique.

• Scan chains must be inserted for test anyhow.

• Most IP cores use it already, so the TAP and infrastructure are already available.

• The JTAG port is also accessible when the IC is on an application board.

• It is supported by debugger tools.

• Not too much effort is needed to implement it.

The advantage of using the network itself is that it is fast, however it is not suitable for
initialization problems and broken networks. It also needs quite a lot of effort with regard to the
implemention:

c© Koninklijke Philips Electronics N.V. 2006 17

TN-2006-01234 Philips Restricted

• There must be an instance that controls the emptying (and recovering) of the FIFO’s.

• The debugger tools must have an algorithm to be able to reconstruct the bits.

• Hardware must be added to lead the FIFO data back onto the network.

• For all remaining memory elements still a scan chain like solution is needed.

• What kind of output ports (64-bit, 32-bit etc.) should be supported?

So the only reason not to choose for scan chains would be if speed is really a bottleneck. An
example will show if this is the case.

As an example we take the Nexperia TM PNX8525 chip, with 48 top-level design blocks [32].
To make an estimation of the time needed to scan out a NoC scan chain, we need to know the
number of scannable elements in the NoC. Because FIFO’s in the NIs and routers dominate this
number, only the number of channels is needed. Paper [13] discusses two real examples, a video
and an audio application.

The video application has 15 processing cores and 42 channels. The audio application has
18 processing cores and 66 channels. We use this to estimate the number of channels needed
when using NoC for the PNX8525:

(48 / (15 + 18)) * (42 + 66) = 157 channels.

Each channel contains a 32x32-bit FIFO at each NI (input and output buffer), whether BE or
GT. Each router on the channel has a 3x34-bit FIFO for GT and a 24x34-bit FIFO for BE. Say
half of the channels is BE, then (24x34 + 3x34) / 2 = 14x34 bits are on average per router in a
channel. Using the different designs from [13], the router network needed for the Nexperia TM

PNX8525 can be estimated on a 3x3 mesh, so say 3 routers on each channel. This makes the
total average number of FIFO-bits per channel:

(32x32 x 2) + (14x34 x 3) = 3476 bits

With a debug clock of 10 MHz it would take (3476 x 157) / 10,000,000 = 0.05 s.

Even though only the FIFO’s were taken into account, from this example one can conclude that
a lack of speed of scan chains is not an issue in the near-future.

3.3.3 Single Step and Continue Operation

Traditional single-stepping is applied at a clock cycle level. When in debug mode, one debug
clock pulse steps the logic one cycle further (when shift enable is deactivated) [31]. This feature
is very useful to observe where exactly an error occurs and is easily implemented with JTAG.

NoC introduces the possibility to step on more abstract levels, like flits, packets, messages
and transactions. This can be done by reprogramming the breakpoints and then resume opera-
tion. When a new breakpoint is hit the NoC will stop again and a new snapshot of the NoC state
can be taken.

Resuming operation is done by resetting the bits of the state machines which suppress the
valid and accept signals during state recovery. These include the state machines of the routers
(must be resetted from 11 to 00) and the state machines in the protocol adapters (must be resetted

18 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

from 10 to 00). After the state recovery, the functional clock is put back and the IP cores
can initiate and receive transactions again. It is also possible to let only a selective number of
channels continue, see Figure 3.4. A variantion on this is to only release the valid and accept
signals of the MNIP and not of the SNIP and vice versa. In this way only data is coming into
the network or going out of the network.

A8 A7 A6 A5 A4 A3 A1

router
network

receiving
NI

sending
NI

NoCIP IP

1st stop, channel A

1st stop, channel B

2nd stop, channel A

B10 B9 B8 B7 B6 B5 B3

2nd stop, channel B

A8 A7 A6 A5 A4 A3 A1

B16 B15 B14 B13 B12 B11 B9

sn
ap

sh
ot

 1
sn

ap
sh

ot
 2 A2

A2

B4

B10

stream of messages

Figure 3.4: An example of connection-based transaction level stepping. A NoC consisting of
two channels (for simplicity) is stopped when messages A1 and B3 have finished. Messages
A2-A7 and B4-B9 are in the NoC at that moment and can be dumped (snapshot 1). Next, only
the valid and accept suppression of channel B is released and a monitor is programmed to stop
the NoC after six messages have passed on channel B. Consequently channel B is resuming
operation and channel A is not. After the six messages on channel B have passed the NoC is
stopped and dumped (snapshot 2).

c© Koninklijke Philips Electronics N.V. 2006 19

TN-2006-01234 Philips Restricted

20 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 4

Debug Architecture Design

This chapter starts with an overview of the design (4.1). Next the choices made to come to this
design are treated (4.2). A new debug component, called stop module, is presented (4.3) and the
last section discusses the core-based scan architecture (4.4).

4.1 Overview

Router
1

Network
Interface
kernel 2Core 2

Port 2
BP-TPR Router

2

Core 1

BP-TPR Port 1
Network
Interface
kernel 1

NoC

Monitor 2

Monitor 1

Stop
Module

2
Delay

Forced
Stop TPR

IP core
Stop TPR

Stop
Module

1Forced
Stop TPR

IP core
Stop TPR

Delay

Clock Control
TPR

BP Gen
TPR

BP Gen
TPR

TAP
Controller

Breakpoint
TPR

OR-Gate

OR-Gate

Figure 4.1: Overview of the debug architecture.

Figure 4.1 shows an overview of the debug architecture design. It is a NoC of only two routers
and NIs to keep it simple. Everything that is black has been added to the original design. The
monitors are the monitors treated in [14] with additonal breakpoint hardware, see section 4.2.

c© Koninklijke Philips Electronics N.V. 2006 21

TN-2006-01234 Philips Restricted

The stop module is a component which takes care of the distribution of a breakpoint signal and
is treated in section 4.3. The TAP controller can insert a breakpoint signal into the NoC just like
the monitors. The delay insertion inside the NI is discussed in section 4.2.

All Test Point Registers (TPRs) are programmed (using scan) or read (only the breakpoint
TPR) by the TAP controller. The breakpoint TPR is used to observe a breakpoint hit via JTAG.
The BP Gen TPR is used to program the breakpoint hardware inside the monitor. The Forced
Stop TPR indicates whether the message that is on its way must be finished or not when a
breakpoint signal arrives. The IP Core TPR indicates whether the connected IP core clock must
be stopped or not when a breakpoint signal arrives. The OR-gate combines the stop signal
coming from the NoC with the one from the BreakPoint TPR (BP-TPR) of the IP core itself.
The resulting signal goes to the Clock Control TPR (CC-TPR), which controls all clocks on the
IC. This CC-TPR and the TAP controller are discussed in section 4.4.

4.2 Choices

4.2.1 Introduction

Based on the information of the previous chapter, the decision was made to stop the NoC by
means of suppressing the valid and accept signals of the handshakes between NoC and IP cores.
For dumping the state of the NoC scan chains are chosen.

The handshakes between NoC and IP cores take place on the NIPs as seen in Figure 2.6. On
the NoC side these NIPs are connected to the protocol adapters in the NIs. In order to disrupt
a handshake, the valid and accept signals going from the protocol adapter to the IP core must
be deasserted. When the IP core wants to send/receive data but does not receive an accept/valid
signal, there is no transfer.

To stop the whole NoC functionally, all protocol adapters must be aware of a breakpoint hit.
The breakpoint signal must traverse the NoC to all NIs (which contain the protocol adapters).
However, first the place of the breakpoint hardware must be determined.

Inside the monitors seems the perfect place for the breakpoint hardware, because they have
100% channel coverage [13] and can abstract link data on different levels (needed for transaction-
based stopping and stepping).

4.2.2 Stop Signal Distribution

To get the breakpoint signal (also called stop signal, a pulse of one clock cycle on the stop wires)
to the NIs there are two possibilities: centralized or distributed. A centralized unit sending the
stop signal to all protocol adapters is not scalable and it is not obvious in a network which is
distributed by nature. A dedicated interconnect is added for the stop events instead of using the
network itself, because in the latter case the stop events might arrive too late at the NIs and the
triggered event will be outside the NoC already.

The stop signal coming from the breakpoint hardware inside a monitor (either attached to
a router or a NI) must be distributed to all NIs. One possibility is to put extra wires between
neighbouring router and NI devices. Another possibility is to reuse the LLFC lines, as they are
unused when the first and second word of a flit are sent. However extra wires have the following
advantages compared to the latter option:

• Extra wires would probably have lower area overhead than the logic needed to reuse the
LLFC wires (both must be implemented and synthesized to be sure).

22 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

• The stop signal can be distributed three times as fast as a flit, because a flit needs three
clock cycles to hop to another neighbour and the stop signal only one clock cycle. When
using the LLFC wires this would be two times as fast, as the third cycle of a flit is used
for LLFC itself.

• The monitor has one clock cycle more to generate the stop signal in worst case. This is
because in worst case (shown in Figure 4.2) the stop signal cannot be sent in the third
cycle of a flit when using the LLFC wires. With extra wires this is possible though.

In order to keep as much as possible unchanged of the current design, it is better not to add
the extra wires between the routers and network interfaces. Instead, a separate network with
the same topology as the router network is used to distribute the stop signal. The distribution is
accomplished by stop modules positioned near all routers.

Although monitors can be attached to NIs it is assumed they are only attached to routers [13].
Figure 4.2 shows that this solution is feasible for even the worst case scenario. This is when is
triggered on the 3rd word (W3) in a flit. To keep this within the NoC, the generation of the
breakpoint may take 2 and a part of the third cycle, which must be sufficient. The part of the
third cycle is because the stop module will be close to the monitor and not much time is needed
to send over the stop signal.

clk
router_data_in

NI_kernel_data_in
W1 W2 W3

W1 W2 W3
W1 W2 W3
W1 W2 W3

protocol_adapter_data_in
IP_core_data_in

breakpoint generation time
stopmodule_stop_in

NI_kernel_stop_in
protocol_adapter_stop_in

1 2 3 4 5 6 7 8 9

Figure 4.2: Worst case breakpoint generation time. This is when a monitor needs to trigger on
the last word of a flit (W3). Processing of the monitor can begin as soon as W3 arrives (cycle 4).
As in worst case W3 (which must be kept inside the NoC) goes into the IP core in cycle 9, the
stop signal must arrive at the protocol adapter in cycle 8 to be in time. Tracing back shows that
the stop signal must be asserted by the monitor in cycle 6. This however, can be done at the end
of this cycle because monitor and stop module will be close to each other in the floor plan. This
results in a breakpoint processing time for the monitor of a little more than 2 clock cycles.

A clocked delay of the stop signal in the NI kernel is chosen to follow the network properties.
Not implementing this delay would impose layout restrictions, because then the NI shells must
be closer to the routers than they can be now (or the maximum clock frequency will go down).
This is because the longest wire determines the maximum clock frequency.

c© Koninklijke Philips Electronics N.V. 2006 23

TN-2006-01234 Philips Restricted

4.2.3 Protocol Adapter

When the stop signal finally arrives at the protocol adapters, it depends on the Forced Stop TPR
and the IP core Stop TPR what happens. The idea is to let messages finish which are on their
way. In the protocol adapter it is easy to recognize when a message has ended, because then
the statemachine returns to the initial state where it waits for a new message. As soon as the
protocol adapter is in this state the valid and accept signals must be suppressed.

However it can take a while before all protocol adapters are in their initial state. There
are two reasons why messages which are on their way can take a long time to finish: (1) the
messages are big (e.g. when using MMBD) or (2) the supply of information by the initiating IP
core is slow.

To be sure that the whole NoC is functionally stopped we use a second stop signal which is
sent by JTAG. The 1st one can also be sent by JTAG, however this is of course far less accurate
than the use of monitors, but can be helpful when something is wrong with them.

It is not possible to know when all transactions have finished because of the second of above-
mentioned problems. Because this cannot be verified by the NoC either the second stop signal
is sent when it can be reasonably assumed that most transactions are finished. This is up to the
debug engineer.

The 2nd stop signal uses the same infrastructure as the 1st stop signal. Once the 2nd stop
signal is received in the protocol adapters the valid and accept signals are suppressed, even when
the transaction did not finish.

Because we use two stop signals we let receiving protocol adapters stop after the 1st stop
signal when the transaction is finished. However, sending protocol adapters are only stopped at
the 2nd stop signal. Thus data can get into the NoC but cannot go out of the NoC after the 1st
stop signal and the transaction has finished. After the second stop signal data can neither go into
or out of the NoC. After all data inside the NoC rippled to the other side, the NoC is functionally
stopped.

The 2nd stop signal is called a forced stop signal, however the 1st stop signal can also be
used as a forced stop signal depending on the value of the Forced Stop TPR. In this way the
traffic on a channel can be frozen within a few clock cycles after the breakpoint hit.

Until now only the request channels were discussed, because there are no message headers
in the response messages. In the future there will be, but now the signal rd_last is used, as seen in
Figure 2.8. This signal indicates that the word on rd_data is the last word of a response message.
The stopping of the response channel is done in the same way as the request channel.

The IP core Stop TPR is used to stop the clock of an IP core when there is a suspicion about
an error in that IP core during a certain transaction (or other moment in time). As soon as the
valid and accept signals are suppressed (which depends on the Force Stop TPR, how many stop
signals are received and whether the transaction is finished) the signal going to the OR-gate will
be asserted.

4.3 Stop Module

The stop modules take care of the distribution of the breakpoint signal and the 2nd (forced stop)
signal. There are two types of stop modules, a master stop module and a slave stop module.
Both types have, besides a clock and reset signal, N stop signal inputs and outputs from and to
all neighbour devices (routers and NIs). Both types can have a stop input signal coming from
a monitor. Only the master stop module has the incoming JTAG stop signal and the outgoing
breakpoint signal to the Breakpoint TPR. Figure 4.3 shows a master stop module with monitor

24 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

stop signal. This stop module is used everywhere, however signals not available at a certain place
are connected to ’0’. This is easier to implement in the design flow at hand, than to generate a
lot of different stop modules.

The jtag_stop, monitor_stop, stop_in and stop_out signals are considered as active-high
pulses of one clock cycle. The breakpoint signal is active-high and stays active after the 1st
stop signal is received (this signal is polled by JTAG). Reset is, just like all other reset signals in
Æthereal, active-low. The clock signal is the same as the one from the NoC.

Master
Stop Module

clk
rst

jtag_stop
monitor_stop

stop_in_0
stop_in_N

stop_out_0

stop_out_N

breakpoint

Figure 4.3: Master stop module with monitor stop signal, where N is the number of neighbouring
devices (routers and NIs).

There are a few requirements which must be satisfied by the stop modules:

1. All NIs must get both stop signals.

2. The distribution of the stop signal must behave like a wave in one direction (so the 1st
stop signal can never be interpreted as the 2nd stop signal).

3. Only JTAG can initiate the 2nd stop signal.

4. Multiple breakpoints may hit in time and place, but may never cause a 2nd stop signal.

The conditions are:

1. Neighbouring stop modules are at a time distance of one clock cycle.

2. The JTAG stop signal is only attached to one stop module and used to inititate the 2nd and
possibly the 1st stop signal.

3. Protocol adapters will not react on stop signals sent after the first two stop signals.

The statemachine shown in Figure 4.4 satisfies the above-mentioned requirements with respect
to the conditions:

1. The statemachine only reacts in state 00 and 11 to an incoming stop signal.

2. Only after the transitions 00 -> 01 and 11 -> 00 a stop signal can be sent.

3. The time distance condition of one clock cycle guarantees that neighbours are either in the
same state or, lag or follow at one clock cycle (proof of requirement 1). So when in state
11, it is not possible to get a stop signal from neighbouring stop modules that are also in
state 11 or in state 10. State 00 can only be a neighbour if JTAG initiated the second stop
signal.

c© Koninklijke Philips Electronics N.V. 2006 25

TN-2006-01234 Philips Restricted

00 01

11 10

!reset
jtag_stop OR stop_in

!(jtag_stop OR stop_in)

!(monitor_stop OR jtag_stop OR stop_in) stop_out <= ‘0’

monitor_stop OR jtag_stop OR stop_in stop_out <= ‘1’

1

2
1

2 3

3

stop_out <= ‘0’

4 stop_out <= ‘1’

4 Wait for 1st stop signal.00

01

10

11

Send a stop signal.

Do nothing.

Wait for 2nd stop signal.

Figure 4.4: State machine of the stop modules, where stop_in is the logical OR of all N neigh-
bouring input stop signals and stop_out the output signal going to all N neighbouring devices.

4. After the distribution of the 1st signal all stop modules end up in state 11. The second
signal can only be initiated by JTAG because the stop modules are not sensitive to the
monitors in state 11 (proof of requirement 3).

5. With multiple breakpoint signals in place and time, there are two ways waves can collide
as shown in Figure 4.5. The waves either collide inside a stop module (a) or within two
modules (b). In both cases the stop signal is only going into the direction(s) where it has
not been (proof of requirement 2 and 4).

10 01 10

00

10 01 10

00

01

00

(a) (b)

Figure 4.5: Two ways how stop signal waves can collide. (1) in a stop module (a), former clock
cycle one stop signal came from the left and one from the right. The middle stop module now
sends a stop signal to all its neighbours (grey arrows), however the left and right stop module are
immune (because they are in state 10) so the wave continues only south. (2) in between two stop
modules (b), former clock cycle one stop signal came from the left and one from the right. The
middle two stop modules send a stop signal to all their neighbours, however as all four upper
stop modules are in state 10 or 01 they are not sensitive for input stop signals. So again the wave
only continues south.

26 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

6. The second stop signal, initiated by JTAG, is distributed almost in the same way as the
1st stop signal. However it causes a third stop wave too, before all stop modules end up
in state 11 again (11 -> 00 is the second and 00 -> 01 is the third stop signal wave). This
third stop signal is not a problem according to condition 3.

All this is visualized with a timing diagram in Figure 4.6 and an example in Figure 4.7.

clk
state 01 1000 11 00 01 10 11

jtag_stop
monitor_stop

stop_in
stop_out

Figure 4.6: Timing diagram of a stop module, depending on the stop module one of the gray
signals per column is used. When in state 00, the signals jtag_stop, monitor_stop and stop_in
are equivalent with respect to the behaviour of a stop module. The same counts for the signals
jtag_stop and stop_in in state 11.

00 00

00 00

NI
0

NI
0

01 00

00 00

NI
0

NI
0

10 01

01 01

NI
1

NI
0

11 10

10 10

NI
1

NI
1

11 11

11 11

NI
1

NI
1

11 11

00 11

NI
1

NI
1

00 11

00 00

NI
1

NI
1

00 00

01 00

NI
2

NI
1

01 00

10 01

NI
2

NI
2

10 01

11 10

NI
3

NI
2

11 10

11 11

NI
3

NI
3

11 11

11 11

NI
3

NI
3

JTAG

BP

BP

1 2 3 4 5 6

7 8 9 10 11 12

Figure 4.7: Example of the stop signal distribution for a 4x4 router network with two NIs. The
number inside the NIs is the number of received stop signals. The dark grey routers are sending
a stop signal to their neighbours. In the first cycle a stop signal from a monitor is coming into
the upper left router, which initiates the 1st stop signal. The second cycle a stop signal from a
monitor goes into the bottom right router, however this cannot initiate a second stop signal. In
cycle 5, all routers received and sent one stop signal and are in state 11. The second stop signal
is then initiated by JTAG, which is connected to the bottom left router. Subsequently the routers
make one more round of the state machine, causing two stop waves.

c© Koninklijke Philips Electronics N.V. 2006 27

TN-2006-01234 Philips Restricted

4.4 Core-based Scan Architecture

Figure 4.8 shows the core-based scan architecture used within Philips. Via de IEEE 1149.1
compliant TAP and the TAP controller test and debug of IP cores on an IC is done. Most cores
have a BreakPoint Test Point Register (BC-TPR) which generates a breakpoint signal that goes
to the Clock Control Test Pointer Register (CC-TPR). This CC-TPR is also shown in Figure 4.1
and can turn off the IP core clocks (or clock domains).

Each core has a Test Control Block (TCB) which is used for core isolation for manufacturing
test. The Access Control Test Point Register (AC-TPR) is used for debug to select scan chains
in the IP core to be scanned out via the output pin of the TAP.

clock
generator

core 1 core 2

IEEE
1149.1
TAP

TAP controller

TCB TCB

TCB

CC-TPR

AC-TPR AC-TPR

BP-TPR BP-TPR

debug shell debug shell
test shell test shell

Figure 4.8: Core-based scan architecture (Source: [12]).

28 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 5

Debug Architecture Implementation

This chapter starts with an overview of the implementation of the core-based scan architecture
(5.1). Subsequently the implementation of the debug harware inside the clock control slice (5.2),
the breakpoint hardware (5.3), the stop module (5.4) and the protocol adapter (5.5) is provided.

5.1 Overview

IP Stop
TPR

IP Stop
TPR

Force Stop
TPR

Force Stop
TPR

BP Hardware
TPR

BP Hardware
TPR

rdt_small_chip_bs_tb
rdt_small_chip_bs

rdt_small_chip

TAP
Controller

tck
trst_n

tms
tdi

tdo

tcb_enable
tcb_update
tcb_hold
tcb_tdo

tpr_enable
tpr_update
tpr_capture
tpr_hold
tpr_tdo

Traffic Generators

rdt_small_core

TCB

CCS

jtag_stop

dbg_clock_req

dbg_so

tdi

tck

tpr_bypass
tpr_config

tpr_se

dbg_stop_req

tcb_clock_mode

rdt_small_network

[1..0]

Reset Generator

Clock Generator
clk_func_outclk_func_in

rst_n

Breakpoint
TPR

Stop
Module

break_point

Force Stop
TPR

IP Stop
TPR

BP Hardware
TPR

Figure 5.1: Overview of the implementation of the core-based scan architecture.

Figure 5.1 shows the implementation of the core-based scan architecture within the Æthereal
design flow. Two more hierarchy levels were added: rdt_small_chip, and rdt_small_chip_bs

c© Koninklijke Philips Electronics N.V. 2006 29

TN-2006-01234 Philips Restricted

(small is the name of the example used). The clock and reset generators as well as the traffic
generators are placed at the chip level. This, because later on the traffic generators will be
replaced by real IP cores, which should be on chip level.

The TAP controller, TCB and TPRs are created with a Philips tool called TimNet after
configuring TimNet files. The Clock Control Slice (CCS) is used to switch between functional
and debug clock and its implementation details are given in section 5.2.

5.2 Clock Control Slice

After the NoC is functionally stopped, the functional clock must be switched off. Next, the shift
enable (also scan enable) signal is asserted and then the debug clock is applied to the NoC to
start shifting out the NoC state. Figure 5.2 shows the implementation of the CCS, which is a
simple version of the one described in [31]. Figure 5.3 shows the timing diagram belonging to
this CCS. In Appendix A the VHDL code is given.

clk_func_in

rst_n

tck

clk_test

dbg_clock_req

dbg_stop_req

tcb_clock_mode[1..0]

func_clk_out
1

0

1

0

rdt_debug_ccs

Figure 5.2: Clock control slice (Source: [31]).

5.3 Breakpoint Hardware

The monitor discussed in [13] has been partially implemented [16]. However there were some
problems synthesizing it. As for this project only very basic programmable breakpoint hardware
was needed, the decision was made not to use it. Instead, the breakpoint hardware shown in
Figure 5.4 has been implemented.

The counter keeps track of which word of a flit is processed. This is required to determine
which flits and words in flits are valid. If undefined data is processed there might be an un-
wanted breakpoint hit. Next, the data on the link to which the breakpoint hardware is attached
is compared with the monitor_config value, depending on whether the monitor is enabled. This
monitor_config signal is coming from the BP Gen TPR, as seen in Figure 4.1. The VHDL code
for the debug monitor is given in Appendix B.

30 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

tcb_clock_mode[1]

tcb_clock_mode[0]

dbg_stop_req

clk_func_in

clk_func_out

tck

dbg_clock_req

Reprogramming the TCB

tcb_clock_mode[1]

dbg_stop_req

clk_func_in

clk_func_out

tck

dbg_clock_req

Figure 5.3: Timing diagram of the control clock slice (Source: [31]).

5.4 Stop Module

The VHDL code of the stop module is given in Appendix C. This consists of the state machine of
Figure 4.4, an edge detector for the slow JTAG stop signal and some logic to keep the breakpoint
signal high. The latter is needed because if there would be a breakpoint hit at the moment the
status of the breakpoint TPR is captured, it will be missed. The logic in Figure 5.5 (a) will keep
the signal high once there is a breakpoint hit.

It must be possible to send the 1st stop signal with JTAG (instead of a monitor). However
the debug clock is much slower than the functional clock and thus the jtag_stop signal will be
high for many functional clocks. Normally the signal would then also be used as an unwanted
2nd stop signal. The active edge detector in Figure 5.5 (b) makes a pulse of this signal.

5.5 Protocol Adapter

There are three input signals (ni_stop_in, ni_force_stop_in and ni_ip_stop_in) added to the pro-
tocol adapters. The output signal going to the OR-gate must still be added and generated from
the just mentioned three input signals. When the ni_force_stop_in signal is active, then the valid
and accept signals are suppressed immediately as soon as ni_stop_in becomes active. Otherwise
the valid and accept signals are suppressed after the transaction finished. The VHDL code of the
implementation is given in Appendix D.

c© Koninklijke Philips Electronics N.V. 2006 31

TN-2006-01234 Philips Restricted

clk
rst_n

rdt_debug_breakpoint_gen

link_data[33..32]

monitor_config[32]

monitor_stop

counter

flit validity check

link_data[31..0]
monitor_config[31..0]

word_count

data comparison

valid_flit

Figure 5.4: Simple breakpoint hardware. Monitor_config is attached to a TPR; with bit 32 the
breakpoint hardware can be enabled and bit 0-31 are used to compare with bit 0-31 of link_data.
Bit 32 and 33 of link_data are the sideband bits and are together with a counter used to determine
the validity of a flit. The monitor_stop signal goes to a stop module.

break_point_nxtstop_nxt break_point
jtag_stop_aedjtag_stop_dly

jtag_stop

(a) (b)

clk
stop_nxt

break_point

clk
jtag_stop

jtag_stop_aed

NoC clock NoC clock

Figure 5.5: Once a breakpoint pulse is received by the master stop module, this must be asserted
to the breakpoint capture TPR. The signal going to the capture TPR must stay active (a), because
when it is a pulse it might get lost when the TPR is just being updated. The JTAG stop signal
is active during one debug clock cycle. The debug clock is much slower than the NoC clock.
In order not to send many stop signals into the network, a pulse is made when an active edge
is detected (b). Otherwise it would not be possible to send the 1st stop signal by JTAG without
initiating the 2nd stop signal too.

32 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 6

Results

The presented debug architecture has been fully integrated in the Æthereal design flow (the
changes are presented in Appendix E). That is, it is generated for any topology of the network
and can be switched on with DEBUG_HARDWARE = YES (default: NO) in the makefile of the
example. Another variable in the makefile is JTAG_STOP = RXX, which indicates that the stop
module near router RXX is the master stop module and connected to the TAP controller (default:
R00).

A debug library (rdt_debug_lib) has been added which contains all debug related modules,
such as the TPRs, the stop modules, the TCB, the CCS, the breakpoint hardware and a BFM-
writer. The latter is used to simulate stimuli generated by the debug program Incide. Three scipts
are written for Incide (incide.sh): (1) Incide determines the length of the connected scan chain,
(2) Incide generates stimuli which can be simulated with help of the BFM-writer and (3) Incide
is connected to the design, programs a breakpoint, wait till a hit and dumps the NoC state.

How this all works is indicated in Appendix F. This "getting started" manual explains exactly
which steps must be taken. Basically first a NoC is generated; this is synthesized, next scan
chains are inserted and finally the debug program Incide can be connected to it.

With the second Incide script (see Appendix F) stimuli are generated to program a breakpoint
and send the JTAG stop signal. Figure 6.1 shows the simulation of the breakpoint hit and the
2nd stop signal inititated by JTAG, for the master stop module.

With the third Incide script a statedump is made after a breakpoint hit is detected and the
JTAG signal is sent. The bits that shifted out of the design can subsequently be reconstructed to
their Register Transfer Level (RTL) equivalents (see Appendix F). Figure 6.2 shows the recon-
struction for the memory elements in the stop modules. The states (state_r) are hexadecimal 3,
so binary 11 as they were expected to be. Also the breakpoint signal (break_point_r_reg) is as
expected active (’1’). Figure 6.3 shows two statedumps made with different breakpoints. The
time distance between both statedumps is two packets and not like in traditional debug one clock
cycle.

The added hardware increases the NoC area with about 4.5%. However this number is obtained
by synthesizing with very low effort (no optimal area), but for the flipflop FIFO’s very efficient
ones have been taken into account. Æthereal uses so called mousetrap FIFO’s which are very
small compared to the flipflop FIFO’s. However they are not scannable at the moment, so
these must be made scannable in the future or something must be added to be able to scan
all information out and in again. To get a fair number, synthesis should be carried out with high
effort (this takes a lot of time, which there was not) and then the flipflop FIFO’s must be replaced

c© Koninklijke Philips Electronics N.V. 2006 33

TN-2006-01234 Philips Restricted

Figure 6.1: The master stop module receives a stop signal from two neighbours at the same
time. Next clock cycle it makes the breakpoint signal active and sends a stop signal to all its
neighbours. After a certain time (which is made short now for the overview) JTAG stop is
asserted and the second stop signal wave (and consequently a third) is initiated.

by the efficient ones. Eventually it is assumed to be around 4% of the NoC area. This number
contains all added hardware inside the NoC core, see Figure 4.1.

Main contributors of the debug hardware area are the test point registers (especially the
Monitor Config TPRs, which have thirty-three slices each). The stop module is very small and
the breakpoint hardware is half the size of a Monitor Config TPR.

34 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Figure 6.2: An example of the reconstruction of dumped bits to their RTL equivalents. The states
(state_r) of four stop modules are hexadecimal 3, so binary 11 as expected. The breakpoint signal
(break_point_r_reg) is as expected active.

c© Koninklijke Philips Electronics N.V. 2006 35

TN-2006-01234 Philips Restricted

Figure 6.3: An example of two statedumps of a certain NI FIFO, with a time distance of two
packets. At the moment the first statedump was made, the write pointer was at buf_reg_6.
At the moment of the second statedump the write pointer was at buf_reg_26. In between two
packets (with a blocksize of eight) were written to the FIFO. The values 80000047 and 00000014
indicate the packet header and message header respectively. The other values are the data sent.

36 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Section 7

Conclusions and Future Work

This chapter draws conclusions (7.1) and points out what still needs to be done (7.2).

7.1 Conclusions

Networks-on-Chip emerge as the new type of interconnect for next-generation systems-on-chip.
They overcome the upcoming deep sub-micron effects, the increasing design complexity and the
lack of scalability of busses. However NoCs can also assist in SoC debug as this report shows.

Looking at the communication of SoCs might help the debugging proces of prototype ICs.
Raising the abstraction level from bits to transactions makes it easier to interpret and compare
what happens inside the NoC with a software transaction level model.

The proposed debug architecture and strategy may speed up the localization of erroneous IP
cores and timing errors. Subsequently, the malfunctioning IP core can be stopped at the right
moment using the added breakpoint hardware in the NoC. Using the IP cores’ debug facilities
and the controlled data supply from the NoC side, the error might be found more quickly.

The proposed communication-centric debug solution assists in both NoC and SoC debug. It
has been fully integrated in the Æthereal design flow and increases the NoC area with around
4%. To determine whether it really decreases the debug-time-to-root-cause it must be tested on
e.g. an Field Programmable Gate Array (FPGA). However some things need to be improved and
added first as discussed in next section.

7.2 Future Work

In order to be able to use the proposed communication-centric debug solution, a number of
things need to be done:

• Add an AC-TPR debug shell to support multiple scan-chains.

• Add more advanced breakpoint hardware and integrate it with the debug/performance
monitors.

• Adjust the debugger tools to support easy breakpoint programming, state dumping and
stepping.

• The output signal of the protocol adapters going to the OR-gate must still be added and
generated.

c© Koninklijke Philips Electronics N.V. 2006 37

TN-2006-01234 Philips Restricted

• All TPRs already have dedicated scan-in (tpr-ssi) and scan-out (tpr-sso) terminals. With
the test-data file (.td) these terminals will be used by the scan insertion program. However
synthesis gives all TPR a unique name, so either a test-data file for each TPR must be
generated or this uniquify must be switched off. This switch must still be found.

38 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

References

[1] William J. Dally and Brian Towles. Route Packets, Not Wires: On-Chip Interconnection
Networks. In Proc. of the 38th Design Automation Conference (DAC), June 2001.

[2] Giovanni De Micheli and Luca Benini. Networks on Chip: A New Paradigm for Systems
on Chip Design. In Proc. of the Design, Automation and Test in Europe Conference and
Exhibition (DATE), pages 418–419, Washington, DC, USA, 2002. IEEE Computer Society.

[3] Paul Wielage and Kees Goossens. Networks on Silicon: Blessing or Nightmare? In Proc.
of the EUROMICRO Symposium on Digital System Design (DSD), Dortmund, Germany,
September 2002.

[4] Jörg Henkel, Wayne Wolf, and Srimat T. Chakradhar. On-chip networks: A scalable,
communication-centric embedded system design paradigm. In Proc. of the 17th Interna-
tional Conference on VLSI Design (VLSID), pages 845–851, 2004.

[5] Kees Goossens. Networks on Chip for Consumer Electronics. In Proc. Int’l Summer School
on Advanced Computer Architecture and Compilation for Embedded Systems (ACACES),
pages 227–230, July 2005.

[6] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg, M. Millberg, and D. Lindqvist.
Network on chip: An architecture for billion transistor era. In Proc. of the IEEE NorChip
Conference, November 2000.

[7] Axel Jantsch and Hannu Tenhunen, editors. Networks on chip. Kluwer Academic Publish-
ers, 2003.

[8] Robert D. Mullins. An On-Chip Network Bibliography, 2006.

[9] Arteris. A Comparison of Network-on-Chip and Busses, February 2005.

[10] William Orme. Debug IP for SoC Debug, December 2005.

[11] DAFCA. DAFCA In-Silicon Debug: A Practical Example, June 2005.

[12] Bart Vermeulen, Tom Waayers, and Sandeep Kumar Goel. Core-Based Scan Architecture
for Silicon Debug. In ITC, pages 638–647, 2002.

[13] Călin Ciordaş, Andreas Hansson, Kees Goossens, and Twan Basten. A Monitoring-aware
NoC Design Flow. In Proc. of the EUROMICRO Symposium on Digital System Design
(DSD), August 2006.

c© Koninklijke Philips Electronics N.V. 2006 39

TN-2006-01234 Philips Restricted

[14] Călin Ciordaş, Kees Goossens, Twan Basten, Andrei Rădulescu, and Andre Boon. Trans-
action Monitoring in Networks on Chip: The On-Chip Run-Time Perspective. In Proc. of
the IEEE Symposium on Industrial Embedded Systems (IES), October 2006.

[15] Călin Ciordaş, Kees Goossens, Andrei Rădulescu, Kees Goossens, and Twan Basten. NoC
Monitoring: Impact on the Design Flow. In Proc. Int’l Symposium on Circuits and Systems
(ISCAS), May 2006.

[16] Andre G. Boon. The hardware design of Monitoring Probes for the Æthereal NoC, January
2006.

[17] Călin Ciordaş, Basten, Twan, Andrei Rădulescu, Kees Goossens, and Jef van Meerbergen.
An Event-Based Network-on-Chip Monitoring Service. In Proc. of the High-Level Design
Validation and Test Workshop (HLDVT), pages 149–154, November 2004.

[18] Bart Vermeulen, John Dielissen, Kees Goossens, and Călin Ciordaş. Bringing Commu-
nication Networks On Chip: Test and Verification Implications. IEEE Communications
Magazine, 41(9):74–81, September 2003.

[19] Axel Jantsch and Hannu Tenhunen. Will Networks on Chip Close the Productivity Gap?
In Networks on Chip, chapter 1, pages 3–18. Kluwer Academic Publishers, February 2003.

[20] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. Cost Considerations in Network on
Chip. Integration - The VLSI Journal, Special issue: Networks on chip and reconfigurable
fabrics, 38, Issue 1:19–42, October 2004.

[21] Andrei Rădulescu and Kees Goossens. Æthereal Services, July 2003.

[22] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal Network on Chip:
Concepts, Architectures, and Implementations. IEEE Design and Test of Computers,
22(5):414–421, September-October 2005.

[23] John Dielissen, Andrei Rădulescu, Kees Goossens, and Edwin Rijpkema. Concepts and
Implementation of the Philips Network-on-Chip. In IP-Based SOC Design, November
2003.

[24] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago González Pestana, Andrei
Rădulescu, and Edwin Rijpkema. A Design Flow for Application-Specific Networks on
Chip with Guaranteed Performance to Accelerate SOC Design and Verification. In Proc.
of the Design, Automation and Test in Europe Conference and Exhibition (DATE), pages
1182–1187, March 2005.

[25] Razvan Dinu. Analysis and Refactoring of a Design Flow for Application-Specific Net-
works on Chip, August 2005.

[26] Andrei Rădulescu, John Dielissen, Santiago González Pestana, Om Prakash Gangwal, Ed-
win Rijpkema, Paul Wielage, and Kees Goossens. An Efficient On-Chip Network Interface
Offering Guaranteed Services, Shared-Memory Abstraction, and Flexible Network Pro-
gramming. IEEE Transactions on CAD of Integrated Circuits and Systems, 24(1):4–17,
January 2005.

[27] Philips Semiconductors. CoReUse 4.2: Device Transaction Level (DTL) Protocol Specifi-
cation. Version 2.4, February 2005.

40 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

[28] OCP International Partnership. Open Core Protocol Specification. Version 2.0, September
2003.

[29] ARM Limited. AMBA AXI Protocol Specification. Version 1.0, March 2004.

[30] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Networks on Silicon: Com-
bining Best-Effort and Guaranteed Services. In Proc. of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), pages 423–425, March 2002.

[31] Philips Semiconductors. CoReUse 4.1: Core-based Scan Architecture for Silicon Debug.
Version 1.4, February 2003.

[32] Bart Vermeulen, Steven Oostdijk, and Frank Bouwman. Test and debug strategy of the
PNX8525 NexperiaTM digital video platform system chip. In ITC, pages 121–130, 2001.

[33] M.T. Bennebroek, K.G.W. Goossens, and H.G.H. Vermeulen. Electronic Device and
Method of Controlling a Communication. Philips Patent Application, PH005435EP1,
2006.

c© Koninklijke Philips Electronics N.V. 2006 41

TN-2006-01234 Philips Restricted

42 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix A

Clock Control Slice Implementation

ARCHITECTURE rtl OF rdt_debug_ccs IS
SIGNAL clk_func_in_not : std_logic;
SIGNAL dbg_stop_req_1, dbg_stop_req_2, dbg_stop_req_2_not : std_logic;
SIGNAL mux0_0, mux0_1, mux1_0, mux1_1 : std_logic;

BEGIN
mux0_0 <= clk_test;
mux0_1 <= dbg_clock_req AND tck;
PROCESS(mux0_0, mux0_1, tcb_clock_mode)
BEGIN

IF (tcb_clock_mode(1) = ’1’) THEN
mux1_1 <= mux0_1;

ELSE
mux1_1 <= mux0_0;

END IF;
END PROCESS;
PROCESS(clk_func_in)
BEGIN

IF (clk_func_in’EVENT AND clk_func_in = ’1’) THEN
IF (rst_n = ’0’) THEN

dbg_stop_req_1 <= ’0’;
ELSE

dbg_stop_req_1 <= dbg_stop_req;
END IF;

END IF;
END PROCESS;
clk_func_in_not <= NOT clk_func_in;
PROCESS(clk_func_in_not)
BEGIN

IF (clk_func_in_not’EVENT AND clk_func_in_not = ’1’) THEN
IF (rst_n = ’0’) THEN

dbg_stop_req_2 <= ’0’;
ELSE

dbg_stop_req_2 <= dbg_stop_req_1;
END IF;

END IF;
END PROCESS;
dbg_stop_req_2_not <= NOT dbg_stop_req_2;
mux1_0 <= clk_func_in AND dbg_stop_req_2_not;
PROCESS(mux1_0, mux1_1, tcb_clock_mode)
BEGIN

IF (tcb_clock_mode(0) = ’1’) THEN
clk_func_out <= mux1_1;

ELSE
clk_func_out <= mux1_0;

END IF;
END PROCESS;

END rtl;

c© Koninklijke Philips Electronics N.V. 2006 43

TN-2006-01234 Philips Restricted

44 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix B

Breakpoint Hardware Implementation

ARCHITECTURE rtl OF rdt_debug_breakpoint_gen IS
SIGNAL state_r, state_nxt: natural range 0 to 2;
SIGNAL filled_flit_r, filled_flit_nxt : std_logic;
SIGNAL link_data_r : std_logic_vector(33 downto 0);

BEGIN
state: PROCESS(clk)
BEGIN

IF RISING_EDGE(clk) THEN
IF (rst_n = ’0’) THEN

state_r <= 2;
filled_flit_r <= ’0’;
link_data_r <= (OTHERS => ’0’);

ELSE
state_r <= state_nxt;
filled_flit_r <= filled_flit_nxt;
link_data_r <= link_data;

END IF;
END IF;

END PROCESS state;
cnt: PROCESS(state_r)
BEGIN

IF state_r = 2 THEN
state_nxt <= 0;

ELSE
state_nxt <= state_r+1;

END IF;
END PROCESS cnt;
ff: PROCESS(filled_flit_r, state_r, link_data_r)

VARIABLE var_filled_flit: std_logic;
BEGIN

var_filled_flit := filled_flit_r;
IF state_r = 0 THEN

IF link_data_r(33 DOWNTO 32) /= "00" THEN
var_filled_flit := ’1’;

ELSE
var_filled_flit := ’0’;

END IF;
END IF;
filled_flit_nxt <= var_filled_flit;

END PROCESS ff;
bp: PROCESS(monitor_config, link_data_r, filled_flit_r)
BEGIN

IF (filled_flit_r = ’1’) AND (monitor_config(32) = ’1’) AND (monitor_config(31 DOWNTO 0) =
monitor_stop <= ’1’; link_data_r(31 downto 0)) THEN

ELSE
monitor_stop <= ’0’;

END IF;
END PROCESS bp;

END rtl;

c© Koninklijke Philips Electronics N.V. 2006 45

TN-2006-01234 Philips Restricted

46 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix C

Stop Module Implementation

-- ---
-- Koninklijke Philips Electronics N.V.
-- ---
-- COPYRIGHT (c) 2004 by Koninklijke Philips Electronics N.V.
--
-- All rights reserved.
--
-- This module is property of Koninklijke Philips Electronics N.V. (Philips)
-- and its use is granted to the customer for the sole purpose of implementing
-- in silicon provided by Philips. This module may only be used in accordance
-- with the provisions of a Philips License Agreement.
--
-- ---
-- This file is automatically generated by the function: "printStopModuleArchitecture"
-- The original author is Remco van Steeden
-- ---
-- PARAMETER settings:
-- arity = 2
-- ---
-- CHANGE LOG:
-- 13-07-2006 Initial version
-- ---

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ARCHITECTURE rtl OF rdt_debug_stopmodule_a3 IS
SIGNAL state_r, state_nxt : std_logic_vector(1 DOWNTO 0);
SIGNAL break_point_r, break_point_nxt : std_logic;
SIGNAL stop_nxt : std_logic;
SIGNAL jtag_stop_dly, jtag_stop_aed : std_logic;

BEGIN

state: PROCESS(clk)
BEGIN
IF RISING_EDGE(clk) THEN

IF (rst_n = ’0’) THEN
state_r <= (OTHERS => ’0’);
break_point_r <= ’0’;
jtag_stop_dly <= ’0’;
stop_out0 <= ’0’;
stop_out1 <= ’0’;

ELSE
state_r <= state_nxt;
break_point_r <= break_point_nxt;
jtag_stop_dly <= jtag_stop;
stop_out0 <= stop_nxt;
stop_out1 <= stop_nxt;

c© Koninklijke Philips Electronics N.V. 2006 47

TN-2006-01234 Philips Restricted

END IF;
END IF;
END PROCESS state;

main: PROCESS(state_r, break_point_r, monitor_stop, jtag_stop_aed, stop_in0, stop_in1)

VARIABLE var_state : std_logic_vector(1 DOWNTO 0);
VARIABLE var_stop, var_break_point : std_logic;

BEGIN
var_state := state_r;
var_stop := ’0’;
var_break_point := break_point_r;

IF var_state = "00" THEN
IF monitor_stop = ’1’ OR jtag_stop_aed = ’1’ OR stop_in0 = ’1’ OR stop_in1 = ’1’ THEN
var_stop := ’1’;
var_state := "01";

END IF;

ELSIF var_state = "01" THEN
var_state := "10";

ELSIF var_state = "10" THEN
var_state := "11";

ELSE -- Wait for 2nd stop signal
IF jtag_stop_aed = ’1’ OR stop_in0 = ’1’ OR stop_in1 = ’1’ THEN

var_stop := ’1’;
var_state := "00";
END IF;

END IF;

IF var_break_point = ’0’ THEN
var_break_point := var_stop;

END IF;

state_nxt <= var_state;
stop_nxt <= var_stop;
break_point_nxt <= var_break_point;

END PROCESS main;

jtag_stop_aed <= not(jtag_stop_dly) AND jtag_stop;
break_point <= break_point_r;

END rtl;

48 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix D

Protocol Adapter Implementation

IF ni_stop_in = ’1’ THEN -- Stop signal coming into the port.
IF ni_force_stop_in = ’1’ THEN -- Signal programmed by JTAG

IF var_stop = "00" THEN -- 00 = free state
var_stop := "10"; -- 01 = stop after transaction finished

END IF; -- 10 = forced stop
ELSE

IF var_stop = "00" THEN
var_stop := "01";

ELSE
var_stop := "10";

END IF;
END IF;

END IF;

By means of the var_stop variable a state is executed as normal or not:

IF var_state="001" THEN -- waiting for command
IF var_stop = "01" OR var_stop = "10" THEN

-- Do nothing (stopped, transaction finished)
ELSE

-- Normal operation
END IF;

ELSIF var_state="010" THEN -- send 2nd word of command
IF var_stop = "10" THEN

-- Do nothing (forced stop)
ELSE

-- Normal operation
END IF;

END IF;

c© Koninklijke Philips Electronics N.V. 2006 49

TN-2006-01234 Philips Restricted

50 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix E

Æthereal Design Flow Changes

aether\aesim-3.0
- Makefile.rules (added StopModule.o and Chip.o)

aether\aesim-3.0\src
- Chip.h/cc (Added)
- StopModule.h/cc (Added)
- NI.h/cc (Fed the stop signal and Force Stop TPR signal through the NI)
- Core.h/cc, Testbench.h/cc, Vhdl.h/cc and main.cc (All have too much changes to describe)

aether\aesim-3.0\utils
- ae_args.h/cc (added getDebugHardware() and getJtagStop())

aether\flow-3.0\bin
- make_vhdl.sh (Added debug_hardware switch and a few more changes)

aether\flow-3.0\etc
- Makefile, Makefile.defs (Added rtlsimgui and glsimgui and some changes to support the

switch between the original version and the version with debug)

aether\flow-3.0\lib\vhdlgeneration
- rdt_small_chip_bs_rtl.a.vhdl (Added)
- read_hdl_footer_debug.tcl (Added

AEthereal_nlvXXXXX\data\rdt_ni_lib
- rdt_ni_dtl_spy (Added rd_last signal)
- rdt_ni_dtl_ctrl, rdt_ni_dtl_initiator, rdt_ni_dtl_mc_initiator,

rdt_ni_dtl_narrow_cast_target and rdt_ni_dtl_target (Added rd_last signal and stop logic)

AEthereal_nlvXXXXX\data\rdt_debug_lib (Added new debug library)
- rdt_debug_breakpoint_gen (Directory with breakpoint hardware source)
- rdt_debug_breakpoint_tpr (Directory with breakpoint TPR source)
- rdt_debug_ccs (Directory with CCS source)
- rdt_debug_forcestop_tpr (Directory with Forced Stop TPR source)
- rdt_debug_ipstop_tpr (Directory with IP Stop TPR source)
- rdt_debug_stopmodule_aX (Directory with Stop Module source, automatically generated)
- rdt_debug_tcbshell (Directory with TCB shell source)
- instruction.bst_lib (Instructions for the TAP)
- rdt_small_chip_bs.timnet (TimNet configuration file for the TAP)
- rdt_debug_lib.flow_control (Needed to compile the debug library)

AEthereal_nlvXXXXX\data\rdt_small_lib
- rdt_small_chip (Directory with everything in the chip hierarchy, automatically generated)
- rdt_small_chip_bs (Directory with everything in the chip_bs hierarchy, automatically generated)

AEthereal_nlvXXXXX\data\rdt_small_lib\rdt_small_chip_bs
- incide_1, incide_2 and incide_3 (Added directories with scripts for Incide)

AEthereal_nlvXXXXX\data\rdt_small_lib\rdt_small_chip_bs\TESTBENCH
- rdt_small_chip_bs_BFM.flow_control and rdt_small_chip_bs_tb_behav.m_BFM.vhdl (Added)

c© Koninklijke Philips Electronics N.V. 2006 51

TN-2006-01234 Philips Restricted

52 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix F

Getting Started

4 = For every X-terminal⊙
= Only needs to be done one time⊗
= Register Transfer Level (RTL) simulation⊕
= Gate Level (GL) simulation

© = Scan chain insertion
♦ = Debug using Incide

1. 4 $bsh -q nllinux Use a compute server instead of a log-in server
2.

⊙
$nedit .kshrc Add the following at the end: . ∼/aether/flow-3.0/profile

3.
⊙

Copy the cadenv_aether.sh file to your home-directory (/home/nlvXXXXX)
4.

⊙
$mkdir aether Create aether directory

5.
⊙

$mkdir Workareas Create Workareas directory
6.

⊙
$cd ∼/aether Go to the aether directory

7.
⊙

$cvs -d /home/aether/cvs co flow-3.0 Check out (CVS-access needed)
8.

⊙
$cvs -d /home/aether/cvs co aesim-3.0

9.
⊙

$cd aesim-3.0 Go to the aesim-3.0 directory
10.

⊙
$cadenv -r 3.80 gmake Change the gmake version to 3.80, you must use this version

11.
⊙

$gmake all Compile all source-files into binaries
12.

⊙
$cd ../flow-3.0 Go to the flow-3.0 directory

13.
⊙

$nedit profile
Comment the FLOW_HOME variable and use: export FLOW_HOME=$HOME/aether/flow-3.0
Comment the VHDL_HOME variable and use: export VHDL_HOME=$HOME/Workareas/AEthereal_nlvXXXXX
14.

⊙
$cd ∼/Workareas Go to the Workareas directory

15.
⊙

$cvs -d /home/aether/cvs co vhdl_src
16.

⊙
$mv vhdl_src AEthereal_nlvXXXXX Rename the vhdl_src

17.
⊙

$nedit ∼/aether/flow-3.0/examples/small/Makefile
Add DEBUG_HARDWARE = YES and JTAG_STOP = R00
18.

⊗
$gmake topology

19.
⊗

$gmake umars
20.

⊗
$gmake vhdl

21.
⊗

$nedit ∼/Workareas/AEthereal_nlvXXXXX/data/rdt_small_lib/rdt_small_network/RTL/
rdt_small_network_rtl.a.vhdl Connect the link_data inputs of the breakpoint hardware to the desired
links of the NoC (e.g. link_data => data_R00_R01)
22.

⊗
$gmake tcl

23.
⊗

$∼/cadenv_aether.sh Create an Æthereal environment
24.

⊗
$cd aether/flow-3.0/examples/small In the new Æthereal environment

c© Koninklijke Philips Electronics N.V. 2006 53

TN-2006-01234 Philips Restricted

25.
⊗

$gmake rtlsimgui
26.

⊕
$gmake ambit

27.
⊕

Copy my paradice_setup.m4 to
∼/Workareas/AEthereal_nlvXXXXX/data/rdt_small_lib/rdt_small_network/paradice/cfg
28.

⊕
$cd ∼/Workareas/AEthereal_nlvXXXXX/data/rdt_small_lib/rdt_small_network/paradice

29.
⊕

$gmake select tech=cmos12 pvt=wccom
30.

⊕
$cd ../ambit

31.
⊕

$gmake synthesis
32.

⊕
Edit rdt_debug_ccs_rtl.a.vhdl : uncomment clk_func_out <= clk_func_in; and comment every-

thing below that line, except for the last one.
33.

⊕
Edit clock_data.in: change the upper value into 16100 and the bottom value into 4000.

34.
⊕

$gmake glsimgui
35. © $cd ∼/Workareas/AEthereal_nlvXXXXX/data/rdt_small_lib/rdt_small_network/cattools
(in normal environment)
36. © $gmake inscanrun_pack Scan chain insertion
37. ♦ $cd ../../rdt_small_chip_bs Copy my incide_1, incide_2 and incide_3 folders to here
————————————incide_1———————————–
38. ♦ $cd incide_1
39. ♦ $incide.sh The length of the scan chain is determined
————————————incide_2———————————–
40. ♦ $cd ../incide_2
41. ♦ $run_catshell
42. ♦ Add a skew flipflop to rdt_small_network_chain.ff (2x, at the end of the chain, e.g. skew 1 315 0
0 0 0 0.0 0.0 U), also increase the number of bits in those chains with one (the number before <PREFIX>)
43. ♦ $run_incide_ff2dcd
44. ♦ $nedit rdt_small_network_chain.dcd Replace both <postfix> by a -
45. ♦ Take care that the CCS is original (undo step 32) and the netlist with scan chains is used: in
rdt_small_network.flow_control change rdt_small_network_netlist_syn.v into rdt_small_network_netlist_scn.v
46. ♦ Make the values of clock_data.in 680000 and 4000
47. ♦ $cd ../nccoex
48. ♦ $ln -sf ../incide/stimuli.dat stimuli.dat
49. ♦ $incide.sh Generates stimuli.dat
50. ♦ Remove the compiled directory and replace the testbench with the one with BFM-writer (take my
rdt_small_chip_bs_tb_behav.m_BFM.vhdl and rdt_small_chip_bs_BFM.flow_control)
51. ♦ $gmake glsimgui The stimuli are simulated
————————————incide_3———————————–
52. ♦ $cd ../incide_3
53. ♦ Replace the testbench with the original again (undo step 48) and remove the compiled directory
54. ♦ $gmake glsimgui Make a snapshot
55. ♦ Execute steps 39-44
56. ♦ $incide.sh A statedump is made
57. ♦ $echo incide_sim.statedump > incide_sim.txt
58. ♦ $statelist_pack incide_sim.sl -dcd rdt_small_network_chain.dcd -asc incide_sim.txt
59. ♦ $rm -f incide_sim.vcd
60. ♦ $statelist2vcd rdt_small_network_chain.dcd incide_sim.sl incide_sim.vcd
61. ♦ $cadenv -r 5.1 cadence_ldv (If necessary)
62. ♦ $simvision incide_sim.vcd View statedumps in simulator with bits reconstructed into registers

54 c© Koninklijke Philips Electronics N.V. 2006

Philips Restricted TN-2006-01234

Appendix G

List of Acronyms

AC-TPR Access Control TPR
BE Best Effort
BES Best Effort Service
BP-TPR BreakPoint TPR
CAD Computer Aided Deisgn
CADTES Computer Architecture Design & Test for Embedded Systems
CC-TPR Clock Control TPR
CCS Clock Control Slice
CMD CoMmanD
CMOS Complementary Metal Oxide Semiconductor
DfD Design-for-Debug
DSM Deep Sub-Micron
DTL Device Transaction Level
E2EFC End-to-End Flow Control
FIFO First-In, First-Out
FPGA Field Programmable Gate Array
GL Gate Level
GS Guaranteed Service
GT Guranteed Throughput
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IP Intellectual Property
JTAG Joint Test Action Group
LLFC Link-Level Flow Control
MH Message Header
MMBD Memory Mapped Block Data
MMIO Memory Mapped Input/Output
MMSD Memory Mapped Streaming Data
MNIP Master NIP
MSA Monitoring Service Access
NI Network Interface

c© Koninklijke Philips Electronics N.V. 2006 55

TN-2006-01234 Philips Restricted

NIP Network Interface Port
NoC Network-on-Chip
NoCMS NoC Monitoring Service
OCP Open Core Protocol
PH Packet Header
PPSD Peer-to-Peer Streaming Data
QID Queue IDentification
QoS Quality of Service
R Router
RTL Register Transfer Level
SNIP Slave NIP
STU Slot Table Unit
TAP Test Access Port
TCB Test Control Block
TDMA Time Division Multiple Access
TLM Transaction Level Model
TPR Test Point Register
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

56 c© Koninklijke Philips Electronics N.V. 2006

	Preface
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Related Work
	1.4 Structure

	2 Network-on-Chip
	2.1 Introduction
	2.2 Æthereal NoC
	2.3 Æthereal Network Interface
	2.4 The Æthereal Router
	2.5 DTL Protocol

	3 Debug
	3.1 Introduction
	3.2 Debug Strategy for SoCs using NoCs
	3.3 Debug Requirements for SoCs using NoCs
	3.3.1 Stop Operation
	3.3.2 Dump and Recover State
	3.3.3 Single Step and Continue Operation

	4 Debug Architecture Design
	4.1 Overview
	4.2 Choices
	4.2.1 Introduction
	4.2.2 Stop Signal Distribution
	4.2.3 Protocol Adapter

	4.3 Stop Module
	4.4 Core-based Scan Architecture

	5 Debug Architecture Implementation
	5.1 Overview
	5.2 Clock Control Slice
	5.3 Breakpoint Hardware
	5.4 Stop Module
	5.5 Protocol Adapter

	6 Results
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	A Clock Control Slice Implementation
	B Breakpoint Hardware Implementation
	C Stop Module Implementation
	D Protocol Adapter Implementation
	E Æthereal Design Flow Changes
	F Getting Started
	G List of Acronyms

