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Abstract

mation of the surroundings in real time. Range and velocity of surrounding objects are very

important for collision avoidance, aided parking and so on. One of the potential candidates
for obtaining this information is the Frequency Modulated Continuous Wave radar which can
measure ranges and velocities of multiple targets in one measurement with reasonable accuracy
and speed. However, in its baseband signal processing, large amount of memory is needed due
to the special 2D FFT processing requirements. The memory requirement is in conflict with the
market targeting of this system which should be a low cost, single chip solution for consumer
automotive. A data compression scheme has to be used in the baseband signal processing to
reduce the total system memory in order to shrink the area of the chip.

Improving safety and convenience in driving necessitates technologies for gathering infor-

Based on the characteristics of the signal, two different compression schemes are developed in
this thesis. The first one is called the Range Dependent Variable Length Encoding (RDVLE)
which directly cut unused bits in the data according to the range — received power model. This
bits-cutting may lead to data loss so this scheme is categorized as lossy compression. To further
increase the compression ratio, the Uniform Dynamic Range Encoding (UDRE) is introduced
and a new algorithm is developed to reduce the distortions generated in this RDVLE + UDRE
compression. This scheme is evaluated in Maltab simulations and the compression ratio is
around 2.2 while the other performances are shown in Chapter 4.8.

The second algorithm is originally lossless. Due to the combination of the Run Length Encod-
ing (RLE) and the Huffman Encoding and the utilization of redundancy between sweeps (Dop-
pler processing), its name is Doppler Redundancy Hybrid Encoding (DRHE). Before encoding,
a prediction block will predict the input signal based on the previous input and the differences
between the prediction and the input signal will be encoded. By observing the characteristics of
the differences signal, the RLE is chosen to encode the large number of segments of consecu-
tive zeroes and Huffman encoding is used to encode other values. In consideration of hardware
implementation, a column based version of this scheme with memory management functionali-
ty is developed to fit all the compressed data into a regular, fixed size memory where the
memory management may introduce rare data loss. The original algorithm may achieve a com-
pression ratio as high as 9 while the compression ratio in the column based version with
memory management can be set manually (typical CR is 5) in tradeoff among compression ra-
tio, memory efficiency and the chance of data loss.

Both of these two schemes are designed with considerations of hardware implementations and
overhead for possible future implementations.

Keywords:
FMCW radar, data compression.
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1 Introduction to Data Compression

Data compression research dates back to the 1950s [1] and has become standard practice in var-
ious current digital systems due to the ever-increasing amount of data to be stored and trans-
ferred. One good example is online video/image streaming [2], which would be hard and ineffi-
cient with current link speeds without data compression technology. Compression is generally
achieved by representing information in a more compact form by utilizing statistical structure
or removing unimportant components in the information flow.

This chapter will review some of the most successful and widely used data compression algo-
rithms and applications to provide an overview and background of this study before diving into
application specific, custom designed compression schemes. In this thesis, data compression is
designed for a special application: the automotive radar system which made it necessary to un-
derstand the system structure and signal features to better fit certain designs to the system.
Therefore, following the introduction of data compression, the radar systems in automotive are
briefly introduced as well in this chapter.

There are two major categories of compression algorithms: lossless and lossy, where the crite-
rion is whether the exact original input can be restored from the compressed output. Before in-
troducing both of them, a crucial performance matric of compression algorithms has to be de-
fined: the compression ratio.

CR— number of input bits

, (1)
number of output bits

Reciprocal of Equation (1.) might be used as compression ratio in some literatures [3], they are

converted to this expression form when referenced. Another way to express the effectiveness of

compression is to compare average bits per sample before and after compression.

Besides compression ratio, there are other performance metrics. Compression is often related to
extra computation. Large amount of extra computation will increase its complexity no matter
implemented in software of hardware. Complexity will also determine speed of the algorithm
which is crucial to real time applications.

Overhead is another important factor, especially in hardware implementation. To achieve com-
pression, various additional register, memory, function blocks etc. are needed, all of which will
occupy extra chip area increasing total cost and total power consumption.

In lossy compression, the signal distortion caused by compression is also very important. The
amount of distortion that is allowed is determined by application. For example, the information
loss in Fax compression [4] and that in high definition image compression [5] can be very dif-
ferent.

Generally, the design of compression scheme for specific application is a process of tradeoff
between different performance metrics and this will be seen so many times in this thesis.
1.1 Review of Information Theory

Information theory developed by Claude E. Shannon is a branch of applied mathematics that
aims at quantifying information. The self-information of an event A is defined [6], associated
with its probability, as:

1'(A)=logbmﬁ=—logbase P(A) (2.)

When the base of the log function is chosen to be 2, the unit of i(4) is bit. If event A and B are
independent, then we have:



i(AB)=-log, P(AB)=-log, P(A)P(B)=-log, P(A)-log, P(B)=i(A)+i(B) (3.
If we have a set of independent events A; which form the sample space S of random experiment:
S=u4, 4.)
Then the average self-information associated with this random experiment is:

H:ZP(AI.)i(AI.):—Zi:P(AI.)logZP(AI.) (5.)

H is called the entropy of the experiment. If the random experiment is a source putting out
symbols 4;, Shannon showed that the best lossless compression scheme cannot do more than
encoding the output of a source with an average number of bits equal to the entropy of the
source [7]. Information theory identifies how many bits should be actually used to represent
one symbol and redundancy can be eliminated by using a symbol not longer than necessary.

For example, the relative frequency of letter e in English language is about 0.116 [8], so the
self-information contained in the letter e in English language is:

1
i(L )=log, ——=3.11Dbits 6.
(£,)=log, 0.116 (©)
This means the letter e can be represented by no more than 4 bits when encoding a piece of
English text. An ASCII text file uses 8 bits to encode each letter and the redundancy of 4 bits of
information enables the possibility of compression.

Generally, data compression takes a stream of symbols and transforms them into certain codes.
The decision to output a certain code for a certain symbol or set of symbols is based on a model.
The model is simply a collection of data and rules that are used to process input symbols and
determine which code(s) to output [7]. Then a coder produces appropriate code based on the
model. So it is often said “Compression is a combination of model and coding”. For example,
in the Huffman coding compression scheme [9], symbol probabilities are obtained using some
statistical model from the input data flow, then these probabilities values are used by the Huff-
man encoder to generate codes to represent each symbol. The basic model of compression algo-
rithms is shown in Figure 1-1.

Probabilities

ource ode oder utpu ‘
H Symbols e = }

Figure 1-1 Modeling + Coding model for compression algorithm

People often use the term “coding” or “encoding” to represent the entire data compression pro-
cess which might be very misleading such as “Huffman coding” and “Run length encoding”.
These naming conventions vary. In this thesis, they are regarded as both simply coding methods
used in conjunction with a model to compress data and the whole compression scheme depend-
ing on context. Different models and coders are introduced in the following chapters.

1.2 Lossless Compression Algorithms

According to the above criterion, lossless data compression reduces the size of the input in a
way such that a corresponding decompression algorithm can restore the original input exactly
with no loss of data. Lossless compression is widely used in program code and text compres-
sion where strict restoration is required to guarantee execution correctness and readability [10].
For example, one letter change in a sentence may totally change the meaning and one single
digit change in bank account numbers is not acceptable. Images, sound and other type of infor-
mation can also be compressed using general purpose lossless compression algorithms but the
compression ratio is usually not as good as that using lossy algorithms.



The “model + coder” model is mainly used to describe the two main components in lossless
compression algorithms. Model is the brain of the compression algorithm which dictates the
coder to do data encoding. Generally, two different types of models exist in lossless data com-
pression: statistical and dictionary-based. Chapter 1.2.1 and Chapter 1.2.2 introduce these two
types of models with their frequently-used coders.

1.2.1 Statistical Methods

Statistical lossless compression methods show a clearer separation between model and coder
than dictionary-based methods [11]. As its name suggests, this type of compression uses statis-
tical information from the input data to do compression. As introduced in Chapter 1.1, the
amount of self-information is determined by a symbol’s appearance probability in the data
stream. The higher the probability, the less self-information it contains, the fewer bits are need-
ed to encode it. Statistic models analyze the input data and produce probability information to
feed the coder to generate code for each input symbol.

Statistics can be gathered based only on current input symbols which is called 0-order model.
For example, regarding each byte in the input file as one symbol which corresponds to the
ASCII code and count the time of appearance of different symbols, we can have a counts table
that shows each symbol’s frequency. If each frequency count is stored in an unsigned char, this
0-order statistical model occupies 256 bytes. As a natural improvement, a 1-order model might
be used where the statistics are gathered based also on the previous one symbol. For example,
the letter “u’ alone might have a probability of 0.01 in English, but if its previous symbol is ‘q’
then the probability of ‘u’ may rise to 0.95 [7].

Generally, higher order models will result in better compressions but also occupy more storage
space. If a 0-order model occupies 256 bytes, a 1-order model will take up 256*256=65536
bytes. In a static model, the probability information has to be passed to the decompression algo-
rithm for proper decoding which means the model itself has to be appended to the compressed
file which wipes out some benefits of compression. To solve this problem, adaptive modeling is
used where the model is built gradually as the data is fed in. As long as the decompression al-
gorithm builds the model in the same way that the compression does, the data will be decoded
correctly. Figure 1-2 shows a diagram of an adaptive model in comparison with the static model
in Figure 1-1.

, Symbols
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Figure 1-2 Adaptive modeling (compression)

Statistical models are often concatenated with Huffman encoder [9] which is a minimum re-
dundancy coding scheme. It uses the statistical information from the model to assign codes to
each input data sample. The Huffman coding is a coding method that generates variable inte-
ger-length codes. Its codes have unique prefix (prefix code) so they can be decoded correctly
without any symbol delimitation. An example to encode symbols using the Huffman coding
combined with a 0-order static statistical model is presented in the following.

Table 1-1 Example symbol frequency table

Symbol A |B |C |D |E
Frequency |15 |8 |5 |5 |4
Table 1-1 shows a symbol set with 5 symbols in total from A to E and their frequencies which
can be regarded as a 0-order statistical model. A Huffman tree is built with this information
from leaf to root. The initial symbols in the table are regarded as nodes to be selected. In each
iteration, two symbols with the lowest frequency counts are added as two child nodes and re-
moved from the table. Their father node is created with the sum of their frequency counts and
added back to the node list. This process continues until there is no node in the list.
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Figure 1-3 Huffman tree generation

Figure 1-3 shows the process of building a Huffman tree based on the example frequency table.
Once we have the tree, code for each symbol is available just by assigning 0 to every left child
and 1 to every right child.

Table 1-2 Huffman code of example model

Symbol | Huffman Code
A 1

B 010

C 011

D 000

E 001

The generated codes are shown in Table 1-2. The most frequent symbol A is assigned to the
shortest symbol. No code is prefix to the others therefore each code can be decoded uniquely by
just going through bit by bit of the compressed data stream. All the other codes except A have
the same length which actually reveals a disadvantage of the Huffman coding: the code must
have integer length. The Arithmetic coding [12] performs better than Huffman coding by en-
coding a stream of input symbols with a single floating point number which is actually equiva-
lent to having fractional code length.

Both the Huffman coding and the Arithmetic coding can be modified to adaptive coding ver-
sions. As shown in Figure 1-2, the statistical model is adjusted on the fly. Adaptive statistical
methods like prediction by partial matching (PPM) [13], [14] and Dynamic Markov Compres-
sion (SMC) [15] provide very good compression ratio but in general, effective higher order
models can be computational and memory costly to be implemented in hardware.

1.2.2  Dictionary-based Methods

For dictionary-based method, the line between model and coder becomes vague. Coders in this
type of compression usually encode several symbols as pointers pointing to dictionary items.
Thus, models are of great importance in dictionary-based methods. The most famous family of
dictionary based methods is the Lempel-Ziv (LZ) algorithms. The LZ77 [16] and LZ78 [17] are
the basis for many variations like LZW [18], LZO [19]and so on.

Here, we present the LZ77 as a typical example to show the basic idea of dictionary-based
compression. The LZ77 algorithm is shown below.

LZ77 algorithm [20]

1. Set coding position to the beginning of the input stream.

2. Find the longest match of length L in the window for the rest of input data from coding
position to the end of the input stream. The window is a bufter of size W indicates the
number of bytes from the coding position backward.

3. If a match is found, output the pointer P. Move the coding position and the window L
bytes forward.

4. Ifa match is not found, output a null pointer and the first byte from the coding position.
Move the coding position and window one byte forward.

5. Go to step 2 until all input bytes are processed.

Take the input stream “AABABCABC” as an example. The encoding steps are shown in Table
1-3. Once an input data is found in the “dictionary” (window), instead of the original data, a



pointer to the dictionary item is output. When the window is long enough, longer input data
sequence can be replaced with much shorter pointer to achieve compression.

Table 1-3 LZ77 encoding steps with example input

Step | Position | Match Output
1 1 - (0,00A
2 2 A (1,1)

3 3 - (0,0)B
4 4 AB (2,2

5 6 - (0,00C
6 7 ABC (3,3)

The output pointer (x,y) means going back x bytes and take y bytes from that position. Decod-
ing starts from the beginning of the compressed data and the decoded data serves as dictionary
to the rest of the compressed data. Dictionary-based compression algorithms are widely used in
various general purpose compression schemes both in software and hardware that are discussed
in Chapter 1.4.

1.3 Lossy Compression Algorithms

Lossy compression will result in loss of information in the input and the restored information
will not be exactly the same as the original input, but in return of accepting distortions in the
reconstruction, higher compression ratios can often be achieved compared to lossless compres-
sion. Lossy compression is mainly used for analog data that is stored digitally and it’s popular
in compressing signals for human perception for the fact that humans only have limited percep-
tual abilities [21], [22]. We cannot hear high frequency components above 20kHz in sound,
neither can we see ultra-fine details in images which can be removed from the original infor-
mation without impairing proper understanding of the original information. The compression
ratio also depends on what restoration quality the user accepts: speech in telephone quality and
in CD quality can both be understood without ambiguity, but are significantly different in com-
pressed size. Lossy compression makes it possible to effectively compress sound, images, vide-
os and other signals for storage and communication.

Quantization and decimation can be regarded as simple lossy compressions which are used in
converting analog signal to digital format. These are usually the first steps in compressing im-
age and sound. Many lossy compression schemes such as JPEG [23] [24] and MP3 [25] de-
signed for human perceptible signals use the Discrete Cosine Transform (DCT) [26] to trans-
form signal from the time domain into the frequency domain. Reduction of information is
achieved by quantization of frequency components and eliminating imperceptible frequency
components according to certain human perception models.

Many kinds of signal have redundancy in itself. For example, consecutive frames in one video
clip may have very similar content (temporal redundancy) and nearby channels in the same ra-
dar system might have similar responses (spatial redundancy). Taking advantage of redundancy,
future data may be predicted based on the past samples. If the prediction is good, the differ-
ences between real input and prediction will have much less information. Predictions are used
in various compression schemes such as MPEG2 [27], [28].

1.4 SW and HW Implementations and Applications

Various compression algorithms are implemented both in software (SW) and hardware (HW)
depending on their applications and requirements. Take the MP3 encoding as an example, when
it’s needed in real time, embedded applications such as portable recorder, it may be implement-
ed in dedicated chips. In applications like offline audio format conversion, software encoding
library is enough and is less costly.

Some compressions are designed to be implemented only in dedicated hardware to provide very
high speed such as IBM ALDC [29] and X-MatchPRO [11]. Both of them are dictionary-based
lossless compression schemes that are designed for high speed digital storage and communica-
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tion. Often, dictionary based algorithm often needs Content Addressable Memory (CAM) [30]
in hardware to implement the “dictionary” as a lookup table which is quite power consuming
and area inefficient. Despite the common JPEG, MP3 compression, hardware lossy compres-
sion schemes are also found in some specific applications like [31] which is designed to com-
press electrocardiogram signal based on DCT-IV.

Software implementations are more common than their hardware counterparts. Despite the gen-
eral purpose software packages and libraries like zlib [32], PKZIP, some application specific
schemes were also designed. [33] presents a SVD based approach for radar signal compression.
In [34], a novel software-based RAM compression is presented using LZO algorithm in order
to save system memory by compressing rarely used RAM contents. zram [35], zcache [36] and
zswap [37] are software implementations with similar targets.

Actually, online RAM compression is gradually becoming mainstream in many modern opera-
tion systems. zram was merged into the Linux kernel mainline in version 3.14 in March 2014.
Apple’s compressed memory [38] in its OSX Mavericks operation system uses WKdm [39], a
dictionary-based algorithm. IBM also has similar design [40].

1.5 Data Compression in Radar

To improve safety and comfort for driving, modern automotive is evolving continuously to gain
the ability to know more and more about its surroundings. [41] Range and velocity of moving
targets (e.g. other vehicles, pedestrians) around the automotive is important information and
Radar is a very good candidate for obtaining this information. Radar is short for RAdio Detec-
tion And Ranging which uses radio waves to determine range, direction and speed of objects.
Information provided by automotive Radar system can be used in aided parking systems [42],
collision avoidance [43], night driving and even in automated steering. Figure 1-4 shows an
aided parking concept.

Figure 1-4 Aided parking [44]

Figure 1-4 shows a car equipped with an aided parking system. The system uses radar to meas-
ure distances between different points on the car body and the surroundings and control the car
with the right steering angle and route. If the driver parks the car by himself, the system will
produce warnings when it comes too close to its surroundings. In the application of collision
avoidance, distance and relative speed information from radar measurement is used to deter-
mine if it’s a critical situation to do automatic break and control before collision.

Other competing technology also exists, such as Light Detection and Ranging (LIDAR) and
camera-based driving assistance. However, these methods suffer from bad weather conditions
such as thick fog while radar does not. Other advantages of using radar include direct distance
and speed measurement and invisible integration behind electromagnetically transparent mate-
rials such as car’s bumper. For example, as shown in Figure 1-5, Google’s self-driving car [45]
employs Lidar, camera and Radar at the same time to get a comprehensive understanding of its
surroundings to ensure correct behavior and safety.

Signal processing in Radar system needs a lot of computational resources as well as memory
which will increase system cost. Single chip SoC solution is favored in terms of cost and sys-



tem design complexity. The amount of memory needed in a Radar system is often too much for
SoC so data compression is necessary.

Signals from GPS (global positioning system) Lidar (light detection and ranging)
satellites are combined with readings from sensors bounce pulses of light off the
tachometers, altimeters ( ~) surroundings. These are analysed to
and gyroscopes to provide identify lane markings and the

more accurate positioning o————— edges of roads

than is possible with
—_— &
GPS alone Video cameras detect traffic lights,

read road signs, keep track of the
Radar | position of other vehicles and look

sensor. 5 . out for pedestrians and obstacles

n on the road

Ultrasonic sensors may
be used to measure the
position of objects very The mformation

close to the vehicle, of the sensors is anal
suchas curbsand other by a central computer that
vehicles when parking manipulates the steering,

accelerator and brakes. Its

software must understand Radar sensors monitor the position of other
the rules of the road, both vehicles nearby. Such sensors are already used
Source: The Economist formal and informal in adaptive cruise-control systems

Figure 1-5 How a self-driving car works [46]

There are many works about radar signal compression in transmission and storage such as [47],
[48] [49] and [50] but the study on compression as part of the radar signal processing in order
to save system memory is rare which is the very topic of this work. Figure 1-6 shows the differ-
ence between the two kinds of applications.

input
signal

input
signal

Figure 1-6 Difference between compression for transmission/storage and compression in between processing

Before getting into compression algorithm design, in the following sections, we will introduce
the basic principle of FMCW radar as well as the signal processing methods employed to obtain
relevant information from received radio signals.






2 FMCW Signal Processing

2.1 Principle of FMCW Radar

2.1.1 Simple Radar Range Equation

The famous radar range equation relates received echo power B. to transmitted power P, in a
deterministic way in terms of many common system design parameters [51]. The relationship is
important because radar relies on the radio wave echo to do measurement and detection. A sim-
ple step-by-step deduction may help to understand it. The following shows the process to obtain
the radar range equation for a simple point target:

First, assume the transmitting antenna has an isotropic radiation pattern and the radio wave
travels in a lossy medium with attenuation factor of L,, (). With the loss caused by the medium,
at a range r, the total transmitted signal power spreads on the sphere with a radius of r. The
power density is:

£ 2

However, most radar applications use directive antennas which have antenna gain of G, to in-
crease power in the direction of interest. The power density at r then becomes:

£G, 2

When the transmitted wave hits a target, part of the energy is scattered back, part of it is ab-
sorbed by the target itself. To characterize this process, it is imagined that the target collects all
the incident energy on a fictional area o and re-radiates it isotropically. Therefore, for mono-
static radar, the power density at the collocated receiver is:

PD,(r)

— PthO' PthO' ( / 2) ©.)
4mr®L, (r)4mr®L, (r) [47”sz (1‘)]2 '

This fictional area ¢ is called the Radar Cross-Section (RCS). It is not the same as the target
physical cross-section area and usually depends very largely on the incident elevation and azi-
muth. The received power at the receiver again depends on a fictional area which characterizes
the receiving antenna — effective area A,. Then the received power is expressed as:
P(r =Pfo—JAE2 (w/m?) (10.)
|:47T1‘2Lm (r)]

The effective area A, is related to receiving antenna gain [52] as:

Gt
A4 =—"—(m 11.
il (11)
where A is the transmitted radio wave length. Substituting A4, into the received power B.(r), the
received the power is written as:

PGG ok

£(r)= (4m) L7 (r)

r

w) (12.)

which is the radar range equation.



2.1.2 FMCW Signal and System Architecture

An FMCW signal is a kind of continuous waveform with frequency modulation [53]. Typically,
linear frequency modulation is used where the frequency of a sine wave is linearly increased or
decreased. Figure 2-1 shows the saw tooth FMCW signal.

TN TN
OO mJH’{ ' \\)HW I\ ‘I T ®
v .

Time (s)

Figure 2-1 (a) Transmitted saw tooth FMCW signal (b) Returned signal with a delay (c) Time-Frequency
relationship of the two signals.

The saw tooth linear frequency modulated signal with an increasing frequency is also called the
(up)chirp signal. One period of the signal shown in the yellow shaded region in Figure 2-1 (a) is
called one sweep of chirp of the FMCW signal which can be expressed mathematically as:

S iy (t)zAcos{Zﬂ[fo +%m‘}t} te(O,Tc:l (13.)

Then the instantaneous frequency can be obtained by differentiating the phase of s, with
respect to time t as:

f(t)z%Kfo +%atH=f0 +at te(0,T ] (14.)

which means the instantaneous frequency is increasing linearly with time as shown in Figure
2-1 (c) where « is called chirp rate, f; is the initial frequency. The range between f; and f,,,,, is
the bandwidth of the FMCW signal which is

BW =f(T.)-f(0)=aT, (15)

The other common form of linear FMCW is triangle FMCW where a frequency decreasing
phase follows the increasing phase in the time-frequency relationship which is not shown here.
Figure 2-2 shows a brief block diagram for FMCW radar system.

4— -- ChJ.rp Gen Control
[: l l ADC I Radar Slgnal l

W rr Wl Baseband
Figure 2-2 General FMCW radar system diagram

Under the control of the Control Logics block, continuous saw tooth chirp signal is generated
by the Chirp Gen block and the signal is transmitted by a transmitting antenna after filtering
and amplification. The incident FMCW signal is reflected by the target at some distance and the
echo collected by the receiving antenna is mixed with the same FMCW signal from the trans-
mitter. The product signal is then band pass filtered and sampled by an ADC. After sampling, it
goes into the digital domain where certain algorithms are used to perform signal processing and
target detection.

10



2.1.3 Deramping and Range Measurement

The properties of the mixed signal have to be known to employ proper signal processing algo-
rithms in the following stages. The following conceptual deduction will shed some light on the
mixed signal property. Instead of using a periodic saw tooth chirp signal which is more com-
plex in mathematical form, we can simply multiply s¢p;-, (t) with its delayed and scaled version
of Scpirp(t — T) as received signal as shown in Figure 2-1 (b). 7 is the round trip time of flight:

T=2x§ (16.)

where D is the distance between antennas and target, c is the light speed. The result, though not
mathematically accurate, can reveal some information.

B
SmiX (t) = Schirp (t) ‘Zscbirp (t _T)

=ABcos{2n{f0 +%at}t}cos{2ﬂ(fo +%a(t—r)](t—1)}

(17.)
AB 1 1 AB 1
:TCOS|:27T(2f;)t +Eat2 —fot +Ea(t —r)z ﬂ +Tcos{2ﬂ[an‘ + for —Earﬂ

=5, +£cos[2ﬂ(cxn‘ + for—larﬂ
o2 2

The first term S, is a high frequency term which will be filtered out by the BPF following the
mixer and the input signal to the ADC will be the second term only which is:

S incin Z%COS{ZH(CITI'+GT—%Q’TJ:| (18.)

The instantaneous frequency of this signal is:

fy=ar= 2aD (19.)
c

Now, the range information is included in the frequency of the mixed signal which is often
called the ‘beat frequency’. This mixing process is called ‘deramping’ which converts a ‘ramp-
ing-up’ chirp signal to a constant frequency beat signal. Unlike pulse radar, the range infor-
mation is contained in the frequency domain in the FMCW radar system, we could know the
target distance by measuring the beat frequency which naturally leads to the signal processing
method using the FFT in the following chapters.

2.1.4 Doppler Frequency Shift and Velocity Measurement

Due to the relative movement between the radar system and the targets, the round trip time of
flight might change from time to time. This is especially true in automotive radar system which
operates in an ever-changing environment. This relative movement will cause a frequency shift
in the echo signal which is called the Doppler frequency shift given by the following equation:
f 2v,
|
where v, is the relative radial velocity between radar system and target. The Doppler frequency
shift will introduce an error in the measurement of the beat frequency f;, thus influencing range
measurement accuracy. However, this influence is small and by observing the signal phase shift
cause by a Doppler frequency shift in consecutive FMCW sweeps, fp can be determined and
radial velocity is then also obtained.

(20.)

With little influence in range measurement, speed information can be obtained which is of great
use in automotive control system such as collision avoidance system

11



2.2 2D FFT Processing

Since both range and velocity information is contained in the frequency domain, processing in
the frequency domain is a natural choice. The FFT is used to transform the received signal from
time domain to frequency domain. Figure 2-3 shows the block diagram of a Radar signal pro-
cessing block in Figure 2-2.

Sample Buffer Memory Matrix

g
<E]7 1 Velocity
Range
y Next

Control Logics Processing
Stages

From
ADC

Figure 2-3 2D FFT processing diagram for the FMCW signal

The samples are first stored in the sample buffer and sent to the Range FFT block for perform-
ing the 1* FFT. The result of the 1* FFT reveals the beat frequency f;, of the deramped signal, it
is therefore called range spectrum. Through multiplexer (MUX), range spectrums of several
consecutive chirp sweeps are stored into consecutive rows of the storage matrix.

Once enough rows of range spectrums are collected, data are extracted column by column by
the demultiplexer (DEMUX) and sent to the 2™ FFT block (or the Velocity FFT block). Due to
the Doppler frequency shift f;, phase shifts will happen among consecutive sweeps (rows)
whose frequency will be revealed by this Velocity FFT. The final result contains both range and
speed information, so it’s called the Range-Velocity spectrum which will be used in the next
processing stage to do, for example, target detection, target tracking and so on.

2.2.1 Deramping

Though simple, the previous deduction for deramping in Chapter 2.1 is not fully mathematical-
ly accurate because a real FMCW signal is a continuous periodic signal and the target is all the
time moving away or towards the radar system. To illustrate the signal processing method in
FMCW radar, a more accurate signal model is used.

The whole transmitted saw tooth FMCW signal with M complete chirps starting from zero time,
therefore, can be expressed as:

M-1 T,
s, (£)= ZACO{Zn(fO +%a(t—m7;)j-(t—mTc)}n -y i 1)
m=0 T

where f; is the initial frequency, « is the chirp rate and T, is the time duration for single chirp
(it is also the signal period). The symbol IT represents the following rectangular window:

f(e) - {0 |t > 1/2 22)

1 |t| < 1/2

The signal is constructed by copying a windowed chirp signal every T, second for M times. As-
sume there is one target at a distance r which is moving at a relative radial speed of v, with re-
spect to the radar system. Within the very short time of one chirp sweep, the movement of tar-
get is ignored, while between consecutive chirp sweeps, the distance in between changes by an
amount of T,v,, thus we can write the returned echo as:

M-1 T
SR(Z')ZZCOS|:27T(fO+%a’(l‘—mTC—T(m))j(l‘—mTc—T(m)):|l_[ t_?_mTc_T(m) (23.)
T

c

m=0

where the round trip time of flight is:
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r(m)=2(r+mVrTC)/c (24.)

To simplify the expression, let C(t) be:
C(t)zcos[Zﬂ(fO +%atjt} (25.)

Therefore, the mixed signal of deramping can be written as:

T
M-1 [
S ()=, (6) 5, (6)=| TAc(e-mr)n) T " s
m=0 T
- T M-1 ‘ t_Tc -7 - (26)
B ZC(t—mTC+TC—T)H ﬂ +z€(t—mTc_T)n ) mT -7
m=0 . pre T —

Despite of its complex form, the above equation is simply the product of yellow shaded region
and blue-green shaded regions in Figure 2-1. The term in the first square bracket corresponds to
the yellow shaded part, the first term in the second square bracket corresponds to the blue shad-
ed part and the last term corresponds to the green shaded part.

It’s obvious that, for the scaled and shifted rectangular gate function, the following relation-
ships hold:

T —
| T o | L B |
P . P (27)
M(¢)-m(¢)=1(¢)
So, the mixed signal is:
_ - _
C(t-mT)C(t—mT +T —7)n| L= ML
(t)=45Y ‘
S (£)=ABY — (28.)
W s (e—mT )C(t-mT —)n| L~ 5 Tt
T -1

Now, let’s observe this mixed result term by term. The first product term in the summation is:

~a(T, ~7)t+ amT (T, -7)
—f (T —T)—%Q(TC—T) (29.)

0 c

C(t-mT)C(t-mT, +T, ~7)=M,, +%cos2ﬂ[
where M, represents a 2f; high frequency term while the frequency of the second term is
—a(T, — t) = —BW + at which can be seen in the time-frequency relationship for the blue-
shaded part in Figure 2-1. Usually, in FMCW systems, T, is designed to be much larger than ©
therefore the beat frequency f;, = at is merely very small compared of total BW. This is to say,
the frequency of the second term in Equation (29.) is also much higher than the frequency range
we are interested in. Therefore, the first term in Equation (28.) will be filtered out by the BPF

that is preceding the ADC. The second term in Equation (28.) which is C(t — mT,)C(t — mT, —
7) is expanded as:

C(t—mTc)C(t—mTc—r)zsz +%c052ﬂ(art—arm7'€ —%HTZ-FI‘;)TJ (30)
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The high frequency term M, will be filtered out by the BPF. In summary, excluding noise, the
signal which is present at the input of ADC will be:

M-1 T
1 - — -
S pop (t)zARZCOSZH(aTt—aTmTC —Earz+f0rjl'l £ 2 mI, -t (31))
m=0 71 -7
where A = %AB. Expressed in exponential form:
AR M-1 /Zﬂ(a‘z’[—armT[—%arzﬂ‘orj j2n[—ar[+armT[+%a‘rz—for] t— T'c +7 _ mT
SBPF(t):7Z e +e 1 2 ¢ 1(32)
m=0 T -1

c

2.2.2 Fourier Transform Processing

The sampled signal will go through two Discrete Fourier Transforms with the help of an FFT
block. To illustrate the concepts and keep its form simple, we will use the continuous Fourier
Transform in the theoretical deduction. Moreover, the following deduction will only deal with
one of the exponentials which come from the cosine function because the other exponential will
simply have a symmetric result after the FFT processing which doesn’t give extra information.
In real system, with a Nyquist rate ADC, the FFT results are just frequency domain sampled
version of the mathematical deduction results.

The Range FFT is done on each signal segment or each row in the memory matrix in Figure 2-3
rather than on the whole sgpp (t). So it’s better to rearrange sgpr (t) into a 2D ‘matrix’ form that
is shown in Figure 2-4:

AR /Zﬂ(art—armTc—%arZJrfDrj t— 7;‘ T
S oo (m,t):7e I 2 (33.)
T -1
c

sppr(t)

lk T é T T ‘ - T

Range FFT Range FFT Range FFT Range FFT
sgpr(m, t) M Sweeps

Figure 2-4 Deramped signal rearranged to 2D ‘matrix’ form

This ‘matrix’ looks a little abnormal, because each row is actually a continuous signal with
t € (—o0, +00) rather than finite number of discrete samples. However, this configuration is eas-
ier for mathematical deduction. There are in total M rows of this signal and the first Range Fou-
rier Transform on each row of the continuous aperiodic signal will be:

j —amn —larz +% T'c+T
F{SBPF(H],Z')}Z%E/Z [fo "2 jJ. e’ ] t_T e ™ dt (34.)
- T -1

The exponential term e/2™ in the Fourier Transform will result in a shift in frequency domain.
The time shift in the scaled gate function 11 (i) will result in a phase shift in frequency do-

main with scaling factor which is according to the following Fourier Transform pair:

F{x(a(t-1))} =1X(£]ez’”f (35.)

a \a
where X(f) is the Fourier Transform of x(t). So the Fourier Transform in Equation (34.) is then:
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Sus (m,£)=F {5y, (¢,m1)}

2n| £ r-arm? ~Lar? | —jom s (36)
:%elz [fo i Jos' " [ 2 ]f (7. —7)sinc[ (7. -7)(£ —ar)]
which we call Range-Sweep Spectrum (sRS). The sinc function in Equation (36.) is defined as:
sinc(X):M (37)
X

The peak of the sinc function appears at f = at which reveals the distance between the radar
system and the target. Observing the most complex term in Equation (36.)

Tc+T

. 1
eJ2nfor-armlc—3ar*~(S5)7] \pich results in a phase shift in the Range-Sweep spectrum, we can
ignore the small term — at?/2. Actually, in FMCW radar systems, the designed chirp time T, is
always much larger than the maximum unambiguous round trip time of flight ¢ which is:

T >>t forany r within the designed range

The terms containing T, are due to the signal misalignment with respect to the origin, so they
can also be neglected which gives a simplified expression of Range-Sweep spectrum after this
first Fourier Transform:

A .
S s (m,f) =7R(TC —r)e’z”’(‘)rsinc[(z —T)(f—m')] (38.)
Recall that the round trip time of flight 7 is actually a function of m specified by Equation (24.):

o ()= Ay e (1.~ (m) (£ ~ar(m))]

L ot 2P 2r+2mv T 2r+2mv T (39)
=4 e € Sinc TC——” f—a—”

R c c

where Ay = %R (T, —1) = % (T, — 7). Figure 2-5 shows a noiseless Range-Sweep spectrum of

single moving target as an example.

[sRS(m,f)| [dB]

10° m(sweep no.
Beatf)Fequencyfb [Hz] ( pno.)

Figure 2-5 Range-Sweep spectrum after 1% FFT with single target

Though m is a discrete variable, for simplicity, it is treated here continuous as well. Then the
second Fourier Transform is done on Sgg(f, m) with respect to m:

Sew (V.£)=F (S (m.£)}

2rmM 2v.T.m
R =i R Yl a 2r+2mv T 2r+2mv T .
—4 e/2 . J‘e/Z " SinCKTc _—”](f_a r cﬂe—/ 2 g

R
0 C c

(40.)

During one measurement which consists of M sweeps, assume that the movement of the target
is small compared to the distance. We can ignore the term 2muv, T, in the sinc function and take
the sinc function out of the integration as:
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e 2r 2r\ 1§ an ™™
SRV(V,f):ARe sinc Tf_? f—aT !e e dm (41.)

Change the integral limits to infinity and plug in one gate function term:

ot 20 wo o 2T M '
SRV(V,f)ZA;?eIZfofsinc|:(Tc_2—r (f_a,z_rJ:| J'e/z Z 1 1]—7 e~ ™ dn
c c )| I
. 77021 Z[V T 7/'27TMV
:ARelz e sincKTC _2r (f—az—rﬂMsinc{M(V—#ﬂe z 0 (42)
c c c
' / 7Tozir L 2vT
:141R114(-;’/2 e e *? sinc[ TC—Z—rJ(f—az—rﬂsinc{M(v—#ﬂ
c c

There are two sinc functions in this second Fourier Transform result. Their crossing point re-
veals both range and velocity information, so we call this spectrum the Range-Velocity spec-

trum (s2D). The peak point in this 2D signal is at:

f = a2_1‘ =1
peak c b
o T (43))
peak = :1 <= D" c

Figure 2-6 shows a Range-Velocity spectrum example which is the Fourier Transform result of
Figure 2-5.

|[s2D(v,f)| [dB]

x 10° S ‘
Beat frequency f, [Hz] Doppler frequency v [Hz

Figure 2-6 Range-Velocity spectrum after 2" FFT
Equation (42.) is for single moving target, in real situations, there are usually multiple targets
moving with different speeds, so the Range-Velocity spectrum is a superposition of several sin-

gle target spectra like:

v /Zﬂﬂ)% _@y ) i 21‘1. 21‘1_ _ [ ZVr/Tc
SRV(V,f):ZAR(I)Me e sinc| | 7. - . f-a - | [sine M v-—o (44.)
=0 L L

|s2D| [dB]

2D [dB]

Do b
o

—
100 150 o100

1%y ki
DIM] (a) plkm/h]

v, lkm/h]

D[m] (b)
Figure 2-7 Range-Velocity spectrum of 3 targets with different speeds (a) without noise (b) with AWGN

Figure 2-7 shows two Range-Velocity spectrums of 3 targets with different speeds. Up to this
point, the 2D Fourier Transform Processing has been theoretically deducted and by locating the
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peak position in the Range-Velocity spectrum, the distance between the target and the radar and
target radial speed can be obtained. For FMCW radar system, this spectrum will be processed
by the next stages to achieve such functions as target recognition and tracking.

2.3 Measurement Resolutions

Resolutions are the limitations of how close targets can be to each other so that they can still be
distinguished. It’s one of the most important design targets in radar system. It is known from
the previous chapters that important target information is in the frequency domain, therefore the
measurement resolutions depend on the frequency resolutions.

From both Equation (19.) and Equation (43.), we know that
D=—Lt 45.
2 (45.)

According to the Nyquist sampling theorem, the maximum unambiguous frequency the sam-
pled signal can represent is f;/2, so the maximum range is:

oo, T, N
mXAq ABW ABW

(46.)

where N = £ T, is the number of samples in one chirp sweep. For a real Fourier Transform, on-
ly half of the spectrum is used where there’re N/2 frequency lines. So the range resolution is:
D c

R=—m (47)
0.5V  2BW

From Equation (45.) and Equation (46.), we can see that maximum range and range resolution
is a tradeoff, for a fixed N, the higher the chirp bandwidth, the better range resolution will be
but the maximum range will suffer then.

The radial speed v, comes from the measurement of the Doppler frequency shift f,, the phase
shift between consecutive chirp sweeps is:

Ap=27f,T. (48.)

Phase has an unambiguous range between 0 to 2w and for the Velocity FFT, both halves of
spectrum contain information because targets can be leaving or approaching the radar system.
So the boundary of f, is:

. 1 1

Dmax :F fl;max :_F (49)

c

Therefore:

(50.)

By collecting M consecutive chirp sweeps and doing Fourier Transforms along the direction of
m shown in the previous deductions, the spectrum for velocity is divided into M /2 cells for
both positive and negative parts, so the radial velocity resolution is:
Af
A vV = i / ﬂ — L — S
" AT~ 2 2MT. 2MN

(51.)

2.4 System Specifications
In the RF front end shown in Figure 2-2, the frequency of f, = 77GHz is chosen as a signal car-
rier which resides in the W band (75-110GHz) [54]. This radio frequency band is generally
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used for satellite communications, millimeter-wave radar research and military radar targeting
and tracking applications. One reason for choosing this band is due to the congestion in lower
frequency bands, for example, the 2.4GHz ISM band is heavily used for various communica-
tion applications such as WiFi and Bluetooth. Also ultra wide band in 77GHz band will provide
fine range resolution due to the relationship between AR and BW.

In terms of the deramping block, the best way is quadrature dereamping which is shown in Fig-
ure 2-8. It’s similar to a quadrature demodulator where the only difference is that one of the
input signals is not a constant frequency sine wave but the same chirp signal which is transmit-

ted to the target.
Chirp
ML-‘“—J
Input Signal o
w Phase shifter
Q

Figure 2-8 Quadrature deramping

The resulting 1/Q signal forms a complex representation of the deramped signal which only has
a single side spectrum while the noise is occupying the whole spectrum. Therefore the SNR is
3dB higher than non-1Q deramping. The other advantage of quadrature deramping is that it re-
laxes the ADC sampling rate requirements at the price of doubling the number of ADCs be-
cause the highest frequency in the I/Q signal is half of that in the non-1/Q signals. However,
besides those advantages, this design does not use quadrature deramping because in 77GHz
frequency band, 90 degrees phase shifters are not easy to design.

The designed chirp bandwidth is 1 GHz. and for one complete deramped signal, N = 1024
samples will be received by the ADC. The sampling rate of the ADC is f; = 10MHz, so the
length of one complete chirp in time is 1024 x 1/(10 x 10%) = 102400 ns. An FFT with the
same number of points is used to perform the range FFT operation on each sweep.

M = 128 complete sweeps are processed through the range FFT and collected to form a
128 x 512 2D matrix which is the Range-Sweep spectrum. The 2™ FFT processing, which is
the Velocity FFT, is 128-points long (the same as M). Substituting these design parameters into
the equations in the previous chapter, we have:

Table 2-1 System specifications and parameters overview

Parameter Value

RF Frequency 77 GHz
Sweep Bandwidth 1 GHz
Range Resolution 0.15 m

Radial Velocity Resolution 0.15 m/s
Max Unambiguous Range 76.75 m

Max Radial Velocity 9.51 m/s
Range FFT Length 1024 points
Velocity FFT Length 128 points
Sampling Frequency 10  MSps
Sweep Time 102.4 us
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3 Data Compression in FMCW Radar Signal Processing Flow

From Chapter 2, it can be seen that a certain amount of memory is necessary for performing the
2D FFT signal processing. The memory is used to store the first FFT results (Range-Sweep
spectrum or sRS) which serve as intermediate values for performing the second FFT. Figure
3-1 shows the memory blocks in this system. Not much can be done to reuse the memory space
because the 2 FFT operations are done in a transposed way which is mathematically described
in Chapter 2. This is to say, all the sweeps have to be collected before starting the second FFT
operation column by column.

M x N x 2

FFT real part>
FFT imag part> {

\%
Figure 3-1 Memory in the 2D FFT processing

The first FFT operation on one sweep will produce N complex values, however, due to the
symmetrical spectrum, only half of it is enough to extract the range information which is N/2
complex data. When doing the second FFT on each column, the full M-long complex data is
useful because velocity can be either positive or negative. Each complex value has 16-bit data
in its real and imaginary parts. So the total memory size is:

N
Size of Mem = M x—x2x16 bits
2 (52.)

=128x1024 /2x2x16=2097152 bits=256 KBytes

Figure 3-2 Single chip SoC radar solution

This automotive radar system is designed for consumer market vehicles therefore cost is one of
the most sensitive issues. It is designed to be a system-on-chip (SoC) radar solution which
means all blocks such as RF transceivers, amplifiers, digital filters, baseband processor, control
logic and communication ports will be integrated into one chip. The concept is shown in Figure
3-2. SoC also simplifies system design by reducing the number of external components.This
will reduce the design complexity and time to market thus giving advantages to automotive
electronic system companies in the highly competitive market.

However, for a SoC design, the calculated amount of system memory is relatively large. For
example, the high-end C667x [55] multicore DSP from Texas Instrument which costs more
than 120 USD only has 64-256KB on-chip L1 SRAM memory. Figure 3-3 shows a chip die
photo of a DSP with 64Kbytes ROM, 19Kbytes RAM. Almost half of the die area is occupied
by memory blocks.
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Furthermore, it’s possible that multiple transceivers and baseband processors will be put into
one chip to form phased array configuration which will make the memory demands even more
intense. Therefore memory compression in the radar signal processing flow is necessary.
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4 Range Dependent Variable Length Encoding

In this Chapter, we will discuss the design of one of the two data compression schemes in this
thesis — the Range Dependent Variable Length encoding (RDVLE). It’s a lossy compression
scheme taking advantage of the received power-range model. To further improve the compres-
sion ratio, the noise floors in different encoding regions are raised differently according to the
Uniform Dynamic Range encoding (UDRE). Due to the statistical nature of the incoming data,
clipping errors might happen resulting in fake target peaks. To deal with this problem, a Clip-
ping Reduction Method (CRM) algorithm is proposed with consideration of hardware imple-
mentation complexity and cost.

4.1 Received Signal Power Profile

Chapter 2.1.1 has shown how the simple radar equation is obtained. The received echo power
of a point target in a lossy medium is characterized by the following equation.
PtG[G'roﬁ2

P (r) =—+°r
(4 (1)
where P, is the transmitted power, G; and G, are the radar transmitting and receiving antenna

gain respectively, g is the RCS, 1 is the wave length, r is the range between the radar and the
target and L,, is the attenuation factor of the lossy medium.

w) (53.)

It can be clearly seen that the received power P.(r) is inversely proportional to the 4™ power of
the range when other conditions are the same. This means different echoes from targets at dif-
ferent ranges will have different power levels which is governed by the radar equation. In terms
of the incoming data, the sRS will have a decreasing magnitude along the range (or f3) direc-
tion.

D>beam width D>beam width D<beam width
A>beam width A<beam width A<beam width
SO | RN | AT
’ \ ’ N N ’ N
7 7 E ’ \
| A D \ A LD [ A 1)
\ \ | \ 4
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mirror model radar equation

LINEN ~ ~ ~
~
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[ A—

reflector
size

Received Power

P G2 P GG X0
P:  4(4m)2R? 1 P, (4m)3R*
2cm 4.5m

Range

Figure 4-1 Range vs. Received power in different scenario [57]

In reality, the received power and range relationship is not that ideal as inversely proportional
to the 4™ power of range and Figure 4-1 shows three different scenarios.

If the distance between the radar and the target is small, the target acts like an electromagnetic
wave mirror and there will be much more energy scattered back to the radar so the range-
received power curve drops down slower in the beginning part which is shown in the first two
cases in the above figure. For a faraway target, only part of the beam illuminates the target and
the curve drops much faster than the previous two cases.

Though more sophisticated than a single radar equation, this 3-section model is still far from
realistic. The range-received power relationship will be even more complicated with considera-
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tion of reflections from environmental objects and multi-path effects. However, our target is not
to develop a superior range—received power model but to use a model with certain degree of
accuracy to help data compression. From the introduction to data compression in Chapter 1 we
know that information about signal properties (such as symbol probability) is crucial to achieve
compression. Here, this range-received power profile is another extra piece of information
about the signal and will help to achieve compression.

In terms of data compression, this range—received power model gives a deterministic rough es-
timation of the data sample magnitude for different range which means the sample magnitude
in the Range-Sweep spectrum is roughly known according to the position. By knowing the
rough magnitude for each sample, the number of bits needed to store a certain sample can be
roughly known and instead of using fixed bit length for every sample, variable bit length data is
stored to save the total memory.

In the system every point in the complex Range-Sweep spectrum (Range-Sweep spectrum or
sRS) is represented by two signed fixed point values. As shown in Figure 4-2, the length of the
fixed point data including sign bit is in total WL, with FL bits in the fractional part and 1 bit for
the sign. The data is stored in 2’s complement format.

WL
[ |
fixed point
ed poinc [l . il .
sign WL—-FL—-1 FL

Figure 4-2 Fixed point data format

Dynamic range of a fixed point number format is the ratio of the maximum absolute value rep-
resentable and the minimum absolute value representable. For the signed fixed point number
mentioned above, the dynamic range is:

2WL—1 _ 1
_ —FL _ AWL-1 _OWL-1 _ _
DRI—ZT/Z =21 122" ~6.02(WL-1)dB (54.)
One very similar but different concept is the Signal to Noise ratio (SNR) which is defined as
the ratio of the signal power to the noise power. The minimum possible noise value is the quan-
tization noise which is non-linear and signal dependent. For a full scale perfect sine wave, when
quantized to the above signed fixed point number format, the SNR [58] is:

SNR, =20l0g(2"\/3/2) ~6.02(WL—1)+1.76 dB (55.)

which is very close to the DR of the number format. One detail to be noted is that, under this
definition of the number dynamic range, an unsigned number with the same total bit length WL
provides 2 times the DR of its signed counterpart. However, the data in sRS is signed, so signed
fixed point data format has to be used. In the rest part of this thesis, the representation of the
number format like [sign, WL, FL] is used to represent the fixed point number format, for ex-
ample [1,16,14] means a signed 16-bit number with 14 bits in the fractional part, 1 bit in the
sign and 1 bit in the integral part.

There is a tradeoff between model accuracy and compression performance. The more accurate
the model is, the more exact the bit length can be assigned to data from different ranges and the
less bits or memory space is wasted. However, the more accurate the model is, the more over-
head there will be, both in memory and computational requirements because a more complex
model has to be stored inside the system.

To balance the performance and overhead, a model designed by NXP based on the segmented
model is used. The model is shown in Figure 4-3.
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Figure 4-3 (a) Received power-range model developed by NXP based on the segmented model (b) simplified
version which is actually used

Figure 4-3 (a) shows the original model. There is an obvious drop in the very low frequency
(low range) region which is due to the attenuation from the BPF shown in Figure 2-2. This at-
tenuation is intended to remove the echo from car parts that are relatively static to the radar, for
example, the front bumper. Another obvious feature is the non-uniform noise floor which is
dependent on range. For simplicity, a simplified version of this model shown in Figure 4-3 (b)
is used. First the attenuated segment in the low frequency region is made flat and in simulation
because relatively static car parts are not considered. Second, the noise floor is made flat across
the whole spectrum which eliminates the need to store the range dependent noise floor.

4.2 Car RCS Distribution

Beside the model inaccuracy, another important factor influencing the compression perfor-
mance is the automotive Radar Cross Section. As described in Chapter 2.1.1, RCS, which is
usually written as o, is a fictional area. It is often not the same as the target physical cross-
section area and usually depends very largely on the incident elevation and azimuth. [59] RCS
represents the ability of the target to reflect radar signals in the direction of the radar receiver.

xt

t 4

T =
S

Cross-section RCS (fictional)
Figure 4-4 Object cross-section and the RCS

The RCS expressions of two regular shape metal objects are listed below [60]:

272
Flat Plate:afp :% (56.)

Sphere:o =mr?

where w and [ are the width and length of the plate and r is the radius of the sphere. The RCS
of a sphere is independent of frequency if both the range and the sphere radius are much larger
than incident wavelength. It’s obvious from the above two equations that the unit for RCS is m?
and usually RCS is expressed in dBsm = 10 log,, RCS(m?) which is decibels referenced to a
square meter to be directly added to the received power expressed in dB. Figure 4-5 shows a
real measurement of RCS of a human dummy in 24GHz and 77GHz bands for 0-360 degree
azimuth with 1 degree step. The blue line and the red dash line represent two consecutive
measurements in the same condition. It can be seen that the RCS depends largely on azimuth
and even consecutive measurements in time have some difference.
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Figure 4-5 RCS of a human dummy 0-360 degree azimuth in 24GHz and 77GHz band [61]

Besides incident elevation and azimuth, the RCS is influenced by many other factors such as
the shape and material of the target, incident wave frequency and so on. According to [62], the
major reflector locations on the back of a car are bumper, license plate, tail lights, muffler, rear
suspension and roof/rear window join shown in Figure 4-6. All the above factors make it actu-
ally not a deterministic value even for the same target across consecutive measurements, let
alone in real automotive radar application scenario, both the radar and the target are moving
causing the environment to be different from time to time.

lRoof/rear window join

Tail lights S .
’ License plate

Bumper

Muffler .
Rear suspension

Figure 4-6 Major RCS contributions from the back of a car

Due to the impracticability to have a mathematical model for very complex target, many efforts
were devoted to real measurement and statistical modeling of the RCS. The RCS of pedestrians
and dummies are measured in [61] and [62]. The RCS of cars are measured in [62] and [63]. In
terms of statistical modeling, there are several conventional ways such as chi-square model,
log-normal model and Rice model etc. Take the chi-square model for example which is a gen-
eral target model, the probability density of RCS ¢ is:

m-1 mo
m mo T
o)=———| — e ™[ o 57.
Pe) wm[d o1 () o
where g, is the mean value of RCS, m is half of the “number of degrees of freedom”, I'(m) is

the gamma function. The parameters are determined through data fitting using the measurement
RCS data.

Instead of the conventional model, researchers from Toyota CSRS in [62] measured 24 real
vehicles, each 30 times and fit the measured RCS into Weibull distributions. The result is
shown in Figure 4-7. The reason why the Weibull distribution is used is that it’s very flexible
and the shape of the distribution can change drastically according to its two parameters: scale
(B) and shape (a). Mathematically, the probability density function of Weibull distribution is:

s -{5(5) <7 2o
0 (x <0)

(58.)

where a > 0 is the shape parameter and 8 > 0 is the scale parameter. By changing the shape
parameter, the Weibull distribution interpolates between exponential distribution (¢ = 1) and
the Rayleigh distribution (a = 2).
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Figure 4-7 Weibull distribution parameters of the RCS of 24 measured cars [62]

Figure 4-8 shows the probability density function and cumulative distribution function of
Weibull distribution with different parameters.
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Figure 4-8 PDF and CDF of Weibull distribution under different parameters

It can be clearly seen that the shape of the PDF depends greatly on the shape parameter a in
which way it may fit many different measurements well. With the two parameters known, the
mean and variance of a Weibull distributed random variable are:

E(X):ar‘(1+lj
var(X)=a’ F[l,i%j_ F[“%T (59.)

Treating the RCS as a random variable further complicates the compression problem in the way
that even if the most accurate range-received power model is used, the randomness in RCS will
make the estimation of the word length inaccurate and only part of the samples can be guaran-
teed to fit completely into the designed word length. Here comes another tradeoff: the longer
word length one chooses, the less chance the samples will overflow due to insufficient length
but obviously the compression ratio will be lower.

4.3 FFT Processing Gain and Bit Length Growth

As mentioned in Chapter 2, 2D FFT processing is the core of the signal processing for FMCW
radar, these 2 FFT operations introduce extra gains and make the bit length of a sample grow
after each operation which has to be considered when designing the right word length for the
RDVLE compression.

Now, let’s consider the FFT or the Discrete Fourier Transform. An N-point FFT operation will
generate N complex results which represent N frequency bins from —f;/2 to f;/2 . For a real
input, the spectrum is Hermitian symmetrical (or X(f) = X*(—f)). For a single tone, there will
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be two lines in the whole power spectrum which are symmetrical according to the y-axis and
the whole signal energy is ‘concentrated’ in that two bins. However, the spectrum of noise
spreads across the whole power spectrum. Especially when the noise is white, it will uniformly
spread in the whole spectrum of N bins resulting in a gain of:

G, =10log, (N /2) (60.)

Figure 4-9 shows an example of FFT processing gain. The input signal is a 100Hz sine wave
sampled at f; = 1000Hz with white noise of variance 1:

X[n]zx/isin(anlﬂox 7 j+n[n] (61.)
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10 100Hz power:0.029375dB
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Figure 4-9 FFT processing gain example (half spectrum)

The power of the sine wave is: 0dB, the FFT processing gain is: Ggpr = 1010g,,(1000/2) =
27.00dB which is in correspondence with the value calculated from simulation.

In terms of FMCW radar, on one hand, this FFT processing gain is beneficial to target detection
because it literarily lowers the noise floor and makes signals buried in the noise visible to the
system, on the other hand, the dropped noise floor will necessitate more bits for storing the
spectrum (sRS, exactly speaking) to capture all the details in the signal.

Assume the analog front end in this system is perfect and the noise floor is uniform. Assume
also the AGC subsystem works perfectly so the last bit in the ADC output represents the signal
noise floor (or the noise floor is normalized to 0dB). In this case, to represent the ADC result,
no FL bit is needed and WL is determined by the number of ADC bits. As described in Chapter
2.4, a 16-bit ADC ([1,16,1] format) and 1024 points FFT are used. So the FFT processing gain
is: Gppr = 1010g,¢(1024/2) = 27.09dB which means the noise floor drops down from 0dB to
-27.09dB. Then about 4.2 more bits are needed in the FL parts to represents the FFT result.

4.4 Range Dependent Variable Length Encoding

After the 1* FFT, or the Range FFT, targets at different ranges will be separated and the magni-
tude of each bin of the Range-Sweep spectrum represents the received echo power. With all the
above considerations, the RDVLE can be designed.

Format: (1,15, 4) 141312111098 7 6 5
60 L | X 1.984e+05 T
i :::::::vl\;Y:48
o 50 X:1.133e405 || W R
o ¥ 54 i Vi X 44420405
= 40 ! : M Y:-36 :
o) X: 3.037e+05
2 Y42 ;
g 30 :
_g. X: 6.365e+05
g 20 Y: 30
'S 10 = Received signal power ¢ 18267‘”06
9] "~ Noise floor —
@ o — -+ X:24220+06 —
i 1Y 6
-10 3 . 5 I 0 | 5 H =
10 10 10 10 10

Beat frequency fb [Hz]
Figure 4-10 The RDVLE with bit length zones (noise floor is normalized to 0dB)
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Figure 4-10 shows the RDVLE scheme with bit lengths in different zones. There are in total 11
coding zones which are marked with difference colors. The starting point of each zone is 6dB
lower than the starting point of previous zone so 1 bit can be reduced. Though the ADC is 16
bits, the received power model we used here only has a maximum power of 60dB which cannot
occupy the whole ADC range. So 10 bits in the integer part are needed, with the FFT pro-
cessing gain, 4 extra bits in the fractional part are needed. This is the reason why the data in the
leftmost zone is in the format of [1,15,4]. The WL reduces in the following zones from 14 to 5
with FL is equal to 4 constantly. With this scheme, the total number of bits needed for the com-
plex 1* FFT result is 128 X 7596 bits/sweep = 972288 bits. So the CR under this scheme is:

CR =256 KBytes /972288 bits=2.16 (62.)

RDVLE

4.5 Uniform Dynamic Range Encoding

As shown in Figure 4-10, due to the received power-range relationship, the peaks which repre-
sent near targets are much higher than those which represent faraway targets, or more precisely
speaking, to the target detection stage following the 2D FFT processing, the SNR of the signal
representing each target is not the same. It is generally known that detection performance is in
positive correlation with the SNR, so for those targets with high SNR, it’s easier for the system
to detect and vice versa.

Generally speaking, the higher the SNR, the better the detection performance is. However, de-
tection rate will saturate beyond some point with an increasing SNR. This means, for near tar-
gets, the SNR might well exceed the saturation points and the excess SNR does not contribute
much to detection rate but still occupies more bits in the memory simply because it has higher
magnitude. To cope with this situation and further compress the signal, we proposed Uniform
Dynamic Range Encoding (UDRE) based on RDVLE.

Bits removed according to power vs. range profile

I Bits removed for excessive SNR
Bits actually stored

vgagph B 8 B & B 8 B B & K Ksign
o
2 MSB
S 72dB
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48dB
g
2 36dB
—~ 24dB

rTTrTr17r17r17r1717T1TTrTTT

Rl R2 R3 R4 R5 R6 R7 R8 R9 R10 R1l1
Encoding Region
(might not be evenly separated)

Figure 4-11 The Uniform Dynamic Range Encoding

Figure 4-11 shows a general case of UDRE based on RDVLE. Each vertical bar represents one
bit-removing scheme for the fixed point data in that encoding region in the 1¥ FFT result. The
encoding regions are determined by the received power-range model and do not need to be
evenly separated on x-axis. All bars have the same lengths which represent the original data
length after 1¥ FFT. The length of fractional part, as stated in Chapter 4.3, is determined by the
FFT length.

The yellow parts in the bars have different length and they represent the bits that are removed
due to RDVLE scheme discussed in the previous Chapter according to received power-range
model. In correspondence to the model, the yellow parts are growing with increasing distances
(or beat frequency). The blue parts represent the bits removed due to excessive SNR. More bits
are removed in the low range regions. The green parts represent the bits that are left which are
actually stored in the memory. Removing bits from the LSBs means to raise the noise floor
which reduces the SNR. All green parts have the same length which means targets in each re-

27



gion have the same maximum SNR if RCS variation is not considered. This is why this encod-
ing scheme is called the Uniform Dynamic Range Encoding. The last encoding region doesn’t
have the same number of bits in the green part simply because it doesn’t have enough power in
the original signal itself.

One data sample in
region R4

MSB MSB LSB

LSB
INE—>| RDVLE [ UDRE
[1,15,4] [1,12,4] [1,6,-2]

Region info Uniform DR
setting

Figure 4-12 The RDVLE + UDRE encoding flow (with example in R4 region)

Figure 4-12 shows an example of the whole encoding flow in R4 region. In this example, after
1*' FFT, the data format for every sample in the encoding region is [1,15,4]. The region infor-
mation is provided to the RDVLE encoder. According to the received power-range model in the
RDVLE encoder, the first 3 MSB bits (except the sign bit) are meaningless due to power atten-
uation. Then the first 3 MSB bits which are colored in yellow are removed by the RDVLE en-
coder. The output data becomes [1,12,4] which is sent to the UDRE encoder. A preset of Uni-
form DR setting of 5 bits is used by UDRE encoder so 6 last LSB bits are removed by UDRE.
The final result is in format [1,6,-2] which is signed 6 bits fixed point number. Note that the FL
length of -2 means the LSB represents 22 but not 2°.

Figure 4-13 shows an example of final Range-Velocity spectrum using RDVLE + UDRE. It's
very clear that the first three target peaks reside in higher noise floors than the rest targets. The
peaks heights compared to their own noise floors are more or less the same reflecting the name
"Uniform Dynamic Range".

Magnitude [dB]

v, kmh]

D[m]
Figure 4-13 Example result after the RDVLE + UDRE

Though it saves extra bits, UDE makes the noise floor non-uniform which is a little problematic
for the following detection stages for locating the exact positions of the peaks. As in the figure,
the leftmost noise floor is even higher than the far-away target peaks, so a single threshold can-
not distinguish all peaks. Target or peak detection is not a topic for this thesis project, so it
won’t be detailed here. One potential way to do peak detection in non-uniform noise floor like
the above figure is regional detection.
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Figure 4-14 Regional scan peak (target) detection

-

The concept of regional scan peak detection is shown in Figure 4-14. An n x m grid (shown in
red, m=n=2) scans in the noted direction as the sweeps comes in. The average magnitude or a
weighted sum of the n X m sample magnitudes are compared to a regional threshold according
to the VLE + UDRE scheme to determine if there is a peak. By choosing proper m, n and re-
gional threshold, the influence of the steps in the noise floor on target detection can be reduced.
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4.6 Clipping Error and Clipping Reduction Method

When LSB bits are removed, the error between the encoded signal and the original one is not so
large but when MSB bits are removed, the error can be quite significant due to their higher
weights which is shown in Figure 4-15. Note that MSBs are removed in a way that the modified
value will saturate if the original value cannot fit into the new format after bit removal.

ll‘O‘llOll 1| 43 original
il‘O‘llO‘l Xl 42 err=-1
ix‘l‘lll‘l 4 31 err=-12

Figure 4-15 Error cause bit removing (data in unsigned binary, x means removed)

When the received power-range model is accurate, there won’t be any errors because the MSB
bits that are removed are totally unused, however, as described in Chapter 4.2, accurate model-
ing is neither possible nor economical in terms of storage space. So there will always be cases
where MSB bits are removed information is lost and the signal is clipped.
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Figure 4-16 (a) All FP processing, no bits removed (b) RDVLE scheme with clipping happened

Figure 4-16 shows one case of clipping introduced by RDVLE. Figure 4-16 (a) shows the refer-
ence results from all floating point processing without any data compression and bits removing
while Figure 4-16 (b) shows results with RDVLE encoding. It is clear in the two 1* FFT results
that the signal from the target at a range of 20m is clipped because of MSB removing in
RDVLE encoding. When the clipped 1* FFT result is used in the 2™ FFT operation, new peaks
appears near the 20m targets in the second FFT result which is the Range-Speed spectrum
(s2D). The new peaks near the target peak will influence the detection performance by making
the detector recognize fake targets.

When a signal is clipped, there will be harmonics generated which means new frequency com-
ponents are present. The general idea of reducing distortions is to keep the signal as similar as
original one, however, the 2D FFT processing makes other approaches possible.

,top view

side view

120!
100

Sweep No.
8588

0 20 ®» 40 50 6 7
v D

Figure 4-17 Direction of the 2" FFT (shown in dash arrow line)
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Beyond the general idea, as discussed in Chapter 2.2.2 and shown in Figure 4-17, the 2" FFT is
done in orthogonal direction with respect to the 1 FFT due to the fact that velocity information
is contained in the phase change between different sweeps. This means our target to reduce
clipping and clipping induced harmonics is not in rows but in columns.

Magnitude [dB]

|
/ ‘ 20dB
0 a0 40 50 60 70
D{m] (@ () (o)
Figure 4-18 Consistent scaling in column (a) sRS (b) detail view of the first peak unscaled in the noted view-
ing direction with dash arrow line (c) detail view of the first peak scaled down by 4

Sweep No. 10

The unique nature of the 2D FFT makes it possible to scale columns in the result of 1% FFT
without influencing the position of the peak in the final Range-Velocity spectrum (s2D). Figure
4-18 (a) shows the result of 1* FFT (or sRS), Figure 4-18 (b) shows a detail view of the peak at
10-meter in the noted viewing direction. This peak is then scaled down by a factor of 4 shown
in (¢). Viewing in terms of row, it’s seriously distorted, however, in terms of column, the scaled
column still preserve the phase change information with a lower magnitude.
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Figure 4-19 2" FFT result (s2D) (a) with scaled peak (b) with original peak

Figure 4-19 shows the 2™ FFT result (or s2D) for the scaled and unscaled situation. The veloci-
ty of the target at 10-meter is revealed, and the target peak of the scaled input is about 6dB low-
er than the unscaled one. Here comes another tradeoff: SNR and distortion. The unscaled high
peak in the 1* FFT result will result in higher target peaks in the s2D which will benefit the fol-
lowing detection stages but at the risk of generating harmonics due to clipping. However, those
peaks that are clipped are usually already too high to fit in the data format of that encoding re-
gion. So sacrificing 3-6 dB SNR in trade of low distortion is reasonable.

Based on the above discussion, we proposed the following Clipping Removal Method. It’s a

dynamic scaling algorithm by keeping record for each column where the scaling has happened.
CRM algorithm:

Initialize column scaling position record cPos[N/2][K]

Initialize scaling factor sc[N/2] to all 1, sc increment factor to b.

Initialize magnitude threshold cTh{N/2] according to the RDVLE scheme.

Read in Nsamples in the current sweep and do the 15t FFT on this sweep (row).

Divide each FFT result in current sweep with corresponding sc[n].

Compare each result in current sweep with corresponding cTh/n].

N S LR NN

If result n is larger than cTh/n], clipping happens. Increase scaling factor to b*sc/n], di-
vide the original current sample with the new sc[n], append current sweep number in
cPos[nj[end].

Repeat step 3-6 until required number of sweeps are processed.

9. Scale the previous unscaled parts using cPos{N/2][K] information.
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Figure 4-20 CRM in action (a) sc are initialized to all 1, 1°' FFT result from the first sweep comes in. (b) In
sweep 3, the 4™ column has one data above the regional threshold. (c) sc[4] is set to b and the clipped data is
scaled by b, cPos[4][1] is set to the sweep number — 3. (d) All new data in the column of 4 is scaled by b until
at sweep 7, the data is still clipped even after the first scaling. (e) sc[4] is further increased to b’ and the
clipped data is scaled again, cPos[4][2] is set to 7 (f) All sweeps are received, according to cPos record, data[3-
6][4] (4™ column, from 3™ to 6" row) is further scaled by b, data[1-2][4] are further scaled by b
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Figure 4-20 shows a step by step example for this CRM algorithm. The data from 1% sweep and
the position of 1* column are shown in Figure 4-20 (a). The three half-transparent planes are
the thresholds derived from RDVLE scheme. In Figure 4-20 (b), one value (4™ column) in the
3" sweep has the risk to be clipped so sc[4] is set to b and that data is scaled down by b which
is shown in Figure 4-20 (c) and the first slot in cPos[4] is set to the sweep number 3 represent-
ing for column 4 that the 3" data is the first position that is scaled.

As the sweeps come in, all incoming data in column 4 is scaled by b, however, in Figure 4-20
(d) a new data is above the threshold even after scaling down by b. Then this data is further
scaled down by b again in Figure 4-20 (e¢) and the sc[4] is set to b2. cPos[4][2] is set to 7 mean-
ing in sweep 7, the scaling factor is increased again. After all the 10 sweeps are received, cPos
information is used to correct the previous unscaled data. Specifically, data[3-6][4] (4™ column,
from 3™ to 6™ row) is further scaled by b, data[1-2][4] are further scaled by b* making every
data in column 4 scaled by b? uniformly. Figure 4-20 (f) shows the final data of the 1" FFT re-
sult with every point under the regional threshold.

4.7 Hardware Considerations
Bearing in mind that this data compression scheme is part of a SoC, it should be designed to be
optimal in terms of hardware implementation.

It’s very straightforward to implement the RDVLE + UDRE which are cutting bits. The over-
head is the space to store the received power-range model and the region boundaries. As de-
scribed in previous chapters, one sweep contains N data points and it will generate N/2 useful
complex data by the 1™ N-point FFT. Assume the whole range is divided into k regions, so k-1
boundaries need to be stored. Each boundary needs at most [log, N/2] bits to be stored. For
these k regions, k fixed point number format masks have to be stored. The simplest scheme is
to store bit-mask patterns (assume 16-bit mask is used). Overheads are shown in Figure 4-21.

bit mask for R1 (0011111111000000)b
Ry Ri-y R
) ST ! : K
1 Bl Bk—ZBk—l k+1 .
Boundaries in Sample number bit mask for Rk (OOOOOOlll]OOOOOO)b

Figure 4-21 Overhead for the RDVLE + UDRE
In total, the space overhead is:

0, =(k-1)[log, (N /2)|+16k (63.)

Take k =11, N = 1024 as an example, the total space overhead is 266 bits. Comparing to
Equation (52.), it’s only 0.012% of the original data size.

Equation (63.) gives the worst case estimation of the overhead which is already reasonably
small. To further reduce the overhead, more sophisticated schemes can be used. For example
the RDVLE bit-mask can be increased linearly to avoid the storage of bit-mask for every en-
coding region.

For implementing the CRM algorithm, the overhead is higher compared to the RDVLE but still
at a reasonable level. Two additional sets of values have to be stored in the CRM. The first one
is the set of scaling factors sc. One scaling factor is kept for each column, so the length of sc is
N/2.

The size of each scaling factor sc depends on b. Actually, the choice of b not only influences
the space overhead it also influences the computation complexity overhead which is directly
related to hardware area. If b is chosen to be some random small integer or fractional number,
an additional divider will be needed to perform scaling operation. A good choice of b is a pow-
er of two which reduces scaling operation to bit shifting operation and the scaling factor can be
simply the power of 2, for example, sc[n]=1 means right shift by 1 bit which is scaling down by
2. Assume 3 bits are assigned to each sc, then sc can represent 8 different scaling factors which
are 1 24 8 16 32 64 128 respectively. The number of bits to store all sc[N/2] is: 3N/2.

32



The second additional set of values is cPos[N/2][K] which has K elements for each column. For
M sweeps, [log, M] bits are needed at maximum to store the sweep number. So the number of
bits to store cPos[N/2][K] is [log, M]NK /2. It’s not predictable at which sweep the incoming
data will be clipped and how many positions are needed to be recorded for one column. K is
chosen so that it covers most clipping cases but not all cases. For example, if K is chosen to be
4, the maximum scaling factor is 16 which provides an extra of 12dB in max magnitude for
each encoding region. The total space overhead for implementing the CRM algorithm is:

3N |log M |NK
ot -2 [08 T

When N = 1024, M = 128 and K = 4, the total overhead from CRM algorithm is 15872 bits
which is 0.76% of the original size. Combine the above two aspects, the total number is
266 + 15872 = 16138 bits which is about 0.77% of the original size or 3.85% of the com-
pressed size assuming a CR of 5 can be achieved. In summary, the total space overhead for im-
plementing RDVLE + UDE + CRM is well within reasonable range and the computation over-
head is very low if the scaling factor increment b is chosen properly.

(64.)

4.8 Simulation and Results
All the simulations are done in Matlab, to assist explanation, various code snippets and block
diagrams are shown in the following accompanying simulation results.

4.8.1 Modeling of the Signal Source and Processing Steps

In consideration of complexity and simulation speed, the simulation is carried out in baseband.
The signal source that is modeled is the signal after deramping and LPF which is represented by
Equation (31.). The only little difference is that the rectangular window is removed for sim-
plicity. Removing the window means making the length of every section of deramped signal
change from T, — 7 to T, the change is small and neglectable because 7 is much smaller than T,.

%generate deramping response.
sigDeramp = zeros (Sweeps,N);
$total sample number
totSNo = 0;
for sweep = 0:Sweeps-1
for n= 0:N-1
% update distance to account for moving reflector
= R - vD*ts;
% update time of flight to account for moving reflector
tau = 2*R/c;
sigDeramp (ramp_ idx+1l,n+1l) =
sum(. ..
10.7(Sig pow/20) .*...
cos( 2*pi*( fSlope.*tau* (totSNo*ts-...
ramp idx*Tchirp)- fc*tau) )...

el

) ;
accumulate sample no.
totSNo = totSNo + 1;
end
end

The above Matlab snippet is used to generate the signal source. Sig pow is derived from the
received power-range model according to the distance of the target. After this, white noise is
added to the generated signal and the total signal is normalized to the noise floor (scaling the
total signal to make the noise floor at 0dB level) then quantized to the format of [1,16,0]. An
example of a generated signal is shown in Figure 4-22.
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Figure 4-22 Example of generated deramped signal

The generated signal is fed into the first FFT block and the FFT is done in each sweep (row),
then the FFT result is encoded using above-mentioned schemes. The encoded signal is stored in
a matrix and the second FFT is done on each column after which the final result of the Range-
Velocity spectrum is output.

4.8.2 Simulation Setup

Figure 4-23 shows the simulation setup. The upper part above the dashed line is the reference
system where all operations and intermediate results are in floating point. The lower part is the
system combined with compression schemes. The first FFT result is encoded in the 1* FFT En-
coding block and the 1% RMSE is the root mean squared error introduced by this encoding. The
2" FET Encoding bock is not necessary for the system because the result is directly used by the
following detection stages and it will not be stored in the memory again especially if the detec-
tion algorithm works in a region-based way. But to make the evaluation complete, the block is
there. Both of the two blocks can be bypassed by the switches of Bypassl and Bypass2. The
total RMSE is the root mean square error between the reference system and the system with
compression.

Memory

Velocity

\ 2

>

All-FP reference System

Encoding System
1
i F_T
Bypassl Veloc:l.ty Bypass2
e > R <---------- >
1% RMSE 274 RMSE

Figure 4-23 Simulation setup

TSN TE30L

One important thing to mention is that the ultimate criteria of this system should be the detec-
tion performance such as genuine detection rate and false detection rate. However, target detec-
tion is not the topic of this work. Instead, Root Mean Squared Error is used to characterize the
data distortion in this compression scheme. RMSE is defined as:

RMSE :\/ Ly M(x,-4X,.,) (65.)

n =1
where X; is the encoded values and X;,¢r is the corresponding reference values.

4.8.3 Simulation Results
System parameters in simulations are listed in Table 2-1. Specific parameters such as RCS dis-
tribution parameters are shown in related results.
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Figure 4-24 (a) Simulation result: fixed length encoding 1* FFT [1,15,4], 2" FFT [1,19,8], no RCS distribu-
tion, fixed ranges and velocities. (b) Fixed length encoding visualization for 1* FFT

Figure 4-24 shows the simulation results using fixed length encoding i.e. all results are in the
same number format. For the 1% FFT result, it is in the format of [1,15,4] and [1,19,8] for the
2" FFT result. The data format is the same across all encoding regions which is shown in Fig-
ure 4-24 (b). In this simulation, 200 iterations are run, in each run, the ranges and distances of
the targets are fixed values:

R=[10 20 25 35 45 50 60 70 |m

(66.)
vD=[-30 20 —20 5 -5 10 15 30|/3.6 m/s

In addition, RCS variation is not considered and no CRM is applied. The solid lines in Figure
4-24 (a) are various error values in 200 simulations and the dashed lines are their average val-
ues respectively. There are merely variations meaning that all values are well in range of the
fixed length number format and the errors are due to the accuracy differences between floating
point and fixed length format.

40 T Bits removed VLE
1st MSE I Bits removed UDRE
Bits actually stored
20 2nd MSE ||
Total MSE gagp- B R & W R KRB K KR R Xon
[0} MSB
m o o 72d
© ol
£ & 60d
g 20 U 48d
w
53&1
-40
A'24d
124
60 LSB
50 100 150 200 . .
Simulation No. (a) Regionl (b) Region 11

Figure 4-25 (a) Simulation result: VLE for both FFT results, no RCS distribution, statistical range and veloc-
ity generation for 5 targets (b) VLE visualization for 1° FFT

Figure 4-25 shows the simulation results with the VLE scheme. RCS variation is not considered,
but instead of fixed ranges and velocities, randomly generated ranges from 0 to 70m and veloci-
ties from -30km/h to 30km/h for 5 targets are used. The number formats in different encoding
regions are shown in Figure 4-25 (b) starting from [1,15,4] to [1,5,4]. Under this scheme, the
compression ratio is fixed at:

CR,. . =2.16 (67.)

VLE1

Errors shown in Figure 4-25 (a) are the same as those in Figure 4-24 (a). This is because the
encoding regions are designed exactly according to the received power-range model which is
also used to generate the signal itself, so every sample can fit into the number format of its re-
gion.
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Figure 4-26 (a) Simulation result: VLE for both FFT results, fixed RCS distribution (Prius), statistical range
and velocity generation for 5 targets, without CRM (b) Simulation result: conditions are the same as those in
(a) but with CRM

Figure 4-26 shows the simulation results with the same VLE scheme shown in Figure 4-25 (b)
with 5 randomly generated targets. However, RCS variation is considered this time, as shown
in Figure 4-7, the measured Toyota Prius RCS which has a weibull distribution (o = 0.535,
B = 11dBsm) random variable is added to the generated signals. This randomness will result in
some magnitude overflow cases as discussed previously. Figure 4-26 (a) shows the result with-
out CRM, comparing to Figure 4-25 (a) where RCS is not considered, the 1* RMSE and the

total RMSE are much higher, but the 2" RMSE remains low because the second encoding stage
provides a much longer format.

Figure 4-26 (b) is the result with CRM. The 1¥ RMSE and total RMSE are even worse (in-
creased by approximately 3dB). This number is pessimistic because the result with CRM is
compared directly to unscaled all-FP reference result. Though harmonics can be largely re-
duced, the target peaks are lower than the reference value and this difference is also counted in
the RMSEs. To see the effect of CRM, one must look into individual measurements. There are

many high peaks above -10dB in Figure 4-26 resulting in large RMSEs, one case of them is
shown in Figure 4-27.

by RS ‘;‘5;»;.‘,‘\
S0 T i'N. ir“h‘\“@@q -20 -20 20
VD[km/h] (a) D[m] VD[km/h] (b) D[m] VD[km/h] (¢) D[m]
Figure 4-27 (a) All-FP reference s2D (b) s2D without CRM, total RMSE is -7.50dB (c) s2D with CRM total
RMSE is -9.90dB (all three z-axes are in dB scale)

Due to RCS variation, the nearest two targets generate very large signals that are clipped in
RDVLE without CRM in Figure 4-27 (b). When CRM is applied in Figure 4-27 (c), the s2D
becomes more recognizable, but the amplitudes of the two peaks are significantly lower result-

ing in even higher RMSE. In terms of detection, the s2D with CRM is apparently better than
the one without CRM.

It’s better to view from another perspective to see the effects of CRM. Figure 4-28 shows SNR

plots derived from the same Range-Velocity spectrum (s2D) determined in the same simulation
as in Figure 4-26.
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Figure 4-28 (a) SNR of s2D in all simulations (b) SNR of s2D with Total RMSE greater than or equal to -10dB

SNR of the 2D spectrum is defined as the ratio between total power of 14 X 14 samples around
each target peak and the total power of the rest samples. Figure 4-28 (a) shows the SNR of s2D
in all 1000 simulations and the average SNR with CRM is higher than that without CRM. Fig-
ure 4-28 (b) shows the SNR extracted from Figure 4-28 (a) for simulations of which the Total
RMSE (shown in Figure 4-26) is greater than or equal to -10dB which is often a result from
clipping. There are 129 cases out of 1000 simulations. The average SNR with CRM when total
RMSE is greater than or equal to -10dB is much higher than that without CRM even with the
fact that target peaks’ power with CRM can be much lower than that without CRM. This result
shows the meaning of CRM in RDVLE by providing better SNR for the following detection
stages especially in high RMSE cases.

After applying CRM, UDRE is also added to the compression scheme and simulated. The re-
sults are shown below.

Bits removed VLE
BN Bits removed UDRE
Bits actually stored

GadE-F B R E B R LB B R Wn

% MSB
2724
B 60d
L 48d
g 36d
§‘2 4d
12di

LSB

Regionl Region 11

Figure 4-29 RDVLE + UDRE (10 bits) formats in different coding regions
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Figure 4-30 SNR: RDVLE + UDRE (10bits): (a) all simulations (b) RMSE greater than or equal to -10 dB
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Figure 4-32 SNR: RDVLE + UDRE (6bits): (a) all simulations (b) RMSE greater than or equal to -10 dB

First of all, the formats in different encoding regions under RDVLE + 10-bit UDRE scheme are
shown in Figure 4-29, formats for UDRE with different number of bits are similar. The SNR
results are shown in Figure 4-30, Figure 4-31 and Figure 4-32. The CRs under these 3 different
schemes are 2.27, 2.43 and 2.81 respectively. The average SNRs of all simulations are dropping
as expected with the reduction in number of bits in UDRE. The SNRs in simulations with Total
RMSE greater than or equal to -10dB are also dropping with the reduction of bits in UDRE. In
Figure 4-30 (b), the average SNR with CRM is higher than that without CRM but it’s the oppo-
site case in Figure 4-31 (b) and Figure 4-32(b). This is due the reduction of signal power caused
by the CRM and the rise of the noise floor by UDRE. Though the UDRE can further increase
CR, but the increase in CR is small with a quick drop in SNR. RDVLE + 10-bit UDRE + CRM
is a practical choice but UDRE with less number of bits might not be suitable.
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5 Doppler Redundancy Hybrid Encoding

In this chapter, we will discuss the design of the other compression scheme called the Doppler
Redundancy Hybrid Encoding (DRHE) which is, in general, lossless. This scheme takes ad-
vantage of the redundancy in signals between consecutive sweeps i.e. the similarity of signals
in one sweep after another to do compression. Thanks to the Run Length Encoding and the
Huffman coding, the signal can be compressed in a lossless manner which preserves all the in-
formation in range and velocity. The original DRHE algorithm is adjusted into a column based
algorithm to fit the sweep by sweep nature of the incoming signal. Due to the use of the Huff-
man coding, the total length of each column is unpredictable, so a memory management meth-
od is proposed to arrange all data into a fixed column size memory by dynamically allocating
new memory space for overflowed column. Similar to previous chapter, at the end, the hard-
ware implementation considerations and simulation results are presented.

5.1 Doppler Redundancy and Prediction Model
Redundancy in signals is the key in all kinds of compression algorithms. It can mean repeating
structures, regular arrangements, similar values and so on.

Magnitude

Phase [rad]

Magnitude [linear scale]

Dim] (a) Sweep No. Sweep No. (b) D[m]
Figure 5-1 An example of magnitude and phase of SRS

Figure 5-1 (a) shows the magnitude of one example sRS signal. It’s easy to have the observa-
tion that the changes in magnitude across sweeps are actually small though it’s not constant.
This is one example of the redundancy in the signal. We call this redundancy between different
sweeps the Doppler (Spectrum) Redundancy because it exists in the direction of Doppler fre-
quency shift discussed in Chapter 2.1.4. After identifying the redundancy, the natural next step
is to try to predict the incoming sweep based on the existing data.

However, sRS, as the result of a FFT operation, is originally in Real/Imaginary format. One
example is shown in Figure 5-2.
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Figure 5-2 Real and Imaginary part of sRS

Unlike the magnitude of sRS, both real part and imaginary of sRS change drastically across the
sweeps which makes it hard to do prediction. This problem also exists in Magnitude/Phase rep-
resentation, but only in the phase part which exhibits even more unpredictability (see Figure
5-1 (b)). One good property of phase is that it is always within the range of [—m, m]. Even if the
prediction does not work well for phase, storing it with certain accuracy will not be a big prob-
lem.
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incoming data -

Figure 5-3 General structure of the DRHE compression scheme

Figure 5-3 shows the general structure of DRHE compression scheme. The incoming data is in
Real/Imaginary format and after proper data format conversion, a prediction is made based on
previous data and the difference between the prediction and the real current input data is com-
puted and sent to be further encoded.

For each incoming complex 1* FFT result value, the prediction is in the following form:

X[m, =4[ m,f]e” (68.)
where 4 and 8 are predicted magnitude and phase respectively. For magnitude:
é[m,f]=aé[m—1,f]+(1—a)a[m—1,f] (69.)

The current predicted value 4[m, f] is a linear combination of previous predicted value a[m —
1, f] and the last incoming magnitude value a[m — 1, f]. For phase prediction:
6|m =0, ,[mf]+6,,.,[mf]
6., mf]=6{m-1,f] (70.)
6,oni L1 E 1= O, [ m=1,£ |+(1-B)(6[ m-1,£ ]-6, [ m—1,f])
The phase prediction 8 is the sum of the phase model value 6,,4 and the increment model
Oinemar- The phase model is simply the last phase of the incoming data. The phase increment
model is a linear combination of the last value of the increment model and the difference be-

tween the last incoming data and the last model value. Substitute 6,,4; and 8;,.yq; into 8 and
we get:

6[m,f=6[m-1,f]+p8, ., [m-1,f]+(1-)8[ m-1,f]-(1- )8, [ m—1,f]
:H[m_l’f:|+ﬁ(01nch/I:m_l’f1+0md1[m_1’f:|)
+(1-8)6[ m-1,f |- m-2,f |
= 0] m-1,f |+(2-B)0[ m-1,f |-6lm-2,f]

(71.)

From Equations (69.) and (71.), it’s obvious that the predictions are two IIR filters where the
incoming magnitude and phase are the inputs and the predictions are the outputs. Figure 5-4
shows the two filters in dataflow graphs.

Phase

prediction 2-p -1 prediction
, 6[m, f]
N
—B
(a) i (b)

Figure 5-4 Predictions viewed as IIR filters: (a) Magnitude prediction (b) Phase prediction

Magnitude
a[m, f]

The two predictions act like two IIR filters with tunable parameters, namely a and 8. Seen from
Equation (69.) and (70.), intuitively, the two parameters control how fast the predictions are
influenced and modified by the real input signal.
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Figure 5-5 Frequency responses of the two IIR filters: (a) Magnitude prediction (b) Phase prediction

The magnitude prediction filter is a low pass filter (LPF) because the change in magnitude
shown in Figure 5-1 (a) is rather slow and mild. The phase prediction filter can change from
low pass to high pass (with gain) depending on 8. According to Equation (39.), the phase at
Sweep m is 2nf, (2r + 2mv,T,.)/c. Taking r as a constant between consecutive rows and a
maximum speed of 9 m/s, the phase change in consecutive Sweeps is:

,T,

APhase =2ntf, =2x3.14x7.7x10" ><2><9r%>< 1.02x10™* +¢c=2.97rad (72.)

which is a quite large change which can also be observed in Figure 5-1 (b). This observation
leads to the choice of a HPF for the phase prediction filter.
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Figure 5-6 Prediction and difference stage

Figure 5-6 shows the details of the prediction stage with complex to Mag/Pha conversion. The
prediction is done in mag/pha but the prediction result is converted back to complex representa-
tion and the difference between the prediction and the incoming data (diffR and diffl) will be
further encoded.

rDiff

Differences [dB]
Differences [dB]

Sweep No. (2) D[m] Sweep No. (b) D[m]
Figure 5-7 Differences between prediction and real input: (a) difference in real part (b) difference in imagi-
nary part in both figure, &« = 0.3 8 = 0.7

Figure 5-7 shows an example of rDiff and iDiff with prediction parameters a = 0.3 and 8 = 0.7.
For both the real and imaginary parts, the differences are large for the first several sweeps espe-
cially where there is an object in near range which has high peak. As the sweeps come in, the
model is better adapted to the input signal, so the differences drop down to as low as -20dB and
at some points, the difference is even 0.
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The differences will be further encoded and stored. In decoding, the decoded differences can be
losslessly restored by reverse operations of adding differences to prediction values. Last but not
least, for hardware implementation, the filters have to be in fixed point format which will be
briefly discussed in Chapter 5.8.

5.2 Choices of Encoding

After the prediction stage, the input signal is converted to differences which have to be encoded
in a proper way. Design choices should be made based on the characteristics of the data to be
encoded.
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Figure 5-8 (a) One sweep of rDiff (b) One column of rDiff

Figure 5-8 shows one sweep of the rDiff and one column of rDiff, the small graph shows the
data details around no.130-180. There are two obvious characteristics in rDiff. First, the differ-
ence is generally small but there are some rare high peaks. The peaks appear due to the inability
of the prediction filters to predict the exact value of the incoming signal when there is an object,
especially at near range with high received power. Second, there are many segments that are
filled with consecutive zeroes.

For the first characteristic, entropy coding such as the Huffman coding and the arithmetic cod-
ing might be suitable. They will generate shorter codes for frequent symbols and long codes for
rare symbols which will optimize the overall storage space. For the second characteristic, run
length encoding or dictionary based encoding might be suitable which are capable of encoding
long repeating symbols.

5.3 Run Length Encoding

RLE is used mainly for its simplicity. RLE is a lossless compression which is widely used in all
kinds of image compressions. It will run through the input data and encode it as single values
followed by its counts. It’s very useful and effective for simple data and patterns especially
those with repeating symbols.

AAAABAABBBBCCCCCCDDDDDDDDEEEAE!] A4BA2B4C6D8E3AE (73.)

The above example gives a basic idea of how RLE works. The beginning four As are encoded
as A4 and the rest of the string are encoded in the same way yielding the right side result which
is apparently shorter than the original string. The decoding is straightforward — read in the data
in the compressed stream one after another and repeat it the following number times.

From Figure 5-8 we can see that there are many repeating zeroes but other values do not appear
so frequent in a consecutive way which is to say RLE might be efficient for encoding zeroes in
the rDiff and iDiff but not for other values. This may limit the usage of RLE and for other val-
ues (symbols), other encoding has to be used.

5.4 Huffman Encoding and Code Table Overhead

As discussed in Chapter 5.2, for other symbols, the Huffman or the arithmetic encoding might
be suitable. In terms of implementation, arithmetic encoding is much more complex than
Huffman encoding but the gain in compression ratio is limited, so the Huffman coding is the
first choice.
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The basic principle of the Huffman coding is explained in Chapter 1.2.1. Besides all of its ad-
vantages, the Huffman coding will cause some overhead: one of which is the code table which
stores pairwise mapping from symbol (input data) to code (compression output). Each data
point in rDiff and iDiff is a 16-bit fixed point number which is to say there is 21 = 65536 dif-
ferent symbols. If we choose to store the whole pairwise table, it will have 65536 entries. As-
sume the CR can reach 5, the total size of the code table is:

65536*16 /5/8=26214bytes (74.)
which is already 10% of the original total size of rDiff and iDiff. For better compression per-
formance, separate code tables for rDiff and iDiff may be needed which will double the storage
overhead. Another option is to store the probability table which still has 65536 entries while
extra computation is needed to build the Huffman tree. The overhead for using 16-bit symbol is
too high and is not an affordable solution.

Since 16-bit symbol is too long, it can be divided into 2 8-bit symbols. For 8-bit symbols, the
number of code table entries is greatly reduced to only 256.
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Figure 5-9 Symbol histograms: (a) original 16-bit symbol (b) least significant 8 bits from 16-bit symbol (c)
most significant 8 bits from 16-bit symbol

Table 5-1 Entropy of example signal with different symbols

Symbol Entropy Theoretical CR
16-bit 1.647bits 9.715

8-bit 1.323 bits 6.047

LS8-bit 1.646 bits 4.860

MS8-bit 0.773 bits 10.349

Figure 5-9 shows three histograms, (a) is the histogram of the original 16-bit symbol, the sym-
bols themselves are the data in rDiff. As described above, 16-bit signed symbols are from -
32768 to 32767. In the above example, no data falls below -4000 or above 4000, so those parts
are omitted on x-axis in (a). Figure 5-9 (a) is consistent with our observations in Chapter 5.2
that most difference data is small and around 0. The entropy of 16-bit symbols of the example
signal is 1.647 bits as listed in Table 5-1 which leads to a theoretical compression ratio of 9.715.

By separating a 16-bit symbol in the middle into two unsigned 8-bit symbols, we have the
MS8b (most significant 8 bits) data and the LS8b data. Their histograms are shown in Figure
5-9 (b) and (c). In general, most data concentrates at the two ends on x-axis. This is due to the
data type conversion. Data is stored in 2’s complement format in 16-bit symbol, when convert-
ed to 2 8-bit unsigned symbols, small positive numbers will be around 0 and negative numbers
with small absolute values will be on the other end.

However, despite similar trend, the MS8b symbol histogram is quite different from the LS8b
symbol histogram which is also reflected in the entropy items listed in Table 5-1. The LS8b has
much more information in it than the MS8b because the prediction works well and the differ-
ence has very little chance to be large enough to fill the most significant 8 bits. If we encode
these two parts of data using the same Huffman code table, the theoretical CR is 6.047 which is
not as good as the average CR of (4.860 + 10.439)/2 = 7.650 when using an individual table
for each symbol set.
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Though it may help to increase the compression ratio, using individual code table for LS8b and
MS8b adds more overhead and the CR still cannot compete with that using 16-bit symbol. So
separating a 16-bit symbol into two 8-bit symbols might not be a good option. Another way of
using the Huffman coding with reasonable overhead will be presented in the following chapters.

5.5 Column Based DRHE Encoding

The problem in Huffman coding is discussed above and it has to be used in another way to fully
utilize its capability. The signal characteristics discussed in Chapter 5.2 are similar to that of the
quantized coefficients in the JPEG encoding algorithm shown in Figure 5-10.

2D DCT ‘1A 1.1 -
1 Kl ,’ s 4
:I/ I/ 4 4 ’: -
4 &' X4 /,
HyApyd Ve’
‘ Quantization i q A ‘

Image input Coefficients
(2D matrix) (2D matrix)

Figure 5-10 JPEG encoding algorithm [24]

In the JPEG encoding, an image is treated as a 2D matrix. A 2D Discrete Cosine Transform
(2D DCT) is performed on this matrix generating a coefficient matrix with the same size. JPEG
is a lossy algorithm, the loss of information happens in the quantization of coefficients. Those
coefficients are quantized with different step sizes. The right-bottom coefficients represent high
frequency image details which are not perceivable by human eyes. These coefficients are quan-
tized with larger steps often leading to Os in their places which are colored with gradually
changing blue in Figure 5-10. Finally, the quantized coefficients are encoded by the Huffman
coding in the sequence shown by the gray dash line in Figure 5-10.

The similarities between rDiff/iDiff and JPEG quantized coefficients make it possible to learn
from the Huffman coding used in JPEG algorithm. However, the JPEG algorithm takes the
whole image as a 2D matrix while our FMCW radar signal comes in sweep by sweep. Another
important difference is that the second FFT is done in column direction therefore it’s better to
encode difference data in column direction and put encoded data in the same column together
which makes memory addressing easier in decoding. The concept is shown in Figure 5-11.

Memory
Addressing

:rDiff
(of 1b1'fi=)'_' B

Figure 5-11 Column based compression and easy memory addressing for decoding

With all the considerations for this particular FMCW radar system and its signal characteristics,
the following column based DRHE is designed. Take [1 0 3 0 0 0 0 253] as an example of the
difference output (rDiff or iDiff) from the prediction block. Each number is a 16-bit fixed point
value in this input data stream will be encoded into a binary form of [RRRRSSSS+APPEND)]
where RRRRSSSS is an 8-bit field and APPEND is an SSSS-bit field (for example, is SSSS is
0101, then APPEND is 5-bit long). For convenience, the name R4S4 might be used instead of
RRRRSSSS in the following text.

The 4-bit RRRR field in R4S4 is the number of zeroes preceding a non-zero data while SSSS is
the region that the non-zero data is in and is also the number of bits that APPEND needs to en-
code the exact data value. Table 5-2 gives the SSSS values and corresponding ranges.
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Table 5-2 SSSS regions table

SSSS | Value range Number of possible values
1 -1,1 2

2 -3,-2,2,3 4

3 [-7,-4]1,[4,7] 8

4 [-15.-8], [8,15] 16

5 [-31,-16],[16 31] 32

_[Zn _ 1,211—1], [271—1, n 1] ZSSSS

15 [-32767, -16384], [16384, 32767] 32768

The value ranges are arranged in an 'expanding' way where the higher level is always at the
outer range in number axis shown in Figure 5-12 (a). Before generating APPEND bits, the in-
put data is shifted. For negative numbers, the data is added with 2555 — 1 and for non-negative
numbers, 25555 is subtracted from the data.

Data in 2's complement form

-4 0 4
— L e BWEEN | ) | | | l | | |
-4 -3 -2 -1 0 1 2 3 4 = = 1= = o o |o |o |o
SO FST=] R FER= R = e =

(a) 0 e TS £ 4 a (b)

Figure 5-12 (a) Expanding ranges (b) Data shifting for generating APPEND bits, underscores note sign bits

Take 2, 3, -2, -3 as example. They are all in the SSSS=2 region meaning only 2 bits are needed
in APPEND bits. Their APPEND bits are [10], [11], [01], [00] respectively. To achieve this, -2
and -3 are first shifted to 1 and 0 respectively (see Figure 5-12) and after that binary encoded.
This shifting guarantees that all negative data has binary strings starting with 0 and all non-
negative data has binary strings starting with 1 in the APPEND field. The previous example is
then encoded into the following binary string shown in Figure 5-13.

l6-bit data

RRRRSSSS 00000001 00010010 01001000
Figure 5-13 The R4S4+APPEND encoding for example data

Eight 16-bit values are encoded into 3 groups of R4S4+APPEND bits. A little problem for
RRRR field is that there might be cases of more than 15 consecutive zeroes. To solve this prob-
lem, the symbol R4S4 of [11110000] is used to represent 15 consecutive zeroes followed by a 0
which is in total 16 zeroes and this symbol can appear multiple times if more than 16 consecu-
tive zeroes need to be encoded. The length of the APPEND field bits is variable but the R4S4
field are fixed (8 bits) where Huffman coding is well suitable.

I I ]
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Figure 5-14 R4S4 symbol histogram

Figure 5-14 shows the R4S4 symbol histogram example. The general trend of the histogram is
like an exponential decay in counts as R4S4 increases and for each peak value, there is a small
micro decay structure shown in the small figure inside Figure 5-14. The local peaks are 1, 17,
33,49, 65, 81,97, 113, 129, 145, 161, 177, 193, 209, 225 and 240.
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Table 5-3 shows the first 4 local peaks and their meaning. The distribution of the symbols
shows very meaningful information of the signal: the number of occurrences decreases as the
number of consecutive zeroes (RRRR) increases and the largest amount of data is small (in
SSSS region 1). With this probability information, the Huffman coding may have good perfor-
mance.

Table 5-3 Some local peaks in R4S4 symbol histogram and their meanings

Local Peak (Decimal, Binary) | Meaning

1, 00000001 No 0 preceding, value in SSSS region 1 (-1 or 1)

17, 00010001 One 0 preceding, value in SSSS region 1 (-1 or 1)
33, 00100001 Two Os preceding, value in SSSS region 1 (-1 or 1)
49, 00110001 Three Os preceding, value in SSSS region 1 (-1 or 1)
65, 01000001 Four 0s preceding, value in SSSS region 1 (-1 or 1)

Once we have the distribution of the symbols, we can generate the Huffman code table. In this
design, we use a fixed Huffman code table from the example signal we have modeled. The code
table proves to be suitable for all kinds of circumstances in the following simulations and for
real recorded signals. The Huffman code table we generated is listed in Appendix A.

RRRRSSSS 00000001 00010010 01001000
RRRRSSSS Huffman Code Len
[00000001] [1] 1
[ 10010] [011001] 6
[01001000] [011011100010000] 15

[HCode] [1] [011001] [011011100010000]

Figure 5-15 The Huffman coding of R4S4 field

Figure 5-15 shows Huffman coding of the R4S4+APPEND data from the example input. The
final result is a 33 bits string representing the 128 bits original data. When there is more input
data, the compression ratio will further increase.

With the above description, the DRHE itself is clear but there is still one element missing —
how to perform the encoding column-wise when the signal comes in sweep by sweep? This
problem is solved by the introduction of an addition mechanism called zCounter (zCNT). The
name literally explains its usage: counting the number of zeroes. One zCounter is kept for each
column and once the corresponding position in the current sweep is a zero, the zCNT is in-
creased by 1 until there is non-zero data. Once there is non-zero data after some consecutive
zeroes in one column or the zCNT reaches 16, the zCNT will be written into the RRRR part
and the non-zero data is encoded by SSSS+APPEND bits with Huffman coding.

zZCNT 0 0 1 0 0 zCNT 1 0 2 0 1 zCNT 2 0 01 2
1st 1 2 0 -1-5 1st 1 2 0 -1-5 1st 120 =1955
2nd 0 1. 0 2 0 2nd 0 1.0 2 o0

(a) (by 3xd o HEEMC ©° (¢)

Figure 5-16 zCounter in action

Figure 5-16 shows the zCounter mechanism working in action. Figure 5-16 (a) shows the status
after the first sweep of data. The 3™ column has one 0, and the zCNT[3] is set to 1, other data
shaded in orange is encoded. Figure 5-16 (b) shows the incoming of the second sweep of data,
zCounters continue to accumulate. In Figure 5-16 (c) the first non-zero data comes at column 3,
zCNT][3] is reinitialized to 0 and 2 is written into RRRR field with corresponding SSSS and
APPEND bits for the incoming data 1.
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Figure 5-17 Compressed size of each column (CRx=Compression Ration of x)

Figure 5-17 shows the compressed size for each column using the example data. The overall
compression ratio is 9.54. For the column representing the range at which there is a target, the
compressed length is longer than where there is not, due to the fact that it contains more infor-
mation. This result gives a first impression that column based DRHE encoding results in higher
compression ratios than 16-bit or 2 8-bit Huffman coding.

5.6 Column Based DRHE Decoding

Start
Flush codeBuf[]

:

Read 1 bit
Append it to
codeBuf[]

R4S4=HuffDeco
(codeBuf[])

—|

(decoding failed)

take out RRRR
and SSSS from —

Output 16 Os in

decoded data RS decoded stream

l

read in

the next
SSSS bits

l

Output RRRR Os
and a non-zero
data

Figure 5-18 Column based DRHE decoding flow graph

Comparing to encoding, column based DRHE decoding is much easier because the Huffman is
a prefix code (see the introduction chapters) and all prefix codes can be decoded uniquely with-
out any ambiguity. Once the Huffman coded R4S4 is decoded, known number of APPEND bits
can be read from the compressed bit stream and reconstruct the exact original data.

Figure 5-18 shows the flow chart of the decoding algorithm which is quite self-explanatory.
The HuffDeco() function is used to decode the input using the Huffman code table. codeBuf[]
is used to temporarily store the input bit stream. The encoding — decoding combination ensures
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lossless compression of the difference data output by prediction block. The prediction process
is also fully reversible which means the original input signal can be reconstructed losslessly.

5.7 Memory Management in Encoding Process
To use this column based DRHE in a real hardware setup, another problem has to be dealt with:
the memory management. Seen from Figure 5-11 and Figure 5-17, the length of each com-
pressed column is not even close. Some columns can be significantly longer than others. Figure
5-17 is just a benign case scenario. A very unfavorable bad case scenario is when there are two
targets at the same range (probably with different velocities).

—© Compressed
Uncompressed
CR4 Ref
CR5 Ref
CR6 Ref
CR7 Ref
CR8 Ref

v, kmh]

number of bits needed

100 200 300 400 500
D[m] (a) Column (b)
Figure 5-19 (a) Bad case target distribution (b) Compressed column length

Figure 5-19 shows one example of many bad case scenarios. There are two targets at each of
the following ranges: [2, 10, 25, 50, 70] m. Figure 5-19 (a) shows the all-FP reference range-
velocity spectrum where all targets can be seen as clear peaks in it. Figure 5-19 (b) is the com-
pressed size of each column. It’s very clear that wherever there are targets, the corresponding
column size is much larger than the average size. For the 6 nearest targets, the compressed sizes
are even larger than the original sizes.

sRS

Magnitude [dB]
Magnitude [dB]

(a) Sweep No. DIm] (b) Sweep Nc

D[m]
Figure 5-20 (a) Magnitude of sRS in bad case scenario (b) rDiff in bad case scenario

The fundamental cause of this problem is that when there are more than 1 targets at a range, the
magnitude of sRS will start to change drastically among sweeps. The sRS signal of the above
bad case is shown in Figure 5-20 (a), comparing to the benign case shown in Figure 5-1 (a), the
change is quite significant. The prediction block cannot predict the signal with high probability
so the difference signal is also large as shown in Figure 5-20 (b). Large values are rare accord-
ing to R4S4 histogram shown in Figure 5-14, so large values are assigned to Huffman codes
that are longer than average causing that the length of the corresponding column to be far be-
yond average.

This exceptional behavior will reduce the overall compression ratio to around 7 but this CR is
usable and still much better than that achieved by the RDVLE. The serious influence is on
memory configuration. The unknown length for each column makes the memory space alloca-
tion hard. For a fixed number of columns, if we use a large column length, the total memory is
large and CR is sacrificed with a lot of memory unused and wasted. If a smaller column length
is used, the CR will be good but there will be chances that certain columns cannot fit into the
limited length column and have data losses. So a memory management function is needed to
make the best use of memory and fit all the data in an organized way at the same time.
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The target of this memory management function is to place compressed data of each column in
a way that data in the same column is put close to each other in a block of memory with fixed
column length, and a fixed number of rows of memory (thus the total size of memory is fixed).

The general idea of this algorithm is to reserve some memory space in the beginning and real-
locate it dynamically when there is not enough space in some column to store the incoming
compressed data stream. Before introducing the memory management algorithm, a data struc-
ture called emMap (extended memory map) has to be shown which is used to record the infor-
mation of columns with insufficient space and newly allocated spaces to assist memory man-
agement to achieve its goal.

Table 5-4 emMap

orgCol 4 15 [ 21 |..
startPos 513 1523 1531 [539 |...
len 10 [8 |8 |8
curPos 521 1530 |537 [546 |...
Table 5-4 shows the emMap with some example values. There are in total 4 rows in it. orgCol
is the original column number where there is not enough free space to store the incoming com-
pressed data stream. startPos is the starting column position to store the extra data that cannot
be stored in orgCol. The extra space is in total len columns. curPos is the current column writ-
ing position in the newly allocated extra memory space. Besides emMap, there is an array of
memory pointer called memPointer (one for each column including extra columns) pointing to
the current writing position in the columns.

According to simulations, the bad case CR is around 6.5 if there isn’t any constraint on memory
shape (column can have arbitrary length). Instead of trying to obtain this bad case CR, we de-
sire even lower CR, for example, target at CR,,, = 5. Another CR called CR threshold is set to
CR., = 7. Instead of allocating 512 columns of 406 bits memory to achieve CRS, we allocate
717 columns of 290 bits memory (which is still CR5) and reserve 205 columns for dynamic
memory allocation. The memory reshaping concept is shown in Figure 5-12.

2048 bits

yabua

S~

406 bits

290 bitsp ) .Y

Column No. 512 717

Figure 5-21 Memory reshaping

The red, yellow and left-inclined filled regions (normal memory) in total represent the uncom-
pressed data which are 512 columns of 2048 bits data stream. The yellow and normal memory
in total is the size to achieve a CR of 5. To reserve extra space for overflowed columns, the yel-
low region is reserved and is appended to the end of the normal memory region (the area of yel-
low region and right-inclined filled region are the same). So the memory actually has 717 col-
umns of 290 bits space resulting in a fixed CR of 5.

Figure 5-22 shows the flow chart of the memory management algorithm for one sweep and this
flow chart will be repeated for every incoming sweep. We use the numbers in the above exam-
ple. numCol is 717, the maximum length for each column is 290 bits. fullCol is an array storing
all original column numbers where all normal memory and newly allocated reserved memory is
full.
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Figure 5-22 Flow chart of memory management algorithm for one sweep

In the middle of the chart, prior to updating emMap, a prediction is done. This step predicts the
number of columns that are still needed in the reserved memory to store the rest of the incom-
ing data when a certain column in normal memory is full. It is a simple linear prediction:
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curLen [curS 1} (75.)
colBits

where N,.; is the number of columns that is needed for the rest of data in that column, curLen
is the current length in bits of that column, M is the total number of sweeps, curS is the current
sweep number, colBits is the column size in bits. The accuracy of this prediction depends on
the time it happens. It’s easier to understand that the prediction accuracy is higher when column
overflow happens in the later stage of one measurement because the accumulated incoming en-
coded data with various lengths have an averaging effect on the prediction thus making it more
realistic. Figure 5-22 shows the prediction error of each column vs. sweep no. (which also rep-
resents time).
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Error [%]
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Figure 5-23 Final length prediction error

As more sweeps come in, the prediction error drops to an acceptable level. With large predic-
tion error, not enough or more than necessary reserved memory might be allocated to over-
flowed columns resulting in data loss or memory waste.
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Figure 5-24 Memory management in action with bad case input data: (a) First several sweeps, no overflow (b)
Some columns starts to overflow, new columns are allocated in reserved memory based on prediction (c) More
columns overflow, more reserved memory are used. (d) All sweeps have come in, all data is fit into the fixed
size memory

Figure 5-24 shows the memory management algorithm working in action in four graphs. The
red-shaded area is the normal memory and reserved memory; the red dots are the column total
length predictions at figure-capture time; green boxes are the predictions that are fixed and used
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to allocate new columns in the reserved memory. The red vertical lines in the reserved memory
are the boundaries of newly allocated memory for different orgCols.

In Figure 5-24 (a), data begins to come in, no overflow happens due to the small amount of data.
In Figure 5-24 (b) as sweeps come in, some columns overflow very early because it’s the bad
case scenario. Extra columns are allocated based on predictions at this time shown in green
boxes. As more sweeps come in, more and more columns overflow in Figure 5-24 (c) therefore
more reserved space is used. Figure 5-24 (d) is the final situation with all compressed data fit
into the fixed size memory.

Decoding under this memory management scheme is very similar to that without memory man-
agement discussed in Chapter 5.6. The only extra step is to use emMap to read the data in the
reserved memory space for overflowed columns. Take the emMap shown in Table 5-4 as an
example. The first column in it is orgCol:4, startPos:513, len:10, curPos:521. When decoding
the 4™ column of memory, after reading all the data in 4™ column, it will read data from column
513 until the end of column 521 to finish decoding all the data that is originally in column 4 in
the sRS difference.

One detail in decoding is that not all the newly allocated columns in reserved memory will be
fully occupied and one or more columns can be empty even after storing all the compressed
data due to the inaccuracy and ceiling function in the simple linear prediction. So an ‘endmark’
is needed to notify the memory management block to stop reading in data when it has all neces-
sary bits in. Fortunately, there are some unused R4S4 codes which can be used as ‘endmark’.
The R4S4 code with SSSS=0000 and RRRR from 0000 to 1110 are not used and any of them
can be used as an ‘endmark’.

Another important aspect of this memory management algorithm is that it may compromise the
integrity of the data. Data loss may happen when the algorithm cannot allocate more space for
newly overflowed columns thus turning the original DRHE into a lossy compression scheme.
Data loss will happen in the ‘drop cData’ step in Figure 5-22. Before the first time of dropping
in a certain column, the column number will be written into the fullCol list. Once a column is
recorded in fullCol list, the new incoming data in this column will be lost. This case usually
only happens in bad case scenarios. Table 5-5 gives an example fullCol list under bad case sce-
nario and also shows at which sweep it becomes full.

Table 5-5 Example fullCol list (with bad case input signal)

fullCol 50 55 253
Full at Sweep No. | 121 | 121 | 127
Take column 50 as an example, the emMap has its record as: orgCol: 50, startPos: 660, len: 2,
curPos: 661 meaning 2 extra columns starting at 660" column are allocated to store the over-
flowed data in column 50. The final length of column 660 is 290 bits which is totally full and
the length of column 661 is 288 bits. The 2 bits free space is not enough for storing the com-
pressed data at sweep 121 any data belongs to column 50 after sweep 121 is discarded. The
same applies to column 55 and 253 in the example fullCol list.

Absolute error

120 Sweep No.

Column No.
Figure 5-25 Absolute error between original s2D and s2D computed from uncompressed sRS in bad case
(sweeps that are not shown are all 0)

When decompressing the compressed data with loss, the lost data is replaced with Os and the
decompressed difference is converted back to sRS followed by the 2™ FFT which will generate
s2D. Figure 5-25 shows the absolute error between original s2D and the s2D with data loss in
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compression. Because the prediction is done only based on the previous one sweep, so data loss
will only influence the sweeps that are after its beginning and in this example they’re 121, 121
and 127 for column 50, 55 and 253 respectively.

5.8 Hardware Considerations

First of all, the overhead of implementing this compression scheme has to be evaluated. DRHE
is quite different from the VLE scheme. Compared to the first scheme which has almost only
memory overhead but no computation overhead, DRHE will introduced much more computa-
tion overhead due to the use of Huffman coding.

In terms of memory overhead, it comes from various tables and records that are needed to rec-
ord the memory mappings. The length of emMap cannot be predicted, but its maximum length
is definitely smaller than the number of columns in normal memory and smaller than the num-
ber of columns in reserved memory. According to simulations, the number of records (one rec-
ord is one column in Table 5-4) is around 1/8 of the number of columns in normal memory. So
we allocate N, /4 records in emMap. For each field in one record, [log, Ny o-m | bits are used.
In total, the memory overhead for emMap is:

emMap ~

~ lerm X 4 X (logz (Nnorm )] :Nnarm Dog 2 (NHOFIH )—l bltS (76)

Similarly, the memory overhead for fullCol list is:

ol B N, AN, e % |'10g2 (Nmrm N )—‘ bits (77.)

fullCol — 4

Memory overhead for memPointer is:

OH N... )>< (log2 (co/Bits )—| bits (78.)

memP _( norm

The zCounters also need memory to store their counter values. Each zCNT needs 4 bits and
every column in normal memory has one zCNT, so the total overhead is:

OH . =4N bits (79.)

Another memory overhead is the space for storing the Huffman code table which has 256 items.
Each item is at most 16 bits long so the total space for the table is:

OH, . =256x16=4096 bits (80.)

hTable

When CR;,, is set to 5 and CR;y, is set to 7, Nyorm 1S 512, Npggerve 18 set to 205 according to the
previous discussion. colBits is set to 290. So the total memory overhead is:

OH

which is 1.76% of the original size or 8.80% of the compressed size. This memory overhead is
significantly higher than that of the first compression scheme but still in an acceptable range.

OH +O0H +O0H

DRHE = emMap fullCol memP

+OH,,, +OH,. =18486bits  (81)

hTable

Computation overheads are mainly from the use of the Huffman encoding and the search opera-
tions in various records such as emMap and fullCol. The Huffman encoding and decoding can
both be implemented in software and hardware depending on the requirements which makes
design choice quite flexible.

Besides reasonable overhead, other considerations have been taken into account for hardware
implementation. Column based encoding and the memory management algorithm are already
introduced in Chapters 5.5 and 5.7. These two techniques make the scheme suitable for the
stream-like signals coming in sweep by sweep.

Another practical issue is the prediction block. As shown in Figure 5-4, the prediction block
can be implemented as two IIR filters, but in hardware, floating point representation is too cost-
ly. Proper fixed point representation has to be defined for each block inside Figure 5-6 to pre-
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serve enough accuracy and save register length at the same time. This is again a tradeoff: a
longer number format gives better accuracy but has larger area and consumes more power. Ac-
cording to Chapter 4.3, the processing gain from the 1024 points FFT will lower the noise floor
of the input signal by 4 bits. To preserve this noise floor, a magnitude format is chosen as
[0,16,4] and phase format is chosen as [1,16,13] after the data conversion. The final difference
results diffR and diffl are in [1,16,4] format as shown in Figure 5-6. The design space for this
prediction block is not fully explored in this thesis. It’s possible to move the two IIR into soft-
ware that is running on a processor using much longer data format. For the complex to mag/pha
and mag/pha to complex conversion, there are also many possible implementations in both
hardware and software which remains to be explored.

For the Huffman code table, it’s good to have all the codes within a certain maximum length. A
known maximum length will make decoding more robust. To generate the code table in Ap-
pendix A, the length limited Huffman coding can be used [64]. This variant of Huffman coding
can make sure that each code in the Huffman code table is within a certain length, 16 bits, for
example, is used here. Codes in Appendix A are generated with the statistics from one signal in
a normal scenario. This fixed table is used throughout the design and test of the DRHE and per-
forms well. Of course, more advanced techniques like the adaptive Huffman coding can be used
but they have to be evaluated and modified carefully in order not to add too much overhead to
the system.

Last but not least, all above calculations and designs like overhead estimation, memory alloca-
tion and various records are done in the unit of bit. However, in a real system, byte or word
addressing is more realistic. So bits have to be packed into bytes before storing into the
memory which may cause even more overhead and space waste but the general idea of this
compression scheme still applies.

5.9 Simulation and Results

The simulation of column based DRHE with memory management in bad case is already
shown in Figure 5-24. The system specification is also the one shown in Table 2-1. In the fol-
lowing simulation, 5 targets with randomly generated ranges and velocities are used. RCS vari-
ation is also considered using the Toyota Prius parameter also used to generate Figure 4-7. The
target CR is set to CR.,, = 5 and the threshold is set to CRy, = 7. So the normal memory re-
gion has 512 columns of 290 bits and reserved memory region has 205 columns of 290 bits.

Figure 5-26 (a) shows the column based DRHE with memory management in a benign case:

R=[10 20 35 45 60 70 |m

(82.)
vD=[30 -10 20 -20 15 -5]/3.6 m/s

In this case, only several columns exceeded CRy, and most of the reserved memory space is
empty shown in Figure 5-26 (b) comparing to Figure 5-24.
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Figure 5-26 (a) Column based DRHE with memory management in benign case (b) Detailed view

Figure 5-27 shows the test result using one set of real measurement data from NXP Semicon-
ductor. It was obtained in the initial designs of the analog front end after deramping. Figure
5-27(a) is the Range-Velocity spectrum showing one moving target while Figure 5-27 (b) is the
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column based DRHE result. It successfully fits all the data into a fixed size memory (achieving
CR=5 as stated before).
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Figure 5-27 (a) s2D of real measurement data (b) DRHE result of real measurement data
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Figure 5-28 (a) Lossy columns in simulations (b) Full-at-sweep graph for all lossy columns

Though in normal cases, this compression scheme is lossless, due to the memory management,
data loss may happen in some bad case scenarios. It’s good to know the frequency that data loss
will happen and how much data will be lost. Figure 5-28 shows two relevant graphs of data loss.

Figure 5-28 (a) shows the number of lossy columns in each simulation out of 2000 simulations.
For example, in the 120" simulation, 3 columns have data loss. 296 cases of data loss happened
in 2000 simulations. The average number of lossy columns is 0.252 for all simulations and is
1.706 for all simulations with data loss. Figure 5-28 (b) shows the sweep numbers (Full-At-
Sweep) at which data losses begun in the lossy simulations. In the total 296 cases, the average
number of Full-At-Sweep is 120 (128 sweeps in total).

Overall, 3873 data points in 505 columns are lost in 2000 simulations resulting in an average of
1.937 points loss per simulation which is well in acceptable range.
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6 Conclusions and Recommendations

The main aim of this thesis is to design a compression algorithm that can be used to reduce the
memory that is needed for storing the intermediate data in the FMCW radar signal processing
flow. In Chapter 1, the principle of data compression is briefly reviewed and various implemen-
tations and applications are discussed.

With a brief explanation of the importance and necessity of the radar in automotive in Chapter
1, Chapter 2 presents the principle of the FMCW radar and the mathematical deductions of the
FMCW radar signal processing flow. Range and velocity is extracted from the beat frequency
and the Doppler shift by two FFT operations. Based on this theoretical deduction, measurement
resolutions are calculated. This Chapter concludes by presenting the system specification and
parameters used throughout the whole design process.

Based on the characteristics of the Range-Sweep spectrum signal in the signal processing, in
Chapters 4 and 5, two compression schemes are designed i.e. the Range Dependent Variable
Length Encoding and the Doppler Redundancy Hybrid Encoding. The former scheme takes
advantage of the power profile in signal transmission and stores signals from difference ranges
in different bit-length formats. In addition, the clipping reduction method and the Uniform Dy-
namic Range encoding are designed to further increase the compression ratio. Simulation
shows that a reasonable combination is RDVLE + CRM + 10-bit UDRE which provides a CR
of 2.27 with acceptable loss. This scheme is simple to implement but cannot provide enough
CR. Harmonics and distortions introduced by clipping and bit-removing are also potential prob-
lems for the following target recognition stages.

The second compression scheme is designed to be lossless. It takes advantage of the redundan-
cy residing in the Doppler spectrum or in other words, the similarities in the signals of consecu-
tive sweeps. Predictions are made based on previous samples and the differences between pre-
dictions and real inputs are encoded and stored. Due to the use of the Run Length Encoding and
the Huffman encoding, the length of the encoded data cannot be predicted and the raw com-
pression ratio is between 6.5 and 9.5. By introducing a memory management block, the com-
pressed data can be filled in a fixed size ‘rectangle-shape’ memory with fixed preset CR. How-
ever, this memory management block may introduce some data losses in extreme cases. In sim-
ulations when target CR is set to 5 and threshold CR is set to 7, only less than 2 samples are lost
in one measurement (128 sweeps). As discussed in Chapter 1, lossy compression usually has
better compression ratio than lossless compression but this is not the case in this thesis because
RDVLE does not fully exploit the characteristics of the signals. With the capability of reducing
memory requirements to 20% of its original, the column based DRHE with memory manage-
ment is promising in FMCW radar signal processing flow with proper hardware/software parti-
tion.

Besides the above work, many improvements and additional designs and researches remain to
be done. Some recommendations and future work are listed below.

Encoding in the RDVLE

Current RDVLE design stores the bit-removed signals without any further encoding. Inspired
by the DRHE scheme, further encoding might be used to increase the compression ratio (or in
other words, we can combine RDVLE with DRHE to provide a more efficient lossy compres-
sion scheme).

Test with Target Recognition Stages

The ultimate performance metric for an automotive radar system is its target detection rate.
Both RDVLE and DRHE will cause data loss to different extents which will have influence on
signal shape and eventually on detection rate. Recognition stages are not available during this
thesis work so the compression schemes cannot be tested with it. In consideration with algo-
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rithms like the UDRE which will raise noise floors in different regions, recognition algorithm
has to be designed together with compression scheme to have a good match.

Signal Prediction

The quality of the signal prediction in the DRHE determines the CR directly, in current design,
simple linear prediction is used based only on one previous sweep. In benign cases, the predic-
tion is good but it cannot predict well in the bad cases where two or more targets appear at the
same range. New prediction methods can be used, for example, to predict based on more num-
ber of previous sweeps or to use other prediction methods with reasonable computation over-
head.

Adaptive Huffman Coding

Current DRHE uses the static Huffman coding with a fixed code dictionary derived from the
example signal. To eliminate the need of dictionary storage, the adaptive Huffman coding can
be used. However, the overhead introduced has to be carefully evaluated.

More Sophisticated Memory Management

In the memory management block used in column based DRHE, dynamic memory allocation in
the reserved memory will happen no more than once as shown in the flow chart in Figure 5-22.
This means when allocated reserved memory is full again, new incoming data will be lost even
there is still free space in reserved memory. Memory management can be modified to allow
more times of memory allocation which compensates the space prediction inaccuracy, however,
this will make the logics even more complex and more columns in emMap are needed to store
memory pointers.

Hardware/Software Partition

Hardware implementation for the RDVLE is straightforward, but the column based DRHE
seems too complex to be implemented only in hardware especially the Huffman encoder, de-
coder and the memory management blocks. Part of the algorithms can be implemented in a
MCU or DSP accompanying high speed hardware processing blocks such as FFT. Besides as-
sisting compression algorithm execution, the processor can perform other tasks like communi-
cation and interrupts handling for the whole radar system. To achieve optimal speed and chip
area balance, proper hardware/software partition has to be done.
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Appendix A: The Huffman Codes of R4S4 Symbols

R4S4 | Huffman Code 53 011000110100001 107 011011100110001
0 0000111000001011 54 011000110100000 108 011011100110000
1 1 55 011000110100011 109 011011100110011
2 0101 56 011000110100010 110 011011100110010
3 000010 57 011000110101101 111 011011100111101
4 010001 58 011000110101100 112 011011100111100
5 0000110 59 011000110101111 113 00000001

6 0000011 60 011000110101110 114 00001111100

7 00000011 61 011000110101001 115 011011100111111
8 00000010 62 011000110101000 116 011011100111110
9 0110110 63 011000110101011 117 011011100111001
10 0110100 64 011000110101010 118 011011100111000
11 00000000 65 01001 119 011011100111011
12 000011101 66 000011110 120 011011100111010
13 0000111111 67 011011100010101 121 011011100100101
14 0000111000001010 68 011011100010100 122 011011100100100
15 000011111011101 69 011011100010111 123 011011100100111
16 000011111011100 70 011011100010110 124 011011100100110
17 001 71 011011100010001 125 011011100100001
18 011001 72 011011100010000 126 011011100100000
19 011000101 73 011011100010011 127 011011100100011
20 01101110110 74 011011100010010 128 011011100100010
21 000011111011111 75 011011100011101 129 01100001

22 0000111000000 76 011011100011100 130 000011100101

23 000011111011110 77 011011100011111 131 011011100101101
24 000011111011001 78 011011100011110 132 011011100101100
25 000011111011000 79 011011100011001 133 011011100101111
26 000011111011011 80 011011100011000 134 011011100101110
27 000011111011010 81 010000 135 011011100101001
28 011000110110101 82 011011111 136 011011100101000
29 011000110110100 83 011011100011011 137 011011100101011
30 011000110110111 84 011011100011010 138 011011100101010
31 011000110110110 85 011011100000101 139 011000111010101
32 011000110110001 86 011011100000100 140 011000111010100
33 0001 87 011011100000111 141 011000111010111
34 0110101 88 011011100000110 142 011000111010110
35 000011100100 89 011011100000001 143 011000111010001
36 011000110110000 90 011011100000000 144 011000111010000
37 011000110110011 91 011011100000011 145 011000100

38 011000110110010 92 011011100000010 146 0000111000011
39 011000110111101 93 011011100001101 147 011000111010011
40 011000110111100 94 011011100001100 148 011000111010010
41 011000110111111 95 011011100001111 149 011000111011101
42 011000110111110 96 011011100001110 150 011000111011100
43 011000110111001 97 0000010 151 011000111011111
44 011000110111000 98 0110001100 152 011000111011110
45 011000110111011 99 011011100001001 153 011000111011001
46 011000110111010 100 011011100001000 154 011000111011000
47 011000110100101 101 011011100001011 155 011000111011011
48 011000110100100 102 011011100001010 156 011000111011010
49 0111 103 011011100110101 157 011000111000101
50 01100000 104 011011100110100 158 011000111000100
51 011000110100111 105 011011100110111 159 011000111000111
52 011000110100110 106 011011100110110 160 011000111000110




161 011011110 193 00001110001 225 011011101111
162 011000111000001 194 011000111100111 226 011011101000101
163 011000111000000 195 011000111100110 227 011011101000100
164 011000111000011 196 011000111100001 228 011011101000111
165 011000111000010 197 011000111100000 229 011011101000110
166 011000111001101 198 011000111100011 230 011011101000001
167 011000111001100 199 011000111100010 231 011011101000000
168 011000111001111 200 011000111101101 232 011011101000011
169 011000111001110 201 011000111101100 233 011011101000010
170 011000111001001 202 011000111101111 234 011011101001101
171 011000111001000 203 011000111101110 235 011011101001100
172 011000111001011 204 011000111101001 236 011011101001111
173 011000111001010 205 011000111101000 237 011011101001110
174 011000111110101 206 011000111101011 238 011011101001001
175 011000111110100 207 011000111101010 239 011011101001000
176 011000111110111 208 011011101010101 240 0000111110101
177 00001110011 209 0000111000010 241 0000111110100
178 011000111110110 210 011011101010100 242 000011100000100
179 011000111110001 211 011011101010111 243 011011101001011
180 011000111110000 212 011011101010110 244 011011101001010
181 011000111110011 213 011011101010001 245 011011101110101
182 011000111110010 214 011011101010000 246 011011101110100
183 011000111111101 215 011011101010011 247 011011101110111
184 011000111111100 216 011011101010010 248 011011101110110
185 011000111111111 217 011011101011101 249 011011101110001
186 011000111111110 218 011011101011100 250 011011101110000
187 011000111111001 219 011011101011111 251 011011101110011
188 011000111111000 220 011011101011110 252 011011101110010
189 011000111111011 221 011011101011001 253 0000111000001101
190 011000111111010 222 011011101011000 254 0000111000001100
191 011000111100101 223 011011101011011 255 000011100000111
192 011000111100100 224 011011101011010
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