UNIVERSITY OF TWENTE.

Querying Uncertain Data
in XML

Ael Kmpm:\

MSc Thesis

0/$\6Augu8t 20140/$\0

Graduation committee
Dr. ir. Maurice van Keulen
Dr. Mena Badieh Habib Morgan






Abstract

This thesis describes the design and implementation of an extension for an XML DBMS
which enables the execution of XPath queries over uncertain data. Uncertain data is different
from regular data in that in addition to a value there is an associated probability for each
item. An implication is that an uncertain dataset represents many different states; one for
each combination of alternatives for all uncertain data items. Each state is referred to as
a possible world. Each possible world has an associated probability itself but contains no
uncertain values since an alternative was chosen for each uncertain value. The probabilities of
chosen alternatives determine the probability of the possible world. A major problem is the
exponential growth of the number of possible worlds with respect to the number of uncertain
values.

We describe a way to query the uncertain data directly; without possible world expansion. An
XML data format for uncertain data is defined which supports local independence and mutual
exclusion relations among different values through random variable annotations. Correct
query evaluation over uncertain data is achieved by transforming an input XPath query to
an XQuery which keeps track of the random variable annotations that are used to select only
consistent values and to compute the probabilities of resulting values. The transformed query
is executed by the XML DBMS using its native — i.e., unchanged by our extension — query
evaluation implementation.

The implementation can handle the aggregation functions Count, Sum, Min, and Max in
addition to regular XPath queries. For these aggregation functions we yield a summary of
the results, which describes the distribution of the resulting values. That is, we provide the
minimum value, expected value, maximum value, variance, and standard deviation for each
aggregation function. For the aggregates Min and Max we additionally compute the top-k
result values. The result of a non-aggregation query is set of distinct result values, each with
an associated probability. The probability is the sum of probabilities of all possible worlds
represented by the uncertain data that yield the value as a result to the query.

Benchmarks indicate the execution time of our implementation scales roughly linearly with
respect to the size of the document containing the uncertain data for various queries. There are
some cases where this does not hold; in particular when using multiple consecutive nonselective
predicates on the same context node. A predicate is nonselective when it is satisfied by
many elements. A conjunction of predicates is evaluated in the context of uncertain data by
generating the Cartesian product of all predicates which causes performance issues when each
predicate generates a large set of matching values.



Contents

1 Introduction

1.1 Possible Worlds . . . . . . . .. .
1.2 Probabilistic XML . . . . . .. .o
1.3 Research Objectives . . . . . . . . . . . e
1.3.1 Problem Statement . . . . . . . . . ...
1.3.2 Research Questions . . . . . . . . . . L

2 Related Work

3 Data Representation and Query Evaluation

3.1 XML Database Plugin . . . . . . . .. .. e
3.2 Uncertain Data Representation . . . . . . . . . . ... ... o
3.2.1 Probability Computation . . . . . ... ... ..
3.2.2 Comsistency . . . . . . . e
3.3 Uncertain Query Results . . . . . . . . ...
3.3.1 Groupby Value. . . . . . .. .
3.3.2 Group by Random Variable String . . . . ... ... ... ... . ..........
3.3.3 Default Representation Scheme . . . . . . . . . .. ... .. .. ... ... .. ...
3.4 Supported P-Document Families . . . . . ... ... ... ... ... .. ... .......
3.5 Random Variable String Manipulation Primitives . . . . . . ... ... ... .. ...
3.5.1 Combine. . . . . . ..
3.5.2 Consistent . . . . . . ..
3.6 Representation of Intermediate Results . . . . . . . ... ... ... ... ... ... ...,
3.6.1 Empty Value . . . . . . ...
3.6.2 Atomic Value . . . . . ...
3.6.3 Path Expression . . . . . . .. ..
3.6.4 Binary Expression . . . . . ... e
3.6.5 Sequence Expression . . . . . . . . ...
3.6.6 Function Expression . . . . . . . . . . e
3.7 Intermediate Result Manipulation Functions . . . . . . . ... .. ... ... ........
3.7.1 Empty . . . .o e e e
3.7.2 Boolean . . . . . . e
373 Group . . . . o o e e e
3.7.4 XML .. . .. e e e
3.8 Probabilistic Query . . . . . ...
4 Aggregate Queries
4.1 Motivation and General Approach . . . . . . . .. .. ... .. .. ... ... .. ...
4.2 Tree Data Structure . . . . . . . . . . . e
4.2.1 Tree Confidence . . . . . . . . . . e
4.3 Count and Sum . . . . . ..o
4.3.1 Extreme Values . . . . . . . . . L e
4.3.2 Expected Value . . . . . . . . e
4.3.3 Variance and Standard Deviation . . . . . . . ... ... oL
4.3.4 Shannon Expansion . . . . . . . . ... L
4.4 Minand Max . . . . . . . . e e
4.41 Extreme Values . . . . . . . . . L e
4.42 Expected Value . . . . . . .. L
4.4.3 Variance and Standard Deviation . . . . . . . . .. ... L0
4.4.4 Algorithm . . . . . . . .
4.5 AvE L e
5 Correctness Validation
5.1 Correctness and Semantic Equivalence . . . . . . . . ... oo
5.2 Correct Elements . . . . . . . . ..

S 0w~

13
13
14
15
15
16
17
18
19
19
21
21
21
22
23
23
23
24
25
26
27
27
27
27
27
27

30
30
31
32
33
33
34
35
35
38
39
40
40
40
40



5.3 Correct Probabilities . . .

5.3.1 Corrupt Trees . . . . . . . . . L
6 Performance & Scalability
6.1 Benchmark Method . . . . . . . . .. .
6.2 Benchmark Results . . . . . . . . . o L
6.2.1 Document Size . . . . . . . . . e e e
6.2.2 Document Uncertainty . . . . . . . . . ... .o Lo
6.2.3 Aggregation Functions . . . . . . . . ... oo
6.2.4 Predicate Size . . . . . . .. oL
7 Discussion
7.1 Scalability of And Expressions . . . . . . . . ...
7.2 Memory Usage . . . . . . . o o i e e e e
8 Conclusions
8.1 Future Work . . . . . . . o
Appendices
A Configuration and Usage
A.1 Configuration Options . . . . . . . . .. . e
A1l Query Execution . . . . . . ...

A.1.2 Syntax Shorthands

50
50
a0
50
53
o4
26

58
58
98

61
62

67



1 Introduction

Databases are used to store information to be retrieved at a later time. In most cases the information
stored in a database is certain; there is only one option for each data item. For example, passenger
information stored by an airline company or student grades stored in the university database are all
certain information. When retrieving a student’s grade for a specific course the answer will always be a
single possible value. In contrast, uncertain data is characterized by having multiple options for each data
item; the value of the item is uncertain. Each of the possible choices will have an associated probability,
indicating the likelihood that it will be “selected” as the value of the item. The term “uncertain dataset”
might give the idea that all of the data it describes is uncertain. This is not the case, as all data items
in an uncertain dataset without a probability are certain, just like in a regular database. This does not
necessarily mean such “certain” items are always “selected”, since they might depend on an uncertain
option (that is, one of their ancestors is uncertain) which by definition is not always picked.

There are many application scenarios for uncertain databases, all of which involve a degree of uncertainty
associated with the data that is being processed. For example, any scenario involving predictions about
future events deals with uncertainty since predictions are inherently uncertain. A company might have
made various predictions about the unit sales of its products across the different countries it operates
in, based on market research and other means. Based on the credibility of the bureau carrying out
the market research, or on historic sales data the company has associated different levels of confidence
with each prediction. When creating strategies for production, marketing and logistics the company is
interested in the expected number of total sales for each product, or the expected number of combined
sales in a specific country. A traditional database that stores the predictions cannot answer those queries
as it cannot handle the probabilities that are associated with the different data items required to produce
the answer. A probabilistic database will be able to deal with the uncertainty and provide answers to
such queries, generally consisting of multiple possibilities each with an associated probability.

Another scenario involving uncertainty is merging multiple datasets that contain information about a
similar topic into a single unified dataset. For instance, consider a scenario where we are merging datasets
containing metadata of scientific publications such as the author names, the journal of publication, the
title of the research and so on. There might be slight differences between the various sources regarding the
same publication such as a different spelling of an author name or a different publication year. Instead of
picking one of the possible options and throwing the other ones away based on the confidence we have in a
specific source, it is possible to store all options with their probabilities in a probabilistic database. This
is especially valuable when there is a difference between sources that have a similar level of confidence, in
which case either option could be the “right” option. When we execute a query over the merged dataset
we are presented with a query answer that consists of multiple possibilities and their probabilities. Being
able to store various possible options for a single data item with different probabilities is an essential
difference between probabilistic databases and traditional databases.

1.1 Possible Worlds

Uncertainty gives rise to the concept of possible worlds. A dataset consisting entirely of certain values
will represent a single possible world; there is no chance of any other representation of the data than that
which is there. An uncertain dataset, which by definition has different options for at least one data item
it contains, will represent multiple possible worlds. Each combination of all possible options in the entire
dataset is a distinct possible world, each with an associated probability which is obtained by multiplying
the individual probabilities of the options that are selected for the possible world.

The possible world concept will be illustrated using a small example of an uncertain dataset; weather
forecasts for a number of days. Like most predictions about future events that are not fully deterministic,
weather forecasts are inherently uncertain. A typical weather forecast contains predictions of weather-
related properties such as temperature, rainfall, and wind speed. Figure 1.1 shows an XML representation
of a simple dataset with a two-day weather forecast, only containing temperature values to keep it concise.
The temperature of each day has two possible values with different probabilities.

This uncertain dataset represents a total of 4 possible worlds; one for each of the 4 possible combinations



<forecasts>
<forecast day="1">
<temperature probability="0.7">16</temperature>
<temperature probability="0.3">20</temperature>
</forecast>
<forecast day="2">
<temperature probability="0.4">12</temperature>
<temperature probability="0.6">18</temperature>
</forecast>
</forecasts>

Figure 1.1: Uncertain dataset representing weather forecasts

of temperature values of day 1 and day 2. For instance, one possible world is generated by selecting the
first temperature value for both days, displayed Figure 1.2 below. The probability of this possible world
is the product of individual probabilities of the selected temperature values, thus 0.7 - 0.4 = 0.28. The
other 3 possible worlds are created in a similar way. The sum of probabilities of all possible worlds is
exactly 1.

<forecasts>
<forecast day="1">
<temperature>16</temperature>
</forecast>
<forecast day="2">
<temperature>12</temperature>
</forecast>
</forecasts>

Figure 1.2: One possible world, with p = 0.28

Creating a possible world from an uncertain dataset is referred to as instantiation. During instantiation
an option is selected for all uncertain values. The result of the instantiation, therefore, is a dataset without
any uncertain values. As a result, the probability attributes are removed in Figure 1.2. A key property
to notice is that the number of possible worlds increases exponentially with respect to the number of
uncertain values in the dataset. For instance, if a third forecast element would be added with again two
choices for each of its temperature values the number of possible worlds would be doubled compared to
the situation with just two forecasts. Similarly, adding a third forecast with four possibilities for each
temperature value instead of two would quadruple the number of possible worlds.

The naive way of answering a query over uncertain data is to instantiate all possible worlds and execute
the query in each world. The query answer will then consist of these individual answers and their
probabilities. However, due to the exponential growth of the number of possible worlds this quickly
becomes impossible. The main goal of this research is therefore to answer queries over uncertain data
without explicitly enumerating all possible worlds due to the obvious scalability problems it poses.

1.2 Probabilistic XML

The concept probabilistic XML refers to a probability distribution defined over a set of ordinary docu-
ments. Typically, probabilistic XML models define the distribution using two types of nodes; distribu-
tional nodes which specify the type of distribution and ordinary nodes which are regular XML nodes
that appear in a resulting document. The distributional nodes do not appear in a document resulting
from the probabilistic process. Such a document is referred to as a random document [1]. The previous
section described the notion of a random document as a possible world. In their work, Van Keulen et al.



[2] introduce a probabilistic XML model which defines two types of distributional nodes; (1) probability
nodes which represent an uncertain value (or more specifically; an uncertain subtree) and (2) possibility
nodes that define the possible values, each with an associated probability. The probabilities of possibility
nodes belonging to the same probability node sum to exactly 1. In order to generate a random document,
the tree represented by the probabilistic document is traversed, and exactly 1 possibility child of every
probability node is selected. This probability / possibility node scheme allows for more structure than
just annotating XML nodes with a probability attribute like in Figure 1.1. In that document we implicitly
assumed only one temperature value could exist at the same time, but it was not necessarily defined as
such. If multiple uncertain values were defined with the same parent (i.e., the forecast element) it would
similarly be undefined which values can exist simultaneously and which cannot. Using the probability
and possibility nodes, this ambiguity is removed since it is well-defined that possibility children of the
same probability node are mutually exclusive.

forecasts
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Figure 1.3: Probabilistic XML prob / poss format

The tree structure of the document in Figure 1.1 represented using the described model results in the
tree depicted in Figure 1.3, where V represent probability nodes, O represent possibility nodes, and @
represent normal XML nodes. A downside of this format is the relatively strict requirement that normal
XML nodes can only have probability nodes as children, rather than other XML nodes. This requirement
results in many repetitions of a probability node combined with a single possibility node with probability
1 when an XML element is certain. This scenario appears in Figure 1.3 three times; between the root
and the two certain forecast elements and between each forecast element and its certain temperature
element. In this research we will propose a different probabilistic XML format which does not utilize any
distributional nodes but does allow the expression of the same type of relationships as the probability /
possibility format, i.e., mutual exclusion and independence among the various uncertain data items. This
format is described in Section 3.2.

1.3 Research Objectives
1.3.1 Problem Statement
The most important difference between certain data and uncertain data is the exponential growth in the

number of possible worlds represented by uncertain data. In the case of certain data, there is only a
single possible world as there are no variations possible for individual data items. Adding new (certain)



data to a certain database does not increase this number. While it will take longer to perform typical
database operations on a larger dataset compared to a smaller one, there is no exponential growth for
certain data like there is for uncertain data. Figure 1.4 displays the function f(z) = 2%, illustrating the
behavior of exponential growth. In terms of an uncertain dataset such a function describes the number
of possible worlds, where = is the number of uncertain elements, each having only two possibilities. It
is clear from the curve that the number of possible worlds represented by an uncertain dataset reaches
numbers that prevent instantiation of each individual one very swiftly.
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Figure 1.4: Function f(x) = 2* displaying exponential growth

Handling the exponential growth of the number of possible worlds represented by an uncertain dataset is
the main problem we face in this research. Given the exponential growth of the number of possible worlds
in the context of uncertain data, the naive approach of instantiating all possible worlds and executing
the query on every single one quickly becomes inefficient and even impossible. Instead, we are looking
for ways to directly query the uncertain data without instantiating all possible worlds. That is, a query
should be evaluated over a single document in the XML database; the document describing the uncertain
data using probability annotations. We will typically refer to this “master document” as the uncertain
document. This document is the blueprint for all possible worlds; it contains the set of all possible XML
elements, values, and attributes that can be present in any possible world along with the random variable
string annotations and probabilities associated with them. Mathematically, the uncertain document can
be described as a superset of every possible world, making every possible world consequently a subset of
the uncertain document.

The result of a query executed directly on the uncertain data should be semantically equivalent to
running the query in each of the possible worlds and combining the answers based on the probability
of each possible world. Because existing XML databases are not built for handling uncertainty in the
data they store, we have to extend the XML DBMS in order to add the probabilistic awareness. The
extension must handle the possible world explosion in a way that does not require it to iterate each world.
More specifically, we explicitly avoid instantiating all possible worlds and will execute a query only on
the compact representation of all the possible worlds.

We need to devote special attention to aggregation queries, which map a collection of values to a single
value which is possibly not contained within the input sequence of values — and thus not in the uncertain
document. An example of an aggregation function is Sum, with obvious semantics. The challenge of
computing the result of an aggregation function in the context of uncertain data is that the number of
unique values over all possible worlds can be as high as the number of possible worlds. This is different
from the values of individual uncertain elements. In that case, the set of all unique possible values are
present in the uncertain document since every possible world is a subset of the uncertain document as
pointed out earlier. Certain aggregation functions share this property, such as Min and Max. Because
those functions select the minimum and maximum value of a set of values V', respectively, the number of
unique values over all possible worlds is upper bounded by the length of the input set, |V|, rather than
by the number of possible worlds. The goal of this research is to compute correct answers to regular

queries and aggregation queries over uncertain data, through a plugin for an existing non-probabilistic
XML DBMS.



1.3.2 Research Questions

Based on the previous section, we can now formulate our research questions as follows.
e Can we query uncertain data without generating all possible worlds?
e Can the answer to aggregation queries be computed efficiently?
o Are the obtained query results semantically equivalent to the actual results?

e How does the solution scale with respect to different documents and queries?

The rest of this document is organized as follows. Section 2 will present related work on the topic of
uncertain databases by other researchers. In Section 3 we will describe the general approach we have
taken to answer the posed research questions. It includes the presentation of the XML data representation
we use for the uncertain document, and it will cover probabilistic query evaluation. Section 4 is entirely
devoted to aggregate queries.

Following that, Section 5 talks about the validity of the implementation in terms of its correctness, while
Section 6 tests its performance and scalability. We discuss some of the discovered shortcomings of our
implementation in Section 7. Finally, this research is concluded by providing answers to our research
questions in Section 8 and discussing open topics for future work.
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2 Related Work

Various probabilistic XML models have been proposed in the literature [2][3][4][5](6][7]. Kimelfeld et al.
[1] have generalized such known types of probabilistic XML models into different abstract p-document
families that consist of distributional nodes and regular nodes. The distributional nodes determine the
probabilistic distribution of their child nodes in the possible worlds. We use this classification in Sec-
tion 3.4 to describe the types of probabilistic documents that are supported by our implementation.

There exist not many implementations of the proposed models as an XML database system. One of
the few is ProTDB, a probabilistic XML database system resulting from research by Nierman and Ja-
gadish [8]. Applying the p-document family classification, the ProDTB database system is classified as
PrXML{mwind} it supports independent and mutually exclusive distributional nodes. An interesting ob-
servation made by the authors is that XML does not allow multiple attribute values. Therefore, in order
to support uncertain attribute values ProTDB converts all attribute values to regular elements. ProTDB
was created by modifying the query parser and query evaluator of the native (non-probabilistic) XML
database TIMBER [9]. Li et al. [10] have also created a probabilistic XML database system called PEPX
and claim it substantially outperforms ProTDB especially with queries involving descendant axes.

A number of relational database systems supporting uncertainty have also been proposed. An example
is Trio, a relational database management system in which data uncertainty and lineage are first-class
citizens, introduced by Widom et al. of the University of Stanford [11][12]. The system is built on top of
the RDBMS PostgreSQL and implements support for uncertainty and lineage through a translation-based
approach. That is, since regular relational tables are used for storage of the uncertain data, queries have
to be translated in order to use the probability and lineage metadata. Their own query language, TriQL,
allows the user to incorporate specific uncertainty or lineage related expressions in their queries which
enables queries such as “select values with a confidence of 98% or higher”. Lineage describes where the
data came from, for example which original data sources were merged in order to create a resulting value.
As such, lineage can be considered a type of metadata which is stored alongside the real data in Trio.
Systems similar to Trio are MayBMS, developed by Antova et. al [13], and MystiQ [14], introduced by
Boulos et al.

Widom also teamed up with Agrawal [15] to describe a generalized uncertain database which is capable
of handling uncertain data even in cases when the exact confidence values or probabilities are not known.
Existing uncertain databases require such information on the uncertainty to be present, but Agrawal and
Widom present a data-model and semantics that do not break down under such conditions, although no
prototype implementing the ideas was created.

Koch and Olteanu [16] discuss a new approach of computing confidence values for the existence of tuples
in the result of queries on probabilistic databases involving conditioning the database. This principle
entails removing sets of possible worlds which do not satisfy a given condition, resulting in follow-up
query operations being applied to a reduced database. The authors additionally introduce the concept
of world-set descriptors and give algorithms to store a set of such descriptors, called ws-sets, in a ws-tree
which allows for efficient probability computation. The ws-tree is in many ways similar to the tree data
structure we utilize for aggregate queries, discussed in Section 4. It also contains two types of nodes;
®-nodes containing mutually exclusive child nodes, and &-nodes containing independent child nodes.
These correspond to the RVar and Node nodes that we use in our aggregation tree, respectively.

Aggregation queries have previously been studied by Murthy et al. [17], in the context of the relational
probabilistic database Trio. They describe algorithms to obtain the minimum value, expected value,
and maximum value for Count, Sum, Min, Max, and Avg aggregates. Their computation of the expected
value for the Min and Max aggregates inspired our algorithms for those aggregate functions. In particular,
sorting leaf nodes in order to determine the expected value of those aggregate functions is a technique
we apply as well. Our implementation additionally calculates the variance, unlike the work of Murthy et
al. However, minimum and maximum values for the Avg aggregate function are provided by Murthy et
al., but not by our work. Similarly, Chen and Dobra [18] described ways to compute confidence intervals
regarding Sum-based aggregate queries over probabilistic relational databases through query rewriting
and statistical analysis, relying heavily on the linearity of expectation. They compute the first and second
moments of the aggregate function, the expected value and the variance, and use those to compute the
confidence intervals. In [19], Abiteboul et al. look at aggregate queries in the context of both discrete

11



and continuous probabilistic models, and present algorithms to compute the probabilistic moments of the
distribution of the aggregation values. Moreover, approximation techniques are explored.

In their work [20], Buneman et al. show the effectiveness of querying a compact representation of an
XML document directly from main memory. The compression is based on shared subtrees in the XML
document, which is a concept that resembles the relationship between the uncertain document and all
possible worlds it represents. The shared subtrees among possible worlds are also “compressed” as a
single path in the uncertain document. Additionally, the authors show that succinct compressed data
structures of very large XML documents fit in main memory, allowing for faster query evaluation. Storing
the uncertain document in main memory might also be an interesting topic for future work on uncertain
XML databases.

12



3 Data Representation and Query Evaluation

This section describes the main parts of our solution in terms of its architecture and important concepts
that are utilized in order to obtain correct query results. We begin by introducing the general architecture
of our implementation, discuss the data format and show the query result representation that is used.
Lastly, we will explain the way we transform an XQuery, which is a bottom-up approach starting at the
leaf nodes of the expression tree.

3.1 XML Database Plugin

The solution to the posed research objective will be implemented as a plugin for an existing XML database
management system. The main advantage of this approach is that we can leverage integral parts of any
XML DBMS such as an XQuery parser, knowing they have been thoroughly tested and proven to be
robust. This allows us to focus on our main objective instead.

One of the prerequisites for the XML database is that it should be possible to execute custom queries
and access the parsed input query, since our plugin does not provide an XQuery parser of its own. We
leverage any suitable built-in functionality as much as possible under the assumption these core methods
are implemented very efficiently and refined numerous times over the course of the project’s lifetime. The
purpose of the plugin is to rewrite a query issued by the user, in such a way that the answer it returns will
be semantically equivalent to running the query in every possible world represented by the probabilistic
document. Since the XML database does not know the data it stores represents uncertain data, rewriting
the input query is necessary to introduce the required probabilistic awareness.

The result of a query over probabilistic data is generally a set of results, each with a certain probability.
An example of a query result over uncertain data was given in Section 3.3. Fach result in that set of results
corresponds to a possible world or set of possible worlds which yield an answer for the given query with a
probability higher than 0. The plugin operates on the compiled query, i.e. a tree structure of expressions
that make up the query. A similar tree structure will then be created using our own classes representing
the various XQuery expressions. Based on transformation rules for each supported expression a new
XQuery is then created. This transformation generates a snippet of XQuery for every expression in the
query which are combined into a new query and executed. On a higher level of abstraction, Figure 3.1
shows the process described above.

input XML DBMS compiled Plugin probabilistic XML DBMS query
. —_—
query parse & compile query transform query execute result

Figure 3.1: Transformation of a query to a probabilistic query

Our implementation creates the new query as an XQuery string, resulting in a second parse and compile
step for the XML DBMS before executing the probabilistic query. This is a matter of implementation;
an additional parse step can be skipped if the new query is created as a tree of parsed expression objects
and directly executed. However, it is important to note that the time it takes to parse an input query,
transform it to its probabilistic counterpart and parse it a second time is negligible compared to the
execution time of the query itself. We do not support the entire XQuery language, but have rather
focused on basic path queries with simple predicates such as //forecast[temperature > 5]. The exact list
of supported expressions is described in Section 3.6. Even with this small set of tools fairly sophisticated
queries can be created — primarily by nesting these expressions — although it should be noted that it does
not come close to the expressiveness of XQuery’s FLWOR, expression.

The XML database that was used for the implementation in this research is BaseX, an open source XML
database developed at the University of Konstanz [21]. The database is written in Java and supports
plugins which can be used to add user defined functions to BaseX. These functions can then be called
from a query issued to BaseX. In that way, plugins can manipulate XQuery values during query execution,
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which is functionality we extensively use. Additionally, the plugin can access core BaseX classes such
as the query parser and compiler, which can be invoked on any String representing a query resulting in
a compiled query object which can subsequently be executed. It thus suits the needs for this research
project perfectly. However, the general concepts introduced are not exclusively applicable to BaseX, but
rather to any XML DBMS that supports extensions, given that input queries and the query results can
be manipulated through user-defined functions.

3.2 Uncertain Data Representation

We use discrete random variables to represent the uncertain values in the dataset, introducing a new
random variable for each uncertain value. A random variable is a variable that maps from a sample
space €2 to some set of real values, which is referred to as the range of random variable. The set of all
possible worlds is the sample space of the random variables that are contained in the uncertain document,
which is the compact representation of all possible worlds. We utilize discrete random variables; every
random variable has a range containing integer values v, where 0 < v < n, with n being the number of
available options for the uncertain data item. The assignment of a value v to a random variable from its
range thus corresponds to a subset of €2; the subset of all events that are mapped to the value v. For a
random variable X and every value v of its range R, the probability P(X = v) is defined, denoting the
probability that the element annotated with that random variable assignment exists. The probabilities
associated with each assignment are stored in a separate probabilities element in the uncertain document.
For example, the XML document in Figure 3.2 below describes the uncertain dataset given in Figure 1.1
using random variables.

<forecasts>
<probabilities>
<probability rv="X=0">0.7</probability>
<probability rv="X=1">0.3</probability>
<probability rv="Y=0">0.4</probability>
<probability rv="Y=0">0.6</probability>
</probabilities>
<forecast day="1">
<temperature rv="X=0">16</temperature>
<temperature rv="X=1">20</temperature>
</forecast>
<forecast day="2">
<temperature rv="Y=0">10</temperature>
<temperature rv="Y=1">15</temperature>
</forecast>
</forecasts>

Figure 3.2: Uncertain data annotated with random variables

Random variables X and Y are introduced for the uncertain temperature values in day 1 and day 2.
Different random variables are independent with each other; the value assigned to one random variable
does not influence the probabilities of the possible values of the other random variable. In this example,
the temperature of day 1 does not influence the probabilities of the temperatures on day 2. Because the
temperature values are mutually exclusive with each other on a specific day, a single random variable
with 2 possible values represents the uncertain value on each day. Both variables have the range {0,1}. A
possible world is instantiated by assigning all random variables in the uncertain dataset a value from their
range and selecting only elements with that particular assignment. That is, with random variables X and
Y both having the range {0, 1}, there are two possible assignments for both variables. The assignment of
value 0 to X is denoted by X <« 0. Multiple assignments are enclosed in brackets, i.e., {X + 0,Y « 1}
denotes the assignment of 0 and 1 to X and Y respectively, identifying a possible world of Figure 3.2. An
alternative way of expressing random variable assignments uses = to connect random variable and value
and displays the assignment as a String value, i.e. “X=0" denotes random variable X being assigned the

14



value 0. Multiple assignments can simply be separated by spaces, as such: “X=0 Y=1". This notation
will generally be used since it corresponds one-to-one with the way the implementation processes the
random variable strings of database nodes during query execution.

3.2.1 Probability Computation

Random variables X and Y are independent random variables which allows for straightforward probability
computation for intersection and union of events belonging to those random variables, listed in Figure 3.3
below.

PX=a2nNY=y)=PX=212)-PY =y)

P(X=2UY =y)=1— (1~ P(X =2))- (1 P(Y =y))

Figure 3.3: Probability computation of intersection and union of events belonging to assignments of
independent random variables

We calculate the union using multiple complements rather than the more common P(X UY) = P(X) +
P(Y)— P(X NY) since such a computation becomes inefficient with multiple operands. That is, P(X U
Y UZ) would lead to P(X)+P(Y)+P(Z)—P(XNY)—P(XNZ)—-PYNZ)+P(XNYNZ). Instead,
with our approach, it becomes 1 —((1 - P(X))-(1—P(Y))-(1—P(Z))). Each additional set S introduces
a single additional term 1 — P(S) to the computation.

The equations apply to any number of events. Generalized forms are thus formalized as follows, where
E is a set of events (each event is the assignment of a random variable, for example X < 0) and P(e)
is the probability of that event e. An event e can also be interpreted as a subset of the sample space 2,
i.e., a subset of all possible worlds represented by the uncertain document.

P(E) =[] P(e)

eckE

P(JE)=1-T]1- P(e)

ecE

Figure 3.4: Probability computation for intersection and union of set of independent events E

An illustration of the generalized formula for the union is given in Figure 3.5, where three sets of in-
dependent events are displayed. There, the intersection of the complements of the sets X, Y, and Z is
equal to the gray area. The union of the sets is then equal to the complement of that area. The union
and intersection of events associated with random variable assignments is applied when calculating the
probabilities of query results after query evaluation.

3.2.2 Consistency

In the previous section, we introduced a random variable X which takes a value from the set {0, 1}, where
P(X =0) = 0.7 and P(X = 1) = 0.3. This random variable can be either 0 or 1, but not both at
the same time since the temperature values represented by the random variable are mutually exclusive.
This is the case for all random variables in the uncertain dataset; they can only be assigned one of their
values at the same time. “At the same time” in this case refers to “in the same set of possible worlds”.
Combining all possible worlds, every random variable will have been assigned each of its possible values
in at least one possible world. During query execution it is continuously checked whether a mutually
exclusive pair of values is being processed, in which case query processing of the current path will stop.
This will be illustrated by means of an example. Consider an uncertain forecast shown Figure 3.6 for a
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Figure 3.5: Venn diagram of the union of sets X, Y, and Z

single day which describes two possible worlds; one with a temperature of 10 °C and a wind speed of 4
Beaufort, and one with a temperature of 15 °C and a wind speed of 2 Beaufort.

<forecast>
<temperature rv="X=0">10</temperature>
<temperature rv="X=1">15</temperature>
<windspeed rv="X=0">4</windspeed>
<windspeed rv="X=1">2</windspeed>
</forecast>

Figure 3.6: Forecast with temperature and windspeed

If mutual exclusion is not taken into account, a query such as forecast[temperature=10 and windspeed=2]
would yield the forecast element depicted in Figure 3.6 since it contains child elements temperature
and windspeed that satisfy the predicate. However, there would not be a single possible world where
both those values occur simultaneously as is obvious from the random variable assignments belonging
to the hypothetical situation in which that would be the case; “X=0 X=1”. Those random variable
assignments are inconsistent due to assigning both 0 and 1 to X simultaneously. Trivially, any answer to
the probabilistic query is correct if and only if it occurs in a possible world, thus any inconsistent answers
cannot be a correct answer. During query processing, we have to verify this “hidden predicate” — that the
random variable assignment of the result must be consistent. In the above case, when the temperature
element X=0 is combined with the windspeed element X=1 in order to check if they satisfy the query
predicate, the consistency check will yield false which will cause the query processing to proceed with the
next combination of elements rather than continue with the inconsistent (partial) result. This pruning
of the search space is especially beneficial in larger documents with nested random variables, where
detecting inconsistencies as soon as they arise reduces the amount of possibilities by a large amount. The
implementation of the consistency function will be discussed in Section 3.5.2 section.

3.3 Uncertain Query Results

Because an uncertain dataset represents various different worlds, a query that is applied to it will generally
not yield a single answer. The only situation in which a single answer results from a query is when all
possible worlds would return the same answer to the given query, which can only occur when the query
does not depend on any of the uncertain values, or all the possibilities of the uncertain values yield
the same query result. In the general case, however, a query over uncertain data will not get a unified
answer but rather multiple answers with different probabilities. Consider again the weather forecasts
depicted in Figure 1.1 and a query expressed in natural language as “which days will have a temperature
higher than 16 degrees?”, i.e., the XQuery //forecast[temperature > 16]. It is clear from looking at

16



the data that neither day 1 nor day 2 is always the answer to this query due to possible temperature
values of 16 and 12, respectively. The exact answer can be computed easily when every possible world is
instantiated. Table 3.1 below displays the temperature values in every possible world, the query result,
and the probability of that result.

Day 1 | Day 2 | Query result | Probability
World 1 | 16°C 12°C empty 0.28
World 2 | 16°C 18°C day 2 0.42
World 3 | 20°C 12°C day 1 0.12
World 4 | 20°C 18°C | day 1 and day 2 0.18

Table 3.1: All possible worlds and query results

However, generating all possible worlds like this is quickly becomes unfeasible when processing uncertain
data with a more realistic size, considering the number of possible worlds represented by a probabilistic
document grows exponentially with respect to the number of random variables in the document. Without
possible world expansion, the result of a query over uncertain data cannot be displayed for each individual
possible world. Instead, there are two main types of result representation that we use in the created
prototype: (1) group by value and (2) group by random variable string. We will discuss each variation
below.

3.3.1 Group by Value

This representation scheme yields, for each unique value over all possible worlds, the probability of that
value. That is, the computed probability of a unique value v given the set of all possible worlds W is
Y {pw)|weWAvew}, where p(w) computes the probability of a single possible world w.

Applying this representation scheme to the query results displayed in Table 3.1 yields the result displayed
in Table 3.2. We have additionally sorted the output by descending probability.

Value ‘ Probability

day 2 0.60
day 1 0.30
empty 0.28

Table 3.2: Query results grouped by value

This scheme has both advantages and disadvantages. An advantage is that the number of possible results
has a clear upper bound in the number of unique values present in all possible worlds combined, which
is equal to the unique values in the uncertain document. This is generally much lower than the number
of possible worlds and will therefore be less likely to produce a large amount of results, each with an
extremely low probability. Similarly, grouping on unique values eliminates any value duplication which
can happen when predicates over uncertain elements are involved. In cases like that, there are many
combinations of worlds that satisfy the predicate and each could yield the same context node with a
different probability. In this scheme those would all be merged since they yield the same value, and their
probabilities would be properly added.

A second advantage is the ranked results (i.e., the values sorted in descending order by their probability)
quickly reveal the most probable query result values. When we do not group on unique values it is
still possible to sort the results by descending probability, but the same value can occur many times
with different probabilities thus the first result (i.e., with the highest probability) does not necessarily
correspond to the most likely value — the most likely value could occupy positions 4, 5, and 6 with a
combined probability that is higher than the element at position 1 of the sorted sequence.
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An important downside of this scheme is the fact it loses information about the query results. In particu-
lar, information regarding which values can occur together in the same (set of) possible worlds is entirely
lost. To illustrate this, consider Table 3.1 again. We can see day 1 and day 2 occur together in the set
of query results with a probability of 0.18, and day 1 and day 2 are the only answer to the query with
probabilities 0.12 and 0.42, respectively. This information is lost in Table 3.2, which only shows the total
probability of each value.

3.3.2 Group by Random Variable String

This representation scheme provides a result per unique random variable string. In some cases it is exactly
equivalent to the result given in Table 3.1, but in the general case all possible worlds are not generated
but rather various subsets of all worlds. When the same value occurs in multiple different world sets, it
will thus be duplicated in the query results with possibly different probabilities. This mainly occurs when
a predicate addressing uncertain elements is applied to some context node. That context node will then
be associated with all possibilities of the predicate that evaluate to true. As a result, this representation
will usually yield more distinct results than the style discussed earlier which displays probabilities per
unique value, but it will retain information regarding query results that occur in the exact same set of
possible worlds — since results occurring in the exact same set of possible worlds have the same random
variable string, which is used to group results in this representation. Any other overlap of query results
is not visible however, since computing all overlapping worlds of the answers boils down to computing all
possible worlds which we actively try to avoid.

<forecast>
<temperature model="X" pxml:rv="X=0">16</temperature>
<windspeed model="X" pxml:rv="X=0">5</windspeed>

<temperature model="Y" pxml:rv="X=1">14</temperature>
<windspeed  model="Y" pxml:rv="X=1">4</windspeed>
</forecast>

Figure 3.7: Example document illustrating results grouped by random variable string

As an example of a scenario where this scheme will be useful, consider the document in Figure 3.7. This
document integrates data from two different weather prediction models. We assume that only one of the
models is right at the same time, thus the values associated with one model are mutually exclusive with
the values associated with the other model. When we run a query that asks for all predicted values of a
forecast, i.e., /forecast/*, it is expected and convenient to group these result per model and thus obtain
only 2 possible results (each with temperature and windspeed elements). The representation scheme
discussed earlier which groups results by value, however, would provide 4 different results since there
are 4 distinct result values. When we apply the current scheme which groups values by their random
variable string instead, it yields only two results; “X=0” containing the entries of model X and “X=1"
containing the entries of model Y. This corresponds exactly to the possible worlds represented by this
document.

When used in conjunction with queries that involve predicates over uncertain elements, however, this
representation scheme results in unintuitive answers. A slightly altered version of the document in
Figure 3.7 will show this, depicted in Figure 3.8. If we execute the XQuery /forecast[temperature > 10]
in the depicted document, it is obvious to us that in each of 3 possible worlds the forecast of day 1 is the
only result. A reasonable result to this query, then, would be this forecast element with a probability of
1. However, this representation groups the answers by their random variable string, which is different for
each of the temperature values that are part of the predicate. Because of that, the answer will consist of
3 different results; each associating the forecast of day 1 with a different random variable string and thus
a different probability. In this trivial example we would identify that the 3 results yield the same element
and their probabilities sum up to 1, but in more realistic documents we cannot identify this and are left
with a large number of results pointing to the same element (the context node of a predicate), each with a
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small probability. In such cases, this representation scheme is inferior to the previously discussed scheme
where we group the results by unique value and display the total probability of each value. Would that
scheme be applied in this case, we would obtain the expected result; the day 1 forecast element with a
probability of 1.

<forecast day="1">
<temperature model="X" pxml:rv="X=0">14</temperature>
<temperature model="Y" pxml:rv="X=1">15</temperature>
<temperature model="Z" pxml:rv="X=2">16</temperature>
</forecast>

Figure 3.8: Example document to show a weakness of the per world set representation

3.3.3 Default Representation Scheme

Because we believe queries involving predicates over uncertain elements are a common occurrence, we
favor the representation scheme that groups results per unique value over the representation scheme that
groups results by their random variable string. The latter would result in a lot of duplicate values caused
by the many possible worlds that satisfy a predicate for any given context node. The approach that
groups results per unique value eliminates those duplicates with its grouping operation, and presents
each unique value and its total probability instead. Additionally, the results can be easily ranked in
order to identify the most likely result. However, the per world set representation scheme can be enabled
through a configuration option, all of which are detailed in Section A.1. Note that these representation
schemes are only relevant for non-aggregate queries. When an aggregate query is issued, the result
will always consist of the summary values that are applicable to the specific aggregation function. The
implementation and representation of aggregation queries is described in Section 4.

3.4 Supported P-Document Families

Kimelfeld et al. introduced different families of probabilistic documents in their work [1]. The families
are classified based on the distributional nodes that are used in the document. Important to note is that
since our implementation does not support any distributional nodes at all, any probabilistic document
containing them should first be translated to the format described in the previous section which uses
random variable assignment annotations. Before discussing which families of p-documents are supported,
we first describe the various families introduced in [1] below, in order of increasing complexity and
expressiveness.

det Probabilistic documents belonging to this family contain distributional nodes which are deter-
ministic; all child nodes are selected when an XML document is generated from the probabilistic
document. Thus, the child nodes implicitly have a probability of 1.

mux  The mutual exclusion distributional node will yield at most 1 of its child nodes when an instance
is created from the probabilistic document, since the children are mutually exclusive with each
other. We say at most instead of exactly since the sum of probabilities may be less than 1, in
which case it is not guarenteed that a child node is selected.

ind Child nodes of an independent distributional node are all independently included in a possible
instance with a certain probability. Including child n has no influence on the inclusion of child
n+ 1, and so on.

exp Ezplicit distributional nodes define probabilities per distinct subset of child nodes and chooses
exactly one of those subsets to be included in the generated XML document. Not all subsets
have to occur in the definition, and one of the subsets can be the empty set &.

cie A cie distributional node selects children based on the truth value of a conjunction of independent
events. Given independent boolean variables e, ...e, with associated probabilities, each child
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node is associated with a conjunction of the form a; A ... A a,, where each a; corresponds to a
boolean event e; or its negation —e;. The child node is selected when the conjunction is true. Each
child node can have different number of terms in its conjunction, and the used boolean events
can overlap between children and between different cie nodes in the document. This is different
from the other families, where no such interdependence exists; the previous distributional nodes
are independent from other distributional nodes, but cie nodes are not since they can share the
boolean events of other cie nodes.

A
o A
| °®
O —= I\
/| o o o
. . . B C D
B C D
o A
f °
O mux —_— /|\
/| e o o
B C D
g ? g X=0 X=1 X=2
. A
f °
QO ind /|\
/X o o
B C D
g ? g X=0 Y=0 70

Figure 3.9: Transformation of P-Document families to random variable assignment format

A single p-document can belong to multiple families. That is, a document which both mutual exclusion
distributional nodes as well as explicit distributional nodes belongs to both the muz and exp families. The
notation used by Kimelfeld et al. for such a document is PrXML{muexp} - Qur implementation supports
documents belonging to the class PrXML{imwedet.ind} - However, since the documents can only contain
random variable annotations and no distributional nodes these documents have to be transformed to the
proper format first. Figure 3.9 shows examples of the required transformations for each of the supported
families.

These transformations are straightforward. In all cases, the distributional node is removed and the
children are attached to first regular node in the ancestor chain. Depending on the type of distributional
node, we create random variables with assignments and probabilities corresponding to the semantics of
the distributional node. In the case of a deterministic distributional node we do not need to introduce any
random variables since the child nodes are always selected. For a mutual exclusion node, we introduce a
single random variable with as many assignments as the muz node has children. The different assignments
of a random variable are also mutually exclusive, so this corresponds exactly to the muz node semantics.
The children of an ind node are independent, thus we introduce a new random variable for each of
the children. Important to note in that case is the generated random variables are boolean random
variables; they have exactly 2 assignments. One assignment corresponds to the child being selected with
a certain probability p, and the second assignment corresponds to the child node not being selected, with
a probability 1 — p. This latter assignment is not visible in Figure 3.9 since it is an empty value but is
present in the document’s metadata section which describes the random variable assignments and their
associated probabilities. That is, it would contain entries for both “X=0” and “X=1", whereas “X=1"
would represent an empty element. The same holds for variables Y and Z in the referenced figure.
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3.5 Random Variable String Manipulation Primitives

Section 3.2 detailed how random variables are used to represent possibilities in an uncertain document.
It was mentioned that the random variable string is continuously checked for consistency. The implemen-
tation of this functionality in the plugin will be explained in this section. The combine and consistent
functions perform very basic operations on a random variable string, which is essential for the transforma-
tion process. These primitive functions are utilized in the transformations of other XQuery expressions,
which are discussed in Section 3.6. A transformed query will in turn consist of those transformed expres-
sions. This bottom-up transformation process, starting with random variable string primitive functions
that are incorporated in transformed expressions, which are joined together to form the transformed
XQuery is the logical result of evaluating the expression tree that represents the compiled original query
in a depth-first manner, where each node first transforms all its children (i.e., its sub-expressions). An
example of a transformed probabilistic query is presented in Section 3.8.

3.5.1 Combine

The combine function is used to build up the random variable string. It simply combines two random
variable strings to create their concatenation without duplicates. The implementation is fairly straight-
forward. A Set instance is utilized to make sure there will be no duplicate random variable assignments
in the resulting combined string. This proofed to be quicker than checking for existence in the resulting
string using the contains method of Java’s String class which yields true if the string contains another
String. The LinkedHashSet is chosen as the implementation of Set in order to retain the insertion order.
This is important when the random variable string is split up and inserted in a tree. If the hierarchy
is different due to a different unpredictable order the resulting tree might not reflect the structure of
the uncertain XML document. The implementation is shown in Figure 3.10. Some example inputs and
outputs of the function are listed below.

e combine(“X Y7, “X Y”) — “X Yy~
e combine(“X Y”, “X Z”) — “X Y 27
e combine(“X X”, “Y Y”) — “X y”

o combine(“X Y”, “A B”) — “X Y A B”

1| String combine(String s1, String s2) {

2 if(s1.isEmpty()) return s2;

3 if(s2.isEmpty()) return si;

4

5 Set<String> set = new LinkedHashSet<>();
6 for(String s : sl.split(” ")) set.add(s);
7 for(String s : s2.split(” ")) set.add(s);
8

9 Iterator<String> it = set.iterator();

10 String combined = it.next();

11 while(it.hasNext()) combined += " " + it.next();
12

13 return combined;

141 }

Figure 3.10: Combine function

3.5.2 Consistent
The consistent function is used to check whether or not the random variable string parameter contains

any inconsistencies. An inconsistency occurs when the same random variable is present in the string
but has two different assigned values. Thus, a string such as “X=0 Y=0 X=1" is inconsistent due to
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having two different assignments for the random variable X. Since a single possible world contains a single
value of each random variable, this random variable string does not correspond to any possible world
and is therefore not valid. The implementation splits the string on the space character and compares
every element to all following elements of the resulting list. The comparison searches for equivalent
random variable identifiers and different values, in which case it immediately returns false. If no such
combination can be found, the loop will end normally which means the input string was consistent, hence
true is returned.

1| public boolean consistent(String rvs) {

2 if(rvs.isEmpty()) return true;

3 String[] parts = rvs.split(" ");

4 if(parts.length == 1) return true;

5

6 for(int pl1 = 0; pl < parts.length; pl++) {

7 String[] vvl = parts[pl1].split("=");

8 for(int p2 = p1 + 1; p2 < parts.length; p2++) {
9 String[] vv2 = parts[p2].split("=");

10 if(vvi[0].equals(vv2[0]) && !vvi[1].equals(vv2[1]))
11 return false;

12 }

13 }

14

15 return true;

16| }

Figure 3.11: Consistent function

3.6 Representation of Intermediate Results

The probabilistic query — that is, the transformed input query — needs to keep track of all possibilities for
each expression used in the input query. For example, the path expression //forecast[temperature > 5]
results in two possibilities when evaluated in the document seen in Figure 3.6 which have to be stored in
a variable somehow along with their probabilities. Every expression in a probabilistic query potentially
has multiple possibilities with different probabilities. We call such expressions probabilistic expressions.
XQuery provides a map datatype which can be used to store information as key => value pairs. We
use such a map to represent a single possibility of a probabilistic expression. The map contains two
keys; ‘rv’ which points to the random variable string, and ‘v’ which points to the value of the expression.
A probabilistic expression is represented by a sequence of these maps. Thus, the result of the path
expression //forecast[temperature > 5] applied to the document Figure 3.6 would be represented in the
probabilistic query like in Figure 3.12, where the windspeed element was left out for brevity.

(
{ 'rv' : "X=0",
'v' : <forecast><temperature>10</temperature></forecast> },
{'rv' :ox=1,
'v' : <forecast><temperature>15</temperature></forecast> }
)

Figure 3.12: Probabilistic expression; a sequence of maps

This uniform representation of all probabilistic expressions as sequences of maps enables us to define how
any probabilistic expression has to be handled when used as a sub expression in other expressions. As
mentioned before, our implementation supports only simple path expressions which can contain predicates
with And, Or, and Comparison expressions, as well as atomic values like strings and numbers. We will
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now show how these expressions are created in more detail. We will discuss each of the supported XQuery
expressions listed in Table 3.3.

Expression Example

Atomic values | “Saturday”, 42, xs:date(“2014-02-28”)

Path /forecast/windspeed

And / Or (temperature = 5 and windspeed = 3) or rainfall < 50
Sequence (5, “Monday”, 10)

Comparison €1 > €2, €] > €2, €1 =€, €] X €9, €1 < €2

Arithmetic e1 + ea, e1 — e, ey ke, e div ey

Table 3.3: Supported XQuery expressions

3.6.1 Empty Value

XQuery uses the empty sequence as their empty, or NULL, value. Since some expressions can yield
an empty value, such as a path expression which does not match any elements, we need to be able to
represent an empty value as a probabilistic expression. That is done in the following way:

{ ] rvl . (N , IV' . () }
This expression makes sure our approach which regularly uses nested for loops does not break down when
it encounters an empty value. This empty value — implicitly a sequence of length 1 —, will be iterated

once. A regular XQuery empty sequence () has length 0 and would not be iterated at all, thus loops
nested within it are never reached.

3.6.2 Atomic Value

Simple atomic values like strings and numbers are translated to a probabilistic expression in a very
straightforward way. These expressions are static in the sense that they do not change depending on the
possible world they are evaluated in, thus have only a single possible value and their random variable
string is empty — signifying a probability of 1. For example, a number like 42 is transformed to a
probabilistic expression like this:

{'rvt 2 U v s 42 )

The string and number types are transformed in this natural way. Other types, such as xs:date, are
represented using their constructor instead in order to keep their type intact. For instance, the date type
denoting 14 April 2014 transformed to a probabilistic is shown below.

{ 'rv' ', 'v' o xs:date("2014-04-14") }

A full list of the XQuery atomic values and a comprehensive definition of all other types can be found in
[22].

3.6.3 Path Expression

A path expression is the standard way to navigate an XML document making it the single most important
expression to support, given any non-trivial query will contain at least one path expression. A path
consists of a number of steps, which in turns consist of an axis (e.g., child, descendant, parent), a node
test (e.g., “forecast” to select all <forecast> elements on the specified axis) and a list of predicates (e.g.,
“temperature > 107) to filter the selected elements. We need access to each element matched by every
step of the path in order to apply the combine and consistent functions introduced earlier. This is what
XQuery’s for loop does, which allows us to insert the mentioned functions and check for consistency at
each individual matching element. If the random variable string is inconsistent, we do not search any
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further (i.e., we do not apply any following steps but immediately consider the next matching element).
In order to transform the path expression, we string together the for loops of the steps and finally return
a map element containing both an rv element to store the random variable string, as well as a v element
which holds the value of the expression (i.e., the XML node(s) resulting from the path expression). The
transformation of a path expression /forecast[temperature > 10] yields the XQuery snippet displayed in
Figure 3.13.

for $v1 in /forecast
let $r1 := $vi/@rv
where consistent($r1)

let $v2 := ... (: transform temperature > 10 :)

for $v3 in $v2
let $r2 := combine($r1, $v3('rv'))
where consistent($r2)
where $v3('v"')
return { 'rv' : $r2, 'v' : $v1 3}

—
— O © 00O Utk W~

—_

Figure 3.13: Transformation of a Path expression

The predicate generation was left out for space considerations. The predicate is transformed to a prob-
abilistic expression, meaning it will be a sequence with possibly more than 1 value, hence we apply the
for loop to iterate every value it contains and return the context element ($v1 in Figure 3.13) to which
the predicate was applied for each value which yields true, checked by where $v3(‘v’). The predicate in
this case is a comparison (temperature > 10) which will be discussed next.

3.6.4 Binary Expression

And, Or, Arithmetic, and Comparison expressions are mentioned separately but are roughly equivalent
on a higher level; each of the expressions applies an operator to two sub expressions to produce a single
output expression. Any binary expression is of the form e; ¢ e5, where e; and ey are expressions and ¢ is
some binary operator. The transformation of an original expression e; and e, which applies the binary
operator And to the input expressions yields the snippet of XQuery displayed in Figure 3.14. Binary
expressions can act as sub expressions for other binary expressions, which means this simple structure
allows an arbitrarily deep nesting of such expressions, providing the ability to create complex expressions
and predicates.

Technically, an expression such as e; or ey or ez is modeled as a single Or expression with 3 operands
in BaseX. Our Binary Expression follows suit, thus the terminology binary is not entirely accurate since
our binary expression supports 2 or more operands.

let $el
let $e2

(: transform el :)
(: transform e2 :)

for $x in $el
for $y in $e2
let $r1 := combine($x('rv'), $y('rv'))
where consistent($rv)
let $v1 := $x('v') and $y('v")
return { 'rv' : $r1, 'v' : $v1 }

© 00 O U W N+

Figure 3.14: Transformation of a Binary expression

The code displayed in Figure 3.14 is like this for the general case. However, we have defined special cases
for the And and Or expressions. For an Or expression we do not build the Cartesian product like we do
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for other binary expressions, since we do not have to combine their random variable strings or check the
consistency of each combination. We do not have to do this because of the definition of an Or; it yields
true when any of its operands is true. Thus, if Figure 3.14 would display the XQuery snippet of an Or
expression, it would immediately return a sequence of $el and $e2, mapping each value to its boolean
value after their declarations using our bool() function, discussed in Section 3.7.

In the case of an And expression, it is not always needed to evaluate all its operands in order to determine
the value of the expression. That is, we know that the value of an And expression such as e; A--- A ey,
is false whenever any of its operands is false. To that end, we add code that handles that case in two
different positions in the generated XQuery snippet; between each operand expression and within the
nested for loops. For an And expression with 2 operands e; and es, the generated snippet in Figure 3.15
reveals the additional code. Notice that the optimization steps belonging to ey are omitted for clarity,
but are equivalent to the ones for e;.

1| let $el := ... (: transform el :)
2

3| return if(every $x in $el satisfies not($x('v')))
4| then $el else

5

6| let $e2 := ... (: transform e2 :)
TG )

8

9| for $v1 in $el

10 let $r1 := $vi('rv")

11

12 return if(not($vi('v')))
13 then { 'rv' : $r1, 'v' : false() } else

14
15 for $v2 in $e2
16 (: ...

Figure 3.15: And expression with added optimizations

The first if expression checks if all the values contained in the probabilistic expression e; evaluate to
false — i.e., not($x(’v’). If that is the case, we can return e; as the result to the entire And expression;
the value of the expression will be false in all worlds described by e;. The same holds for any of the
other operands of the And expression.

The second optimization is performed inside the for loops that would build the Cartesian product of the
operands. If any single value evaluates to false we return the current random variable string alongside
the value false; i.e. we do not continue to loop through any following operands. The reasoning is
similar to the earlier case, with the difference that we now look at individual values rather than an entire
sequence.

When none of the added if expressions evaluated to true, it is clear that the Cartesian product of the
operands is created, which will cause performance problems when the sequences that serve as operands
contain many elements.

3.6.5 Sequence Expression

A sequence is an ordered list of zero or more items. Essentially every datatype in XQuery is a sequence.
That is, even single values are sequences of length 1. For example, the single value 42 responds to an
indexing operation just like any other sequence; 42[1] simply yields 42, and any index not equal to 1 yields
the empty sequence. Further, a sequence of length 1 containing an item is considered equivalent to the
item on its own [23]. Note the indices of XQuery sequences are 1-based, rather than the more common
0-based indices that other programming languages use for their container types. The sequence expressions
referred to in this section are sequences of at least 2 items. This is akin to how BaseX implements the
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class they use to represent such a “true” sequence. The sequence type is supported mainly since the
BaseX compiler creates them in certain situations.

For example, BaseX will simplify an Or expression such as temperature = 5 or temperature = 10 to
temperature = (5, 10) when possible. To that end, we have to support the sequence expression. And
obviously, we now allow the usage of the sequence expression directly in the input query as well. The
sequence cannot only contain atomic values such as numbers or strings, but rather any other type.
For instance, we could specify a predicate that yields only those forecast elements which have a tem-
perature equivalent to the temperature on any of the following 2 days using a sequence expression:
//forecast[temperature = (fs::forecast[1]/temperature, fs:forecast[2]/temperature). The notation fs::
is shorthand for following-sibling::, and is not part of official XQuery but was added to the plugin.
Section A.1.2 describes that shorthand and other shorthands that were added.

let $el
let $e2

(: transform el :)
(: transform e2 :)

1
2
3
4| return ($el, $e2)

Figure 3.16: Transformation of a Sequence expression

The implementation of the sequence expression is very straightforward; we transform all items and yield
a sequence containing the results of the transformations. We do not have to create a Cartesian product
and check the consistency of the various elements when combined with each other, since the sequence
is more similar to an Or expression rather than an And. Notice that the transformation described in
Figure 3.16 is performed on a sequence with exactly 2 elements, but the approach is applied to sequences
of arbitrary size.

3.6.6 Function Expression

Apart from aggregation functions which are discussed in Section 4, other functions are supported as well
when their output is not influenced by uncertain elements. For example, the position() function will
not work properly in the context of uncertain elements when applied as-is since the position of elements
surrounded by uncertain elements is uncertain as well. If one or more uncertain preceding siblings of an
element do not exist, for example, the position of the node itself is moved up a few indices compared to
the case where they do exist. Therefore, a function like position() which is dependent on the context
generally will not work properly. However, a function like data() that extracts atomic values from an
element will have no issues with uncertain elements since it just transforms an uncertain element to its
data value. There are more functions similar to data(), like string() to convert the argument to a string
and number() to convert the argument to a number. In such cases, we can apply the function without any
other modifications in a straightforward manner, depicted in Figure 3.17 for the data() function which
has a single argument e;.

let $el := ... (: transform el :)

for $v1 in $el
let $r1 := $vi('rv")
let $v2 := fn:data($vi('v'))
where p:consistent($ri1)
return { 'rv' : $r1, 'v' : $v2 3}

N OO W N

Figure 3.17: Transformation of the fn:data() expression

In general, functions that are independent of their context and apply a simple transformation to their
arguments are supported by our implementation. However, we did not extensively test all built-in XQuery
functions due to their sheer number [24].
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3.7 Intermediate Result Manipulation Functions

We have defined a number of functions that operate on the intermediate results, which are all sequences
of maps. Their application can be seen in the probabilistic query that is presented in Section 3.8. Their
use cases and implementations will be described below.

3.7.1 Empty

The empty() function replaces any empty sequence with a sequence that contains a single element; an
empty map value. The reasoning for this is provided in Section 3.6.1. We apply the function to all
probabilistic expressions, since each yields a sequence of maps which can possibly be empty.

3.7.2 Boolean

For the Or expression we have created a utility function that takes a sequence of maps as input, and
outputs a sequence containing the maps with all values replaced by the boolean representation of the
map’s original value. We added this since our Or expression does not explicitly apply the or operation; the
result of an Or expression is simply a sequence of operand values. This does not make a difference when
using the Or expression as a predicate, since the values will then be implicitly converted to a boolean
when applied in a Where clause. However, when the Or expression is used as the root expression of a
query we want to return their boolean values thus we do the transformation. If the value is any of false,
0, “”, or () it will be false, otherwise true.

3.7.3 Group

We apply grouping using a custom group() function. It is used to group unique elements together. We
choose for a custom method instead of XQuery’s built-in group by operation due to the latter grouping
different database nodes together when they have the same atomic value. For example, the two distinct
database nodes <x>1</x> and <y>1</y> would be grouped together when using the native group by. It
turns out the native group by function compares contents of database nodes, thus if their content is the
same they are grouped together. In the custom group function we first check if we are dealing with a
database node and if so, we compare their unique identifiers. Otherwise, we use the hash() function as
well. We do not want to group distinct database nodes with the same values together, since that would
produce incorrect results for the Count aggregation function. We count every grouped value as 1, which
is not correct when n distinct nodes are all grouped together; their count is obviously n.

3.7.4 XML

A sequence of maps cannot be output as-is, the XML DBMS does not know how to serialize its contents.
We have therefore defined a xml1() function that will transform the sequence of maps into valid XML.
Additionally, the function will calculate the probability belonging to each value and include it as a prob
attribute. The random variable strings belonging to each value are used to compute the probability and
are then omitted from the result — although it is possible to include them via a configuration option
discussed in Section A.1.

The XML format we use is straightforward; each map is transformed to an element containing the map’s
value as well as the computed probability as an attribute. The resulting elements are wrapped in a parent
element and returned. The format is displayed below in Figure 3.18.

3.8 Probabilistic Query

When the transformation rules described earlier are applied to an input query which does not include
any probabilistic awareness, a new query is generated which does take the probabilistic nature of the
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<results>

<result prob="...">...</result>

<result prob="...">...</result>

<result prob="...">...</result>
</results>

Figure 3.18: Output XML format

uncertain data into account. The plugin rewrites the input query quite substantially to introduce
this probabilistic awareness. An example of such a probabilistic query is displayed in Figure 3.19 be-
low. The query was created by transforming the input query count(/forecasts/forecast[temperature >
fs::forecast[1]/temperature]) which selects only those forecast elements which have a temperature that
is higher than the temperature of the following day’s temperature. The syntax contains a custom axis
shorthand, fs::, which is short for following-sibling::. A number of custom syntax shortcuts are listed
in Syntax Shorthands. The query in Figure 3.19 applies the transformations described earlier recursively,
yielding a nested structure which traverses the document using the path specified and applies the predi-
cates given by the user. While traversing, the random variable string is built up, stored in an $rx variable,
and is continuously checked for consistency. Values belonging to matching, consistent elements are stored
in a map alongside their random variable string, referenced as $vX values in XQuery.
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declare namespace pxml = 'db.ewi.utwente.nl';

import module namespace p = 'org.basex.modules.pxml.PXML"';
let $doc := db:open('pxml', 'forecasts.xml')
let $v1 := (
let $v2 := (
for $v3 in $doc/child::forecasts
let $r1 := string($v3/@pxml:rv)
for $v4 in $v3/child::forecast
let $r2 := p:combine($ril, string($v4/@pxml:rv))
where p:consistent($r2)
let $v5 := (
let $v6 := (
for $v7 in $v4/child:: temperature
let $r3 := p:combine($r2, string($v7/@pxml:rv))
where p:consistent($r3)
return { 'rv' : $r3, 'v' : $v7 3}
)
let $v7 := (
for $v8 at $v8_p in $v4/following-sibling::forecast
let $r3 := p:combine($r2, string($v8/@pxml:rv))

)

where p:consistent($r3)
where $v8_p = 1
for $v9 in $v8/child:: temperature

let $r4 := p:combine($r3, string($v9/@pxml:rv))
where p:consistent($r4)
return { 'rv' : $r4, 'v' : $v9 }
)
for $v8 in p:empty($v6)
let $r3 := p:combine($r2, $v8('rv'))

where p:consistent($r3)

for $v9 in p:empty($v7)
let $r4 := p:combine($r3, $vo('rv'))
where p:consistent($r4)
let $v10 := $v8('v') > $vIo('v")

return { 'rv' : $r4, 'v' : $vio }
)
for $v6 in p:empty($v5)
let $r3 := p:combine($r2, $v6('rv'))
where p:consistent($r3)
where $v6('v')
return { 'rv' : $r3, 'v' : $v4 }
)
for $v3 in p:empty($v2)
let $r1 := $v3('rv'")
let $v4 := $v3('v")
return { 'rv' : $r1, 'v' : $v3 }

return p:xml(p:group($vl))

Figure 3.19: Probabilistic query resulting from transforming the input query
/forecasts/forecast[temperature > fs::forecast[1]/temperature]
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4 Aggregate Queries

4.1 Motivation and General Approach

In contrast to regular queries on probabilistic data where the result consists of unmodified elements from
the input document, aggregate queries by definition apply an additional function to the set of resulting
elements which performs the aggregation — the aggregation function. XQuery supports [24] the five most
common aggregation functions; Count, Sum, Min, Max, and Avg, all with well-known semantics. These
functions map a sequence of values to a single value. This sounds trivial, but when the input sequence
consists of uncertain data it is usually impossible to define a single output value. In terms of the possible
worlds concept; each world yields an aggregate value which is potentially different from values yielded in
all other possible worlds. While this is similar to non-aggregate queries, there is one important difference.
The possible results of a non-aggregate query are limited to elements in the input document. For example,
given an input document like the one in Figure 4.1 and a query to select all values (i.e., //value) any
possible world can only contain some combination of the 10 possible <value> nodes.

<values>
<value rv="A=0">5</value>
<value rv="A=1">39</value>
<value rv="B=0">15</value>
<value rv="B=1">1</value>
<value rv="C=0">7</value>
<value rv="C=1">83</value>
<value rv="D=0">56</value>
<value rv="D=1">123</value>
<value rv="E=0">30</value>
<value rv="E=1">6</value>

</values>

Figure 4.1: Values representing 2° possible worlds

More precisely, any of the 32 possible worlds contains exactly 5 <value> nodes; one for each of the 5
random variables A ... E. Moreover, we can accurately predict the proportion of possible worlds a value
is present in by just looking at its probability. That is, a <value> node with probability p will be part of
a subset W’ of all possible worlds W whose sum of probabilities is exactly p:

p= Z prob(w)

weWw’

Thus, an answer to the query //value in this case would be all <value> nodes and their probability, since
that corresponds very closely to the result of applying the query to all possible worlds. Per the equation
above, summing the probabilities of possible worlds containing a specific <value> node always yields the
probability of the <value> node we return as a response to the query. The limited possibilities for the
resulting values can be illustrated by looking at the possible distinct values of the query result. Consider
all 32 possible worlds represented by the document in Figure 4.1. The number of distinct values over
all worlds is just 10; equivalent to the number of distinct values in the input document. In contrast,
the aggregate query sum(//value) over the same document will not yield just 10 distinct values, but 32;
one for each possible world. Yielding a semantically equivalent result for a Sum query would require
calculating all possible values for the Sum function.

There exists no efficient algorithm to yield all possible values without explicitly performing the Sum
operation in all possible worlds which is no option given the scalability problems described earlier, due
to exponential growth of the number of possible worlds. In case all values could be efficiently generated
from the input values, there is the issue of representing the resulting values. As described above, an
aggregation function applied to an uncertain input sequence representing n possible worlds can yield up
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to n distinct values. In cases like that, where sense has to be made of a large set of numbers, it can be
useful to instead yield a summary of the numbers. That is, one can describe a large sequence of numbers
using properties which can be extracted from the sequence such as:

e Minimum value

o Expected value

¢ Maximum value

e Variance

e Standard deviation

These values describe an arbitrarily large set of numbers in a concise way fairly accurately. It is such
a summary that we aim to deliver as an answer to an aggregate query on probabilistic data. A hard
requirement is to be able to yield such a summary without having to iterate all possible worlds.

It is important to note that the upper bound of n distinct values for an aggregate query over n possible
worlds is only true for Sum/Count/Avg aggregate functions. Min and Max behave differently, in that
they map a sequence of values to some element that is part of the input sequence. As a result, the
upper bound of a Min/Max aggregate function is defined in terms of the number of distinct values
in the input document rather than in the number of possible worlds. This property makes that the
implementation of Min/Max is very different than Count/Sum/Avg. The rest of this section will describe
the implementations in detail.

4.2 Tree Data Structure

We introduce a data structure to store the intermediate query results (i.e., the results to the query before
applying the aggregation function). It is a simple tree data structure which has 2 node types; RVars
representing random variables, and Nodes which represent an XML element containing a value. An RVar
has 1 or more Node children and has exactly 1 Node parent. A Node has 0 or more RVar children and 0
or 1 RVar parent. When a Node has no RVar parent, it is the root of the tree. Additionally, a Node stores
the probability of itself given its ancestors exist, and it contains the values associated with it. The root
of the tree will have probability 1, since it does not belong to any RVar. The tree hierarchically stores
intermediate query results based on their random variable string. The two types of nodes are required
since the semantics are different between them. As defined earlier, the different valuations of one random
variable are mutually exclusive. This translates to only 1 of the Node children of an RVar being true at
the same time. On the other hand, all RVar children of any Node do exist at the same time. Therefore,
it was necessary to keep track of the random variables associated with the values to know which values
are mutually exclusive and which can exist simultaneously.

Consider an example of a simple probabilistic document with nested random variables in Figure 4.2 and
a query which calculates the sum of all the <leaf> values: sum(//leaf). In order to construct the tree,
the non-aggregate part of the query is executed first to yield all <leaf> nodes and their random variable
strings. The random variable string of a <leaf> element is its random variable attribute combined with
the random variable attribute of all its ancestors. The tree is then built from these <random variable
string, value> tuples. The random variable string (e.g., “X=0 Y=0") is processed from left to right to
determine a value’s destination node. The resulting tree is displayed in Figure 4.3, where O represent
RVars and @ represent Nodes.

Such a tree is constructed for each aggregation function, with which the various summary values are
calculated. FEach aggregation function uses a slightly different implementation of the tree, which was
inevitable since different operations are applied to a sequence of values at each node depending on the
aggregate function (addition for Count/Sum and obvious operations for Min, Max, and Avg). In addition,
the summary values are not the same for all functions. In the Min/Max case we can go beyond just
summary values and are able to yield the top-k result values as well. That is, we return the actual result
values to the aggregation function, ordered by descending probability and limited to an arbitrary number
k. For Count/Sum/Avg yielding the top-k result values was not possible due to the characteristics of
those aggregate functions, specifically the fact the number of distinct result values for those functions can
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<root>
<branch rv="X=0">
<leaf>2</leaf>
<leaf>12</leaf>
<leaf rv="Y=0">18</leaf>
<leaf rv="Y=1">22</leaf>
<leaf rv="Z7=0">16</leaf>
<leaf rv="Z=1">25</leaf>
</branch>
<branch rv="X=1">
<leaf>5</leaf>
<leaf>17</leaf>
<leaf rv="A=0">23</leaf>
<leaf rv="B=0">1</leaf>
<leaf rv="B=0">7</leaf>
<leaf rv="B=0">20</leaf>
</branch>
</root>

Figure 4.2: Document with nested random variables

@,12) — Q o —(5,17)
RN / \
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Figure 4.3: Tree structure of values before aggregation

grow as large as the number of possible worlds and there is no way to efficiently produce each possible
value, or just the k most likely ones.

4.2.1 Tree Confidence

A property of the tree that is shared among all implementations is the computation of the confidence
of the tree. The confidence corresponds to the probability of the union of the random variable strings
associated with the leaf nodes in the tree. The computation of this probability is defined recursively in
our tree structure. In order to efficiently compute it, we use the property AU B = (A°N B€)¢, i.e. the
union of two independent sets is equal to the complement of the intersection of their complements. We
have discussed this property in Section 3.2.1.

We use this principle to compute the confidence value of any {Node, RVar} tree by defining a recursive
confidence function on either type of node. The confidence of an RVar node is defined as the sum of
confidences of its Node children. Taking the sum is allowed since the child nodes are mutually exclusive.
For a Node we apply the union property described above. That is, the confidence of a Node is computed
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by taking the complement of the multiplication of the confidence complements of all its RVar children,
multiplied with the probability of the Node itself — the probability associated with the single random
variable assignment that the Node represents, for example “X=0". If a Node has no RVar children, the
confidence is equal to this probability. Formally, the confidence is thus calculated as below. In this
equation, n denotes a Node, r denotes an RVar, prob(n) denotes the probability of a Node n, n.R denotes
the set of RVars belonging to Node n, and r.N denotes the set of Nodes belonging to RVar r. The
formulas are based on the work of Koch and Olteanu [16], who have defined a similar tree structure —
defined as a ws-tree — in their research on conditioning probabilistic databases. When defining our tree
structure we were not aware of their work yet.

prob(n) ifnR=0o

conf(n) = prob(n) - (1 — J] 1— conf(r)) otherwise
ren.R

conf(r) = Z conf(n)

ner.N

Figure 4.4: The recursive computation of the confidence in a {Node, RVar} tree

The confidence is used in the summary computation of the Min and Max aggregation functions, as well
in non-aggregate queries to calculate the probability of each unique value. In such a non-aggregate case,
a unique value can have multiple associated random variable strings which each yield the specific value.
In order to calculate the overall probability of the value —i.e. the confidence of the set of possible worlds
that contain that value — we build a tree structure filled with all the random variable assignments and
compute its confidence. The resulting probability is then equal to the sum of probabilities of possible
worlds the value exists in. The remainder of this section will describe the procedures we use to yield the
summary values for each of the aggregation functions.

4.3 Count and Sum

The aggregate functions Count and Sum are similar, in that both use the addition operation to aggregate
their input values. The only relevant difference is Count will first convert any input value to 1, unless
it is the empty sequence (), which will count as 0. Thus, Count is essentially equivalent to Sum with
all input values being 1. As a result, we can use the same approach to calculate the summary for
either aggregate function. The algorithms to deliver the various values of the aggregate summary will be
described below.

4.3.1 Extreme Values

The extreme values (i.e., the minimum value and the maximum value of the aggregate function over all
possible worlds) can be computed from the tree using a straight-forward algorithm which is recursively
defined and ends up traversing the tree bottom-up, as the extreme value of any Node or RVar depends
on the extreme value of its children. The algorithm for the minimum value will be discussed next, note
that the algorithm for the maximum value is analogous when replacing all occurrences of min with max.
The minimum value of a Node consists of the sum of the Node’s own values and the sum of the minimum
values for each of its RVar children. The minimum value of an RVar is obtained by selecting the lowest
minimum value from all its Node children. A “missing” Node child, which is a possible valuation of the
random variable not present in the tree (it did not match the query), counts as 0. This is required since
both Count and Sum applied to the empty sequence yield 0 as well.

An example of a missing Node in the tree of Figure 4.3 is the <value> element with random variable string
“X=1 A=1". An RVar without missing children is considered complete. In the tree above, A and B are
incomplete whereas X, Y, and Z are complete. More formally, let f,,(n) and f,,(r) be the functions
yielding the minimum or maximum value for a Node and RVar, respectively, thus op € {min, max}. Let
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n.V be the set of all values associated with a Node n, n.R the set of RVar children of that Node, r.N
the set of Node children of an RVar r and op be the function that applies the specified operation to a
sequence of numbers. The extreme values are then computed as follows.

fop(n) = Z v+ Z fop(r)

ven.V ren.R

() = op({ fop(n) | n€r.N }) if RVaris complete
PETT) op({0y U] fop(n) [ n €N} otherwise

Figure 4.5: Minimum and maximum value computation for Count and Sum

4.3.2 Expected Value

In order to calculate the expected value, the tree structure is not required. The hierarchical organization
of the random variables and values is irrelevant; we only need the probabilities and values of the results
of the query before the aggregation is applied. First, consider the definition of the expected value in the
context of possible worlds. Let W be the set of all possible worlds represented by the document to which
an aggregation query ¢ is applied, with the aggregation function being either Count or Sum. The value
resulting from applying ¢ to a possible world w is denoted by ¢(w). The probability of a world is denoted
by prob(w). Then, the expected value of query ¢ is defined as follows:

E(g) =) _ prob(w) - q(w)

weWw

Figure 4.6: The expected value of a Count/Sum query ¢

While our tree does not contain the query result for all possible worlds, it does contain the probability
and value of all individual elements which together make up all possible worlds. For each value, the
probability of the value is exactly equal to the sum of probabilities of all possible worlds the value is
present in. In each of the worlds w that contain the value, it contributes prob(w) - value to the expected
value of that world, like all values of w do. That is, since g(w) is the sum of all values existing in world
w, the expected value of a single world w, denoted by E(w) can be written as in Figure 4.7 below.

E(q,w) = prob(w) - q(w)
=prob(w) - (v1 +va + ... +vy)

= prob(w) - v1 + prob(w) - vy + ... + prob(w) - v,

Figure 4.7: The expected value of query ¢ for a single possible world w

On the last line of the equation, it is shown that each value v present in world w is weighted by the
probability of w and summed to get the expected value of w. The probability which is stored in our
tree is equal to the sum of probabilities of possible worlds the value appears in. We showed each value
contributes prob(w) - value to the expected value of a possible world w. Since the probability in our tree
represents the sum of n possible world probabilities, the multiplication of probability and value equals
the total contribution of the value to the expected values in all worlds it is present in. Since the tree
stores all values and probabilities which together make up all possible worlds, we can obtain the expected
value E(q) of all worlds for query ¢ by taking the sum of all these products. As mentioned earlier, this
sum of products can be computed directly from the results of the non-aggregate part of the query. It can
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also be computed when the tree has been built, in which case the expected value can be defined on Node
and RVar as follows, where n.V are values of Node n, n.R are RVars of Node n, and ».N are Nodes of
RVar r:

E(n)= > v+ > E()

ven.V ren.R
E(r)= Z prob(n) - E(n)
ner.N

Figure 4.8: The expected value of Node and RVar

4.3.3 Variance and Standard Deviation

The expected value combined with the extreme values does not characterize a sequence of numbers
properly, as it does not accurately describe the distribution of the values in its domain. We cannot
infer from the given three properties alone if the values are grouped at either the minimum or maximum
value but rarely at the expected value itself, spread evenly along the entire range between the minimum
and maximum value, or if most values are spread around the expected value with only few values at
the minimum and maximum. All three such series will have similar minimum, maximum and expected
values. Figure 4.9 illustrates this using histograms of arbitrary sequences in the order described. Note
that for the illustration we assume a simple case of unweighted items and thus the expected value is the
same as the average of all items.

Wm HW FHTWWW 0 Wmh 0
min avg max  min avg max  min avg max

Figure 4.9: Histograms of 3 sequences with the same minimum, average, and maximum values

It is clear from the histograms these sequences are distributed in very different ways, yet yield the exact
same minimum, average, and maximum values. In order to differentiate between these, it was necessary
to introduce additional properties which describe the spread among the values; the variance and its square
root; the standard deviation. The variance would help distinguish between the cases shown in Figure 4.9,
as the variance would be the highest for the left case, average for the middle case, and the lowest for the
right case. Given the query sum(//value), we are interested in calculating the variance using the tree data
structure which should be equivalent to the variance of the set of query results of all possible worlds. In
the definition of the variance var(q) of query result ¢ below, the result of applying query ¢ to world w is
denoted by ¢g(w), with W being the set of all possible worlds. The probability of world w is denoted by
prob(w).

In the tree structure, the variance and expected value are defined recursively for Node and RVar. In the
definitions, r.N is the set of Nodes belonging to RVar r, n.R is the set of RVars belonging to Node n,
and n.V is the set of values associated with Node n.

4.3.4 Shannon Expansion
For Count/Sum/Avg aggregates, we perform Shannon expansion on the random variable strings associated

with each unique value before we build the aggregation tree of all values. This was necessary for the correct
computation of summary values in cases where a query result consisted of independent random variable
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var(q) = Z prob(w) - (q(w) — E(q))?

e
= El(g - E(9))]

= El¢* — 2¢E(q) + E(q)?]

— E(¢%) — 2E(q)E(q) + E(¢?)

= E(¢°) — E(q)*

Figure 4.10: Variance of a query g over possible worlds W

var(n) = Z var(r)

ren.R

E(r?) = Z prob(n) - (E(n)? + var(n))

ner.N

E(n)= > v+ Y E(r)

veEN.V ren.R

E(r)= Z prob(n) - E(n)

ner.N

Figure 4.11: Recursive computation of variance in the tree for Node n and RVar r

assignments pointing to the same result element. We will provide a small example that illustrates this
scenario, and follow it up with an explanation of Shannon expansion and how it solves the problem.

Consider the XML document in Figure 4.12 and a simple aggregation query that counts the number of
forecast elements which contain a temperature child with a value greater than 10 — count(//forecast[temperature
> 10]). The forecast element contains two independent temperature child nodes, both of which satisfy

the predicate if they exist.

<forecast>
<temperature pxml:rv="X=0">11</temperature>
<temperature pxml:rv="Y=0">12</temperature>
</forecast>

Figure 4.12: Shannon expansion requirement example

The child nodes are independent since they are annotated with different random variables, X and Y. Both
child nodes have a probability < 1 thus there exist random variable assignments “X=1" and “Y=1", which
correspond to empty values. That is, the number of possible temperature children for the forecast element
ranges from 0 to 2. Without these alternatives, the temperature nodes would not be uncertain values
since they would always exist.

Executing the given simple aggregation query — count(//forecast[temperature > 10]) — will yield the
following intermediate query result, where we have grouped on unique values which is the default for our
implementation. Notice it provides the forecast element, with both associated random variable strings

36



“X=0" and “Y=0".

{ 'rv' : ("X=0", "Y=0"), 'v' : <forecast> ... </forecast> }

Figure 4.13: Intermediate query result

When we compute the aggregation values and omit Shannon expansion, the aggregation tree is created
by inserting the random variable strings of each unique value into the tree, associated with a value. In
case of a Count aggregate, this value is always 1 (we do not insert the empty value if it is part of the
intermediate query result, which would have value 0). The given example query yields a very simplistic
tree which represents only a single value, displayed in Figure 4.14.

®
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Figure 4.14: Aggregation tree when no Shannon expansion is performed

In this specific case, the wrong values are computed because the aggregation tree contains the independent
leaf nodes “X=0” and “Y=0" which satisfy the predicate of the given query (i.e., temperature > 10).
These leaf nodes both have the value 1 associated with them, the value obtained from transforming the
<forecast> element to the number 1 since we are dealing with the Count aggregation function. Then,
using algorithms discussed in Section 4.3, the summary values are calculated and since the leaf nodes are
independent they will both be counted towards a maximum of 2, even though with 1 forecast element in
total the maximum cannot be higher than 1. Similarly, errors are introduced in the computation of the
other summary values.

In general, this problem arises whenever an expression used in a predicate yields multiple nodes with
independent random variable strings for a single context node. A special case that usually results in
multiple independent nodes is any predicate that uses a wildcard path, i.e., /path[* > 5], where any child
element of /path that satisfies the comparison will be an intermediate result value pointing to the same
path element.

Shannon Expansion Theorem We can avoid the erroneous aggregation values by using Shannon
expansion, which decomposes the independent random variable strings into mutually exclusive strings.
Shannon expansion states that for any Boolean function f consisting of variables X; ... X, the following
holds, where X{ denotes the complement of X:

f(X17X27"'7X'n) =X f(17X277Xn)+X{f(O7X277X'n)

Figure 4.15: Shannon expansion theorem

That is, any boolean expression can be partitioned into disjoint sub-expressions by extracting one of its
variables and assigning it a truth and false value, each combined with the original function where the
variable is set to 1 and 0, respectively. This creates two mutually exclusive sub-expressions of which the
union is equal to the original expression. We will show an example using the random variable strings
from earlier in this section; “X=0" and “Y=0”. The corresponding boolean expression will be denoted
as Xo UYy. Applying Shannon expansion with respect to Xy yields (Xo N (1UYp)) U (=Xo N (0U Yp)).
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This expression can be simplified further. We will look at both operands of the second U operator, thus
the following two sub-expressions:

1. XoN(1UYo)
2. = XpN (OUYQ)

Looking at (1), we identify that 1 UYy = 1 and Xo N1 = Xo. That is, part (1) of the expression is
simplified to Xy. The second part can also be simplified in a similar way, using 0 U Yy = Y{, to become
= XoNYy. Thus, the resulting expression of the Shannon expansion is a union of disjoint sub-expressions;
Xo U (=X NYp). Translating that back to random variable strings, we obtain “X=0” and “X=1 Y=0",
given that the range of X is {0, 1} and thus =Xy = X;. This leads to the following aggregation tree,
where all leaf nodes are mutually exclusive:

®
7N

--0-0-0

Figure 4.16: Aggregation tree when Shannon expansion is performed

Notice that if the size of X’s range is more than 2 this becomes more complex. Consider the case when
X has a range of {0, 1, 2} instead. =X then corresponds to X; U X3. Then, Xy U (=X, NYy) expands
to Xo U ((X1UX2)NYp), or XoU (X1 NYp)U(X2NYp), ie. {“X=0"4X=1 Y=0",“X=2 Y=0"}.

These strings are mutually exclusive, thereby making it impossible for the aggregation algorithm to select
multiple leaf nodes simultaneously for the same result value which yielded the incorrect values. We have
implemented Shannon expansion and apply it to the random variable strings of each unique value that
results from the non-aggregate part of a query and insert the set of resulting strings into our aggregation
tree. Each leaf will be associated with the value that we grouped on, i.e., each leaf will have the same
value. Since the leaves are mutually exclusive, only one of them can be selected at any time. The process
of Shannon expansion will also fix any corruption in the tree, something that is discussed in Section 5.3.1.
Because we perform Shannon expansion on each unique value but not on the entire aggregation tree, it
is theoretically possible that a corrupted subtree is created within the aggregation tree, due to some
overlap in the random variable strings of different values. If that happens all summary values except for
the expected value can possibly yield the wrong value. However, in our experience corrupted nodes are
almost always created with random variable strings belonging to the same value, which will be prevented
by performing Shannon expansion.

4.4 Min and Max

In case of the aggregate functions Min and Max all summary values can be computed during a single
iteration over a sorted set of leaf nodes, sorted on their total value. This approach is based on the
work of Murthy et al. [17] who designed the algorithm to compute EMIN and EMAX in the relational
probabilistic database system Trio [11]. The total value of a leaf node is defined as the aggregated value
along the path from the root to the leaf. For example, for a query applying a Min function in the tree of
Figure 4.3 the leaf node “X=0 Y=0" will have a total value of 2. Its own value is 18, but his ancestor
“X=0" contains a smaller value and thus the minimum value of all possible worlds containing node “X=0
Y=0" will be at most 2. It is at most 2 since there could be other nodes present which bring a smaller
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value, which ultimately will then be the minimum value of said world. When operating on a sorted set
of all leaf nodes — non-descending for Min, non-ascending for Max — we are actually iterating through all
distinct values resulting from applying Min or Max in all possible worlds.

This is not hard to proof. We have established earlier our tree contains all values which make up the
domain of any possible world in the context of non-aggregation queries. That is, when performing a query
such as //value on the input document given in Figure 4.1, the set of distinct values over all possible
worlds will be equal to the distinct values of the input document. The aggregation functions Min and
Max map a sequence of values to one of the values of that sequence (i.e., the minimum and maximum
value, respectively). That is, the resulting value of Min or Max in a possible world will always be an
element of the set of all values of that possible world. This is different from Count or Sum, where the
result of the addition is not necessarily an element of the set of all input values. The tree contains all
values of the input sequence (that is, values matching a query), thus when iterating all values in the tree
we are guaranteed to have iterated all possible results of Min or Max in all possible worlds.

The values are iterated in sorted order to calculate the expected value. This will be explained in the
context of the Min function, thus the values are sorted in non-descending order. The first and thus
smallest leaf value will be guaranteed to be the lowest value in all worlds it is present in, since it is the
lowest overall value. The sum of probabilities of all possible worlds where this leaf node exists is equal
to the total probability of the leaf node, which represents the probability of the leaf node and all its
ancestors being “selected” at the same time. This probability is simply the product of the probabilities
of all ancestors and the Node itself. If A is the set of ancestors of Node n, the total probability prob; of
n is calculated as below, where prob(n) denotes the probability of a Node n.

probi(n) = prob(n) - Hprob(a)
acA

For the first Node, the total probability equals the sum of probabilities of possible worlds where Node
represents the minimum value of the possible world. However, for all subsequent Nodes this is not
necessarily the case. The total value of any next Node in the non-descending set only is equal to the
minimum value if none of the Nodes before it exist in the same possible world. If any of the previous
Nodes would exist in the same world as the current Node, the current Node would not be the minimum
due to the sort order. The probability of a Node’s total value being the minimum value, which we will call
the effective probability of Node n, denoted by prob., is thus defined as the probability of the intersection
of the complement of previously processed Nodes and the Node itself. Let P denote the set of all Nodes
having been processed before Node n. The effective probability of Node n is then given by:

prob(n) = prob(P® Nn)

In case of the first node this will be equal to prob(n) since P is empty, thus P¢ is the entire universe
which intersected with n yields n. In practice, the effective probability is calculated by subtracting the
confidence before processing n from the confidence after processing n. While iterating the sorted set
of nodes, we build a new tree structure which calculates the confidence of the entire tree again upon
insertion of a new node. Only the confidence of affected nodes is re-calculated, i.e., ancestors of the
inserted node. This makes the continuous confidence calculation fairly efficient. Section 4.2.1 details the
algorithm for the calculation of the confidence in our {Node, RVar} tree.

4.4.1 Extreme Values

Since we process every possible value of all worlds in the iteration, determining the extreme values is
trivial. The minimum and maximum values are initialized to oo and —oo, respectively. When iterating
all values, it is checked if the current value is lower than the minimum or higher than the maximum, in
which case the minimum or maximum value is set to the current value. Otherwise, the minimum and
maximum are left unchanged. When the iteration has ended, the minimum and maximum values are
equal to the minimum and maximum value of the query result over all possible worlds.
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4.4.2 Expected Value

In order to compute the expected value during the iteration loop, we use an incremental calculation
method for the weighted expected value, taken from the work of Finch [25]. He refers to the expected
value as the mean value, and defines the incremental mean value as follows:

Wn,

Wn (xn - /“Ln—l)

Hn = fn—1 +

Figure 4.17: Incremental weighted mean

In the definition, W,, represents the sum of all weights wy,...,w,, with w, being the weight of the
current value, z,. Using that definition, we are able to iteratively build up the mean value using the
incremental mean value of the previous iteration and the sum of weights of all processed values. The
key difference between this approach and the standard formula for the weighted mean is that is it not
necessary to know the sum of all weights in advance. Additionally, the incremental weighted mean will
be used simultaneously for the calculation of the incremental weighted variance, explained in the next
section.

4.4.3 Variance and Standard Deviation

Similar to the mean value, the variance is computed using an incremental algorithm which was defined
by Finch in his work [25]. The incremental weighted variance is defined below, where W,,, w,, and x,
have the same semantics as in the case of the mean value.

2 S n
n Wn

Sn = Sn—l + wn(mn - /’Ln—l)(xn - Mn)

Figure 4.18: Incremental weighted variance

The incremental variance uses the current and previous incremental mean values (u, and p,—1), which
are being computed during the same iteration. The standard deviation follows from the variance by
taking its square root.

4.4.4 Algorithm

The pseudo-code of the algorithm which computes all the properties of the Min and Max aggregation
functions, all of which were described above, is listed in Figure 4.19. The actual algorithm is implemented
in Java and contains a few more operations which were left out for readability. Most variables in the
algorithm have obvious semantics with the exception of node.value, which denotes the result of the
aggregation of all values from the root node to the leaf node, i.e. the minimum or maximum value of
the leaf node and all its ancestors. We have described this value previously as the total value of a leaf
node.

4.5 Avg

The Avg aggregate is hard. Neither approach discussed before applies to Avg. Unlike in the Count/Sum
case, where it was possible to determine the amount a value contributed to the expected value of the
aggregate over all values, this is impossible for Avg. This is due to the definition of the Avg operation;
a value will have more influence on the outcome of the function when there are few other values present
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min = infinity

max = -infinity

expected =0

variance =0

weightSum =0

prevExpected = @ // Previous incremental expected value
prevConf =0 // Previous confidence of tree

root = new Node // Computes confidence of processed nodes

for node in sortedLeafNodes do
root.insert(node)

curConf = root.confidence()
weight = curConf - prevConf
weightSum += weight

expected += (weight / weightSum) * (node.value - expected)
variance += weight * (node.value - prevExpected) * (node.value - expected)

if(node.value < min) min = node.value
if(node.value > max) max = node.value

// Stop loop when we covered all possible worlds
if(curConf == 1.0) break

curConf
expected

prevConf
prevExpected

end

variance = variance / weightSum

Figure 4.19: Min / Max summary algorithm

(or none at all, in which case the value will be equal to the average value), compared to when there are
many other values present. It is not possible to say with certainty the amount a value will contribute to
the overall average thus we cannot yield the exact value for the mean value of Avg from the input values.
Similarly, the minimum and maximum values for Avg are not as trivially computed as in the Count/Sum
case. Because again the value of the average function depends not only on the values of the sequence
but also the length of the sequence, an algorithm which selects the minimum average value at each RVar
and simply combines these at each Node might not end up with the actual minimum value for Avg. In
certain situations choosing a sequence of values with a higher average might actually lead to a smaller
overall Avg value when combined with results from other parts of the tree, something that cannot be
foreseen.

For example, when a subtree B holds values which are very high compared to a subtree A, subtree A should
prefer longer sequences of his values over shorter sequences, even if the average of the longer sequence is
higher. For instance, imagine the algorithm searching the minimum values for Avg yields (1000,1000,1000)
for subtree B as minimum values. For subtree A the possibilities were (1,1) and (50,50,50). Clearly, the
algorithm applied in the Count/Sum case would pick (1,1) for subtree A here as it has the lowest average
value. However, the overall average would then become (3 - 1000 + 2)/5 = 600.4. When (50,50,50) would
have been selected instead, the overall average would have been much lower: (3 - (1000 4 50))/6 = 525.
This is not possible since subtree A has no knowledge of subtree B thus this algorithm can yield incorrect
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results and is therefore unusable to compute the minimum and maximum values for the Avg aggregate
function. To summarize an Avg aggregate query, we can only yield an estimate of the expected value
efficiently. The expected value is estimated by dividing the expected value of the sum by the expected
value of the count;

E(Avg) = 5(59;”;2)

This simple approximation was used based on the work of Murthy et al. [17], where the authors argue
the estimate has a guaranteed error of 0 in some cases, and in other cases the error is “quite small in
practice”. This latter statement was based on a number of experiments performed across a wide variety
of distributions with reasonable data sizes. This approximation can be computed efficiently by looping
once through all values in the tree, as explained in the section describing Count and Sum.
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5 Correctness Validation

In this section we will discuss the validation of the implementation in terms of its correctness. The
performance and scalability of the implementation, which are important aspects of validation as well, are
discussed in Section 6.

Correctness is of the utmost importance to any information system, and our implementation is no ex-
ception. This is reflected in one of the posed Research Questions; are the results of our implementation
semantically equivalent to the actual result? Before discussing the correctness of our implementation, it
is necessary to define correct in the context of our implementation. Semantic equivalence goes beyond
just correctness, in that it entails both correctness and having the same meaning as the entity referred
to — in this case, the query result in all possible worlds which will be referenced as the actual query result
from this point. In Section 3.3, we showed two types of query result representation that are used in the
implementation, (1) results grouped by value and (2) results grouped by random variable string. Neither
of those representation schemes is always semantically equivalent to the actual result. A third type of
result representation is the aggregation summary representation we yield for aggregation queries, which
by definition is not semantically equivalent to the actual result since is describes the distribution of the
result values rather than the result values themselves; information such as the top-k results that can
be extracted from the actual result are not present there, for example, because actual result values are
(usually) not part of the summary values.

5.1 Correctness and Semantic Equivalence

We consider a query result to be correct when it can be obtained from — or, is contained in — the actual
query result. However, the query results yielded by our implementation are generally also incomplete; the
actual result contains more information than our implementation provides such as certain relationships
between result values. A short example will be given below, where X and Y are arbitrary query results
such as distinct XML elements. The actual query result in Table 5.1 shows 4 different result values; each
corresponding to a possible world with their probabilities summing to 1.

Result | Probability
X, Y 0.45
X 0.30
Y 0.15
empty 0.10

Table 5.1: Actual query results

The implementation query results in Table 5.2, however, show only 3 results; one for each distinct value.
That result is correct in the sense that these results follow from the actual result in a straightforward
way. The value X is indeed part of the query result with a confidence value of 0.75 (0.45 + 0.30 from
Table 5.1). Similarly, the probability of Y is in fact 0.60 (0.45 + 0.15), and the result is empty with
a probability of 0.10. Thus while correct, this answer is not semantically equivalent due to the loss of
information regarding the simultaneous occurrence of X and Y and the probability associated with that
event. The probability of that event — 0.45 — is contained in the confidences associated with both X and
Y in Table 5.2 and as such is “lost”, hence the implementation results are incomplete when compared to
the actual query results.

Notice that in this case with only two distinct non-empty elements we can infer that X and Y must occur
together in some set of possible worlds because the sum of their probabilities is more than 1, but with
more than 2 distinct elements we cannot infer which elements occur together anymore. We will note
that the lack of semantic equivalence does not imply incorrectness. On the contrary, incorrect results do
imply a lack of semantic equivalence since the latter is essentially a stronger version of correctness. In the
remainder of this section we will discuss the validity of our implementation in terms of correctness. This
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is split up in two parts; selecting the correct elements from the document, and computing the correct
probabilities of those elements, which together make up the query results.

Result | Probability

X 0.75
Y 0.60
empty 0.10

Table 5.2: Implementation query results

5.2 Correct Elements

An important way our implementation prevents incorrect result elements is through the constant appli-
cation of the consistent function which was discussed in Section 3.2.2 and Section 3.5.2. It ensures no
inconsistent path in the XML document is traversed and consequently none of the returned results can be
inconsistent. Ensuring consistency of the results on its own does not guarantee semantic equivalence with
the actual results or correctness, however. Consistency is a prerequisite for correctness, which follows
trivially from the fact that an inconsistent result does not appear in any possible world and thus not in
the actual result, thereby making inconsistent results also incorrect.

Another method to make sure we select the correct elements from the document is to apply only the bare
minimum of required transformations to the original query to add probabilistic awareness while preserving
all parts of the original query. The expressions from the input XQuery reappear in the probabilistic query
practically unchanged; they have only been broken up and appear in different parts of the probabilistic
query but their order and context in which they were originally applied are no different. This is illustrated
in Figure 5.1. It displays the general transformation applied to each input in a simplified form. Operations
related to handling the random variable string were left out to emphasize the resemblance between the
original query and the resulting probabilistic query.

Probabilistic Query
Original Query
for $vl 1in _ A
/path[property > value] -
—> .
— for $v2 in|$vl/property| — B
I C : |where $v2 > value | —F—FC

return { 'rv' : ..., 'v' @ $vl }

Figure 5.1: Similarities between an original query and a probabilistic query

The essential difference between an original query and the created probabilistic query is that the prob-
abilistic query takes the uncertain nature of the data into account. That is, it has to account for the
fact it is querying multiple possible worlds simultaneously and many combinations of elements of the
uncertain document cannot exist in any possible world; they are inconsistent. To identify these elements,
the probabilistic query has to access each element in a collection and check its consistency when it is
combined with the set of elements that make up the current query context. To that end, it will apply
for loops to every collection and access each individual element. This process has been detailed for every
supported expression in Section 3.6. Any operations defined in the input query will be applied directly
to the original element; nothing has been changed during query transformation in that regard.

It is apparent that the results of both queries are very similar. The main difference is the probabilistic
query wraps the original results inside a map to associate a random variable string, and it duplicates each
path element for each of its property sub-elements that match the given predicate — property > value, but
those duplicates will be removed when grouping on unique values when creating the result representation.
Because inconsistent results are not included, and in other cases matched elements are selected in the
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same way as in the original query, the results of the probabilistic query are also correct in the sense that
they must appear in some subset of the actual result. Note that this simple reasoning does not hold for
expressions that are dependent on their context, such as a position() function where the value of the
function depends on the existence of its siblings. However, all supported expressions listed in Section 3.6
do not have such dependencies and either traverse the document or apply predicates to values, optionally
combining those with And or Or expressions. In those cases, showing that the document is traversed in
the same way as in the original query while filtering out inconsistent elements is sufficient to establish
the correctness of our implementation, noting again that some information is lost compared to the actual
query result which makes the implementation result not semantically equivalent.

5.3 Correct Probabilities

The intermediate result of a probabilistic query is a sequence of maps consisting of a random variable string
and a value. Depending on the used representation scheme, the two of which are discussed in Section 3.3,
we have to compute the probability of (1) a single random variable string belonging to 1 or more values,
or (2) a set of random variable strings belonging to a single value. Those correspond to the representation
schemes that either group the results by random variable string or by value, respectively.

That is, when we group by random variable string each unique random variable string will have 1 or more
values that belong to the set of worlds described by that random variable string. In that case, the correct
probability computation is straightforward; it is the product of the probabilities of the random variable
assignments in the random variable string. For example, the probability of the random variable string
“X=0Y=1Z=0"is equal to P(X = 0)-P(Y = 1)-P(Z = 0). We can multiply the individual probabilities
since different random variables are independent thus for each pair of random variables X and Y it holds
that P(X]Y) = P(X). Following that, the formal definition of intersection P(X NY) = P(X|Y) - P(Y)
can be rewritten as P(X) - P(Y) by substituting P(X|Y") with P(X). This is similar for P(Y N X) due
to commutativity of intersection.

When results are grouped by value, we associate each unique value with 1 or more random variable
strings. Thus, to obtain the probability of that value we have to compute the probability of a set of
random variable assignments. Each random variable assignment describes a set of possible worlds in
which the value exists. We are effectively looking for the probability of the union of these sets of worlds,
since the value exists in every set separately and thus the set of all worlds that contains the specific value
is the union of all individual sets.

The probability of this union corresponds exactly to the confidence of the aggregation tree that was
introduced in Section 4.2. We construct a similar tree in order to compute the probability belonging to
the set of random variable assignments. However, since we are not interested in computing any summary
values we omit all values but instead insert only the random variable strings into the tree. When the
set of random variable strings belonging to a single value is {“X=0 Y=07, “X=0 Z=17, “X=1"}, the
constructed tree in Figure 5.2 would be the result.

Figure 5.2: Simple tree created to compute the probability of a set of random variable assignments
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In order to compute the probability of this tree, we make use of two simple properties.

1. For any set of mutually exclusive events F, it holds that P(|JE) = > P(e).
eeE

2. For any set of independent events E, it holds that P(JE) = 1 — [] P(e°), where e denotes the
eck
complement of event e.

In the created tree we apply these properties recursively to compute the probability of RVars (O) and
Nodes (@), respectively. That is, since the children of RVars are mutually exclusive events we sum their
probabilities to obtain the probability of the RVar, whereas the children of a Node are independent events
thus we apply the second property to obtain its probability. The described recursive computation of the
probability was given earlier, in Section 4.2.1. By creating a tree for each unique value, we can thus
accurately compute the probability belonging to every value.

5.3.1 Corrupt Trees

Without any post-processing on the tree after inserting the random variable strings there are some
situations where the probabilities yielded by the application of the described algorithms for independent
and mutually exclusive events will be incorrect. This happens when the created tree is corrupt, which
is a state we detect and fix. We are not referring to tree data structures that contain a cycle, which
are sometimes called corrupt as well. Rather, a tree used to compute the probabilities is corrupt when
different branches of a Node that are assumed to be independent turn out not to be.

An example of such a scenario involves the set of random variable strings {“X=0Y=0", “Y=0"}. Denoting
“X=0” and “Y=0" by X, and Yj respectively, the probability would then be computed as 1 — ((1 —
P(XoNYy)-(1—P(Yp))). However, XoNYy and Yy are not independent events and thus neither are their
complements. This means we cannot simply multiply the probabilities of their complements to obtain
the probability of the intersection of their complements. The independence does not hold since the set
of worlds described by Y contains all worlds described by Xy N Yy. Therefore, P(XoNYy | Yp) is equal
to P(Xp), rather than P(Xo N Yy) like we assume for independent events. This is more apparent when
displayed in a Venn diagram, given in Figure 5.3.

Looking at the figure and generalizing, we can see that for any two sets A and B where B C A (i.e., B
is contained in A) it holds that:

AU(BNA)=A (1)

ASN (BN A)F = A° 2)

Figure 5.3: Venn diagram illustrating that Yy contains X N Yy and thus Yo U (XoNYy) = Yo

As a consequence, when we construct a tree in order to compute the probability of a set of random
variable strings we must make sure that there are no leaf nodes that contain other leaf nodes present,
which leads to incorrect probabilities.



Another scenario yielding incorrect probabilities is similar to the one we just described and also involves
unaccounted dependence between different branches of the same Node, which we have assumed are
actually independent. However, in this case there is no complete containment of one set of worlds by
another set of worlds. A minimal example illustrating this scenario is the set of random variable strings
{“X=0 Z=07,“Y=0 Z=0"}. The corresponding tree is displayed in Figure 5.4.

®
/N

Q0-0-0-&
0-0-0-6

Figure 5.4: Tree where branches of root node are not independent, but are assumed to be

The leaf nodes share the assignment “Z=0" and are thus not independent. However, we treat them as
such since the leaf nodes belong to different branches of the root node and the branches of a @-node are
assumed to be independent. The example case could be transformed into a proper tree relatively easily
by making Z the only child of root, and making X and Y the child nodes of Z=0. This would reflect the
situation correctly, i.e., X and Y being independent from each other but sharing the variable Z and its
assignment Z=0. This is displayed in Figure 5.5.

Figure 5.5: Resulting tree after performing partial Shannon expansion on corrupt tree of Figure 5.4

In order to fix the corrupt trees we apply a modified version of Shannon expansion. Shannon expansion
yields mutually exclusive leaf nodes when applied to a tree of arbitrary assignments, as was discussed
in Section 4.3.4 in the context of Count/Sum aggregates. We will only Shannon expand with respect to
random variables that occur at least twice in the whole subtree that was created from the corrupt nodes.
The result will thus not necessarily consist entirely of mutually exclusive leaf nodes like is the case for
full Shannon expansion.

The Shannon expansion will make sure there will be no more corrupt nodes in the tree. After the expansion
we insert the tree back into the original tree, as a subtree of the node that discovered the corrupt nodes —
i.e., the closest common ancestor of the corrupt nodes. For the tree depicted in Figure 5.4 the corruption
was detected in the root node when it encountered the assignment “Z=0" in two of its branches. The
result of Shannon expanding the two branches of the example tree with respect to the random variable
“Z” will be equivalent to the optimal solution displayed in Figure 5.5. We only expand with respect to Z
since it is the only variable that occurs twice; X and Y only occur once and thus do not require expansion.
The result is inserted back into the node that detected the corruption, which was the root node in this
case. Thus, if such a corrupt composition of nodes is found much deeper in the tree we will remove the
nodes there and insert them back at that position. The change is therefore applied only locally; unrelated
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parts of the tree are left untouched.
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Figure 5.6: Example showing the potential of an infinite loop when related nodes are not included in
the partial Shannon expansion of corrupt nodes

In addition to the corrupt nodes and their ancestor nodes upto the first common ancestor of all corrupt
nodes we include any leaf nodes of the common ancestor that share at least one random variable with
the corrupt nodes’ random variables. This is done to prevent situations where the “fixed” trees introduce
a new dependency with an existing node. By including all leaf nodes that share at least one random
variable with one of the corrupt subtrees we make sure that such a new dependency will not be created.
An example illustrating the need to include any related nodes is displayed in Figure 5.6, which shows
that failing to include related nodes leads to an infinite loop.
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Figure 5.7: Including related node “Z=0 Y=0” prevents an infinite loop when fixing corrupted nodes

The solution is to always include nodes that share a random variable with the set of corrupted nodes, and
also share the closest common ancestor of the corrupted nodes. This is illustrated in Figure 5.7. When
fixing that tree, the node “Z=0 Y=0” in included in the partial Shannon expansion, since it shares the
random variable Z with the corrupt node “Z=0 X=07, and it resides in the subtree rooted by the corrupt
nodes’ closest ancestor, the root node. This will then produce a tree that is guaranteed free of any other
corrupted nodes, as can be seen in that figure. While the tree contains the assignment “Z=0" twice,
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those nodes are not assumed to be independent since they occur in different branches of the X random
variable, which are mutually exclusive. Because of this mechanism we can guarantee that any created
tree will conform to the assumptions of independence for @-nodes and mutual exclusion for O-nodes,
which in turn guarantees that the algorithms used for the computation of mutually exclusive events and
independent events can be applied and will yield the correct probability.
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6 Performance & Scalability

The performance and scalability of the implementation is tested by running benchmarks of different
queries on different input documents. Multiple types of benchmarks were run, where either a variable of
the input documents was being changed or the queries were varied but run on the same set of documents.
The former measures the impact of the changed variable of the document on the execution time, whereas
the latter approach tests the difference in performance between different types of queries. In particular, the
performance difference between the 2 main types of aggregation queries supported by our implementation
— Count/Sum and Min/Max.

6.1 Benchmark Method

The benchmarks are performed on a warmed-up database. Before a query is run on a set of documents,
the query is run 4 times on a document that is not used in the benchmark. Each query is then run 4
times on each document, with the result averaged over those 4 runs. The execution time is split up in at
most 3 categories:

e Metadata: Reading and storing the probabilities described in the document into a Java data
structure for quick access.

¢ XQuery: Execution time of BaseX database operations for the generated query. That is, selecting
matching elements and checking random variable consistency. Aggregation summary is not included.

e Aggregation: Time required for computing the aggregation summary values. This includes the
time to generate the tree which was discussed in Section 4.2, Tree Data Structure.

We say at most since non-aggregation queries will not construct a tree and perform any aggregation, thus
will not report an execution time in the last category. When the category of the displayed execution time
is not mentioned, it is simply the sum of the separate categories — the total execution time.

6.2 Benchmark Results

The benchmark results will now be presented for each category of benchmarks.

6.2.1 Document Size

The document size was being varied to test the influence on query performance in this category of bench-
marks. The document size is defined as the number of <forecast> elements present in a document.

Documents Each input document contains a varying number of forecast elements, where each forecast
element consists of 4 weather properties with 4 possible options. An example forecast element is depicted
in Figure 6.1. The document size is expressed in terms of the number of these forecast elements. The
benchmark is run on 8 different documents with an exponentially increasing size. The first document
contains 1024 forecast elements, whereas the last document has 131072. That is, document n has 210+
forecast elements, where n ranges from 0 to 7. The actual document size in megabytes can be expressed
as a function of n as follows: size(n) = (n + 1)2. That is, the largest document has a size of roughly
256MB.

Queries A total of four queries were used in this benchmark. The queries have different characteristics
and behave differently. Generally, the fewer predicates a query has the faster it will be processed by
BaseX. In case of an aggregation query, an additional layer of processing is added to produce the summary
values discussed in the Aggregate Queries section. This step depends entirely on the number of elements
resulting from the non-aggregation part of the query produced by BaseX. As such, more selective queries
tend to reduce the aggregation time since the number of elements is reduced compared to queries selecting
everything.
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<forecast wday="Wednesday"” year="2014" month="1" day="1">
<temperature rv="A=0">21.5</temperature>
<temperature rv="A=1">22.5</temperature>
<!-- 2 more temperature elements -->
<sunshine rv="B=0">10.4</sunshine>
<sunshine rv="B=1">9.6</sunshine>
<!-- 2 more sunshine elements -->
<rainfall rv="C=0">53.0</rainfall>
<rainfall rv="C=1">51.8</rainfall>
<!-- 2 more rainfall elements -->
<windspeed rv="D=0">2.6</windspeed>
<windspeed rv="D=1">1.8</windspeed>
<!-- 2 more windspeed elements -->
</forecast>

Figure 6.1: Forecast element structure used in this benchmark

Type Query

Simple aggregation max(/forecasts/forecast/temperature)
Selective aggregation | count(/forecasts/forecast[@wday="Saturday”][temperature > 18][windspeed < 3])

Selective path /forecasts/forecast[temperature > 25]

Complex aggregation | count(/forecasts/forecast[temperature > 18][fs::forecast{1..2}/temperature > 18])

Table 6.1: Benchmark queries

The different queries were chosen to measure the impact the document size has in various contexts. We
will now discuss the results of this benchmark.

Results The simple aggregation of Figure 6.2 shows predictable behavior; the scalability is roughly
linear and XQuery makes up a relatively small part of the total execution time. This is not surprising
considering the query does not contain any predicates, and BaseX can thus yield the results using a
straight-forward linear scan of all temperature nodes. Aggregation makes up a larger part of the whole
since the generated tree contains all temperature values present in the document. Each document contains
4 temperature values per forecast, thus the aggregation tree will contain more than half a million elements
for the last document. Furthermore, because the query applies the Max function, it has to first sort all
those values in non-descending order which is very time consuming. The performance of Count and Sum
aggregate functions is better but shows similar scalability. The results of the performance benchmark
which compares the performance of the various aggregation functions are shown in Section 6.2.3.

In contrast to that simple aggregation, the selective aggregation in Figure 6.3 shows distinctly different
behavior. It scales roughly linearly again, yet the execution time is divided very differently. Due to the
selectiveness of this query with its 3 predicates that each select a small subset of the matching elements,
the resulting set of forecast elements is extremely small compared to the size of the input document. This
makes the aggregation step extremely quick; only a few values result from the XQuery step which makes
building the aggregation tree and computing the summary values trivial.

The execution time of the aggregation step is so small that it cannot be distinguished in the result graph.
Each bar is seemingly only divided between Metadata (i.e., reading the probabilities and storing them
in memory) and XQuery (traversing the uncertain document and selecting the matching elements). To
illustrate this; the time required to compute the aggregation values for the largest document was only 32
milliseconds.

The selective path query of Figure 6.4 is similar to the previously discussed selective aggregation in terms
of behavior. Here too the XQuery part makes up the majority of the execution time, albeit slightly more
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Figure 6.2: Simple aggregation
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Figure 6.3: Selective aggregation

due to an overall (slightly) higher execution time. This similarity is expected; the execution time of a
selective aggregation is determined primarily by the XQuery execution time as explained earlier. This is
due to the definition of a selective query; it does not yield many results but selecting the right results
might take a lot of I/O on the database side. Aggregating the resulting small set of answers, on the other
hand, will not take long at all. Consequently, the performance and scalability of an aggregation query and
a non-aggregation query are essentially the same as they are both bound by the BaseX execution time.
The difference between these specific two queries can be explained by the fact the selective aggregation in
Figure 6.3 starts with a predicate which selects only the Saturdays which reduces the set of forecasts to
only + of the total set. Since the wday attribute only has 1 possibility (instead of 4) BaseX can evaluate
it quicker than the other predicates which makes the query overall slightly faster than the selective path
query which applies a single temperature predicate.

The last query, complex aggregation shown in Figure 6.5, does not scale exactly linearly with respect
to the size of the input documents. Rather, the execution time increases by a factor of about 3 when
the document size increases by a factor 2. This is true for the larger documents. For the smaller
documents the increase is about linear. Notice this predicate uses shorthands discussed in Section A.1.2;
fs::forecast{1..2}/temperature > 18, which translates to
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/forecasts/forecast[temperature > 25]
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Figure 6.4: Selective path

following-sibling::forecast[1]/temperature > 18 and
following-sibling::forecast[2]/temperature > 18

BaseX generates all possible combinations of the predicates, which contributes to the higher execution
time. It combines the 3 predicates; the temperature elements of the context forecast, the temperature
elements of the first following sibling forecast and the temperature elements of the second following sibling
forecast. Each forecast contains 4 temperature elements, thus for each forecast element considered, a set
of 43 = 64 combinations is generated. That is not very large number, but it is done at every single
forecast element which is reasonably large with the highest number for this specific query being 131072,
thus requiring a total of 217 . 26 = 223 = 8388608 combinations to be generated. While we can apply
optimizations which should reduce this number, as discussed in Section 3.6.4, this is not enough to push
the execution time down to the extent that it increases by the same factor as the document size. The
execution time of the aggregation in particular is increased due to the large number of results that are
being generated from all combinations.

count(/forecasts/forecast[temperature > 18][fs::forecast{1..2}/temperature > 18])
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Figure 6.5: Complex aggregation

6.2.2 Document Uncertainty

53



Documents The documents used in this benchmark have a varying degree of uncertainty, but are
otherwise similar in structure and size. The document structure displayed in Figure 6.1 is used again,
albeit with a different number of random variables. We have used documents with 0%, 25%, 50%,
75%, and 100% uncertainty in this benchmark, each with 2'6 <forecast> elements. The uncertainty is
implemented per <forecast> element; either all of its child elements — temperature, windspeed, sunshine,
rainfall — are uncertain or all of them are certain. For example, in case of 50% uncertainty and forecast
elements fy, f1,..., fi, all forecast elements with an even ¢ are uncertain and the forecast elements with
an odd i contain only certain child elements. Consequently, the document size is also dependent on the
uncertainty, since an uncertain element has (in this case) 4 different alternatives to choose from whereas
a certain element only has 1.

Alternatively, we could have chosen to add 4 certain elements to replace the single uncertain element.
This would keep the document size roughly equal — we still omit the random variable assignment at-
tributes, thus the size would decrease slightly — but would also increase the number of paths that are
traversed during query evaluation. To elaborate; only a single alternative for an uncertain element can
be considered simultaneously and the query execution will prune any inconsistent path (i.e., where two
or more alternatives of the same choice are selected). This pruning would not occur when we add cer-
tain elements without random variable assignments, thus making query execution more complex when
we decrease uncertainty. It was decided it makes more sense for the certain case to be more similar to
selecting a single possible option, rather than selecting all of them. The decreased document size is then
a logical result of it, and is not considered a flaw in this benchmark.

Queries We used a subset of the queries used in the document size benchmark to test the influence
of the document uncertainty in various scenarios. The complex aggregation query was left out due to
performance issues identified in the previous benchmark. The queries are listed in Table 6.2.

Identifier Query

Query 1 max(/forecasts/forecast/temperature)

Query 2 count(/forecasts/forecast[@wday="Saturday”][temperature > 18][windspeed < 3])
Query 3 /forecasts/forecast[temperature > 25]

Table 6.2: Document uncertainty benchmark queries

Results The results of the document uncertainty benchmark are displayed below in Figure 6.6. The
results of query 1 in particular stand out due to fluctuating performance between the various levels of
uncertainty. Most notable is the highest execution time for the document with 0% uncertainty. It is hard
to explain why this happens, considering this document has the smallest amount of elements and does
not require any random variable string operations since it does not contain any. It is possibly related
to the tree data structure, where all 2'6 temperature values are stored in a single list at the tree’s root
node. There are no other nodes in the tree due to the lack of uncertainty. It is possible doubling the
internal Array used to hold the items of Java’s List each time the limit is reached is causing performance
issues.

The other queries show a linear increase in execution time with respect to the uncertainty of the input
document. As discussed in the Documents paragraph, an increase in uncertainty comes with an increase
of the number of XML elements in the document. Considering the queries used in this benchmark scale
linearly with respect to the document size as shown in Section 6.2.1, this document size increase on its
own explains the increase in execution time. Thus, the increase in uncertainty on its own seems to have
little or no influence on query execution time.

6.2.3 Aggregation Functions

This benchmark tests the performance and scalability differences between the two classes of supported
aggregation functions — Count/Sum and Min/Max. Within a class the implementation is equivalent and
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Figure 6.6: Document uncertainty benchmark results

thus performance and scalability are as well, which is why we performed this benchmark with one member
of each class; Count and Max. The Avg aggregation function is not considered a separate class since it
only yields the expected value which is obtained by taking dividing the expected value from Sum by the
expected value from Count and will thus show similar performance and scalability, at most a factor 2
slower since it has to calculate both. Moreover, since Avg only computes the expected value and not
the variance or extreme values, comparing its performance and scalability with the other aggregation
functions (which do compute all summary values) is fairly meaningless.

Documents The documents used in this benchmark have the same structure as the documents used in
the Document Size benchmark. Instead of 8 different document sizes we chose just 5 in this benchmark;
the number of <forecast> elements is again set to 217" but n now ranges from 3 to 7 inclusive.

Queries Because we are testing only the aggregation scalability which is applied after query processing
on the set of query results, the queries themselves do not influence the aggregation at all. Therefore,
we used a single “base” query in this benchmark and applied the Count and Max aggregation functions
to it. The base query is the non-aggregation part of the Simple aggregation query listed in Table 6.1;
/forecasts/forecast/temperature.

Results The result of the benchmark in Figure 6.7 shows similar performance for the Count function
and the Max function. The latter takes around 1.5 times longer than the former for the largest document.
In terms of scalability both functions appear to scale roughly linearly with respect to the number of
aggregated values; when the number of aggregated values is doubled the execution time follows suit. It
is important to note that the displayed execution time is only the aggregation part of the query, i.e. the
Metadata and XQuery categories are not counted. The horizontal axis displays the number of values that
were aggregated, i.e., the number of <temperature> values in each document.

The small difference in performance can be explained by the fact that the Max aggregate function has
to first sort all leaf values of the generated tree structure in order to yield its summary values, whereas
Count operates directly on the unsorted values. Sorting the leaf values is required for Min and Max, the
rationale for which was provided in Section 4.4.

However, it should be noted that there also exist cases where the performance of Count/Sum will be worse
than that of Min/Max, because Count/Sum applies Shannon expansion before building the aggregation
tree. Thus, depending on the random variable strings resulting from the query the Shannon expansion
step can take a long time. In this benchmark we performed a query without any predicates, thus the
resulting random variable strings per unique temperature element did not need to be Shannon expanded,
thus the performance here is a best case scenario for Count/Sum. This was intended, as we planned
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Figure 6.7: Aggregation benchmark result

to measure only the scalability of the aggregation tree and the summary functions. It is, however, an
important issue to note.

6.2.4 Predicate Size

In this benchmark we measure the performance and scalability of an increasing number of predicate
expressions in the form of (nested) And expressions used in a query predicate. As detailed in Section 3.6.4,
an And expression results in an XQuery snippet that computes the Cartesian product of the operands.
The same occurs for multiple predicates, i.e., /path[pred_1][pred_2][pred_3], since that is equivalent to
/path[pred_1 and pred_2 and pred_3]. The size of this product grows exponentially with respect to
the number of operands, thus it is expected that the performance of a query that contains many such
expressions is poor.

Documents For this benchmark we have used a single document with 213 = 8192 forecast elements,
each containing 4 random variables with 4 possibilities like in the other benchmarks. The document size
was deliberately chosen to be fairly small, since we expect the runtime of the queries to scale exponentially
with respect to the number of conjunctions and disjunctions in the query.

Queries We have created three types of queries for this benchmark: (1) selective queries that apply
predicates that are satisfied by almost no values, (2) nonselective queries which apply predicates that are
satisfied by almost all values present in the document, and (3) standard queries which apply predicates
that are each satisfied by roughly half of the values. The queries we used are listed in Table 6.3. Each
of the queries in the table below will be executed with the first 2, 3, and 4 predicates, thus a total of 9
queries are executed in total.

Type Query

Selective //forecast[temperature > 25 and windspeed < 2 and sunshine > 16 and rainfall < 10]
Nonselective | //forecast[temperature <= 25 and windspeed >= 2 and sunshine <= 16 and rainfall >= 10]

Standard //forecast[temperature > 7.5 and windspeed > 6 and sunshine > 11 and rainfall > 100]

Table 6.3: Predicate size benchmark queries

To explain why these queries are selective or nonselective, it is important to know the domains of the
various weather properties. We have listed the domains in Table 6.4.
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Property Domain
Temperature | {—12.5...27.5}
Sunshine {4.0...18}
Rainfall {0...200}
Wind speed | {0...12}

Table 6.4: Domains of weather property values

Results The results are listed in Figure 6.8. It is apparent that the nonselective queries, which apply
predicates that are satisfied by almost all values in the document, show roughly exponential scalability.
In contrast, selective queries and “standard” queries that apply predicates that are satisfied by a much
smaller subset of values show only slight increases in execution time when the number of operands
increases.
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Figure 6.8: Results of the predicate size benchmark

The major performance difference can be explained when we look at possible optimizations for an And
expression. It has been discussed earlier in Section 3.6.4, but we will reiterate it here. When evaluating
an And expression, i.e. e; A---Aey,, we can return false whenever any of the operands e; ... e, evaluates
to false. Thus, when applying selective or standard predicates, a fairly large number of values of the
operands will evaluate to false, thus we do not have to compute the Cartesian product since we already
know the And expression will not be satisfied when any of its operands is false.

However, in the case of highly nonselective queries such as the one we have used in this benchmark,
almost all values of the evaluated operands will be true. As a result, we have to compute a Cartesian
product of the operands for each <forecast element. Afterwards, each resulting value has to be inserted in
a tree structure in order to compute the probability of each value, as well as the probability of all values
combined in order to yield the probability of the empty result. The size of the Cartesian product grows
exponentially with respect to the size of the operands, explaining the very poor performance displayed
by the nonselective query in Figure 6.8.

57



7 Discussion

In this section we describe some of the limitations of the current implementation, and if known their
possible solutions.

7.1 Scalability of And Expressions

And expressions show exponential scalability with respect to the number of operands, due to computing
the Cartesian product of the operands. Each operand is a sequence of maps, and since it is an And
expression we have to check all combinations for consistency and combine their random variable strings.
In order to do this, we compute the Cartesian product over all operands, which scales exponentially.
The And expression is optimized when possible, i.e., we can return false when any of the operands is
false and do not have to create the full Cartesian product in every situation. However, we have shown
in Section 6.2.4 that in cases where queries apply predicates that are satisfied by almost all nodes in
the document these optimizations will hardly ever be applied, since almost all values of the operands
evaluate to true. The same issue occurs for multiple subsequent predicates, which is equivalent to an
And expression. That is, /path[p11[p2]1[p3] is equivalent to /path[p1 and p2 and p3] and shows exponential
scalability as well with respect to the number of predicates.

We have not found a solution to the problem of having to determine consistency for an And expression
efficiently. In many cases, creating the Cartesian product per matching context node in the document
does not adversely affect performance, in part due to optimizations that we discussed above. This is a
major performance concern of our implementation, and effectively makes it impossible to issue certain
queries on certain documents.

7.2 Memory Usage

The memory used by BaseX Server when running our implementation on large documents can get very
high, > 1GB is normal. What makes matters worse is the memory does not seem to be freed up once
a query completes. Executing consecutive queries will drive up memory usage further, even if the same
query is executed all the time. We have observed this issue on stock BaseX as well — i.e., BaseX without
running our plugin — although the overall memory usage was much lower in comparison and the increase
in memory usage in that case is not an issue.
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Figure 7.1: Memory usage for the query /forecasts/forecast[temperature > 25]

The graph in Figure 7.1 shows the memory usage of the simple query /forecasts/forecast[temperature >
25] on three different documents. Their structure is equivalent to the documents used in the benchmark of
Section 6.2.1, although their structure is not particularly important for the memory usage depicted here.
The graph contains two large documents with 262144 and 524288 random variables each, and a small
document with only 4096 random variables. Additionally, the memory usage for the same query executed
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on BaseX without calling the plugin’s query function is displayed. This does not take the probabilities
into account and does not return a correct answer but is included to contrast the enormous amount of
memory that is used to execute the probabilistic query.

The memory usage keeps increasing until the same query has been executed roughly 8 times, then it
remains stable. For the probabilistic queries issued on the large documents, the difference in memory
usage of the BaseX Server after the first and last execution of the exact same query is very large, a factor
of £3 and £2.5 for the second largest and largest document, respectively. The small document and the
large document without uncertainty support show a difference of about a factor 2.

1| let $int := function() {

2 let $values := (1 to 1000000)

3 return fold-left($values, 0@, function($sum, $value) {
4 $sum + $value

5 1))

61 3%

7

8| let $map := function() {

9 let $maps := for $i in (1 to 1000000) return { 'value' : $i 7}
10 return fold-left($maps, @, function($sum, $m) {

11 $sum + $m('value')

12 »

13] 3

Figure 7.2: Memory comparison functions

Investigating the issue, it appears BaseX requires a lot of memory when maps are used, the key-value data
type that is heavily used in our implementation. We ran a query on stock BaseX which calculates the
sum of all numbers from 1 to 1,000,000 inclusive, without making use of the obvious % but rather
by summing the individual numbers. We used two methods; one of them uses a sequence of integers
and sums those directly. The second method uses a sequence of maps, each associating the key “value”
with an integer value to be summed. The definitions of both functions used in the test are displayed in

Figure 7.2.

We tested the memory usage by manually running both the $int and $map functions 10 consecutive times
on a cold BaseX server. BaseX showed significantly higher memory usage when using the map variant:
the maximum memory usage was reached after 8 executions and peaked at roughly 648MB. This is much
higher than the memory usage in the plain integer case, which peaked at £118MB which was reached
after only 4 executions. The graph is shown in Figure 7.3.
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Figure 7.3: Memory usage comparison between sequence of integers and sequence of maps

While it is not surprising a key-value data type uses more memory than an integer, the fact that the
memory usage is increased by a factor 5.5 between the first and last query execution as opposed to about
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1.70 in the integer case shows there are possible issues with the implementation of the map data type
or the caching of variables of that type. It was considered out of scope to investigate the root cause of
the high memory usage within the source of BaseX. We have shown that an unmodified BaseX shows
similar high memory usage when a lot of map variables are created and thus the high memory usage
for probabilistic queries is most likely a direct result of using the map data type. The maps we use in
probabilistic queries are more complex than the one in the test we ran, since the values that are stored
within it can be any arbitrary XML subtree contained within the document or any other XQuery data

type.
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8 Conclusions

We have presented an approach to evaluate probabilistic queries over uncertain XML data, using an
existing XML DBMS. An uncertain data representation format which uses random variables to annotate
uncertain elements in the XML document is described. The annotations are used to describe mutually
exclusive or independent elements, as well as to attach a probability to every uncertain element. Two or
more elements are mutually exclusive when they are annotated with different assignments of the same
random variable, or independent when different random variables are assigned to the items. Each random
variable assignment has an associated probability, indicating the probability of an element given that its
ancestors exist.

We utilize the annotations during query evaluation in order to select the correct elements for a query
and compute their probabilities. This functionality is added as a plugin to the existing XML DBMS.
We leverage all core parts of the DBMS; primarily its XQuery parser and query evaluator. In order
to introduce the probabilistic awareness that the DBMS lacks we transform an input XQuery using
transformation rules defined for all supported XQuery expressions. The implementation supports basic
XPath queries with simple predicates, as well as most aggregation functions supported by XQuery; Count,
Sum, Min, and Max. The result of an aggregation query over uncertain data is a set of values that
describe the distribution of the result values in terms of their expected value, minimum value, maximum
value, variance, and standard deviation. For the Min and Max aggregates the top-k results and their
probabilities are also computed. The result of regular queries is a set of distinct matching elements, each
with an associated probability. The probability is equal to the sum of probabilities of all possible worlds
that yield the element as a result to the query.

Benchmarks have been conducted and show generally good performance and scalability when querying
documents with as many as 2'° different random variables. We have identified certain cases that show
exponential growth in execution time with respect to the number of operands in an And expression which
can cause performance issues depending on the documents and queries that are involved. These situations
occur when a query applies nonselective predicates joined by an And expression. In order to evaluate an
And expression, we generate the Cartesian product of the evaluated operands. An evaluated operand is
represented as a sequence of individual result values and their random variable annotations. Since the
predicates are nonselective, the sequences involved in the Cartesian product tend to contain many true
values since many elements match the nonselective query. When all involved expressions of a Cartesian
product are true we cannot apply any optimizations and have to generate it entirely, yielding a much
larger sequence of all combined inputs causing the performance and scalability issues.

We will now proceed with formulating answers to the posed Research Questions.

Can we query uncertain data without generating all possible worlds? We have shown that we
can successfully query an uncertain document directly without instantiating all possible worlds, and yield
a correct result to an XQuery that makes use of a subset of the XQuery language. This is achieved by
transforming the original XQuery to a new XQuery that takes into account the probabilistic nature of the
data while preserving the XPath steps specified in the original XQuery. By evaluating the transformed
XQuery directly on the document which describes all possible worlds, we are essentially querying all
possible worlds that match the given query simultaneously without explicit expansion.

Are the obtained query results semantically equivalent to the actual results? The query
results generated by our implementation are correct but are usually not semantically equivalent due to
the loss of information when compared to the actual result of the probabilistic query, i.e. the result of
the query when it is executed in all possible worlds. That is, we provide for each unique result value —
generally a distinct XML element from the input document — the sum of the probabilities of all possible
worlds that would yield the value as a result to the query. We do not, however, provide these probabilities
for combinations of elements that occur together in (a set of) possible worlds. As such we provide a set of
results that is not semantically equivalent to the actual result, but the given result values and probabilities
are accurate. More specifically, the result we produce is equivalent to the actual result when the latter
performs a group by operation on each distinct value and sums the involved probabilities per value.
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For aggregate queries we provide values that describe the distribution of the result values. The actual
result values and their probabilities cannot be computed for Count and Sum aggregates without expanding
all possible worlds, thus the answer to such queries is by definition not semantically equivalent with the
actual result. For Min and Max aggregates we do yield the actual result values in addition to values that
describe the result distribution. Therefore, the result to a Min or Max aggregate function is semantically
equivalent to executing the function in every possible world.

Can the answer to aggregation queries be computed efficiently? We have performed a bench-
mark which compares the scalability and performance of the Count/Sum aggregate functions to the
Min/Max aggregate functions. It was shown that both classes of aggregation functions show roughly
linear scalability with respect to the number of elements that were being aggregated. The query on the
largest document yielded over half a million values to be aggregated. The execution time of the Min/Max
class was shown to be slightly higher — upwards of 50% in the worst case that was tested — than that
of the Count/Sum class. We believe this is primarily caused by the sorting of values that is required
for Min/Max, but not for Count/Sum due to their different implementations. It is important to note
that while there is some overhead in the Min/Max case, the result to those aggregate functions will also
include the top-k result values and their probabilities unlike the Count/Sum aggregates.

How does the solution scale with respect to different documents and queries? Benchmarks
have shown the execution time of various queries generally scales linearly with respect to the document
size. However, we have identified cases involving certain queries and documents that lead to exponential
growth of the execution time with respect to the number of operands of an And expression. This is the
result of having to compute a Cartesian product of the operands, which are sequences of elements. The
Cartesian product is created in order to verify the consistency of each combination of operands, and their
truth value. This process takes a lot of time, and additionally this generates a much larger intermediate
result which slows down all follow-up operations applied to the intermediate results. In particular, the
tree structures that are created from the sequence of maps will also be much larger.

8.1 Future Work

The implementation shows some limitations, among which is the high memory usage for query evaluation
discussed in Section 7. We have identified a possible cause for the high memory usage in the application
of XQuery’s map data type, which appears to lead to high memory usage in BaseX, the XML DBMS
we used to implement our prototype. It is possible that this issue will not occur in other available XML
DBMSs, this was not tested. However, it is an issue that deserves some more attention. While the map
data type is used extensively throughout the transformed XQuery it remains an implementation detail;
there are other ways to keep track of intermediate result values and their random variable strings without
using maps. If other XML DBMSs show similar memory usage for map data types, it is advisable to
experiment with other ways to represent the intermediate query results.

As was briefly mentioned in Section 4.3.4, it is possible that the aggregation tree we create for Count
and Sum contains a corrupt subtree which can possibly lead to inaccurate summary values, except for
the expected value which will remain correct. In the tree structure we use to compute probabilities these
corrupt subtrees will be fixed automatically, which is the same structure we use to perform Shannon
expansion on distinct values of Count and Sum. However, the aggregation tree itself does not fix corrupt
subtrees since it also contains values, making Shannon expansion more difficult. Thus, if a corrupt
subtree is created from the random variable strings belonging to different values this will not be fixed.
We mentioned that such a situation is very uncommon, but it is something that can be looked into in
future work.

Another topic for future research is finding optimizations for handling And expressions in query predicates.
In our implementation, a Cartesian product of the operands of an And expression is created to check
the consistency and build the combined random variable string of each combination of operands. As
each operand is a sequence of maps, this results in poor scalability and performance in certain situations.
When dealing with an And expression consisting of n operands — i.e., ey A --- A e, — we can stop the
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evaluation when we find a false value since that would make the entire conjunction false. However,
such optimization cannot always be applied and the implementation will then proceed to generate all
combinations of the operands which scales exponentially. This situation can occur even for trivial queries
with as few as two operands, depending on the size of the sequences that represent each operand expression
and the number of Cartesian products that is being generated. Ideally, the Cartesian product computation
is entirely avoided as it closely resembles expanding all possible worlds.

In addition to optimizations there is also the topic of extending support to more advanced XQuery
constructs, specifically the FLWOR expression — For Let Where Order by Return. Our implementation
only supports basic XPath expressions consisting of a path query and predicates. While fairly expressive
queries can be constructed using these tools, the FLWOR, greatly expands the possibilities. It is also
considerably more complex than other expressions, which is the main reason we have not addressed it in
this research.

In terms of aggregation functions we only properly support Count/Sum and Min/Max. The Average
aggregate function only yields the expected value through an estimation using the expected values of
Sum and Count but does not provide the complete set of summary values that we compute for the other
aggregation functions. There are likely ways to compute the summary values for Average as well, which
can be investigated further. Additionally, extending the aggregation support of Count/Sum to be able
to yield the top-k possible values for the aggregation function and their probabilities is an interesting
topic that we could not address in this research. We only provide the minimum, expected, and maximum
values and cannot compute the actual values and their probabilities, or even just the top-k results for a
small value of k. While we have argued that the yielded values combined with the variance and standard
deviation represent the actual result very well, the top-k results would further improve this. We do
provide top-k for arbitrary values of k for Min/Max aggregates.

Apart from specific improvements to the implementation that we created as a plugin to BaseX, there
are larger goals to be achieved in the area of probabilistic databases in general. Thus far, probabilistic
databases are generally built on top of existing databases that have no native support for uncertain data.
The query planners and query optimizers utilized by such databases cannot properly create a plan for
uncertain queries, thus while probabilistic database can rewrite queries in such a way that the correct
answer is provided, the way that such a query is executed based on the plan generated by the query
planner will likely be suboptimal since properties such as mutual exclusion of various data items are not
taken into account. It would thus be interesting to see if a fully native probabilistic database can be
developed, where support for data uncertainty is not “patched in” but rather is one of the most important
factors in designing the core parts of the database.
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Appendices

A Configuration and Usage

This section will explain how the plugin can be used to execute a query on uncertain data. It is assumed
the uncertain data is already stored in the database in the proper format. That is, the format where
random variables are used to describe the uncertain values, and those elements and attributes are in the
db.ewi.utwente.nl namespace. Without it, the plugin will not be able to identify the random variables

and probabilities.

A.1 Configuration Options

The valid configuration options and their effects are listed below. Most options are toggles, i.e., valid
values are either 0 or 1 where 1 corresponds to ‘on’ and 0 to ‘off’. The set of all configuration options
should be passed as an XQuery map to the query function. An example illustrating how the configuration
options can be set will be given in the next section.

apply.rounding

clean.pxml.attrs

disable.shorthands

display.num.worlds

display.num.rvars

display.timings

enable.comments

expand.result

group.by.value

order.by

order.by.attribute

order.by.order

output.result

round.precision

show.result.rvas

Controls whether or not probabilities in the output are rounded. The plugin
will never apply any intermediate rounding internally.

Removes all attributes belonging to the pxml prefix. More specifically, removes
any attributes attached to the db.ewi.utwente.nl namespace.

Disables shorthands entirely, nothing will be searched and replaced.

Outputs the number of possible worlds in the current document to the stan-
dard output of the server.

Outputs the number of random variables in the current document to the
standard output of the server.

Displays execution time for various parts of the query execution on the server’s
standard out.

Adds comments to the generated probabilistic query, indicating which part
of the query processes which part of the original query.

Expands all possible worlds and applies the query. Yields the correct answer
but is not scalable beyond small documents.

Whether the results should be grouped by unique value, which is the default.
When disabled, results will be grouped by their random variable string. The
difference between both result representation styles is discussed in Section 3.3.

The result will be ordered on the specified attributes in the specified order.
This has no effect for aggregation queries since those yield summary values.

Orders on a specific attribute. Possible values: p’, 'rv’, and v’ for probability,
random variable string, or value respectively.

The order of the order by clause, either ’ascending’ or ’descending’.

If set to false, the result will always be the empty sequence. Used in some
benchmarks to skip XML generation of lots of result nodes.

The number of decimals to round on, only relevant if apply.rounding is en-
abled.

Includes the random variable strings belonging to each result element in the
result element.
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top.k.limit Sets the number of top-k result values to be generated for Min/Max aggre-

gates.
write.timings Writes the recorded timings to a timings.txt file.
write.query.to.file Writes the transformed query to a p-query.txt file.

A.1.1 Query Execution

The plugin defines a query function, to be called from within a query issued to BaseX. The query function
takes three required arguments; the name of the database and document to run the query on, as well as
the query to be executed. An optional third parameter can be used to provide a map of configuration
options. These configuration options control various parts of the plugin’s behavior. A full list of available
options and default values is listed in Section A.1. Before the plugin’s query function can be called the
namespace containing the plugin should be imported, assigned to an arbitrary prefix. In this example, we
use the pxml prefix. Then, the query function can be called with the described parameters. In Figure A.1,
a simple query is executed which selects the days with a temperature higher than 27 degrees Celsius
and orders the result on descending probability. Furthermore, the probabilities are rounded to 4 decimal
places, and execution times of the different steps are displayed on the standard output of BaseX’s server
instance.

1| import module namespace pxml = 'org.basex.modules.pxml.PXML';
2

3| let $cfg := {

4 "apply.rounding' 1,

5 "round.precision' 4,

6 '"display.timings' 1,

7 'order.by' 1,

8 'order .by.attribute' : 'p',

9 'order.by.order' : 'descending'

101 3}

11

12| return pxml:query/(

13 "pxml', 'forecasts.xml', '//forecast[temperature > 27]', $cfg
141 )

Figure A.1: Query Execution

Since the result of the query function is a regular XQuery expression — a <results> element with <result>
child elements —, it is possible to manipulate this expression afterwards to suit a specific purpose. For
example, if the user is interested in the top-k query results by descending probability this can be easily
achieved by manipulating the query result in the following way, where we use the BaseX’s pre-defined
higher order function top-k-by.

1| import module namespace pxml = 'org.basex.modules.pxml.PXML"';

2

3| (: A flat sequence with result elements :)

4| let $query_results := pxml:query(

5 "pxml', 'forecasts.xml', '//forecast[temperature > 27]'

6| )/result

7

8| let $k := 5 (: Retrieve the top 5 results :)

9

10| return hof:top-k-by($query_results, function($r) { $r/@prob 3}, $k)

Figure A.2: Query Result Manipulation
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Note that we left out the configuration options, thus the result is not ordered on probability anymore
like it was in Figure A.1. If that were the case, a simple subsequence($query_result, 1, $k) would have
been sufficient here as well. Generally, being able to easily manipulate the probabilistic query result like
this allows more fine-grained control over the query results, which cannot be achieved using configuration
options alone.

A.1.2 Syntax Shorthands

A small number of shorthands has been defined that allows for a more compact way to express certain
queries which otherwise required a lot of verbosity. Shorthands have been defined for both the axis names
and for and/or predicates on a range of elements. Because we are using the built-in parser of BaseX
which could not be altered using a plugin, the implementation of these shorthands is done through String
replacements on the input query in a pre-processing step. This approach might cause issues in rare cases
when queries include a shorthand in some other context, e.g. as an operand of some expression, not
meant as a shorthand. To that end, the shorthands can be disabled entirely using the disable.shorthands
configuration option.

Axes The axis names defined in XQuery can be addressed using the following much shorter variants.
Due to matching on the axis name followed by a literal “::”, we believe this replacement will generally
not interfere with any other query expressions that can contain the same names — like traversing to an
<ancestor> XML node inside a document.

XQuery Axis | Shorthand

ancestor a
ancestor-or-self ao0s
following f
following-sibling | fs
preceding p
preceding-sibling | ps

Table A.1: Axis shorthands

Range Predicates A query that applies a predicate involving some subset of elements of a sequence
is difficult to express quickly in XQuery. For example, if we want to find all days with a temperature
higher than all of the following 3 days using expressions supported by our implementation we have to
write a query such as this:

//forecast[temperature > following-sibling::forecast[1]/temperature and

temperature > following-sibling::forecast[2]/temperature and
temperature > following-sibling::forecast[3]/temperature]

Instead, using both the axis shorthand for following-sibling introduced in the previous section and the
range predicate shorthand for an And expression, this can be written much more concisely as below.

//forecast[temperature > fs::forecast{1..3}/temperature]

The curly brackets denote an And of the elements of the range, i.e. elements 1 through 3 of the following-
sibling forecast elements in this example. Square brackets are used to create an Or expression from the
elements. It has to be noted a similar expression is possible using XQuery’s quantifiers, but those are not
supported by our implementation. That is, we can write the same query in the following way.

//forecast[every $f in subsequence(following-sibling::forecast, 1, 3)
satisfies temperature > $f/temperature]
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To create an Or we would use some instead of every in the previous query. Even so, this is still a fairly
verbose way of expressing the desired query compared to the shortened query we presented using the
shorthands.
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