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Abstract

In this research we want to see if hexagonal boron nitride is a suitable candidate as a substrate
for a monolayer of molybdenum disulfide. For a monolayer of molybdenum disulfide on top of
a monolayer of hexagonal boron nitride we calculate two possible optimized structures with a
distance between the planes of 4.89 Å with a binding energy per molybdenum disulfide unit cell
of −2.778 eV and 8.10 Å with a binding energy per molybdenum disulfide unit cell of −2.634
eV. We plot the total energy versus the seperation distance en find that the structure with a
seperation of 4.89 Å is a stable structure and the structure with the seperation of 8.10 Å is a
metastable structure.

We plot the band structure for the metastable structure and find a direct band gap of 1.83 eV
at K point. For the band structure of the stable structure we find that the band gap is indirect
between H and K. We find that this is because of the bands with nitrogen pz character that
have moved down due to hybridization to create an indirect band gap. We plot the projected
density of states for the boron nitride atoms and the molybdenum disulfide atoms for the stable
structure and find a band gap of 1.83 eV.

We conclude that hexagonal boron nitride is a suitable candidate as a substrate for a monolayer
of molybdenum disulfide. We note that the band gap is indirect for a stable structure of a
monolayer of molybdenum disulfide on top of a monolayer of hexagonal boron nitride. We also
note that there is a direct band gap for the metastable structure. Further research may be done
to find a stable structure with a direct band gap.
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Introduction

Background

Technology is getting smaller and more compact. Therefore, scientists are always looking for
stable materials of very small size with interesting properties. In recent history there has been a
lot of talk and research about graphene, a monolayer of graphite. This two-dimensional material
has very interesting properties, namely a high carrier mobility and mechanical strength [1]. But
it’s not a semiconductor.

After scientists were able to create graphene in the laboratory one knew that is was possible
to extract a monolayer of a material. The search for more of these materials continued. A
semiconductor material would be especially interesting.

Molybdenum disulfide might be a good candidate for this. A monolayer of molybdenum disul-
fide has a direct band gap of 1.8 eV [2], which makes it suitable for opto-electronic applications.
If one is to create a monolayer of this material however, a substrate is needed to support this
monolayer. Hexagonal boron nitride is used as a substrate for graphene. They have the same
honeycomb structure and their in-plane lattice parameters are very similar.

Molybdenum disulfide also has the same honeycomb structure as graphene [3], however it’s
in-plane lattice parameter is significantly larger than that of boron nitride. Therefore one may
wonder if boron nitride is a good candidate for a substrate. If it is questions arise about how this
would effect the direct band gap in monolayer molybdenum disulfide, since bulk molybdenum
disulfide has an indirect band gap [2].

Problem

In this thesis we investigate if hexagonal boron nitride is a suitable candidate as a substrate
for a monolayer of molybdenum disulfide. This will be done by answering the following three
more specific questions:

� Are there one or more stable heterostructures of molybdenum disulfide on boron nitride?

� Does the direct band gap of monolayer molybdenum disulfide remain direct upon forma-
tion of the heterostructure and what is the size of it?

� How does the electronic structure qualitatively change upon formation of the heterostruc-
ture?
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Plan of action

To be able to do this research as a third year bachelor student a lot of preperation had to be done.
First an understanding of the electronic structure of solids via tight binding approximation had
to be achieved. Several assignments related to tight binding were done of which the results can
be found in appendix 1. The chapter Theory has a section dedicated to this subject explaining
tight binding and the conclusions that were made from those exercises. These conclusions will
be used in analyzing and discussing the results in the chapters Results and Discussion.

Besides the above the program VASP [4] [5] had to be learned. VASP is software used to
calculate the electronic properties of materials. To get a good understanding of the software
and learn how to extract useful information a lot of calculations were done with group IV,
III-V and II-VI semiconductors as well as with carbon. Information about the software VASP
is given in the chapter Computational aspects.

The results and an analysis of these VASP calculations can be found in appendix 2. The results
were used to discuss the trends found in this region of the periodic table. For example, the
band gap size of carbon, silicon and germanium was compared to their lattice constant, as
well for germanium, gallium arsenide and zinc selenide. Furthermore, of materials that exist
in different structures the most stable structure was calculated based on the total energy per
atom.

Besides the key theoretical and computational aspects mentioned above, some aspects needed
to understand this work can be found in the chapters Theoretical aspects and Computational
aspects. Following these chapters is the chapter Results containing an overview of the important
results needed to answer the questions mentioned under Problem. In the chapters Discussion
and Conclusion the results will be discussed and the questions will be answered. This is followed
by the references and the appendices, the latter containing the solutions to the assignments
and VASP calculations done in preparation of this research.
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Theoretical aspects

Tight binding method

The tight binding method is a way of describing solid materials and from there calculate the
electronic properties of this material. In tight binding, the solid is seen as “a collection of
weakly interacting neutral atoms” where “the overlap of the wave functions is enough to require
corrections to the picture of isolated atoms, but not so much as to render the atomic description
completely irrelevant.” [6]

For this thesis, the focus will be on the results and interpretation of the tight binding method.
Using this model, the Schrödinger equation can be rewritten to become

(ε(k)− Em)bm = −(ε(k)− Em)
∑
n

(
∑
R 6=0

∫
ψ∗m(r)ψn(r −R)eik·Rdr)bn

+
∑
n

(

∫
ψ∗m(r)∆U(r)ψn(r)dr)bn +

∑
n

(
∑
R 6=0

∫
ψ∗m(r)∆U(r)ψn(r −R)eik·Rdr)bn

(1)

[6]

In this equation ε(k) is the energy dispersion with k the position in k-space in m−1. Em is the
atomic energy. Both the energy dispersion and atomic energy have SI units of joule but it’s
in some situations convenient to work with the unit of eV. The indices m and n indicate the
atomic orbitals and b is a unit vector. R and r describe the positions of the atoms and are
given in meters. The wave function is represented by ψ in units of m−3N/2 in three dimensions
with N the total number of atoms and the potential by U , which should be given in the same
units as the energy dispersion and atomic energy.

Equation (1) can be used to calculate the energies of different atomic orbitals. For a (non-
degenerate) s-level equation (1) will become one single equation. For (triply degenerate) p-levels
it will become a 3× 3 secular problem and so on.

The tight binding method is of course an approximation, but it’s a good method for simple
systems. In appendix 1, several assignments were done using the tight binding method, that
is assignments 2, 4, 5 & 6. An insight about the electronic structure of solids was gained from
these assignments that can be used in analyzing the results of this research.

First of all, in assignment 3, figure 17 shows the dispersion for an infinite chain of hydrogen
atoms with one atom in the unit cell. When a bigger unit cell is used, a phenomena called
folding enters the picture, of which the effects can be seen in figure 18 and is briefly explained in
the assignment. Also, two energy levels can be seen, one bonding and one anti-bonding. Then,
the energy of the second atom in the unit cell is changed so that the infinite hydrogen chain
becomes an inifinte dimer chain. Now a band gap arises, with a bonding and anti bonding state
on each side of the Fermi level, as can be seen in figure 20.
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Figure 1: Flow chart visualizing density functional theory.

In assignments 4 & 5 the tight binding method is used to calculate the p-bands. Calculating
these requires exploiting all the symmetries in the system and can only be done analytically for
special k-points. In assignment 6, the π (pz) bands of graphene were calculated using thight
binding. A comparison between figure 33 and figures 38 and 39 shows how accurate the tight
binding method can be.

Density functional theory

Density functional theory (DFT) can be best explained in the words of Walter Kohn, developer
of DFT:

DFT is an alternative approach to the theory of electronic structure, in which the
electron density distribution n(r), rather than the many electron wave function plays
a central role. [7]

DFT works in the following steps: guess an electron density, construct the different potentials,
solve the Kohn-Sham equations, generate the output density and see if it matches the input
density. This is visualized in the flow chart in figure 1.

There are some known limitations of DFT. Two of them are expected to be relevant for this
research. The first is the band gap problem: band gaps in semiconductors and insulators are
almost always underestimated. Another one is the neglect of van der Waals interactions. [8]
Examples of these limitations can be found in appendix 2. All the calculated band gaps are
underestimated. The effect of the neglect of the van der Waals forces can be seen in graphene
and the monolayer of hexagonal boron nitride. There are possible solutions to these problems,
but it’s is probably not necessary to implement those if one keeps these limitations in mind
when analyzing the results.
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(a) Top down and side view of a monolayer
of hexagonal boron nitride. The boron atoms
are shown in green and the nitrogen atoms are
shown in grey.

(b) Top down and side view of a monolayer of
molybdenum disulfide. The molybdenum atoms
are shown in purple and the sulfur atoms are
shown in yellow.

Figure 2: Structures of boron nitride and molybdenum disulfide. Images were made using
VESTA [11].

Figure 3: Supercell of a 4× 4 monolayer of molybdenum disulfide on top of a 5× 5 monolayer
of boron nitride. The image was made using VESTA [11].

Structure

A monolayer of hexagonal boron nitride has a well known structure, which is shown in figure 2a.
It has a honeycomb lattice where for each atom the three nearest neighbors are of the different
atomic species. [9] The in-plane lattice constant aBN is 2.50 Å[10].

Molybdenum disulfide also has a hexagonal honeycomb structure. However a monolayer of
molybdenum disulfide actually exists of two layers of sulfur atoms with one layer of molybdenum
atoms in between. In figure 2b a top down and side view of molybdenum disulfide can be seen.
The distance between the sulfur atoms is 3.1 Å. The in-plane lattice parameter aMoS2 is 3.12
Å. [3]

To create a heterostructure of these two materials a supercell, that is a multiple of one unit cell,
has to be found where the lattice parameters match. The smallest supercell with < 1.0% strain
is a four by four molybdenum disulfide lattice on top of a five by five boron nitride lattice. This
structure is sketched in figure 3. The out-of-plane lattice constant c has to be determined. The
distance between the molybdenum and the boron nitride is c

2
.
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Binding

If binding between the layer of boron nitride and molybdenum disulfide will be achieved can
be determined in a few ways. First of all one can calculate if the total energy is at a minimum.
A second way is to calculate the binding energy. This binding energy is the total energy of the
heterostructure minus the total energy of isolated molybdenum disulfide, that is the supercell
of the heterostructure without the boron nitride layer, and minus the total energy of isolated
boron nitride, the supercell without the layer of molybdenum disulfide. This can therefore be
calculated using the following equation:

Eb = Etothet − EtotMoS2
− EtotBN

(2)

where Eb is the binding energy, Etothet the total energy of the heterostructure, EtotMoS2
the total

energy of the isolated molybdenum disulfide and EtotBN
the total energy of the isolated boron

nitride. All energies should be inputted in the same unit, which can be joule, electronvolt or a
different unit of energy. If the binding energy is smaller than zero there is binding between the
layers.
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Computational aspects

VASP

VASP, short for Vienna ab-initio simulation package, is software used for density functional
calculations. In this thesis it is used for three things: calculating the optimal structure, the
electronic ground state and the band structure of a material. For all of the calculations it needs
at least the input files containing the structure of the material, the potential, the k-points
that need to be sampled and a file containing different parameters specifying the details of the
calculation.

Self consistent calculation This calculation is used to calculate the electronic ground state.
The structure of a material should be used as input along with the other mandatory input files.
VASP then calculates the electronic ground state properties of the material sampling the whole
first Brillouin zone. The output contains but is not limited to the charge densities, the density
of states and the energy eigenvalues.

Relaxation This technique is used to calculate the optimal structure. An educated guess of
the structure is used as input. Then a self consistent calculation is done. VASP then varies
the positions of the atoms and does another self consistent calculation, trying to minimize the
force. Once a predefined threshold is reached the output contains the optimal structure.

Band structure calculation To calculate the band structure along a predefined path, the file
containing the k-points has to list all of these k-points explicitly. Contrary to the self consistent
calculation VASP then calculates the energy eigenvalues only at these k-points instead of the
whole first Brillouin zone. To speed up the calculation the charge densities from the self
consistent calculation should be used as input so that VASP can use these in it’s calculations.
The output contains the energy eigenvalues that can be used to plot the band structure.

The VASP calculations that were done to learn working with VASP had several results. First
of all it was found in figure 53 that the size of the band gap decreases linearly with the lattice
constant for diamond, silicon and germanium, all group IV elements. It was also found that for
group IV, III-V and II-VI materials of the same period the lattice constant is almost the same
while the band gap is biggest for group II-VI materials and smallest for group IV materials.
More properties were calculated, like the most stable structure of an element, and the band
structures and densities of states were plotted and analyzed.
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Figure 4: First Brillouin zone of a hexagonal lattice, showing the high symmetry points. [12]

Density of states

From the VASP output files the density of states can be determined. It can be used to easily see
the band gap and show band widths. From the VASP output files also the projected density of
states can be determined. The projected density of states shows the density of states for certain
atoms, for example for one species of atoms. This is used in this research to see which bands are
boron nitride bands, which are molybdenum disulfide bands and which are hybridized bands.

Band structure

The band structure can be calculated along certain high symmetry lines connecting high sym-
metry points using the output from VASP. The high symmetry points of a hexagonal lattice
are shown in figure 4.
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Results

The heterostructure described in the section Structure of the chapter Theoretical aspects has
first been relaxed. Two guesses were made for the distance between the planes, namely 5.0 Å
and 8.0 Å, so for the supercell we have c = 10.0 Å and c = 16.0 Å respectively. From there
the relaxations were started and two different optimized structures were found of which the
distance between the planes is shown in table 1.

A check was done to see if both structures are stable. For different values of c a self consistent
calculation was done, from which the total energy was plotted. In figure 5 the total energy
versus the distance between the planes is plotted. The highest total energy was set to zero,
with the rest of the values in reference to this. In this figure one can see that there is actually
just one stable structure, the one with a distance between the planes of 4.89 Å.

The other structure might be metastable. To check that the binding energies were calculated
using equation (2). In table 1 the binding energies for the two solutions are shown. One can see
that there is binding for both of the structures, although the structure with a distance of 4.89
Å between the planes has stronger binding. Therefore we conclude that the structure with a
distance between the planes of 8.10 Å is a metastable structure.

Band structure calculations were done for the metastable structure. The results of these cal-
culations are plotted in figure 6. In this figure also the character of the bands was plotted. All
graphs have a different character of the bands plotted. The first one shows the molybdenum
disulfide dxy bands in red. The second one shows the molybdenum disulfide dx2−y2 bands in
magenta. The third one shows the nitrogen pz bands in green. The Fermi level was set to zero
in this figure, and is marked by the dotted line.

In this figure, one can see there is an direct band gap at K point where the top of the valence
band is a band with nitrogen pz character. The size of the band gap, extracted from this figure,
is 1.83 eV.

Band structure calculations were also done for the stable structure, shown in figure 7. This
figure also shows the character of the bands in three different graphs, again with the first one
showing the molybdenum disulfide dxy bands in red, the second one showing the molybdenum
disulfide dx2−y2 bands in magenta and the third one showing the nitrogen pz bands in green.
In this figure the Fermi level was again set to zero and marked by the dotted line.

Table 1: Distance between the planes and binding energy per molybdenum disulfide unit cell for
two optimal structures found with the relaxation. There is stronger binding for the structure
with a distance of 4.89 Å between the planes.

Distance between the planes [Å] Binding energy per MoS2 unit cell [eV]
4.89 -2.778
8.10 -2.634
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Figure 5: Total energy versus the distance between the planes. The highest total energy was
set to zero and the rest of the values are in reference to this zero. The two structures that were
found with the relaxation are marked by red circles. One can see that there is actually just one
stable structure. The other structure might be metastable.

Figure 6: Region around the band gap for the heterostructure with a distance between the
planes of 8.10 Å. The character of the bands is shown in the different graphs. The first one
contains the molybdenum disulfide dxy bands in red. The second one contains the molybdenum
disulfide dx2−y2 bands in magenta. The third one contains the nitrogen pz bands in green.
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Figure 7: Region around the band gap for the heterostructure with a distance between the
planes of 4.89 Å. The character of the bands is shown in the different graphs. The first one
contains the molybdenum disulfide dxy bands in red. The second one contains the molybdenum
disulfide dx2−y2 bands in magenta. The third one contains the nitrogen pz bands in green.

Figure 8: Band structure in the energy range around the band gap for the stable heterostructure.
The Fermi level is set to zero and marked by a dotted line. The bands marked in red are the
bands that are not visible in the band structure of isolated molybdenum disulfide.

One can see in figure 7 that the direct band gap has become an indirect gap between H and
K. The band with pz character that was at the top of the valence band for the metastable
structure has actually shifted down a lot. The top of the valence band now consists of bands
with a lot of molybdenum disulfide d character.

To get a better understanding as to why the band with nitrogen pz character has shifted down,
the band structure for the stable structure was plotted in figure 8. Also, the bands structure
for isolated molybdenum disulfide of the stable structure has been plotted in figure 9. In both
figures again the Fermi energy was set to zero and marked by a dotted line. The bands that
are not visible in the bands structure for isolated molybdenum disulfide have been marked red
in figure 8. Since they aren’t visible in the band structure for isolated molybdenum disulfide,
and they have a lot of nitrogen pz character, these bands are predominantly boron nitride
bands, which suggests that the change from a direct to an indirect band gap for the metastable
structure to the stable structure is due to hybridization. Also, the top of the valence band has
moved up a little, so the direct band gap at K is of the same size as the direct band gap at H.
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Figure 9: Band structure in the energy range around the band gap for isolated molybdenum
disulfide from the stable structure. The Fermi level is set to zero and marked by a dotted line.

To visualize the hybridization the projected density of states for the boron nitride bands and
the molybdenum disulfide bands was calculated for the stable structure. The projected density
of states is plotted in figure 10. This figure shows that the top of the valence band consists of
hybridized boron nitride - molybdenum disulfide bands.

Also from figure 10 the band gap can be determined. The size of the band gap is 1.83 eV, the
same as for the metastable structure. The bottom of the conduction band consists of solely
molybdenum disulfide bands. The boron nitride bands start from 3.9 eV above the Fermi level.
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Figure 10: Density of states of the heterostructure projected onto the boron nitride part and
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Discussion

A stable structure with a distance between the planes of 4.89 Å was found. A stable structure
was expected, since there was nothing suggesting there wouldn’t be one. The strain is 0.16%,
and both materials have a hexagonal structure. Also a metastable structure with a distance
between the planes of 8.10 Å was found.

Comparing figures 6 and 7 one can notice that the band gap changes from an indirect to a
direct band gap if the distance between the layers is increased. This is probably because when
the distances between two layers is increased, there is less overlap between the wave functions
of these layers. Therefore, there is less hybridization and the band with nitrogen pz character
makes up the top of the valence band.

This can also be seen in figures 8 and 9. The top valence band at K-point in isolated molyb-
denum disulfide is still the top valence band at K-point in the heterostructure, however it’s
not the general top of the valence band anymore. It has probably shifted a little because of
hybridization due to the layer of boron nitride in between.

In figure 10 one can also see that the top of the valence band consists of hybridized molybdenum
disulfide and boron nitride bands, although the number of molybdenum disulfide states is
higher. Since the band gap of boron nitride is bigger then that of molybdenum disulfide [13] [2]
one would expect the bottom of the conduction band to be just molybdenum disulfide bands,
as is the case in figure 10.

Also, the change in the band gap from direct to indirect for the metastable structure to the
stable structure cannot be due to the molybdenum disulfide layers interacting as in the bulk
matrial. Bulk molybdenum disulfide has the top of the valence band at gamma which is clearly
not the case in figure 8. [14]

Along the path Γ-A the bands move up in energy as can be seen in figure 8. The difference in
energy between Γ and A gets smaller for bands that are higher in energy. This can be explained
by looking at the extent of the wave functions. Wave functions for bands with a higher energy
have a smaller barrier to the vacuum level. Therefore these wave functions have a larger extent
and the slope of the energy band is smaller.

The size of the band gap is found to be 1.83 eV, for the stable as well as the metastable structure.
For a monolayer of molybdenum disulfide the band gap is 1.8 eV [2]. Similar values have been
found with DFT calculations. It seems that the band gap is therefore not underestimated by
DFT.
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Conclusion

The main question posed in the introduction was if hexagonal boron nitride is a suitable can-
didate as a substrate for a monolayer of molybdenum disulfide. We found first of all that there
is one stable structure consisting of a monolayer of hexagonal boron nitride and a monolayer of
molybdenum disulfide, with a distance between the planes of 4.89 Å. We also found a metastable
structure with a distance between the planes of 8.10 Å.

We found that the direct band gap of a monolayer of molybdenum disulfide does not stay direct
for the stable structure. The top of the valence band in isolated molybdenum disulfide moves
down a little so an indirect band gap is created between the high symmetry points H and K.
This was explained as an effect of hybridization.

From the projected density of states we know that the size of the band gap is 1.83 eV, which
matches the size of the band gap for a monolayer of molybdenum disulfide. We know the band
gap for the metastable structure, which is also 1.83 eV, from the band structure calculation.

In the heterostructure we saw bands with nitrogen pz character which weren’t visible in the
band structure of isolated molybdenum disulfide. We found that for the structure with a
distance between the planes of 8.10 eV this band moves up to create a direct band gap at the
high symmetry K point.

We can conclude that hexagonal boron nitride in fact is a suitable candidate as a substrate for
a monolayer of molybdenum disulfide. However, for a monolayer of molybdenum disulfide on
top of a monolayer of hexagonal boron nitride the band gap becomes indirect for the stable
structure. It does stay direct for the metastable structure.

Possibilities for future research

In the future tight binding calculations can be done for the hybridization of p and d orbitals
from K to H to get more insight as to why the bands shift and the band gap becomes indirect
between H and K.

One of the possibilities may be to see what happens if there are more layers of boron nitride.
This might lead to the formation of a stable structure with a direct band gap, which is interesting
for opto-electronic applications.

A final improvement could be to increase the accuracy of the calculations. Different potentials
could be used as well as hybrid-functionals.
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Appendix 1 - Assignments

Assignment 1 - Radial Schrödinger Equation

For this assignment, the radial Schrödinger Equation will be solved numerically for a Coulomb
potential. The energies of the bound states (1s, 2s, 3s; 2p, 3p) of hydrogen will be found, as
well as the corresponding eigenfunctions.

The differential equation for the radial wave function is:

d2u

dρ2
= [1− ρ0

ρ
+
l(l + 1)

ρ2
]u = f(ρ)u (3)

[15]

with ρ ≡ κr, ρ0 ≡ me2

2πε0h̄
2κ

and κ ≡
√
−2mE
h̄

.

Because the equation is solved numerically, the following formula was used:

ui+1 = 2ui − ui−1 + f(ρ)ui(∆ρ)2 (4)

The strategy is to integrate the radial equation outwards from the origin and inwards from ∞.
For the outwards integration the asymptotic form for ρ→ 0 was used:

u(ρ) ∼ Cρl+1 (5)

[15]

Then equation (4) was used to calcualate the rest of the terms.

For the inwards integration the asymptotic form for ρ→∞ was used:

u(ρ) ∼ Ae−ρ (6)

[15]

The two wavefunctions were matched at a turning point. In this case the point where the
energy is equal to the potential energy was chosen, so that is:

E = − e2

4πε0

1

r
= − e2

4πε0

κ

ρtp
→ ρtp = − e2κ

4πε0E
(7)

The matching was done by multiplying the inward integrated function with a constant so that
the value of the wavefunction would be equal at the turning point ρtp. Then, the resulting
wavefunction was normalized.
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Figure 11: Example of a kink at the point where the wavefunctions were matched. The kink is
marked in red. The solution was found for l = 0 and n = 3.

The principal quantum number n was determined by counting the number of nodes, that is the
number of crossings of the x-axis, using #nodes = n− l − 1⇒ n = #nodes + l + 1.

One starts with choosing an energy E, an angular momentum l and a principal quantum
number. Then, after calculating what the principal quantum number of the found solution is,
change the energy until the correct solution is found.

The found solution still contains a kink, that is a point wich isn’t differentiable, at the turning
point where the wavefunctions were matched. An example of such a kink can be seen in figure 11.
At the point marked in figure 11 the wavefunction is continuous but not differentiable. The
solution for the eigenenergy won’t contain a kink. Therefore, the kink should be reduced by
making small changes in the eigenenergies. This way the eigenenergy can be found. The found
solution still contains a kink, that is a point wich isn’t differentiable, at the turning point where
the wavefunctions were matched. An example of such a kink can be seen in figure 11. At the
point marked in figure 11 the wavefunction is continuous but not differentiable. The solution
for the eigenenergy won’t contain a kink. Therefore, the kink should be reduced by making
small changes in the eigenenergies. This way the eigenenergy can be found. The found solution
still contains a kink, that is a point wich isn’t differentiable, at the turning point where the
wavefunctions were matched. An example of such a kink can be seen in figure 11. At the point
marked in figure 11 the wavefunction is continuous but not differentiable. The solution for
the eigenenergy won’t contain a kink. Therefore, the kink should be reduced by making small
changes in the eigenenergies. This way the eigenenergy can be found.

However, this program is not the best at finding the exact energies for the bound states. The
program will scan a whole energy range looking for only one solution. Then it repeats itself
with a smaller energy step value until the desired accuracy of the solution is reached. Finding
the eigenenergies with high accuracy takes too long.

To solve the problems mentioned above a different program was made wich calculates the
energies where the kink is zero. It determines the size of the kink for different energies and
then interpolates to find the energy where there is no kink. This can be seen in figure 12, where
plots of the energy vs. the size of the kink are shown. In these plots, every x-axis crossing is
an eigenenergy.

This program also calculates the wavefunction for n = 1, 2, 3. The program does this for l = 0
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(a) Energy vs. kink size plot for l = 0
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(b) Energy vs. kink size plot for l = 1

Figure 12: Energy vs. kink size plots.

(figure 13a) and for l = 1 (figure 13b). These plots contain the eigenfunctions of the bound
states 1s, 2s, 3s, 2p & 3p of hydrogen.
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(a) Radial wave functions for l = 0, n = 1..3
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(b) Radial wave function for l = 1, n = 2, 3

Figure 13: Radial wave functions.

The energies of these bound states were determined by finding the x-axis crossings in the plots in
figure 12. They are E1s = −12.5625 eV, E2s = −3.2025 eV, E3s = −1.4475 eV, E2p = −3.3075
eV and E3p = −1.4625 eV.

Solving the problem analytically gives us:

En = −[
m

2h̄2 (
e2

4πε0
)2]

1

n2
(8)

[15]

So the analytical solved values for the energies are E1 = −13.6058 eV, E2 = −3.4015 eV and
E3 = −1.5118 eV.

The numerical solutions above are not exact, although they are better then the results found
with the first program, wich gave, for example, E1 = −12.2800 eV. To get better results, some
of the parameters had to be adjusted. Options were the value of ∆ρ, the total number of points
N and the number of steps of the energy, Esteps.
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Increasing Esteps and thus decreasing the step size of the energy did not yield better results.
Therefore, ∆ρ and N had to be adjusted. N should be chosen large enough get the necessary
range of ρ. However, a smaller ∆ρ did also not yield better results.

A different option was changing the turning point. The definition of the turning point was
changed to be N/2. With this turning point, the energies E1s = −13.5975 eV, E2s = −3.3525
eV, E3s = −1.3725 eV, E2p = −3.3825 eV, E3p = −1.4025 eV were found. These were the best
results acquired.

Assignment 2 - Tight binding

This section contains the solutions to the tight binding assignments from the Theoretical Solid
State Physics course.

1. Linear H3

(a) The value of β is not the same for all three atoms, since the atom in the middle has two
atoms around it.

(b) Considering that the atom in the middle has two atoms around it we have:

〈ψ H ψ〉 = |a1|2(ε− β)− a∗1a2t− a∗2a1t+ |a2|2(ε− 2β)− a∗2a3t− a∗3a2t+ |a3|2(ε− β)

〈ψ H ψ〉 = |a1|2ε′ − a∗1a2t− a∗2a1t+ |a2|2ε′′ − a∗2a3t− a∗3a2t+ |a3|2ε′
(9)

with ε′ = ε− β and ε′′ = ε− 2β

The equation to solve therefore becomes:∣∣∣∣∣∣
ε′ − E −t 0
−t ε′′ − E −t
0 −t ε′ − E

∣∣∣∣∣∣ = 0 (10)

Finding a solutions gives us:

(ε′ − E)[(ε′′ − E)(ε′ − E)− t2]− t2(ε′ − E) = 0

(ε′ − E)[(ε′′ − E)(ε′ − E)− 2t2] = 0

E = ε′ ∨ (ε′′ − E)(ε′ − E)− 2t2 = 0

E = ε′ ∨ E2 − (ε′ + ε′′)E + ε′ε′′ − 2t2 = 0

E = ε′ ∨ E =
1

2
(ε′ + ε′′)± 1

2

√
(ε′ − ε′′)2 − 4(ε′ε′′ − 2t2)

(11)

Finding a solution for the energy is a lot harder but in this case still doable. One can imagine
that calculating the wave functions would be even harder. Simplifying the algebra by taking β
the same for all three atoms makes this a lot easier to do.
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(c) For E = ε′ we have  0 −t 0
−t 0 −t
0 −t 0

a1

a2

a3

 =

0
0
0


−t 0 −t

0 −t 0
0 0 0

a1

a2

a3

 =

0
0
0


1 0 1

0 1 0
0 0 0

a1

a2

a3

 =

0
0
0


(12)

thus the eigenvector for E = ε′ is 1√
2

 1
0
−1

 and the wavefunction is

ψA(r) =
1√
2

[φ(r −R1)− φ(r −R3)] (13)

For E = ε′ +
√

2t we have −√2t −t 0

−t −
√

2t −t
0 −t −

√
2t

a1

a2

a3

 =

0
0
0


−√2t −t 0

0 −1
2

√
2t −t

0 −t −
√

2t

a1

a2

a3

 =

0
0
0


−√2t −t 0

0 −1
2

√
2t −t

0 0 0

a1

a2

a3

 =

0
0
0


−√2t −t 0

0 1
√

2
0 0 0

a1

a2

a3

 =

0
0
0


−√2t 0

√
2t

0 1
√

2
0 0 0

a1

a2

a3

 =

0
0
0


1 0 −1

0 1
√

2
0 0 0

a1

a2

a3

 =

0
0
0



(14)

thus the eigenvector for E = ε′ +
√

2t is 1
2

 1

−
√

2
1

 and the wavefunction is

ψB(r) =
1

2
[φ(r −R1)−

√
2φ(r −R2) + φ(r −R3)] (15)
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(a) Sketch of ψA. (b) Sketch of ψB.
(c) Sketch of ψC .

Figure 14: Sketches of the wave functions of a linear H3 molecule chain.

For E = ε′ −
√

2t we have √2t −t 0

−t
√

2t −t
0 −t

√
2t

a1

a2

a3

 =

0
0
0


√2t −t 0

0 1
2

√
2t −t

0 −t
√

2t

a1

a2

a3

 =

0
0
0


√2t −t 0

0 1
2

√
2t −t

0 0 0

a1

a2

a3

 =

0
0
0


√2t −t 0

0 1 −
√

2
0 0 0

a1

a2

a3

 =

0
0
0


√2t 0 −

√
2t

0 1 −
√

2
0 0 0

a1

a2

a3

 =

0
0
0


1 0 −1

0 1 −
√

2
0 0 0

a1

a2

a3

 =

0
0
0



(16)

thus the eigenvector for E = ε′ −
√

2t is 1
2

 1√
2

1

 and the wavefunction is

ψC(r) =
1

2
[φ(r −R1) +

√
2φ(r −R2) + φ(r −R3)] (17)

All the three wave functions ψA, ψB and ψC are sketched in figure 14.

2. Linear H4 A linear chain of four hydrogen atoms is considered, as drawn in figure 15.
The equation that needs to be solved is∣∣∣∣∣∣∣∣

ε′ − E −t 0 0
−t ε′ − E −t 0
0 −t ε′ − E −t
0 0 −t ε′ − E

∣∣∣∣∣∣∣∣ = 0 (18)
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Figure 15: Linear chain of 4 hydrogen atoms spaced equally apart. The -t between the atoms
represents the hopping element.

which gives

(ε′ − E)

∣∣∣∣∣∣
ε′ − E −t 0
−t ε′ − E −t
0 −t ε′ − E

∣∣∣∣∣∣+ t

∣∣∣∣∣∣
−t −t 0
0 ε′ − E −t
0 −t ε′ − E

∣∣∣∣∣∣ = 0

(ε′ − E)2[(ε′ − E)2 − 2t2]− t2[(ε′ − E)2 − t2] = 0

(ε′ − E)2[(ε′ − E)2 − 3t2] + t4 = 0

(ε′ − E)4 − 3t2(ε′ − E)2 + t4 = 0

(ε′ − E)2 =
3t2 ± t2

√
5

2

(ε′ − E) = ±t
√

1

2
(3±

√
5)

E = ε′ ± c±t

(19)

where c± =
√

1
2
(3±

√
5)

To find the eigenvectors we solve:
ε′ − E −t 0 0
−t ε′ − E −t 0
0 −t ε′ − E −t
0 0 −t ε′ − E



a1

a2

a3

a4

 =


0
0
0
0

 (20)
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So for E++ = ε′ + c+t we have:
−c+t −t 0 0
−t −c+t −t 0
0 −t −c+t −t
0 0 −t −c+t



a1

a2

a3

a4

 =


0
0
0
0



−c+t −t 0 0

0 −t −t 0
0 −t −c+t −t
0 0 −t −c+t



a1

a2

a3

a4

 =


0
0
0
0



−c+t −t 0 0

0 −t −t 0
0 0 −c−t −t
0 0 −t −c+t



a1

a2

a3

a4

 =


0
0
0
0



−c+t −t 0 0

0 −t −t 0
0 0 −c−t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



−c+t −t 0 0

0 −t 0 c+t
0 0 −c−t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



−c+t 0 0 −c+t

0 −t 0 c+t
0 0 −c−t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0




1 0 0 1
0 1 0 −c+

0 0 1 c+

0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



a1

a2

a3

a4

 =
1√

5 +
√

5


1
−c+

c+

−1



(21)

and the wave function becomes:

ψA(r) =
1√

5 +
√

5
[φ(r −R1)− c+φ(r −R2) + c+φ(r −R3)− φ(r −R4)] (22)
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For E−+ = ε′ − c+t we have:
c+t −t 0 0
−t c+t −t 0
0 −t c+t −t
0 0 −t c+t



a1

a2

a3

a4

 =


0
0
0
0



c+t −t 0 0
0 t −t 0
0 −t c+t −t
0 0 −t c+t



a1

a2

a3

a4

 =


0
0
0
0



c+t −t 0 0
0 t −t 0
0 0 c−t −t
0 0 −t c+t



a1

a2

a3

a4

 =


0
0
0
0



c+t −t 0 0
0 t −t 0
0 0 c−t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



c+t −t 0 0
0 t 0 −c+t
0 0 c−t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



c+t 0 0 −c+t
0 t 0 −c+t
0 0 c−t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0




1 0 0 −1
0 1 0 −c+

0 0 1 −c+

0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



a1

a2

a3

a4

 =
1√

5 +
√

5


1
c+

c+

1



(23)

and the wave function becomes:

ψB(r) =
1√

5 +
√

5
[φ(r −R1) + c+φ(r −R2) + c+φ(r −R3) + φ(r −R4)] (24)
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For E+− = ε′ + c−t we have:
−c−t −t 0 0
−t −c−t −t 0
0 −t −c−t −t
0 0 −t −c−t



a1

a2

a3

a4

 =


0
0
0
0



−c−t −t 0 0

0 t −t 0
0 −t −c−t −t
0 0 −t −c−t



a1

a2

a3

a4

 =


0
0
0
0



−c−t −t 0 0

0 t −t 0
0 0 −c+t −t
0 0 −t −c−t



a1

a2

a3

a4

 =


0
0
0
0



−c−t −t 0 0

0 t −t 0
0 0 −c+t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



−c−t −t 0 0

0 t 0 c−t
0 0 −c+t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



−c−t 0 0 c−t

0 t 0 c−t
0 0 −c+t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0




1 0 0 −1
0 1 0 c−

0 0 1 c−

0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



a1

a2

a3

a4

 =
1√

5−
√

5


1
−c−
−c−

1



(25)

and the wave function becomes:

ψC(r) =
1√

5−
√

5
[φ(r −R1)− c−φ(r −R2)− c−φ(r −R3) + φ(r −R4)] (26)
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For E−− = ε′ − c−t we have:
c−t −t 0 0
−t c−t −t 0
0 −t c−t −t
0 0 −t c−t



a1

a2

a3

a4

 =


0
0
0
0



c−t −t 0 0
0 −t −t 0
0 −t c−t −t
0 0 −t c−t



a1

a2

a3

a4

 =


0
0
0
0



c−t −t 0 0
0 −t −t 0
0 0 c+t −t
0 0 −t c−t



a1

a2

a3

a4

 =


0
0
0
0



c−t −t 0 0
0 −t −t 0
0 0 c+t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



c−t −t 0 0
0 −t 0 −c−t
0 0 c+t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



c−t 0 0 c−t
0 −t 0 −c−t
0 0 c+t −t
0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0




1 0 0 1
0 1 0 c−

0 0 1 c−

0 0 0 0



a1

a2

a3

a4

 =


0
0
0
0



a1

a2

a3

a4

 =
1√

5−
√

5


1
c−

−c−
−1



(27)

and the wave function becomes:

ψD(r) =
1√

5−
√

5
[φ(r −R1) + c−φ(r −R2)− c−φ(r −R3)− φ(r −R4)] (28)

The wave functions ψA, ψB, ψC and ψD are sketched in figure 16.

3. Infinite chain with s-orbitals

(a) The result from the lecture is

ε(k) = εs −
β +

∑
R 6=0 γ(R)eik·R

1 +
∑

R 6=0 α(R)eik·R
(29)
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(a) Sketch of the wave function from
equation (22).

(b) Sketch of the wave function from
equation (24).

(c) Sketch of the wave function from
equation (26).

(d) Sketch of the wave function from
equation (28).

Figure 16

We neglect α, we only consider nearest neighbors and we take β = 0. This means equation (29)
becomes:

ε(k) = εs −
∑
n.n.

γ(R)eik·R (30)

For an infinite chain of hydrogen atoms, the nearest neighbors are the atoms at positions ±a,
so we can calculate

ε(k) = εs − t(eika + e−ika) = εs − 2t cos(ka) (31)

The result is sketched in figure 17 from k = −π
a

to k = π
a
.

(b) The Fermi energy is the energy level to which the band is filled. We have a half filled band,
so the Fermi energy would be the energy at kf with kf = π

2a
. This means that εf = ε( π

2a
) = εs.

The level εs is marked in figure 17. Since the band is only half filled, the electrons are able to
conduct so the chain is conducting.

(c) We start at the equation from the slides:

[ε(k)− Em]bm = −[ε(k)− Em]
∑
n

∑
R 6=0

〈
ψm(r)ψn(r −R)eik·R

〉
bn

+
∑
n

〈ψm ∆U(r) ψn〉 bn +
∑
n

∑
R 6=0

〈
ψm(r) ∆U(r) ψn(r −R)eik·R

〉
bn

(32)

Again, α is neglected and β = 0. Equation (32) can now be written as:

[ε(k)− Em]bm =
∑
n

∑
R 6=0

〈
ψm(r) ∆U(r) ψn(r −R)eik·R

〉
bn (33)

This equation can be written in matrix form, since we have two atoms:
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k = -π/a k = 0 k = π/a

ε
s

- 2t

ε
s

ε
s

+ 2t

Figure 17: Dispersion of an infinite chain of hydrogen atoms.

[
ε(k)− Es,1 0

0 ε(k)− Es,2

] [
b1

b2

]
=[∑

R 6=0 〈φs,1(r) ∆U(r) φs,1(r −R)〉 eik·R
∑

R 6=0 〈φs,1(r) ∆U(r) φs,2(r −R)〉 eik·R∑
R 6=0 〈φs,2(r) ∆U(r) φs,1(r −R)〉 eik·R

∑
R 6=0 〈φs,2(r) ∆U(r) φs,2(r −R)〉 eik·R

] [
b1

b2

] (34)

Because we consider s-orbitals, which are always real, one can argue that

〈φs,1(r) ∆U(r) φs,2(r −R)〉 = 〈φs,2(r) ∆U(r) φs,1(r −R)〉 = −γ (35)

and, since we have two atoms in the unit cell,

〈φs,1(r) ∆U(r) φs,1(r −R)〉 = 〈φs,2(r) ∆U(r) φs,2(r −R)〉 = 0 (36)

and lastly we take Es,1 = Es,2 = E, so equation (34) becomes:[
ε(k)− E 0

0 ε(k)− E

] [
b1

b2

]
=

[
0 −

∑
R 6=0 γe

ik·R

−
∑

R 6=0 γe
ik·R 0

] [
b1

b2

]
(37)
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k = -π/(2a) k = 0 k = π/(2a)
E - 2t

ε
f

E + 2t

Figure 18: Dispersion of an infinite chain of hydrogen atoms with two atoms per unit cell. The
values of k cover the first Brillouin zone. The Fermi energy is marked by a dotted line. The red
line represents the solution ε(k) = E + 2t cos(ka) while the black line represents the solution
ε(k) = E − 2t cos(ka).

The energy ε(k) can be found by solving:∣∣∣∣ ε(k)− E
∑

R 6=0 γe
ik·R∑

R 6=0 γe
ik·R ε(k)− E

∣∣∣∣ = 0∣∣∣∣ ε(k)− E t(eika + e−ika)
t(eika + e−ika) ε(k)− E

∣∣∣∣ = 0∣∣∣∣ ε(k)− E 2t cos(ka)
2t cos(ka) ε(k)− E

∣∣∣∣ = 0

(ε(k)− E)2 − 4t2 cos2(ka) = 0

(ε(k)− E)2 = 4t2 cos2(ka)

ε(k)− E = ±2t cos(ka)

ε(k) = E ± 2t cos(ka)

(38)

The dispersion found in equation (38) is plotted in figure 18. In this figure, the Fermi energy
is marked by a dotted line. The whole first Brillouin zone is shown.

(d) Since the unit cell contains two atoms, the first Brillouin zone is a half smaller. Half of
the bands which were in the first Brillouin zone in figure 17 but now outside of it are folded
back in.
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Figure 19: Wave functions of two atoms in a linear chain of hydrogen atoms.

(e) In the case of problem a we found a wavefunction for each atom of the type

ψ(r) = φ(r −R) (39)

with R the location of each atom.

For problem c we found wavefunctions for each two atoms of the type

ψ(r) =
1√
2

[φ(r −R1) + φ(r −R2)] (40)

as well as

ψ(r) =
1√
2

[φ(r −R1)− φ(r −R2)] (41)

The wave function of equation (39) as well as the wave function of equation (40) both look like
the sketch in figure 19 when they are drawn for two atoms. Essentially, both these methods
have the same results. However, problem c also seems to give rise to an anti-bonding wave
function in equation (41) which is not a result of problem a.

(f) We restart the calculation from problem c at the point where the we take Es,1 = Es,2 = E,
ignore that part and continue from an equation similar to equation (37).[

ε(k)− Es,+ 0
0 ε(k)− Es,−

] [
b1

b2

]
=

[
0 −

∑
R 6=0 γe

ik·R

−
∑

R 6=0 γe
ik·R 0

] [
b1

b2

]
(42)

We can again find the energy ε(k) by solving ∣∣∣∣ ε(k)− Es,+
∑

R 6=0 γe
ik·R∑

R 6=0 γe
ik·R ε(k)− Es,−

∣∣∣∣ = 0∣∣∣∣ ε(k)− Es,+ t(eika + e−ika)
t(eika + e−ika) ε(k)− Es,−

∣∣∣∣ = 0∣∣∣∣ε(k)− Es,+ 2t cos(ka)
2t cos(ka) ε(k)− Es,−

∣∣∣∣ = 0

(ε(k)− Es,+)(ε(k)− Es,−)− 4t2 cos2(ka) = 0

ε2(k)− (Es,+ + Es,−)ε(k) + Es,+Es,− − 4t2 cos2(ka) = 0

ε(k) =
1

2
(Es,+ + Es,−)± 1

2

√
E2
s,+ + E2

s,− − 2Es,+Es,− + 16t2 cos2(ka)

ε(k) = E0 ±
1

2

√
∆2 + 16t2 cos2(ka)

(43)
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k = -π/(2a) k = 0 k = π/(2a)

ε
f

Figure 20: Dispersion of an infinite dimer chain with s-orbitals. The values of k cover the
first Brillouin zone. The Fermi energy is marked by a dotted line. The red line represents
the solution ε(k) = E0 − 1

2

√
∆2 + 16t2 cos2(ka) while the black line represents the solution

ε(k) = E0 + 1
2

√
∆2 + 16t2 cos2(ka)

making use of the fact that Es,± = E0 ± ∆
2

.

The calculated dispersion is plotted in figure 20. In this figure, the Fermi energy is marked by
a dotted line. The whole first Brillouin zone is shown.

(g) The most important difference between dispersion relations calculated in other problems
and the one in figure 20 is the band gap. The size of the band gap determines if it’s a semi-
conductor or an insulator and thus if conduction is possible. The size of the band gap is equal
to ∆, so if the material conducts depens on ∆.

Assignment 3 - Densities of States

Three methods (one analytical, two numerical) of calculating the density of states and the
number of states for a one dimensional linear chain of hydrogen atoms with one s orbital per
atom will be compared and discussed. The dispersion in this case is

ε(k) = ε0 − 2t cos(ka) (44)

(i) - Analytical method The density of states is defined as

D(ε) =
dN

dε
(45)
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We know that the number of electrons at energy ε(k) is equal to the length between ε(k) and
ε(k + dk) divided by the length of one state, keeping in mind that we have two electrons per
state. Therefore,

dN = 2
dk
2π
L

=
Ldk

π
(46)

Equation (44) can be used to calculate dε:

dε

dk
= 2ta sin(ka)⇒ dε = 2ta sin(ka)dk (47)

Substituting equations (46) and (47) into equation (45) gives us the density of states:

D(ε) =
Ldk
π

2ta sin(ka)dk
=

L

2πta sin(ka)
(48)

However, this is dependent on k instead of ε, so we rewrite equation (44):

ε(k) = ε0 − 2t cos(ka)

cos(ka) =
ε0 − ε

2t

ka = cos−1(
ε0 − ε

2t
)

(49)

Substituting equation (49) into equation (48) gives:

D(ε) =
L

2πta sin(cos−1( ε0−ε
2t

))
=

L

2πta
√

1− ( ε0−ε
2t

)2
(50)

In figure 21a the density of states is plotted in units of L
a
. In this plot, ε0 = 0 for convenience

and t = 1.

To calculate the number of states N(ε) we use

N(ε) =

∫ ε

−∞
D(ε′)dε′ (51)

However, one can show that the minimum of equation (44) is ε0−2t. Inserting this as the lower
boundary of the integral allows us to calculate N(ε):

N(ε) =

∫ ε

ε0−2t

D(ε′)dε′ =
L

2πta

∫ ε

ε0−2t

1√
1− ( ε0−ε

′

2t
)2

dε′ (52)

The substitution ε0−ε′
2t

= sin(θ) and ε′ = ε0−2t sin(θ)⇒ dε′

dθ
= −2t cos(θ)⇒ dε′ = −2t cos(θ)dθ

gives:

N(ε) = − L

πa

∫ ε

ε0−2t

cos(θ)√
1− sin2(θ)

dθ = − L

πa

∫ ε

ε0−2t

dθ = − L

πa
θ
∣∣∣ε
ε0−2t

(53)

Substituting ε0−ε′
2t

= sin(θ)⇒ θ = sin−1( ε0−ε
′

2t
) into equation (53) gives

N(ε) = − L

πa
sin−1(

ε0 − ε′

2t
)
∣∣∣ε
ε0−2t

= − L

πa
sin−1(

ε0 − ε
2t

) +
L

πa
sin−1(1) =

− L

πa
sin−1(

ε0 − ε
2t

) +
L

2a

(54)

Equation (54) is plotted in figure 21b. It’s plotted in units of L
a
. In this plot, again, ε0 = 0 for

convenience and t = 1.
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(a) Density of states
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(b) Number of states

Figure 21: The density of states and number of states per energy value of a one dimensional
linear chain of hydrogen atoms. The density of states as well as the number of states are given
in units of L

a
.

(ii) - Histogram method (numerical) The next method used was a numerical one, namely
the histogram method. The dispersion was calculated for different numbers of k-points using
equation (44). Then the values of the energy were spread out over a different numbers of bins
and a histogram was made to calculate the density of states. Then, the number of states was
calculated by summing the different bins cumulatively. The results are shown in figure 22.
There the density of states is shown on the left and the number of states is shown on the right.
They are plotted for respectively 100 k-points and 10 energy intervals (figures 22a and 22b),
1000 k-points and 100 energy intervals (figures 22c and 22d), 10000 k-points and 1000 energy
intervals (figures 22e and 22f) and 100000 k-points and 10000 energy intervals (figures 22g
and 22h).

(iii) - Linear analytic method (numerical) Another numerical method was used, namely
the linear analytic method. The idea behind this method is as follows. We know that the total
number of states N at energy ε is:

N(ε) =
∆k
2π
L

=
L∆k

2π
(55)

with ∆k the distance between +ε and −ε which equals 2k since our dispersion is equation (44)
with again ε0 = 0 and t = 1. This means we have:

N(ε) =
Lk

π
(56)

The density of states is the derivative of the total number of states to the energy, so:

D(ε) =
dN

dε
=
dN

dk

dk

dε
=
L

π

dk

dε
=

L
π
dε
dk

(57)

Using equation (57) the density of states can be calculated numerically. Since the minimum of
equation (44) is at k = 0 and the maximum is at k = π

a
, we consider only this region. First,

ε(k) is calculated using equation (44). Then, we calculate

dε

dk
=
ε(k + dk)− ε(k)

dk
(58)
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(a) Density of states for 100 k-
points and 10 energy intervals.
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(b) Number of states for 100 k-
points and 10 energy intervals.
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(c) Density of states for 1000 k-
points and 100 energy intervals.
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(d) Number of states for 1000 k-
points and 100 energy intervals.
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(e) Density of states for 10000 k-
points and 1000 energy intervals.
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(f) Number of states for 10000 k-
points and 1000 energy intervals.
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(g) Density of states for 100000 k-
points and 10000 energy intervals.
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(h) Number of states for 100000 k-
points and 10000 energy intervals.

Figure 22: The density of states and number of states per energy value of a one dimensional
linear chain of hydrogen atoms. They were calculated using the histogram method for different
numbers of k-points and energy intervals.
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(a) Density of states.
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(b) Number of states.

Figure 23: The density of states and number of states per energy value of a one dimensional
linear chain of hydrogen atoms. They were calculated using a linear analytic method for 100
k-points and are given in units of L.

and from there calculate the density of states and the number of states.

The density of states and number of states are plotted for 100 k-points in figure 23. They are
both plotted in units of L, with the density of states on the left and the number of states on
the right.

(iv) - Comparing the different methods Three methods were used, one analytical and
two numerical. One would expect the analytical result to be the most precise, since no simpli-
fications or assumptions were used in this case.

The histogram method is an interesting approach since the density of states is defined as the
number of states at a certain energy. With the histogram method, one does exactly this: count
the number of states at a certain energy. The larger the number of energy intervals get, the
closer the result should come to the analytical result. This is true for the shape of the graph,
which resembles the graph in figure 21a for 100000 k-points and 10000 energy intervals quite
nicely. However, most states are counted at ε = ±2 eV. This is expected since the density of
states is actually infinity at ε = ±2 eV. The number of states resembles the analytical result
quite well and in three of the four cases (the exception being figure 22b) the number of states
at ε = 2 eV is exactly the number of k-points.

The density of states calculated with the linear analytic method also matches the shape of
the analytic density of states. The differences in this case occur also because most states are
counted at ε = ±2 eV, just as with the histogram method.

Looking at the analytical result and the numerical results it can be concluded that both give
a nice result. One needs to keep in mind however, that the histogram method takes a lot of
calculating power for a large number of k-points and energy intervals compared to the linear
analytic method. On the other hand, the linear analytic method is very similar to the regular
analytic method except that the derivative of the dispersion is calculated numerically instead
of analytically.
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Assignment 4

This section contains the solutions to assignment set 4 from the Theoretical Solid State Physics
course.

3. Tight binding and phase space orbits

(a) In this case equation (30) can be used again. This time however there are different nearest
neighbors, so we have:

k ·R = ±aki(i = x, y) (59)

and equation (30) becomes:

ε(k) = εs − t(eikxa + e−ikxa + eikya + e−ikya) = εs − 2t(cos(kxa) + cos(kya)) (60)

(b) Starting from equation (33) the dispersion for the p-orbitals can be derived. The matrix
for this equation can be written, but to make this more readable we must first determine which
hopping paramters are left.

We have nine different hopping integrals, one for each matrix element. First we look at∑
R 6=0

〈φpx(r ∆U(r) φpx(r −R)〉 eik·R (61)

which is drawn in figure 24a. We can see two different hopping integrals in this figure, that is
-γ1 between the wave function at the origin and the wave functions at ±akx and -γ2 between
the wave function at the origin and the wave function at ±aky.

A similar situation is ∑
R 6=0

〈
φpy(r ∆U(r) φpy(r −R)

〉
eik·R (62)

as sketched in figure 24e. In this case however we have the hopping parameter -γ2 between the
wave function at the origin and the wave functions at ±akx and the hopping parameter -γ1

between the wave function at the origin and the wave functions at ±aky.

In the case of ∑
R 6=0

〈φpz(r ∆U(r) φpz(r −R)〉 eik·R (63)

as sketched in figure 24i we have the same hopping parameter -γ3 between the wave function
at the origin and all it’s nearest neighbors.

In figure 24b the wave functions for∑
R 6=0

〈
φpx(r ∆U(r) φpy(r −R)

〉
eik·R (64)

are plotted. The hopping between the wave function at the origin and the wave functions at
±akx is zero because in the xz plane the wave function at the origin is even and the wave
functions at ±akx are odd. In the yz plane the wave function at the origin is odd while the
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wave functions at ±aky are even zo the hopping between these wave functions is also zero. A
similar argument can be made for the wave functions in figure 24d, so∑

R 6=0

〈
φpy(r ∆U(r) φpx(r −R)

〉
eik·R (65)

is also zero.

Then we have the wave functions for∑
R 6=0

〈φpx(r ∆U(r) φpz(r −R)〉 eik·R (66)

as sketched in figure 24c. In the xy plane the wave function at the origin is even while the
nearest neighbor wave functions are odd. Therefore, all hopping integrals are zero. Similar
arguments can be made for the hopping integrals in figures 24f to 24h, so∑

R 6=0

〈
φpy(r ∆U(r) φpz(r −R)

〉
eik·R =

∑
R 6=0

〈φpz(r ∆U(r) φpx(r −R)〉 eik·R =∑
R 6=0

〈
φpz(r ∆U(r) φpy(r −R)

〉
eik·R = 0

(67)

Now we can write down the matrix equation that needs to be solved:ε(k)− Ep 0 0
0 ε(k)− Ep 0
0 0 ε(k)− Ep

bpxbpy
bpz

 =

−γ1e
±iakx − γ2e

±iaky 0 0
0 −γ2e

±iakx − γ1e
±iaky 0

0 0 −γ3(e±iakx + e±iaky)

bpxbpy
bpz

 (68)

The solution can be found by calculating:∣∣∣∣∣∣
ε(k)− Ep + γ1e

±iakx + γ2e
±iaky 0 0

0 ε(k)− Ep + γ2e
±iakx + γ1e

±iaky 0
0 0 ε(k)− Ep + γ3(e±iakx + e±iaky)

∣∣∣∣∣∣ = 0 (69)

Since this is a diagonal matrix the solutions are the diagonal entries, so we have

εpx(k) = Ep − γ1e
±iakx − γ2e

±iaky = Ep − 2γ1 cos(akx)− 2γ2 cos(aky)

εpy(k) = Ep − γ2e
±iakx − γ1e

±iaky = Ep − 2γ2 cos(akx)− 2γ1 cos(aky)

εpz(k) = Ep − γ3(e±iakx + e±iaky) = Ep − 2γ3(cos(akx) + cos(aky))

(70)

(c) When the next nearest neighbors are considered, the wave functions in figures 24b and 24d
give rise to nonzero hopping integrals between the wave function at the origin and the wave
functions at the next nearest neighbor positions. For the wave functions in figures 24c and 24f
to 24h the hopping integrals are still all zero however, as can be seen by looking at the integrands
in the xy plane. This means the matrix is block diagonal.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 24: Wavefunctions sketched for the different hopping integrals arising from equation (33).

43



Assignment 5 - Tight Binding Method

Problem 1 - Tight-Binding p-Bands in Cubic Crystals

(a)

βxx = γxx(R = 0) = −
∫
drψ∗x(r)ψx(r)∆U(r) = −

∫
drx2|φ(r)|2∆U(r) (71)

[6]

with r = |r| Because of cubic symmetry, a rotation around the z-axis can be done, so that
x→ y and y → −x. Now equation (71) becomes:

−
∫
dry2|φ(r)|2∆U(r) = −

∫
drψ∗y(r)ψy(r)∆U(r) = βyy

In the same way transformations around the x-axis or y-axis can be done to prove that βxx =
βyy = βzz = β.

βxy = γxy(R = 0) = −
∫
drψ∗x(r)ψy(r)∆U(r) = −

∫
drxy|φ(r)|2∆U(r) (72)

Applying the same transformation as above (x→ y, y → −x) to equation (72) gives:

βxy =

∫
drxy|φ(r)|2∆U(r) (73)

Combining equations (72) and (73) gives:

2βxy =

∫
drxy|φ(r)|2∆U(r)−

∫
drxy|φ(r)|2∆U(r)

2βxy = 0

βxy = 0

(b) To show that γ̃ij(k) is diagonal we first take a look at γ̃xy(k):

γ̃xy(k) =
∑
R

eik·Rγxy(R) =
∑
R

−eik·R
∫
drψ∗x(r)ψy(r −R)∆U(r) (74)

[6]

Only nearest-neighbors R are considered, so R = a(±1, 0, 0), a(0,±1, 0), a(0, 0,±1) and
k ·R = ±aki, i = x, y, z.

In figure 25 the p-orbitals are drawn with ψx(r) in the center and it’s nearest neighbors ψy(r−
R). Figure 25b shows the XY-plane, in wich ψx(r) at the origin is even and the nearest
neigbors (ψy(r −R)) are odd. Therefore the overlap integrals between ψx(r) and ψy(r −R)
for R = a(±1, 0, 0) and a(0,±1, 0) are zero. In figure 25a it can be seen that this is the case for
ψx(r) and all it’s nearest neighbors. The same argument can be made for the other off-diagonal
terms, therefore all off-diagonal terms are zero.

For the diagonal terms however, there’s a different situation, as shown in figure 26. For the
diagonal terms there’s a ψi(r) at the origin and a ψj(r−R) at it’s nearest neighbors with i = j
(in the case of figure 26 i = j = x). Therefore, the product of these functions is always even
and the integral is not necessarily zero.
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(a) 3D representation (b) XY-intersection

Figure 25: 3D representation (figure 25a) and XY-intersection (figure 25b) of the p-orbitals in
a simple cubic lattice for an atom at the origin and it’s nearest neighbors. The atom at the
origin is a px state while the nearest neighbors are py states. Based on [16]

Figure 26: 3D representation of the p-orbitals of an atom at the origin of a simple cubic lattice
and it’s nearest neighbors. The atom at the origin and it’s nearest neighbors are px states.
Based on [16]
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(c) The energies are given by:

|(ε(k)− Ep)δij + βij + γ̃ij(k)| = 0 (75)

[6]

For the off-diagonal terms (ε(k)− Ep)δij = 0 and βij = 0, so only γ̃ij remains.

From Ashcroft and Mermin [6] we know that γ̃ij =
∑

R e
ik·Rγij(R). The lattice is a face-

centered cubic Bravais lattice and we only consider nearest neigbor atoms. Therefore R =
a
2
(±1,±1, 0), a

2
(±1, 0,±1), a

2
(0,±1,±1) and k ·R = a

2
(±ki,±kj) i, j = x, y; y, z; z, x.

Take, for example, γ̃xy(k):

γ̃xy(k) =
∑
R

eik·Rγxy(R) =
∑
R

−eik·R
∫
drψ∗x(r)ψy(r −R)∆U(r) (76)

[6]

In figure 27 the p-orbitals in this case are drawn. ψx(r) can be seen at the origin with it’s
nearest neighbors ψy(r −R) around it. Three planes can be distinguished, the XY-plane, the
YZ-plane and the XZ-plane.

In the XZ-plane ψx(r) is an even function, while ψy(r −R) (with R = a
2
(±1, 0,±1)) are odd.

Therefore the overlap integrals between the wavefunctions are zero.

In the YZ-plane ψx(r) is an odd function, while ψy(r −R) (with R = a
2
(0,±1,±1)) are even.

Therefore the overlap integrals between these wavefunctions is also zero.

In the XY-plane however, ψx(r) as well as ψy(r−R) (withR = a
2
(±1,±1, 0)) are even functions.

Therefore, these integrals are not necessarily zero.

This leaves only four terms for the summation:

γ̃xy(k) = −ei
a
2

(kx+ky)

∫
drx(y − a

2
)φ∗(r)φ(

√
(x− a

2
)2 + (y − a

2
)2 + z2)∆U(r)

−ei
a
2

(kx−ky)

∫
drx(y +

a

2
)φ∗(r)φ(

√
(x− a

2
)2 + (y +

a

2
)2 + z2)∆U(r)

−ei
a
2

(−kx+ky)

∫
drx(y − a

2
)φ∗(r)φ(

√
(x+

a

2
)2 + (y − a

2
)2 + z2)∆U(r)

−ei
a
2

(−kx−ky)

∫
drx(y +

a

2
)φ∗(r)φ(

√
(x+

a

2
)2 + (y +

a

2
)2 + z2)∆U(r)

(77)

where r is the magnitude of r.

In figure 28 the XY-intersection of figure 27 is given. In this figure, one can see from rotating
R = (−1,−1, 0) and R = (+1,−1, 0) for 180 ◦ around the x-axis that the overlap integrals of
the wavefunctions at these positions with the wavefunction at the origin are the same as the
overlap integrals of the wavefunctions at R = (−1,+1, 0) and R = (+1,+1, 0) respectively
with the wavefunction at the origin, but with opposite signs. Also, rotating R = (−1,−1, 0)
for 180 ◦ around the z-axis changes the sign of the overlap integral of this wavefunction with
the wavefunction at the origin twice. Therefore, the overlap integral between the wavefunction
at the origin and the wavefunction at R = (−1,−1, 0) is equal to the overlap integral between
the wavefunction at the origin and the wavefunction at R = (1, 1, 0). It also shows that the
overlap integral between the wavefunction at the origin and the wavefunction at R = (1,−1, 0)
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Figure 27: 3D representation of the p-orbitals of an atom at the origin of a face centered
cubic lattice and it’s nearest neighbors. The atom at the origin is a px state while the nearest
neighbors are py states. Based on [16]

Figure 28: XY-intersection of figure 27, containing the p-orbitals of an atom at the origin of a
face centered cubic lattice and it’s nearest neighbors. The atom at the origin is a px state while
the nearest neighbors are py states. Two directions are shown + and -. Based on [16]
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is equal to the overlap integral between the wavefunction at the origin and the wavefunction at
R = (−1, 1, 0).

From Ashcroft and Mermin we know that

−
∫
drx(y − a

2
)φ∗(r)φ(

√
(x− a

2
)2 + (y − a

2
)2 + z2)∆U(r) = γ1 (78)

Combining equation (77) and equation (78) with the information about the overlap integrals
above we get

γ̃xy(k) = γ1(ei
a
2

(kx+ky) − ei
a
2

(kx−ky) − ei
a
2

(−kx+ky) + ei
a
2

(−kx−ky))

= γ1((cos(
a

2
kx) + i sin(

a

2
kx))(cos(

a

2
ky) + i sin(

a

2
ky))

−(cos(
a

2
kx) + i sin(

a

2
kx))(cos(−a

2
ky) + i sin(−a

2
ky))

−(cos(−a
2
kx) + i sin(−a

2
kx))(cos(

a

2
ky) + i sin(

a

2
ky))

+(cos(−a
2
kx) + i sin(−a

2
kx))(cos(−a

2
ky) + i sin(−a

2
ky)))

= γ1(cos(
a

2
kx) cos(

a

2
ky) + i cos(

a

2
kx) sin(

a

2
ky)

+i sin(
a

2
kx) cos(

a

2
ky)− sin(

a

2
kx) sin(

a

2
ky)

− cos(
a

2
kx) cos(−a

2
ky)− i cos(

a

2
kx) sin(−a

2
ky)

−i sin(
a

2
kx) cos(−a

2
ky) + sin(

a

2
kx) sin(−a

2
ky)

− cos(−a
2
kx) cos(

a

2
ky)− i cos(−a

2
kx) sin(

a

2
ky)

−i sin(−a
2
kx) cos(

a

2
ky) + sin(−a

2
kx) sin(

a

2
ky)

+ cos(−a
2
kx) cos(−a

2
ky) + i cos(−a

2
kx) sin(−a

2
ky)

+i sin(−a
2
kx) cos(−a

2
ky)− sin(−a

2
kx) sin(−a

2
ky))

= −4γ1(sin(
a

2
kx) sin(

a

2
ky))

(79)

wich matches the value given in Ashcroft and Mermin. In the same way, the othter off-diagonal
terms can be derived.

Looking at the diagonal terms we have, if we take for example i, j = x, x:

(ε(k)− Ep)δxx + βxx + γ̃xx(k) = ε(k)− Ep + β +
∑
R

eik·Rγxx(R)

= ε(k)− Ep + β +
∑
R

−eik·R
∫
drψ∗x(r)ψx(r −R)∆U(r)

(80)
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(a) XY-plane (b) XZ-plane (c) YZ-plane

Figure 29: Three planes showing an atom at the origin and it’s twelve nearest neighbors in a
face centered cubic lattice. All the wavefunctions are px-orbtials. Based on [16]

Writing this out gives us

ε(k)− Ep + β − ei
a
2

(kx+ky)

∫
drx(x− a

2
)φ∗(r)φ(

√
(x− a

2
)2 + (y − a

2
)2 + z2)∆U(r)

−ei
a
2

(kx−ky)

∫
drx(x− a

2
)φ∗(r)φ(

√
(x− a

2
)2 + (y +

a

2
)2 + z2)∆U(r)

−ei
a
2

(−kx+ky)

∫
drx(x+

a

2
)φ∗(r)φ(

√
(x+

a

2
)2 + (y − a

2
)2 + z2)∆U(r)

−ei
a
2

(−kx−ky)

∫
drx(x+

a

2
)φ∗(r)φ(

√
(x+

a

2
)2 + (y +

a

2
)2 + z2)∆U(r)

−ei
a
2

(ky+kz)

∫
drx2φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r)

−ei
a
2

(ky−kz)

∫
drx2φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z +

a

2
)2)∆U(r)

−ei
a
2

(−ky+kz)

∫
drx2φ∗(r)φ(

√
x2 + (y +

a

2
)2 + (z − a

2
)2)∆U(r)

−ei
a
2

(−ky−kz)

∫
drx2φ∗(r)φ(

√
x2 + (y +

a

2
)2 + (z +

a

2
)2)∆U(r)

−ei
a
2

(kx+kz)

∫
drx(x− a

2
)φ∗(r)φ(

√
(x− a

2
)2 + y2 + (z − a

2
)2)∆U(r)

−ei
a
2

(kx−kz)

∫
drx(x− a

2
)φ∗(r)φ(

√
(x− a

2
)2 + y2 + (z +

a

2
)2)∆U(r)

−ei
a
2

(−kx+kz)

∫
drx(x+

a

2
)φ∗(r)φ(

√
(x+

a

2
)2 + y2 + (z − a

2
)2)∆U(r)

−ei
a
2

(−kx−kz)

∫
drx(x+

a

2
)φ∗(r)φ(

√
(x+

a

2
)2 + y2 + (z +

a

2
)2)∆U(r)

(81)

In figure 29 the atom at the origin and it’s nearest neighbors are shown. From this figure,
we can see that the overlap integrals of the atom at the origin with R = (±1,±1, 0) and
R = (±1, 0,±1) are all equal. Also, the overlap integrals of the atom at the origin with
R = (0,±1,±1) are all equal.

We know that

γ2 = −
∫
drx(x− a

2
)φ∗(r)φ(

√
(x− a

2
)2 + (y − a

2
)2 + z2)∆U(r) (82)
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[6]

and we define

γ3 = −
∫
drx2φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r) (83)

We rewrite equation (81) using equations (82) and (83):

ε(k)− Ep + β + γ2(ei
a
2

(kx+ky) + ei
a
2

(kx−ky) + ei
a
2

(−kx+ky) + ei
a
2

(−kx−ky)

+ei
a
2

(kx+kz) + ei
a
2

(kx−kz) + ei
a
2

(−kx+kz) + ei
a
2

(−kx−kz))

+γ3(ei
a
2

(ky+kz) + ei
a
2

(ky−kz) + ei
a
2

(−ky+kz) + ei
a
2

(−ky−kz))

(84)

Rotating γ2 for 90 ◦ around the y-axis gives so that x→ z and z → −x:

γ2 = −
∫
drz(z − a

2
)φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r) (85)

and we know that

γ0 = −
∫
dr[x2 − y(y − a

2
)]φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r) (86)

[6]

Note that

γ0 + γ2 = −
∫
dr[x2 − y(y − a

2
)]φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r)

−
∫
drz(z − a

2
)φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r)

= −
∫
drx2φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r)

+

∫
dry(y − a

2
)φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r)

−
∫
drz(z − a

2
)φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r)

(87)

∫
dry(y − a

2
)φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r) and

−
∫
drz(z − a

2
)φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r) are the same overlap integrals with

different axes. Therefore

γ0 + γ2 = −
∫
drx2φ∗(r)φ(

√
x2 + (y − a

2
)2 + (z − a

2
)2)∆U(r) = γ3 (88)
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Combining equations (84) and (88) gives us:

ε(k)− Ep + β + γ2(ei
a
2

(kx+ky) + ei
a
2

(kx−ky) + ei
a
2

(−kx+ky) + ei
a
2

(−kx−ky)

+ei
a
2

(kx+kz) + ei
a
2

(kx−kz) + ei
a
2

(−kx+kz) + ei
a
2

(−kx−kz))

+(γ2 + γ0)(ei
a
2

(ky+kz) + ei
a
2

(ky−kz) + ei
a
2

(−ky+kz) + ei
a
2

(−ky−kz))

= ε(k)− Ep + β + γ2((cos(
a

2
kx) + i sin(

a

2
kx))(cos(

a

2
ky) + i sin(

a

2
ky))

+(cos(
a

2
kx) + i sin(

a

2
kx))(cos(−a

2
ky) + i sin(−a

2
ky))

+(cos(−a
2
kx) + i sin(−a

2
kx))(cos(+

a

2
ky) + i sin(+

a

2
ky))

+(cos(−a
2
kx) + i sin(−a

2
kx))(cos(−a

2
ky) + i sin(−a

2
ky))

+(cos(
a

2
kx) + i sin(

a

2
kx))(cos(

a

2
kz) + i sin(

a

2
kz))

+(cos(
a

2
kx) + i sin(

a

2
kx))(cos(−a

2
kz) + i sin(−a

2
kz))

+(cos(−a
2
kx) + i sin(−a

2
kx))(cos(

a

2
kz) + i sin(

a

2
kz))

+(cos(−a
2
kx) + i sin(−a

2
kx))(cos(−a

2
kz) + i sin(−a

2
kz)))

+(γ2 + γ0)((cos(
a

2
ky) + i sin(

a

2
ky))(cos(

a

2
kz) + i sin(

a

2
kz))

+(cos(
a

2
ky) + i sin(

a

2
ky))(cos(−a

2
kz) + i sin(−a

2
kz))

+(cos(−a
2
ky) + i sin(−a

2
ky))(cos(

a

2
kz) + i sin(

a

2
kz))

+(cos(−a
2
ky) + i sin(−a

2
ky))(cos(−a

2
kz) + i sin(−a

2
kz)))

= ε(k)− Ep + β + γ2(cos(
a

2
kx) cos(

a

2
ky) + i cos(

a

2
kx) sin(

a

2
ky)

+i sin(
a

2
kx) cos(

a

2
ky)− sin(

a

2
kx) sin(

a

2
ky)

+ cos(
a

2
kx) cos(−a

2
ky) + i cos(

a

2
kx) sin(−a

2
ky)

+i sin(
a

2
kx) cos(−a

2
ky)− sin(

a

2
kx) sin(−a

2
ky)

cos(−a
2
kx) cos(

a

2
ky) + i cos(−a

2
kx) sin(

a

2
ky)

+i sin(−a
2
kx) cos(

a

2
ky)− sin(−a

2
kx) sin(

a

2
ky)

cos(−a
2
kx) cos(−a

2
ky) + i cos(−a

2
kx) sin(−a

2
ky)

+i sin(−a
2
kx) cos(−a

2
ky)− sin(−a

2
kx) sin(−a

2
ky)

(89)

51



+ cos(
a

2
kx) cos(

a

2
kz) + i cos(

a

2
kx) sin(

a

2
kz)

+i sin(
a

2
kx) cos(

a

2
kz)− sin(

a

2
kx) sin(

a

2
kz)

+ cos(
a

2
kx) cos(−a

2
kz) + i cos(

a

2
kx) sin(−a

2
kz)

+i sin(
a

2
kx) cos(−a

2
kz)− sin(

a

2
kx) sin(−a

2
kz)

+ cos(−a
2
kx) cos(

a

2
kz) + i cos(−a

2
kx) sin(

a

2
kz)

+i sin(−a
2
kx) cos(

a

2
kz)− sin(−a

2
kx) sin(

a

2
kz)

+ cos(−a
2
kx) cos(−a

2
kz) + i cos(−a

2
kx) sin(−a

2
kz)

+i sin(−a
2
kx) cos(−a

2
kz)− sin(−a

2
kx) sin(−a

2
kz))

+(γ2 + γ0)(cos(
a

2
ky) cos(

a

2
kz) + i cos(

a

2
ky) sin(

a

2
kz)

+i sin(
a

2
ky) cos(

a

2
kz)− sin(

a

2
ky) sin(

a

2
kz)

+ cos(
a

2
ky) cos(−a

2
kz) + i cos(

a

2
ky) sin(−a

2
kz)

+i sin(
a

2
ky) cos(−a

2
kz)− sin(

a

2
ky) sin(−a

2
kz)

+ cos(−a
2
ky) cos(

a

2
kz) + i cos(−a

2
ky) sin(

a

2
kz)

+i sin(−a
2
ky) cos(

a

2
kz)− sin(−a

2
ky) sin(

a

2
kz)

+ cos(−a
2
ky) cos(−a

2
kz) + i cos(−a

2
ky) sin(−a

2
kz)

+i sin(−a
2
ky) cos(−a

2
kz)− sin(−a

2
ky) sin(−a

2
kz))

= ε(k)− Ep + β + γ2(4 cos(
a

2
kx) cos(

a

2
ky) + 4 cos(

a

2
kx) cos(

a

2
kz))

+(γ2 + γ0)4 cos(
a

2
ky) cos(

a

2
kz) = ε(k)− ε0(k) + 4γ0 cos(

a

2
ky) cos(

a

2
kz)
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In the same way the other diagonal terms can be proven.

(d) If k = 0, then ε0(0) = Ep − β − 12γ2 and the energy bands are given by the roots of

0 =

∣∣∣∣∣∣
ε(0)− ε0(0) + 4γ0 0 0

0 ε(0)− ε0(0) + 4γ0 0
0 0 ε(0)− ε0(0) + 4γ0

∣∣∣∣∣∣
(ε(0)− ε0(0) + 4γ0)(ε(0)− ε0(0) + 4γ0)(ε(0)− ε0(0) + 4γ0) = 0

ε(0)− ε0(0) + 4γ0 = 0

ε(0) = ε0(0)− 4γ0 = Ep − β − 12γ2 − 4γ0

(90)

with degeneracy µ(ε(0)) = 3, so all three bands are degenerate. The corresponding eigenvector

is 1√
3

1
1
1

.
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Now lets say k is directed along the y-axis (ΓX). Then k = 2π
a

0
µ
0

 with 0 ≤ µ ≤ 1 and the

energy bands are given by the roots of

0 =

∣∣∣∣∣∣
ε(k)− ε0(k) + 4γ0 cos(πµ) 0 0

0 ε(k)− ε0(k) + 4γ0 0
0 0 ε(k)− ε0(k) + 4γ0 cos(πµ)

∣∣∣∣∣∣ (91)

where ε0(k) = Ep − β − 8γ2 cos(πµ). Solving equation (91) gives us:

ε1(k) = Ep − β − (4γ0 + 8γ2) cos(πµ) ∨
ε2(k) = Ep − β − 4γ0 − 8γ2 cos(πµ)

(92)

where the degeneracy of the eigenvalues is µ(ε1(k)) = 2 and µ(ε2(k)) = 1. Therefore, there is
double degeneracy along the cube axis. The eigenvectors corresponding to the eigenvalues are

1√
2

1
0
1

 for ε1(k) and

0
1
0

 for ε2(k).

Now lets look at the situation where k is directed along a cube diagonal (ΓL). In this case

k = 2π
a

µµ
µ

 with 0 ≤ µ ≤ 1
2

where the energy bands are given by the roots of

0 =

∣∣∣∣∣∣
ε(k)− ε0(k) + 4γ0 cos2(πµ) −4γ1 sin2(πµ) −4γ1 sin2(πµ)

−4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ) −4γ1 sin2(πµ)
−4γ1 sin2(πµ) −4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ)

∣∣∣∣∣∣ (93)

The matrix can be diagonalized:
∣∣∣∣∣∣
ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) 0 −4γ1 sin2(πµ)− ε(k) + ε0(k)− 4γ0 cos2(πµ)

−4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ) −4γ1 sin2(πµ)
−4γ1 sin2(πµ) −4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ)

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) 0 −4γ1 sin2(πµ)− ε(k) + ε0(k)− 4γ0 cos2(πµ)

0 ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) −4γ1 sin2(πµ)− ε(k) + ε0(k)− 4γ0 cos2(πµ)
−4γ1 sin2(πµ) −4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ)

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) 0 0

0 ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) −4γ1 sin2(πµ)− ε(k) + ε0(k)− 4γ0 cos2(πµ)
−4γ1 sin2(πµ) −4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ)− 4γ1 sin2(πµ)

∣∣∣∣∣∣ = 0

∣∣∣∣∣∣
ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) 0 0

0 ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ) 0
−4γ1 sin2(πµ) −4γ1 sin2(πµ) ε(k)− ε0(k) + 4γ0 cos2(πµ)− 8γ1 sin2(πµ)

∣∣∣∣∣∣ = 0

(ε(k)− ε0(k) + 4γ0 cos2(πµ) + 4γ1 sin2(πµ))2(ε(k)− ε0(k) + 4γ0 cos2(πµ)− 8γ1 sin2(πµ)) = 0

(94)

where ε0(k) = Ep − β − 12γ2 cos2(πµ). Equation (94) can easily be solved for ε(k):

ε1(k) = Ep − β − 12γ2 cos2(πµ)− 4γ0 cos2(πµ)− 4γ1 sin2(πµ) ∨
ε2(k) = Ep − β − 12γ2 cos2(πµ)− 4γ0 cos2(πµ) + 8γ1 sin2(πµ)

(95)

where the degeneracy of the eigenvalues is µ(ε1(k)) = 2 and µ(ε2(k)) = 1. Therefore, there is
double degeneracy along the cube diagonal. The eigenvectors corresponding to the eigenvalues

are 1√
18

−4
1
1

 for ε1(k) and

0
0
1

 for ε2(k).

The energy bands in the ΓX-direction and ΓY-direction were sketched in figure 30. The figures
show how the energy changes when moving along these two high-symmetry directions.
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(a) ΓX-direction (b) ΓL-direction

Figure 30: Sketches of the energy of the p-bands along the ΓX direction and the ΓL direction.
The band are calculated for a face centered cubic crystal using tight binding.
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Figure 31: Numerically solved energy bands in the ΓX-direction and the ΓL-direction. The
calculations are made for a face centered cubic crystal using thight binding. They were based
on equations (91) and (93).

Problem 2 - Numerical diagonalization

For this problem, the energy bands are calculated by setting up a loop over all k-points along
the ΓX and ΓL-directions and solving equations (91) and (93) numerically.

In the case of equation (91) (ΓX) this can be done quite easily because the matrix is already
diagonal. The energy bands that were calculated in this case are given in figure 31a. In this
figure, the x-axis contains the values for ky from 0 to 2π

a
in units of 2π

a
, while the y-axis contains

the energy ε(k). The values of Ep and β were set to zero while for γ0 and γ2 a value of 1 eV
was used. Only two energy bands are shown because ε1(k) is double degenerate.

Using a LAPACK subroutine the eigenvalues of the matrix in equation (93) (ΓL) can be deter-
mined numerically. In figure 31b the energybands in the ΓL direction are plotted. Again, the
x-axis is in units of 2π

a
and the y-axis contains the energy ε(k). This time however, the bands

are plotted along the line where kx = ky = kz from 0 to π
a
. In this case also, Ep and β were

set to zero, while for γ0, γ1 and γ2 a value of 1 eV was used. Again, only two energy bands are
shown because ε1(k) is double degenerate.

Comparing the numerical results to the analytical results shows that the numerical solution is
a good way of solving the tight binding matrices for the dispersion.
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(a) Grapene lattice. The lattice vectors
are indicated in red, the basis vectors are
indicated in blue and the Wigner-Seitz
cell is indicated in green. Based on an
image made with VESTA [11].

(b) Reciprocal lattice of the graphene lattice from fig-
ure 32a. The reciprocal lattice vectors are indicated in
red and the first Brillouin zone is indicated in green.

Figure 32: Lattice and reciprocal lattice of graphene.

Assignment 6

This section contains the solutions to the final assignment set from the Theoretical Solid State
Physics course.

1. Graphene π bands

(a) A sketch of the lattice can be found in figure 32a. In this figure, the lattice vectors and
basis vectors are indicated by a1, a2 and τ 1, τ 2 respectively. The Wigner-Seitz cell is indicated
in green. Two Wigner-Seitz cells are drawn.

The reciprocal lattice vectors are:

b1 =
2π

a
(

2√
3
, 0, 0)

b2 =
2π

a
(

1√
3
, 1, 0)

(96)

The reciprocal lattice is sketched in figure 32b. In this figure the reciprocal lattice vectors are
indicated in red and the first Brillouin zone is indicated in green.

(b) In graphene the carbon atoms form covalent bonds with three other carbon atoms in their
own plane. There is no covalent bonding between the planes. Since we have (2s2p)4 states this
means we have sp2 hybridisation, where 1 s orbital and 2 p orbitals are involved in the bonding.
Therefore we can consider the pz orbitals separately from s, px and py orbitals.
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Figure 33: Graphene pz bands plotted along the path Γ-M-K-Γ. The energy Epz was set to
zero.

(c) We start from equation (33) and write down the matrix:[
ε(k)− Epz 0

0 ε(k)− Epz

] [
b1

b2

]
=[

0
∑

R 6=0

〈
ψ1(r) ∆U(r) ψ2(r −R)eik·R

〉∑
R 6=0

〈
ψ2(r) ∆U(r) ψ1(r −R)eik·R

〉
0

] [
b1

b2

]
[
ε(k)− Epz 0

0 ε(k)− Epz

] [
b1

b2

]
=

[
0 −t

∑
R 6=0 e

ik·R

−t
∑

R 6=0 e
ik·R 0

] [
b1

b2

] (97)

The solution can be found by solving: ∣∣∣∣ Epz − ε(k) −t
∑

R 6=0 e
ik·R

−t
∑

R 6=0 e
ik·R Epz − ε(k)

∣∣∣∣ = 0∣∣∣∣ Epz − ε(k) −t(1 + eik·a1 + e−ik·a2)
−t(1 + e−ik·a1 + eik·a2) Epz − ε(k)

∣∣∣∣ = 0

(Epz − ε(k))2 − t2(1 + eik·a1 + e−ik·a2)(1 + e−ik·a1 + eik·a2) = 0

(Epz − ε(k))2 − t2(3 + 2 cos(k · a1) + 2 cos(k · a2) + 2 cos(k · a1 + k · a2)) = 0

ε(k) = Epz ± t
√

3 + 2(cos(k · a1) + cos(k · a2) + cos(k · a1 + k · a2))

(98)

(d) The energy bands resulting from equation (98) were plotted in figure 33 along the path
Γ-M-K-Γ. For each of these subpaths, k · a1 and k · a2 were calculated and the number of
points taken to plot each subpath was determined according to the distance between the two
high symmetry points.

(e) Each band can contain two electrons so the pz bands are half filled. This means that the
Fermi level is at ε(k) = Epz .
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Appendix 2 - VASP-calculations

To practice using VASP different band structure and density of states calculations have been
done. These results were used to analyze the differences in the electronic properties of materials
when one moves in different directions in the periodic table. The result of the calculations were
analyzed in a vertical direction (e.g. C → Si → Ge), a horizontal direction (e.g. C → BN) and
an ‘inward’ direction (e.g. graphite → graphene). The results can be found in this appendix.

For some of the materials calculations were done for multiple structures. Of these structures
the total energies were also calculated. One has to keep in mind that the total energies of the
different materials cannot be compared, since all the materials have a different potential. Only
values for the same material in different structures can be compared.

Carbon

For carbon calculations were done for diamond, graphite and graphene, one layer of graphite.
After the different paragraphs containing the results of these calculations the total energies of
the different structures are compared.

Diamond VASP calculations were done for carbon in it’s diamond structure. The resulting
band structure and density of states can be found in figure 34. The plotted path was L-Γ-X-K-Γ
and the density of states and the band structure plot share the same energy axis. The Fermi
energy was set to zero and is marked in the figure by a dotted line. For these calculations a
PBE potential was used.

The band structure along the L-Γ-X path was calculated by Glötzel et al. [17] for an energy
range of −13 to 17 eV. The results from figure 34 can thus be compared to their results. The
only differences in the results are at points where the bands cross, but it is known that VASP
can give a strange result at band crossings since the software is designed to avoid these crossings.

The band gap calculated in this case was around 4.2 eV, while it should be 5.5 eV [18]. This
can be explained by the fact that VASP uses density functional theory for it’s calculations,
which underestimates the band gap of materials.

Graphite The band structure and density of states for graphite were calculated using a PBE
and a LDA potential and are plotted in figures 35 and 36 respectively. In these plots the band
structure and density of states share the same energy axis which is zero at the Fermi energy
(dotted line). The band structure calculations were done along the path Γ-M-K-Γ-A-L-H-A.

Kobayashi [19] calculated the band structure within LDA along the path Γ-M-K-Γ-A-L. The
band structure from figure 36 can be compared to the band structure he calculated. The band
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Figure 34: Band structure and density of states for diamond along the L-Γ-X-K-Γ path. The
Fermi energy has been set to zero and is marked by a dotted line.

structures are the same except for the fact that Kobayashi [19] calculated more valence bands.
The energy values at the high symmetry points were compared and are the same as far as one
can determine by eye.

Graphite is a semi-metal [20] so the band gap should be zero. However, the band structure
shows a gap of 0.02 eV in figure 36. These problems can be explained by the fact that when
these calculations are done, the charge densities are calculated first for which the k-points are
generated automatically. In this case, the charge densities were never calculated explicitly at
the K point, the location of the band gap. Therefore, at this point the band structure was
interpolated resulting in a band gap.

The difference in the band structures calculated using a PBE and a LDA potential are plotted
in figure 37. The differences are mostly between two matching bands and always smaller than
0.4 eV.

Graphene The band structure and density of states have been calculated for graphene, a
monolayer of graphite, using VASP with a PBE and LDA potential. These plots can be found
in figure 38 for the PBE potential and figure 39 for the LDA potential. In both figures the
density of states is plotted along the path Γ-M-K-Γ. The Fermi energy has been set to zero
and is marked with a dotted line. The band structure shares it’s energy axis with the density
of states plot.

Just as graphite graphene is a semimetal and should not have a band gap. In the figures,
no band gap is observable. In figure 40 the band structures calculated using a PBE and a
LDA potential can be compared. The band structures are generally the same with a maximum
difference between two bands of 0.3 eV.
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Figure 35: Band structure and density of states for carbon in a hexagonal structure, also known
as graphite. The band structure is plotted along the Γ-M-K-Γ-A-L-H-A path. The Fermi energy
has been set to zero and is marked by a dotted line. Calculations were done by VASP using a
PBE potential.
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Figure 36: Band structure and density of states for graphite using a LDA potential. The band
structure is plotted along the Γ-M-K-Γ-A-L-H-A path. The Fermi energy has been set to zero,
marked by a dotted line.
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Figure 37: Band structures for graphite calculated using a PBE (black) and LDA (red) po-
tential. They have the same x and y axis scaling to show the differences between the two
calculations.

Table 2: Total energy per atom for three different carbon structures.

Total energy per atom [eV]
PBE LDA

Diamond −9.0894745
Graphite −9.20588925 −10.1130285

Graphene −9.217241 −10.09413

The total energies of the three different structures are listed in table 2. It contains the to-
tal energy per atom in eV for the three different structures and the two different potentials.
Calculations for diamond with a LDA potential were not done.

The PBE calculations in table 2 suggest that graphene is the most stable structure of carbon.
However the LDA calculations suggest that graphite is more stable than graphene. This could
be explained by the fact that VASP doesn’t take the van der Waals forces between the graphene
sheets in graphite into account. This might explain why according to the PBE calculations
graphite is less stable than graphene while in reality one would never encounter a sheet of
graphene.

Diamond is the least stable structure. However one can encounter diamond as the structure of
carbon since it takes a lot of energy to cross the barrier to go from diamond to graphite.
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Figure 38: Band structure and density of states for one sheet of graphite, also known as
graphene. The band structure is plotted along the Γ-M-K-Γ path. The Fermi energy has been
set to zero, marked by the dotted line. Calculations were done by VASP using a PBE potential.

Silicon

Diamond structure After carbon VASP calculations were done for silicon, which has a
diamond structure. The band structure of silicon for the path L-Γ-X-K-Γ was plotted in
figure 41 along with the density of states. The density of states plot shares it’s energy axis with
the band structure plot. The Fermi energy has been set to zero and is marked with a dotted
line. A PBE potential was used in the calculations.

The band structure for the L-Γ-X path in the energy range from −8 to 6 eV is compared to a
calculation of the band structure of silicon by Glötzel et al. [17]. The band structures are the
same except for some strange crossings as was the case with diamond.

The band gap for silicon is 1.11 eV [21]. From figure 41 one can determine a band gap of
around 0.5 eV. This is again because density functional theory calculations underestimate the
band gap.

Germanium

Diamond structure VASP calculations were also done for germanium using a PBE and
LDA potential. The band structures and densities of states are shown in figures 42 and 43
respectively. The plotted path is L-Γ-X-K-Γ. Again the density of states shares it’s energy axis
with the band structure and the Fermi energy has been set to zero (dotted line).
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Figure 39: Band structure and density of states for graphene using a LDA potential. The band
structure is plotted along the Γ-M-K-Γ path. The Fermi energy has been set to zero, marked
by the dotted line.

The differences between the band structures are small as can be seen in figure 44. The biggest
difference might be that the band structure shows no band gap at all for the LDA potential
calculation, although the density of states shows a band gap of around 0.08 eV. Besides this
the valence bands are not always exactly the same, but the differences are smaller than 0.2 eV.
The band gap for germanium should be 0.66 eV [21], but the difference can again be blamed
on density functional theory.

Glötzel et al. [17] also calculated the band structure for germanium along the L-Γ-X path in
the energy range from −10 to 4 eV. Again there are some differences because of the crossings.
Also, the band gap in figure 42 is smaller but Glötzel et al. [17] moved their lowest energy band
at the gamma point up a little bit. The rest of the band structure matches.

Boron nitride

The calculations for boron nitride were done for four different structures, that is for the zinc
blende, wurtzite and hexagonal structure and for a monolayer of the hexagonal structure. After
the results of the different calculations the total energies of these structures are compared.

Zinc blende structure Results for boron nitride in a zinc blende structure can be found in
figure 45. A PBE potential was used in the calculations, which were done by VASP. In the
figure the band structure and density of states are plotted scaled to the same y axis. The Fermi
level is set zero and marked by a dotted line. The band structure is plotted along the path
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Figure 40: Band structures for graphene calculated using a PBE (black) and LDA (red) po-
tential. They have the same x and y axis scaling to show the differences between the two
calculations.

L-Γ-X-K-Γ.

The band structure can be compared to calculations done by Abdulkareem and Elias [22]. They
plotted the band structure along the path L-Γ-X-Γ. The band structure they found matches
the band structure in figure 45. The calculated band gap is 4.45 eV in this case, but is again
underestimated. Chrenko [23] for example calculated a band gap of 6.4± 0.5 eV.

Wurtzite structure Calculations for the wurtzite structure of boron nitride were also done,
with the resulting band structure and density of states plotted in figure 46. Calculations were
done along the path Γ-M-K-Γ-A-L-H-A, using a PBE potential. The band structure and density
of states plot share the same energy axis in the figure. The Fermi level is set to zero and marked
by a dotted line.

The band structure can be compared along the path Γ-M-K-Γ-A-L to the band structure
calculated by Kobayashi [24]. The band structures seem to match except for at some crossings
of the valence bands. Where in figure 46 some conduction bands seem to cross, they clearly do
not cross in the calculations by Kobayashi [24].

The band gap in figure 46 is 5.2 eV. Optical band gap calculations were done by Xu and Ching
[25], however they calculated an indirect band gap between Γ and X point and the band gap
in figure 46 is an indirect band gap between Γ and K point. Xu and Ching [25] also calculated
direct band gaps and those can be compared. They found a direct band gap at K point of 11.7
eV, while figure 46 shows an (underestimated) direct band gap of 10.4 eV at K point.
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Figure 41: Band structure and density of states for silicon along the L-Γ-X-K-Γ path. The
Fermi energy has been set to zero and is marked by the dotted line. The charachter of the
bands is shown in this figure, with the p-charachter in blue and the s-character in red.

Hexagonal structure Also for hexagonal boron nitride calculations were done. Just as with
the wurtzite structure, the calculations were done along the path Γ-M-K-Γ-A-L-H-A and a
PBE potential was used. The resulting band structure and density of states can be found in
figure 47. Both plots share the same energy axis. The Fermi energy was set to zero and is
marked by the dotted line.

The band structure can also be compared to calculations by Kobayashi [26]. He calculated the
band structure along the path Γ-M-K-Γ-A-L. The band structures are the same except that
figure 47 contains one more conduction band along Γ-M-K-Γ.

The band gap has been calculated by Blase et al. [27]. They calculated a band gap of 5.4 eV.
This is bigger than the band gap that can be determined from figure 47, which is 4.25 eV, so
it’s again underestimated.

Monolayer Calculations were also done for a monolayer of hexagonal boron nitride, that is
one sheet from the hexagonal boron nitride structure. The band structure and density of states
were calculated along the Γ-M-K-Γ path using a PBE potential. The results can be found in
figure 48. In this figure, the density of states and band structure plot have the same energy
axis. The Fermi level was set to zero and is marked by the dotted line.

A band structure calculation was also done by Drummond et al. [9] along the path Γ-K-M-Γ.
Comparing the result from figure 48 to their result shows a good resemblance. The band gap
determined from figure 48 is 4.63 eV, again underestimated since it should be > 5.0 eV [13].

The total energies of these four different structures are listed in table 3. For each structure the
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Figure 42: Band structure and density of states for germanium along the L-Γ-X-K-Γ path. The
Fermi energy has been set to zero and is marked by the dotted line. Calculations were done
by VASP using a PBE potential. The charachter of the bands is shown in this figure, with the
p-charachter in blue and the s-character in red.
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Figure 43: Band structure and density of states for germanium along the L-Γ-X-K-Γ path. The
Fermi energy has been set to zero and is marked by the dotted line. Calculations were done by
VASP using a LDA potential.
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Figure 44: Band structures for germanium calculated using a PBE (black) and LDA (red)
potential. They have the same x and y axis scaling to show the differences between the two
calculations.
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Figure 45: Band structure and density of states for boron nitride in a zinc blende structure
along the L-Γ-X-K-Γ path. The Fermi energy has been set to zero and is marked by the dotted
line.

Table 3: Total energy per atom for four different boron nitride structures.

Structure Total energy per atom [eV]
Zinc blende −8.7106

Wurtzite −8.6900545
Hexagonal −8.77376775
Monolayer −8.7835655

total energy per atom in eV is given. According to these values the monolayer of the hexagonal
structure is the most stable. However, just as with graphene, this is most likely wrong because
the van der Waals forces are ignored in the calculations.

Therefore it can be concluded from table 3 that the hexagonal structure is the most stable
structure. The zinc blende structure comes next and the wurtzite structure is the least stable
structure of boron nitride.

Aluminium phosphide

Zinc blende structure The next calculation was done for aluminium phosphide which has
a zinc blende structure. The band structure and density of states were calculated along the
path L-Γ-X-K-Γ using a PBE potential. The plots of these calculations are shown in figure 49.
The density of states and band structure have the same energy axis on which the Fermi energy
was set to zero. The Fermi energy is marked in the plot by a dotted line.
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Figure 46: Band structure and density of states for boron nitride in a wurtzite structure along
the Γ-M-K-Γ-A-L-H-A path. The Fermi energy has been set to zero and is marked by the
dotted line.
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Figure 47: Band structure and density of states for hexagonal boron nitride along the Γ-M-K-
Γ-A-L-H-A path. The Fermi energy has been set to zero and is marked by the dotted line.
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Figure 48: Band structure and density of states for a monolayer of hexagonal boron nitride
along the Γ-M-K-Γ path. The Fermi energy has been set to zero and is marked by the dotted
line.

The results can be compared to band structure calculations by Saliev [28]. He calculated the
band structure along the same path. His results match the band structure from figure 49. The
band gap determined from figure 49 is 1.5 eV but should be 2.5 eV [29], so the band gap is
again underestimated.

Gallium arsenide

Zinc blende structure Next, band structure and density of states calculations were done
for gallium arsenide. Just as aluminium phosphide gallium arsenide has a zinc blende structure.
The results of the calculations, done using a PBE potential and along the path L-Γ-X-K-Γ, can
be found in figure 50. The band structure and density of states have the same energy axis. The
Fermi level is marked by the dotted line and was set to zero in the plots.

The band structure from figure 50 matches the band structure calculated by Danner [30],
although he calculated the band structure for one more high symmetry point. The band gap
should be 1.43 eV [21], but is 0.6 eV in figure 50, so it is again underestimated.

Zinc selenide

Final calculations were done for zinc selenide, in it’s zinc blende structure and it’s wurtzite
structure. After the calculations the total energies are compared.
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Figure 49: Band structure and density of states for aluminium phosphide along the L-Γ-X-K-Γ
path. The Fermi energy has been set to zero and is marked by the dotted line.
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Figure 50: Band structure and density of states for gallium arsenide along the L-Γ-X-K-Γ path.
The Fermi energy has been set to zero and is marked by the dotted line.
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Figure 51: Band structure and density of states for zinc selenide in a zinc blende structure
along the L-Γ-X-K-Γ path. The Fermi energy has been set to zero and is marked by the dotted
line.

Zinc blende structure The result of these calculations can be found in figure 51. The band
structure and density of states are plotted there, calculated using a PBE potential. The band
structure was calculated along the path L-Γ-X-K-Γ. The energy axis is shared between the
band structure and density of states and the Fermi energy was set as zero. The Fermi energy
is marked by a dotted line.

The band structure is compared to the band structure calculated by Bernard and Zunger [31]
and matches the band structure from figure 51. They also give a band gap of 2.8 eV. In figure 51
the band gap is 1.32 eV, again underestimated.

Wurtzite structure The last calculation is for zinc selenide in a wurtzite structure. The
results of this calculation, done using a PBE potential, can be found in figure 52. In this figure
the band structure and density of states are shown with the band structure plotted along the
path Γ-M-K-Γ-A-L-H-A. Both these plots share the same energy axis. The Fermi level is set
to zero on this axis and is marked by a dotted line.

The band structure can be compared to calculations done by Zakharov et al. [32]. They
calculated a different path but parts of it can still be compared. The band structures generally
match, but sometimes a doubly degenerate band from figure 52 isn’t visible in their calculations
due to poor resolution. An example of this can be seen in the valence bands between K and Γ.

The band gap determined from figure 52 is 1.44 eV. In the paper by Zakharov et al. [32] different
values of the band gap were mentioned, for example 3.98 for a GW calculation and 3.78 and
3.85 as experimental values. Therefore we can conclude that the band gap is underestimated
again.
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Figure 52: Band structure and density of states for zinc selenide in a wurtzite structure along
the Γ-M-K-Γ-A-L-H-A path. The Fermi energy has been set to zero and is marked by the
dotted line.

Table 4: Total energy per atom for two different zinc selenide structures.

Structure Total energy per atom [eV]
Zinc blende −3.08525795

Wurtzite −3.07341175

The total energies of the two zinc selenide structures are listed in table 4. The total energies
per atom in eV are listed for the zinc blende and the wurtzite structure. From this table it can
be concluded that the zinc blende structure is more stable than the wurtzite structure.

Further analysis

Analysis that has not yet been done in the previous sections is done here. First, the dependence
of the size of the band gap on the lattice constant and position in the periodic table is analyzed.
After that the band structures for silicon and germanium are compared, showing the similarities
and differences.

Band gap size When one moves in the periodic table from diamond to silicon to germanium
the structure of the material stays the same, except for the lattice constant, which gets bigger.
From the results one can notice a decline in band gap for these materials. In figure 53 the size
of the band gap is plotted versus the lattice constant for the calculated value of the band gap
and the value from literature. One can see that the size of the band gap is linearly dependent
on the lattice constant for these materials.
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Figure 53: Size of the band gap versus the lattice constant for diamond, silicon and germanium.
The calculated band gap as well as the band gap from literature are plotted.

One can also look at what happens when one moves ‘outside’ in the periodic table, that is from
a group IV to a group III-V to a group II-VI material. Examples of this are diamond to boron
nitride in it’s zinc blende structure or germanium to gallium arsenide to zinc selenide in a zinc
blende structure. The lattice constant stays almost the same for these materials, but the band
gap increases when one moves in this direction. However, no specific relation can be seen.

Band structure In figures 41 and 42 the s- and p-character of the bands are plotted. This
helps showing the similarities between the two band structures. One can see that they are the
same except for one conduction band. The conduction band which has a lot of s-character at
the Γ point is moved down in germanium compared to silicon. It has moved down in germanium
below the bands which formed the bottom of the conduction band in silicon to almost the Fermi
level. Therefore the indirect band gap in silicon becomes a direct band gap at Γ for germanium.
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