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Abstract

P-wave superconductivity can arise in topological insulator/s-wave superconductor hy-
brid systems. In this thesis it is theoretically investigated if this can also happen if the
topological insulator is replaced by a metal with spin-orbit coupling. The analysis is
done assuming a fully transparant barrier between the two materials, using techniques
from BCS theory. It is found that the presence of the spin-orbit coupling term in the
Hamiltonian gives an order parameter that has a full p-wave pairing symmetry.
Experimentally, transport measurements have been done on 50 and 100 nm thick flakes of
the topological insulator material Bi1.5Sb0.5Te1.7Se1.3. A back gate voltage was applied to
observe if the Fermi energy can be controlled. From ρxx(T) measurements it is found that
the surface contribution to conductivity is influenced by the back-gate. Measurements of
ρxx as a function of applied gate voltage show an increasing resistance with a decreasing
gate voltage, but no sign of the Dirac point. The Hall resistivity was measured for gate
voltages of -21, 0 and 21 V and the approximate carrier density and mobility were found.
The carriers are found to be n-type and the carrier density increases with increasing gate
voltage. The mobility decreased for both positive and negative gate voltages, indicating
that the gate voltage dependence in the resistivity measurements is not only the result of
a modulated Fermi energy.

3





Contents

1 Introduction 7
1.1 Goal and outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introduction to superconductors . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 What is a topological insulator? . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Connection to Topology . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 A short history of BSTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 A way to control the Fermi level . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Current state in the search for the Majorana fermion . . . . . . . . . . . . 14

2 Modelling a p-wave superconductor 17
2.1 Charactarizing the excitations of an s-wave superconductor via the BCS

Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Majorana fermions in a p-wave superconductor . . . . . . . . . . . . . . . . 19
2.3 A conventional s-wave superconductor in proximity to a topological insulator 21
2.4 The s-wave superconductor in proximity to a metal with spin-orbit coupling 23

2.4.1 Model Hamiltonian for a metal with spin-orbit coupling . . . . . . . 23
2.4.2 A metal with spin-orbit coupling and the s-wave superconductor . . 25

2.5 Majorana fermions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 The importance of gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Set-up and sample preparation 29
3.1 Applying BSTS to the substrate . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Preparing the contacts by photolithography . . . . . . . . . . . . . . . . . 29
3.3 Preparing the contacts by electron beam lithography . . . . . . . . . . . . 30
3.4 Back-gate contact and the connection to the measurement apparatus . . . 31
3.5 Measurement set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Transport measurements on BSTS with an applied gate voltage 35
4.1 ρxx as a function of the temperature . . . . . . . . . . . . . . . . . . . . . . 35
4.2 ρxx as a function of the gate voltage . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Carrier density and mobility as a function of gate voltage . . . . . . . . . . 38
4.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Parameters for electron beam deposition 41

Acknowledgements 44

Bibliography 47

5



6



Chapter 1

Introduction

In 1937 Ettore Majorana found a solution to the Dirac equation that would imply that
fermionic particles could exist that are their own anti-particles [1, 2], now called Majorana
fermions. From then on a hunt for particles that are potential Majorana fermions started,
mainly in the field of high energy physics [3]. In 2008, it was predicted by Fu and Kane
that states could exist in condensed matter systems that obey these Majorana-statistics,
using combinations of low temperature superconductors and a new type of material, the
‘topological insulator’ [4]. In condensed matter physics, these Majorana states are inter-
esting because of their special exchange statistics. For example, when one interchanges
two Majorana bound states (MBS) spatially, the total wavefunction of the system does
not simply obtain a minus sign as in the case of normal fermions. Also, these particles are
topologically protected against decoherence. These properties make that the Majorana
fermion is the most promising candidate for qubits, the main ingredient for the realisa-
tion of a quantum computer, which is expected to execute calculations much faster than
a digital computer.

1.1 Goal and outline of this thesis

The goal in this thesis is to find the right circumstances for the Majorana fermions. This
will be done by theoretically investigating how simple a system that can host a MBS can
be made, and experimentally by finding a way to tweak the Fermi level in BSTS. BSTS
is a very new topological insulator, a necessary ingredient as mentioned above.

In the following sections an introduction to the concept of the superconductor and
the Majorana fermion, the topological insulator, the material BSTS and the electric field
effect (gating) will be given. Also the current state in the search for Majorana fermions
will be quickly reviewed. In chapter two, we dive a little bit deeper and show (in the
language of second quantization) how the Majorana bound state emerges in a p-wave
superconductor (a special type of superconductor). After this we will see how it emerges
in a hybrid system. The set-up and sample preperation for the gating measurements are
discussed in chapter 3, introducing the experimental aspects, and finally in chapter 4 the
results of subsequent measurements are showed and discussed.

1.2 Introduction to superconductors

Superconductors are materials that can conduct electricity with zero resistance at very
low temperatures, first experimentally found in 1911 [5]. In this section, we will explain
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the basic mechanism behind superconductivity and why the superconductor is a natural
hunting ground for Majorana fermions.

In a normal (s-wave) superconductor, the electrons in the material pair up to become
Cooper pairs, these two electrons have opposite spin and momentum (k,↑) and (-k,↓).
Cooper showed that this attractive interaction lowers the energy of the electron gas [6].
The two electrons pair up due to an attractive interaction that is mediated by phonons.

E

E =  0Δ

Δ

A. B.

kx

ky

(q,  )

(-q,  )

Figure 1.1: A. The pairing two electrons in the vicinity of the Fermi energy. B. Filled states separated
with a gap ∆ from the Fermi energy (E = 0)

The Cooper pairs are bosons (because they are compositions of two fermions) which
(below the critical temperature) condense in the lowest energy state of the system, analo-
gous to Bose-Einstein condensation. At zero temperature, all the electrons in the system
have formed Cooper pairs. In BCS theory, at finite temperature, the electrons that do not
contribute to the condensate are broken Cooper pairs and are called ‘quasiparticles’. In
terms of energy, at a finite temperature the condensate resides at the Fermi energy, and
the quasiparticle excitations are separated from the Fermi energy by a gap of magnitude
∆, as illustrated in 1.1B. Because of this gap, there are no states in the vicinity of the
state where the condensate resides to scatter to, this means that scattering is suppressed
for pairs in the condensate and hence the resistance goes to zero. The excitations in a
superconductor have the form of a superposition of an electron and a hole. Knowing that
the antiparticle of an electron is a hole and the antiparticle of a hole is an electron, these
excitations are a potential source for fermionic particles that are their own antiparticles
(i.e. Majorana fermions) [7, 8]. As will be shown in chapter 2, s-wave superconductors
cannot host Majorana fermion, for that we have to turn to a different type of super-
conductor: the p-wave superconductor. A p-wave superconductor can be engineered by
combining an s-wave superconductor and a novel material: a topological insulator.

1.3 What is a topological insulator?

A topological insulator (TI) is a material that is insulating in the bulk and conducting
on the surface. In this section we will roughly explain how a TI works and what it has to
do with topology, starting with the introduction of the quantum Hall effect.

The quantum Hall effect (QHE) is the effect of quantized conductance due to edge
modes in an effectively 2D material when a strong magnetic field is switched on [9]. In
the quantum spin Hall effect the spin degeneracy is eliminated, by spin-splitting of the
edge modes [10, 11, 12]. The spin-direction is in this case locked to the direction of motion
of the electron, see figure 1.2. In the quantum spin Hall effect, the electrons in the edge
states are prohibited from backscattering by destructive interference of their wavefunction
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due to the extra phase they pick up as a result of presence of the magnetic field. This
geometric phase is called the ‘Berry’s phase’ [13].

A. B.

Figure 1.2: A. The quantum Hall effect: when a material is placed in a strong perpendicular magnetic
field, edge states arise, quantizing the conductivity. B. Under some circumstances, these edge states can
be spin split, resulting in a spin polarized conductance: spin up only goes one way, spin down only goes
the opposite way. Figure from [14].

In 2006 it was predicted [15] that HgTe/CdTe wells could feature the quantum spin
Hall effect in the absence of a magnetic field, when reaching a certain critical thickness. At
this critical thickness, the electronic state is ‘inverted’, which corresponds to a topological
phase transition in the band structure of the well. Later experiments confirmed this effect
[16].

1.3.1 Connection to Topology

Topology is the branch in mathematics concerned with the properties of space that are
preserved under continuous deformations including stretching or bending, but not gluing
or tearing. Consider an orange, which can be continuously deformed into a pillow or a
couch but not into a donut, because in order to make a donut, on has to tear a hole in the
orange. We associate this with a topological number, the genus (g), which corresponds
to the number of holes in an object. In that case, an orange has g = 0 and a donut
has g = 1, in order to make an orange into a donut, we say that it has to go through a
topological phase transition.
In band theory, one can assign a topological number to the way the bands are arranged
in a band structure. In the case of the HgTe/CdTe well, the bands in the HgTe well are
inverted with respect to the CdTe around it, i.e. the well has a different topological number
than the CdTe. At the interface (the edge), the band structures have to be connected,
hence a crossing of the bands takes place, bridging the bandgap of the materials, and in
this way establishing conducting surface states.
In 2007, it was predicted that this same effect could occur in three dimensions. Bi1−xSex,
a material with an inversion symmetry in the lattice, was proposed to have conducting
‘surface states’ (the 2D analogue of the 1D edge state) [17, 18], and was later confirmed
to have these characteristics in the bandstructure [19, 20]. This property of spin-split
surface states is partly the result of a large ‘spin-orbit coupling’, a term that will be
further explained in the second chapter. This spin-orbit coupling effect results in the spin
split bands that connect the valence and the conductance band in the bandstructure, see
figure 1.3. Later on, Bi2Se3, Bi2Sb3 and Bi2Te3 were also predicted to have these surface
states, based on first principle electronic structure calculations [21]. It must be said
that, although they are called topological insulators, the bandgap of current topological
insulators is in the order of ∼0.1 eV , which is typically a semiconductor bandgap.

In this project, experiments will be done on a new topological insulator called ‘BSTS’,
mainly to inspect if the Fermi level can be controlled.
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Figure 1.3: The spin orbit coupled bands that connect the valence and the conduction bands that are
gapped. When zoomed in, these spin orbit coupled bands (in 3D) trace out a cone, called the ‘Dirac
cone’, similar to the cone in graphene. Figure from [22].

1.4 A short history of BSTS

When the TI’s Bi2Se3, Bi2Sb3 and Bi2Te3 were discovered, immediately experiments began
to optimise the topological nature of these materials.

Taskin et al. [23] tried to do this by combining separate elements, for instance with
Bi2Te2Se (BTS). In figure 1.4, angle-resolved photoelectron spectroscopy (ARPES) mea-
surements of BTS are shown, made by Arakane et al. [24]. The bandstructure of the
gapped region is made visible with this technique. It can be seen in figure 1.4B that the
Fermi level lies in the electron doped region. From this picture it can also be seen that
the crossing of the surface states, the ‘Dirac point’, lies very close to the valence band.
Figure 1.4A, shows the cross-section of the Dirac cone for various energies, showing that
the Fermi surface is not perfectly round, but slightly hexagonal, due to an effect called
‘warping’, which can be explained in the framework of k · p-theory [25].

It was found for BTS that the surface channel contributes up to 6 percent of the total
conductance (for a crystal of 30 µm thickness), which implies a large bulk contribution.
When Sb was introduced into some of the Bi positions of the BTS, a new TI was born:
Bi2−xSbxTe3−ySey. For Bi1.5Sb0.5Te1.7Se1.3 (the TI used in this project, from now on called
‘BSTS’) it was measured that the surface channel could contribute up to 70 percent of the
total conductance [23]. ARPES measurements were done by [24], for four different values
of (x,y), namely (0,1) (BTS), (0.25,1.1), (0.5,1.3) (BSTS) and (1,2), as shown in figure
1.5A and B. Figure 1.5A shows the Fermi surface for the different compositions, and can
be seen to decrease in radius, with an increasing amount of Sb and Se. Figure 1.5B shows
the shift in the position of the Dirac cone. It can be seen that for BTS, the Dirac point
(EDP ) lies below the boundary of the valence band (EV B). When the concentrations of
Sb and Se are increased, the position of the Dirac point becomes higher, rising above the
boundary of the valence band. This is illustrated schematically in figure 1.5C, from which
it can be seen that the BSTS features n-type Dirac-like transport.

The crystals that were grown for the group that made the ARPES measurements
are made by a different group than the ones used in this project. The crystals in this
project were manufactured by the group ‘Quantum electron matter’ from the University
of Amsterdam, in this case (ARPES) measurements were also done, as shown in figure
1.6B and C. From these measurements, it is visible that the BSTS used in this project also
has a Dirac point that lies above the valence band, and a Fermi level in the electron-like
part of the Dirac cone. The basic structure unit of the BSTS is shown in figure 1.6A. One
can observe that the unit cell is built from five layers stacked on top of each other, this is
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Figure 1.4: A. The cross-section of the Dirac cone in BTS for different binding energies. In the lowest
two pictures, traces of the valence band can be seen. B. The Dirac cone for BSTS. The red, blue and
green circles correspond to different photon energies of 50, 58 and 70 eV respectively. Figure from [24].
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relation; the Dirac cone can be seen to increase with increasing concentration of Sb and Se. C. The
schematic dispersion relation, indicating the type of carrier in the surface state. Figure from [24].
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called a quintuple layer. Different quintuple layers are connected by the relatively weak
Van der Waals bond, while the individual layers in a quintuple layer are connected by a
much stronger force.

A. B.

C. D.

Figure 1.6: A. The structure of BSTS in real space, quintuple layers can be observed. Image from [23] B.
A cross-section of the Dirac cone in k-space measured with ARPES. Here, a hexagonal-like structure is
visible as well, due to warping effects. C. The typical Dirac cone-like E(k) relationship as measured with
ARPES. D. An R(T) measurement of a flake with a thickness of 30 µm, measured by [23], the resistivity
can be seen to increase over time.

It was found that the transport properties of BSTS have a strong time dependence,
indicating that the Fermi level of the material shifts in height over time. This fluctuating
behaviour asks for a way to control the height of the Fermi level.
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1.5 A way to control the Fermi level

One of the ways to control the Fermi level is by using the electric field effect, or ‘gating’.
In a simple model one can consider a parallel plate capacitor set-up: two plates separated
by a dielectric. When we apply a voltage over the capacitor, charge will accumulate on
the surfaces and an electric field will emerge between the plates, equal to E = σ

ε
. When

we gate BSTS, we use the same technique to deplete or add charge carriers to the surface
state of the BSTS. Remembering that the Fermi energy relates to the charge carrier
density via EF =

√
4πnsλ2

SO we see that we can manipulate the height of the Fermi level
by adjusting the amount of charge carriers on the TI surface. In this case, the two parallel
plates consist of a substrate of p-doped (conducting) silicon (acting as the first plate) and
the BSTS acting as the second. These plates are separated by a 300nm thick layer of
silicon dioxide which takes the role of dielectric. Applying a voltage in this way is called
back-gating, because the sample is contacted from the back. The set-up is schematically
given in figure 1.7. [26]

SiO2

BSTS

300 nm

Vgate

Si - - -
+
-

+
-

+
-

+
-

+
-

+
-
+ + +

E

Figure 1.7: The induced electric field as a result of the dipole moments in the dielectric, SiO2, positively
dopes the BSTS surface state.

Gate experiments on BSTS have also been conducted by [27], by means of an ionic
liquid and it was observed that the resistance at low temperatures was modified as can be
seen in figure 1.8. This ionic liquid as a mechanism to induce an electric field, however,
does not give much control over the applied gate voltage. One cannot continuously vary
the voltage, as is the case in the back gate set up.
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Figure 1.8: Resistivity as a function of temperature with gate voltages of -3.5V, 0V and 3.5V, measured
by means of an ionic liquid, taken from [27]. Thickness of the samples is about 180 µm.
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1.6 Current state in the search for the Majorana fermion

Measuring the presence of the Majorana fermion is very indirect. One can do a tunneling
conductance measurement, in which the conductance of a barrier is measured as a function
of the bias voltage. In the p-wave superconducting case, one would measure the amount of
quasiparticles as a function of energy. The Majorana fermion is a quasiparticle excitation
in a p-wave superconductor, lying at E = 0 (instead of E < −∆ or E > ∆ as is the case
for excitations in an s-wave superconductor). Because of this, a Majorana fermion can
emerge as a zero-bias conductance peak (ZBP) in the tunneling conductance spectrum,

quantized in units G(0) = 2 e2

h
. One group that measured this signature of the Majorana

fermion is the Kouwenhoven group from Delft. They used a set-up consisting of 1D indium
antimonide nanowires (which features large spin-orbit coupling) in the vicinity of a s-wave
superconductor [28], as proposed by different theoretical groups [29, 30, 31, 32], see figure
1.9A. A magnetic field was applied and the tunneling conductance was measured at a
temperature as low as T = 60 mK. It can be seen that a zero-bias conductance peak
with an amplitude up to 0.05 × 2 e2

h
emerges between B = 100− 400 mT (figure 1.9C).

This is much less than the value of G(0) = 2 e2

h
, but this could be the result of thermal

broadening. The peak also stays stable for different values of the gate voltage, provided
that the Fermi level lies in the gap for non-trivial superconductivity.

Discussions followed, for example Liu et al. [33] did a simulation on a wire with
a modest amount of disorder and found that a ZBP also emerges without Majorana
fermions. This non-Majorana ZBP was stable under the same range of magnetic fields
as measured by [28]. Liu et al. stress that the temperature should be reduced, in order
to reduce thermal broadening and to observe a truly quantized ZBP. This would be the
evidence that the peak is not the result of some disorder effect.

Another group that has claimed to see signatures of a Majorana fermion is the group of
Rokhinson et al. [34], observing it in a semiconductor/superconductor InSb/Nb nanowire
junction. Via the AC-Josephson-effect it was concluded that Majorana fermions were
found. However it has been suggested that they fitted the wrong type of Bessel functions
to their data and by that, their conclusions might be wrong. Convincing evidence for the
observation of the MBS should come from a braiding experiment (the exchange of two
Majorana fermions), where the wavefunction of the system should change in a different
way than it would for normal fermions.
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Chapter 2

Modelling a p-wave superconductor

How can Majorana fermions emerge in a p-wave superconductor? In this chapter an
answer will be given to this question. The first two sections will be dedicated to the hunt
for Majorana fermions in single material superconductors. The third, fourth and fifth
section will be dedicated to finding them in hybrid structures. As mentioned in the last
chapter, Majorana fermions will emerge as quasiparticles in superconductors. To study
these quasiparticles, we have to go to a microscopic level and make use of the theory that
first explained the microscopic mechanism behind superconductivity: Bardeen Cooper
Schrieffer (BCS) theory [35, 36].

2.1 Charactarizing the excitations of an s-wave superconductor
via the BCS Hamiltonian

In this section it will be shown how one can obtain the energy spectrum and form of
the broken Cooper pairs, or quasiparticles, in a superconductor [37]. The formalism that
is used is second quantization, because it makes calculations easier when dealing with a
large number of particles (as is the case in a superconductor). It also gives an intuitive
physical picture, as will become apparent in the next sections [38].

In second quantization, the Hamiltonian for an s-wave superconductor is given by:

H =
∑
k,σ

Ekĉ
†
kĉk −

∑
k,l

Vklĉ
†
−k↓ĉ

†
k↑ĉl↑ĉ−l↓. (2.1)

The first term on the right hand side of the equal sign simply describes the total kinetic
energy of the electrons (counting them and assigning a certain energy Ek to them) and
the second term is the term that pairs electrons with opposite momentum and spin, where
V is the attractive pairing potential.

Our goal is to obtain the form and energies of the excitations of the superconductor.
We can do this by diagonalizing the Hamiltonian, which means that we try to find a
way to write this Hamiltonian in which it will not change the state it will work on, i.e.
Ĥ |ψ1〉 = E |ψ1〉. Clearly, in this form, the second term will change the state it will work

on (Ĥ |ψ1〉 = E |ψ2〉, |ψ1〉 6= |ψ2〉).
The first thing that we have to do is make a mean field approximation, in which we

assume that quantum fluctuations are small. We write

ĉ†−k↓ĉ
†
k↑ =< ĉ†−k↓ĉ

†
k↑ > +δ(ĉ†−k↓ĉ

†
k↑) (2.2)

for both spin directions, where < ĉ†−k↓ĉ
†
k↑ > is the expectation value of ĉ†−k↓ĉ

†
k↑ in the

ground state, and δ(ĉ†−k↓ĉ
†
k↑) are the quantum fluctuations that are assumed to be so
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small that δ(ĉ†−k↓ĉ
†
k↑)δ(ĉ

†
−k↓ĉ

†
k↑) = 0.

If we now write the Hamiltonian in the mean field approximation form, we get a
Hamiltonian with terms that are either constants, or have two creation or annihalation
operators. Introducing the Nambu spinor representation

Ψ†k =
(
ĉ†k↑, ĉ−k↓

)
,Ψk =

(
ĉk↑
ĉ†−k↓

)
, (2.3)

we can write the Hamiltonian in the mean field approximation in the compact form
(setting ξk = Ek − µ)

H =
∑
k

Ψ†k

(
ξk −∆
−∆∗ −ξk

)
Ψk +

∑
k

(ξk + ∆bk). (2.4)

In this expression, ∆ =
∑
l

Vk,lbl, where bl =< ĉ−l↓ĉl↑ >. As can be seen bl is the expec-

tation value of finding a Cooper pair, so ∆ only assumes a non-zero value when Cooper
pairs are present in the system, hence only when a material becomes superconducting
(when the temperature becomes lower than the critical temperature of the material).

The last step in the process of diagonalization (finding the eigenvalues) is to make a
Bogolyubov transformation, in which we introduce new quasiparticle operators that are
superpositions of the particle and hole states previously used [39]:(

α̂k↑
α̂†−k↓

)
=

(
u∗k vk
−v∗k uk

)(
ĉk↑
ĉ†−k↓

)
. (2.5)

When we substitute these quasiparticle operators in the Hamiltonian, we are free to
choose coefficients uk and vk such that we only maintain diagonal terms. It can be shown
that this leads to the following expressions for the electron and hole part, respectively:

uk =

√
1

2

(
1 +

ξk
λk

)
, vk =

√
1

2

(
1− ξk

λk

)
, where λk =

√
ξ2
k + ∆2 . (2.6)

The diagonalized BCS mean field Hamiltonian becomes:

H = E0 +
∑
kσ

λk

(
α̂†kσα̂kσ + α̂†−kσα̂−kσ

)
, (2.7)

where E0 =
∑
k

ξk − λk + ∆bk.

We have now diagonalized our Hamiltonian and thus found the eigenvalues of the
BCS Hamiltonian, be it in a mean field approximation. Looking at the operators that
diagonalize this Hamiltonian, we see that these quasiparticles are basically superpositions
of an electron and a hole and have the form (up to the coefficients): α̂k↑ = ĉk↑ + ĉ†−k↓.
The question is: can these particles be their own anti-particles? No, because even though
we can choose k = 0, then α̂0↑ = ĉ0↑ + ĉ†0↓ and α̂†0↑ = ĉ†0↑ + ĉ0↓ 6= α̂0↑, hence there is still a
spin index that keeps us from having Majorana fermions [8]. Knowing this, it is natural
for us to look for Majorana fermions in systems where electrons pair with equal spin,
so the spin index is not relevant anymore. This type of superconductor is the ‘p-wave’
superconductor, let us proceed and see if this is true if we do the same analysis for a
Hamiltonian of a p-wave superconductor.
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2.2 Majorana fermions in a p-wave superconductor

In a p-wave superconductor the pairing of electrons is different to the s-wave case, as it
pairs spins of the same direction, for example (k,↑) and (-k,↑). We know that for fermions,
the total wavefunction of a Cooper pair has to be anti-symmetric and this can only be the
case if an odd number of components of the total wavefunction is anti-symmetric. In our
case the total wavefunction of the condensate has two components: the spin component
and the orbital component. In the p-wave case, the spin component of the wavefunction is
symmetric (equal spin pairing), hence the orbital component of the wavefunction should
be anti-symmetric, which will be shown in this section. In the next section we will
investigate what the energy and form of the excitations in a p-wave superconductor will
be.

The Hamiltonian that describes a p-wave superconductor is given by [40] :

H =
∑
k

Ekĉ
†
kĉk −

∑
k,l

Vkl (kx − iky) (lx + ily) ĉ
†
kĉ
†
−kĉ−lĉl. (2.8)

We can immediately see an important difference with the s-wave Hamiltonian: in the
interaction term, the spin degree of freedom has been dropped. This is because it is
unnecessary when considering pairing of equal spin. Also the factors in front of the
creation and annihalation operators in the pairing term are different, these can be written:

kx − iky = |k|eiθk , θk ≡ arctan

(
ky
kx

)
(2.9)

We will follow the procedure of the previous section, i.e. diagonalizing via a mean field
approximation and a Bogolyubov transformation. In the mean field approximation, we
will take

ĉ†−kĉ
†
k =< ĉ†−kĉ

†
k > +δ(ĉ†−kĉ

†
k), (2.10)

note again the absence of the spin indices. Now we can just copy the steps from the
last section: using the Nambu notation 2.3 (without the spin indices) and writing the
Hamiltonian in the mean field approximation:

H =
∑
k

Ψ†k

(
ξk −∆ (k)

−∆∗ (k) −ξk

)
Ψk +

∑
k

(ξk + ∆bk). (2.11)

In this equation, ∆ (k) = ∆|k|eiθk , where ∆ =
∑
l

Vk,l|l|eiθlbl. In this case bl =< ĉ†−lĉ
†
l >.

We can see that there is a difference in the order parameter ∆ (k) between an s-wave and
a p-wave superconductor. If we plot the real part of the directional dependence of the
p-wave superconductor, we get a shape that resembles the p-orbital wavefunction of the
hydrogen atom as can be seen in figure 2.1. This is the antisymmetric orbital part of the
wavefunction.

Let us now perform a Bogolyubov transformation. For the spinless superconductor,
the new quasiparticles become:(

α̂k
α̂†−k

)
=

(
u∗k vk
−v∗k uk

)(
ĉk
ĉ†−k

)
. (2.12)

Again, we are free to choose the coefficients such that we only maintain diagonal elements:
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kx
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Figure 2.1: Left: the shape of the order parameter (real part) in k-space for a p-wave superconductor
that pairs electrons of equal spin direction (below). Right: the shape of the s-wave parameter, isotropic
in k-space, pairing electrons of opposite spin directions

uk =

√
1

2

(
1 +

ξk
λk

)
eiθk , vk =

√
1

2

(
1− ξk

λk

)
, λk =

√
ξ2
k + |∆|2 , (2.13)

in this way the Hamiltonian is diagonalized. We already see that there is no spin index
in these operators. Let us look at these quasiparticles and write out the upper operator
in 2.12:

α̂k = u∗kĉk + vkĉ
†
−k. (2.14)

The corresponding anti-commutation relation of these quasiparticles reveal fermionic be-
haviour:

[α̂k, α̂
†
k′ ]+ = δk,k′ , [α̂†k, α̂

†
k′ ]+ = [α̂k, α̂k′ ]+ = 0. (2.15)

This means that these particles are fermions. If we now only consider the case k = 0,
then ξk=0 = 0 (if µ = 0) and we take θk = 0, then uk=0 = vk=0 and this quasiparticle

annihalation operator is exactly equal to its complex conjugate (i.e. α̂k=0 = α̂†k=0). These
quasi-particles have a rather strange anti-commutation relation:

[α̂0, α̂
†
0]+ = [α̂†0, α̂

†
0]+ = [α̂0, α̂0]+ = 2. (2.16)

Nevertheless, we call these particles fermions. This means that an excitation in a p-
wave superconductor can under certain circumstances (at zero energy) be a fermionic
quasiparticle that is indeed its own anti-particle!

In nature, superconductors with an intrinsic p-wave pairing symmetry are scarce, it is
predicted to occur in the material Sr2TiO4, but with so few impurities that it is not yet
experimentally realizable [41]. This is why we have to combine different materials and rely
on the proximity effect of the superconducting condensate: when a material is brought
close to an s-wave superconductor, the condensate wavefunction will extend into the other
material and change its pairing symmetry. In the next section, it will be shown how to
transform the s-wave pairing symmetry into p-wave by using a topological insulator and
eventually other spin orbit coupled materials. We will start with the standard recipe, a
TI + s-wave superconductor, and later on substituting a TI for a simpler, better known
material with spin orbit coupling.
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2.3 A conventional s-wave superconductor in proximity to a
topological insulator

In the last chapter the topological insulator was introduced: materials that are insulating
in the bulk and conducting on the surface. This is due to the fact that they are insulators
with a large spin-orbit coupling (SOC). The spin-orbit coupled bands connect the valence
and the conductance bands that are gapped. This gapped region can be described by a
model Hamiltonian that only takes into account the chemical potential and Rashba SOC.
The Rashba SOC term comes from the Pauli equation [42], which is the non-relativistic
limit of the Dirac equation and has the form (in first quantization) [43]:

HSO = λ (σ × k) · ẑ, (2.17)

where λ is the strength of the spin-orbit coupling (proportional to the electric field, that
emerges as a result of the breaking of inversion symmetry) and σ denotes the Pauli spin
matrices. If we now write the model Hamiltonian for the topological insulator, we get:

H =
∑
k

Ψ†kHΨk =
∑
k

Ψ†k

(
µ iλ|k|e−iθk

−iλ|k|eiθk µ

)
Ψk, (2.18)

where in this case:

Ψ†k =
(
ĉ†k↑, ĉ

†
k↓

)
,Ψk =

(
ĉk↑
ĉk↓

)
. (2.19)

It can be seen that the spin-orbit coupling operators change the state from spin down
to spin up and vice versa. What we now want to do is find the eigenvalues for this system,
which we will do by finding a basis, Ψ̃k that diagonalizes the Hamiltonian, like we did in
the last section. In this case, diagonalization can be done by calculating the eigenvalues
of the matrix H, κ, by solving

∣∣H− Iκ
∣∣ = 0, we find κ = −µ± λ|k|. The next step is to

find the corresponding eigenvectors via (H− Iκ)v = 0. Now we know that the matrix H
is diagonalized via P †HP , where P = (v1,v2), i.e. the matrix with the eigenvectors as
columns.

Since we know that P †HP is a diagonal matrix, we know that
∑
k

Ψ̃†kP
†HP Ψ̃k is our

Hamiltonian in the diagonalized form. This Hamiltonian should be equal to
∑
k

Ψ†kHΨk,

so we can find the transformed basis via:

P †Ψk = Ψ̃k, (2.20)

which gives:

Ψ̃k =

(
ĉk+

ĉk−

)
=

1√
2

(
ĉk↓ − ieiθk ĉk↑
ĉk↓ + ieiθk ĉk↑

)
. (2.21)

Note that the new basis, ĉk±, carries a different kind of spin-index ± in the operators,
this is called the helicity. We can make this helicity-transformation because the spin
of the electron is coupled to the value of k. Intuitively, one can understand this by
imagining oneself ‘sitting’ on the electron state in the Dirac cone and turning with the
angle θ; the spin direction of the electron state will, from this perspective, maintain the
same direction throughout the entire turn. This transformation is illustrated in figure
2.2, where the dispersion relation of the 2D surface states of the topological insulator is
illustrated.
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Figure 2.2: Spin is included in left cone, helicity index in right cone.

Let us now look at what happens if we bring the TI in contact with a superconductor
[4], assuming a fully transparant interface between the two materials. Due to the proxim-
ity effect as mentioned earlier, Cooper pairs will tunnel to the TI, and part of the TI will
become superconducting [44]. The corresponding pairing symmetry of the condensate in
the TI can be obtained by studying the Hamiltonian. We know from the previous chapter
that it is appropriate to use the Nambu particle-hole basis when dealing with supercon-
ductors, so we have to use a basis that combines the Nambu basis for superconductivity
and the spin basis for spin-orbit coupling:

Ψ†k =
(
ĉ†k↑, ĉ

†
k↓, ĉ−k↑, ĉ−k↓

)
. (2.22)

We include the terms that describe s-wave superconductivity in a mean field form in
the Hamiltonian, just like we did in equation 2.4, mixing particle and hole operators. The
total Hamiltonian becomes 1:

H =
∑
k

Ψ†k


µ iλ|k|e−iθk 0 ∆

−iλ|k|eiθk µ −∆ 0
0 −∆ −µ −iλ|k|eiθk
∆ 0 iλ|k|e−iθk −µ

Ψk. (2.23)

If we now substitute the basis that we obtained after diagonalizing the Hamiltonian
for the TI:

Ψ†k =
(
ĉ†k↑, ĉ

†
k↓, ĉ−k↑, ĉ−k↓

)
→ Ψ̃†k =

(
ĉ†k+, ĉ

†
k−, ĉ−k+, ĉ−k−

)
, (2.24)

we arrive at the following Hamiltonian:

H =
∑
k

Ψ̃†k


µ− λ|k| 0 ∆(k) 0

0 µ+ λ|k| 0 −∆(k)
−∆∗(k) 0 −µ+ λ|k| 0

0 ∆∗(k) 0 −µ− λ|k|

 Ψ̃k. (2.25)

1This term should be multiplied by a factor 1
2

, to avoid counting the particles double (electrons and holes). I leave this
factor out to avoid cumbersome notation.
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In this Hamiltonian we see that the pairing terms have the operator form ĉ−k+ĉk+,
i.e. it pairs carriers with equal helicity. Here ∆(k) = ∆ieiθk = ∆ei

π
2 eiθk = ∆ei(θk+π

2
),

this means that an s-wave superconductor in proximity with a TI is effectively indeed a
p-wave superconductor! The equal helicity-index pairing is visualised in figure 2.3, where
the cross-section of the Dirac cone is shown.

ky

kx

ky

(q,+)

(-q,+)

Figure 2.3: A cross section of the Dirac cone, where carriers with equal helicity pair up.

2.4 The s-wave superconductor in proximity to a metal with
spin-orbit coupling

Since spin-orbit coupling seems to be the key ingredient for p-wave superconductivity
(which is the key ingredient for Majorana’s), it will be interesting to study systems that
consist of a metal with SOC on top of an s-wave superconductor. The Hamiltonian of
this system features a free term, next to the SOC and the BCS-term. This free term
originates from the fact that a metal is a conductor; there are electrons in a metal that
can move around freely (although they are still spin-orbit coupled).

Expected is that the Hamiltonian of the system shows, when the kinetic part is diag-
onalized, a mix of p- and s-wave superconductivity. The s-wave component will originate
from the free term in the Hamiltonian. If this is the case, we expect that the term that
describes p-wave superconductivity will in some way be proportional to the strength of
the SOC. In this mixing-case, the wavefunction of the condensate in k-space will be a
superposition of p- and s-wave components as illustrated in figure 2.4.

A workable metallic material that has this property of SOC is gold. The SOC in gold
originates from the fact that gold is a relatively heavy element, through which the electrons
experience an electric field when inversion symmetry is broken (i.e. at the surface) [45].
This surface (in the (111)-direction) state spin splitting has been measured by LaShell
et al. [46] with ARPES. In figure 2.5 this spin-splitting is shown. Also from a practical
point of view, gold is a good material to work with. In the laboratory, there is lots of
experience with the deposition of gold.

In this section it will be investigated whether or not it is possible to have mixed
superconductivity, starting with proposing a model Hamiltonian for a metal with SOC
and later on adding superconductivity.

2.4.1 Model Hamiltonian for a metal with spin-orbit coupling

The main difference between a topological insulator and a metal with spin-orbit coupling
is that the metal is conducting, hence a free term should be introduced. Free electrons
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Figure 2.4: Mixing of p-wave (left, corresponding to the TI dispersion relation) and s-wave (correspond-
ing to the metal dispersion relation) components of the wavefunction of the condensate might give a
superposition.

have an energy of Ek = h̄2|k|2
2m

= αk2, i.e. a quadratic dispersion relation. This appears in
second quantization in the Hamiltonian as:

Hfree =
∑
k,σ

αk2ĉ†kσ ĉkσ − αk
2ĉ−kσ ĉ

†
−kσ. (2.26)

This expression simply counts the electrons (holes) and assigns an energy αk2 (−αk2) to
them, and therefore appears on the diagonal of the Hamiltonian matrix.

We add this expression to the Hamiltonian of the topological insulator to get:

HAu =
∑
k

Ψ†k

(
µ+ αk2 iλ|k|e−iθk
−iλ|k|eiθk µ+ αk2

)
Ψk, (2.27)

in the basis given by 2.19. We can now repeat the steps taken in the last section to

Figure 2.5: The result of an ARPES measurement on the (111)-surface of gold. The bands are split due
to spin-orbit coupling.
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diagonalize this Hamiltonian, and the peculiar result is that the whole diagonalization
process is the same except for the eigenvalues: κ = −µ − αk2 ± λ|k|. The new basis Ψ̃k

that diagonalizes this Hamiltonian is given by 2.21.
Writing this in diagonalized form gives us the dispersion relation:

HAu =
∑
k

Ψ̃†k

(
µ+ αk2 − λ|k| 0

0 µ+ αk2 + λ|k|

)
Ψ̃k. (2.28)

The dispersion relation, for different strenghts of spin-orbit coupling is plotted in figure
2.6.

- +E

k

+

- -

+

Figure 2.6: Spin orbit coupling is increased when going from left to right.

2.4.2 A metal with spin-orbit coupling and the s-wave superconductor

Motivated by the idea of Majorana fermions, let us once again switch on superconductivity,
again assuming a fully transparent barrier. As in the case of the TI, part of the metal will
also become superconducting. This can effectively be described by a Hamiltonian that
somewhat resembles 2.23, up to the quadratic terms on the diagonal:

H =
∑
k

Ψ†k


µ+ αk2 iλ|k|e−iθk 0 ∆
−iλ|k|eiθk µ+ αk2 −∆ 0

0 −∆ −µ− αk2 −iλ|k|eiθk
∆ 0 iλ|k|e−iθk −µ− αk2

Ψk. (2.29)

Now we make the same subsitution as in 2.24 and we see that the Hamiltonian has
almost the same form as 2.25:

H =
∑
k

Ψ̃†k


µ+ αk2 − λ|k| 0 ∆(k) 0

0 µ+ αk2 + λ|k| 0 −∆(k)
−∆∗(k) 0 −µ− αk2 + λ|k| 0

0 ∆∗(k) 0 −µ− αk2 − λ|k|

 Ψ̃k.

(2.30)
The peculiarity of this result is striking: this Hamiltonian only carries a p-wave super-

conductivity component, ∆(k), no s-wave. It seems as if the system effectively behaves as
a p-wave superconductor once the spin-orbit coupling strength, λ, however small, assumes
a non-zero value. So even in the case of infinitely weak spin-orbit coupling, the system
is fully p-wave, without even a trace of a s-wave component. This makes sense when
considering that there is no mechanism that gives the electrons a preferred spin direction
in the free case (without SOC). When SOC is turned on, the electrons get a preferred
spin direction, however small the strength of this coupling, because there is no force to
compete with.
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2.5 Majorana fermions?

We do now have a system that can have p-wave superconductivity, but the question is if
it will feature Majorana fermions. For this we have to consider the dispersion relation,
given in figure 2.7.

ky

kx

ky

(q,+)

(-q,+)

(l,-)

(-l,-)

Figure 2.7: Pairing of electrons, analogous to the topological insulator case, where in the case of a metal
with SOC the outer branches of the spin-orbit coupled, quadratic bands still play a role.

We see that the condensate will feature a degeneracy in the spin helicity, pairing spin
helicity - and +, resulting again in s-wave superconductivity. The system can be con-
verted to p-wave superconductivity by applying a magnetic field (breaking time reversal
symmetry and introducing a so called Zeeman gap) and tuning the Fermi level in the
right range, as shown in figure 2.8, [8, 7]. When the magnetic field is large enough, i.e.
VB > ∆ (where VB is the energy gap induced by the magnetic field, the Zeeman gap), the
upper band can be neglected and the superconductivity is p-wave. However this applied
magnetic field also couples to the spin of the electrons, changing it by an angle θ, which
introduces an s-wave component in the superconductivity as shown in Ref. [47]. So in
the case that the magnetic field becomes large as compared to the spin-orbit coupling,
the s-wave component of the superconductivity prevails, and Majorana bound states will
not emerge.

A set-up to test this would resemble the one used by Kouwenhoven [28], in this case
the nanowire would be made of gold instead of a semiconductor.

2.6 Recommendations

This analysis has been done for a hybrid system with a fully transparant barrier. In reality
though, barriers between different materials feature a lack of transparancy, which can be
modeled by introducing a delta function potential at the interface of the two materials.
For an analysis on these more realistic systems we refer to a review paper by Tanaka et
al. [48]. Also a paper was published by Potter during the writing of this thesis in which
they investigate the possibility of Majorana fermions in Au(111)-surface states [49].

2.7 The importance of gating

From figure 2.8 we observe that having the Fermi level at the appropriate height is one of
the factors that is of high importance in the view of Majorana fermions. The height of the
Fermi level can be manipulated by applying a gate voltage, as shown in the introduction.
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Figure 2.8: The change in the dispersion relation when a magnetic field is applied, brown and blue show
the bands when SOC is the only mechanism coupling to spin, the red curves show the bands when the
field is switched on. Here µ1 shows the level of the chemical potential to obtain a topologically nontrivial
system, crossing the + and - bands, thus preventing Majorana fermions. µ2 is tuned in the Zeeman gap,
crossing only one of the helicity spin bands, the appropriate level for Majorana fermions.

Tuning the Fermi level is also important in heterostructures with topological insulators,
because although the level already lies in the region appropriate for topologically non-
trivial superconductivity, one also wants to be able to control other material parameters
that depend on the position of the Fermi level in the Dirac cone. The next chapters
will be dedicated to the experimental realization of a topological insulator, BSTS, with a
variable Fermi level.
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Chapter 3

Set-up and sample preparation

Preparing thin films of BSTS for gate measurements can be a challenging task, because
leakage currents need to be avoided and a small and delicate sample must be conserved
and not be blown up. In the first part of this chapter it is shown how to prepare a
sample without having leakage currents. In the second part the measurement set-up is
introduced.

3.1 Applying BSTS to the substrate

Workable thin film samples of BSTS were made by applying them to a substrate. The
substrate that was used consisted of a silicon layer (1 by 1 cm, thickness of 1mm) with
a 300 nm layer of SiO2 on top. The silicon layer is p-doped with boron to obtain a low
resistivity (0.010 - 0.025 Ωcm). Before the BSTS film can be applied, it must be ensured
that the substrate is very clean, otherwise the experiment can be contaminated. The
cleaning is done by submerging the substrate in an aceton bath, in a glass beaker, after
which it is ultrasonically cleaned for 4 minutes. To make sure no traces of the aceton will
be left on the substrate, the same treatment is applied in an ethanol bath for 3 minutes
after which the substrate is dried with nitrogen. Now that the substrate is thouroughly
cleaned, the BSTS film can be applied. To obtain a thin film of BSTS from a crystal, a
method called ‘micromechanical exfoliation’ or the ‘scotch tape method’ has been used.
Thin layers of the crystal were pealed off with scotch tape and applied onto the substrate.
This way of obtaining thin films from a crystal was inspired by experiments done on
graphene [50]. With this method, quintuple layers of BSTS are exfoliated due to the
weak Van der Waals force that binds them. Because of this weak binding force, one does
not need much pressure in the proces of applying the flake to the substrate. This can be
done for example by laying the scotch tape with the cleaved crystal parts on the SiO2-
surface and pressing it with the least force possible, for example by letting the tip of a
pair of tweezers rest on it, while moving the tweezers around on the surface. This gentle
treatment is needed in order to keep the SiO2 layer in good condition. After this, the
scotch tape has to be removed from the sample as slowly and under the smallest angle
as possible (see figure 3.1), to ensure that the quintuple layers be neatly exfoliated and
smooth flakes (with high mobility surface states) are obtained.

3.2 Preparing the contacts by photolithography

Now that the BSTS is deposited on the substrate, the essential part of our to-be-gated
sample is ready. But one also needs to contact the flake in order to evoke currents and to
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Figure 3.1: The last step in the process of mechanical exfoliation. The angle θ should be kept as small
as possible while removing the scotch tape. It also helps to do this as slow as possible (take 2 minutes to
remove the tape).

apply a gate voltage. For this we prepare gold contacts on the flake, from which we will
make contact to the measurement apparatus by a process called wirebonding.

In order to make the gold contacts, one first has to define them. This is done by a
proces called photolithography. A liquid called photoresist is deposited on the surface of
the sample by spin coating. The photoresist that is used is one with a thickness of 1.2
µm and the spinning time is 45 seconds, at a speed of 6000 rounds per minute. After
the coating has been applied, the sample is baked out for one minute at 373 K. With
UV exposure for 8 seconds and a mask, the structure of the contacts is defined and the
photoresist structure is ready when the developer washes away the parts where the gold
is going to be deposited (for positive resist). This washing process consists of 1 minute
submersion in developer and an additional two times half a minute in demiwater (each
time in a new glass beaker), to clean off the developer.

In the next step, gold is being deposited in a Perkin Elmer sputtering system to make
contacts to the flake. The process starts with argon etching for 5 to 15 seconds (at a power
of 150 W ), a really short time because etching reduces the thickness of the photoresist
and the layer of photoresist needs to be as thick as possible after the deposition (to ensure
lift off). After this, a thin layer of titanium is deposited for 15 seconds, at a power of
150 W , this corresponds to a layer of 2 nm. The titanium acts as a ‘glue’ between the
substrate and the gold. Finally, the 60 nm layer of gold is deposited, for 1.5 minutes at
150 W . The last step of the deposition process is ‘lift off’; the substrate is submerged in
acetone, for a time varying from 3 to 24 hours, to remove the excess gold as defined by
the photoresist. The acetone is cleaned off by submersion in ethanol for one minute, after
which the sample is dried with nitrogen. A schematic of the flake with the gold contacts
is shown in figure 3.2 .

3.3 Preparing the contacts by electron beam lithography

Another way one can define a pattern for the gold deposition is by electron-beam (ebeam)
lithography. Electrons have a much smaller wavelength than photons, therefore we can
obtain much smaller resolutions than photolithography and thus design smaller struc-
tures like Hall-bars. Instead of photoresist a chemical called ‘polymethylmethacrylate’
(PMMA) is used and instead of a mask to define the structures, software is used, which
leaves more freedom in defining strucures. An image of a flake with contacts defined by
ebeam lithography, made with a scanning electron microscope is shown in figure 3.3. For

30



I1 I2V1 V2/
Vb

Va
A B

10 µm

Figure 3.2: A. A flake (blue) with gold contacts made by photolithography. A current is sent between the
outer two contacts (I1 and I2), the corresponding voltage drop is measured over the two middle contacts
(V1 and V2). When a magnetic field is applied, the Hall-resistance is measured between Va and Vb.
Although this is not a well-defined Hall bar, an approximate (order of magnitude) and trend in the carrier
density and mobility can be measured. B. What a flake looks like when blown up. This can happen when
for instance a current runs through the flake that is too high, or by static discharge. It is the sad fate of
all the measured flakes.

information on the specific parameters used in the ebeam designs, see the Appendix.
Photolithography is the main technique that is used for contacting flakes in this project,

this has mainly to do with time; the e-beam lithography machine is intensively used so
making a Hall bar (which needs multiple ebeam-steps) can easily take a month, if not
more. Ebeam lithography is instead used to make contacts to flakes (which takes only
one ebeam-step, much less time than making a Hall bar), because with this technique it
is possible to contact multiple flakes on one sample.

Figure 3.3: A flake with gold contacts defined by ebeam lithography. Right: The contacts do not reach
the flake due to line-out problems. These problems occured with some of the flakes that were unusually
small.

3.4 Back-gate contact and the connection to the measurement
apparatus

The positive side of the gate is connected to the p++ -doped silicon, the negative side
will be connected to the top of the sample. It is important in a gate experiment that
the applied voltage over the sample will not induce a current (leakage current). Two
possibilities for the origin of a leakage current will be given:
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1. The current leaks away through the SiO2 (figure 3.4A).

2. The current leaks away from the silicon backside to the measurement apparatus
(puck) that is connected to ground (figure 3.4B);

Si

SiO2

BSTS

Nb

GE Varnish

Puck

Vg

A

B

Figure 3.4: Two different possibilities for a leakage current, Ge Varnish is the glue that is used to attach
the sample to the puck

The solution to the first problem is to be as gentle as possible in the treatment of the
SiO2 layer. This means that flake deposition, as is already reported, should be done with
the least amount of pressure possible. Another critical step is the wirebonding, the proces
in which the gold contacts are connected to the measurement puck. The wirebonder uses
ultrasonic soldering to connect the wire to the gold pads, thereby pushing the wire against
the gold. In order not to damage the SiO2, one must make sure that this push happens
with the least amount of force, and the soldering with the least amount of power, but still
enough force and power that the wire will still be connected to the gold. Experiments
were done to determine the ideal setting for the force and power and these were found to
be: power = 2 , time = 10, masstip = 28 g, the first two units are in the 1 to 10 scale on
the wirebonder.

The solution to the second problem simply involves inventing a way to insulate the
barrier from the silicon to the puck. This was done by attaching a sapphire substrate
to the Si-side of the sample. Sapphire was chosen because it is known to be a good
insulator, and at the same time a good conductor of heat. Gold was deposited on the
sapphire substrate to contact the silicon. In this deposition process, it must be made sure
that no gold is on the sides of the sapphire plate, because conducting sidewalls of the plate
can still provide a connection between the puck and the silicon, hence the sapphire plate
would be rudimentary. This absence of gold on the sidewalls was ensured by putting extra
silver paste on the sidewalls of the plate when attaching it to the sample holder of the
Perkin Elmer sputtering system. The silicon (that was scratched in order to remove native
oxides) on the back of the sample is connected with silver glue to the gold on the sapphire
substrate. Now the back-gate contact can be connected to the gold, and no current can
flow to the puck, which is connected to ground of the Physical Property Measurement
System (PPMS). The puck with the sample and the backgate contact is shown in figure
3.5.

3.5 Measurement set-up

In order to do gate measurements on the sample at low temperatures, the sample is
loaded into the PPMS (on a puck), which can cool down continuously to a temperature
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Structure

Sapphire sub-
strate with gold 
on top

Figure 3.5: The measurement puck with the contacts to the gold on the sapphire and the contacts on the
structure.

as low as 2 Kelvin and provide magnetic fields up to 9 Tesla. The currents were sourced
externally, because the PPMS electronics are not designed to source current for small,
delicate samples as were used in these experiments. Instead, lock-in amplifiers were used
for the transport measurements by converting the voltage source into a current source
with a resistance of 100 kΩ, which is much larger than the typical order of magnitude of
the resistivity of the flakes (1 kΩ). The voltage that was applied with the lock in amplifier
was 0.1 V . With the resistance of 100 kΩ, this corresponds to sending a current of I = 1
µA.

Before choosing the suitable equipment for applying a gate voltage over the sample,
one must calculate the potential needed to deplete all the carriers on the surface of the
BSTS. This can be done by considering the parallel plate capacitor mentioned earlier
on. We know that Q = CU , where Q is the amount of charge in Coulomb, C is the
capacitance in Farad and U is the potential in Volts. Also, C = εε0

A
d

and Q = nAe, here
ε and ε0 are the dielectric constant (of the SiO2) and the electric constant respectively,
A is the surface of the capacitor plate in m2, d is the distance between the two plates in
m, n is the carrier density per unit surface in m−2 and e is the charge of an electron in
Coulomb. n is known from previous experiments to be 1012 to 1013 cm−2, the rest of the
parameters are given. Combining these and solving for U gives the potential needed to
completely deplete the TI surface of charge carriers: U = ned

εε0
= 13.8 to 138V . This is a

lot more than what the PPMS is wired for, which is around 25 V . Considering this upper
limit, the system that is chosen to apply the gate voltage is a Keithley 2401, capable of
sourcing voltages from −21 V to 21 V . A schematic of the set-up is shown in 3.6.
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Figure 3.6: The set-up in a schematic representation. The input, A and B from the Lock in Amplifier
(LIA) can also be connected to Va and Vb for measurment of the Hall resistance
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Chapter 4

Transport measurements on BSTS
with an applied gate voltage

A back gate voltage was applied to BSTS in order to observe if the 2D carrier density at
the surface of the BSTS, and by that, the Fermi level could be manipulated. Transport
measurements have been done to obtain information about the position of the Fermi level,
in order to observe whether it is placed in the gap or not.

It is important to note it is assumed that the surfaces of the topological insulator
are effectively 2D, hence we use the following definition for the longitudinal resistivity:
ρxx = Vx

I
W
L

, where in our case (because of the ill defined length and width of the flakes)
W ≈ L.

4.1 ρxx as a function of the temperature

For several flakes with varying thicknesses and shapes, the resistivity was measured as a
function of temperature.

One can observe for flakes A and B (figure 4.2a and b) that upon lowering the temper-
ature, the resistance first increases by a substantial amount, until around 100 K, when it
suddenly starts decreasing again to a value of approximately 5 % of the maximum value
below the maximum value. The increasing part can be interpreted as bulk temperature
excitations freezing out (semiconductor behaviour) and one can fit this part with a func-

tion ρ(T ) = ρ0e
∆
kBT , from which one can extract ∆ which represents the energy difference

between the Fermi energy and the conduction band (figure 4.1). In this way, one can
obtain information about the position of the Fermi level in the gap. When a certain
temperature is reached, the surface contribution to the conductivity starts to prevail over
the bulk contribution. The surface resistivity in this interpretation is assumed to be tem-
perature independent. Note that the overall resistance of flake B is higher than that of
flake A, this is probably due to the fact that flake B had the shape of a Hall bar, thus
having smaller dimensions than flake A.

Flake C exhibits a different resistance as a function of temperature (figure 4.2c). One
can observe that when cooling down from 300 K to 2 K, the change in resistance is rela-
tively small (compared to Flake A and B). This small change in resistance over the whole
temperature domain might indicate that we only observe a contribution from the surface,
not from the bulk. This claim can be made stronger by observing that we cannot fit the
inverse exponential dependence of the temperature, as can be done for semiconductors.
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Figure 4.1: The energy ∆ represents in this case the energy difference between the Fermi energy and the
conductance band.

This eliminates the possibility of bulk conduction. The two peaks that are visible in the
R(T) plot can be a result of adsorbtion of impurities (such as water) on the surface of
the BSTS. In the second R(T) measurement, one week later, one can observe that the
resistance at 300K has increased by more than 150 %. Also, the two peaks seem to almost
have vanished.

For flake D, a gate voltage of 21 Volts was applied during warm up and during cooldown
a gate voltage was absent (figure 4.2). The result is striking; the dropping resistance from
T = 100 K to 2 K that is claimed to be due to a prevailing surface contribution to
conductivity is clearly split into two seperate curves. The curve which belongs to the
measurement where a gate voltage was applied shows a higher resistance; this could ei-
ther be due the fact that charge carriers on the surface of the BSTS are depleted, or due
to a difference in the mobility of the surface charge carriers. This will be investigated in
the Hall measurement below. If we fit the inverse exponential temperature dependence
of the resistivity and extract ∆, we find that ∆ ≈ 20 meV .

All the R(T) curves are different, which is surprising since all the measured flakes were
mechanically exfoliated from the same BSTS crystal. Assuming that the band-structure
of the material does not change, it seems as if the position of the Fermi level and the
mobility differs per flake, as has been reported before [23]. It even changes over time,
as seen for flake C, which was measured two times with a one week interval (stored in
a transparent glass desiccator) between measurements. Possible explanations are H2O
adsorbtion on the surface, somehow influencing the conductivity, or photodoping.

We can conclude that all the flakes might have a different height of the Fermi level,
or have a different mobility but most of them show semiconducting behaviour at high
temperature and surface conductivity at low temperatures, for flake D this claim is made
stronger by a split curve at low temperatures.
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Figure 4.2: Plots of the resistance as a function of temperature for different flakes.

4.2 ρxx as a function of the gate voltage

Resistance as a function of gate voltage has also been measured for flakes C and D, as
shown in figure 4.3. Flakes A and B were destroyed before any gate measurements could
be done.

For flake C one can observe that the gate voltage has less effect on the resistance at
room temperature than it has at 2 Kelvin, this is expected, because the surface has a
smaller contribution to the conductivity (compared to the bulk) at room temperature
than it has at 2K. Note also the small discontinuity at Vg = 0 V . This discontinuity can
be explained by considering that the gate voltage sweep was executed in two sequences:
one from Vg = 0 to −21 V , and another from Vg = 0 to 21 V . In the first sweep, the
material was ‘trained’ which resulted in a higher resistance at zero gate voltage; in other
words, if the sweep was made from 0 to -21 to 0 to 21 to 0V, this loop would probably
show hysteresis.

For flake D, the resistance as a function of the gate voltage is measured for three
different temperatures. For temperatures 82 K and 300 K, the resistance was measured
with a gate voltage with intervals of 5 V. For the 2 K measurement an interval of 1 V was
used. One can observe that the slope of the curves is much steeper at 2 K than at 300
K, this difference is larger for flake D than for flake C. This is expected when observing
the corresponding R(T) curves, since flake C shows prevailing surface conductivity, even
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Figure 4.3: Resistance as a function of gate voltage. Note the discontinuities, caused by the trapped
charge. It can be seen that for flake C, the flake with prevailing surface contribution, the angle between
the curves for 2 K and 300 K is small as compaired to the angle of the corresponding curves of flake D.

at 300 K, where flake D shows typical bulk behaviour at this temperature. Since the gate
voltage only affects the surfaces, the difference between the 300 K and 2 K resistance as
a function of gate voltage should be less for flake C than it is for flake D.

(The ρxx(Vg) dependence at 2K for flake D shows some non-linear behaviour, this was
also observed by Kim et al. [26] at low temperatures.)

4.3 Carrier density and mobility as a function of gate voltage

The Hall resistance of flake D was measured at 2 K as a function of magnetic field for
three different values of the gate voltage, Vg = −21, 0, 21 V . From these field sweeps
(B = −2 T to 2 T ) the 2D carrier density and the mobility were determined via:

n2D =

[
|e|dρxy

dB

]−1

(4.1)

µ = [|e|n2Dρxx]
−1 (4.2)

Figure 4.4 shows the result of the Hall measurement. It can be seen that the carrier
density decreases with an increasing gate voltage, as is expected because of the polarity
of the applied gate voltage (depleting carriers in the surface with negative gate voltage).
Quantitatively however, the charge carrier density increases only by 7 % from Vg = −21
V to 0 V , compared to the 81 % from 0 V to +21 V , which is not what is expected
when one considers the substantial decrease in resistance from figure 4.3(b). This lack
in change of carrier density seems to be compensated by the increase in mobility. It is
still peculiar however that the mobility decreases by an amount of 37.8 % when the gate
voltage is varied from 0 to +21 Volts. It is expected that with a varying gate voltage, the
mobility will not be influenced and thus stay constant.

In trying to explain the varying mobility (from 0 to +21 Volts) as a function of gate
voltage one could construct an argument like the following:

One can observe that the carrier density and the mobility are more or less constant for
gate voltages of Vg = −21 V to 0 V . When the gate voltage is increased to 21 Volts, the
carrier density increases by a substantial amount and the mobility drops to almost half
of the initial value. This behaviour can be best understood when one considers the two
surfaces (top and bottom) of the topological insulator seperately.

38



-20 -10 0 10 20
4,00E+012

5,00E+012

6,00E+012

7,00E+012

8,00E+012

9,00E+012

1,00E+013

n
(c

m
-2
)

Vg (V)

(a) Carrier density. For Vg = -21 to 0 V , the carrier den-
sity difference is small in comparison to the difference be-
tween Vg = -21 to 0 V

-20 -10 0 10 20

0,11

0,12

0,13

0,14

0,15

0,16

0,17

0,18

0,19

µ
(m

2 /(V
·s

))

Vg (V)

(b) Mobility. The gate voltage seems for both polarities
to have a negative effect on the mobility.

Figure 4.4: Carrier density and mobility for Flake D. Note that it is the trend that is important in these
graphs, the numbers are not exact because of the ill-defined length and width of the flake.

For Vg = −21 and 0 V , we see that the value of the carrier density is approximately
n = 5× 1012 cm−2, which is half of the value at Vg = +21 V . This could imply that for
only one of the two surfaces the electrons are depleted for the lower two gate voltages.
For Vg = +21 V , the electron density in the bottom surface is the same as the electron
density in the top surface. This would imply that we only influence the bottom surface
with the back gate. The drop in the mobility for Vg = 21 V can then be explained by
assuming that the bottom surface of the BSTS has a smaller mobility than the top surface.
If the amount of charge carriers is constant in the top surface and increases in the bottom
surface, the transport is more and more mediated by the bottom surface, hence the total
mobility of the BSTS flake is reduced.

This model is a little too crude however and leaves a few questions unanswered, like
where the increase in resistance from Vg = 0 V to −21 V comes from, if the charge carrier
density and the mobility of the charge carriers are being kept constant. Also: why, when
all the electrons are depleted from the bottom surface (i.e. the Dirac point is reached), is
the bottom surface not hole doped.

4.4 Conclusion and outlook

R(T) curves of several flakes were measured and all of them showed different behaviour.
One flake was measured two times with an interval of about a week, and even then showed
a different R(T) dependence. From this we can conclude that the BSTS is a material with
a Fermi level that is easily shifted. A gate voltage was applied via the back of the sample
and measurements showed that the longitudonal resistance over the sample is changed i.e.
the gating has effect. Leakage currents were in the order of tens of pA’s which is the noise
range in the voltage supply. It can be seen that the resistance increases with a decreasing
voltage. Measurements of the charge carrier density show that the charge carriers are
depleted with a decreasing gate voltage. The mobility of the BSTS is negatively influenced
for both positive and negative gate voltage. This modulation in the charge carrier density
shows that using a back gate possibly is a way to manipulate the height of the Fermi
level. With this, experiments can also be done on a s-wave superconductor in proximity
to a metal with SOC. One might be able to tune the Fermi level in the topologically
non-trivial region and by that find Majorana fermions.
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In the future it might be worth investigating what is the mechanism behind the change
in mobility with a varying gate voltage. Also the mechanism behind the shifting resistance
per flake and as a function of light/air exposure could be investigated, this might pave
the way to more stable flakes of BSTS. In the future, when doing gate experiments, one
should first sweep through the whole voltage domain, before doing any measurements
as a function of gate voltage. This ensures the elimination of trapped charge and could
prevent the discontinuities as encountered in figure 4.3.

For an exact measurement of the carrier density and mobility in BSTS as a function of
gate voltage, well-defined Hall bars should be made using ebeam lithography. In future
experiments one should make well-defined Hall bars using ebeam lithography. In order to
completely eliminate the problem of the leakage current, one could consider the method
of flip-chip electrical gating, as suggested by Kouwenhoven et al. In this configuration the
gate structure is fabricated on a separate chip which is flipped and brought close (<100
nm) to the sample under research. A vacuum gap between the gates and material, acting
as an insulating layer, solves the problem trapped charges as present in SiO2, and one can
treat the sample much rougher than in the back-gating case.
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Appendix A

Parameters for electron beam
deposition

For an ebeam structure, an acceleration voltage of 20kV was used (the highest acceler-
ation voltage available, while still being able to properly see the sample while applying
the beam), the higher the voltage, the sharper the image. In figure A.1, the design of
an ebeam structure can be seen. The smaller structures (light-green) were written with
an aperture size of 10 µm and a writing distance of 10 mm. The part of the smaller
structures that are not on top of the BSTS flake received a dose of 220 µC/cm2. The part
of the contacts that lay on top of the BSTS received a dose of 180 to 200 µC/cm2. The
difference between the two doses originates from the fact that the BSTS reflects electrons
more strongly than the SiO2, which results in a higher reflected dose for the PPMA, so a
lower overall dose is needed.

Figure A.1: A design made in the RAITH-software, for the contacts to the flake.
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