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Abstract

The subject of this Bachelor Assignment is acoustic particle velocity sensing based on thermal sen-
sors. An acoustic particle velocity sensor is a sensor which is able to measure sound waves not
through variations in pressure but through particle velocity. The particle velocity is measured by
variations in resistance due to flow induced changes in temperature. In this report an analytical
model for the temperature distribution is developed. From this the temperature perturbation un-
der influence of a flow is calculated, a comparison with measurements shows that the temperature
perturbation model still needs refinement.
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Chapter 1

Introduction

The subject of this Bachelor Assignment is acoustic particle velocity sensing based on thermal sen-
sors. There are various configurations for these sensors, most of them relying on either two heated
wires, or one heated wire and two measurement wires [3,4]. These sensors work as follows, a current
is put through the heating wire(s) and power is dissipated as heat. The heat will cause a thermal pro-
file over the sensor. When an acoustic particle velocity, aka a sound wave, travels over the sensor, the
thermal profile will be disturbed. This flow disturbance leads to a temperature difference between
the measuring wires that causes a change in resistance which is then measured by measuring the
voltage over the wires when an equal current flows through the wires. For the configurations with
either two heated wires, or one heated wire and two measurement wires an analytical model has al-
ready been developed.

Figure 1.1: The configuration with one heater wire and two sensor wires for which an analytical
model already has been developed [3]

In this work the focus is on a so called crossed wire sensor geometry. The crossed wire sensor [2] de-
viates from previous configurations, because now the wires are both heaters and sense the resistance
variations and more importantly, the temperature variations are caused by flows parallel to the wires
and measured along the longitudinal direction, this is also illustrated in figure 1.2 (c). In the crossed
wire sensor, the wires are heated by forcing a current through the wires this is illustrated in figure 1.2
(b). In a static situation when there is no particle velocity over the sensor, the thermal profile will be
symmetric and the resistances of the wires will be equal. Due to an equal current being forced over
the wires, the voltages will also be equal and the difference of the voltages between the ends of the
wire will be zero. When a sound wave travels over the sensor, for example over R2 and R5, the resis-
tance changes differently for R2 then it does for R5, and the difference between the voltage V1+−V1−
will be non-zero.
In this bachelor thesis I made an analytical model to gather more insight in how the various param-
eters affect the sensitivity of the sensor. The analytical model was made in a number of phases. I
began with a single wire thermal profile, elaborated this to the crossed wires. Then I made a model
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for the thermal profile when there is a static flow disturbance and finally I made a model for the ther-
mal profile with dynamic flow disturbances. From these flow disturbances it is possible to predict
the sensitivity. The model is compared with measurements to assess their predictive quality.

(a) (b) (c)

Figure 1.2: (a) Image from a top view of the crossed wire 2D particle velocity sensor [2] (b) A schematic
of how the forced currents flow through the wires of the sensor (c) A drawing of how the flow affects
the temperature profile over the wires (resistors)

ly

lx

2L

x

y

air
flow

y x

Figure 1.3: Geometry of the sensor used in analysis, the parts depicted in brown have an ambient
temperature. Take note that in this geometry there are no walls in the z-direction, which is a simplifi-
cation of the sensor which has a bottom located at 250µm and that the walls that are depicted extend
’infinitely’
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Chapter 2

Analytical model

2.1 Static thermal profile

2.1.1 One wire

To gather some insight I will start with a somewhat different geometry, which can be seen in figure
2.1. To make a analytical model for the thermal profile we start with the heat equation.

−∇(k∇T ) =Q (2.1)

Where k is the gas thermal conductivity, which has a dependence on T but for the sake of simplicity
we assume it to be negligible. Q is the heat quantity produced by the wire. It is only non zero on the
position where the wire is located and is distributed evenly along the wire that it can be written as.

Q = P

ly
δ(x)δ(z) (2.2)

Where P is the power dissipated by the wires as heat and ly the length of the wire. The positional
dependence is taken into account with the delta functions, this can be done because the length of
the wire is much bigger then the width or the thickness. Later on in this report the finite thickness is
also taken into consideration. Putting the expression for Q into (2.1) together with the assumption
that k does not depend on temperature nor position, results in a linear partial differential equation.

−k

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T (x, y, z) =Q (2.3)

z

y

ly

y

x

lx

Figure 2.1: The geometry as used in this section, with the parts depicted in brown having an ambient
temperature
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We can solve this equation using eigenfunction expansion [1], we start with the homogeneous partial
differential equation and solve for y with separation of variables. For the boundary condition we use

that T (x,± ly

2 , z) = 0, where the ambient temperature is taken zero. The walls on ± ly

2 in figure 2.1
extent to infinity.

−k

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T (x, y, z) = 0 (2.4)

T (x, y, z) = T x(x, z)Y (y) (2.5)

−
(
∂2

∂x2 + ∂2

∂z2

)
T x

T x
=

∂2

∂y2 Y

Y
(2.6)

∂2

∂y2 Y

Y
=−λ (2.7)

∂2

∂y2 Y +λY = 0 (2.8)

Y (± ly

2
) = 0 (2.9)

Y (y) = cos

(
2λn y

l y

)
(2.10)

λn = π

2
(2n +1) (2.11)

T (x, y, z) =
∞∑

n=0
Tn(x, z)cos

(
2λn y

ly

)
(2.12)

Filling this into (2.3) results in

∞∑
n=0

[(
∂2

∂x2 + ∂2

∂z2

)
Tn −

(
2λn

ly

)2

Tn

]
cos

(
2λn y

ly

)
=− P

lyk
δ(x)δ(z) (2.13)

Due to orthogonality

(
∂2

∂x2 + ∂2

∂z2

)
Tn −

(
2λn

ly

)2

Tn = 2

ly

∫ ly
2

− ly
2

− P

lyk
δ(x)δ(z)cos

(
2λn y

ly

)
dy (2.14)

=− P

lyk
δ(x)δ(z)

2sin(λn)

λn
(2.15)

=−2(−1)n

λn

P

lyk
δ(x)δ(z) (2.16)

Using the Fourier transform

T̂n(kx,kz) =
∫ ∞

−∞

∫ ∞

−∞
Tn(x, z)e−i (kxx+kzz)dxdz (2.17)

to (2.16)

(−k2
x +−k2

z

)
T̂n −

(
2λn

ly

)
T̂n =−2(−1)n

λn

P

lyk
(2.18)

T̂n =
2(−1)n

λn

P
ly

k2
x +k2

y +
(

2λn
ly

)2 (2.19)
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Figure 2.2: 3D plot of the temperature profile (2.22) depending on x and y with z = 1µm

The Fourier transform of a second kind modified Bessel function is

F [K0(ar )] = 1

2π

1

k2 +a2 (2.20)

If we assume for our solution that the frequency is radial k =
√

k2
x +k2

z then we can take the inverse
transform to get

Tn(x, z) = 2(−1)n

λn

P

2πlyk
K0

(
2λn

p
x2 + z2

ly

)
(2.21)

Filling everything back together results in

T (x, y, z) =
∞∑

n=0

2(−1)n

λn

P

2πlyk
K0

(
2λn

p
x2 + z2

ly

)
cos

(
2λn y

ly

)
(2.22)

A plot of this solution can be seen in figure 2.2. The parameters used for all the graphs in this chapter
can be found in the table below.

ly lx 2L k P v
900µm 900µm 2µm 0.0386 W K−1 m 26 mW 4.4×10−3 m s−1
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2.1.2 Two wires

Due to linearity of the heat equation it is possible to just add up the two thermal profiles for the two
wires which are the same but with reversed x and y. Resulting in

T (x, y, z) =
∞∑

n=0

[
2(−1)n

λn

P

2πlyk
K0

(
2λn

p
x2 + z2

ly

)
cos

(
2λn y

ly

)
+

2(−1)n

λn

P

2πlxk
K0

(
2λn

√
y2 + z2

lx

)
cos

(
2λn x

lx

)]
(2.23)

This equation is plotted in figure 2.3

Figure 2.3: 3D plot of the temperature against x and y of the equation with two wires (2.23) with
z = 1µm
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2.2 Thermal heat profile with Finite width

2.2.1 One wire

ly

lx

2L

x

y

Figure 2.4: Geometry used for developing the analytical model for the thermal profile with a finite
width

Starting from the same heat equation

−∇(k∇T ) =Q (2.24)

But now we take into account a finite width for the wires. The total width is 2L

Q = P

2Lly
F (x)δ(z) (2.25)

F (x) =
{

1 |x| < L
0 otherwise

}
(2.26)

Assuming that k is constant (
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T =− P

2Lkly
F (x)δ(z) (2.27)

The boundary conditions

T (± lx

2
, y, z) = 0 (2.28)

T (x,± ly

2
, z) = 0 (2.29)

T (x, y,±∞) = 0 (2.30)

Using the method of eigenfunction expansion, first taking the homogeneous function, thus Q = 0 and
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using the method of separation of variables.(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
T = 0 (2.31)

T (x, y, z) =Θ(x, y)Z (z) (2.32)(
∂2

∂x2 + ∂2

∂y2

)
Θ(x, y)

Θ(x, y)
=

∂2

∂z2 Z (z)

Z (z)
(2.33)(

∂2

∂x2 + ∂2

∂y2

)
Θ(x, y)

Θ(x, y)
=−λ (2.34)

Θ(x, y) = cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
(2.35)

With λn = pi
2 (2n +1) and λm = pi

2 (2m +1) such that the temperature is zero at the boundaries ± ly

2

and ± lx
2 .

T (x, y, z) =
∞∑

n=0

∞∑
m=0

Tnm(z)cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
(2.36)

Now filling this back into the heat equation we get

∞∑
n=0

∞∑
m=0

[
∂2

∂z2 Tnm −
((

2λn

lx

)2

+
(

2λm

ly

)2)
Tnm

]
cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
(2.37)

=− P

2Lkly
F (x)δ(z)

Due to orthogonality(
∂2

∂z2 −
(

2λn

lx

)2

−
(

2λm

ly

)2)
Tnm (2.38)

=− 2

ly

2

lx

∫ lx
2

− lx
2

∫ ly
2

− ly
2

− P

2Llyk
F (x)δ(z)cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
dydx (2.39)

=− (−1)mP

λmLlyk
δ(z)

∫ L

−L
cos

(
2λn x

lx

)
dx (2.40)

=−2(−1)m

λmλn

P

Llyk
sin

(
2λnL

lx

)
δ(z) (2.41)
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Figure 2.5: 3D plot of the temperature profile (2.47) depending on x and y with z = 0

Using the Fourier Transform

T̂nm(kz) =
∫ ∞

−∞
Tnme−i kzz dz (2.42)(

k2
z +

(
2λn

lx

)2

+
(

2λm

ly

)2)
T̂nm = 2(−1)m

λmλn

P

Llyk
sin

(
2λnL

lx

)
(2.43)

T̂nm =
2(−1)m

λmλn

P
Llyk sin

(
2λn L

lx

)
k2

z +
√(

2λn
lx

)2 +
(

2λm
ly

)2
2 (2.44)

F−1
(

2a

k2
z +a2

)
= e−a|x|

2π
(2.45)

Tnm =
(−1)m

λmλn

P
Llyk sin

(
2λn L

lx

)
√(

2λn
lx

)2 +
(

2λm
ly

)2
exp(−

√(
2λn

lx

)2

+
(

2λm

ly

)2

|z|) (2.46)

Putting it all together, resulting in the solution

T (x, y, z) =
∞∑

n=0

∞∑
m=0

(−1)m

λmλnσnm

P

Llyk
sin

(
2λnL

lx

)
exp(−σnm |z|)cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
(2.47)

σnm =
√(

2λn

lx

)2

+
(

2λm

ly

)2

(2.48)

A plot of this can be seen in Figure 2.5.

2.2.2 Heat loss through the wire

Now that there is an expression for the thermal profile, it is possible to calculate if the assumption
that the heat loss through the wire ends is small in comparison to the heat loss through the rest of the
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Figure 2.6: 3D plot of the temperature profile with two wires (2.50) depending on x and y with z = 0

walls. The heat power dissipated trough the beam ends ∆P , is the product of the heat flux through
the wire ends and the area of the wire cross section.

∆P = 2kw
∂T

∂y y= ly
2

h2L (2.49)

Working this out and filling it in with kw = 18.5 W K−1 m and h = 0.1µm results in ∆P
P = 0.0263. So

less then 3% of power is dissipated on the wire end, this means that the assumption that only a small
portion of the power is dissipated at the wire ends.

2.2.3 Two wires

Using the thermal profile we got and combining it results in the following equation.

T (x, y, z) =
∞∑

n,m=0

(−1)m

λmλnσnm

P

Llyk
sin

(
2λnL

lx

)
exp(−σnm |z|)cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
(2.50)

+
∞∑

n,m=0

(−1)m

λmλnσnm

P

Llxk
sin

(
2λnL

ly

)
exp(−σnm |z|)cos

(
2λm x

lx

)
cos

(
2λn y

ly

)
The plot can be seen in Figure 2.6.

2.2.4 Comparison with simulation

In figure 2.7 you can see a comparison between the thermal profile as calculated from the analytical
model (2.50) and a simulation with the geometry of the actual sensor. The two profiles are almost the
same, the middle point is higher in the model, because we put two thermal profiles over each other
which causes the power where the two wires cross to be doubled. Also the temperature of the model
overall is slightly higher then in the model, this can be due to not taking into account the bottom of
the chip.
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Figure 2.7: A plot of the temperature profile of the analytical model and temperature profile from the
simulation against y with x, z = 0

2.3 Static disturbance thermal profile

2.3.1 Wire perpendicular to air flow

Due to the air flow there are two more terms in the heat equation.

ρcp

(
∂

∂t
T +v ·∇T

)
−∇(k∇T ) =Q (2.51)

Where v is the gas velocity, ρ and cp the density and heat capacity of the gas, the heat capacity and
density of the wires aren’t taken into account in this equation, this is done for the sake of simplicity.
The time differential of T is zero because T is assumed to have only a static disturbance, thus no
dependence on time.
The convective term in equation (2.51) can be treated as a perturbation because the diffusion velocity
is large in comparison with the forced convection caused by the particle velocity. Let’s look at how
long it takes for a particle to travel over the length of the sensor lx: due to diffusion this time will
be l 2

x /D with D = k/ρcp ≈ 1.9×10−5 m2 s−1, due to forced convection this time will be lx/v . If we
compare these times with each other

v

D/lx
¿ 1 (2.52)

Because the diffusion velocity D/lx ≈ 0.02 m s−1 is large in comparison with v = 4.4×10−3 m s−1

(which corresponds to a very high acoustic pressure of 100 dB). Therefore we can consider the tem-
perature as T +δT where T is the temperature in non-flowing air that was already found and δT
the perturbation caused by the flowing air. We will solve the case for air flowing in one direction
v = (vx ,0,0).

∇2δT = vx

D

∂

∂x
T (2.53)

∂

∂x
T =

∞∑
n=0

∞∑
m=0

−Cnm ×exp(−σnm |z|)cos

(
2λm y

ly

)
sin

(
2λn x

lx

)
(2.54)

Cnm = 2(−1)m

λmσnm

P

Llylxk
sin

(
2λnL

lx

)
(2.55)

∇2δT =
∞∑

n=0

∞∑
m=0

−Cnm
vx

D
exp(−σnm |z|)cos

(
2λm y

ly

)
sin

(
2λn x

lx

)
(2.56)
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To solve this equation one should again use the eigenfunction expansion, but this time a cosine for
the x-direction will not work, because the integral of a sine and cosine over the length of the wire
results in zero. Thus we use a sine that satisfies the boundary conditions.

δT =
∞∑

i=0

∞∑
j=1

δTi j (z)cos

(
2λi

ly
y

)
sin

(
2π j

lx
x

)
(2.57)

Substituting this into (2.56) and again orthogonalising the various terms yields(
∂2

∂z2 −
(

2λi

ly

)2

−
(

2π j

lx

)2)
δTi j (z) =

∞∑
n,m=0

[
−Cnm

vx

D
exp(−σnm |z|)×

2

ly

∫ ly
2

− ly
2

cos

(
2λm y

ly

)
cos

(
2λi y

ly

)
dy

2

lx

∫ lx
2

− lx
2

sin

(
2λn x

lx

)
sin

(
2π j x

lx

)
dx

]
(2.58)

2

ly

∫ ly
2

− ly
2

cos

(
2λm y

ly

)
cos

(
2λi y

ly

)
dy =

{
1 m = i
0 m 6= i

}
(2.59)

2

lx

∫ lx
2

− lx
2

sin

(
2λn x

lx

)
sin

(
2π j x

lx

)
dx =−2π j (−1)n+ j

π2 j 2 −λ2
n

(2.60)(
∂2

∂z2 −
(

2λm

ly

)2

−
(

2π j

lx

)2)
δT j m(z) =

∞∑
n=0

Cnm
vx

D

2π j (−1)n+ j

π2 j 2 −λ2
n

exp(−σnm |z|) (2.61)

Now we assume a solution for the ordinary differential equation (2.61), δT j m(z) = A j m exp(−σnm |z|).

∂2

∂z2 A j m exp(−σnm |z|) = A j mσ
2
nmsign(z)2 exp(−σnm |z|) = A j mσ

2
nm exp(−σnm |z|) (2.62)(

σ2
nm −

(
2λm

ly

)2

−
(

2π j

lx

)2)
A j m =

∞∑
n=0

Cnm
vx

D

2π j (−1)n+ j

π2 j 2 −λ2
n

(2.63)((
2λn

lx

)2

−
(

2π j

lx

)2)
A j m =

∞∑
n=0

Cnm
vx

D

2π j (−1)n+ j

π2 j 2 −λ2
n

(2.64)

A j m =
∞∑

n=0
−Cnml 2

x
vx

D

π j (−1)n+ j

2(π2 j 2 −λ2
n)2

(2.65)

δT =
∞∑

m,n=0

∞∑
j=1

− (−1)m+n+ j

λmσnm

Plx

Llyk
sin

(
2λnL

lx

)
vx

D

π j

γ2
n j

exp(−σnm |z|)cos

(
2λi

ly
y

)
sin

(
2π j

lx
x

)
(2.66)

with γn j =π2 j 2 −λ2
n a plot of this perturbation and the effect on the temperature profile can be seen

in figure 2.8.

2.3.2 Wire parallel to airflow

We repeat what we did in the previous section, only now what is different is that we differentiate the
temperature profile with respect to x, resulting in the following partial differential equation:

∇2δT =
∞∑

n,m=0
−Cnm exp(−σnm |z|)sin

(
2λm x

lx

)
cos

(
2λn y

ly

)
(2.67)

Cnm = 2(−1)m

λnσnm

P

Ll 2
x k

sin

(
2λnL

ly

)
(2.68)

13



Figure 2.8: Plot of the temperature perturbation (2.72) for a flow perpendicular to the wire depending
on x, with y, z = 0

We solve this equation using eigenfunction expansion in the same way as we did it with the airflow
perpendicular to the wire. This results in an ordinary differential equation.(

∂2

∂z2 −
(

2λn

ly

)2

−
(

2π j

lx

)2)
δT j (z) =

∞∑
m=0

Cnm
vx

D

2π j (−1)m+ j

π2 j 2 −λ2
m

exp(−σnm |z|) (2.69)

This equation is easily solved by assuming a solution T j (z) = A exp(−σnm |z|)(
σ2

nm −
(

2λn

ly

)2

−
(

2π j

lx

)2)
A =

∞∑
m=0

Cnm
vx

D

2π j (−1)m+ j

π2 j 2 −λ2
m

(2.70)

A =
∞∑

m=0
−Cnml 2

x
vx

D

π j (−1)m+ j

2(π2 j 2 −λ2
m)2

(2.71)

Combining everything the solution of the perturbation of the temperature is found:

δT =
∞∑

n,m=0

∞∑
j=1

− (−1) j

λnσnm

P

Lk
sin

(
2λnL

ly

)
vx

D

π j

γ2
m j

exp(−σnm |z|)cos

(
2λn

ly
y

)
sin

(
2π j

lx
x

)
(2.72)

with γm j =π2 j 2−λ2
m a plot of this perturbation affecting the temperature profile can be seen in figure

2.9
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Figure 2.9: Plot of the temperature perturbation (2.66) due to a flow parallel to the wire depending on
x, with y, z = 0

2.4 Dynamic disturbance thermal profile

2.4.1 Flow perpendicular to the wire

Using the same heat equation as in the previous section, with the same assumptions,

ρcp

(
∂

∂t
T +v∇T

)
−∇(k∇T ) =Q (2.73)

but now we don’t assume the time dependence to be zero. The sensor deals with sound waves, which
are acoustic, so we assume the incoming particle velocity to be v = v0 exp(i 2π f t ). Due to this being
the only time depending term in the heat equation, we can also assume the solution to be of the form
δT (x, y, z, t ) = δT (x, y, z)exp(i 2π f t ). Using that we only have an x component of the particle velocity
v = (v,0,0) we get for the convective term v∇T = v ∂

∂x T .

i 2π f

D
δT −∇2δT =−v0

D

∂

∂x
T (2.74)

This is almost the same equation as we had in the previous section and we can solve it in the same
way using eigenfunction expansion. First we begin with constructing a solution for the perturbation
of the temperature for the wire perpendicular to the x direction.(

− i 2π f

D
+ ∂2

∂z2 −
(

2λm

ly

)2

−
(

2π j

lx

)2)
δT j m(z) =

∞∑
n=0

Cnm
v0

D

2π j (−1)n+ j

π2 j 2 −λ2
n

exp(−σnm |z|) (2.75)

Cnm = 2(−1)m

λmσnm

P

Llylxk
sin

(
2λnL

lx

)
(2.76)

(2.77)
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The above equation can be solved by assuming δT j m(z) = A j m exp(−σnm |z|).

A j m =
∞∑

n=0
Cnm

v0

D

2π j (−1)n+ j(
π2 j 2 −λ2

n
)

Kn j
(2.78)

Kn j =
(

2λn

lx

)2

−
(

2π j

lx

)2

− i 2π f

D
(2.79)

Putting everything back together gives the temperature perturbation for a flow perpendicular to the
wire.

δT (x, y, z, t ) =
∞∑

n,m=0

∞∑
j=1

2(−1)m

λmσnm

P

Llylxk
sin

(
2λnL

lx

)
v0

D

2π j (−1)n+ j(
π2 j 2 −λ2

n
)

Kn j
(2.80)

×cos

(
2λm

ly
y

)
sin

(
2π j

lx
x

)
exp(−σnm |z|)exp(i 2π f t )

2.4.2 Flow parallel to the wire

For the flow parallel to the wire we can do the same as we did above only now we have a different ∂
∂x T

term. After eigenfunction expansion that leads to the following equation.(
− i 2π f

D
+ ∂2

∂z2 −
(

2λn

ly

)2

−
(

2π j

lx

)2)
δT j n(z) =

∞∑
m=0

Cnm
v0

D

2π j (−1)m+ j

π2 j 2 −λ2
m

exp(−σnm |z|) (2.81)

Cnm = 2(−1)m

λnσnm

P

Ll 2
x k

sin

(
2λnL

ly

)
(2.82)

Using that δT j n = A j n exp(−σnm |z|) results in the following equation.

A j n =
∞∑

m=0
Cnm

v0

D

2π j (−1)m+ j(
π2 j 2 −λ2

m
)

Km j
(2.83)

Km j =
(

2λm

lx

)2

−
(

2π j

lx

)2

− i 2π f

D
(2.84)

Combining everything results in the temperature perturbation for the flow parallel to the wire.

δT (x, y, z, t ) =
∞∑

n,m=0

∞∑
j=1

2

λnσnm

P

Ll 2
x k

sin

(
2λnL

ly

)
v0

D

2π j (−1) j(
π2 j 2 −λ2

m
)

Km j
(2.85)

×cos

(
2λn

ly
y

)
sin

(
2π j

lx
x

)
exp(−σnm |z|)exp(i 2π f t )

2.5 Sensitivity

To calculate the sensitivity we first calculate the average temperature of the perturbation over the
wires. To calculate this average, integration over the temperature perturbation is performed over the
length, width and thickness of the upper part of the wire.

1

2L

∫ L

−L
cos

(
2λm y

ly

)
dy =

ly sin
(

2λm y
ly

)
2Lλm

(2.86)

2

lx

∫ lx
2

0
sin

(
2π j x

lx

)
dx =− ((−1) j −1)

π j
(2.87)
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exp(−σnm |z|)δ(z) = 1 (2.88)

Contribution from wire parallel to flow

∆T =
∞∑

n,m=0

∞∑
j=1

− 2

λnσnm

P

Ll 2
x k

sin

(
2λnL

ly

)
v0

D

2π j (−1) j(
π2 j 2 −λ2

m
)

Km j
(2.89)

×
ly sin

(
2λn L

ly

)
2Lλn

((−1) j −1)

π j
exp(i 2π f t )

Contribution from wire perpendicular to flow

∆T =
∞∑

n,m=0

∞∑
j=1

− 2(−1)m

λmσnm

P

Llylxk
sin

(
2λnL

lx

)
v0

D

2π j (−1)n+ j(
π2 j 2 −λ2

n
)

Kn j
(2.90)

×
ly sin

(
2λm L

ly

)
2Lλm

((−1) j −1)

π j
exp(i 2π f t ) (2.91)

From this averaged temperature we can calculate the resistance

R = R0(1+α∆T ) (2.92)

In [3] values for R0 = 683Ω and α= 8.6×10−4 K were derived.
From the resistance we can calculate the voltage difference between the two terminals. The temper-
ature difference of the upper and lower part of the wire are opposite which means that the resistance
is also opposite.

V2+ −V2- = I (R1 −R2) = 2I R0α∆T (2.93)

2.5.1 Comparison with measurements

A comparison between the experimental and theoretical frequency characteristics is shown in figure
2.10. The analytical model is plotted using the particle velocities measured in the sound source which
were measured simultaneously with the voltage of the sensor. Therefore there is noise in the model
curve were you normally wouldn’t expect that. The two curves look somewhat similar, but it looks
like there is at least one element missing. This element could be the simplification that the heat
capacity and density of the wires do not play a role in the temperature perturbation. The effect of
this simplification is hard to predict, in previous studies [3] the heat capacity and density of the wires
only resulted in a second tipping point where after the sensitivity dropped more, this tipping point
is around 1300 Hz. But due to a different sensing method, measuring mostly in the longitudinal
direction the heat capacity and density will have a bigger impact.
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Figure 2.10: The voltage measured from the crossed wire sensor and calculated with the analytical
model, for a flow with certain frequencies
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Chapter 3

Reduced model

In this chapter I will be looking at the possibility of reducing (decreasing the sums in an equation to
an equation that consists of only a few terms) the equation for the thermal profile and it’s perturba-
tions.

3.1 Thermal profile

The equation for the thermal profile is as follows

T (x, y, z) =
∞∑

n=0

∞∑
m=0

(−1)m

λmλnσnm

P

Llyk
sin

(
2λnL

lx

)
exp(−σnm |z|)cos

(
2λm y

ly

)
cos

(
2λn x

lx

)
(3.1)

σnm =
√(

2λn

lx

)2

+
(

2λm

ly

)2

(3.2)

λm = π

2
(2n +1) (3.3)

To determine if the equation could be reduced, plots were made in the following way. The sum-
variable that was investigated was substituted with zero while the other sum-variable(s) were summed
to a hundred, this was plotted, and then it was substituted for one, etc. up to one hundred. This re-
sulted in the following graphs figure 3.1 and 3.2. From these graphs you can easily see that you only
need a few terms of m to have a quite a good approximation, for n this isn’t the case and you will need
to go up to quite a large number.

(a) m (b) n

Figure 3.1: Plots of how the values of m and n (blue) contribute to the thermal profile (red). For the
wire perpendicular to the y-axis
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(a) m (b) n

Figure 3.2: Plots of how the values of m and n (blue) contribute to the thermal profile (red). For the
wire parallel to the y-axis

3.2 Perturbation flow parallel

The equation for the temperature perturbation with a flow parallel to the wire, with γn j =π2 j 2 −λ2
n

δT (x, y, z, t ) =
∞∑

n,m=0

∞∑
j=1

2

λnσnm

P

Ll 2
x k

sin

(
2λnL

ly

)
v0

D

2π j (−1) j(
π2 j 2 −λ2

m
)

Km j
(3.4)

×cos

(
2λn

ly
y

)
sin

(
2π j

lx
x

)
exp(−σnm |z|)exp(i 2π f t )

Plotting this equation in the same way we did as in the previous section we get the following graphs,
figure 3.3. As can be seen, for m and j you need to sum to at least 3-5 terms. For n this is a lot more,
in the range of 50-100 terms.

(a) n (b) m (c) j

Figure 3.3: Plots of how the values of m and n (blue) contribute to the total plot (red). For the wire
parallel to the y-axis and also the flow parallel to the y-axis
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3.3 Perturbation flow perpendicular

The equation for the temperature perturbation with a flow perpendicular to the wire

δT (x, y, z, t ) =
∞∑

n,m=0

∞∑
j=1

2(−1)m

λmσnm

P

Llylxk
sin

(
2λnL

lx

)
v0

D

2π j (−1)n+ j(
π2 j 2 −λ2

n
)

Kn j
(3.5)

×cos

(
2λm

ly
y

)
sin

(
2π j

lx
x

)
exp(−σnm |z|)exp(i 2π f t )

Plotting this equation in the same way as in the previous sections results in figure 3.4, m and j only
need a few 1-3 terms to describe the perturbation, but for n some more terms 10-15 are needed.

(a) n (b) m (c) j

Figure 3.4: Plots of how the values of m and n (blue) contribute to the total plot (red). For the wire
perpendicular to the y-axis and the flow parallel to the y-axis
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Chapter 4

Exploration parameter space

In this chapter I will explore how the different parameters of the micro-flown affect the sensitivity,
the averaged temperature of the perturbation, over a frequency range.

4.1 Square chip ly = lx

In this section we will look at how the length of the wires affects the temperature of the perturbation,
with ly = lx such that the sensor will have the same sensitivity in both directions. From figure 4.1
you can see that a smaller length of the wires results in a higher corner frequency, but the sensitivity
before this corner frequency will be somewhat smaller.
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Figure 4.1: (a) The averaged temperature plotted as a function of frequency for various values of ly

(b) The area under the curve of (a) plotted against ly
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4.2 Width of the wire

Now we will look how the average temperature of the perturbation changes as we change the width
(L) of the wire. As can be seen in figure 4.2 it looks like the sensitivity only changes when the value of
L approaches that of ly = 1×10−3 m.
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Figure 4.2: (a) The averaged temperature plotted as a function of frequency for various values of L (b)
The area under the curve of (a) plotted against L.
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Chapter 5

Discussion and Conclusion

5.1 Discussion

In the development of the analytical model a few simplifications and assumptions were made. The
air thermal conductivity (k) was considered independent of temperature, in the temperature range
the sensor operates 500 °C, k doubles, so that assumption isn’t really valid. We didn’t take into ac-
count the bottom of the sensor at a negative z and we assumed the walls to be extending from the
positive z. But as can be seen in figure 2.7 a simulation with the accurate geometry of the sensor
has almost the same temperature profile. Unfortunately due to time constrains we were not able to
measure the actual thermal profile of the sensor to compare it to the model.
The sensitivity according to the analytical model has roughly the same shape compared to the mea-
surements of the sensitivity, but the analytical model shows a stronger decay with frequency than
observed in the measurements. This could either be due to

• one of the assumptions made or due to incomplete incorporation of all effects, e.g. such as the
heat capacity and thermal conductivity of the wires

• from a mistake in the derivation of the dynamic disturbance

• or because the wires have a thicker connection with the walls of the sensor, which leads effec-
tively to a smaller wire.

These are subjects that could be examined in future work in order to further improve the model.

5.2 Recommendations

• Look more into noise

• Make a series of crossed wire flowns with varying length to validate influence of length on
performance

• Validate the thermal profile by measurements

• Expand the analytical model to include the heat capacity and density of the wires
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5.3 Conclusion

In this report an analytical model for the crossed-wire particle velocity sensor has been constructed.
This started with an expression for the thermal profile (2.47). This expression was subsequently used
in the construction of expressions for the static flow disturbances of the temperature for the separate
direction of the wire (2.66) (2.72) and for the the construction of the dynamic disturbance of the
temperature (2.80) (2.85). Unfortunately these equations can not be simplified to reduced equations,
implying that summations of functions will still be needed to describe thermal fields with sufficient
accuracy. A conclusion that can be made from the exploration of the parameters is that a reduction
in both width and length increases the frequency range of the sensor, however, without significantly
reducing the sensitivity of the sensors. This conclusion does indicate some potential for future large
bandwidth sensors, albeit that the simplifications made to allow for the model to be made need to be
carefully checked against experimental results. Moreover, not only the effects of the geometry on the
sensitivity but also the corresponding implications for the thermal (Johnson-Nyquist) noise need to
be investigated.

25



Bibliography

[1] Richard Haberman. Elementary applied partial differential equations. Prentice Hall Englewood
Cliffs, NJ, 1983.

[2] O Pjetri, RJ Wiegerink, TSJ Lammerink, and GJM Krijnen. A crossed-wire 2-dimensional acoustic
particle velocity sensor. In Sensors, 2013 IEEE, pages 1–4. IEEE, 2013.

[3] VB Svetovoy and IA Winter. Model of the µ-flown microphone. Sensors and Actuators A: Physical,
86(3):171–181, 2000.

[4] JW van Honschoten, GJM Krijnen, VB Svetovoy, HE de Bree, and MC Elwenspoek. Analytic model
of a two-wire thermal sensor for flow and sound measurements. Journal of Micromechanics and
Microengineering, 14(11):1468, 2004.

26


