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Chapter 1

Introduction

This thesis describes the process and result of the work done for my Master
assignment. Usually, a Master assignment is concluded with a report which
does not reach outside of the university. Instead, in agreement with my su-
pervisors, we have decided to submit my work and results as a paper to the
14th IFIP/IEEE International Symposium on Integrated Network and Ser-
vice Management (IM’15). Although the form of the final document, which
documents the work for the Master assignment, is unusual, the research does
satisfy the requirements set by the faculty in [8], as I will elaborate on in
this thesis. Furthermore, this document will briefly describe the subjects of
my research.

1.1 Assignment

For this Master assignment, a paper has replaced the usual thesis, which
must satisfy the requirements for a Master thesis. Therefore the following
describes how the work done for the Master assignment fulfills the require-
ments.

Formulate a problem statement.
The formulation of a problem statement is usually the start of any re-
search. In the case of this Master assignment this resulted in a set of
three main research questions. The formulation of these questions was
the result of the exploratory research during the Research Topics course,
in preparation for the final assignment. The feasibility of the research
questions was guarded by discussing them with the supervisors.

Identify relevant literature.
Both during the exploratory and final research a literature study was
performed, to identify literature relevant to my research. The exploratory
research was performed during Research Topics, in which an area for
further research was explored through literature. During the survey
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performed for the final assignment, I identified papers related to my
research, as well as documentation and specifications of the relevant
technologies. The literary results of the survey can be found in the final
paper, and is embedded in the introduction section.

Draw up a work plan.
As the submission of the paper to IM has a concrete deadline, this con-
sequently is the final deadline for the Master assignment. However, also
including my personal preference and the availability of the supervisors,
the deadline was moved slightly ahead. Based on this, a schedule was
created for intermediate results. During the research, this work plan
was altered multiple times, for example when our hardware to be used
appeared to be malfunctioning, it took a while for the new hardware to
arrive.

Adjust goals and approaches based on interim evaluations.
During the entire period of the Master assignment, the supervisor(s) and
I regularly evaluated and discussed the intermediate results. Using these
discussions and evaluations as a basis, the goals of the research were
shifted when deemed necessary. For example, the focus of the research
was shifted away from mitigation when the intermediate results showed
mitigation would be impractical on the current hardware. Instead, a
brief survey was done on possible solutions on newer hardware.

Analyse different possible solutions and motivate a choice between
them.

Finding and analysing the different possible solutions was part of the
literature study which was performed. Aside from using relevant liter-
ature, the more technical aspects also required studying technical doc-
umentations and specifications, consulting experts in the field (ICTS),
and referring to technical mailing lists. Finally, also measurements were
used to motivate choices between different solutions. During the entire
research project, various discussions with the supervisors were held to
ensure the analysis was sound and the choices made were viable.
The fulfillment of this requirement is also shown from the type of paper
to be submitted to IM’15, which is an experience paper. This type of pa-
per has a particular focus on different solutions and their practicability.
More details will follow in Appendix A.

The ability to reflect on the problem, on the research/design ap-
proach, on the solution and on ones own performance.

The multiple brainstorm and discussion sessions with the supervisors,
along with the evaluation of intermediate results, resulted in changes
to the problem statement, the approach and the solution. This was a
continuous process throughout the final project. Reflection on ones own
performance requires input from others. For this I used the feedback
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by the supervisors, especially regarding the more explicit tasks, such as
writing and presenting. For the more technical parts of the reflection,
feedback by experts was also used.

Demonstrate creativity and the ability to work independently.
The supervisors and I only defined the requirements for the prototype,
such that I had the freedom to implement the algorithm as I saw fit. As
there was no prior work to refer to, the implementation was build from
the ground up, using the limited amount of information and tools avail-
able on the target platform. For most of the problems that arose during
the final project, one or more solutions were provided by me. When
more solutions were available and the problem was relatively big, they
were discussed with the supervisor to ensure the most viable solution
was chosen. Moreover, based on intermediate results and evaluation
thereof, changes to the algorithm implementation were introduced for
performance improvements. The ability to work independently has been
demonstrated by progressing the work, both technically and in writing,
during the time I worked remotely, or the daily supervisor was unavail-
able.

Communicate the research and design activities both written and
in presentations.

This requirement is mostly satisfied by the final paper which is to be
submitted to IM’15, for which the audience consists of people with dif-
ferent technical backgrounds. During the final project, a presentation
was held to introduce the DACS chair to my research. The research is
also communicated by the presentation at the end of this final project,
and will be presented at IM’15.

1.2 Research Topics

During the final project multiple topics have been researched. The following
is a list of these topics, with short descriptions and how they relate to each
other and to my research.

NetFlow/IPFIX
Modern high-speed networks can feature high throughput, of many Gi-
gabits per second [6]. Monitoring such networks requires technologies
which can scale to keep up with the growing networks and increasing
link rates. Technologies such as Cisco’s NetFlow [1] and the recent
standardization effort IPFIX [2], do not export every packet for analy-
sis, but instead export flows. This aggregation, while there is some loss
of information, allows network operators to monitor their high-speed
networks in an efficient manner. Furthermore, these technologies are
widely deployed and available on high-end networking devices.
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In this research project, flow-based technologies are used to detect Dis-
tributed Denial of Service (DDoS) attacks. Specifically, data exported
using Cisco’s NetFlow is used on a high speed-packet forwarding device
to perform this DDoS attack detection. Therefore, I have investigated
how NetFlow and IPFIX works, and specifically how Cisco implements
NetFlow.

Distributed Denial of Service attacks
With the growing use of the Internet, the misuse is growing as well. One
attack against networks and services is the Distributed Denial of Service
(DDoS) attack, which attempts to overload the target by sending a large
amount of packets from different sources. Recently DDoS attacks have
become more common and volumes have reached 400 Gbps, making it
a serious threat [3, 7].
Many types of DDoS attacks exist. Due to the nature of DDoS at-
tacks, most types generate a large number of flows. Consequently, by
inspecting the NetFlow/IPFIX data, the attack can be detected. This
is the premise of the research conducted in this final project. Using an
existing algorithm from [5], flow-based DDoS attack detection has been
implemented on the Cisco IOS platform.

Scripting on high-end packet forwarding devices
Many different high-end packet forwarding devices exists, most of which
support some kind of command automation or scripting to assist the
network administrator. To implement the detection algorithm presented
in [5] on a packet forwarding device, scripting is a requirement for the
target platform. I surveyed the scripting possibilities for switches from
the following vendors:

• Brocade Communication Systems

• Cisco Systems

• Extreme Networks

• Dell

• Juniper Networks

From this selection, Cisco Systems and Juniper Networks appeared to
offer the best scripting possibilities, as Juniper allows the use of a UNIX
shell, while Cisco offers an extensive API from their TCL scripting envi-
ronment. The other vendors either only provide command automation,
without the possibility to react to event without the interference of an
administrator, or the published API was limited in scope.
For the implementation of the DDoS attack detection, we have chosen
Cisco’s IOS, as one of their switches, the Catalyst 6500, is the most
widely deployed switch [4]. Consequently, implementing the algorithm
for this platform would cause it to be widely deployable. Therefore,
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most of the practical research regarding scripting on high-end packet
forwarding devices was focused on Cisco IOS.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 discusses the
deliverables for my Master assignment. In Chapter 3 the lessons I learned
during the final project are discussed. The final paper to be submitted to
IM’15 can be found in Appendix A.
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Chapter 2

Deliverables

The deliverables for this Master assignment consist of more than this thesis,
which are discussed in this chapter.

2.1 Paper

The most important deliverable of my Master assignment is the documenta-
tion of my research in the form of a paper. This paper will be submitted to
the 14th IFIP/IEEE International Symposium on Integrated Network and
Service Management (IM’15). The paper itself and information regarding
the conference can be found in Appendix A.

2.2 DDoS detection implementation

The research done for my Master assignment concerns the DDoS attack
detection implementation for Cisco IOS. Validation has shown that the im-
plementation can detect DDoS attacks in real-time, causing a constant load
on the switch it is deployed on, which makes it interesting for deployment.
By releasing the TCL scripts on GitHub1 in an open way, we want to make
sure the research is reproducible, as well as encourage further research and
development. Such further research may include deployment of the scripts
on the newer Supervisor Engine 2T, and implementing mitigation.

1https://github.com/ut-dacs/ios-ddos-detect
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Chapter 3

Lessons Learned

This chapter contains some of the lessons learned during the final project,
which do not directly relate to the research itself, as described in Section 1.2,
but are of value nonetheless.

3.1 Cisco Catalyst 6500

During the research project, a lot of the time was spent on working with the
high-end packet forwarding device used, the Cisco Catalyst 6500. Imple-
menting the detection algorithm in TCL was a challenge in and of itself, but
it surprised me how many options are available on such high-end networking
devices. During this process, some interesting problems were encountered,
such as reading wrong SNMP objects and some undocumented behaviour.
Most of these problems could be easily overcome once the reason for the
error was clear. The biggest lesson I learned from these issues, is making
sure the code or command does what you expect it to do, as not all features
are extensively documented. Aside from learning the scripting environment,
I also learned many of the configuration and management options available
on the switch I worked with, which may be useful sometime.

3.2 Writing

Documenting one’s work is very important, because reproducibility is one
of the main principles of science. Writing the paper for IM’15 proved to
be quite a challenge, as it should be written in a very concise manner. At
the start of writing, it was difficult to switch from writing report style to
writing a scientific paper. During the writing process, I got lots of feedback
which helped me to learn the proper style of writing. The feedback I learned
most from addressed structure, both high level and low level. At the start
of writing, I mostly approached writing in an ad-hoc manner, only using a
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very global outline as guide. Based on the feedback, the use of bullet points
to create structure, from high level to low level, became more common.

For a new paper, I would use this more structured approach from the
beginning, to keep the text structured throughout the entire writing process.
Furthermore, the use of language would likely be different to keep the text
understandable. An example would be explaining something first and then
mention it in context, instead of doing it the other way around. Finally, I
would try to explain everything briefly, instead of assuming knowledge on
the reader’s part or relying on implicit reasoning.

3.3 OpenFlow

During the search for existing literature, one paper popped up that used
OpenFlow to detect DDoS attacks. To properly understand the difference
between NetFlow and IPFIX, and OpenFlow, I looked into what OpenFlow
is and how is works. During the preparation of the validation setup, we had
to strip the VLAN tags from the Ethernet frames and rewrite the destination
MAC address. Without doing this, the Catalyst 6500 would not accept the
Ethernet frames, as the frames were not addressed to it, but to the switch we
received the duplicated traffic from. After looking into different solutions,
only OpenFlow seemed to offer exactly what we needed. At first this was
done in software, using Open vSwitch and later we switched to using a Pica8
switch. While I cannot say I have gained a lot of technical experience with
OpenFlow, as I did with Cisco IOS, I did learn that it is a very useful new
technology, and I will definitely be looking further into it.
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IM 2015 Paper

This appendix contains the paper which is to be submitted to 14th IFIP/IEEE
International Symposium on Integrated Network and Service Management
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results of my research. The track chosen for this conference is Experience
Session, as this research is slightly more practical than other research.
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for Cisco IOS using NetFlow
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Abstract—The first papers on the detection of DDoS attacks
in a flow-based fashion have appeared already several years ago.
The problem with these works is that they rely on the analysis
of data by analysis applications that are typically installed on
or close to a flow collector. This makes existing approaches far
from real-time and susceptible to DDoS attacks themselves.

In a previous work, we have shown how to perform DDoS
attack detection on a flow exporter instead of a flow collector,
i.e., close to the data source and in a real-time fashion, which
however required access to fully-extendible flow monitoring
infrastructure. In this work, we overcome this limitation by
presenting a proof-of-concept of the first intrusion detection
system for Cisco IOS that detects DDoS attacks in a real-time
fashion. Our analysis shows that the detection of attacks is
feasible in production networks, with detection delays in the
order of 20 seconds. Also, we show that our prototype generates
a constant load on the underlying platform, even under attacks,
underlining that it can be deployed in production networks if
enough spare capacity is available.

I. INTRODUCTION

Distributed denial of service (DDoS) attacks are becoming a
major technical and economical threat, flooding networks and
servers with large amounts of network traffic. In early 2014
CloudFlare was hit by an amplified UDP flood attack, reaching
nearly 400 Gbps in bandwidth [1]. A flow is defined in [2] as
“a set of packets passing an observation point in the network
during a certain time interval, such that all packets belonging
to a certain flow have a set of common properties”. Examples
of such common properties are the source and destination ad-
dresses and ports. Large numbers of flows are created by high
volume DDoS attacks, making it possible for flow-based tech-
nologies to detect such volume-based attacks [3]. Moreover,
the use of flow export technologies, such as NetFlow and the
recent IETF standardization effort IPFIX, are especially useful
since they generate traffic aggregates. This approach reduces
the amount of data to be analyzed significantly [4], as well
as the necessary processing power for export, collection and
analysis. Furthermore, these technologies are widely available
on packet forwarding devices, making the flow data easily
accessible and the technologies easy to deploy in existing
networks.

Flow-based intrusion detection in general – DDoS attack
detection is no exception – is traditionally performed by
analysis applications [5]–[7], as shown in Fig. 1. These ap-
plications work based on flow data exported by flow exporters

Flow Exporter Flow Collector
Analysis

Application

Fig. 1. Typical flow monitoring architecture.

and collected by flow collectors. Since the export of flow
data is heavily based on timeouts and the collection is often
designed to work in time intervals of several minutes, analysis
applications are subject to various delays in the detection
process [8]. Especially in the case of DDoS attack detection,
where overload of network infrastructure can happen very
quickly, this is something that must be avoided.

Recent work has shown that moving detection closer to the
data source decreases detection delays significantly, from at
least 165 seconds to 10 seconds [9]. The presented DDoS
attack detection algorithm runs on a platform targeted at
passive data export based on flows, namely INVEA-TECHs
FlowMon platform. The goal of this paper is to investigate
whether the detection algorithm presented in [9] can be
deployed on a widely available platform. In this context,
we target Cisco’s IOS platform and in particular the Cisco
Catalyst 6500, which is one of the most widely deployed
packet forwarding devices [10]. We focus in particular on the
operational experience of performing intrusion detection on a
packet forwarding device in a production network.

The remainder of this paper is structured as follows. Sec-
tion II introduces NetFlow/IPFIX terminology which is used
in this paper. An overview of the original detection algorithm
from [9] is given in Section III. In Section IV, we present an
approximation of the metric for the detection algorithm. The
implemented prototype is discussed Section V, which will be
used for the validation presented in Section VI. In Section VII,
we elaborate on further possibilities for DDoS attack detection
and mitigation in Cisco IOS. Finally, we close this paper in
Section VIII where we draw our conclusions.

II. FLOW METERING & EXPORT

In this section, we briefly introduce the terminology related
to flow metering and export, which will be used throughout
this paper.

Flow metering and export are the two tasks performed by a
flow exporter [4], as shown in Fig. 1. Packets in the network
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new flow is observed, an entry for this flow is created in the
flow cache. This cache is a table in which information is stored
regarding all active flows in the network [4]. Aside from the
key of the flow, i.e., the fields that identify a flow, some extra
information is accounted, such as the number of packets and
bytes in the flow. When a flow cache entry expires, for example
when the flow has been active or inactive for too long or
because of resource constraints, a flow record is exported, i.e.,
it is inserted in a NetFlow or IPFIX Message and sent to
a collector for storage and analysis. If the cache is full and
a flow cache entry cannot be created, it is considered a flow
learn failure [11]. This can happen during periods of very high
traffic if the flow cache is under-dimensioned, for example.

III. DETECTION ALGORITHM

We use an existing algorithm that has proven to satisfy
the requirements of being lightweight, accurate and real-time
in the context of DDoS attack detection, described in [9].
The algorithm1 runs on a fixed time interval and measures
the number of flow cache entry creations, as this metric was
shown to be most usable of the four metrics presented in
[9]. Based on this measurement a forecast is made for the
measurement value of the next interval. In case the number
of flow cache entry creations is too high in comparison with
the past measurement values, the measurement sample is
considered to be anomalous. However, because Internet traffic
shows strong diurnal patterns, such as strong increases and
decreases in the number of flow cache entry creations during
the start and end of a working day respectively, the algorithm
also learns the normal behaviour of the network over a 24
hour period. The forecasted value is therefore defined as:

x̂t+1 = bt + st , (1)

where x̂t+1 is the forecasted value for the next interval, bt is
the base component, sometimes also referred to as permanent
component, which represents the trend of the Internet traffic,
and st is the seasonal component which represents the diurnal
patterns.

Several enhancements to this algorithm are discussed in [9].
First, in order to decrease memory usage, the values used for
retaining seasonal patterns, st, are stored per hour and are
interpolated to estimate the value for a given time. Second, to
prevent the algorithm from learning malicious traffic patterns,
values such as st and bt are discarded during an attack.
Last, since the traffic patterns during the weekend usually
differ from the patterns during weekdays, distinction is made
between weekend and weekdays for season memory. This
results in two training periods, one for weekdays and one for
weekends.

IV. MONITORING INFORMATION AVAILABLE IN IOS

The detection algorithm considered in this paper, which has
been summarized in Section III, is heavily based on a single

1In [9] two algorithms are described. We use Algorithm 2, which showed
the best results.
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Fig. 2. Measuring flow cache entry creations in Cisco IOS.

metric, namely the number of flow cache entry creations per
time interval. This metric is easily accessible on the flow
monitoring platform used in the original work of the prototype
([9]), INVEA-TECH’s FlowMon. Since that platform has been
designed with extendibility in mind, this information is directly
available from the platform’s API. However, the amount of
information available in IOS strongly depends on the path
the packet or flow has taken through the router or switch.
More precisely, packets are switched either in hardware or
in software, although most packets are hardware-switched.
On the campus network of the University of Twente (UT),
for example, 99.6% of the traffic is hardware-switched [11].
Situations that trigger a packet to be switched in software are
fragmented packets and packets that require ARP resolution
[12], for example. For flows handled in hardware, information
on the number of flow cache entry creations is not directly
available. To approximate this metric, we use the following
information available from the flow metering and exporting
process:

• Number of flow cache entries (Fc).
• Number of exported software flow records (Fe).
• Number of flow learn failures (Ff ). Accounts for the

number of packets that could not be mapped to a flow
cache entry, due to an under-dimensioned flow cache [11].

The number of flow cache entry creations since the last mea-
surement can be approximated using the following definition:

F = ∆Fc + ∆Fe +
∆Ff

cf
(2)

When flow cache entries are exported, Fc will decrease
which will cause the approximation to be less accurate if the
measurement intervals are too long. For example, in Fig. 2,
if the measurement were to cover two intervals, from t = 2
to t = 4, the ∆Fc will not consider the peak at t = 3. By
polling Fc more frequently, we can observe the changes more
accurately, such that we observe the positive ∆Fc at t = 3 and
the negative ∆Fc at t = 4, which is caused by exports. Then,
if ∆Fc is negative, instead we use an estimation of previous
∆Fc values. Since the number of entries in the flow cache (Fc)
only regards hardware-switched flows, we also add the number
of exported software-switched flows (Fe), which can be easily
obtained from IOS. Finally, by adding Ff it is possible to also
regard flows that should have been created but were not, which
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However, Ff counts every packet for which it failed to learn
the flow as one flow learn failure. To compensate for the fact
that Ff is expressed in packets while the other metrics are
expressed in flows, we divide Ff by the average of the number
of packets per flow, represented by cf in Equation 2.

V. IMPLEMENTATION

The Embedded Event Manager (EEM) – part of Cisco’s IOS
that handles real-time network event detection – allows for the
definition of policies, which can be used to execute an applet or
script when certain events are triggered. For example, emails
can be sent to network administrators when round-trip times
reach a certain limit, or when network route changes occur.
Another event type is based on time. This event can, among
others, be scheduled at fixed time intervals. In this work, we
use two time-based policies, implemented as TCL scripts:2

• Measurement policy – Determines the first component
for our approximation of the flow-based metric: the num-
ber of flow cache entries (Fc), as described in Section IV.

• Detection policy – Retrieves the remaining components:
the number of exported software flows (Fe) and the
number of flow learn failures (Ff ). Also, it implements
the actual DDoS attack detection algorithm.

To obtain all three components, which are all made available
using the SNMP protocol, we use a feature of the EEM
environment that provides access to local SNMP objects. The
reason for splitting the measurement policy from the detection
policy is that we require a higher resolution for the former to
detect changes more accurately, as described in Section IV.

Policy invocations are memoryless, and since we want to
share data – both between policy runs and between policies –
a method for sharing data needs to be implemented. Due to
the fact that the filesystem is flash-based, we generally want to
avoid excessive write actions that will shorten the memory’s
lifespan. The EEM environment therefore offers a Context
library for this purpose; it allows for saving TCL variables to
memory instead of writing them to disk. Besides for keeping
track of our data between policy runs, we also use this feature
to exchange information between the two policies, as the result
of the measurement policy is needed by the detection policy.

The two policies discussed before are executed by the EEM
at their respective intervals, which have been selected based
on the runtime of the respective policies. When the switch
is however under heavy load, its higher CPU utilization will
cause the policies to take longer to execute. To avoid the
policies from skipping an execution when the runtime of the
policy exceeds the length of the interval, the prototype utilizes
a feature from the EEM that can set a maximum policy
runtime. If this runtime is exceeded, the policy terminates
forcibly and data is lost. In the case of the detection policy, the
algorithm has to start again from the learning phase as all state
data is lost. If the measurement policy terminates prematurely,

2The open-source TCL scripts can be retrieved from
https://github.com/ut-dacs/ios-ddos-detect/

the measured number of created flow cache entries will be
lower, as it missed a measurement, which will slightly impact
the accuracy of the algorithm. To prevent the detection policy
from being killed, a margin has been added to the interval
which allows it to run longer if necessary, but never longer
than the interval at which it is executed. The average runtime
of the detection policy is 2–3 seconds under normal conditions,
and has shown to reach 7–8 seconds under stress. Therefore,
the final interval chosen for the detection policy is 10 seconds.
For the measurement policy, measurements have shown that
2 seconds is provides an optimal balance between detailed
measurements and loss of data due to termination.

VI. VALIDATION

In this section, we describe the validation of this work,
starting by identifying the requirements in Section VI-A. Next,
we give a description of the validation setup in Section VI-B
as well as specifics regarding the deployment, after which we
discuss the results in Section VI-C.

A. Requirements

Three requirements were defined for the original algorithm:
1) it should be lightweight in terms of CPU and memory
utilization, 2) the accuracy should be high enough to ascertain
a low number of false positives/negatives, and the detection
delay should be reduced to roughly 10% of conventional
intrusion detection approaches [9]. However, since the the
Cisco Catalyst 6500 is a high-speed packet forwarding device
that has not designed for performing intrusion detection tasks,
special care must be taken to not overload the device and
possibly interrupt forwarding activities. We therefore relax the
real-time requirement to detection within 30 seconds, while the
CPU and memory utilization must be 10% or lower. Since the
accuracy of the algorithm has already been validated in [9]
and because it is invariant to the underlying implementation
platform, we discuss the accuracy requirement only briefly.

B. Setup & Deployment

The implementation described in Section V has been de-
veloped on a Cisco Catalyst 6500 with the Supervisor En-
gine 720. We have used this in combination with the WS-
X6708-10G-3C line card for 10 Gbps Ethernet connectivity.
The traffic used for validation comes is mirrored from the
uplink of the UT campus network to the Dutch National Re-
search and Education Network SURFnet. This traffic consists
both of educational traffic, i.e. traffic generated by faculties
and students, and traffic of campus residences. The link has a
wire-speed of 10 Gbps with an average throughput of 1.8 Gbps
during working hours. Furthermore, the flow data is exported
to a flow collector, such that attacks detected by the prototype
can be validated manually.

The network traffic used in [9] differs from the network
traffic used in this work, both from its nature (backbone traffic
vs. campus traffic) and volume. It is therefore clear that we
have to adjust the parameters of the detection algorithm to
achieve a similar accuracy as in [9]. As such, we have selected
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the optimal parameters3 for our observation point. For the

parameter cf used in our approximation of the number of flow

cache entry creations, as described in Section IV, we obtain

cf = 59.8133 packets per flow on average.

C. Results

The most important requirement to be validated in this

work is that the implementation must be light-weight, such

that the implementation does not interfere with the primary

activities of the packet forwarding device, namely routing and

switching. We measure the resource consumption both in terms

of CPU and memory utilization. In Fig. 3, the CPU load of

the device is shown together with the memory utilization,

averaged over 150 seconds. Using SNMP, the load of the CPU

is measured for three components, namely the routing CPU,

which handles L3 traffic, and two switching CPUs, which

process traffic at L2. Once a routing or switching decision has

been made by the CPU, hardware handles subsequent packets

if possible. Furthermore, the routing CPU also handles the

network management – including the EEM –, as most of this

is done on L3. Consequently, our EEM policies also run on

the routing CPU, and as such any load caused by our policies

should account to the load of the routing CPU. During the

period from August 16 3:00 to August 17, the measurement

3The parameters used in this work are: cthreshold = 3.0, Mmin = 7000,
ccusum = 4.0, α = 2

N+1
, where N = 540, and γ = 0.4.

policies were not running due to a malfunctioning in the EEM.

This caused the CPU utilization to drop, and the memory

utilization to peak due to a memory leak.

In Fig. 3, the policies are active during the entire measure-

ment period. Because the CPU utilization of most individual

processes is reported as 0–1% and only peaks are reported

as more than 1%, we only consider the overal CPU usage.

Consequently, the overhead of managing and executing only

the policies cannot be observed. This overhead is caused

by processes such as the Chunk Manager, which handles

memory allocation, EEM Server, which manages all EEM

policies and applets, and SNMP ENGINE, which handles

all SNMP requests. Because the overhead of operating our

policies is caused by multiple processes, which also run when

our implemented policies are disabled, we have measured the

difference in CPU and memory utilization between operation

with and without our policies. To measure this, the switch

has been rebooted to clear all memory and CPU utilization.

During this measurement we have observed a load on the

routing CPU of 4%, combined with a memory utilization of

31.3%. Next, we have enabled our policies and measured the

CPU and memory utilization again, observing an increase of

19% in CPU utilization, and an increase of 0.13% in memory

utilization. This accounts for the average constant load added

by our implementation.

To validate the behaviour during an attack and because of
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lthe absence of DDoS attacks, we have injected a SYN flood

attack on August 15. This was done by running Masscan4 on
a server, which is directly attached to the switch to prevent the
attack from leaking into the network. The source IP addresses
and ports are randomly generated in order to obtain a large
number of flows, like an actual DDoS attack would. The
attack lasted for around 13 minutes. It started and ended with
approximately 4k packets per second (PPS), and peaked at
20k PPS for a minute. During this attack, we only observe a
minor increase of the load of the switching CPU, caused by the
increased number of packets to be switched, and no increase
in load for the routing CPU. As such, we conclude that the
CPU load caused by our implementation during attacks does
not peak and instead only consists of the constant load. The
peaks in the load of the routing CPU, visible in Fig. 3, are
likely the effect of other routing or management processes
on the Catalyst 6500, as such processes are handled by the
routing CPU. In terms of memory utilization, we clearly
observe a stable pattern in Fig. 3, aside from the memory spike
during the malfunctioning of the EEM. We do not observe any
increase in memory utilization during the attacks, therefore we
conclude the memory utilization does not create big peaks.

Considering the above measurements, we conclude that the
memory utilization does satisfy the requirement of using 10%
of memory or less. However, the 19% CPU load caused by
our implementation does not satisfy the requirement of 10%
CPU utilization or less. As the Catalyst 6500 is a packet
switching device and not meant to perform network attack
detection, such other activities should not interfere with its
main purpose of operation. As a load of 19% is probable
to cause interference with the routing and switching tasks,
we conclude that our implementation does not satisfy the
requirement to be light-weight. The difference between the
measured constant load and the lack of peaks in Fig. 3 can
be explained by the fact that the amount of traffic does not
change the number of computations performed by the policies,
as only the calculated values are different. Furthermore, the
short and frequent execution of the policies will be averaged
out to a constant added CPU load. Especially the short,
2 second interval of the measurement policy increases the
load. However, increasing this interval would decrease the
measurement resolution, as described in Section IV.

The second requirement is the detection delay. This re-
quirement, like the accuracy, has already been validated for
the prototype in [9]. Our implementation uses an interval of
10 seconds between invocations of the algorithm, instead of
5 seconds as described in [9] because of the runtime of the
algorithm, as described in Section V. This results in detection
delays of multiples 10 seconds, with a minimum of 10 seconds.
The attack visible in Fig. 4 was detected within the second
interval, resulting in a detection delay of 20 seconds.

The final requirement considered in this work is the accu-
racy of the DDoS attack detection. In Fig. 4, the number of
flow cache entry creations per measurement interval is shown,

4https://github.com/robertdavidgraham/masscan

averaged over 5 minute intervals. Weekends are shaded in
light-gray. Diurnal patterns are clearly distinguishable and due
to the nature of the traffic, we can also observe the difference
between weekdays and weekends. Two anomalous periods are
clearly visible. The first, starting on August 11, is a learning
phase of the algorithm, as the algorithm was started in the
weekend. The second, starting on August 16 around 3:00, is
due to a malfunctioning of the EEM, which caused the policies
to stop running. The generated attack on August 15 is cleary
distinguishable in Fig. 4. It resulted in 2–3 times more flow
records than predicted by the algorithm, and lasted for roughly
13 minutes. Multiple detection marks are shown, as the attack
overlapped multiple 5 minute intervals.

VII. DISCUSSION

In the previous sections we have investigated whether it
is possible to deploy DDoS attack detection on a Cisco
Catalyst 6500. Although the detection of (DDoS) attacks is
a crucial first step, it merely serves the ultimate goal: attack
mitigation.

In [9], not only a detection algorithm is presented, but
mitigation is discussed as well. When the detection algorithm
is run and a measurement sample is considered malicious,
mitigation is started. By counting the number of exported flow
records per source IP address, attackers can be identified. As
soon as more than 200 flow records with three packets or
less have been exported per second for a particular source IP
address, the source IP address is blacklisted. These blacklisted
IP addresses are added to a firewall to block traffic from
the attacker. Furthermore, to prevent the flow collector from
overloading, the flow records with these IP addresses are not
sent to the collector. When the algorithm detects the end of
the attack, the created rules are removed from the firewall.

The information used to identify attackers in [9] is not
available in IOS; Only the total number of exported cache
entries is available. An alternative approach for identifying
attackers is to analyze the contents of the flow cache. However,
the IP addresses of attackers will be overrepresented in the
cache during a DDoS attack, since attackers generate large
amounts of traffic, which result in a large number of flow
cache entries. However, the time to retrieve and process the
entire flow cache under load – which consists of at least 128k
entries, depending on the used hardware – can take up to
tens of seconds, making timely mitigation using this approach
hardly possible.

A different approach to implement mitigation is the use
of an IOS feature that keeps track of the top x ∈ (0, 200)
flows featuring the highest volume, either in terms of packets
or bytes, referred to as NetFlow Top Talkers. This feature
cannot show the top talkers by the number of flows a source
address produces, which will be very high for DDoS attackers.
Furthermore, it is very likely that legitimate users will be in the
top talkers list, as they can generate just as much packets and
bytes. We therefore conclude that it is very hard to identify the
attackers and set aside mitigation in this work, while focussing
on detection.
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lVIII. CONCLUSIONS

This paper has presented a prototype for detecting DDoS
attacks on Cisco’s IOS platform, based on the algorithm
presented in [9]. Our results show that detection of flooding
attacks is possible within tens of seconds, making real-time
detection on a widely available switching platform possible.
However, our prototype has also shown to cause a high CPU
load of 19%, which may cause interference with the routing
and switching processes. The cause of this is the frequent
polling for reliable monitoring information used in our imple-
mentation. According to various network operators we have
stayed in touch with during this work, if the capacity of the
packet forwarding device is available, it should be possible to
run our DDoS attack detection in a production environment.
While it is possible to deploy our implementation with only
20–30% CPU available, for example, it would require to be
run with a lower priority, to not interfere with the routing
and switching processes. As this may cause instability to our
prototype, it is advised to at least have 40% CPU available.

The first requirement is the small footprint of the im-
plemented detection algorithm. The validation results show
that during attacks there is no visible increase in CPU and
memory usage. However, when monitoring the overall increase
in CPU and memory usage compared between not running
and running the detection prototype, an increase of 19% CPU
load, and 0.13% memory usage can be observed. While the
memory usage satisfies the requirement of using 10% or less
of the available resources, the CPU load does not satisfy this
requirement. Validation of our prototype in the network of
the University of Twente has shown that detection delays of
20 seconds are feasible for high intensity attacks, satisfying
the real-time requirement of detection within 30 seconds. This
corresponds to twice our measurement interval of 10 seconds.
Smaller measurement intervals may decrease detection delays,
but will make it more likely that our detection runs overtime
and is killed by a management process. The last requirement
for our implementation is detection accuracy. Our validation
results show that the number of false positives is low, while
the detection rate is high, because of which we conclude that
our prototype is accurate.

Mitigation is the next step, after detection. Our investigation
has shown that while it is possible to obtain enough informa-
tion to identify possible attackers, the command used to obtain
this information can take tens of seconds when the switch is
under heavy load, which occurs during flooding attacks. We
therefore conclude that real-time mitigation is impossible on
the hardware used in this work.

Possible future work includes investigating alternative im-
plementations on different hardware. The successor of the
Supervisor Engine 720, the Supervisor Engine 2T, contains
more powerful hardware and provides additional functionality.
This more powerful hardware is likely to influence the load
caused by our implementation in a positive way, and poten-
tially even allow for real-time mitigation. Furthermore, a brief
investigation has shown that the Supervisor Engine 2T has the

option of using events upon flow cache entry creations. This
could replace our approximation of the number of flow cache
entry creations, as described in Section IV, and make it more
accurate and possibly faster.
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