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Summary i

Summary

In this thesis the possible torque on a gold nanoparticle with an aspect ratio of 7 is investigated using
the discrete dipole approximation (DDA). For the different plasmon resonance modes the extinction and
torque spectra are computed and the electric field is visualised together with the charge distribution.
We found that the torque is at a maximum for particles oriented at 45◦ relative to the polarization and
k-vector of the incident light. Furthermore the dipole resonance rendered the largest torque. For a
particle with a short radius of 19nm this maximum torque was determined to be 1.15× 10−18 Nm. This
torque is compared to the Brownian motion and it was found that the rotational energy associated with
this torque is not enough to overcome the Brownian motion. However, experimental results show that
for a similar torque alignment may be possible. This suggests there might be invalidities in the energy
analysis used in this report.

The dipole and octupole modes behave as expected, since a change in the charge distribution was
observed causing the torque to oscillate. However, the quadrupole exhibits a static charge distribu-
tion, contradicting the torque oscillation that was visible in the quadrupole torque spectrum. A fitting
explanation for this phenomenon is not yet found.
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Chapter 1

Introduction

Surface plasmon resonances (SPR) have been a research subject for many years. When a metallic
particle is exposed to an incident light beam this may give rise to collective excitation of electrons [1].
Surface plasmon resonances result in a peak in the extinction spectra of the investigated particles. The
position of this peak is determined by the shape, size and material of the particle. When consider-
ing metallic ellipsoidal particles, different peaks can be observed corresponding to different resonance
modes. For example, a prolate spheroidal particle clearly exhibits two peaks in its extinction spectrum:
one from the transverse mode and another one from the longitudinal resonance mode. For larger parti-
cles it is also possible to excite higher order resonances such as the quadrupole and octupole modes.
If the particle has dimensions in the nanometer range, so that its dimensions are significantly smaller
than the wavelength of the incident light, SPR is referred to as localized surface plasmon resonance or
LSPR. When considering LSPR, the dipole mode usually is the most significant. Therefore the particle
exhibits very similar behaviour to an electric dipole.

A dipole in an electric field can experience a torque when exposed to linearly polarized radiation [2].
Therefore an anisotropic particle located in an electric field may also experience a torque due to its
similarity to a dipole. Several studies have been conducted to find out how large this torque on a metal-
lic nanoparticle can be and if it would be possible to align anisotropic particles with the polarization
direction of the incident wave [3]. In order to do so, the torque that acts upon the particles has to be
large enough to overcome Brownian motion. These studies have obtained torques varying between
10× 10−11 Nm and 10× 10−19 Nm [3–6]

For particles exhibiting certain symmetries, spherical or cylindrical for example, Mie theory is an an-
alytical method to solve Maxwell’s equations and thereby provides us with the means to calculate the
electric field [7]. However, when dealing with differently shaped particles Mie theory no longer suffices
and numerical methods have to be used. A frequently used method to determine the properties of
anisotropic nanoparticles is the discrete dipole approximation (DDA) [1, 8, 9]. The DDA approaches a
particle as a collection of a large number of dipoles enabling the user to numerically solve a variety of
problems. For instance, the DDA has been used to calculate extinction spectra of noble metal nanopar-
ticles among other properties [1,8].

In this thesis the DDA will be used in order to study the torque on gold, anisotropic nanoparticles.
The wide range of published torque values suggests that there is no consensus yet. Using the DDA
an attempt is made to find a conclusive answer for this problem. Furthermore, these torque values
will be used to investigate if it is possible to overcome Brownian rotation. Also, the electric field near
the particle is visualized in order to understand the underlying principles causing the particle to rotate.
This is done by simulating the electric field of particles with different effective radii and orientations for
a broad spectrum of wavelengths. This way, the different modes (dipole, quadrupole etc.) will all be
investigated.
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Chapter 2

Theory

2.1 Localized surface plasmon resonance

When a metal particle is exposed to incident radiation, its electron cloud shifts opposite to the incident
field as can be seen in figure 2.1. In case the frequency of the incoming wave matches the resonance
frequency of the electrons, a surface plasmon resonance (SPR) is excited. If the particle is substantially
smaller than the wavelength of the incident light, this phenomenon is referred to as localized surface
plasmon resonance or LSPR.
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Figure 2.1: Schematic illustration of a light wave causing a localized surface plasmon resonance.

A commonly used method to analyse LSPR is to plot extinction spectra. In these spectra the
extinction efficiency factor Qext is measured as a function of wavelength. The total extinction has
two contributing factors: absorption and scattering. Qext is simply the sum of these two factors:
Qext = Qabs +Qsca [7].

In extinction spectra, an LSPR is clearly visible as a sharp peak at the plasmon resonance frequency.
Since multiple modes can be excited (transverse, longitudinal) and these modes can have higher order
resonances (quadrupole, octupole etc.), most extinction spectra exhibit multiple peaks. The shape of
these peaks can be explained by looking at the polarizability of the particle: α. This α is a complex
function with a phase lag φ with respect to the incident electric field. When the condition φ = π/2 holds,
it means that Re(α) = 0. At that point, the imaginary part of α is at its maximum, which corresponds
to the maximum absorption [5]. This can be verified for an upright prolate spheroid using the equation
formulated by Gans [10]

α ∝ εr(ω)− 1

1 + [εr(w)− 1]L
(2.1)

where α is the polarizability, εr(ω) the relative permittivity of the particle and L the depolarization factor.
L is related to the aspect ratios of the particle. For a sphere, L is equal to 1/3, for a very prolate spheroid
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Figure 2.2: Real and imaginary part of the polarizability of an upright prolate spheroid with an aspect
ratio of 7. This corresponds to an L of approximately 0.035 [11].

(i.e. a needle) L approaches 1 and for a very oblate particle (i.e. disk) L approaches 0. Using equation
2.1 a spectrum for α is plotted in figure 2.2. This type of oscillation is characteristic for a Lorentz
oscillator.

Note that in order to see even modes the particle has to be oriented at an angle between 0◦ and 90◦

in theEk-plane. When the target is oriented at 0◦ or 90◦ the even modes are forbidden due to symmetry
reasons [12–14].

The wavelength at which a certain mode will occur, will redshift for increasing particle size [1]. This
can be explained by the fact that the wavelength of the incident light has to increase as well in order
for a standing surface wave to fit on the particle. Another explanation for the redshift is that for a
larger particle the opposite charges get separated further apart. This results in a smaller counterforce
and therefore less energy is needed to excite the LSPR. That makes longer wavelengths suitable for
exciting a resonance.

2.1.1 Torque induced by LSPR

Localized surface plasmon resonances cause a separation of charges in the particle. Because of this
separation a net dipole moment occurs, which gives rise to a torque that can be calculated by:

Γ = p×E (2.2)

Here Γ is the torque, p is the dipole moment and E is the electric field. The size of this torque largely
depends on the polarizability of the target and the intensity of the incident field. When dealing with
torques sometimes the torgue efficiency vector is used, which is given by [15]:

QΓ =
kΓ

πa2
effurad

(2.3)

where QΓ is the torque efficiency vector, k the wavenumber, aeff the effective radius and urad the
time-averaged energy density for an incident plane wave with amplitude E0 cos(ωt + φ). urad is given
by:

urad = εm
E2

0

8π
(2.4)

where εm is the permittivity of the medium and E0 is the amplitude of the electric field. This amplitude
can be calculated from [2]:

E2
0 =

2I

cεm
(2.5)

where I is the intensity and c the speed of light in vacuum.

Energy analysis
In order to compare the torque to other forces, such as the Brownian motion, one should calculate the
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rotational energy of the particle. This can be done by considering a simple equation of motion for a
particle in a fluid:

I
d2θ

dt2
= Γ− γ dθ

dt
(2.6)

I is the moment of inertia of the particle, θ the angle of rotation and γ is the rotational drag coefficient.
The left hand side of the equation is simply the general inertia term and the right hand side consists of
a term for the torque and one for the drag. The rotational drag coefficient is given by [16]:

γ =
πηh3

3[ln h
2r − 0.66]

(2.7)

In this equation η is the viscosity of the fluid, h is the length of the particle and r is the short radius of
the particle. If a stationary situation is considered, the left hand side of the equation of motion is equal
to zero. Therefore it must hold that:

ω =
dθ

dt
=

Γ

γ
(2.8)

where ω is the rotational velocity. The rotational energy of a system is given by:

Erot =
1

2
Iω2 (2.9)

In order to calculate this energy, the moment of inertia is needed. If a cylinder is considered, the moment
of inertia can be calculated using the next equation:

Icyl =
1

12
m[3r2 + h2] (2.10)

where m is the total mass of the target.

Charge distribution
It can be useful to visualize the surface charge distribution on the target surface. This may be convenient
to understand the origin of the torque. The charge distribution can be calculated from the electric field
using the first Maxwell equation: Gauss’s law [2].

∇ ·E =
ρ

ε0
(2.11)

Here ρ is the charge density and ε0 is the permittivity of free space.
In Gaussian units, this equation reads:

∇ ·E = 4πρ (2.12)

2.2 Discrete dipole approximation

The discrete dipole approximation, or DDA for short, is a numerical method for computing scattering
and absorption of electromagnetic waves by targets with arbitrary geometries and complex refractive
index. The target is approximated as an array of point dipoles. An iterative algorithm is used to obtain a
numerical solution that satisfies Maxwell’s equations for the system. FFT methods are used to reduce
computational time when executing many large matrix multiplications. Using DDA, geometries that
cannot be solved analytically, using Mie theory for example, can be analysed anyway [17].

Validity of the DDA
The DDA software uses both the microscopic and the macroscopic electric field, Emicro and Emacro

respectively. The microscopic field is the field as it acts on a single dipole. The macroscopic field is the
electric field as it is observed from outside the target. So to say, for the macroscopic field the target is
regarded as a whole instead of a collection of many individual dipoles. Ordinarily when people talk about
electric fields inside matter, they refer to the macroscopic field. The relation between the microscopic
and macroscopic field follows from the Clausius-Mossotti relation (see Appendix B):

Emicro =

(
εr(ω) + 2

3

)
Emacro (2.13)
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where εr(ω) is the relative permittivity of the target.
In order to check the validity of the DDA calculation one should check if the following relation holds:

Pj = αj ·Ej,micro (2.14)

Here α is the diagonal polarizability tensor. The subscript j is an index for every dipole site. Since an
exact solution would satisfy equation 2.14 [15] and this relation is not used in the DDA to calculate the
polarization, it can be used to verify the numerical results given by the DDA.

Dipole moment
As the DDA approximates the target particle as an array of dipoles, it is possible to calculate the net
dipole moment. This can be done in two different ways. The first is simply executing a summation over
the polarization of all the point dipoles (equation 2.15). The second option is to calculate the charge at
each point and multiply that by its position vector (equation 2.16). Note that the position of the origin
does not matter since the total charge of the target is always zero [2].

p =

n∑
i=1

pi =

n∑
i=1

Pid
3 (2.15)

p =

n∑
i=1

qiri =

n∑
i=1

ρid
3ri (2.16)

Here the summation runs over every computational element, p is the dipole moment, P is the polariza-
tion, d is the dipole spacing, q is the charge and r is the position vector.
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Chapter 3

Methods

The program that will be used for this thesis is called DDSCAT. This software has been developed by
Draine and Flatau and uses the DDA in order to calculate the optical properties of nanoparticles [17,18].
The DDSCAT software is freely available and comes with a parameter file so the user can configure the
software for his/her research purposes.

3.1 DDSCAT

DDSCAT is run in a Linux environment and is compiled using single precision, OpenMP and the Intel
Math Kernel Library. The parameter file that comes with DDSCAT lets you specify all the variables
needed for the simulation. An example can be found in appendix D.

3.1.1 Configuring the parameter file

The file starts with a few preliminaries. DDSCAT is capable of calculating the torque on a particle.
However, since this is quite CPU consuming, one might choose not to use this option. Line 5 specifies
the FFT method that is used. Since the Intel MKL is significantly faster, that method was used for this
research. The other preliminaries were left unchanged. The values for GAMMA (line 23), ETASCA (line
25), NAMBIENT (line 29), IWRKSC (line 36) were also left at their default setting.

The shape of the particle can be set in line 11 and 12. DDSCAT supports many target geometries
that can be found in the user guide. The shape parameters on line 12 lets the user select the amount
of dipoles that should be used and also the aspect ratios. When choosing the number of dipoles the
user should keep in mind that more dipoles results in more accurate results. However, the more dipoles
are used, the longer it will take to do any calculations. The calculations in this thesis were done with
approximately 15,000 to 20,000 dipoles. For this report the target geometry was the capped cylinder,
which is a cylinder with two hemispheres on top of the ends. This geometry was chosen since it exhibits
the most resemblance to a physical nanorod (figure 3.1). The standard orientation of the capped cylinder
is as follows: cylinder axis = â1 = (1, 0, 0)TF and â2 = (0, 1, 0)TF . Here the subscript TF indicate the
directions are in the target frame, which will be explained in section 3.1.2.

Line 14 is used to set the dielectric function of the material that is investigated. In our case the
dielectric function of gold in water as determined by E.D. Palik was used (figure 3.2 [20]). In order to
use this file, the wavelengths for each simulation had to be converted from water to vacuum.

In the next few lines the options for the near field calculations can be set. These will be discussed
later in this chapter. Line 19 specifies the error tolerance. The smaller this number, the more accurate
the solution will be, but this will also increase the amount of iterations needed. The maximum amount
of iterations before the software stops is set in line 21. This number was set at 10,000 because some
problems took more than 1,000 iterations to converge.

The settings for wavelengths, effective radii and target rotations determine for which situations the
calculations are run. Again, note that the dielectric function that was used represented gold in water
so all wavelengths were converted. The incident polarization was left in its original direction, which is
polarization in the y-direction of the lab frame.

All other options can be used to set up the calculation of Mueller matrix elements. Since this matrix
was irrelevant for this research we will not elaborate on this further.
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Figure 3.1: TEM image of a dense
ensemble of gold nanorods [19].
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Figure 3.2: Relative permittivity of gold [20].

3.1.2 Laboratory and target frame

When dealing with DDSCAT you have to be careful about the directions and orientation of your target.
DDSCAT uses two frames: the laboratory frame and the target frame. The lab frame is used to specify
the propagation direction and polarization of the incident light wave. This frame is also used to specify
the initial orientation of the target.

Figure 3.3: Orientation of the target frame relative to the laboratory frame [15].

The target can be turned through angles φ, θ and β as can be seen in figure 3.3. These angles
specify the orientation of the target frame relative to the lab frame. The transformation from lab frame
to target frame is as follows:

â1 = x̂LF cos θ + ŷLF sin θ cosφ+ ẑLF sin θ sinφ (3.1)

â2 =− x̂LF sin θ cosβ + ŷLF (cos θ cosβ cosφ− sinβ sinφ)

+ ẑLF (cos θ cosβ sinφ+ sinβ cosφ)
(3.2)

â3 =x̂LF sin θ sinβ − ŷLF (cos θ sinβ cosφ+ cosβ sinφ)

− ẑLF (cos θ sinβ sinφ− cosβ cosφ)
(3.3)

Since all targets in this report are nanorods, and therefore symmetric around their long axis, rotation
through β is pointless. When working with DDSCAT one always has to be careful about the frame of
reference. DDSCAT generates output in both frames. For example, the electric field is computed in the
target frame, whereas the torque is computed in the lab frame.
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3.1.3 Accuracy

The parameter file has several options to increase the accuracy of the calculations. In the next few para-
graphs the steps that were used in order to find the optimal balance between accuracy and calculation
time are described.

Amount of dipoles
In order to determine the amount of dipoles that gives enough accuracy a few trial runs were done.
Both effective radii of 20nm and 60nm were tested. For 20nm an extinction spectrum was made around
the dipole resonance frequency. The 60nm particle was tested for wavelengths around its quadrupole
resonance frequency. With each run the amount of dipoles was increased, until the spectra stopped
changing significantly. This indicates the number of dipoles is sufficiently large. These simulations were
done with a default error tolerance of 10−5.
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Figure 3.4: The influence of amount of dipoles on extinction spectra.

Based on the plots from figure 3.4 it was decided to run simulations with the amount of dipoles set
between 15,000 and 20,000. Although the characteristics of the extinction spectra still shift slightly for
even more dipoles, the shape of the curve is very similar. Moreover, a dipole amount larger than 20,000
will significantly increase computational time.

Error tolerance
In order to investigate the influence of the error tolerance on the results several extinction spectra were
made with error tolerances of 10−1, 10−2, .., 10−5. This was done for wavelengths around the dipole
resonance for a particle with aeff = 20nm and around the quadrupole resonance for aeff = 60nm.
Again, when the spectra do not show big differences any more, the error tolerance will be small enough.
These simulations are done with 17680 dipoles.
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Figure 3.5: The influence of the error tolerance on extinction spectra.
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The curves in figure 3.5 are almost identical for different values of the error tolerance. All simulations
in this report are done with an error tolerance of 10−3. Computation time for this value is not much
longer than with a tolerance of 10−1 and ensures that enough iterations are done.

Particle size compared to wavelength
When looking at extinction spectra containing dipole and higher order multipole resonances, one has
to bear in mind that the target should not be too big compared to the wavelength of the incident light.
If the wavelength gets relatively small, the electric field varies over the length of the target particle and
causes charge distributions that may look like the charge distribution of a higher multipole resonance
(see figure 3.6). All simulations in this report were done with particles which length was at most one half
times the wavelength of the incident light. DDSCAT always simulates the incident field with its maximum
amplitude (E0) at the center of the particle.
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Figure 3.6: Charge distribution and E-field for small wavelength compared to particle size.

3.1.4 Near field calculations

DDSCAT is able to calculate the electric field that arises when a particle is hit by an incident light wave.
This field can be used to study the surface charge distribution of the target. When the option NRFLD is
selected in the parameter file, DDSCAT creates a binary file containing all information about the electric
field. A program called ddpostprocess is included with the software. This program can read the binary
files and output the intensity of the electric field or its components on a pre-specified line. In order to
study the surface charge distribution, a section of Fortran code was added to the original ddpostprocess,
which can be found in appendix E. The added section writes the components (real and imaginary) of the
E-field and P-field as well as the composition of the target, polarizability tensor and dielectric function
to separate text files. These files can be imported in Matlab for further analysis.

3.2 Processing with Matlab

Extinction and torque spectra
Matlab was used for all further processing in this report. For the extinction spectra and torque calcu-
lations, the needed values are read from the files created by DDSCAT and saved into an array. The
dimensions of these arrays depend on which variables are varied during the simulation (wavelength,
effective radius, θ and/or φ). These arrays can then be used to plot extinction or torque spectra.

Analysis of electric field
When analysing the electric field or charge distribution a different script is used. The output files created
by ddpostprocess containing the E-field, P-field and the target composition are read into Matlab, as well
as the total volume of computation. This is done by the code in Appendix F. All the fields are stored in
4D-arrays containing spatial data and vector components.

These arrays are then processed using the script in Appendix G. Since Matlab assumes that the
rows represent the y-coordinate, a permutation is made to switch the x- and y-directions. To obtain
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the charge distribution equation 2.11 is used. By looking at different cross sections of the particle, the
electric field and charge distribution can be visualised. First the particle is drawn, using the composition
data. Then the vector field is plotted, together with its corresponding field lines. These field lines are
made using Matlab’s streamline function on both the electric field and its negative counterpart in order
to get a good overview. Finally the charge distribution is displayed in a separate image, together with
an arrow representing the total dipole moment. This dipole moment can be calculated in two ways, as
described in chapter 2.2. The dipole moment is computed in both ways, as a redundancy against errors.

Also, to validate the calculation the relation between P , α and E is checked. First the macroscopic
field is converted to the microscopic field using equation 2.13 and then equation 2.14 is used to calculate
the polarization at each point. Next the difference between the polarization that was just calculated and
the polarization DDSCAT gives, is taken at each point. Finally, the mean of all these values is computed
to get an average deviation. This number should be a couple percent of the average polarization at
most.
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Chapter 4

Results & Discussion

4.1 Extinction and torque spectra

The main purpose of this research is to investigate what happens to torque at the dipole, quadrupole
and octupole resonances. In order to find out where the LSPR modes are and what happens at those
wavelengths several extinction and torque spectra were made. By looking at different orientations and
particle sizes, different order resonances can be analysed.

Aspect ratio
All simulations were executed for particles with an aspect ratio of 7. This aspect ratio was chosen
because it provides a long axis that is long enough to see the quadrupole and octupole longitudinal
modes. Furthermore, all modes redshift differently [1], making larger particles more suitable to be able
to distinguish the different modes. An even bigger aspect ratio than 7 would increase computational
time, while a smaller one would make the higher order resonances less visible. To illustrate this, an
extinction spectrum was made for a particle with aspect ratio 3 (figure 4.1). The different modes are
indicated by the dashed lines. It is easy to see that the transverse mode and the longitudinal quadrupole
mode partly coincide, making this aspect ratio not suitable for our purposes.

400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

Wavelength (nm)

Q
e

x
t

Extinction spectrum

 

 
Transverse mode

Quadrupole mode

Dipole mode

Figure 4.1: Extinction spectrum for a target with AR=3 and r = 38nm, θ = 41◦ and φ = 45◦. Clearly, the
transverse mode and quadrupole mode are badly distinguishable.

Angle dependence
In order to know for what orientations the simulations should be run, extinction plots were computed
for several orientations. Both the extinction and torque were investigated and the results are displayed
in figure 4.2. It is clearly visible that the largest torque occurs for θ = 41◦. This is as expected since
the torque is assumed to be maximal for an angle of 45◦. This is due to the fact that the torque is
proportional to sin(2θ), as is derived in appendix C. Furthermore it can be noted that the quadrupole
resonance is absent for θ = 0◦ and θ = 90◦, as is expected because of symmetry reasons [12–14]. The
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final notable aspect of these plots is the fact that the shape of the torque spectrum of the quadrupole
resonance changes significantly for different orientations, but this will not be further examined in this
thesis.
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Figure 4.2: Extinction and torque spectra with different orientations, r = 19nm, φ = 45◦.

For further investigation of the angle dependence of the extinction and torque efficiencies, plots are
made of these quantities against θ, at a wavelength around the dipole resonance peak (λ = 1500nm).
The expected relations are fitted to the data as well (figure 4.3). As expected, both fit a sin(2θ) fairly
well, although there is a slight shift towards larger angles. This can be explained by the fact that rotation
through θ results in a phase difference of the incident field across the particle. Therefore for a certain
angle the average incident field is slightly less than E0, thus the expected efficiency is obtained at a
larger θ. When these plots are made for φ instead of θ this shift is not observed, because the incident
field does not vary across the particle when rotating through φ.
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Figure 4.3: θ dependence of extinction and torque efficiency, r = 19nm, φ = 45◦, λ = 1500nm.
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Size dependence
The last parameter that is investigated is the influence of the size of the particle on the extinction and
torque spectra. Spectra with a clear dipole resonance were simulated for different effective radii and the
extreme values of these spectra are plotted to get information about the redshift that occurs. The size
dependence of the extinction spectra is displayed in figure 4.4. The redshift is clearly visible for larger
aeff . For larger particles the redshift becomes bigger. These results confirm earlier findings by Kooij et
al [1].
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Figure 4.4: Size dependence of the extinction spectra, AR=7, θ = 90◦, φ = 45◦.

The torque spectra associated with the spectra from figure 4.4 can be seen in figure 4.5. The amount
of redshift that occurs at each effective radius is very much alike the redshift for the extinction spectra.
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Figure 4.5: Size dependence of the torque spectra, AR=7, θ = 90◦, φ = 45◦.

4.1.1 Dipole

The dipole is the first order resonance of the LSPR. This was investigated for a target with an effective
radius (referred to as aeff ) of 20nm. This corresponds to a target short radius (referred to as r) of
9.3nm. The relation between the effective radius and the target short radius can be found in Appendix
A. In figure 4.6 both the extinction spectrum and the torque spectrum are displayed. One can clearly
see a peak around λ = 1170nm: the dipole resonance peak. The dotted lines indicate points around
the peak that will be investigated further in section 4.2.1.
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Figure 4.6: Extinction and torque spectra, r = 9.3nm, φ = 45◦, θ = 90◦.

The torque changes sign in the dipole peak. This is a result of the change in sign of Re(α) as can
be seen in figure 2.2. Since Γ = p×E and p is proportional to α, it follows that the torque also changes
sign. Based on figure 2.2 one would expect the peak to be located around 1000nm. However, due to
the redshifting caused by the size of the particle the peak has shifted approximately 150nm.

4.1.2 Quadrupole

The quadrupole is the second order resonance of the LSPR. This peak is most pronounced for a larger
particle (aeff = 60nm, r = 28nm) oriented at φ = 0◦ and θ ≈ 30◦. The particle has to be rotated
through θ (i.e. in the Ek-plane) to excite the quadrupole resonance, since even mode resonances are
only visible for 0◦ < θ < 90◦, due to earlier mentioned symmetry reasons. The quadrupole peak in the
extinction spectrum is located around λ = 860nm and the dashed lines again indicate points that will
be investigated more later on. Since the target is significantly bigger than the one that was used for
the dipole analysis, the dipole peak has redshifted to a bigger wavelength (≈ 1750nm). Therefore, the
dipole peak is only partly visible in figure 4.7.
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Figure 4.7: Extinction and torque spectra, r = 28nm, φ = 0◦, θ = 29◦.

Around the quadrupole peak, the torque changes sign again. This would indicate that the quadrupole
contribution causes Re(α) to change sign at this point. However, this explanation is not fully satisfactory,
since a change of sign of Re(α) would only mean a flip in the charge distribution. But this would not
have any effect on the dipole moment, as the quadrupole is an even, symmetric mode. Further note
that the torque is not symmetric around zero, due to the still present contribution of the dipole peak.
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4.1.3 Octupole

The octupole is the third order resonance of the LSPR. In order to observe an octupole, the target had
to be relatively large again. Therefore the effective radius was set at 60nm. Since the even resonance
modes are only possible for a particle rotated through θ, θ was set at 90◦. This way there is no influence
of the quadrupole resonance. In the extinction spectrum, the octupole peak can be seen in the tail of the
bigger dipole peak, which again is only partly visible. Note that the quadrupole peak vanishes entirely.
Furthermore, the transverse mode is less pronounced in figure 4.8 than in figure 4.7. This is due to the
more vertically oriented particle. The wavelengths indicated by the dashed lines will investigated further
in chapter 4.2.3.
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Figure 4.8: Extinction and torque spectra, r = 28nm, φ = 45◦, θ = 90◦.

The octupole mode is visible in the torque spectrum as an oscillation. This time however, the torque
does not change sign and therefore one would expect the net dipole moment to be oriented similar
relative to the incident field for all wavelengths around this peak.

4.1.4 Possible torque

The torque is calculated using equation 2.3 solved for Γ and equation 2.4. urad is calculated by choosing
a realistic value for the intensity I. This value is calculated using equation 2.5 with I set at 2× 1011 W/m2

[6]. Since the factor used for conversion between Qtrq and Γ is not wavelength dependent, the real
torque spectrum would have completely the same shape as the spectrum for Qtrq. In order to find
the most contributing mode the peak-to-peak amplitude of the different multipole contributions were
calculated. These can be found in table 4.1. In order for all modes to be visible at the same time, θ was
set at 41◦ and φ at 0◦. However, this orientation does not render the optimal results for every individual
mode.

Dipole Quadrupole Octupole
aeff = 20nm 3.5× 10−19 Nm 1.0× 10−21 Nm 1.5× 10−21 Nm
aeff = 40nm 1.7× 10−18 Nm 8.3× 10−20 Nm −

Table 4.1: Peak-to-peak values of the torque for different aeff and modes, φ = 0◦, θ = 41◦.

It can easily be seen that the dipole gives rise to the largest torque. Furthermore, the torque in-
creases with the size of the particle, as one would expect. To find the maximum possible torque, the
dipole mode should be investigated. In order to find the largest possible torque the target should only
be rotated 45◦ through φ and not through θ, since the incident field will then be maximal across the
entire target. aeff was set at 40nm. A larger effective radius would result in the dipole peak redshifting
outside the available wavelength spectrum. The maximal torque amounts to Γ = 1.15× 10−18 Nm. This
is in agreement with values found experimentally [3,6,21].
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In order to compare this torque with the energy of Brownian motion, equations 2.6–2.10 are used.
These calculations approximate the nanorod as a cylinder submerged in water. This results in a rota-
tional energy of 1.0× 10−22 J. The energy involved with Brownian motion is in the order of kT or ap-
proximately 4.11× 10−21 J. Therefore, this torque would not be enough to overcome Brownian rotation.
However, this is not in agreement with the findings of Tong [6] and Ruijgrok [3], who found indications
of possible alignment for similar torque values. Furthermore, de Abajo [21] also claims (without further
explanation) that a torque of this order is large enough to overcome Brownian motion. Ruijgrok uses
a different method to compare the torque to Brownian motion. He calculates the potential energy via
a Boltzmann distribution and compares this to kT . When this method is applied to our findings, this
results in an energy of 9.2× 10−15 J. This would be orders of magnitude larger than kT and Brownian
motion should easily be overcome. This might indicate that the energy analysis that was applied in this
report is not entirely valid. Note that despite the ambiguity between the energies, the torque values are
highly comparable.

4.2 Charge distribution

In this section the different resonances will be investigated further. This is done by doing near field
calculations for wavelengths near the resonance peaks. The electric fields are illustrated in two types
of figures. The first being an image of the electric field lines. These lines hold no information about
the direction of the field or the intensity, but they illustrate the general outline of the electric field, i.e. it
becomes clear whether the field is that of a dipole, quadrupole or octupole. The second image displays
the macroscopic charge distribution. For all images the colors represent the charge density. Red indi-
cates positive charge and blue means negative charge. These images also have the net dipole moment
of the target depicted as a red arrow. These arrows are not equally scaled, the dipole moments for the
dipole resonance are scaled ten times smaller than those for the quadrupole and octupole resonances.

4.2.1 Dipole

From the extinction and torque spectra around the dipole peak it is clear that a flip occurs. Since
the torque changes sign in this regime, it seems logical to expect some change in the surface charge
distribution, and therefore the resulting electrical field, of the target particle. This can be investigated by
looking at the charge distribution and E-field for different wavelengths around the dipole peak. These
results are displayed in figures 4.9, 4.10, 4.11. The polarization accuracy check gives an average
deviation of 0.17%, which indicates a valid solution.

The particle exhibits dipole behaviour at points around the dipole peak. However, the field is slightly
skewed in the direction of the incident field. It is clear that with progressing wavelengths, the entire
dipole turns around. As a result, the torque switches sign as well. Moreover, at the top of the dipole
peak, the dipole moment is quite small. Because of that the incident E-field gets hardly disturbed by the
scattered field from the particle, which results in almost parallel field lines as would be the case if there
were only the incident field. This also results in a charge distribution on the particle that is induced by
the incident field. The top of the target is slightly negatively charged and the bottom is slightly positive,
which causes an electric field in the particle opposite to the incident field.
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Figure 4.9: Electric field just left of the dipole peak at λ = 1121nm, r = 9.3nm, φ = 45◦, θ = 90◦.
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Figure 4.10: Electric field at the top of the dipole peak at λ = 1171nm, r = 9.3nm, φ = 45◦, θ = 90◦.
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Figure 4.11: Electric field just right of the dipole peak at λ = 1220nm, r = 9.3nm, φ = 45◦, θ = 90◦.
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4.2.2 Quadrupole

Next the quadrupole resonance is investigated. These results can be seen in figure 4.12, 4.13, 4.14.
The polarization accuracy check gives an average deviation of 0.2%. From these figures it becomes
clear that the electric field does not change very much for different wavelengths around the quadrupole
resonance. The same holds for the charge distribution. Although the intensity varies, the symmetry
remains the same. Note that the quadrupole is most intense at its resonance peak, contrary to the
dipole peak. This would indicate that the quadrupole contribution to the polarizability is at a maximum
in the quadrupole peak. The quadrupole clearly is asymmetrical. This is due to the incident field, which
amplifies the positive pole on one side of the target and weakens the pole on the other side.

From the torque spectrum in figure 4.7b one would expect the torque to change sign. Therefore it
seems logical to expect some shift of charge. However, this is not the case as can also be seen by
looking at the net dipole moments. They hardly change in both size and direction. The fact that there is
a torque can be explained by the asymmetry in the charge distribution. Normally a quadrupole or any
other pure multipole would not have a net dipole moment and therefore would not give rise to a torque.
In this case however, the charge distribution gets shifted because of the external field. This results in a
net dipole moment and thus in a net torque, although it does not explain why the torque changes sign
in the torque spectrum without any apparent change in charge distribution.

0 50 100 150 200 250 300
0

20

40

60

Electric field lines

x−axis (nm)

y
−

a
x
is

 (
n

m
)

(a) Electric field

Charge distribution and dipole moment

x−axis (nm)

y
−

a
x
is

 (
n

m
)

0 50 100 150 200 250 300
0

20

40

60

(b) Charge distribution

Figure 4.12: Electric field just left of the quadrupole peak at λ = 831nm, r = 28nm, φ = 0◦, θ = 29◦.
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Figure 4.13: Electric field at the top of the quadrupole peak at λ = 866nm, r = 28nm, φ = 0◦, θ = 29◦.
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Figure 4.14: Electric field just right of the quadrupole peak at λ = 901nm, r = 28nm, φ = 0◦, θ = 29◦.
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4.2.3 Octupole

The last resonance mode that is looked into further is the octupole mode, of which the results are
displayed in figure 4.15, 4.16, 4.17. The polarization accuracy check gives an average deviation of
0.17%. Clearly an octupole resonance can be seen, characterised by the six alternating charge patches
on the surface of the target. It must be noted that this mode is similar to the dipole in the way that they
are both asymmetrical modes. Both have opposite charge at the ends of the target, therefore inducing
a net dipole moment. Another similarity between the dipole and octupole is that the real part of the
octupole contribution to the polarizability seems to be 0 at the peak of the resonance.

At the wavelengths that are displayed an inversion of the charge distribution can be seen, alike the
dipole. At first this would suggest a change of sign of the torque. However, when looking closely at the
net dipole moment, one can see that it rotates, but it stays on the left hand side of the incident field. This
is consistent with the results from the torque spectrum in figure 4.8b. The torque does change for the
different wavelengths, but its sign remains the same due to an offset created by the dipole. Since the
torque is a result of a cross product of the dipole moment and the electric field it will be maximum when
these are perpendicular, resulting in a relatively large torque, either positive or negative depending on
orientation. At λ = 637nm the net dipole moment is almost perpendicular to the incident field. This
corresponds to the local minimum in figure 4.8b. At λ = 672nm the dipole moment has rotated towards
the electric field, resulting in a smaller torque, just as one would expect from the torque spectrum.

At the peak of the octupole resonance, almost all octupole behaviour is gone. What is left is a charge
distribution that opposes the incident field as was the case for the dipole. The x-component of the net
dipole moment is a result of the octupole being located in the tail of the dipole peak.
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Figure 4.15: Electric field just left of the octupole peak at λ = 637nm, r = 28nm, φ = 45◦, θ = 90◦.
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Figure 4.16: Electric field at the top of the octupole peak at λ = 655nm, r = 28nm, φ = 45◦, θ = 90◦.
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Figure 4.17: Electric field just right of the octupole peak at λ = 672nm, r = 28nm, φ = 45◦, θ = 90◦.
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4.3 Improvements and recommendations

For future research, a few improvements can be made. First of all, one could use more dipoles for
more accurate results. In order to do so, one needs more computational power, since this will take a
significant amount of time. In this report the angle dependence of the torque is not looked into, although
there were some notable features visible in the spectra for the quadrupole modes. This might be of
interest for explaining the unclear quadrupole torque oscillation. By doing some nearfield calculations
for different orientations one may get more insight in this phenomenon.

Another possibility is looking at different aspect ratios. Even bigger aspect ratios will likely cause
higher order resonances to appear in the spectra. This way one could research other even modes
(hexadecupole etc.) in order to see if they behave alike the quadrupole. This again will require more
computational power and/or time.

Finally, one could look into larger particle dimensions. Similar to bigger aspect ratios this will give
rise to higher order resonances. Furthermore, one could investigate the torque for these larger particles
to find if it is large enough to overcome Brownian motion.
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Chapter 5

Conclusion

The properties of gold nanorods have been investigated with a special focus on the optical torque in-
duced by surface plasmon resonances. In order to do this, extinction spectra have been simulated
together with a visualisation of the charge distribution on the target surface. All particles showed clearly
visible resonance peaks in their extinction spectra as well as an associated oscillation in their torque
spectrum. Not only the odd dipole and octupole modes, but also the even quadrupole mode exhibit this
behaviour. The oscillation in the torque spectra suggest a shifting symmetry of the charge distribution.
For the dipole and octupole this seems logical since they have opposite charges at both ends of the
target. Since Re(α) changes sign at the resonance peak, the torque oscillation can be explained by the
fact that the charge distribution gets inverted. However, for the quadrupole the charge distribution has
the same symmetry axes as the target and therefore a flip of the charge distribution would not change
the situation. Moreover, there is no flip in charge visible for the quadrupole resonance.

When analysing the electric field and the charge distribution it was found that the dipole resonance
resulted in the largest dipole moment, which confirms that this also gives rise to the largest torque
values. The shift in the charge distribution was observed for the dipole and octupole modes, thus con-
firming the presumption on the origin of the torque oscillation. For the quadrupole mode, no shift was
observed in the charge distribution. In stead of getting weaker at the resonance peak, the quadrupole
was at its strongest at that wavelength. This suggests that Re(α) does not change sign there, but in-
stead is at a maximum. It is unclear how the quadrupole, with these charge distributions and associated
dipole moments, can result in a torque oscillation. Since the dipole moments remain nearly identical
and the electric field also remains very similar one would not expect a sudden change in the optical
torque, yet this change is visible in the torque spectrum.

The maximum torque was achieved for the dipole resonance at an angle of approximately 45◦ relative
to the polarization of the incident light. For an effective radius of 40nm and an intensity of 2× 1011 W/m2

this torque amounted to 1.15× 10−18 Nm. This is in accordance with experimentally determined val-
ues [3, 6, 21]. The rotational energy that corresponds with this torque is 1.0× 10−22 J and would not
be sufficient for optical alignment. However, when using a different energy analysis, this torque would
suffice as indicated by the experimental results. This might indicate an invalidity in the energy analysis
that was used in this thesis.
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Appendix A

Effective radius

For all different target geometries DDSCAT uses the same measure for the size of the particle: the effec-
tive radius. The effective radius is the radius of a sphere of the same volume as the target. Since the tar-
get geometry used throughout this thesis is the capped cylinder, a conversion has to be made between
the effective and short radius of the target.

SH
P
A
R
1

SHPAR
2

Figure A.1: Schematic drawing
of a target particle.

DDSCAT uses the two shape parameters to determine the shape of
the target.

SHPAR1 =
cylinder length

d
(A.1)

SHPAR2 =
cylinder diameter

d
(A.2)

where d is the dipole spacing and SHPAR are the shape parame-
ters. This results in the total length of the target being: (SHPAR1 +
SHPAR2)d. In order to find the short radius of the target as a function
of the effective radius, the following equation must be solved:

4

3
πa3

eff = 2πr3(AR− 1) +
4

3
πr3 (A.3)

With aeff the effective radius, r the short radius of the target and AR
the aspect ratio that is used. That gives for the short radius:

r =
2aeff

3
√

4(3AR− 1)
(A.4)
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Appendix B

Macroscopic vs. microscopic field

DDSCAT only gives the macroscopic field as an output. However, it is possible to convert between the
macroscopic and microscopic electric fields. Among other equations, the Clausius-Mossotti relation is
needed for this conversion. The following derivation starts with the Clausius-Mossotti relation and is
done in Gaussian units:

ε− 1

ε+ 2
=

4παn

3
(B.1)

Together with:
D = εEmacro = Emacro + 4πP (B.2)

And:
P = nαEmicro (B.3)

Then follows:

Emicro =

(
ε+ 2

3

)
Emacro (B.4)

Where ε is the permittivity, α the polarizability, n the atomic density of the molecules, D the electric
displacement field and P the polarization [15,23].

Ambiguity regarding the microscopic field
In this report the macroscopic field has been used for all calculations concerning the electric field. This
is valid since extinction and torque are treated as far field phenomena. Therefore, the field inside the
particle is irrelevant. However, during the calculations of the dipole moments, a peculiar observation
was done. While the macroscopic electric field and the polarization field resulted in two dipole moments
in almost perfect agreement with each other, the microscopic field resulted in a dipole moment exactly
2/3 of the dipole moment following from the macroscopic field.

One could assume that these net dipole moments should not show any discrepancy, since the
macroscopic field is an averaged version of the microscopic field. Therefore, a summation over all
microscopic dipoles should render the same results as a macroscopic calculation. Up to now it is unclear
where this factor of 2/3 comes from. There might be an error in the relation between the microscopic
and macroscopic fields, or maybe, since the software hardly uses the microscopic field, it might not
be suitable for this type of calculations. This ambiguity does not affect our results, because only the
macroscopic field is used and both ways of calculating the dipole moment give matching results.
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Appendix C

Angle dependence of torque

It is possible to derive the angle dependence of the torque. Start by solving the cross product in equation
2.2, which gives:

τ = p×E
= αE‖E⊥

= αE sin(θ)E sin(90− θ)
= αE2 sin(θ) cos(θ)

=
1

2
αE2 sin(2θ)

(C.1)

From this we can conclude that the torque is proportional to sin(2θ) and should therefore be maximal at
θ = 45◦.

E E
θ

Figure C.1: Particle with components of E-field.
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Appendix D

Example Parameter file

1 ’ ========== Parameter f i l e f o r v7 .3 ===================’
’ * * * * P r e l i m i n a r i e s * * * * ’

3 ’NOTORQ’ = CMDTRQ*6 (DOTORQ, NOTORQ) −− e i t h e r do or sk ip torque c a l c u l a t i o n s
’PBCGS2’ = CMDSOL*6 (PBCGS2, PBCGST, GPBICG, QMRCCG, PETRKP) −− CCG method

5 ’GPFAFT’ = CMETHD*6 (GPFAFT, FFTMKL) −− FFT method
’GKDLDR’ = CALPHA*6 (GKDLDR, LATTDR, FLTRCD) −− DDA method

7 ’NOTBIN ’ = CBINFLAG (NOTBIN, ORIBIN , ALLBIN ) −− b inary output?
’ * * * * I n i t i a l Memory A l l o c a t i o n * * * * ’

9 100 100 100 = dimensioning al lowance f o r t a r g e t generat ion
’ * * * * Target Geometry and Composit ion * * * * ’

11 ’ ELLIPSOID ’ = CSHAPE*9 shape d i r e c t i v e
49.49 49.49 49.49 = shape parameters 1 − 3

13 1 = NCOMP = number o f d i e l e c t r i c ma te r i a l s
’m1.33 0 .01 ’ = f i l e w i th r e f r a c t i v e index 1

15 ’ * * * * A d d i t i o n a l N ea r f i e l d c a l c u l a t i o n ? * * * * ’
0 = NRFLD (=0 to sk ip n e a r f i e l d ca lc . , =1 to c a l c u l a t e n e a r f i e l d E)

17 0.0 0.0 0.0 0.0 0.0 0.0 ( f r a c t . extens . o f ca lc . vo l . i n −x ,+ x,−y ,+ y,−z ,+ z )
’ * * * * E r ro r Tolerance * * * * ’

19 1.00e−5 = TOL = MAX ALLOWED (NORM OF |G>=AC |E>−ACA |X>) / (NORM OF AC |E>)
’ * * * * Maximum number o f i t e r a t i o n s * * * * ’

21 100 = MXITER
’ * * * * I n t e g r a t i o n l i m i t e r f o r PBC c a l c u l a t i o n s * * * * ’

23 1.00e−2 = GAMMA (1e−2 i s normal , 3e−3 f o r g rea te r accuracy )
’ * * * * Angular r e s o l u t i o n f o r c a l c u l a t i o n o f <cos>, e tc . * * * * ’

25 0.5 = ETASCA ( number o f angles i s p r o p o r t i o n a l to [ (3+ x ) /ETASCA] ˆ 2 )
’ * * * * Wavelengths ( micron ) * * * * ’

27 0.5 0.5 1 ’ INV ’ = wavelengths (1 st , l a s t , howmany , how=LIN , INV ,LOG,TAB)
’ * * * * Re f rac t i ve index of ambient medium * * * * ’

29 1.0000 = NAMBIENT
’ * * * * E f f e c t i v e Rad i i ( micron ) * * * * ’

31 0.39789 0.39789 1 ’ LIN ’ = e f f . r a d i i (1 st , l a s t , howmany , how=LIN , INV ,LOG,TAB)
’ * * * * Def ine I n c i d e n t P o l a r i z a t i o n s * * * * ’

33 (0 ,0 ) ( 1 . , 0 . ) ( 0 . , 0 . ) = P o l a r i z a t i o n s ta te e01 ( k along x ax is )
2 = IORTH (=1 to do only po l . s t a t e e01 ; =2 to a lso do o r th . po l . s t a t e )

35 ’ * * * * Spec i fy which output f i l e s to w r i t e * * * * ’
1 = IWRKSC (=0 to suppress , =1 to w r i t e ” . sca ” f i l e f o r each t a r g e t o r i e n t .

37 ’ * * * * Spec i fy Target Rota t ions * * * * ’
0 . 0 . 1 = BETAMI , BETAMX, NBETA ( beta= r o t a t i o n around a1 )

39 0. 0 . 1 = THETMI , THETMX, NTHETA ( the ta=angle between a1 and k )
0 . 0 . 1 = PHIMIN , PHIMAX, NPHI ( ph i= r o t a t i o n angle o f a1 around k )

41 ’ * * * * Spec i fy f i r s t IWAV, IRAD , IORI ( normal ly 0 0 0) * * * * ’
0 0 0 = f i r s t IWAV, f i r s t IRAD , f i r s t IORI (0 0 0 to begin f resh )

43 ’ * * * * Se lec t Elements o f S i j Ma t r i x to P r i n t * * * * ’
9 = NSMELTS = number o f elements o f S i j to p r i n t ( not more than 9)

45 11 12 21 22 31 33 44 34 43 = ind i ces i j o f elements to p r i n t
’ * * * * Spec i fy Scat tered D i r e c t i o n s * * * * ’

47 ’LFRAME’ = CMDFRM (LFRAME, TFRAME f o r Lab Frame or Target Frame )
1 = NPLANES = number o f s c a t t e r i n g planes

49 0. 0 . 180. 1 = phi , theta min , theta max ( deg ) f o r plane A
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Fortran code added to
ddpostprocess.f90

1 WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: execut ing personal code ’
WRITE( IDVOUT , * ) ’NX= ’ ,NX

3 WRITE( IDVOUT , * ) ’NY= ’ ,NY
WRITE( IDVOUT , * ) ’NZ= ’ ,NZ

5 WRITE( IDVOUT , * ) ’>DDPOSTPROCESS: CXEPS= ’ , CXEPS

7 OPEN( UNIT=25 ,FILE= ’OPPAR. out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )
WRITE ( 2 5 , * ) NX

9 WRITE ( 2 5 , * ) NY
WRITE ( 2 5 , * ) NZ

11 CLOSE(25)

13 WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: processing sca t te red f i e l d ’
OPEN( UNIT=23 ,FILE= ’XYZSCA. out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )

15 DO JX=1 ,NX
DO JY=1 ,NY

17 DO JZ=1 ,NZ
WRITE(23 ,FMT= ’ (E10 .3 ,5E11 . 3 ) ’ ) CXESCA( JX , JY , JZ , 1 ) ,CXESCA( JX , JY , JZ , 2 ) ,CXESCA( JX , JY , JZ , 3 )

19 ENDDO
ENDDO

21 ENDDO
CLOSE(23)

23
WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: processing incoming f i e l d ’

25 OPEN( UNIT=24 ,FILE= ’XYZINC . out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )
DO JX=1 ,NX

27 DO JY=1 ,NY
DO JZ=1 ,NZ

29 WRITE(24 ,FMT= ’ (E10 .3 ,5E11 . 3 ) ’ ) CXEINC( JX , JY , JZ , 1 ) ,CXEINC( JX , JY , JZ , 2 ) ,CXEINC( JX , JY , JZ , 3 )
ENDDO

31 ENDDO
ENDDO

33 CLOSE(24)

35 WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: processing l o c a t i o n o f p a r t i c l e ’
OPEN( UNIT=26 ,FILE= ’PART. out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )

37 DO JX=1 ,NX
DO JY=1 ,NY

39 DO JZ=1 ,NZ
WRITE(26 , ’ ( I1 ) ’ ) ICOMP( JX , JY , JZ , 1 ) +ICOMP( JX , JY , JZ , 2 ) +ICOMP( JX , JY , JZ , 3 )

41 ENDDO
ENDDO

43 ENDDO
CLOSE(26)

45
WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: processing p o l a r i z a t i o n ’

47 OPEN( UNIT=27 ,FILE= ’POL. out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )
DO JX=1 ,NX

49 DO JY=1 ,NY
DO JZ=1 ,NZ

51 WRITE(27 ,FMT= ’ (E10 .3 ,5E11 . 3 ) ’ ) CXPOL( JX , JY , JZ , 1 ) ,CXPOL( JX , JY , JZ , 2 ) ,CXPOL( JX , JY , JZ , 3 )
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ENDDO
53 ENDDO

ENDDO
55 CLOSE(27)

57 WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: processing p o l a r i z a b i l i t y ’
OPEN( UNIT=28 ,FILE= ’POLBI . out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )

59 DO JX=1 ,NX
DO JY=1 ,NY

61 DO JZ=1 ,NZ
WRITE(28 ,FMT= ’ (E10 .3 ,5E11 . 3 ) ’ ) CXADIA( JX , JY , JZ , 1 ) ,CXADIA( JX , JY , JZ , 2 ) ,CXADIA( JX , JY , JZ , 3 )

63 ENDDO
ENDDO

65 ENDDO
CLOSE(28)

67
WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: processing d i e l e c t r i c f u n c t i o n ’

69 OPEN( UNIT=29 ,FILE= ’EPS. out ’ , ACTION= ’ w r i t e ’ , STATUS= ’ rep lace ’ )
WRITE(29 ,FMT= ’ (E10 .3 , E11 . 3 ) ’ ) CXEPS( 1 )

71 CLOSE(29)

73 WRITE( IDVOUT,FMT= ’ (A) ’ ) ’>DDPOSTPROCESS: f i n i s h e d processing personal code . ’
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Importing data

1 %% Clear ing the workspace
clear a l l

3 clc

5 %% Def in ing va r i a b l e s
l o c a t i o n = ’ . . / Software / metingen / e l l i p s o i d s n e a r f i e l d / g eps p r a r3 ph i0 the0 / ’ ;

7 f i l eOP = fopen ( s t r c a t ( l oca t i on , ’OPPAR. out ’ ) ) ;
f i l e p a r t = fopen ( s t r c a t ( l oca t i on , ’PART.OUT ’ ) ) ;

9
%% Loading the output p e r i o d i c i t i e s

11 OP1 = str2num ( f g e t l ( f i l eOP ) ) ; %Output P e r i o d i c i t y , de f ines the amount o f l i n e s a f t e r whicht i t
w i l l repeat

OP2 = str2num ( f g e t l ( f i l eOP ) ) ;
13 OP3 = str2num ( f g e t l ( f i l eOP ) ) ;

15 %% Looping through data f i l e s
for n=0:2

17 %% Scat tered f i e l d
f i lename = s t r c a t ( ’XYZSCA ’ , num2str ( n ) , ’ . out ’ ) ; % Define f i lename

19 f i l e = fopen ( s t r c a t ( l oca t i on , f i lename ) ) ; % Open f i l e
data1 = tex tscan ( f i l e , ’%f %f %f %f %f %f ’ , ’ Co l lec tOutpu t ’ ,1 ) % Scan f o r l i n e s o f s p e c i f i c

s t r u c t u r e
21 mat = data1 {1 ,1} ; % Selec t t h i s data

Esca = permute ( reshape ( mat ’ , [ 6 ,OP3,OP2,OP1 ] ) , [ 4 3 2 1 ] ) ; % Cut i t i n t o pieces and save i t
to a 4D−array , using the OP’ s

23 eval ( [ ’ Esca ’ , num2str ( n ) , ’ =Esca ; ’ ] ) ; % Save as numbered v a r i a b l e

25 %% Incoming f i e l d
f i l ename inc = s t r c a t ( ’XYZINC ’ , num2str ( n ) , ’ . out ’ ) ;

27 f i l e i n c = fopen ( s t r c a t ( l oca t i on , f i l ename inc ) ) ;
data4 = tex tscan ( f i l e i n c , ’%f %f %f %f %f %f ’ , ’ Co l lec tOutpu t ’ ,1 )

29 mat4 = data4 {1 ,1} ;
Einc = permute ( reshape ( mat4 ’ , [ 6 ,OP3,OP2,OP1 ] ) , [ 4 3 2 1 ] ) ;

31 eval ( [ ’ Einc ’ , num2str ( n ) , ’ =Einc ; ’ ] ) ;

33 %% P o l a r i z a t i o n
f i l enamepo l = s t r c a t ( ’POL ’ , num2str ( n ) , ’ . out ’ ) ;

35 f i l e p o l = fopen ( s t r c a t ( l oca t i on , f i l enamepo l ) ) ;
data3 = tex tscan ( f i l e p o l , ’%f %f %f %f %f %f ’ , ’ Co l lec tOutpu t ’ ,1 )

37 mat3 = data3 {1 ,1} ;
po l = permute ( reshape ( mat3 ’ , [ 6 ,OP3,OP2,OP1 ] ) , [ 4 3 2 1 ] ) ;

39 eval ( [ ’ po l ’ , num2str ( n ) , ’ =po l ; ’ ] ) ;

41 %% P o l a r i z a b i l i t y
f i l enamepo lb i = s t r c a t ( ’POLBI ’ ,num2str ( n ) , ’ . out ’ ) ;

43 f i l e p o l b i = fopen ( s t r c a t ( l oca t i on , f i l enamepo lb i ) ) ;
data5 = tex tscan ( f i l e p o l b i , ’%f %f %f %f %f %f ’ , ’ Co l lec tOutpu t ’ ,1 )

45 mat5 = data5 {1 ,1} ;
p o l b i = permute ( reshape ( mat5 ’ , [ 6 ,OP3,OP2,OP1 ] ) , [ 4 3 2 1 ] ) ;

47 eval ( [ ’ p o l b i ’ , num2str ( n ) , ’ = p o l b i ; ’ ] )

49 %% D i e l e c t r i c f u n c t i o n
f i lenameeps = s t r c a t ( ’EPS ’ , num2str ( n ) , ’ . out ’ ) ;

51 f i l e e p s = fopen ( s t r c a t ( l oca t i on , f i lenameeps ) ) ;
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Epst = str2num ( f g e t l ( f i l e e p s ) ) ;
53 Eps ( n+1) = Epst ( 1 ) + i * Epst ( 2 ) ;

end
55

%% Target composi t ion
57 data2 = tex tscan ( f i l e p a r t , ’%f ’ , ’ Co l lec tOutpu t ’ ,1 )

mat2 = data2 {1 ,1} ;
59 pa r t = permute ( reshape ( mat2 ’ , [ OP3,OP2,OP1 ] ) , [ 3 2 1 ] ) ;

fclose a l l ;
61

%% Saving the data
63 c lea rva rs Esca Einc po l p o l b i

save ( s t r c a t ( l oca t i on , ’ data3D . mat ’ ) , ’ Esca * ’ , ’ Einc * ’ , ’OP* ’ , ’ pa r t ’ , ’ po l * ’ , ’ Eps ’ , ’ p o l b i * ’ ) ;
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Processing the fields

%% Clear ing workspace
2 c lea rva rs −except Esca * OP* pa r t Einc * po l * Eps p o l b i *

clc
4 close a l l

6 %% load data
% load ( ’ . . / Software / metingen / c y l c a p n e a r f i e l d / g cy l cap a r7 oc tup iek ph i45 / Data3D . mat ’ ) ;

8
%% D e f i n i t i o n s

10 pos = round (OP3/ 2 ) ; % Pos i t i on o f the 2D cross sec t ion
step = 10; % Step s ize o f the v e c t o r p l o t s

12 v lak = ’XZ ’ ; % Cross sec t ion to be examined

14 %% Loop through the d i f f e r e n t images
for im = 0:2

16 %% Selec t ing the r i g h t data
eval ( [ ’ E to t = Esca ’ , num2str ( im ) , ’ + Einc ’ , num2str ( im ) , ’ ; ’ ] ) ; % Ca lcu la t i ng t o t a l f i e l d

18 eval ( [ ’P = po l ’ , num2str ( im ) , ’ ; ’ ] ) ; % Selec t ing the r i g h t p o l a r i z a t i o n
eval ( [ ’ a lph = p o l b i ’ , num2str ( im ) , ’ ; ’ ] ) ; % Selec t ing the r i g h t p o l a r i z a b i l i t y

20 E t o t i ( : , : , : , 1 : 3 ) = Eto t ( : , : , : , 1 : 2 : 5 ) + i * E to t ( : , : , : , 2 : 2 : 6 ) ; % Expressing the E−f i e l d i n
complex numbers

a l p h i ( : , : , : , 1 : 3 ) = alph ( : , : , : , 1 : 2 : 5 ) + i * alph ( : , : , : , 2 : 2 : 6 ) ; % Expressing the p o l a r i z a b i l i t y
i n complex numbers

22 Pi ( : , : , : , 1 : 3 ) = P ( : , : , : , 1 : 2 : 5 ) + i *P ( : , : , : , 2 : 2 : 6 ) ; % Expressing the p o l a r i z a t i o n i n complex
numbers

co r r = pa r t /3 * ( ( Eps ( im+1) +2) / 3 ) + (1−pa r t / 3 ) ; % Creat ing the convers ion mat r i x from Emac
to Emic

24 co r r = repmat ( cor r , [ 1 , 1 , 1 , 3 ] ) ; % Creat ing the convers ion mat r i x from Emac to Emic
E loc i = E t o t i . * co r r ; % Ca lcu la t i ng the l o c a l f i e l d

26
%% Calcu la te charge d i s t r i b u t i o n

28 Etotkm = permute ( Etot , [ 2 1 3 4 ] ) ; % F l i p p i n g X and Y dimension because Matlab sucks arse
[XX,YY, ZZ ] = meshgrid ( 1 :OP1, 1 :OP2, 1 :OP3) ; % Creat ing meshgrid f o r the E−f i e l d

30 div3Dkm = divergence (XX,YY, ZZ , Etotkm ( : , : , : , 1 ) , Etotkm ( : , : , : , 3 ) , Etotkm ( : , : , : , 5 ) ) . / ( 4 * pi ) ; %
Ca lcu la t i ng divergence of Re(E−f i e l d ) i n 3 dimensions

div3D = permute ( div3Dkm , [ 2 1 3 ] ) ; % F l i p p i n g X and Y dimension back f o r human r e a d a b i l i t y
32

%% Calcu la te d ipo le moment
34 % As a check , the d ipo le moment w i l l be ca l cu la ted i n two ways . This

% way , we can check i f no e r r o r s are made i n the code .
36 % The f i r s t method to c a l c u l a t e the d ipo le moment i s by summing the

% p o l a t i z a t i o n f i e l d , i n order to ob ta in the t o t a l d ipo le moment . This
38 % i s done i n the next l i n e .

sumP( im +1 ,1 :3) = [sum(sum(sum(P ( : , : , : , 1 ) ) ) ) sum(sum(sum(P ( : , : , : , 3 ) ) ) ) sum(sum(sum(P
( : , : , : , 5 ) ) ) ) ] ; % Summing over the p o l a r i z a t i o n f i e l d i n every d i r e c t i o n to ob ta in the
t o t a l d i po le moment

40 % The second method to c a l c u l a t e the d ipo le moment i s by tak ing the
% charge d i s t r i b u t i o n and m u l t i p l y i n g every po in t w i th i t s d i s t a n t to

42 % the o r i g i n . The po in t ( x , y , z ) =(0 ,0 ,0 ) i s chosen as o r i g i n , but s ince
% the t o t a l charge i s zero , t h i s can be any po in t . The t o t a l d ipo le

44 % moment i s independent o f the o r i g i n .
dipmomkm = cat (4 , div3Dkm . * XX, div3Dkm . * YY, div3Dkm . * ZZ) ; % M u l t i p l y i n g the charge wi th i t s

d is tance ( index )
46 dipmom = permute (dipmomkm , [ 2 1 3 4 ] ) ; % Swapping the X and Y dimensions again
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sumPP( im +1 ,1 :3) = [sum(sum(sum( dipmom ( : , : , : , 1 ) ) ) ) sum(sum(sum( dipmom ( : , : , : , 2 ) ) ) ) sum(sum(
sum( dipmom ( : , : , : , 3 ) ) ) ) ] ; % Summing over the p o l a r i z a t i o n f i e l d i n every d i r e c t i o n to
ob ta in the t o t a l d ipo le moment

48
%% Choosing c o r r e c t cross−sec t ion

50 i f strcmp ( v lak , ’XY ’ )
E = permute ( E to t ( : , : , pos , : ) , [ 1 2 4 3 ] ) ; % Def in ing 2D cross sec t ion o f E−f i e l d

52 div2D = div3D ( : , : , pos ) ; % Def in ing 2D cross sec t ion o f charge d i s t r i b u t i o n
par tcs = pa r t ( : , : , pos ) ; % Def in ing 2D cross sec t ion o f p a r t i c l e

54 grens = edge ( pa r t ( : , : , pos ) ) ; % Ca lcu la t i ng the edge of the p a r t i c l e i n 2D
p o l t = permute (P ( : , : , pos , : ) , [ 1 2 4 3 ] ) ; % Def in ing 2D cross sec t ion o f p o l a r i z a t i o n

56 A = 1; % Def in ing the r i g h t index
B = 3; % Def in ing the r i g h t index

58 temp1=1: step :OP1; % Def in ing spacing g r i d f o r v e c t o r p l o t
temp2=1: step :OP2; % Def in ing spacing g r i d f o r v e c t o r p l o t

60 e l s e i f strcmp ( v lak , ’YZ ’ )
E=permute ( E to t ( pos , : , : , : ) , [ 2 3 4 1 ] ) ;

62 div2D = permute ( div3D ( pos , : , : ) , [ 2 3 1 ] ) ;
pa r tcs = permute ( pa r t ( pos , : , : ) , [ 2 3 1 ] ) ;

64 grens = edge ( permute ( pa r t ( pos , : , : ) , [ 2 3 1 ] ) ) ;
p o l t = permute (P( pos , : , : , : ) , [ 2 3 4 1 ] ) ;

66 A = 3;
B = 5;

68 temp1=1: step :OP2;
temp2=1: step :OP3;

70 e l s e i f strcmp ( v lak , ’XZ ’ )
E=permute ( E to t ( : , pos , : , : ) , [ 1 3 4 2 ] ) ;

72 div2D = permute ( div3D ( : , pos , : ) , [ 1 3 2 ] ) ;
pa r tcs = permute ( pa r t ( : , pos , : ) , [ 1 3 2 ] ) ;

74 grens = edge ( permute ( pa r t ( : , pos , : ) , [ 1 3 2 ] ) ) ;
p o l t = permute (P ( : , pos , : , : ) , [ 1 3 4 2 ] ) ;

76 A = 1;
B = 5;

78 temp1=1: step :OP1;
temp2=1: step :OP3;

80 end

82 %% Drawing the p a r t i c l e
f igure

84 [X, Y ] = f ind ( grens ) ;
s c a t t e r (X,Y, ’ red ’ , ’ . ’ )

86 hold on
axis equal

88 a s f i x ( v lak ,OP1,OP2,OP3)

90 %% Plo t vec to r f i e l d
[ x , y ]= meshgrid ( temp2 , temp1 ) ;

92 quiver ( y , x ,E( temp1 , temp2 ,A) ,E( temp1 , temp2 ,B) , ’ b lack ’ ) ;

94 %% Generat ing s t reaml ines
for n = 1 : 3 : length (X)

96 Xs = X( n ) +sign (X( n )−round ( size (E, 1 ) / 2 ) ) ;
Ys = Y( n ) +sign (Y( n )−round ( size (E, 2 ) / 2 ) ) ;

98 s t reaml ine (E ( : , : , A) ’ ,E ( : , : , B) ’ , Xs , Ys ) ;
s t reaml ine (−E ( : , : , A) ’ ,−E ( : , : , B) ’ , Xs , Ys ) ;

100 end
t i t l e ( [ ’ E l e c t r i c f i e l d l i n e s ’ ] )

102 xlabel ( [ ’ x−ax is (nm) ’ ] )
ylabel ( [ ’ y−ax is (nm) ’ ] )

104 name1 = s t r c a t ( ’ quad f i e l d ’ , num2str ( im ) ) ;
% processcharge (100 ,30 ,name1)

106 % saveas ( gcf , f u l l f i l e ( ’C:\Users\K i t \Desktop\Bachelor opdracht\Report\Images ’ , name1) ,
’ epsc ’ )

108 %% Plo t charge d i s t r i b u t i o n
f igure

110 imagesc ( div2D ’ , [−0.4 0 . 4 ] )
hold on

112 axis equal
a s f i x ( v lak ,OP1,OP2,OP3)

114 set ( gca , ’ YDir ’ , ’ normal ’ )
t i t l e ( ’ Charge d i s t r i b u t i o n and d ipo le moment ’ )

116 xlabel ( ’ x−ax is (nm) ’ )
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ylabel ( ’ y−ax is (nm) ’ )
118 name2 = s t r c a t ( ’ quadcharge ’ , num2str ( im ) ) ;

% processcharge (100 ,30 ,name2)
120 qh = quiver ( size (E, 1 ) / 2 , size (E, 2 ) / 2 ,sumP( im +1 ,(A+1) / 2 ) ,sumP( im +1 ,(B+1) / 2 ) ,0 .005 , ’ red ’ ) ; %

Plo t d ipo le moment
set ( qh , ’ LineWidth ’ ,3 ) ;

122 % saveas ( gcf , f u l l f i l e ( ’C:\Users\K i t \Desktop\Bachelor opdracht\Report\Images ’ , name2) ,
’ epsc ’ )

124 %% Convergence check
P2i = 1 . / a l p h i . * E l oc i ; % Calcu la te P from E and alpha , where the a l p h i a r ray a c t u a l l y

cons i s t s o f 1 / alpha
126 P2i ( abs ( P2i ( : ) ) == I n f | isnan ( abs ( P2i ( : ) ) ) ) = 0 ; % Since a l p h i i s i nve r t ed and equal to

zero outs ide the p a r t i c l e , ou ts ide the t a r g e t P2i w i l l be I n f ( or NaN) , t h i s i s
cor rec ted wi th t h i s l i n e .

P2 ( : , : , : , 1 : 2 : 5 ) = rea l ( P2i ( : , : , : , 1 : 3 ) ) ; % Convert the complex numbers back to r e a l numbers
128 P2 ( : , : , : , 2 : 2 : 6 ) = imag ( P2i ( : , : , : , 1 : 3 ) ) ; % Convert the complex numbers back to r e a l numbers

P d i f f ( im+1) = sum( abs (P2 ( : ) − P ( : ) ) ) / numel ( f ind ( pa r t ==3) ) ; % Calcu la te the average
d e v i a t i on

130 end

132 %% Disp lay the checks
Perr = sumP . / sumPP;

134 disp ( spr in t f ( s t r c a t ( ’ The r e l a t i v e d i f f e r e n c e between the two d ipo le moment c a l c u l a t i o n s i s :\n ’
, ’Px\ t \ t \ t Py\ t \ t \ t Pz\n ’ ,num2str (mean( Perr ) ) , ’ \n ’ ) ) )

disp ( spr in t f ( s t r c a t ( ’ The average e r r o r i n the convergence i s :\n ’ ,num2str (mean( P d i f f ) ) ) ) )
136

138 %% Unused
% qh = qu iver ( s i ze (E, 1 ) / 2 , s ize (E, 2 ) / 2 ,sumP( im +1 ,(A+1) / 2 ) ,sumP( im +1 ,(B+1) / 2 ) ,0 .0005 , ’ red ’ ) ;

% P lo t d ipo le moment
140 % set ( qh , ’ LineWidth ’ , 3 ) ;

% qh2 = qu iver ( s i ze (E, 1 ) / 2 , s ize (E, 2 ) / 2 ,sumPP( im +1 ,(A+1) / 2 ) ,sumPP( im +1 ,(B+1) / 2 ) ,0 .0005 , ’
blue ’ ) ; % P lo t d ipo le moment

142 % set ( qh2 , ’ LineWidth ’ , 1 ) ;
% qu iver ( y , x , permute ( Einc0 ( temp1 , temp2 , pos ,A) , [ 1 2 4 3 ] ) , permute ( Einc0 ( temp1 , temp2 , pos ,B)

, [ 1 2 4 3 ] ) , ’ black ’ ) ;
144

% dipmom2km = cat (4 , div3Dkm . * ( XX−OP2/ 2 ) , div3Dkm . * ( YY−OP1/ 2 ) , div3Dkm . * ( ZZ−OP3/ 2 ) ) ;
146 % dipmom2 = permute (dipmom2km , [ 2 1 3 4 ] ) ;

148 % Gam = cross ( dipmom2 , r e a l ( E l oc i ) , 4) ;
% gamtot ( im +1 ,1 :3)=sum(sum(sum(Gam) ) ) ;

150
% Eloc ( : , : , : , 1 : 2 : 5 ) = r e a l ( E l oc i ( : , : , : , 1 : 3 ) ) ;

152 % Eloc ( : , : , : , 2 : 2 : 6 ) = imag ( E loc i ( : , : , : , 1 : 3 ) ) ;
% Eto t = Eloc ;
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