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Abstract

Photoacoustic imaging is a widely investigated imaging method that allows
for clear differentiation between different tissues (specificity). Contrast
bubble enhanced ultrasound imaging is already used a lot and despite less
specificity, the bubbles create great contrast. In this report we investigate
the possibilities of using contrast bubbles in combination with photoacoustics
in order to combine the advantages of both methods.

Contrast agents are investigated for photoacoustic imaging with a contin-
uous wave laser. We show that polymeric microcapsules, that proved to be
an effective contrast agent for pulsed laser photoacoustics, also work with a
modulated continuous wave laser but require a high laser power. Oil coated
microbubbles are suggested as a new contrast agent for continuous wave
photoacoustics and numerical simulations are performed to find out what the
optimal parameters and material properties for this contrast agent would be.
A simplified model provides physical understanding of the simulated results.
We also show current work in the process towards producing these contrast
agents in micro-fluidic devices.
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Chapter 1

Introduction

As practitioner of integrative medicine Chris Kresser said “In medicine, the
key to choosing the best treatment is an accurate diagnosis. If the diagnosis
isn’t correct, the treatment will be ineffective – or even cause harm.” [1]
Imaging of the human body is often, especially in case of cancer a key
method for early and accurate diagnosis. But in a world where, according to
the Centers for Disease Control and Prevention, the leading causes of death
are heart disease and cancer [2], improving imaging of the human body is
one of the most important challenges of this time [3].

Several different methods for imaging have been developed such as ultra-
sound imaging (US), magnetic resonance imaging (MRI), optical coherence
microscopy (OCT), X-ray and X-ray computed tomography (CT), nuclear
imaging techniques like positron emission tomography (PET) and single
photon emission computed tomography (SPECT) and photoacoustic imaging
(PAI). All imaging methods have their own advantages in terms of resolution,
contrast, penetration depth, cost and other aspects [4]. This master thesis
will be about photoacoustic imaging (PAI).

PAI works by sending light into a body. Depending on the materials
it encounters, a certain amount of light is absorbed, the material heats up
and therefore it expands. This expansion gives a pressure wave which is
by definition sound. PAI is thus a hybrid technology where light is send
but sound is received and can be measured with the standard ultrasound
equipment.

PAI has a high contrast, sub-millimeter scale resolution and reasonable
penetration depth (up to several cm) [4]. However, the main advantage of
PAI is that it has a high specificity: One can clearly differentiate the signal
of different materials or tissues. Ultrasound imaging on the other hand, has
less specificity but contrast agent enhanced ultrasound imaging produces
great contrast due to the acoustic resonance of bubbles. In this report we
investigate the possibilities of using contrast bubbles in combination with
photoacoustics in order to combine the advantages of both methods.
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In case of PAI, contrast agents give a high photoacoustic signal and are
therefore very visible on the image. Contrast agents can be used to image
arteries and diffusion of contrast-agent-sized particles like red blood cells.
Also, by making a contrast agent that prefers to stick to a specific molecule
or organ, organs and the presence of specific molecules can be visualized
[5]. These contrast agents, which are usually coated bubbles or capsules,
can also be carrying drugs thereby facilitating targeted drug delivery and
making these bubbles oscillate can have a mechanical influence in the body [6].
Earlier research at the Physics of Fluids group has shown that monodispersed
microcapsules are a good contrast agents [7] and these will also be used in
the first chapter of this thesis.

Photoacoustics started when Alexander Graham Bell described producing
sound by light in 1880 [8]. For a long time this effect was not used very
much but the invention of the laser in the 1970s meant the start of quick
development of PAI [7]. Currently there are already some commercialized
preclinical PAI applications and in order to make PAI widely used and
a significant contributor to early diagnosis, some improvements are still
required [9]. One issue of most PAI devices is the requirement of high energy
pulsed lasers, these are expensive and often big. Modulated continuous wave
diode lasers have been proposed [10, 11] but these don’t have very high
power limiting the ultrasound signal that is received. In this thesis solid state
pumped continuous wave lasers modulated with an acousto optic modulator
are used instead. This combination can result in a system that has higher
power than diode lasers but is cheaper and smaller than pulsed lasers.

1.1 Thesis outline

In the first following chapter (chapter 2), we push further the study of an
already known potential contrast agents for photoacoustic imaging. The agent
consists of polymeric microcapsules filled with hexadecane oil. This chapter
aims at demonstrating their applicability for high frequency modulated
CW laser photoacoustics. It turns out that relatively high laser powers are
required. The third chapter aims at finding an alternative to these capsules.
In chapter three, numerical simulations are done to predict the response of
oil-coated microbubbles with dye in the oil layer. From this the parameters
of the optimal bubble parameters can be extracted. Also presented in this
chapter is a simplified theoretical model which is used to make much faster
simulations and a linearization of this simplified model to gain understanding
of what the simulation predicts. The final chapter describes the latest results
in our attempts to create these oil-coated bubbles. Here, our achievements
as well as the main difficulties encountered in the process are described.
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Chapter 2

Continuous wave
photoacoustic response from
polymeric microcapsules
activated by high frequency
laser modulation.

This chapter investigates the use of polymeric microcapsules as a photoa-
coustic contrast agent for a setup with a solid state pumped continuous wave
(CW) laser in combination with an acousto optic modulator. These capsules
have been used before in combination with a pulsed laser but the mechanisms
for such a system are very different and a CW laser is often cheaper and less
bulky than a pulsed laser.

In the experiment, the laser is initially set to shine continuously on a
capsule. The dye containing polymer shell absorbs the laser light and heats
up until the polymer reaches its melting temperature and the capsule breaks.
At this moment, the water is already above boiling temperature but the
280 ◦C oil flow is required to create a vapor nucleus. This process takes less
than one millisecond and after this the laser is modulated as a sine wave.
The capsule shell heats up during high laser powers, this instantly heats up
the bubble that expands. The gas then cools down during low laser powers
causing the bubble to shrink. This expanding and shrinking of the bubble
goes with high speeds producing a pressure wave propagating in the water
which is measured with an ultrasound transducer. At the same time, the
capsule response is optically recorded with a high speed video camera. The
exact mechanism of bubble nucleation is discussed in Lajoinie’s thesis [7].
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2.1 Methods and materials

The experimental setup is shown in Figure 2.1. In this setup a 2.55 W, 532 nm,
TEM00 CW laser is used (Changchun New Industries Optoelectronics Tech.
Co. Ltd.). The AOM used is the MQ180-AO,25-VIS from AA opto-acoustics.
Several different high speed cameras of the company Photron have been used:
The FASTCAM SA-X2 type 1080K-M4, FASTCAM SA-X type 324K-M4 and
the FASTCAM SA2 model 86K-C2. A Panametrics C302-S (Olympus-NDT)
focused ultrasound transducer with a diameter of 1 inch (25.4 mm), a center
frequency of 1 MHz and focal distance of 1.63 inch (41.4 mm) was connected
to a Panametrics amplifier model 5077PR which in turn was connected to a
Tektronix Model DPO4034 oscilloscope. The light source used was a Schott
KL 2500 LED. A water immersed 60× Olympus objective was used for the
microscope and the capsules were contained in an OpticellTM.

2.1.1 Alignment

For the experimental setup, the laser was aligned through the AOM, micro-
scope and focusing lenses. In Figure 2.1 the full setup can be seen. A CW
laser shines through a lens with a focal distance of 750 mm in order to have
the desired beam waist width in the focal point. The AOM is placed in this
focal point and two adjustable mirrors are used to guide where the laser hits
the AOM (one mirror required) and under which angle the beam hits the
AOM (two mirrors required). It is important that the laser light polarization
is in line with the requirements for the AOM. In our case this meant that the
laser had to be tilted sideways approximately 60 degrees and for accuracy the
tilt of the AOM could be adjusted to get the optimal response. The AOM
could also be turned to find the Bragg angle. After the AOM, two more
mirrors were placed to again direct the laser beam (not shown in Figure 2.1).
The laser then goes through a beam expander which is continuously (i.e. no
steps) adjustable between a diverging or converging beam to control the laser
spot size. The laser then passes through the microscope objective through
which a video recording is also made and the laser spot is aimed at the center
of the image. When the video recording is in focus, the spot size of the laser
is set.

Now with the laser spot in position, the ultrasound transducer should
be coaligned. To achieve this a hydrophone in placed at the location of the
sample and brought in focus of the camera by using the 3D translation stage
for the sample. Next, the transducer which normally only acts as a receiver,
is set to send an ultrasound signal which is recorded by the hydrophone. The
focal distance of the transducer (1.63 inch) and the speed of sound in water
(1497 ms−1) are known giving the expected delay before the transmitted
ultrasound pulse arrives at the hydrophone (≈ 27 µs). By triggering the
oscilloscope this delay can be measured. When a 1 MHz signal is sent with
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Figure 2.1: The full setup. All grey arrows indicate how all parts can be
moved to align the setup.

ten periods (i.e. ten full sine waves) and this is done 200 times per second,
the delay time and hydrophone response can be measured ‘continuously’.
When this is set up, the whole water tank including the transducer can
be moved in 3 dimensions and this will be done such that the transducer
aims at the hydrophone and the delay is set for the expected delay for a
transducer in focus. This way, the transducer will be close to focus but not
exactly. By moving the tank in the three dimensions until the ultrasound
signal measured by the hydrophone has the maximum amplitude, the best
focus can be found.

The result is that the transducer is in focus at the focus of the microscope.
This is also where the laser was focused at. The water tank is now fixed and,
the hydrophone is replaced by the sample and the sample is brought in focus
with the 3D translation stage for the sample.

2.1.2 Capsules

The contrast agents used for this experiment are spherical capsules with a
diameter of 6 µm and a poly(methyl methacrylate) (PMMA) polymer shell
of 0.6 µm thick. The capsules are filled with hexadecane and the polymer
was made with 5 % (weight) Sudan Red 7B dye (Sigma Aldrich). They are
made by the company Nanomi with a microsieveTM emulsification technique.

2.1.3 Bubble detection

Frames of a typical high-speed recording are shown in Figure 2.2. On the
left side, the upper frame shows the capsule just before laser irradiation, the
middle frame shows a capsule that has a bubble inside and the lower frame
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(a) High speed recording (b) Tracking capsule and bubble

Figure 2.2: Bubble tracking

shows a ruptured capsule with a bubble next to it. In order to extract the
bubble radius of the many thousands of recorded frames a simple script has
been written with Matlab. The script detects the circles with a standard
function imfindcircles and the rest of the program finds out which circles
are the bubble. This is done by assuming the bubble does not change size or
location very much between two frames, the bubble is expected outside of the
capsule and if concentric circles are found the outer circle considered the full
bubble. For example, in the lower left frame in Figure 2.2 the program would
detect the bubble and a circle inside the bubble in which case the bigger
circle would be chosen as the real bubble. Example results are presented on
the right side of Figure 2.2. In these pictures the blue circle is the capsule,
the green circle is a bubble inside the capsule and the pink circle is the
bubble next to the capsule. The output of the Matlab program is a curve
for the radius versus frame number (Figure 2.3) and a movie showing the
tracked bubble. Because the frame rate is much lower than the frequency of
the laser modulation, the bubble shown in each frame is considered to have
the average radius.

Next to measuring the bubble size, the radiated pressure is detected.
A typical trace is shown in Figure 2.5 on which it can be seen that the
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Figure 2.3: Example radius time curve automatic output

radiated pressure has the same frequency as the modulation of the laser with
an (expected) phase difference. In order to make the response quantitative
the fast Fourier transform (FFT) of the signal is computed as shown in
Figure 2.4. This figure shows a clear peak exactly at the driving frequency
of 1.2 MHz. The height of this peak is a measure for the radiated pressure.

2.1.4 Results

The bubble radius and the FFT amplitude at the expected frequency are
combined to give resonance curves as shown in Figures 2.6 and 2.7. Figure 2.6
shows the response at 1 MHz laser modulation and Figure 2.7 shows the
response at 700 kHz laser modulation. The error bars show the standard
deviation of the bubble size during the recorded frames of the measurement.
Next to the data, a Gaussian curve is also drawn to guide the eye. In
Figure 2.6 a Gaussian curve is drawn at the diameter corresponding to the
Minnaert frequency (6.6 µm). There also seems to be a response at half
this diameter (3.3 µm). The data is taken exclusively from bubbles next
to a capsule (as in the bottom left picture in Figure 2.2) and free bubbles.
The Minnaert frequency as the resonant peak therefore is not unlikely. For
the data at 700 kHz (Figure 2.7) the resonant diameter is 9.4 µm. This did
not give a good fit and therefore a Gaussian curve is drawn as the best fit
instead. Maybe the Minnaert frequency is not how this response should be
interpreted. It is for example possible that the vaporization of the water
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Figure 2.6: Measurement data for for a laser modulated at 1 MHz. The
errorbars indicate the standard deviation of the detected bubble size during
the video recording used for the data point. The two Gaussian curves are
just to guide the eye.

during laser irradiation plays a significant role because of which the bubble
cannot be considered a simple free gas bubble.

2.2 Discussion

The data shown in Figures 2.6 and 2.7 demonstrate a bubble diameter de-
pendent response to modulated laser irradiation. However, is not convincing
enough to prove the shape of the resonance curve. The accuracy is too low
and next to that, the results are not very reproducible. Things that could
potentially improve the results are the following:

The used laser was very unreliable. It is supposed to generate a TEM00
beam but often the beam turned into a TEM01 shape. This greatly reduces
the power the laser produces and as a result, most of the capsules stayed
intact during irradiation. Using a better laser would give more reliable results
and would make data gathering quicker.

Another issue is the laser spot which was bigger, but not very much
bigger than the capsules. This means that the intensity of irradiation was
not perfectly homogeneous which could have had influence on the result.
When less laser power would be needed or a more powerful laser is used, a
bigger laser spot can be chosen to make sure there is no influence of this
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Figure 2.7: Measurement data for 700 kHz Measurement data for for a laser
modulated at 700 kHz. The errorbars indicate the standard deviation of the
detected bubble size during the video recording used for the data point. The
two Gaussian curves are just to guide the eye.

kind.
The high speed camera used in combination with the light source was

not optimal. The shutter time could not be set short enough to get rid of
motion blur of the oscillating bubble. With the current shutter speed, bubble
oscillations were not visible at all because the laser modulation went through
several modulations while the shutter is open (1/f � shutter time). The
solution to this problem would be to use the Brandaris camera which can
record up to 25 million frames per second. Another problem related to this
is that the light intensity was very low with this shutter speed giving little
contrast and much noise. Possibly a more focused or brighter light source
can be used.

The capsules don’t always respond the same way. The bubble size, shape
and the location with respect to the capsule are different every time. Next
to this, movement of the capsule could occur making the response even more
unique. This unique behavior greatly reduced the reproducibility of the
measurement. One solution would be to use higher laser powers to make sure
the capsule would shatter completely every time instead of only rupturing at
the weakest spot which could be different every time. Another solution would
be to use a phospholipid coated bubble that stays intact during irradiation
but that can oscillate without breaking the coating. This solution will be
described in the following chapters.
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Chapter 3

Light absorbing microbubble
for low energy contrast
enhanced continuous wave
photoacoustics

In the previous chapter single polymeric capsules were irradiated by a modu-
lated CW laser in order to generate a CW photoacoustic response. Although
these capsule produced an acoustic response, the results were not very re-
producible and a relatively high laser power was needed. In this chapter
the possibility for a better contrast agent is investigated. In ultrasound
imaging many different contrast agents have been used and commercialized.
These contrast agents are mostly bubbles which are echogenic due to acoustic
resonance. In 1968 it was found that agitated saline functioned as a good US
contrast agent due to the echoes of small gas bubbles [12]. Later, contrast
agents were stabilized with surfactants, lipids, proteins, polymers or a com-
bination of those [5]. Many of the latest commercialized US contrast agents
are coated with phospholipids [6]. In photoacoustics a normal bubble would
not function as a good contrast agent because gas does not absorb light
efficiently, therefore, for a photoacoustic contrast agent a dye must be added
as was the case in the polymer shell of the capsules used in the first chapter
of this thesis. Fortunately, much research has been done on adding drugs
to US contrast agents and similar methods can be used to add dye instead
of drugs to these bubbles. Unger et al. shows five different methods to put
drugs in a phospholipid coated microbubble [13], these include: Attaching
the drugs to the coating, incorporating the drugs in the coating, non-covalent
bounding of drug containing materials (e.g. DNA) and the interior of the
bubble can be loaded with drugs incorporated in a oil film that surrounds
the microbubble. In all these cases the drugs can be replaced by a dye to
make bubbles that heat up during irradiation. It can be expected that the
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oil layer would be able to hold most dye and therefore would produce the
best photoacoustic contrast agent.

Instead of a hard capsule that needs to break in order to produce a bubble,
a bubble with a flexible coating is investigated. This way, a nucleation site
already exists and much of the initial energy to form a bubble is no longer
needed. This chapter investigates an air bubble with a layer of oil around
it. The oil layer will contain a dye such that the particle can absorb laser
light. The coating is flexible such that the whole particle can oscillate when
heated by a laser beam.

In order to understand how an oil-coated bubble (stabilized by phospho-
lipids) would behave under an oscillating laser, a simulation program was
written. The main functionality of the program comes from the ideal gas
law to calculate pressure, the Rayleigh-Plesset equation to find the dynamics
governing the radial evolution and the heat equation to find the temperature
evolution. The result is the bubble radius Ri(t), temperature T (t) and
pressure P (t) as a function of time with an input of bubble and material
properties and laser power per unit area. An illustration of the simulation is
given in Figure 3.1. The exact mathematics and implementation of these
equations is discussed in the following.

The simulation is one dimensional which is to assume the bubble remains
spherical. The initial grid consists of layers with a constant distance between
them from radius (r) zero to twice the bubble size. For radii beyond this, the
distance between the shells gets increasingly bigger such that the most outer
grid point is so far from the bubble that one can assume the temperature
and the pressure to not change. These far field properties serve as boundary
conditions.

The different equations will now be derived and the forms with which
they are used in the simulation will be presented.
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3.1 Rayleigh-Plesset

The Rayleigh-Plesset equation describes the dynamics of a spherical bubble
in a liquid. Our main objective here is to find the influence of the oil layer
around the bubble and therefore a version of this equation is used that
includes damping due to the oil layer. In this section the derivation of this
equation presented.

3.1.1 From Navier-Stokes

The Navier-Stokes equation for an incompressible, Newtonian fluid is as
follows

ρ
Dv

Dt
= −∇P + ρg + µ∇2v

Body forces will be negligible and a spherically symmetric case is investi-
gated leading to

ρ

(
∂v

∂t
+ v

∂v

∂r

)
= −∂P

∂r
+ µ∇2v

In the simulation, the bubbles will have an oscillation amplitude in the order
of micrometers and the frequency will be in the order of MHz. Speeds will
therefore be approximately 1 ms−1 and thus much lower than the speed of
sound. For this reason, incompressibility of the liquid is assumed and, as
shown in appendix B.15,

v = ṘR2

r2
−→er

Where Ṙ is dR
dt

. With this we find

ρ

(
1
r2

∂

∂t
(ṘR2)− 2(ṘR2)2

r5

)
= −∂P

∂r
+ µ∇2v

− 1
ρ(r)

(
∂P

∂r
+ µ∇2v

)
= 1
r2

d

dt

(
ṘR2

)
− 2(ṘR2)2

r5

This equation can be written for both the oil layer and the water. When
integrating from r = A to r = B the term µ∇2v drops out and this gives

P (B)− P (A)
ρ

=

1
r

d

dt

(
ṘR2

)
− 1

2

(
ṘR2

)2

r4


B

A

P (B)− P (A)
ρ

=
[
R̈R2

r
+ 2Ṙ2R

r
− 1

2
Ṙ2R4

r4

]B
A
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Taking the inner bubble radius Ri for R and the bubble radius including the
oil layer Re for A and B =∞ i.e. integrating over the water part

P (R+
e )− P∞ = ρw

(
R̈iR

2
i + 2Ṙ2

iRi
Re

− 1
2
Ṙ2
iR

4
i

R4
e

)
(3.1)

Integrating over the oil part would mean A = R+
i and B = R−e

P (R−e )− P (R+
i ) = ρo

(
R̈iR

2
i + 2Ṙ2

iRi
Re

− 1
2
Ṙ2
iR

4
i

R4
e

−
(
R̈iR

2
i + 2Ṙ2

iRi
Ri

− 1
2
Ṙ2
iR

4
i

R4
i

))
(3.2)

Where rewriting gives

P (R+
i )− P (R−e ) = ρo

(
(R̈iR2

i + 2Ṙ2
iRi)

( 1
Ri
− 1
Re

)
−1

2Ṙ
2
iR

4
i

(
1
R4
i

− 1
R4
e

))
(3.3)

3.1.2 Normal component stress tensor

Over the oil gas interface

σo · −→er − σg · −→er = δP1

Where σo is the strain tensor and −→er denotes that it is in the r direction. δP1
is the difference in pressure over the oil-gas interface.

2µ0u
′(Ri)− P (R+

i ) + Pg = 2σo
Ri

Where u′ is the velocity derivative to the radius. σ is the surface tension.
Knowing v = ṘiR

2
i /r

2 we also know v′(Ri) = −2ṘiR2
i /R

3
i

−4µo
ṘiR

2
i

R3
i

− P (R+
i ) + Pg = 2σo

Ri

Pg − P (R+
i ) = 4µo

Ṙi
Ri

+ 2σo
Ri

(3.4)

Over the oil water interface

σw · −→er − σo · −→er = δP2

[
2µwv′(Re)− P (R+

e )
]
− [2µov′(Re)− P (R−e )

]
= 2σwo

Re

18



Knowing v = ṘiR
2
i /r

2 we also know v′(Re) = −2ṘiR2
i /R

3
e. Rewriting the

equation above then gives[
−4ṘiR2

i

R3
e

µw − P (R+
e )
]
−
[
−4ṘiR2

i

R3
e

µo − P (R−e )
]

= 2σwo
Re

−4ṘiR2
i

R3
e

(µw − µo)−
2σwo
Re

= P (R+
e )− P (R−e )

Resulting in

P (R+
e )− P (R−e ) = 4ṘiR2

i

R3
e

(µo − µw)− 2σwo
Re

(3.5)

3.1.3 Combining for RP equation

We know that Pg − P∞ = P (R−i )− P∞ because the pressure at the inside
of the inner radius of the bubble is by definition in the gas and therefore
Pg ≡ P (R−i ). We can rewrite by adding and subtracting similar terms

Pg − P∞ = Pg(R−i )− P (R+
i )︸ ︷︷ ︸

part 1

+P (R+
i )− P (R−e )︸ ︷︷ ︸

part 2

+ P (R−e )− P (R+
e )︸ ︷︷ ︸

part 3

+P (R+
e )− P0︸ ︷︷ ︸

part 4

(3.6)

Part 1 of (3.6) is defined in (3.4), part 2 is defined in (3.3), part 3 is defined
in (3.5) and part 4 is defined in (3.1). Thus, the complete equation is:

Pg − P∞ = 4µo
Ṙi
Ri

+ 2σo
Ri

+ ρo

(
(R̈iR2

i + 2Ṙ2
iRi)

( 1
Ri
− 1
Re

)
−1

2Ṙ
2
iR

4
i

(
1
R4
i

− 1
R4
e

))
− 4ṘiR2

i

R3
e

(µo − µw)

+ 2σwo
Re

+ ρw

(
R̈iR

2
i + 2Ṙ2

iRi
Re

− 1
2
Ṙ2
iR

4
i

R4
e

)
(3.7)

Rewriting gives

Pg − P∞ = R̈i

[
ρoR

2
i

( 1
Ri
− 1
Re

)
+ ρw

R2
i

Re

]

+ ρo

[
2R2

iRi

( 1
Ri
− 1
Re

)
− 1

2Ṙ
2
iR

4
i

(
1
R4
i

− 1
R4
e

)]

+ ρw

[
2Ṙ

2
iRi
Re

− 1
2

˙R2
iR

4
i

R4
e

]
+ 4µo

[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri
(3.8)
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And rewriting further

Pg − P∞ = R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]

+ ρo

[
Ṙ2
iRi

(
2
Ri
− 2
Re
− 1

2
1
Ri

+ 1
2
R3
i

R4
e

)]
+ ρw

[
Ṙ2
iRi
Re

(
2− 1

2
R3
i

R3
e

)]

+ 4µo
[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(3.9)

To reach the modified Rayleigh-Plesset equation:

Pg − P∞ = R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]

+ Ṙ2
iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)
+ ρw
Re

(
2− 1

2
R3
i

R3
e

)]

+ 4µo
[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(3.10)

Where the viscosity of water µw is temperature dependent following the
following relation [14]

µw = 2.414 · 10−5 · 10247.8/(T−140)

Where T is the temperature of the water at the water-oil interface. This
new RP equation comes down to the classic RP equation for a bubble with
only one liquid around it when the properties of water and oil are chosen
identical. The derivation of this is shown in appendix B.1.

3.1.4 Rayleigh-Plesset equation in the simulation

For use in the simulation, the RP equation will be rewritten to have only R̈
on the left side. With this equation, the new R̈ will be calculated with the
values of Ṙ and R of the previous time iteration. The new values of Ṙ and
R are then calculated as such:

Ṙt+dt = Ṙt + R̈tdt

Rt+dt = Rt + Ṙtdt

3.1.5 The grid

The simulation works with a grid that is variable in time. The mass of each
grid volume is defined to be constant and the grid is recalculated every time
step to hold on to this definition. Initially, before the laser is turned on and
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T1

T2

T3

r3 p2

Figure 3.2: The grid defined Figure 3.3: The grid used for the simulations.
Here it can be seen that the distance between
grid points is constant until twice the radius of a
standard bubble (red circle). After that, the grid
steps get bigger 15 % every step where in the real
simulation the biggest grid radius is more than
3000 times the standard bubble size and there
are 96 grid-circles within the standard bubble
size.

before the bubble starts to oscillate, the grid is defined with a regular size
interval of 31.25 nm up to a radius of 6 µm which is twice the typical bubble
radius. Beyond this radius the grid gets 15 % bigger each step outward. This
way, without having an excessive amount of grid points, the most outer grid
point is more than 3000 times the typical bubble radius.

3.2 The ideal gas law

3.2.1 Constant in time

In order to find an expression for the pressure, we look at the ideal gas law:

PV = m

µ̃
RgT

where P is pressure, V is volume, m is mass, µ̃ is the molar mass in kilograms
per mole, Rg is the ideal gas constant. The simulation is defined such that
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the mass in each grid-volume remains constant in time. As mentioned before,
the speed of the bubble wall Ṙ is much smaller than the speed of sound.
Therefore the pressure in the bubble is considered homogeneous. With this
information it can be shown that the pressure is defined as such.

P = P0
T0

4
3πR

3
0

1∑
Vk/Tk

where ∑Vk/Tk can be defined as

∑ Vk
Tk

=
∑ 4

3π
(rk−1 + pk)3 − r3

k−1
Tk

,

where subscript 0 stands for the initial value before the laser is turned on.
In appendix B.2 all the intermediate mathematical steps are shown.

3.2.2 Constant in radius

Gas regime

As mentioned before, the pressure is constant with respect to the radius
inside the bubble. This tells us

Vk
mkTk

= constant(r)

Further rewriting and using that mk is constant in time, gives

rk−1 =
(
−Rg
µ̃P

ρ0Tk
[
(kp0)3 − ((k − 1) p0)3

]
+ r3

k

)1/3

Where rk is the radius in meters that belongs to grid point k. To speed up
the calculation in Matlab or Fortran, an approximation based on a Taylor
expansion is made from which we find

rk−1 = rk

(
1 + 1

3H −
1
9H

2 + 10
162H

3
)

with
H = −Rg

µ̃P
ρ0Tk

1
rk3

[
(kp0)3 − ((k − 1) p0)3

]
(3.11)

All detailed mathematical steps can be found in appendix B.3.

Outer regime

The mass in each grid volume is defined to be constant over time, the oil and
the water is assumed incompressible and therefore the volume in each grid
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volume in the oil and water regime is constant in time. With this information
the grid can be redefined at each time step:

rk+1 =
([

((k + 1) p0)3 − (kp0)3
]

+ r3
k

)1/3

And in a similar fashion as what has been done before, this can be Taylor
expanded to give

rk+1 = rk

(
1 + 1

3H −
1
9H

2 + 10
162H

3
)
,

with
H =

[
((k + 1) p0)3 − (kp0)3

] 1
rk

3
. (3.12)

3.3 The heat equation

The basic heat equation

D∇2T + I

ρcp
= DT

Dt
,

where I is in units of Wm−3. Since the simulation calculates the temperature
for each grid point, and the grid points move along with the movement of mass,
the total derivative becomes an ordinary partial derivative. Furthermore,
the simulation is only in the r direction making the heat equation:

D
1
r2

∂

∂r

(
r2∂T

∂r

)
+ I

ρcp
= ∂T

∂t
. (3.13)

This can be approximated with a central difference scheme in space and a
forward finite difference scheme in time resulting in

Tn+1
k = dtD

r2
k


(

(rk + 1
2pk+1)2Tk+1 − Tk

pk+1

)
−
(

(rk−1 + 1
2pk)

2Tk − Tk−1
pk

)
1
2pk + 1

2pk+1


+ dtI

ρcp
+ Tnk (3.14)

The full mathematical derivation of this can be found in appendix B.4. In
the simulation it can now be used that the new temperature at grid point k
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in terms of the old temperature in the grid points k− 1, k, k+ 1 is as follows:

Tn+1
k = Tnk−1

dtDr2
k

(
rk−1 + 1

2pk)
)2

pk

(1
2pk + 1

2pk+1

)


+ Tnk

1− dtD

r2
k

(1
2pk + 1

2pk+1

)

(
rk + 1

2pk+1)
)2

pk+1
+

(
rk−1 + 1

2pk)
)2

pk




+ Tnk+1

 dtD

r2
k

(1
2pk + 1

2pk+1

)
(
rk + 1

2pk+1)
)2

pk+1


+ dtI

ρcp
. (3.15)

3.3.1 Second order precision over the gas-oil interface and
the oil-water interface.

The heat equation that was defined above can be used as long as the tem-
perature is known at grid points k + 1, k and k − 1. This works except right
next to an interface where one of these values is missing. When crossing the
interface between gas and oil, or between oil and water the heat equation
must be defined separately. These equations will be based on a second order
Taylor expansion and are therefore more precise than the heat equation for
the bulk. This is required for the program to be stable.

Outer side of an interface

First we look at the outer side of an interface for which grid point values
greater or equal to k are known. Just like in the heat equation for the bulk,
we express the new temperature Tn+1

k in terms of the old temperature on
three grid points Tnk ,Tnk 1 and Tnk+2.

Tk = Tk (a)

Using a Taylor expansion up to second order to get enough precision

Tk+1 = Tk + pk+1T
′
k +

p2
k+1
2 T ′′k (b)

Tk+2 = Tk + (pk+1 + pk+2)T ′k + (pk+1 + pk+2)2

2 T ′′k (c)
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The heat flux across the oil water interface must be conserved leading to the
following condition:

λo
∂To
∂r
|Re = λw

∂Tw
∂r
|Re

We therefore need to know the derivative of the temperature with respect to
the radius. To find this we look for T ′k = A · a+B · b+C · c with the capital
letters being coefficients and the small letters being the equations presented
above, i.e. T ′k = A · Tk +B · Tk+1 + C · Tk+2. A, B and C should therefore
be such that Tk is zero, T ′k is one and T ′′k is zero. This results in

A = −(pk+1 + pk+2)
pk+1pk+2

− 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

,

B = (pk+1 + pk+2)
pk+1pk+2

,

C = 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

.

More mathematical steps are shown in appendix B.5.

Inner side of an interface

Until now we considered the temperature to be known for grid points k or
higher. This is the case when looking at the outer side of a boundary. For
looking at the inner side of a boundary grid points bigger than k are not
known and the same analysis can be done for this side as is shown in appendix
B.6. The results are an expression like T ′k = A · Tk + B · Tk−1 + C · Tk−2
Where D, E and F are

D = (pk + pk−1)
pkpk−1

− 1
(pk + pk−1)2

pk
− (pk + pk−1)

,

E = −(pk + pk−1)
pkpk−1

,

F = 1
(pk + pk−1)2

pk
− (pk + pk−1)

.

Resulting interface conditions in the simulation

The boundary condition between the oil and the water is the following

λo
∂To
∂r
|Re = λw

∂Tw
∂r
|Re ,
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with Re being the radius of the bubble at the oil water interface. Filling in
for what was found in the previous section

λo (DTk + ETk−1 + FTk−2) = λw (ATk +BTk+1 + CTk+2)

Rearranging gives:

Tk = −λo (ETk−1 + FTk−2) + λw (BTk+1 + CTk+2)
λoD − λwA

,

with k being the gridpoint on the boundary between water and oil. Similarly,
the boundary condition between the oil and the gas is

λg
∂Tg
∂r
|Ri = λo

∂To
∂r
|Ri

with Ri being the radius of the bubble at the gas–oil interface. Rearranging
this gives

Tk = −λg (ETk−1 + FTk−2) + λo (BTk+1 + CTk+2)
λgD − λoA

.

3.4 Static bubble solution

This part is done to examine what the equilibrium temperature is of the
bubble with the laser continuously on. When the simulation converges (in
the limit) to this temperature it can be concluded the program is correct.
This is of course assuming this simplified calculation is correct. It starts with
the heat equation, taken from (3.13).

D
1
r2

∂

∂r

(
r2∂T

∂r

)
+ I

ρcp
= DT

Dt

Normally I (Wm−3) would be a function of time but in this static solution
it is taken to be the average laser power. In case the laser is modulated
as a sine wave I would be half the maximum laser power. Because we are
interested in the stationary equilibrium case the temperature change in time
is zero:

D

(
2
r

∂T

∂r
+ ∂2T

∂r2

)
+ I

ρcp
= 0

An expression for T can be given as a solution to this differential equation

T = −Ir2

6cpDρ
− C1

r
+ C2,

where C1 and C2 are constants. From this the equilibrium temperature
profile can be found when taking into account that the temperature in the
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gas is homogeneous and because of that the derivative with respect to the
radius of the temperature in oil at the gas side is zero. Furthermore, the
temperature of the water at r =∞ does not change, the temperature at two
sides of the interface is the same and the boundary condition between oil
and water is the following:

λo
∂To
∂r
|Re = λw

∂Tw
∂r
|Re

The found equilibrium temperature profile:

Tgas,eq =
−IR2

i,eq

6λo
− C1o
Ri,eq

+ C2o, (3.16)

Twater,eq = 1
r

(
−IR3

e,eq

6λo
− C1o +Re,eqC2o

)
, (3.17)

Toil,eq = −Ir
2

6λo
− C1o

r
+ C2o, (3.18)

with

C1o =
IR3

i,eq

3λo
,

C2o = C1o
Re,eq

(
1− λo

λw

)
+
IR2

e,eq

3λo

(
0.5 + λo

λw

)
.

Subscript eq was added to indicate this is the equilibrium value. All mathe-
matical steps are shown in appendix B.11.

An example simulation is shown in Figure 3.4. The static solution is
chosen to have an equilibrium value of 3.1 µm and the simulation converges
nicely to the found temperature profile.

An equation for the equilibrium radius can be found by taking into
account the state equation and the expression for the pressure being the
atmospheric pressure plus the two Laplace pressures. As shown in appendix
B.13, the expression for the equilibrium radius is

Ri,eq = Ri,0

 Tgas,eqP0

T0

(
P∞ + 2σgo

Ri,eq
+ 2σow
Re,eq

)


1/3
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Figure 3.4: The simulated result converges to the static solution. This
simulation is done for a 3 µm bubble with a 1 µm thick triacetin oil layer and
shining the laser continuously
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3.4.1 Finding equilibrium temperature as a function of laser
power

We would like to know the equilibrium gas temperature as a function of
laser power. From (3.16) we have an expression for the equilibrium gas
temperature as a function of Ri and laser power. From (B.19) we have
another expression for the equilibrium gas temperature as a function of
Ri but not of laser power. These can be equated as shown in appendix
B.7 leading to an expression that is more easily solved numerically than
analytically. Therefore, a matlab script was written to find the equilibrium
gas temperature as a function of laser power. When this is done for a bubble
with initial inner radius of 3 µm, a triacetin oil layer 1 µm thick and the laser
continuously radiating at 1010 Wm−2, an equilibrium radius is found to be
3.0977 µm. In Figure 3.4 it can be seen that the simulation does converge to
this value and the predicted temperature profile.

3.5 Small variations around equilibrium: The sim-
plified model

In this part small variations are added to the static solution in order to
obtain a simple model describing the simulation result. The full simulation
calculates everything from room temperature but this simplified model only
calculates what the equilibrium values should be from the static solution.
From there the oscillations are calculated.

The static solution assumes the temperature in the gas to be homogeneous.
For this to also be true for a modulated laser signal, the diffusion time of the
heat in the gas should be smaller than the half period of the laser modulation.
This can be contained in the following equations

t = R2
i

2πDg
= Period laser

2 = 1
2f ,

Ri,limit =
√
πDg

f
,

leading to a maximum bubble radius for which the static solution including
laser modulation is still valid for a distance just over 6 µm. The same
calculation can be done for the water to find a diffusion distance of 0.1 µm.

The change in temperature over time can be described as follows:

(ρoVoilCpo + ρwVw0.1Cpw) dT = (B −B0/2) · Voildt,

with ρo the density of the oil, Vw0.1 the volume of the first 0.1 µm of water,
Cpo the heat capacity at constant pressure of the oil, B0 the maximum power
of the laser and B the absorbed laser power (Wm−3). In the simulation the
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laser is modulated as a step function. But, because all functions can be
described by a combination of sine waves, a sinusoidal modulation is chosen
in this case. This means B becomes a sine function.

dT

dt
= (B −B0/2) · Voil
ρoVoilCpo + ρwVw0.1Cpw

= Bamp cos(ωt) · Voil
ρoVoilCpo + ρwVw0.1Cpw

(3.19)

As described in appendix B.14, from this, an equation describing the
behavior of the bubbles can be found by using equations B.19 (the gas in each
grid volume remaining constant) and 3.10 (the modified Rayleigh-Plesset
equation).

P0V0

T0
4
3πR

3
i

[
Bamp sin(ωt) · Voil

ω (ρoVoilCpo + ρwVw0.1Cpw)

+Bamp
3λo

(
−1.5R2

i,eq +
R3
i,eq

Re,eq

(
1− λo

λw

)
+R2

e,eq

(
0.5 + λo

λw

))
+ Troom

]

− P∞ = R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]
+ Ṙ2

iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)

+ρw
Re

(
2− 1

2
R3
i

R3
e

)]
+ 4µo

[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(3.20)

3.6 Linear solution

From (3.19) we know

dT

dt
= (B −B0/2) · Voil
ρoVoilCpo + ρwVw0.1Cpw

(3.21)

→ Tg =
∫
Bdt

ρoCpo + ρw
Vw0.1
Voil

Cpw

+ Tgas,eq + Troom (3.22)

We also know from (B.24)

Pg = P0V0Tg

T0
4
3πR

3
i

(3.23)

And from (B.25)

Pg − P∞ = R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]
+ Ṙ2

iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)

+ρw
Re

(
2− 1

2
R3
i

R3
e

)]
+ 4µo

[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(3.24)
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giving

P0V0

T0
4
3πR

3
i


∫
Bdt

ρoCpo + ρw
Vw0.1
Voil

Cpw

+ Tgas,eq + Troom

− P∞
= R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]
+Ṙ2

iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)
+ ρw
Re

(
2− 1

2
R3
i

R3
e

)]

+ 4µo
[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(3.25)

Organizing for Ṙ, Ṙ2 and R̈ and, as an approximation, taking all Ri and Re
to be Ri,eq and Re,eq in case they are multiplied by Ṙ, Ṙ2 or R̈.

∫
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(3.26)

In order to find an equation that does not contain an integral, everything is
derived to time.

αB − 3P0Tg2
T0

Ri,0
R4
i,eq︸ ︷︷ ︸

ζ

Ṙi =
...
Riβ + 2γR̈iṘi + δR̈i + 2Ṙi

(
−σow
R2
e

+ −σo
R2
i

)
︸ ︷︷ ︸

ε

(3.27)

αB − ζṘi =
...
Riβ + 2γR̈iṘi + δR̈i + 2Ṙiε (3.28)

In which case Ṙe is assumed to be approximately Ṙi and Tgas,eq + Troom is
now called Tg2. The term 2γR̈iṘi is of higher order and is therefore neglected.
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Ri is expected to act as an harmonic oscillator and will therefore have the
shape of

Ri = Ri,eq + rie
jωt + ϕ = Ri,eq + ri (3.29)

Ṙi = jωrie
jωt + ϕ = (jω)ri (3.30)

R̈i = −ω2rie
jωt + ϕ = (jω)2ri (3.31)

...
Ri = −jω3rie

jωt + ϕ = (jω)3ri (3.32)

αB = jωri
[
2ε+ ζ + jwδ − ω2β

]
(3.33)

ri
B

= α/(2ε+ ζ)

jω

[
1 + jw

δ

2ε+ ζ
− ω2 β

2ε+ ζ

] (3.34)

Which has the shape of a transfer function

O

I
= G

1 + jω
2z
ω0
− ω2

ω2
o

· 1
jω

(3.35)

with G being the gain, O the output, I the input, z the damping and ω0
the angular eigen frequency. One thing that can be noted here is that this
transfer function is of third order where a standard RP equation would be
of second order. The expected phase difference in our case is therefore π at
resonance instead of π/2 such as in the normal RP equation.

→ ω0 =
√

2ε+ ζ

β
=

√√√√√√√√√
−2
(
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(3.36)

From (B.24) we can find

Tg2R3
i,0

R4
i,eq

= T0Pg,eq
P0Ri,eq

(3.37)

Therefore ζ can be simplified

ζ = 3P0
T0

Tg2Ri,0
R4
i,eq

= 3Pg,eq
Ri,eq

(3.38)

Where the equilibrium pressure Pg,eq is the atmospheric pressure plus the
two Laplace pressures. This can be filled in giving

ζ = 3
(
Patm
Ri,eq

+ 2σo
R2
i,eq

+ 2σow
Ri,eqRe,eq

)
(3.39)
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(3.40)

ω0 is not a function of time so all Ri and Re are now Ri,eq and Re,eq.
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(3.43)

which altogether is an expression for the angular eigenfrequency as a function
of Ri,eq and Re,eq. This shows the eigenfrequency is inversely related to the
bubble size but also shows that the oil layer thickness plays a role. The
denominator under the square root shows an inertial shift of the resonance
curve: Because oil and water have different densities, the thickness of the
oil layer influences the mass to be displaced and therefore the resonance
frequency.

Now to find an expression for the damping. According to 3.35:

2z
ω0

= δ

2ε+ ζ
(3.44)

ω0 =
√

2ε+ ζ

β
(3.45)

→ z = ω0
2

δ

2ε+ ζ
= 1

2
δ√
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(3.46)

z = 1
2

4
(

µo
Ri,eq

+
R2
i,eq

R3
e,eq

(µw − µo)
)

√
β(2ε+ ζ)

(3.47)
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The next part will be about founding out if there is an optimum response.
This starts by looking at the gain of the transfer function which was found
to be α/(2ε+ ζ). From (3.26) we know

α =

 P0R3
i,0

T0R3
i,eq

(
ρoCpo + ρw

Vw0.1
Voil

Cpw

)
 (3.48)

The factor Vw0.1/Voil never changes much and there is no maximum in
Ri,eq because there is no maximum in Tg2. The gain therefore has no
maximum We now assume damping is small and, because ωr = ω0

√
1− 2z2,

the resonance frequency is therefore approximately the eigenfrequency. The
transfer function then becomes

ri
B

= α/(2ε+ ζ)

jω

[
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− 1

] (3.49)

ri
B
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(3.50)
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(
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= 4
R2
i,eq︸ ︷︷ ︸

(2)

µo +
R3
i,eq

R3
e,eq

(µw − µo)

Ri,eq
Re,eq

(ρw − ρo) + ρo︸ ︷︷ ︸
(3)

(3.54)

In this equation part (2) is not a function of the thickness of the oil and part
(3) is a function of the thickness of the oil in case Ri,eq is fixed. In order to
find if there is an optimum oil layer thickness we only look at part (3).
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Introducing the variable x = Ri,eq
Re,eq

(3) = µo + (µw − µo)x3

ρo + (ρw − ρo)x
(3.55)

To find the extremum:

d(3)
dx

= 0 = 3x2(µw − µo)(ρo + (ρw − ρo)x)− (µo + (µw − µo)x3)(ρw − ρo)
(ρo + (ρw − ρo)x)2

(3.56)
→ x2 (3(µw − µo)ρo)+x3(3(µw−µo)(ρw−ρo)−(µw−µo)(ρw−ρo))−µo(ρw−ρo) = 0

(3.57)
→ x3 (2(µw − µo)(ρw − ρo))︸ ︷︷ ︸

(a)

+x2 (3(µw − µo)ρo)︸ ︷︷ ︸
(b)

−µo(ρw − ρo)︸ ︷︷ ︸
(c)

= 0 (3.58)

We are looking for an optimum in x so part (c) is not important. In case
of heptane oil at 300 K, part (a) has a value of approximately 0.5 and part
(b) is approximately 1.7. In case of triacetin, (a) ≈ 5 and (b) ≈ −56. The
result of this can be seen in Figures 3.5 and 3.6 and from this is can be
concluded that for heptane oil there is a minimum radial amplitude for a
given value of Ri,eq/Re,eq but no maximum. For triacetin there is a maximum
but no minimum. Because part (3) is part of the denominator of the transfer
function, a minimum would be an optimum response. In other words: it is
expected that there is an optimum oil layer thickness in case of heptane but
there is no expected optimum for triacetin oil.

3.7 Simulation results

A typical simulation result is shown in Figures 3.7, 3.8 and 3.10. This result
is for a 3 µm radius bubble and as will be shown later, is very close to the
resonance peak. The bubble is coated with a 1 µm thick heptane oil layer is
immersed in a water bath of room temperature (300 K). A 1010 Wm−2 laser
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Figure 3.7: Simulation result of a bubble under
standard conditions with heptane oil.

P
re
ss
u
re

ra
d
ia
te
d
(p
a)

time (s) ×10−5
0 0.5 1 1.5

−1

0

1

Figure 3.8: Simulation result of a bubble under
standard conditions with heptane oil.
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Figure 3.9: A demonstration of the phase difference between the radial
response of the bubble and the laser. The black line shows the radius as a
function of time just like in Figure 3.7. The red line shows the power of the
laser where high is on and a low line means the laser is off.

is turned on and off with a frequency of 1 MHz. The oil layer contains just
enough dye to prevent boiling at all times: with an absorption coefficient (µ)
of 2700 m−1 the temperature remains smaller than 373 K. These conditions
will later be referred to as ‘standard conditions’ and a complete overview
of all standard parameters is given in appendix A. In practice, more dye
can be dissolved in this oil layer such that the absorption coefficient would
go up to 6000 m−1 but this value is chosen to keep the temperature below
boiling because the simulation does not take vaporization into account and
the results are therefore not valid above boiling temperatures.

In Figure 3.9 the radius-time curve for a typical bubble is shown again,
this time together with the laser modulation. It can be seen that the phase
difference between laser modulation and bubble radius is close to π. This was
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Figure 3.10: Simulation result of a bubble under standard conditions with
heptane oil.
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Figure 3.11: Simular to Figure 3.10 but for a longer time frame.

predicted by the linearization of the simplified model because the transfer
function was of a third order.

In Figure 3.11 it can be seen that the temperature converges to a value of
approximately 371 K. When the simulation is run for even longer it can be
seen that this value changes less then 10−5 K (3× 10−6 %) from simulation
time 1 ms to 3 ms where this small number is the accuracy of the simulation.
This shows that there is no significant error for each time step that builds
up on the simulation result. Furthermore, a converging temperature is the
expected scenario.

Figures 3.12 and 3.13 show the resonance curves in several different
scenarios. The conditions are the standard conditions as described for
Figures 3.7, 3.8 and 3.10 in case of the red line. The black line describes the
very same bubble in a bath of human body temperature. From these graphs
it can be seen that bubbles with a very narrow size distribution around
3 µm in radius would give the optimal signal. There is a slightly higher
response at body temperature. This difference is expected to be a result of
the temperature dependent water viscosity.

In Figure 3.15 the resonance curves are shown again but with a larger
range of initial bubble sizes. The resonance curve of a free bubble under
50 kPa ultrasound insonation, obtained from a separate program, is added.
For this free bubble the resonance peak is much less sharp and monodispersity

38



 

 

body T
Tmax=382K

Room T
Tmax=372K

co
m

pr
es

sio
n+

ex
pa

ns
io

n
(µ

m
)

R0 (µm)
2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
0

0.1

0.2

0.3

0.4

0.5

Figure 3.12: The resonance curve for oil bubbles under standard conditions.
The red data is in a bath of room temperature and the black data is for a
bath of human body temperature. The line between the data points is a
spline interpolation. compression+expansion is defined as the peak to peak
oscillation distance.
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Figure 3.13: The resonance curve in terms of radiated pressure for oil bubbles
under standard conditions. The red data is in a bath of room temperature
and the black data is for a bath of human body temperature. The line
between the data points is a spline interpolation.

of bubble sizes is thus less critical than for the heptane bubble. The free
bubble curve resembles the resonance curve that is found for a bubble in
standard conditions with triacetin oil. This curve can be found in Figures
3.16 and 3.17.

In 3.14 the maximum temperature for each radius of the curves shown in
Figures 3.12 and 3.13, is plotted. A third curve is added to show that less
dye, or similarly, less laser power is needed to reach boiling temperatures
in the human body. For this graph the absolute maximum temperature is
used, being the maximum temperature in the last period of laser oscillations.
In case the average temperature during the last laser period would be used
instead, the graph would look almost identical but slightly shifted towards
lower temperatures.

In Figure 3.19 the fast Fourier transform of the simulated radius time
curve of a bubble in resonance can be seen. This curve is for a bubble
oscillating around equilibrium and it can be seen that there are higher
harmonics. The bubble is driven at 1 MHz and smaller peaks are found at
the second, third and fourth harmonic. In Figure 3.20 the results for the
simplified model can be found. In this figure the green line again shows peaks
at higher harmonics. The red line is the Fourier transform of the resonance
time curve for a bubble with twice the resonance size and the blue line is
for a bubble half the resonance size. All curves are normalized with the
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Figure 3.14: The maximum temperature reached during simulation. Each
data point is a complete simulation and at no point does the red or blue
line exceed the boiling point of water. The red and black line correspond to
the red in black line in Figure 3.13 and 3.12, the blue line is in human body
temperature bath but with a lower absorption coefficient of the dye.
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Figure 3.15: Resonance curve of a free bubble under 50 kPa ultrasound
insonation (blue line)and the red and blue line are oil bubbles under standard
conditions but the black one is in a human body temperature bath.
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Figure 3.16: The resonance curves for a triacetin oil bubble under standard
conditions. The high lines have an absorption coefficient similar to that
used with heptane, and the low line has an absorption coefficient which is
maximum for triacetin. Blue and orange line are comparisons to simplified
model according to 3.20
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Figure 3.17: The radiated pressure curves for a triacetin oil bubble under
standard conditions. The high lines have an absorption coefficient similar to
that used with heptane, and the low line has an absorption coefficient which
is maximum for triacetin.
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Figure 3.18: Resonance curves for different oil viscosities.
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Figure 3.19: The fast Fourier transform for a bubble under standard condi-
tions with square wave laser modulation in resonance according to the full
simulation.

maximum of the green line.
In Figures 3.16 and 3.17 the resonance curves can be seen for a bubble

with a 1 µm thick triacetin oil layer and further standard conditions. Two
curves are shown, one with an absorption coefficient similar to the one used
for heptane (2700 m−1) and one with an absorption coefficient that would be
the practical upper limit for triacetin because not more dye can be dissolved
in it (400 m−1). The response, both in radial oscillation and in radiated
pressure is much lower than for the heptane-covered bubble. In case of the
high absorption coefficient the temperature does increase almost as much as
for the heptane bubble. The only parameter that changes more than an order
of magnitude between triacetin and heptane is the used oil viscosity: 17 mPa s
for triacetin and 0.386 mPa s for heptane. To investigate the influence of
oil viscosity, resonance curves were plotted in Figure 3.18 for several oil
viscosities leaving all other parameters unchanged (standard conditions). It
is clear that oil viscosity has a huge influence on response within the range
of viscosities that are common for oils.

This simulation result can be compared to the simplified model made in
the previous section. In order to do this, (3.20) was solved in Matlab using
the standard function ode113. In Figure 3.16 the resulting lines are plotted
in blue and orange. They match relatively well. This simplified model will
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Figure 3.20: The fast Fourier transform for a bubble under standard condi-
tions with square wave laser modulation according to the simplified model.
The green line is for a bubble of resonance size, the red line has twice the
resonance size and the blue line is for a bubble half the resonance size.
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Figure 3.21: The resonance curves for heptane oil bubbles at different laser
oscillation frequencies.

be further analyzed to investigate its accuracy and limitations.
In Figures 3.21 and 3.22 the resonance curves for different laser modulation

frequencies can be seen. As would be expected, bigger bubbles resonate at
lower frequencies. Another thing to note in this figure is the smaller peak
just over 2 µm for a 0.5 MHz laser modulation. The radius- time curve that
corresponds to this small peak is plotted in Figure 3.23. This indicates a
higher harmonic at three times the resonance frequency.

In Figure 3.24 two resonance curves are shown. All parameters are the
same but for the black curve the laser is modulated as a square wave and
for the red curve the laser is modulated as a sine wave. A sine wave can be
considered more basic because all wave shapes are theoretically made up of
a combination of sine waves. The curves show mainly the same behavior
showing that the simulated results are mostly independent of the shape of the
laser modulation. However, the small peak for the square wave modulation
at approximately 1.2 µm is not present for the sine wave. This is to be
expected because a square wave is primarily made up of a sine wave at its
modulation frequency but the second highest component is a frequency three
times that. This frequency is not present in a pure sine wave. Furthermore,
the resonance peak is lower for a sine wave despite the same amount of power.
An hypothesis of why this is so is the following: After the start-up effects
are over and the bubble oscillates around the equilibrium radius, all that
matters is the deviation from average powers. In case of a square wave, the
power is always maximally far away from the average power and in case of a
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Figure 3.22: Simplified model comparison to Figure 3.21. The resonance
curves for heptane oil bubbles at different laser oscillation frequencies.

R
i

(µ
m

)

time (s) ×10−5
8.6 8.8 9 9.2 9.4 9.6

2.24

2.26

2.28

2.3

Figure 3.23: The subharmonic behavior found at the small peak of the
0.5 MHz line just over a initial radius of 2 µm in Figure 3.21.
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Figure 3.24: The resonance curves for a laser modulated as a sine wave and
a laser modulated as a square wave. A higher harmonic at a third of the
resonant radius is found for the square wave but not for the sine wave. Also,
the response for the square wave is slightly higher which can be expected
from the fact that, when it heats, it heats as much as possible and when it
cools down, it cools as much as possible.
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Figure 3.25: The resonance curves for a heptane oil bubble for different laser
intensities.

sine modulation it only reaches this for two points in time for each period.
This is most intuitive when looking at the cooling phase. In case of a sine
wave the laser will mostly be shining but in case of the square wave it will
be off all the time allowing the bubble to cool further.

In Figure 3.25 the resonance curves for different laser powers can be seen.
It can clearly be seen that the resonance peak goes to smaller radii for higher
laser powers. this is what is expected because, as can be seen in Figures
3.10 and 3.11, the bubble temperature oscillates around a temperature that
is higher than the starting temperature. This causes the radius to oscillate
around a bigger value than the starting value. In other words, the equilibrium
radius resonance peak remains the same for all laser powers. This can be
seen in Figure 3.27. Because the difference between starting radius and
equilibrium radius gets larger for higher laser powers, the initial radius
resonance peak gets lower as shown in Figure 3.25.

Figure 3.25 is compared to the simplified model again and the plotted
result can be found in Figure 3.26. The similarity of the full simulation and
the simplified model is convincing. The behavior and the amplitude is very
similar but the simplified model is shifted by approximately 0.1 µm

In Figure 3.28 the simulated resonance curves are shown for different
oil layer thicknesses in case of heptane. Figure 3.30 show this for triacetin
(standard conditions). Figures 3.29 and 3.31 show the result plotted for the
simplified model. Again there is a shift in the resonance frequency which
seems to be bigger for thicker oil layers but other than that the similarity,
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Figure 3.26: The resonance curves for a heptane oil bubble for different laser
intensities according to the simplified model as a comparison to Figure 3.25.
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Figure 3.27: Same as Figure 3.25 But the x-axis is the equilibrium radius.
As expected, all curves have their peak at the same equilibrium radius.
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Figure 3.28: Resonance curves for different heptane oil layer thicknesses.
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Figure 3.29: Resonance curves for different heptane oil layer thicknesses
according to the simplified model. This is a comparison to Figure 3.28.
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Figure 3.30: Resonance curves for different triacetin oil layer thicknesses.

especially the behavior, is very convincing. As predicted in the linearization
of the simplified model (equation 3.58), there is an optimum for heptane
oil layer thicknesses. A 0.1 µm thick oil layer has a lower response than a
1.1 µm oil layer but much bigger oil layers give a lower response again due to
damping. For triacetin it was mentioned in the linearization that is should
not have a maximum response which again can be seen; the smaller the
triacetin oil layer the higher the response. Of course there will be a point
where the response will be decreasing if the oil layer is further decreased.
However, this behavior at very thin oil layers is not present the scope of our
theory.

3.8 Conclusions

The simulation gives clear results that can contribute to making optimal
choices for contrast agent dimensions and compositions. The simplified model
and the linearization of this model were introduced for a better understanding
and both agree well with the full numerical simulation. The results of plotting
the simplified solution are in fact in such good agreement that this could be a
better method to find the optimal contrast agent dimensions and composition
because the computation time is in the order of 1000 times faster.
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Figure 3.31: Resonance curves for different triacetin oil layer thicknesses
according to the simplified model. This is a comparison to Figure 3.30.

3.9 Discussion of validity model

The simulation has shown clear dependencies of different parameters and
conclusions about which bubble to choose can be made based on them.
However, the simulation has some strong assumptions that must be considered.
The first is that the influence of surfactants and phospholipid coating has
not been taken into account. Not much is known about the effect of a
phospholipid coating at a water-oil interface and therefore it cannot be
part of the simulation at this point. However, as mentioned by Zhang and
Huynh, surfactants can have a great influence on surface tension [15, 16]. In
Figure 3.32 the same simulation, but for two different oil-water interfacial
tensions, is shown. It is also known that a phospholipid coating on its
own causes some additional damping [17]. An estimation of this influence
would be difficult to make but it could potentially cause a difference between
simulated result and practice.

Another point that could cause a difference between simulated result
and practice is that the viscosity of oil is temperature dependent. This is
not taken into account in the simulation because not enough information
was available on this. This could of course be measured and then put in
the simulation. This is very much recommended because Figure 3.18 clearly
shows the great influence of the oil viscosity. The simulation assumed oil
viscosity at room temperature but in reality the viscosity around boiling
point (373 K) would be a better measure. The simulation would probably
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Figure 3.32: Two example runs for the standard oil-water interfacial tension
and for half of this value. The interfacial tension could change due to
surfactants but this is not taken into account in the simulation. This figure
shows that this could mean a less accurate result.

give much higher radiated pressures if the temperature dependence of oil
was taken into account.
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Chapter 4

Towards experimental
validation

The simulations have shown that an oil-coated bubble can be a good contrast
agent, especially when the viscosity of the oil is low. The next step would
be to actually create these bubbles. Although a stable and usable bubble
could not be produced in significant amounts, this chapter will show some
achievements as well as the main difficulties encountered in the process.

Earlier research shows that microbubbles with an oil layer can be produced
[18–20] and the most monodispersed results come from flow-focusing devices.
A lot of research has been performed to create mono-dispersed, phospholipid-
coated microbubbles in microfluidic devices [21–27]. An attempt was made
to produce monodispersed microbubbles with an oil layer by using a method
much like that of Shih, 2013 [19]. In this paper traicetin oil was used. We
also used this oil but also tried other less viscous oils.

4.1 Chip design

The most important step in the production of microbubbles is flow-focusing.
An example of simple flow-focusing is shown in Figure 4.1. As described by
Stride and Edirisinghe [28], “the essential feature of the device is an orifice at
which a column of gas impinges upon a liquid flow and is focused into a jet.
Subsequently, at a certain distance from the orifice, the gas-liquid interface
becomes unstable and bubbles are formed by a “pinch-off” process.”. The
device designs we used include an extra oil channel to obtain an oil layer
around the pinching bubble. For this the principle remains the same but the
pinched jet will have an oil layer surrounding it. Often the gas bubble is
pinched off inside the oil layer while the oil pinches off later. Examples of
this can be seen in Figure 4.2 and more clearly in Figure 4.3.

The design of the chip can be seen in Figure 4.4. There are two different
designs, One, later referred to as the ‘single-pinch design’ is very much like
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Figure 4.1: A more simple microfluidic device producing monodispersed
bubbles without oil.

the chip described in the paper of Shih (2013) [19] but the exact dimensions
are sometimes different. For example, the orifice in our design is 10 µm
wide where Shih used a 5 µm wide orifice. This 10 µm orifice was chosen in
the first generation designs of the oil bubble devices and seemed to work
well. In the single-pinch design chip both the oil jet and the gas jet pinch
after the orifice (Figure 4.2). The second design is later referred to as the
‘double-pinch design’. In this design the air jet is pinched by the flow of oil
creating bubbles in an oil jet. The oil jet is later pinched at the orifice in
order to create the oil-covered bubbles.

The Reynolds number in the chip is in the order of 1 assuming the smallest
length scale of 10 µm, speeds around 0.1 ms−1 and a kinematic viscosity of
water 10−6 m2s−1. From this it can be concluded that the flow is always
laminar within the chip.

4.2 Materials and production

The microfluidic devices are produced according to a standard procedure
as described in the Master thesis of M.P. Kok, quite similar to the method
described by Hong et al and Shih et al. [19, 29, 30]. A reusable mold is first
produced in a cleanroom and single-use microfluidic devices are made with
poly(dimethylsiloxane) (PDMS) attached to a glass microscope slide in a
time frame of two to three hours. The result is a transparent chip allowing
for real time visualization of the processes.
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Figure 4.2: A microfluidic device pro-
ducing monodispersed bubbles sur-
rounded by triacetin oil and coated
with DSPC and DSPE-PEG2000
lipids. This is a single-pinch chip de-
sign. The picture shows the different
inlets.
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Figure 4.3: A microfluidic device pro-
ducing bubbles surrounded by tri-
acetin oil and coated with phospho-
lipids (Dreft in this example). This
is a double-pinch chip design. The
picture describes all different inlets
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Figure 4.4: The chip design
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4.2.1 Pressurizing the device

When the chip is first connected to the lipid solution, the oil and the gas,
the lipid solution must first be put in all channels of the chip in order to
keep the hydrophilic behavior of the channel walls that was created by the
plasma cleaning and bonding. After this, just giving high gas pressures
or high oil flow rates would result in the entire chip being filled with gas
or oil, respectively. If oil gets in all channels it is difficult to remove this.
The lipid solution must flow through these channels for a long time to wash
out the oil. In case of a gas channel the oil stays in there for the entire
duration of the experiment. The best way to reach a stable production
stage is by first, choosing a low water flow rate and slowly increasing the gas
pressure until nice monodispersed bubbles are produced without an oil layer.
Then, to increase the oil flow rate without destabilizing this production rate.
While doing this, the gas pressure and water flow rate probably have to be
increased; Starting with high flow rates of water (i.e. lipid solution) before
the oil flow has started and before the gas pressure is high may result in
water flowing in the oil and gas tubing and it would take a lot of time to undo
this. Going through this procedure of starting with low flow rate and steadily
going up takes approximately 30 to 60 minutes. The device is considered
pressurized when all three phases are going through the outlet. When this
state is reached one can start looking for a combination of flow rates that
gives monodispersed oil-covered bubbles.

4.3 Setup

The production of microbubbles is recorded through an upright Olympus
microscope, through the PDMS layer with a Photron fastcam SA7 type
30K-M2 camera or a Fastcam SA-X2 type 1080K-M4 camera. An Olympus
ILP-1 lightsource is used for illumination. Two syringe pumps are used
to control the flow of oil and lipid solution, these were Harvard apparatus
PHD 2000 infuse/withdraw. For the oil a 5 mL glass syringe is used and
for the water a 10 mL plastic syringe is used. Working with a glass syringe
for the oil is required in case of heptane or decane because these oils may
dissolve plastics. The water and oil then go through 30 cm long PEEK tubing
with a 0.040 inch inner diameter. The gas flow is controled with a Omega
Engineering inc. pressure controller. The gas is sent through a 30 cm long
0.020 inch PEEK tube. The PEEK tubes are connected to the PDMS chip
via precision tips (18GA PPS .032X.5” GRN 50PC ) from Nordson EFD.
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Figure 4.5: Single pinch design chip with high production rate; heptane
covered bubbles.

4.4 Results

The single-pinch design of the oil bubble chip was capable of producing
monodispersed, triacetin oil covered, DSPC, DSPE-PEG2000-coated air
bubbles for several hours non-stop as shown in Figure 4.2. This produc-
tion stage was relatively easy to reproduce. Also, high production rates
(>50 000 bubbles per second) have been achieved with the single-pinch design
using low viscosity heptane (386 µPa s) as the oil and 5 % Dreft desolved
in the water as a surfactant. The results with heptane were very difficult
to reproduce. The resulting bubbles in both cases were unstable in time
meaning that most of the bubbles had already disappeared or coalesced in
less than one minute.

The desirable result would have been a high production rate with low
viscosity heptane oil, stable for hours and easily reproducible. Each of these
points has been accomplished but unfortunately not all together.
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4.5 Summary

This chapter shows that the production of oil and phospholipid coated bubbles
was successful. However, the produced bubbles were highly unstable making
them unusable for its purpose: to function as contrast agents in continuous
wave photoactoustic imaging. Furthermore, none of the oils that were used
are suitable for this process. Triacetin has a too high viscosity and heptane
and decane dissolve the PDMS chip. A new low-viscosity oil must be found.

4.6 Discussion

Here we describe the main difficulties in producing the bubbles and suggests
possible solutions.

Most of the experiments have been done with heptane oil because this
promised to result in a better contrast agent. The biggest problem with
heptane however, is that is damages the PDMS. After approximately 90
minutes, the PDMS chip has swollen and in the case where a red dye was
added to the heptane, the whole chip would be colored in red. This indicates
that heptane gets absorbed by the PDMS and possibly the swelling changes
the dimensions of the chip. Also, after 90 minutes the bonding between the
PDMS and the glass would snap and the chip would no longer be usable.
90 minutes seems like a long time but often this was not enough to reach a
continuous monodisperse bubble producing stage. One of the reasons for this
is that approximately 30 to 60 minutes is needed to pressurize the device as
mentioned before, but also in a pressurized chip it can be difficult to find a
regime that produces stable bubbles.

Figure 4.6 shows an example of what happens at too high oil flow rates.
When the oil flow rate is too low no more oil gets through the orifice and the
bubbles have no oil layer. Sometimes the problem is less easy to understand
and the oil and water go through the orifice one after another instead of
together producing oil droplets and air bubbles, as shown in the left picture
in Figure 4.6.

In an attempt to find an oil that would not break the chip quickly but
would still have a low viscosity, decane was used. Decane damaged the
PDMS slightly less than heptane but similar problems persisted. Therefore,
for future designs a new oil must be found that does not damage PDMS, but
that does have a low viscosity.

When choosing this new oil, part of the consideration should be to see
if it is energetically favorable for air to remain in the oil layer. Figure 4.7
shows that air bubbles often leave the oil layer without an obvious flow or
force in that direction.

Despite all difficulties, sometimes oil-covered bubbles of the right size
were produced but when placed under a microscope, it could be seen that
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the air dissolved rapidly. Unexpectedly this was also the case when using the
same oil and the same lipids, in the same ratio and amount as mentioned in
the literature to give stable bubbles [19]. In an attempt to fix this problem,
the lipid solution and the oil were air saturated by stirring them overnight
but this did not seem to have a significant influence.

An interesting point is that the chips were more likely to go to a nicely
producing state when a 5 % Dreft solution was used instead of the DSPC,
DSPE-PEG2000 solution. One reason for this could be that the concentration
of these lipids is much lower (0.05 %) and therefore coating the bubbles
could take much longer. From literature it is well known that coating
microbubbles produced in a flow-focusing device is challenging [27, 31].
The strong interaction between the phospholipid molecules make them an
excellent coating material to stabilize bubbles for days. However, the strong
interactive forces make it also hard to break apart the micelles and liposomes
that phospholipids form naturally when they are in a water solution. It is
therefore likely that the coating process of bubbles in a flow-focusing device
is challenging because there is not a lot of shear energy to break apart the
micelles and liposomes to let them form a coating around the bubble. When
the bubbles are not coated right after they are ejected from the orifice they
will coalesce downstream. One way to overcome the coalescence problem is
to simply increase the possibility of the bubble to come into contact with
micelles and liposomes by increasing the phospholipid concentration in the
water solution. Another possible solution could be the addition of extra
surfactant (Pluronic F68) to coat the bubble right after it is produced [19].
This requires however that the pluronic molecules at the air-water interface
are later on replaced by phospholipds through self-assembly. We don’t think
this is likely to happen and this can be the cause for the short term stability
of the bubbles produced by Shih et al..

Moreover, the solvability of the lipids can be increased by increasing the
liquid temperature. In a lipid solution micelles and liposomes are formed
which first have to dissemble before the phospholipids can form a coating
around the oil bubble. By heating the lipid solution above the glass transition
temperature the lipids are more free and therefore more readily available.
Both adding more lipids and heating them could also potentially make the
bubbles more stable in time. Finally, one could search for different lipids
that possibly are better suited for the oil bubble since the lipid formulation
being used in this study is a lipid formulation generally used to coat gas
microbubbles [25, 32]. One could also vary the main lipid to emulsifier ratios
which possibly has an influence on the oil bubble stability [25].
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Figure 4.6: Badly working chip. On
the left the air and the oil go through
the orifice on after another instead
of together and on the right the oil
flowrate is so high that all bubbles
end up in one big oil layer.

Figure 4.7: Triacetin covered bubbles
in a low speed flow. The air bubbles
leave the triacetin layer.
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Appendix A

Standard conditions

variable unit heptane triacetin
Thermal conductivity oil λo Wm−1 K−1 0.13 0.17
Thermal conductivity water λw Wm−1 K−1 0.61 0.61
Thermal conductivity gas λg Wm−1 K−1 0.026 0.026
Density oil ρo kgm−3 678 1.15× 103

Density water ρw kgm−3 103 103

Heat capacity water cpw Jkg−1 K−1 4.19× 103 4.19× 103

Heat capacity gas cpg Jkg−1 K−1 1.04× 103 1.04× 103

Heat capacity oil cpo Jkg−1 K−1 2.25× 103 1.76× 103

Molar mass kgmol−1 28× 10−3 28× 10−3

Surface tension oil σo Nm−1 20× 10−3 36.5× 10−3

Surface tension oil-water σow Nm−1 48.95× 10−3 4.72× 10−3

Surface tension water σw Nm−1 72.8× 10−3 72.8× 10−3

Room temperature K 300 300
Oil viscosity (µo) Pa s 386× 10−6 17× 10−3

Absorption coefficient m−1 2700 400
Laser intensity Wm−2 1010 1010

variable unit value
Initial bubble radius Ri µm 3.0
Initial bubble thickness µm 1.0
Room temperature Troom K 300
Maximum simulation time s 10−4

laser frequency Hz 106

inner, initial spatial grid step nm 31.25
time step s 5.0× 10−12
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Appendix B

Mathematical derivations

B.1 RP check

The new Rayleigh-Plesset equation
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+Ṙ2

iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)
+ ρw
Re

(
2− 1

2
R3
i

R3
e

)]

+ 4µo
[
Ṙi
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Rewriting choosing ρo = ρw, µo = µw, σow = 0 and σo = σw.
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Removing terms that cancel

Pg − P∞ = R̈i [ρwRi] + Ṙ2
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Which can be rewritten to

Pg − P∞ = ρw

(
R̈iRi+ 3

2Ṙ
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Which is the Rayleigh-Plesset equation for a bubble with only one liquid
around.
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B.2 Ideal gas law, constant in time

The ideal gas law is
PV = m

µ̃
RgT

where P is pressure, V is volume, m is mass, µ̃ is the molar mass in kilograms
per mole, Rg is the ideal gas constant. The simulation is defined such that
the mass in each grid-volume remains constant in time. We therefore know
that:

PV

T
= constant(t) (B.3)

Which is also valid for each individual grid volume in the bubble. As
mentioned before, the speed of the bubble wall Ṙ is much smaller than
the speed of sound. Therefore the pressure in the bubble is considered
homogeneous.

PVk
Tk

= constant(t)→ P
Ri∑
0

Vk
Tk

= constant(t)

→ P
∑ Vk

Tk
= P0

V0
T0

= P0
T0

4
3πR

3
0

Where subscript 0 stands for the initial value before the laser is turned on.
Rewriting this gives

P = P0
T0

4
3πR

3
0

1∑
Vk/Tk

where ∑Vk/Tk can be defined as

∑ Vk
Tk

=
∑ 4

3π
(rk−1 + pk)3 − r3

k−1
Tk

B.3 Ideal gas law, constant in radius

Gas regime

As mentioned before, the pressure is constant with respect to the radius
inside the bubble. This tells us

Vk
mkTk

= constant(r)

Further rewriting and using that mk is constant in time, gives

Vk
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1
ρ0V0k

= 1
ρ0Tk

Vk
V0k

= 1
ρ0Tk

r3
k − r3

k−1
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Because letting Matlab or Fortran calculate a cubic root takes a long time,
an approximation of this equation is used. Rewriting the previous equation
gives
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We now assume 1 is much bigger than the other term, which makes sens
because rk and rk−1 should be almost the same in most cases, a Taylor
expansion can be made for (1− x)1/3 with x around zero. This gives
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(B.4)

B.4 The heat equation

The basic heat equation

D∇2T + I

ρcp
= DT

Dt

Where I is in Wm−3. Since the simulation calculates the temperature for
each grid point, and the grid points move along with the movement of mass,
the total derivative becomes a normal partial derivative. Furthermore, the
simulation is only in the r direction making the heat equation:

D
1
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∂
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(
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(B.5)

The second derivative of the temperature with respect to the radius can be
approximated with a forward finite difference scheme.
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Approximating even further gives a second order central difference scheme.
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This can be rearranged
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Result
The new temperature at a grid point k in terms of the old temperature in
the grid points k − 1, k, k + 1

Tn+1
k = Tnk−1

dtDr2
k

(
rk−1 + 1

2pk)
)2

pk

(1
2pk + 1

2pk+1

)


+Tnk

1− dtD

r2
k

(1
2pk + 1

2pk+1

)

(
rk + 1

2pk+1)
)2

pk+1
+

(
rk−1 + 1

2pk)
)2

pk




+Tnk+1

 dtD

r2
k

(1
2pk + 1

2pk+1

)
(
rk + 1

2pk+1)
)2

pk+1


+dtI

ρcp
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B.5 Right side of an interface

First we look at the right side of an interface for which grid point values
greater or equal to k are known. Just like in the heat equation for the
bulk, we want to express the new temperature Tn+1

k in terms of the old
temperature on three grid points Tnk ,Tnk 1 and Tnk+2.

Tk = Tk (a)

Using a Taylor expansion up to second order to get enough precision

Tk+1 = Tk + pk+1T
′
k +

p2
k+1
2 T ′′k (b)

Tk+2 = Tk + (pk+1 + pk+2)T ′k + (pk+1 + pk+2)2

2 T ′′k (c)

The heat flux across the oil water interface must be conserved leading to the
following condition:

λo
∂To
∂r
|Re = λw

∂Tw
∂r
|Re

We therefore need to know the derivative of the temperature with respect to
the radius. To find this we look for T ′k = A · a+B · b+C · c with the capital
letters being coefficients and the small letters being the equations presented
above, i.e. T ′k = A · Tk +B · Tk+1 +C · Tk+2. For this expression we want Tk
to be zero which gives

A+B + C = 0

T ′k should be one giving

pk+1 ·B + (pk+1 + pk+2) · C = 1

And T ′′k should be zero giving

p2
k+1
2 ·B + (pk+1 + pk+2)2

2 · C = 0

solving this:
p2
k+1
2 ·B = −(pk+1 + pk+2)2

2 · C

B = −(pk+1 + pk+2)2

p2
k+1

· C

and,
pk+1 ·B + (pk+1 + pk+2) · C = 1

→ C = 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1
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and thus,
B = (pk+1 + pk+2)

pk+1pk+2

Now filling in B and C to find A

A = −B − C

A = −(pk+1 + pk+2)
pk+1pk+2

− 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

More mathematical steps are shown in appendix B.8
Results

A = −(pk+1 + pk+2)
pk+1pk+2

− 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

B = (pk+1 + pk+2)
pk+1pk+2

C = 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

to check if this is correct:

To check if these calculations are correct we know the following must be true

pk+1 ·B + (pk+1 + pk+2) · C = 1

As shown in appendix B.9, this can be rewritten as follows

pk+2
pk+2

= 1

B.6 Left side of an interface

Calculations for the left side of an interface in the full simulation.

Tk = Tk (d)

Tk−1 = Tk − pkT ′k + p2
k

2 T
′′
k (e)

Tk−2 = Tk − (pk + pk−1)T ′k + (pk + pk−1)2

2 T ′′k (f)

D + E + F = 0
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−pk · E − (pk + pk−1) · F = 1

p2
k

2 · E + (pk + pk−1)2

2 · F = 0

solving this:
p2
k

2 · E = −(pk + pk−1)2

2 · F

E = −(pk + pk−1)2

p2
k

· F

and,
−pk · E − (pk + pk−1) · F = 1

→ F = 1
(pk + pk−1)2

pk
− (pk + pk−1)

and thus,
E = −(pk + pk−1)

pkpk−1

Using D = −E − F and filling in E and F

D = (pk + pk−1)
pkpk−1

− 1
(pk + pk−1)2

pk
− (pk + pk−1)

More mathematical steps are shown in appendix B.10

results

D = (pk + pk−1)
pkpk−1

− 1
(pk + pk−1)2

pk
− (pk + pk−1)

E = −(pk + pk−1)
pkpk−1

F = 1
(pk + pk−1)2

pk
− (pk + pk−1)
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B.7 Finding equilibrium temperature as a func-
tion of laser power

From (3.16) we know

Tgas,eq =
−IR2

i,eq

6λo
−

(
IR3

i,eq

3λo
)

Ri,eq
+

(
IR3

i,eq

3λo
)

Re,eq

(
1− λo

λw

)
+
IR2

e,eq

3λo

(
0.5 + λo

λw

)
(B.8)

Tgas,eq =
−IR2

i,eq

6λo
−

IR3
i,eq

3λoRi,eq
+

IR3
i,eq

3λoRe,eq

(
1− λo

λw

)
+
IR2

e,eq

3λo

(
0.5 + λo

λw

)
(B.9)

Tgas,eq =
−IR2

i,eq

6λo
−
IR2

i,eq

3λo
+

IR3
i,eq

3λoRe,eq

(
1− λo

λw

)
+
IR2

e,eq

3λo

(
0.5 + λo

λw

)
(B.10)

Filling in Re,eq = (Re03 −Ri03 +R3
i,eq)1/3

Tgas,eq =
−IR2

i,eq

6λo
−
IR2

i,eq

3λo
+

IR3
i,eq

3λo(Re03 −Ri03 +R3
i,eq)1/3

(
1− λo

λw

)

+
I(Re03 −Ri03 +R3

i,eq)2/3

3λo

(
0.5 + λo

λw

)
(B.11)

From (B.19) we know:

P0V0
T0

= PV

T
→ T = PV

T0
P0V0

(B.12)

with
P = P∞ + 2σgo

Ri,eq
+ 2σow

Re

P = P∞ + 2σgo
Ri,eq

+ 2σow
(Re03 −Ri03 +R3

i,eq)1/3

Filling in B.12

T =
(
P∞ + 2σgo

Ri,eq
+ 2σow

(Re03 −Ri03 +R3
i,eq)1/3

)
V

T0
P0V0

(B.13)

Now equating B.11 and B.13 and keeping in mind that ?? is an absolute
temperature and B.11 is a relative temperature.(

P∞ + 2σgo
Ri,eq

+ 2σow
(Re03 −Ri03 +R3

i,eq)1/3

)
V

T0
P0V0

=

−IR2
i,eq

6λo
−
IR2

i,eq

3λo
+

IR3
i,eq

3λo(Re03 −Ri03 +R3
i,eq)1/3

(
1− λo

λw

)

+
I(Re03 −Ri03 +R3

i,eq)2/3

3λo

(
0.5 + λo

λw

)
+ Troom (B.14)
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(
P∞ + 2σgo

Ri,eq
+ 2σow

(Re03 −Ri03 +R3
i,eq)1/3

)
V

T0
P0V0

=

I

3λo
[−1.5R2

i,eq +
R3
i,eq

(Re03 −Ri03 +R3
i,eq)1/3

(
1− λo

λw

)
+ (Re03 −Ri03 +R3

i,eq)2/3
(

0.5 + λo
λw

)
] + Troom (B.15)

This can be solved to obtain Ri,eq as a function of I. However, plotting both
sides of the equation in matlab and taking the value where they cross as
Ri,eq is much easier than actually solving it. When this is done for a bubble
with initial inner radius of 3 µm, a triacetin oil layer 1 µm thick and the laser
continuously radiating at 1010 Wm−2, an equilibrium radius is found to be
3.0977 µm. In Figure 3.4 it can be seen that the simulation does converge to
this value and the predicted temperature profile.

B.8 Math 1

pk+1 ·B + (pk+1 + pk+2) · C = 1

−pk+1
(pk+1 + pk+2)2

p2
k+1

· C + (pk+1 + pk+2) · C = 1

C

(
(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

)
= 1

C = 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

and thus,

B = −(pk+1 + pk+2)2

p2
k+1

· 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

B = −(pk+1 + pk+2)
p2
k+1

· 1

1− (pk+1 + pk+2)
pk+1

B = − (pk+1 + pk+2)
p2
k+1 − pk+1 (pk+1 + pk+2)

B = − (pk+1 + pk+2)
p2
k+1 − p2

k+1 − pk+1pk+2

B = (pk+1 + pk+2)
pk+1pk+2
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A = −B − C

A = −(pk+1 + pk+2)
pk+1pk+2

− 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

B.9 Math2

pk+1 ·B + (pk+1 + pk+2) · C = 1

pk+1 ·
(pk+1 + pk+2)
pk+1pk+2

+ (pk+1 + pk+2) · 1

(pk+1 + pk+2)− (pk+1 + pk+2)2

pk+1

(pk+1 + pk+2)
pk+2

+ 1

1− (pk+1 + pk+2)
pk+1

(pk+1 + pk+2)
pk+2

+ 1
1− 1− pk+2

pk+1

(pk+1 + pk+2)
pk+2

− pk+1
pk+2

pk+1 + pk+2 − pk+1
pk+2

pk+2
pk+2

= 1

B.10 Math3

D + E + F = 0

−pk · E − (pk + pk−1) · F = 1

p2
k

2 · E + (pk + pk−1)2

2 · F = 0

solving this:
p2
k

2 · E = −(pk + pk−1)2

2 · F

E = −(pk + pk−1)2

p2
k

· F
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and,
−pk · E − (pk + pk−1) · F = 1

−pk · −
(pk + pk−1)2

p2
k

· F − (pk + pk−1) · F = 1

F

(
(pk + pk−1)2

pk
− (pk + pk−1)

)
= 1

F = 1
(pk + pk−1)2

pk
− (pk + pk−1)

and thus,

E = −(pk + pk−1)2

p2
k

· 1
(pk + pk−1)2

pk
− (pk + pk−1)

E = −(pk + pk−1)
p2
k

· 1
(pk + pk−1)

pk
− 1

E = − (pk + pk−1)
pk (pk + pk−1)− p2

k

E = −(pk + pk−1)
pkpk−1

D = −E − F

D = (pk + pk−1)
pkpk−1

− 1
(pk + pk−1)2

pk
− (pk + pk−1)

B.11 Static bubble solution

This part is done to examine what the equilibrium temperature is of the
bubble with the laser continuously on. When the simulation converges (in
the limit) to this temperature it can be concluded the program is correct.
This is of course assuming this easy calculation is correct. It starts with the
heat equation, taken from (3.13).

D
1
r2

∂

∂r

(
r2∂T

∂r

)
+ I

ρcp
= DT

Dt

Normally I (Wm−3) would be a function of time but in this static solution
it is taken to be the average laser power. In case the laser is modulated
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as a sine wave I would be half the maximum laser power. Because we are
interested in the unchanging equilibrium case the temperature change in
time is zero:

D

(
2
r

∂T

∂r
+ ∂2T

∂r2

)
+ I

ρcp
= 0

An expression for T can be given as a solution to this differential equation

T = −Ir2

6cpDρ
− C1

r
+ C2

Where C1 and C2 are constants. The derivatives of this equation are

∂T

∂r
= −Ir

3cpDρ
+ C1
r2

∂2T

∂r2 = −I
3cpDρ

− 2C1
r3

By filling the expression for T in the heat equation one can show it is correct:

D

(
2
r

(
−Ir

3cpDρ
+ C1
r2

)
+
(
−I

3cpDρ
− 2C1

r3

))
+ I

ρcp
= 0

The temperature profile in the different materials:

Tgas = −C1g
r

+ C2g

Because the thermal diffusivity of the gas is much larger than the thermal
diffusivity of water and oil, it is assumed the temperature in the gas is
constant with respect to the radius.

∂Tgas
∂r
|0 = 0→ C1g = 0

Tgas = C2g

Twater = −C1w
r

+ C2w

Twater|∞ = 0→ C2w = 0

Twater = −C1w
r

Toil = −Ir2

6cpoDoρo
− C1o

r
+ C2o

with cpoDoρo = λo and thus

Toil = −Ir
2

6λo
− C1o

r
+ C2o
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The temperature on both sides of the gas oil interface must be the same:

Tgas = −IR
2
i

6λo
− C1o

Ri
+ C2o

The temperature on both sides of the oil water interface must be the same:

−C1w
Re

= −IR
2
e

6λo
− C1o
Re

+ C2o

C1w = IR3
e

6λo
+ C1o −ReC2o

Twater = 1
r

(
−IR3

e

6λo
− C1o +ReC2o

)
Because the gas has a constant temperature in r, the derivative of the
temperature in oil at the interface must be zero:

−IRi
3λo

+ C1o
R2
i

= 0→ C1o = IR3
i

3λo

The condition for the boundary between oil and water:

λo
∂To
∂r
|Re = λw

∂Tw
∂r
|Re

∂To
∂r
|Re = −IRe3λo

+ C1o
R2
e

∂Tw
∂r
|Re = −1

R2
e

(
−IR3

e

6λo
− C1o +ReC2o

)

− λo
λw

(
−IR2

e

3λo
+ C1o
Re

)
+
(
IR2

e

6λo
+ C1o
Re

)
= C2o

C2o = C1o
Re

(
1− λo

λw

)
+ IR2

e

3λo

(
0.5 + λo

λw

)
More mathematical steps can be found in appendix B.12

Results

Tgas,eq =
−IR2

i,eq

6λo
− C1o
Ri,eq

+ C2o (B.16)

Twater,eq = 1
r

(
−IR3

e,eq

6λo
− C1o +Re,eqC2o

)
(B.17)

Toil,eq = −Ir
2

6λo
− C1o

r
+ C2o (B.18)

77



with

C1o =
IR3

i,eq

3λo

C2o = C1o
Re,eq

(
1− λo

λw

)
+
IR2

e,eq

3λo

(
0.5 + λo

λw

)
Subscript eq was added to indicate this is the equilibrium value.

B.12 Math4

The condition for the boundary between oil and water:

λo
∂To
∂r
|Re = λw

∂Tw
∂r
|Re

∂To
∂r
|Re = −IRe3λo

+ C1o
R2
e

∂Tw
∂r
|Re = −1

R2
e

(
−IR3

e

6λo
− C1o +ReC2o

)
∂Tw
∂r
|Re = IRe

6λo
+ C1o
R2
e

− C2o
Re

λo

(−IRe
3λo

+ C1o
R2
e

)
= λw

(
IRe
6λo

+ C1o
R2
e

− C2o
Re

)

λo

(−IRe
3λo

+ C1o
R2
e

)
− λw

(
IRe
6λo

+ C1o
R2
e

− C2o
Re

)
= 0

λo

(−IRe
3λo

+ C1o
R2
e

)
− λw

(
IRe
6λo

+ C1o
R2
e

)
= −λwC2o

Re

−λo
(−IRe

λo
+ C1o
R2
e

)
+ λw

(
IRe
6λo

+ C1o
R2
e

)
= λwC2o

Re

− λo
λw

(−IRe
3λo

+ C1o
R2
e

)
+
(
IRe
6λo

+ C1o
R2
e

)
= C2o

Re

− λo
λw

(
−IR2

e

3λo
+ C1o
Re

)
+
(
IR2

e

6λo
+ C1o
Re

)
= C2o

C2o = C1o
Re

(
1− λo

λw

)
+ IR2

e

3λo

(
0.5 + λo

λw

)
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B.13 Equilibrium radius

Keeping in mind the state equation

PV = nRgT

and as we know from (B.3)

P0V0
T0

= PV

T
→ V = T

P

P0V0
T0

(B.19)

p0, V0 and T0 are the initial values from before the laser is turned on. The
pressure is the atmospheric pressure plus two Laplace pressures

P = P∞ + 2σgo
Ri

+ 2σow
Re

Because we are looking at the static case, T in these equations is the Tgas
described earlier. Rearranging and filling in gives

4
3πR

3
i,eq = Tgas,eqP0V0

T0

(
P∞ + 2σgo

Ri,eq
+ 2σow
Re,eq

)

and

Ri,eq = Ri,0

 Tgas,eqP0

T0

(
P∞ + 2σgo

Ri,eq
+ 2σow
Re,eq

)


1/3

B.14 Variations around equilibrium in simplified
model

The change in temperature over time can be described as following

(ρoVoilCpo + ρwVw0.1Cpw) dT = (B −B0/2) · Voildt

With ρo is the density of the oil, Vw0.1 is the volume of the first 0.1 µm of
water, Cpo is the heat capacity at constant pressure of the oil, B0 is the
maximum power of the laser and B is the absorbed laser power (Wm−3).
In the simulation the laser is modulated as a step function but because
all functions can be described by a combination of sine waves a sinusoidal
modulation is chosen. This means B becomes a sine function.

dT

dt
= (B −B0/2) · Voil
ρoVoilCpo + ρwVw0.1Cpw

= Bamp cos(ωt) · Voil
ρoVoilCpo + ρwVw0.1Cpw

(B.20)
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→ Tg = Bamp sin(ωt) · Voil
ω (ρoVoilCpo + ρwVw0.1Cpw) + constant (B.21)

with Bamp being the amplitude of the oscillations in the power and ω = 2πf .
We know that Tg at t = 0 and average laser power should be equal to (3.16).
Since sin(0) equals zero, the constant is the right part of (3.16). And since
this equation is only about a change in temperature, the room temperature
should be added.

Tg = Bamp sin(ωt) · Voil
ω (ρoVoilCpo + ρwVw0.1Cpw) +

−IR2
i,eq

6λo
− C1o
Ri,eq

+ C2o + Troom

I is the average laser power so B0/2 which is the same as Bamp. Filling in
C1o and C2o and rewriting gives

Tg = Bamp sin(ωt) · Voil
ω (ρoVoilCpo + ρwVw0.1Cpw)

+
−IR2

i,eq

6λo
−
IR2

i,eq

3λo
+

IR3
i,eq

3λoRe,eq

(
1− λo

λw

)
+
IR2

e,eq

3λo

(
0.5 + λo

λw

)
+ Troom

(B.22)

→ Tg = Bamp sin(ωt) · Voil
ω (ρoVoilCpo + ρwVw0.1Cpw)+

Bamp
3λo

(
−1.5R2

i,eq +
R3
i,eq

Re,eq

(
1− λo

λw

)
+R2

e,eq

(
0.5 + λo

λw

))
+ Troom (B.23)

Using equations B.19 we know that

P = P0V0Tg

T0
4
3πR

3
i

(B.24)

Where Tg can be filled in and P is the total pressure as used in the Rayleigh-
Plesset equation (eq 3.10).

The RP equation as seen in (3.10)

Pg − P∞ = R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]
+ Ṙ2

iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)

+ρw
Re

(
2− 1

2
R3
i

R3
e

)]
+ 4µo

[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(B.25)

Where Pg is the found P and P∞ is the pressure at infinity. Expressing
this in the new variables P0 as the pressure at the beginning of the static
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solution and Pg as the total pressure in the gas, and filling in Tg and the
found pressure, this gives:

P0V0

T0
4
3πR

3
i

[
Bamp sin(ωt) · Voil

ω (ρoVoilCpo + ρwVw0.1Cpw)

+Bamp
3λo

(
−1.5R2

i,eq +
R3
i,eq

Re,eq

(
1− λo

λw

)
+R2

e,eq

(
0.5 + λo

λw

))
+ Troom

]

− P∞ = R̈i

[
R2
i

Re
(ρw − ρo) + ρoRi

]
+ Ṙ2

iRi

[
ρo

(
3

2Ri
− 2
Re

+ 1
2
R3
i

R4
e

)

+ρw
Re

(
2− 1

2
R3
i

R3
e

)]
+ 4µo

[
Ṙi
Ri
− ṘiR

2
i

R3
e

]
+ 4ṘiR

2
i

R3
e

µw + 2σow
Re

+ 2σo
Ri

(B.26)

B.15 Velocity profile

This section shows how the velocity profile used in the simulation is found.
It starts with mass conservation:

∂ρ

∂t
+ div(ρv) = 0 (B.27)

As mentioned in the chapter, the fluid is considered incompressible and from
this we know that

0 + ρdiv(v) = 0→ div(v) = 0 (B.28)

We also assume spherical symmetry and the speed is only in the r direction.

div(v) = 1
r2

∂

∂r
(r2v) = 0 (B.29)

→ r2v = constant(t) (B.30)

v = constant

r2 (B.31)

The speed of the bubble wall is by definition Ṙ and therefore

v(R, t) = constant

R2 = Ṙ→ constant(t) = R2Ṙ (B.32)

v(r, t) = R2Ṙ

r2 (B.33)
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Nomenclature

λ Thermal conductivity (Wm−1 K−1)

µ Viscosity

σo Strain tensor
−→er Unit vector in the r direction

ρ Density

σ Surface tension

σwo Interfacial tension between water and oil

µ̃ Molar mass (kgmol−1)

A Coefficient to express T ′k at the right side of an interface.

B Coefficient to express T ′k at the right side of an interface.

B0 The maximum power of the laser (Wm−3)

Bamp The amplitude of the power of a laser that is sinusoidally modulated
(Wm−3)

C Coefficient to express T ′k at the right side of an interface.

cp Heat capacity at constant pressure

D Coefficient to express T ′k at the left side of an interface.

D Thermal diffusivity

E Coefficient to express T ′k at the left side of an interface.

F Coefficient to express T ′k at the left side of an interface.

f Laser oscillation frequency

g Volumic forces e.g. gravity
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H Variable defined in equations B.4 and 3.12

I Laser power (Wm−3)

m Mass

P Pressure

P0 The pressure in the bubble before the laser is turned on

p0 pk within the bubble before the laser is turned on

P∞ The pressure at r =∞, the ambient pressure

pk The difference in radius between rk and rk−1

R Bubble radius

R0 Bubble radius (not including the oil) before the laser is turned on

Re Bubble radius including the oil layer

Rg The ideal gas constant

Ri Bubble radius not including the oil layer

rk The radius that belongs to gridpoint k

T Temperature

t Time

Tnk Temperature at spatial grid point k and temporal grid point n

Tg2 The equilibrium absolute gas temperature.

Tgas,eq The equilibrium change in gas temperature compared to room tem-
perature.

V Volume

v Velocity

subcsript k Indication of grid number with k = 1 being the most inner radius
gridpoint.

subscript g The variable in case of gas

subscript o The variable in case of oil

subscript w The variable in case of water
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