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Abstract 
 

Concept detection is the process of extracting semantic meaning from data. Video data is a 
popular choice on which to operate, as there is a lot of visual, audio, and textual information to 
index and search. Ultimately one would like to develop a set of semantic concepts that spans the 
search space, but this requires defining thousands of concepts. In order to detect such a copious 
amount of concepts, generic concept detectors have to be employed. There is a continuous drive 
in research to discover better ways to perform generic concept recognition.  

This thesis starts with a literature overview, surveying past and future trends in concept 
detection. Past classification systems were often rule-based systems that made use of specific 
domain knowledge to perform their tasks. While functional, these systems could not readily be 
extended beyond their domain. State of the art classification systems on the other hand, use 
statistical models, in the form of Support Vector Machine classifiers, to recognize an unbounded 
set of concepts.  

The initial thrust of this investigation was to examine the potential of using SVM classifiers 
to detect an abstract concept, such as ‘happiness’, by relating simpler, indicative concepts. This 
proved infeasible, and the focus of this research became to improve weak classifiers by exploiting 
the knowledge of more discernable, related classes. Three techniques were developed in this 
study that did this, each applicable to a different type of inter-conceptual relationship. This thesis 
aims to assess the performance and the associated constraints of these developed techniques. 

The Sibling-confusion removal and Ancestor boosting techniques require an ontology, a 
tree-like structure that models semantic relationships between concepts by linking relationships in 
a hierarchy. The Sibling-confusion removal technique attempts to improve detector performance 
by removing false positives caused by similarities between sibling concepts. The Ancestor 
boosting technique aims to improve poorly performing child detectors by leveraging the 
functionality of their more powerful ancestor concept detectors.  

The final technique used a statistical method, the chi-square test, to identify concepts in the 
dataset that frequently appeared simultaneously. Concept recognition was improved by 
combining the outputs from related detectors to recognize a single concept. 

In the course of the experiments, a number of hidden constraints for each technique became 
apparent and explain the results thus obtained. Sibling-confusion removal proved to be a 
worthwhile technique when the ontology provides a concept grouping, which is semantically 
related, closed, and for which only one concept is valid in each shot.  Ancestor boosting appears 
to be a promising technique, as evinced by substantial increase in detector performance for some 
concepts in the dataset. For Ancestor boosting to work successfully, however, it is necessary that 
ancestor and child concepts be tightly linked semantically and that ancestor detectors perform 
robustly. Chi-square boosting is a powerful technique, as it identifies concept relationships that 
are not immediately obvious from their semantic definitions. Most of the discovered concept 
relationships may be used to produce improved concept detectors.  

 The MediaMill Challenge dataset, consisting of 101 semantic concepts, was used to test 
the effectiveness of each technique. The mean average precision (MAP) of each original concept 
detector was compared against the mean average precision score of the revised concept detectors. 
In the Sibling-confusion removal experiment, 30 out of 64 distinct concepts had improved MAP 
scores, while 17 out of 61 distinct concepts had improved MAP scores in the Ancestor boosting 
experiment. The Chi-square boosting experiment had an improvement in 22 out of 36 concepts. 
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Chapter 1 

Introduction 

When a person goes to a public library to look for a book, he first goes to the card catalogue and 
looks for a book in the category he desires within the catalogue. Thus he has a fuzzy idea of what 
he is looking for, in the sense that he knows a few key words to describe it. The catalogue is 
ordered so that the keywords will narrow his search until he finds what he is looking for. This 
assumes however, that each book has been previously indexed and placed within the catalogue. If 
one extends the metaphor to searching for video footage, one realizes that the audio, video, and 
text streams that make up the video recording must also somehow be indexed. This is 
complicated however by that fact that a human would index by providing a textual summation of 
the content. To a computer however, the video stream is merely a sequence of images, with each 
image being a set of colored points. This is known as the semantic gap. 

Nonetheless, it is possible to train a computer to recognize low-level features, such as the 
colors of an image, and associate them with concepts. The implicit loss of data associated with 
indexing, plus the ill-defined nature of semantic concepts means that this process introduces 
error. In addition, most sophisticated concepts can only be recognized by the presence of simpler 
concepts. For example, a car-chase scene could only be recognized if previous classifiers have 
recognized multiple cars following each other at high speeds. The art then, is to map low-level 
features to a concept vocabulary that covers the human language that minimizes error and provide 
maximum concept coverage.  

Early research focused on combining multimodal feature extractors in various ad-hoc 
approaches to identify specific concepts. Unfortunately, this does not scale well, as the 
combination of feature extractors is case specific. Thus one cannot use the same combination of 
feature extractors to recognize a different concept. More recent research, such as the TRECVID 
high-level feature extraction task, focuses on implementing a framework of generic concept 
detectors to define a vocabulary that spans the human language. This task can be done by 
defining each concept as a unique blend of constituent features, or defines the concept to be 
identified in terms of other concepts.  The challenge is to find an optimal combination of feature 
vectors and classifiers; and concept detection to date remains wide open to further research. 

1.1 Goals 

The initial aim of this research was to utilize the semantic relationships between some basic 
concepts to develop a concept detector capable of recognizing an abstract concept like 
‘happiness’ in a dataset. Such a detector proved infeasible, and the focus of this research became 
to develop methods to improve weak classifiers by exploiting the knowledge of more discernable, 
related concepts.  

The hypothesis is that concept detectors can be improved for concepts, which are 
semantically or statistically related, by making use of the additional information these 
relationships provide. 
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1.2 Approach 

An initial literature study was performed in order to discern past and current trends in research 
with respect to semantic concept detection. This study revealed that SVM classifiers were the 
most promising classifiers to date, and so it was decided to detect an abstract concept, such as 
‘happiness’, by relating simpler, indicative concepts using SVM. A preliminary investigation 
showed this was not possible given the limitations of the available datasets. Instead, three 
techniques, inspired by the previously discovered literature, were developed to validate the 
hypothesis. 

 An ontology was created that models semantic relationships between concepts by linking 
relationships in a hierarchy. Two techniques, Sibling-confusion removal and Ancestor boosting 
utilized this ontology. The Sibling-confusion removal technique attempts to improve detector 
performance by removing false positives caused by similarities between sibling concepts. The 
Ancestor boosting technique aims to improve poorly performing child detectors by leveraging the 
functionality of their more powerful ancestor concept detectors.  

 A final technique was developed that used the Chi-square test to identify concepts that 
frequently appeared simultaneously.  Concept recognition was improved by combining the 
outputs from related detectors to recognize a single concept.  

 The mean average precision was computed for all the concepts in the dataset, before and 
after the application of these techniques. The increase in mean average precision scores for some 
concepts serves to confirm the hypothesis.  
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1.3 Organization of this paper 

This paper is organized as follows: 
Chapter 2, Concept detection in literature, discusses past and present research efforts in concept 

detection. The aim of this survey was to present various concept detection techniques, 
their comparative merits, and the applicability of these techniques in detecting a wider set 
of concepts.  The trend in research is moving away from knowledge-based systems to 
generic concept classifiers afforded by Support Vector Machines. 

Chapter 3, Methodology, describes various practical issues related to the choice of supervised 
learner, annotation software, and dataset. In conjunction with some preliminary findings, 
these choices affected a change in the method of approach. 

Chapter 4, Inter-conceptual boosting experiments, describes three techniques which aim to 
improve concept detector performance by using knowledge of the semantic and statistical 
concept relationships in a dataset. The Sibling-confusion removal technique attempts to 
improve detector performance by removing false positives caused by similarities between 
sibling concepts. The Ancestor boosting technique aims to improve poorly performing 
child detectors by leveraging the functionality of their more powerful ancestor concept 
detectors. In Chi-square boosting, concept recognition was improved by combining the 
outputs from related detectors to recognize a single concept. These techniques were 
evaluated on the MediaMill dataset, and their results are analyzed. 

Chapter 5, Conclusion, discusses the conclusions of the paper and suggests further refinements in 
the techniques applied. 

Annex 1, SVM Theory, presents a summarized mathematical background of Support Vector 
Machines and briefly introduces the parameter settings that influence the development of 
a SVM model.   

Annex 2, Sibling-confusion removal results, presents the results obtained using the Sibling-
confusion removal technique developed in Chapter 4.  

Annex 3, Ancestor boosting results, presents the results obtained using the Ancestor boosting 
technique developed in Chapter 4. 

Annex 4, Chi-square boosting results, presents the results obtained using the Chi-square boosting 
technique developed in Chapter 4. 
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Chapter 2 

Concept detection in literature 

This chapter presents a review of a selection of papers, showing a chronological progression, 
documenting the progress made in research in the field of concept detection. The aim of this 
survey was to discover the various concept detection techniques used in research, their 
comparative merits, and the applicability of these techniques in detecting a wider set of concepts.  
Some statistical classification systems and techniques presented here provide the basis for work 
done in chapter 4. 

2.1 Related Works 

For video data, there are three types input streams, the audio, video, and text (transcriptions of the 
words spoken in the segment).  Feature extraction then, is the action of determining the 
characteristics for of the video fragment, in any of the three modalities, to detect some sort of 
concept. Some examples of features are: color histograms (indicative of the colors in the video), 
edge orientation histograms (represents the various edges of shapes in the video), Mel-frequency 
cepstrum coefficients (indicative of the rate of change of the audio), or word frequency (the 
number of occurrences of various words of (spoken) text). The process of combining these 
features in order to recognize a particular semantic concept is known as classification, or fusion.   

Early research on semantic concept meta-classification examined ad-hoc rule based domain 
knowledge schemes, Bayesian classifiers (BN), neural network classification (NN), Gaussian 
mixture models(GMM), modeling via ontologies, Support Vector Machines(SVM), or Hidden 
Markov models(HMM). The various approaches are either statistical in nature (Bayesian, GMM, 
HMM, SVM), or are knowledge based, using knowledge of the domain (rule based, modeling 
using ontologies).  

The drive to create a framework of detectors capable of recognizing generic concepts 
precludes the use of domain-based classifiers and is the reason for the trend towards statistical 
methods in research. This is not to say that domain based meta-classifiers perform poorly. Often 
they make use of insights, such as the dependency between two concepts, that short circuit the 
whole machine learning process of statistical methods, saving much development time. Their 
failure is in being unable to function properly for events outside their specific domain. For 
example, the highlights detection of Babaguchi [7] (discussed in 2.2) would fail for say,   
Formula 1. The reasoning behind using statistical classification is that enough features are 
considered that a concept is identified correctly, no matter the domain.  In addition, the detection 
process as a whole is more robust, as more features are considered, and as such the error 
contribution per individual feature is lessened.  

Of course, there are various problems for statistical classifiers. In general, increasing the 
feature set improves the accuracy of the performance, but also leads to over-training and the curse 
of dimensionality. The curse of dimensionality occurs as a result of an increasing feature space, 
when the increase in dimensions causes the distance between objects to become increasingly 
similar, and hence the objects become harder to distinguish and thus classify [63]. Likewise the 
time needed for the actual machine learning process increases exponentially with the amount of 
features under consideration. Knowledge based classifiers simply avoid this by reducing the 
feature set by using knowledge of the domain. Another consideration is that the SVM fusion can 



                                    Exploiting inter-conceptual relationships to boost SVM classification  
 
 
 
 

 5 

be performed in various ways, each with its own tradeoffs between extensibility, robustness, and 
the time spent on learning the semantic concepts.  

Recent research shows a distinct preference for SVM classification, because it gives 
superior performance over other statistical approaches and because it is robust against 
overtraining and the curse of dimensionality[30]. For further understanding of the mathematical 
reasons for this, see Annex 1. Although some domain approaches are still attempted, statistical 
classification is now the trend. In the field of domain knowledge classifications, the work done on 
ontologies is a recent innovation. However, in this instance ontologies are often deployed on top 
of a generic classifier (such as SVM’s) to produce a hybrid attempting to incorporate domain 
knowledge on top of a statistical classifier. 

Early research focused on developing ad-hoc concept recognition systems. They were rule-
based, and operated on a fixed domain. These are reviewed in section 2.2. The desire to detect a 
much larger concept set led to the development of statistical concept detection methods, and are 
discussed in 2.3.   

 

2.2 Domain Based Classification  

Some of the first multimedia information retrieval systems to be developed investigated sports 
video. The system by Babaguchi and Nitta[7] was designed to analyze sports video, specifically 
baseball and American football, and determine the presence of semantic concepts such as 
highlights, live plays, crowd cheering, and the type of scene currently playing. Highlights were 
detected by examining the text stream for domain specific keyword phrases such as “touchdown” 
and then finding the corresponding time interval in the video stream. Crowd cheering was 
determined by the short time energy feature of the audio stream. Using the idea that crowd 
cheering was indicative of a highlight moments, a more sophisticated detector was developed by 
excluding highlights without cheering [7].  This system is an example of how specialized domain 
knowledge can readily provide a successful solution to identifying a specific semantic concept, 
such as highlights. The extensibility of the system is however open to question. 

Haering et al [20], however, did develop a system seeking extensibility. The prototype 
system was designed to detect animal hunts in wildlife video, which is a complex semantic event. 
The promise of extensibility comes from the development of a modular, tiered system to allow 
easy redeployment for the detection of different semantic events. The first tier of the system 
extracted basic color, texture, and motion features, moving object blobs as well as shot boundary 
locations. Using these features, a neural network determined the class of the object under 
consideration. Nine of them were specific animals, five non-animals corresponding to rocks, 
sky/clouds, grass, trees, and a final unknown class. The third, and highest, tier of the system, in 
essence the meta-classifier, used domain specific rules to detect semantic events based on a 
combination of mid-level object descriptors spatially or temporally ordered based on the features 
from the first level.   

Despite using domain specific knowledge, the system is readily extensible since the first 
tier is entirely domain independent; they are low-level image features after all, as is the second 
tier. The neural network classifier needs to be retrained to recognize additional objects, to be 
extended, but that cannot be avoided. Only the third tier would have to be adapted to a new 
domain, since the rule-based inferences of the first and second tier features would be different 
[20]. Arguably, a statistical classifier could replace the third tier, but at the cost of time spent on 
the machine learning process. Accommodating the rule-based semantic events to an increase in 
the number of objects could get exponentially complex.  
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Returning to concept detection in sports video, Xu [64] developed a somewhat domain 
(team-sport) independent system capable of handling semantic events which do not have 
significant audio/video features, such as when players are given yellow/red cards in soccer. He 
argues that most audio/video patterns are insufficiently distinct to recognize such semantic 
events.  Likewise he argues that his system is readily extensible. His approach is to detect generic 
video concepts, using Hidden Markov Models (HMM), from the audio/video stream, such as shot 
category, focal distance, special view category, field zone, camera motion direction, and motion 
activity. Another HMM classifier is used to detect the transition between such events in the video 
stream. Domain dependencies are introduced in the form of external text streams detailing for 
instance game rules (important for field type and match duration), player names (facilitates text 
analysis), and event types (linking event types with AV patterns detected by the HMM), to detect 
more detailed semantic concepts. The assumption is that only noteworthy events are included in a 
match report. 

Sports events defined in a text stream are aligned against previously detected generic video 
events, which constitute another classification problem. Xu compares three fusion methods, a 
rule-based scheme, a probabilistic aggregation scheme, and one using Bayesian inference that 
perform this alignment. The rule based scheme aligns text events within a temporal window 
based on the number of matches between text events and the externally provided, domain specific 
event model. Since text and video stream events are usually misaligned by some offset, the 
aggregation method models a semantic event as the combined probability of the event occurring 
in one stream and the probability of the event occurring in the other stream, offset by some 
margin. The margin is determined by gradient descent during a training phase. The last fusion 
method, Bayesian Inference, considers whether an event occurring in one stream occurs within a 
fixed offset in the other stream [64]. 

In terms of precision and recall, rule-based fusion gives the best performance, with 
Bayesian inference only mildly less accurate. Aggregation is the poorest performer [64]. All 
results have precision and recall above 84%. Xu attributes this discrepancy to sensitivity of the 
aggregation method and the large randomness in time offsets. The rule-based method benefits 
from using the additional detail possibly in the text stream and as such can correctly identify 
more events. The Bayesian Inference is unable to do so, and hence performs slightly worse. [64]  

Xu’s system is a reasonably generic system for sports, with good precision and recall. 
There is support for extending the system, the only caveat being that every sport needs external, 
domain specific parameters. Xu argues that this data can often automatically be retrieved and 
parsed, whereas event models are non-volatile after construction. Provided there is some operator 
assistance to develop these models, the system can support a large number of sports. For 
increased performance, rule based fusion could be employed, requiring additional operator 
assistance to develop these alignment rules. For a slight drop in performance, but no requirement 
for human intervention, Baysian Inference would suffice.   

The chronological progression of papers presented here illustrate the advances in concept 
detection. Early systems were ad-hoc attempts to perform some basic highlight detection [7] or 
animal recognition [20]. More sophisticated systems attempted to move beyond the fixed domain 
constraints of knowledge-based systems. Xu’s sports detection system [64] does this by utilizing 
a collection of rules necessary to recognize the semantic events specific to a domain. He contends 
that these event-rules can easily be generated for each new domain. Nonetheless, this ultimately 
seems too impractical an approach for a system that wishes to detect generic concepts.  
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2.3 Statistical Based Classification 

The papers reviewed in this section perform classification using statistical methods, such as 
Hidden Markov models [1,2], Gaussian mixture models [1], or Support Vector Machines [1, 26, 
30, 47, 55]. They are of interest because chronologically early papers contrast various 
classification methods, and determine that SVM gives superior classification performance [1, 26, 
30, 47]. Later papers describe various methods to further improve SVM performance [26, 55, 62]. 

Alatan’s system [2] aims to detect dialogue scenes in video, and uses Hidden Markov 
Models (HMM) as the classifier.  The dialogue scene, or story, is defined as a set of consecutive 
shots that make up a meaningful and distinct part of a whole story. An example of this would be a 
scene from a news broadcast. This would contain the shots of the news anchor introducing a news 
item, the news item itself, and possibly any concluding remarks made back in the studio. A scene 
is always present in video, irrespective the genre, and thus scene detection results in the 
partitioning of the video into semantically meaningful, logical units. What makes scene detection 
difficult is the absence of a fixed format to a scene. Care must be taken to neither miss shots that 
should be part of a scene, nor to accidentally subdivide a scene because of intermittent shots that 
break the visual flow (such as a close up) and yet are semantically relevant to the whole.   

Alatan models a scene as consisting of three elements, people, conversation, and a location. 
People are detected using face detection, while audio is classified as either music, speech or 
silence. Shifts in location are detected by analyzing the histograms of several consecutive shots. 
The results of each detector are then used as inputs of an HMM to detect, and classify, scenes as 
either establishing, dialogue, or transitional, the three types most commonly used by film 
directors. He argues for HMM over rule-based, deterministic methods because HMM allow for 
random behavior, such as extraneous shots within a scene, as one might expect when analyzing 
video without any prior knowledge of the content. [2] 

The use of a HMM classifier avoids the domain dependence of rule based classifiers, and 
can readily be made more robust by adding more classifiers as inputs. This would not however, 
require the alteration of the pre-existing classifiers. Likewise more semantic inferences, for 
example more distinct scene types, could be made by extending the output classification set of the 
particular HMM, although as with adding additional classifiers as inputs, each alteration requires 
the retraining of the HMM. 

Snoek and Worring [47] also developed a system for use in the news and sports (soccer) 
domain. They propose a framework, called TIME, which is a multimodal approach to tackle the 
problems of context and time-synchronization common to these domains. This framework is 
evaluated using three statistical classifiers, C4.5 decision trees, Maximum Entropy, and SVMs. 
The choice for statistical classifiers was made in order to provide for a robust performance in 
domains such as soccer, where events are sparse, context dependent, and unpredictable.  

Low level feature extractors operating on the video stream detect various multimodal 
events, such as the camera shot type, microphone shot, text shots, panning camera, speech, 
speech excitement, motion intensity, close-up, goal related keywords. These features have 
additional context information added by temporally relating them using the labels {precedes, 
meets, overlaps, starts, during, finishes, equals}, thus producing events. Events are assumed to 
always have at least a time distance of T1, due to noise. If events are separated by an interval of 
T2, then they are assumed to have no temporal relationship with each other. Semantic concepts 
can thus be modeled as a combination of time ordered features within a certain interval, as 
determined by a classifier. 
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C4.5 decision trees place these events into a binary tree based on a gain ratio determined at 
training time. Each concept is a leaf node in the tree, and the time-ordered events form decision 
nodes higher up in the tree. The more important the event is to the classification task, the higher it 
is in the tree [47].  A Maximum entropy (MaxEnt) classifier estimates the conditional distribution 
of a concept in a video, given certain constraints. These constraints are features, whose values are 
determined from the training set [47,68]. 

In the soccer domain, where concepts such {goal, yellow card, substitutions} concepts were 
looked for, C4.5 decision trees gave the poorest performance. MaxEnt and SVM detected all 
semantic concepts equally well. What differentiated them was that the SVM classifier required 
considerably less training time than the MaxEnt algorithm to achieve this result [47]. In the news 
domain, where concepts such as {reporting anchor, monologue, split-view interview, and 
weather-report} were sought, the SVM classifier outperformed the C4.5 and MaxEnt classifiers, 
both of whom performed similarly. In an additional experiment to test the effectiveness of the 
TIME framework, SVM based classification on the news domain was performed with temporal 
relations enabled and disabled. For most semantic concepts, the additional information provided 
by the TIME framework yielded increased performance, except for the weather report, where 
results were comparable [47]. 

The Time framework demonstrates that it is possible to add additional contextual 
information, in this case a temporal ordering, to low level concepts. This additional information 
results in better performance of the classifier than when it is not provided. This Time framework 
also suggests that SVM classifiers outperform C4.5 decision trees and MaxEnt classifiers over 
two different domains, and one could speculate that this would also apply for other domains.  

One of the earliest applications of a SVM classifier was a 2002 system from Carnegie 
Mellon which integrated a video camera and two microphones in a tape-recorder like system. The 
video camera provided input to two face recognition detectors, while the microphones had feature 
detectors checking for speech identification by similarity and pitch.  The purpose of the system 
was to remind the user of the last conversation, if any, had with a dialogue partner. The results 
clearly demonstrated that the individual detector results, or a summation of their results, resulted 
in a significantly poorer performance than when their outputs were fused using an SVM (late 
fusion) classifier [30]. 

IBM [1] has also focused research on multimedia retrieval. Rather than attempting a 
domain specific application, their system was explicitly designed to explore concept detection 
and the performance of various fusion schemes. Their system used machine learning over low 
level features on the audio, visual and text channels to determine the most effective model for 
various concepts. For all fusion methods however, late fusion was employed to combine 
unimodal features concept classification. Statistical classification, through the use of Support 
Vector Machines, and probabilistic modeling approaches, such as Gaussian Mixture Models 
(GMM), HMM, and Bayesian networks, were investigated. GMM and SVM performance was 
compared for visual features, while GMM and HMM performance was compared for fusion of 
audio features. The resultant concepts were considered unimodal, or atomic concepts. An 
investigation was made into the appropriate fusion model for high level concepts; concepts which 
can only be inferred by the presence of other concepts and low level features and are generally 
multimodal in nature. For this task, the performance of Bayesian networks was compared with a 
SVM classifier [1]. The video footage from the TREC 2001 corpus was used for evaluation.  

For unimodal classification of visual features, which examined SVM versus GMM 
performance for visual concepts such as {outdoors, sky, rocket, fire/smoke}, SVM classifier 
performance considerably outperformed GMM accuracy, with over 90% precision for most of the 
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recall range. Even with a small training set, SVM classifiers provided a reasonably accurate 
detection performance. [1] 

For unimodal classification of audio features, which examined HMM versus GMM 
performance for the classification of {rocket engine explosion, music, speech, speech + music}, 
HMM precision outperformed GMM’s over all recall values [1]. These concepts were then used 
in an additional experiment examining the best fusion method to detect the semantic concept, 
‘rocket launch’. Explicit fusion used the classification results from the previous unimodal 
classifiers as inputs into a Bayesian network to detect this concept. Implicit fusion uses the 
following function to generate a score for each concept:  

F(ci) = f(c1…. cn) = Score(ci)/(Σ(Score(c1…cn))     where Score(ci) is the unimodal score for each 
concept in a shot. 

Each concept is normalized by the sum of all the scores for concepts present in a given shot. For 
this particular concept, implicit fusion outperformed explicit fusion over all recall values. [1] 

Although implicit outperformed explicit fusion, I would question the validity of this 
classifier. Implicit fusion is discriminative in nature as it boosts the most dominant audio cue. In 
this particular instance, the semantic concept of a ‘rocket launch’, is detected given the more 
basic concept of a rocket engine explosion. Since there is only a single concept which positively 
contributes to the ‘rocket launch’ event, implicit fusion, which discriminates between various 
audio cues, will naturally give a good score. It is likely that this method would fail on high-level 
semantic concepts, which might be made up of multiple distinct audio cues, unlike explicit 
fusion. 

The experiment examined semantic classification of the ‘rocket launch’ event over multiple 
modalities. Recall the visual unimodal classifiers detected concepts such as {outdoors, sky, 
rocket, fire / smoke} while the audio unimodal classifier detected the ‘rocket engine’ event. 
These concepts were used as inputs for a Bayesian classifier in order to detect the rocket launch 
event. The SVM classifier instead took visual concepts, {outdoors, sky, rocket, fire/smoke}, 
audio concepts {rocket engine explosion, music, speech, speech + music}, and the occurrence of 
the word ‘rocket launch’ from automatic speech recognition as inputs to classify the rocket 
launch event. Both gave comparative precision over the recall curve, and outperformed any 
unimodal classifiers alone. The SVM classifier also outperformed the Bayesian classifier [1]. 

The research performed a comparative analysis of various semantic classifiers. Gaussian 
mixture models clearly were less suitable than Hidden Markov models (HMM) or Support Vector 
Machines (SVM) for unimodal classifiers. Possibly further experimentation could have 
successfully demonstrated, however, the effectiveness of implicit over explicit fusion (Bayesian 
Network). Both multimodal Bayesian Networks and Support Vector Machines (SVMs) 
performed better than their unimodal counterparts, and had comparative precision and recall in 
detecting the rocket launch event.  

 Iyengar[26] et al, 2003, also from IBM, extended the work from [1]. Using the same 
setup of basic concepts, they showed that a SVM classifier outperformed a Bayesian network for 
the detection of the rocket launch semantic concept, although not by too large a margin. Of 
additional interest is the questions raised over the requirements of an extensible, generic semantic 
concept detection system. 

Apart from the obvious challenge how to make the system as accurate as possible, the 
research also addressed coverage, which is a measure for how many concepts a multimedia 
retrieval system can define reliably. Their Discriminitative Model Fusion (DMF), actually a 
multimodal SVM based classifier, is considered more accurate because it equaled or 
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outperformed the best unimodal specialized detectors for concepts in the TREC 2002 corpus. The 
DMF system was tightly coupled to an annotation system, allowing for the quick addition of 
arbitrary semantic concepts given some sample shots. Six arbitrary concepts were thus defined 
and DMF gave significantly better results than specialized detectors created for the occasion. 
Thus the system demonstrated its easy extendibility to incorporate additional concepts. Open 
questions were left regarding what constituted an optimal number of basis detectors, the total 
discriminatory capacity of the DMF framework given such a basis set of detectors, and the 
minimum required training set size per concept [26]. The research considered several key issues 
regarding classification in relation to developing a generic, easily extensible, robust semantic 
concept detection engine. 

In a similar investigation into classifier performance by IBM [55], the thrust was more on a 
comparison of early fusion and a late fusion method (termed normalized ensemble fusion) that 
retained some decision making control over classifier combinations. The argument was that, 
although early fusion preserves all information but suffers from some practical constraints, such 
as a limit in the numbers of training examples, a limit in computational resources for training, and 
the risk of over fitting the data. An alternative, late fusion method was developed. Early fusion 
was performed by merging the feature sets, before performing training to create a classifier. 
Normalized ensemble fusion consisted of normalizing the output of individual SVM feature 
classifiers, via rank, range, or Gaussian normalization. Per semantic concept, the most high 
performing and complementary set of feature classifiers was chosen for aggregation by a 
combiner function. The combiner function considered minimum, maximum, average, product, 
inverse entropy, and inverse variance combinations to arrive at a classifier for a concept. 

As a final experiment, all the SVMs that made up a concept classifier were evaluated using 
varying kernels. Kernels are functions which transform inputs into a higher dimensional space, 
and are further explained in Annex 1. When evaluating these combinations against the validating 
set, the resultant classifier was chosen that most confidently classified their samples, as measured 
by a samples’ distance from the separating hyper plane. Thus in normalized ensemble fusion, the 
classifier was trained by the most confidently classified concept, using a feature selection set that 
gave the best average precision. This fusion method was the best performing system at TREC 
2002. It also outperformed early fusion, which had an average precision of 0.5896 versus 0.71 
[55]. The research developed a strong late fusion method which combines the power of SVM 
classifiers with a semantic concept-specific soft decision combinatory function and a powerful 
late fusion concept detector.  

Also originating from the IBM labs is the idea to enhance the semantic classifier by using 
additional information provided by a hierarchical tree of related semantic concepts, in other 
words, an ontology [62]. In statistical modeling the assumption is that a high correlation in the 
feature space will produce similar classification output, although there might not actually be a 
relation between the semantic concepts. Thus, especially in the case where there are few training 
examples, unreliable classifications are the result. For example, the concept ‘Desert’, of which 
there were only 17 instances, in a data set of 9852, was only correctly detected with an average 
precision of 0.06. In the same dataset, ‘Outdoors’, with 2473 occurrences, was detected with an 
average precision of 0.58. This illustrates how an insufficient training set leads to a poor 
classifier. 

The research developed two algorithms to enhance classifier performance. When training 
the classifier of a child concept, the confidence scores of the more reliable ancestor classifiers are 
considered and influence a child concept detector’s score. The extent of the boosting-influence of 
the ancestors on the child node is related to their confidence score distributions. If a child and its 
ancestor have a similar confidence score distribution, they are likely to tightly relate too on a 
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semantic level, and the ensuing boost in confidence score becomes greater too. Boosting is done 
for all ancestors of a child concept. The other algorithm considers the confusion factor, which is 
defined as the probability of misclassifying data into one semantic-class, while in reality the data 
belongs to a mutually exclusive different class.  Data points are checked to see if they have not 
been placed in the wrong semantic class, and the confidence scores are updated accordingly. Each 
semantic concept was initially modeled using SVMs. The resultant output classifications are 
screened for confusion and boosted according to the semantic relations in the ontology [62]. 
When tested using the TRECVid-2003 data, this ontology-based classifier outperformed the 
previously developed Discriminitative Model Fusion method [26] by 6% over 17 concepts, and 
by 23% over 64 concepts. It bettered the best unimodal classifiers by 42% [62].  

The research is of significant importance as it demonstrates the next evolutionary step of 
semantic machine learning, which relies on semantic relationships, as evinced in the use of 
language ontology. Of course, this system too was built on top of SVM classifiers, but the 
addition of ontology was key in outperforming plain SVM meta-classifiers, such as the DMF 
system. It also compensates for a weakness of SVM classifiers, when there are simply too little 
training data from which to derive an adequate classification model.  

The papers presented here describe the chronological progression of research into statistical 
classifiers. Early papers compared and contrast various classifiers, finally settling on SVM as the 
most effective classification method [1, 2, 26, 30, 47].  SVM’s solid mathematical foundation, 
further detailed in Annex 1, make it robust against overtraining and the curse of dimensionality. 
Later papers examined various ways to combine SVM classifiers in order to best perform concept 
recognition. SVM classification was either performed on a large, multimodal feature vector, in a 
process called early fusion, or used to combine the outputs of several unimodal classifiers, in a 
process called late fusion [1, 26, 55]. A final paper describes ontology assisted classification. 
SVM classification performance is improved by considering semantically related concepts [62]. 
This theory constitutes the basis for two of the techniques developed in this study, which are 
presented in chapter 4. 

A table on the following page provides an overview of the papers discussed in this chapter. 
They are categorized by whether the techniques presented are domain specific or generic, the 
unimodal classifiers used, the meta-classifiers used, the best overall meta-classifier, and the year 
in which the paper was published. 
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Table 1 Classification overview 
  
Author Domain/ 

Generic 
Unimodal 
Classifiers 

Meta-Classifiers 
Compared 

Best Meta-Classifier Year 

[7] Domain 
specific 
(sports) 

Feature Based Rule Based Rule Based 2003 

[20] Domain 
specific 
(animal 
hunt) 

Neural Network Rule Based Rule Based 2000 

[64] Domain 
specific 
(sports) 

Feature 
based/HMM 

Rule Based/ 
Probabilistic/ 
Bayesian Inference 

Rule Based 2006 

[47] Generic Feature based C4.5 decision 
trees/MaxEnt/SVM 

SVM 2005 

[2] Generic Feature based HMM HMM 2001 

[30] Domain 
specific 
(hardware 
package) 

Feature based Combination of 
individual classifiers vs. 
SVM fusion 

SVM 2002 

[1] Generic SVM/ 
GMM/ 
HMM 

Rule Based vs. BN,  
BN vs. SVM and 
individual classifiers 

BN and SVM outperformed 
individual classifiers 

2003 

[26] Generic SVM/ 
GMM/ 
HMM 

BN vs. SVM SVM 2003 

[55] Generic SVM Early fusion vs. 
normalized ensemble 
fusion (late fusion with 
soft decision 
combinatory logic) 

Normalized ensemble 
fusion 

2003 

[62] Generic SVM SVM vs. SVM + 
ontology boosting 

SVM + ontology boosting 2004 
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Chapter 3 

Methodology 

The initial goal of this thesis was to develop a detector capable of recognizing an abstract high-
level concept such as ‘happiness’. This chapter details the basic research that was performed 
towards that end. This involved choosing a dataset, a supervised learner, and a video annotation 
tool. The lessons learned from these investigations led to a revision of the initial research goal. 

3.1 Basic terminology 

The terminology further used is defined as follows. A low-level feature is a piece of audio, video, 
or text data that has been extracted from a video fragment. Possible examples are color 
histograms, Mel-ceptstrum coefficients, or a word frequency count. A supervised learner, or 
classifier, learns to recognize these features and to associate them with a particular semantic 
concept. A semantic concept is the generic term encapsulating a particular notion or idea. For 
example, a ‘car’ would be a semantic concept, as it conveys the notion of a particular type of 
motorized vehicle.  In TRECVID terminology, a semantic concept is called a ‘high-level feature’, 
but that usage is not employed in this paper. Most concepts have a direct link to the feature space. 
A concept is termed, high-level, when the concept has a particularly abstract definition. A high-
level concept cannot easily be recognized by a classifier operating on the existing feature space, 
although a human may easily be able to do so. This is known as the semantic gap. Concepts such 
as ‘love’, ‘happy’, ‘sad’, or ‘anger’ are all examples of high-level concepts. Since high-level 
concepts are not readily detectable from the feature space, than can only be inferred from other 
concepts. One might even coin the term, intermediate-level concepts, for the concepts that serve 
as indicators of a high-level concept. For example, ‘crying’ or ‘funeral’ are intermediate-level 
concepts indicative of ‘sadness’.  

3.2 Choosing a video annotation tool 

Given a video source, every defined concept requires an associated ground-truth file. This file 
lists the frames of the video in which a concept occurs, and is required for the machine learning 
process. The features in the specified frames are used to train a detector to recognize that 
particular concept. This means, that at a minimum, ground-truth annotations have to be created 
for the high-level concept that is the goal of this research. Creating ground-truth annotations is a 
time intensive task, as one must examine each frame one at a time, marking the presence of the 
desired concept.  

The freely available data annotation tool, VideoAnnex [56], was assessed for its potential 
usefulness in future annotation tasks. It performs annotations on a shot level, which has two 
benefits. The annotation effort is accelerated, as all frames within a shot share the same ground-
truth label. Furthermore, it allows for easier labeling of temporal concepts, that is, concepts 
whose meanings become apparent over the course of successive frames. VideoAnnex permits 
region-level annotation, where the user draws a bounding box around a particular area, 
representative of a concept. Also worth mentioning is that this annotation tool also performs 
audio playback and therefore allows annotation of concepts which have distinct audio cues. Even 
with such a comprehensive and efficient tool as VideoAnnex at our disposal, annotation efforts 
are very time consuming and require a significant investment in man-hours.  
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3.3 Choosing a dataset 

Choosing a video dataset on which to perform experiments is not a trivial issue, as there are a 
number of factors influencing the decision process. The more abstract the desired high-level 
concept, the harder it is to create a detector for it, as less low-level features have a direct bearing 
on the concept. This means that most of the contribution must come from the detection of 
intermediate concepts, rather than from feature space. For example, the abstract concept ‘sadness’ 
might only be inferred from concepts such as ‘crying people’ or ‘funeral’. The immediate 
consequence of this is that one must also consider whether these intermediate concepts are also 
present in any dataset. These too then, must have ground-truth annotations created for them. One 
would need a large digitized video collection to even contain sufficient instances of all the 
necessary intermediate and high-level concepts, and additionally one would have to make the 
annotation effort. 

This led to consider the TRECVID 2005 corpus, which seemed sufficiently large at 169 
hours of news video footage, and had several collections of concept lexicons with associated 
ground truth annotations. These are: the LSCOM-lite set [35], the MediaMill Challenge set [43], 
and the complete LSCOM set [32].  

LSCOM-lite 

The LSCOM-lite set was the result of a common annotation effort by the TRECVID-2005 
participants, and contains the ground truth annotations for a collection of 39 concepts. The aim of 
the LSCOM-lite set was to maximally partition the semantic space, using a minimal amount of 
concepts, analogous to partitioning the space into a set of hyper cubes. After considering a study 
of what events were considered newsworthy, the LSCOM-lite developers chose 7 dimensions, 
each segmented by concepts chosen for their ease of detection and the frequency in which they 
appeared in search tasks. Most of the concepts from the TRECVID 2003 feature extraction task 
were included in this set. The annotation software used for this set operated on a static key frame 
level, thus restricting the concepts to ones that could be identified visually. Temporal concepts, or 
concepts relying on audio features, could not be used. [35] The deliberate choice for semantically 
diverse concepts, and the lack of sufficient intermediate level concepts, makes this collection a 
poor basis for the development of a high-level concept detector.  

MediaMill 

The MediaMill challenge set augmented the LSCOM-lite lexicon, to arrive at a total of 101 
concepts. However, the MediaMill developers maintained the same requirement of visual-only 
concepts as the LSCOM-lite developers did [35]. Worthy of mention however, is that the 
MediaMill Challenge set also includes the low-level features with the ground truth annotation of 
each frame. In addition, optimized detectors are provided for each concept [43].  

LSCOM 

The LSCOM annotation set, first used for TRECVID 2006, has a larger set of concept 
annotations, for a total of 856 concepts. However, only half of these actually occur in the 
TRECVID 2005 video footage. Nonetheless, some of the concepts include in this set are 
intermediate level concepts, and as such are of greater value towards developing a high-level 
concept detector. [32]  

The full set of LSCOM ground truth annotations offers the best concept lexicon for 
developing a high-level concept detector. The set is large, and the concepts can be arranged in a 
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hierarchy that could ultimately be used to deduce the presence of high-level concept such as 
‘happiness’, ‘anger’, and ‘sadness’. However, no low-level features or concept detectors were 
included, and therefore the choice of dataset fell to the more limited MediaMill challenge set.    

 

3.4 Choosing a Supervised learner 

The literature survey from chapter 2 lists a number of classification methods that have been used 
in research to perform concept recognition. They included knowledge-based schemes, Bayesian 
classifiers, neural network classifiers, Hidden Markov Models (HMM), and Support Vector 
Machines (SVM).  

Knowledge-based approaches in literature were always restricted to a fixed domain, and 
were not readily extensible to include new concepts. As a result, I rejected this approach, as it 
seemed unlikely that any rule-based system would perform robustly when tested against a generic 
video stream.  

Comparative studies from the literature survey of chapter 2 have shown that SVM 
outperformed the above-mentioned methods in terms of classification performance. The success 
of SVM performance is due to its sophisticated training procedure, which involves mapping input 
vectors to a higher dimensional space, thus simplifying the task of finding a maximally separating 
decision boundary. For more specifics, see Appendix A. Besides superior classification 
performance, SVMs have also been reported as being capable of handling high-dimensional 
feature vectors without any detrimental effects, as well as being capable of functioning when 
given only few training examples. For these reasons the decision was made to use SVMs as the 
supervised learner of choice for the classification experiments performed in this study. 

3.5 SVM in practice 

Section 3.3 discusses three lexicons of semantic concepts and their associated ground truth 
annotations. Although the full LSCOM annotation set formed the best basis for defining high-
level semantic concepts as it had the richest concept set, only the MediaMill Challenge set was 
ready for immediate SVM classification experiments given its inclusion of low-level features for 
each semantic concept in the set. Thus the MediaMill data set is used for the first experiments 
with SVM classifiers, as the data set permitted the conduct of early and late fusion classification 
experiments for comparison against the baseline results. 

 From a literature survey, it transpires that by far the most predominant SVM classifier in 
use is LIBSVM [12]. The second most cited SVM classifier is SVM-Lite [28], which is 
optimized and extended with a graphical user interface called SVM-Dark [37].  Both were 
installed on a 3.2 Ghz home computer. An initial experiment was conducted using SVM-Dark on 
the MediaMill experiment 3 ‘beach’ concept, which consists of 120 features. SVM-Dark was 
tasked with finding the optimum parameters for a new ‘beach’ detector. To perform 10 iterations 
on a reduced instance of the training set took 3 hours. The full 40 megabyte training set ran for 
over 15 hours, occupied 4 gigabytes of temporary space, and failed to terminate. 

 A working ‘beach’ SVM classifier was eventually created and run against the provided 
test set. The results were surprising, so a new ‘beach’ detector was created using LIBSVM, with 
similar results. Although this classifier had an accuracy of 99.9381% on the test set, all the results 
were classified as being in the same class. Subsequent SVM classifiers created using both 
programs for ‘dog’, from MediaMill experiment 4 features, encountered the same problem. The 
classifiers were scoring highly in terms of classification accuracy, but only placing the test inputs 
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into one class. Both ‘beach’ and ‘dog’ have very few positive training examples, on the order of 
<50 while there are over 10,000 negative examples.  

The lack of positive examples means it is very difficult to train SVM classifiers sufficiently 
capable of recognizing the ‘beach’ and ‘dog’ concepts.  The challenge is in discovering the 
optimum parameters for the classifiers. (See Appendix A for further information about 
parameters that influence the creation of a SVM classifier.)  

The use of SVM-Dark was discontinued, as LIBSVM was better suited at finding the 
optimum classifier parameters. On average, parameter learning took between 4 to 10 hours per 
concept. Eventually successful classifiers for both ‘beach’ and ‘dog’ were created after an 
exhaustive search for the correct kernel parameters. 

3.6 Adjustment of the research approach 

The use of any publicly available video source was precluded by the lack of ground truth 
annotations, and annotating a video source by hand would have proved to be too labor intensive. 
This led to the examination of three collections of ground truth annotations of the TRECVID 
2005 corpus. Of these, the MediaMill dataset was chosen because it was the only collection to 
contain both the ground truth annotations and the features of each frame, as well as optimized 
detectors for each concept. Although it would have been possible to create detectors for the 
concepts in the full LSCOM collection given the MediaMill features, this would have been too 
computationally intensive. The MediaMill concept lexicon, however, was more limited than the 
LSCOM collection, and did not have many concepts which semantically indicated a high-level 
concept. Cursory experiments with the SVM classifier had shown that it was quite hard, and time 
consuming, to get decent detection results for even some simple concepts within the MediaMill 
dataset.  

The lack of concepts semantically indicative of a high-level concept, and the poor detection 
results of these basic concepts suggested it was unlikely that any combination of simple 
classifiers could feasibly be used to create a high-level concept detector.  This led to a shift from 
the original research goal. Instead of creating a high-level concept detector by detecting and 
relating the underlying concepts, the aim of the study would be to improve existing concept 
detectors by considering the presence of semantically related concepts. 
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Chapter 4 

Inter-conceptual boosting experiments 

There are various ways to improve the performance of a generic SVM concept detector. Simply 
selecting better training parameters when generating the SVM model will yield an improvement. 
Other possibilities are applying different classification schemes such as early or late fusion. The 
following three experiments aim to improve detector performance by use information about the 
relationships between concepts. Semantic relationships, as modeled in an ontology, are used by 
the Ancestor boosting and Sibling-confusion removal techniques. Concept correlations garnered 
by a Chi-square test, are used by the Chi-square boosting technique. These techniques are used to 
develop new detectors for each concept in a dataset. These new detectors are compared against 
the original detectors for each concept, to see whether there is an improvement in the mean 
average precision (MAP) scores. These scores will be reported and analyzed in order to better 
understand the effectiveness, and shortcomings, of each technique. 

4.1 Experiment Setup 
The subsequent experiments were performed on the MediaMill dataset, using the 120 

features and detectors from the MediaMill Experiment 3 collection. This particular collection was 
chosen because it used all possible features (Experiment 1 examines graphical features only, 
Experiment 2 examines textual features only) and thus the link between features and semantic 
content in each shot seemed most complete and least indirect (Experiment 4 combines the scores 
from Experiments 1 and 2, adding a layer of indirection). Early fusion detectors were used as a 
baseline detector for each concept. Training was performed on a set that consisted of 70% of the 
data, and results were computed against a test set, consisting of the remaining 30% of the data 
[43]. 

The mean average precision (MAP) score is used to compare various concept detector 
results. This value is computed by taking the average of the precision scores of the relevant shots 
from a ranked list of detector confidence scores.  

Let Precision(i) be the precision at rank i, where precision is defined as the number of relevant 
and found shots over the set of found shots. Let Relevant(i) be a function which states whether 
the shot at i is relevant. Then for a concept with N shots of which #relevant are relevant, the MAP 
score is defined as: 

MAP: 1/#relevant * i=1∑
N (Precision(i)*Relevant(i)) 

Mean average precision is a useful metric as it combines precision and recall into one single 
value. MAP emphasizes returning more relevant shots earlier, and as such is an appropriate 
choice of metric for comparing concept detectors. 

A dictionary defines words in terms of other related words. Similarly, the presence of one 
concept could indicate the presence of a related concept. The following experiments detail three 
unique approaches to modeling inter-conceptual relationships to boost individual classifier 
performance. The first two experiments place the concepts present in the data set into a tree 
hierarchy, based on a statistical analysis of their occurrences, resulting in an ontology. This is a 
structured approach to modeling the relationships between various concepts, akin to a dictionary 
in real life. Once in a tree structure, the concepts on the sibling and ancestor-child axis’ are 
consulted when generating a concept classifier. The third experiment generates an unstructured 
set of highly correlated concept pairs present in the data set. When generating a concept detector, 
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the presence of a highly correlated concept can be used to 
distinguish ambiguous low-level features. 

The first step is to generate the ontology itself, as in 
the adjacent figure. This was done by calculating the 
posterior probabilities of each concept against the others 
in order to determine which concepts were supersets of 
the others. Given a posterior probability P(A|B), concept 
A was placed as an ancestor node in the ontology and B as 
a child node of A when the posterior probability exceeded 
a certain threshold value. For this experiment, the 
threshold was set at 95%. This results in a natural 
hierarchy that reflects the relationships of the concepts 
within the data set. The focus of the following experiment 
was to enhance concept classifiers which shared the same 
sibling axis. Examples of this are the concepts 
{government, building, house, and tower}, which have the 
‘building’ parent concept. The concepts are related 
semantically on the parent axis, but are semantically 
mutually exclusive on the sibling axis. Since only 
posterior probabilities were used to generate the ontology, 
this procedure is inadequate to definitely conclude that 
sibling classes are mutually exclusive.  

4.2 Experiment 1: Sibling-confusion 
removal 
Sibling concepts are semantically very related, and this 
tends to be reflected in their feature sets, which also are 
likely to be very similar. This causes confusion among 
their concept detectors, which are unable to distinguish 
the features correctly, resulting in many false positives. 
Based on work by Wu [48], the Sibling-confusion 
removal technique reduces the amount of false positives 
detected by normalizing detector scores based on the 
confusion factor, a number that indicates the likelihood of 
a false positive occurring for a particular shot. 

This experiment assumes once all the concepts have been placed in the tree-hierarchy 
and the ancestor-child relationships have been determined, that the set of sibling concepts of 
a sub-tree is distinct and complete. The assumption of mutual exclusivity of sibling concepts is 
crucial to the experiment. If a shot has been classified as a member of the parent class e.g. 
{building}, then it must be one of the specific child classes, either: {government building, house, 
tower}. However, as the specificity of the concept increases, so does the scarcity of positive 
training examples resulting in less robust concept detectors. As such there is a significant chance 
that shots may score highly among several sibling concept detectors, especially if there is little to 
distinguish between the concepts, resulting in several false positives. This is known as the 
confusion factor [48]. This experiment focuses on modifying sibling concept detectors to deal 
with the confusion factor. By reducing the amount of false positives between sibling concept 
detectors, the mean average precision of each detector will be increased. 
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 Intuitively, the confusion factor is only an important consideration when a shot scores 
highly on two or more sibling class detectors. Only one detector can be correct, and the others 
must be detecting false positives (because mutual exclusivity is assumed on sibling classes in the 
ontology, due to their semantic meanings). Formally, given shot s, concept Ci, and the set of 
concepts Csibling, which are the sibling concepts of Ci, the confusion factor is defined as       
P(s|Ci)-max(P(s|Csibling)), the difference between the probability that s is an example of Ci and the 
highest scoring sibling concept.  P(s|Ci) is the confidence score given by the SVM classifier for 
that concept. For this experiment, an early fusion (MediaMill experiment 3) type classifier was 
used, that learned each concept from 101 low-level features.  

The initial confidence score P(s|Ci) for each concept in the data set must be updated to take 
the confusion factor into account. As such, the general equation for this update becomes: 

P(s|Ci)updated= P(s|Ci)initial* f(confusion factor),  

where the confidence score is updated as a function of the confusion factor: 

P(s|Ci)updated = P(s|Ci)initial * |f(P(s|Ci)initial -max(P(s|Csibling))|   

The function max simply returns the highest scoring sibling concept, P(s|Csibling)), of Ci.  

Several considerations, such as the magnitude and sign of the confusion factor, have to be 
taken into account when determining the function. A small confusion factor implies that there are 
two highly scoring concept detectors (or trivially two low scoring ones). This in turn means that 
P(s|Ci)updated ought to be significantly smaller, as to reflect the uncertainty of placing shot s in the 
correct concept class. A large, positive confusion factor on the other hand, implies that shot s is 
most likely of class Ci and not likely to occur in any of the sibling classes. As such, P(s|Ci)updated 
must remain large. The large, negative confusion factor case implies that shot s is most likely a 
member of Csibling and unlikely to be a member of Ci. As such, it is safe to reduce the score of 
P(s|Ci)updated even more. Finally, one must consider the rate of change between each of the 
extremes presented above.  A large positive confusion factor requires that P(s|Ci)updated stay large, 
while a small confusion factor requires a sharp drop in P(s|Ci)updated. This suggests that the 
relationship between confusion factor and P(s|Ci)updated is non-linear, and in fact ought to be 
exponential. The function f(x)=ex meets all these requirements resulting in: 

P(s|Ci)updated = P(s|Ci)initial * e (P(s|Ci)initial -max(P(s|Csibling)) 

The final step is to normalize the results back into the range [0-1] 

P(s|Ci)updated = P(s|Ci)initial * e (P(s|Ci)initial -max(P(s|Csibling))  /e 

In essence, this formula can be thought of the normalization of confidence scores based on 
the interference from closely related sibling classes. This formula was used to update the 
confidence scores of the sibling concept detectors in the MediaMill dataset, for which afterwards 
the MAP was computed. The results obtained by executing Sibling-confusion removal on the test 
set are presented in Annex 2, with an analysis thereof in the following section, 4.3.  

4.3 Sibling-confusion removal analysis 
In this experiment, 30 out of 64 concepts had improved MAP scores. All concept groupings but 
the {indoor, outdoor} set showed a general decrease in overall MAP after the confusion removal 
technique had been applied. A few concepts had a minute increase, but only in the third or fourth 
decimal place, so as to be negligible. Other concepts in those groupings show a comparatively 
larger decrease. Only groupings in which all the concepts showed an improved MAP score were 
actually considered improved by this technique. This does beg the question whether the confusion 
removal technique actually works.  The increase in the MAP of the concept ‘indoor’, from 0.59 to 
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0.60, and the concept ‘outdoor’, from 0.71 to 0.72, should be taken as a qualified success 
however. What then, however, are the reasons for the general decrease in MAP over many 
sibling-concept groupings? 

At the start of the experiment, it was hypothesized that all sibling groupings had to be 
mutually exclusive. More correctly, such a set has to be closed, and each concept within has to be 
complementary to all the others. That is to say, assuming parent concept Cp was detected in      
shot s, one, and only one, of the child concepts that made up the sibling concept set also had to be 
detected in the shot,  

∀Ci ∈Cp • Ci occurs in s→∀Csibling ∈Cp • Csibling ≠ Ci → Csibling  does not occur in s. 

Although these properties fortuitously hold for the set {indoor, outdoor}, this however 
could not always be enforced for other groupings. 

In part, the fault lies with the automated ontology determination process. Although it was 
able to determine parent-child relationships, it was not able to adequately group the various 
sibling concepts according to their semantic relationships. As a result, ‘tony blair’ was omitted 
from the government leader set of {allawi, arrafat, bush_jr, bush_sr, hu_jintao, kerry, lahoud, 
powell}, thus violating the desired closure property. Likewise an unrelated group of siblings such 
as {anchor, duo_anchor, newspaper, splitscreen, weather} was entirely possible too, thus 
violating the property that each element had to be the complement of the remainder of the set. 
The failure to make the correct sibling sets at the semantic level means that the confusion 
removal algorithm is doomed to failure prior to execution.  

The following example illustrates the effects of violating the closure rule when creating set 
groupings. In this scenario, the sibling concepts are Ci, Cj, and Cmissing. Cmissing is so termed because 
it is alternately included in the set of sibling concepts in the ontology.  

Consider again the formula: P(s|Ci)updated= P(s|Ci)initial * e (P(s|Ci)initial -max(P(s|Csibling)) /e. 

Let shot s contain the concept Cmissing, and let the initial detector scores be {P(s|Ci)=0.40, 
P(s|Cj)=0.41, P(s|Cmissing)=0.9}initial.  

The first case is when Cmissing  is included in the sibling concept set. Because Ci and Cj are 
semantically related to Cmissing, they get an ambivalent detector score on shot s. However, because 
shot s scores so highly on concept Cmissing, there is a sharp drop in their modified predictions after 
confusion removal, {P(s|Ci)=0.089, P(s|Cj)=0.092, P(s|Cmissing)=0.54}.  
 
The second case is when Cmissing is omitted from the sibling concept set, the scores then after 
confusion removal are: {P(s|Ci)=0.145, P(s|Cj)=0.152}, which is less of a decrease in confidence 
estimations. This in turn impacts the mean average precision score, as it computes, per concept, 
the average precision over a list sorted according to confidence scores. Thus P(s|Ci)=0.089 
(Cmissing not omitted) would correctly rank lower on the list than P(s|Ci)=0.145 (Cmissing omitted). 

The other case to be considered is when the elements in a set are not all complementary to 
the rest, per the requirement: ∀Ci ∈Cp • Ci occurs in s→∀Csibling ∈Cp • Csibling ≠ Ci → Csibling  
does not occur in s. Consider three concepts, {Ck, Cl, and Cm}. Concepts Ck and Cm are sibling 
concepts, while Cl is an independent concept, unrelated to both. Let shot s contain the concepts Ck 
and Cl, and let the resultant detector scores be {P(s|Ck)=0.93, P(s|Cl)=0.92, P(s|Cm)=0.11} initial.  
Ck and Cm are complementary over shot s, which is reflected in their confidence scores, and 
approximate 1 and 0 respectively. Cl is independent of either however. Because it is present in the 
sibling group its confidence score is included in the calculation, which entirely ruins the updated 
scores and the resultant MAP score, {P(s|Ck)=0.34, P(s|Cl)=0.33, P(s|Cm)=0.02} (incorrect- Cl is 
included)  Omitting Cl however, gives the following scores, {P(s|Ck)=0.77, P(s|Cm)=0.02} 
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(correct- Cl is excluded).  In a rank ordered list, the incorrect scores, from the inclusion Cl in the 
calculations, would be much lower on the list, relatively, and would thus lower the MAP score. 

 Thus the presence of an extraneous concept or the absence of one as a result of a poorly 
constructed ontology can lower the MAP scores of all the concepts in the resultant sibling sets. 
This undoubtedly played a significant role for the generally lower scores, but is not the entire 
explanation, as even groupings which have been amended to ensure the set properties discussed 
above perform worse after confusion removal. Examples of this are the sets {male, female} or 
{drawing, cartoon} 

There is a simple, numeric explanation that also must be considered. Confusion removal is 
a normalization operation, due to the division of the re-ranked score by e.  

Recall: 

P(s|Ci)updated= P(s|Ci)initial * e (P(s|Ci)initial -max(P(s|C sibling))/e. 

Inherently, re-ranked scores are lower than their initial values, due to the exponential, e[0-1]<e. 
The insight however, is that shots which have a lot of confusion, have an exponentially lower 
value, so in a rank-ordered list, the only positions which change are those of shots with a lot of 
confusion amongst related concepts. In theory, this should mean that the mean average precision 
scores for all concerned concepts should stay static, or improve as a result of the lower positions 
in the ranked list of the false positives. How come then, that the {male, female} set has decreased 
MAP scores overall? ‘Male’ has an initial MAP of 0.0678, which drops to 0.0675, and ‘female’ 
has an initial MAP of 0.0609, which drops to 0.0405. The simple answer is that sometimes the 
detectors themselves are not up to the task. In this example, both the male and female detectors 
gave low confidence estimates, which tended to 0. Shots which contained the concept and shots 
that did not, received indistinguishable estimates. The lack of detector certainty is compounded in 
the exponent, which approached 0, resulting in a larger drop in the ranked list.  

The final consideration is that the confusion removal algorithm only works if there are, in 
fact, false positives to remove. If there are none, the algorithm only causes a decrease in the 
MAPs of the concepts under consideration. An example of this occurrence is the animal 
grouping, consisting of {bird, dog, fish, horse}. All set properties discussed previously are valid 
for this grouping. Nonetheless, the MAP of the bird concept drops from 0.761 to 0.744, the MAP 
of dog stays at 0.103, the MAP of fish stays at 0.407, as does the MAP of horse at 0.0003. The 
ideal case would be detectors that gave confidence scores: P(s|Ci)=1 and P(s|Csibling) =0. In 
practice however, P(s|Ci)<1 and P(s|Csibling)>0 resulting in a non-trivial value in the exponent, e 
(P(s|Ci)initial -max(P(s|Csibling))/e, which causes a change in the position in the ranked list of a shot-score, 
and ultimately a decrease in the concept MAP. 

Ontology assisted confusion removal is a tool that employs the semantic relationships 
between sibling concepts in order to adjust a detector’s confidence level depending on the 
likelihood of a misclassification. In the current data set, only the {indoor, outdoor} set showed 
noticeable improvement, while the {beach, river, swimming pool, waterfall} showed a very mild 
improvement. Nonetheless, confusion removal has potential, although it also has some 
requirements that make it fragile to deploy, too fragile for this data set at least. Firstly, it requires 
a concept grouping that is semantically related, closed, and where, for every shot, each concept is 
complementary to the set of remaining concepts. This is not a major obstacle, but does require 
human intervention to achieve. Secondly, there is a basic level of performance required by the 
concept detectors of a sibling set before any positive improvement is noticeable. The effect of 
weak concept detectors is compounded, to the detriment of all, by this technique. Finally, there 
must be a certain amount of false positives in the concept set under consideration for the 
technique to be worthwhile. If the number is insufficient, the MAP might even decrease slightly. 
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The last point is not too much of an issue, because Sibling-confusion removal runs in linear time 
with respect to the size of the dataset, and executes quickly. As such, a trial-and-error approach is 
sufficient to determine the concepts that benefit from the application of this technique.  

4.4 Experiment 2: Ancestor boosting 
This experiment builds upon the concept ontology from the previous experiment. Instead of 
considering sibling concepts it focuses on the parent-child relationship between concepts. That is, 
the concern here is the concepts which are semantically related, where a parent concept is the 
superset of the child concept. For example, the concept ‘water body’ encompasses the concepts 
beach, river, swimming pool, and waterfall in their entirety. The goal is to improve the 
performance of a child-concept detector by considering the results from the related parent-
concept detector. This is a more detailed examination of a technique first done by Wu [48]. 

 Fewer concept examples are present in the dataset in general when a concept is 
semantically more specific. This adversely impacts the training phase of such a concept detector, 
and results in a less robust detector. Ancestor concepts, however, have broader semantic 
definitions and thus occur more frequently in the data set, and as such are detected more robustly. 
The idea behind this experiment is to leverage the performance of the more accurate and 
powerful ancestor-concept detectors to boost the performance of their child-concept detectors. 
Since the ancestor and child concepts are semantically related it seems plausible to combine the 
results of their detectors. Thus one compensates for a less accurate, but specifically targeted, 
child concept detector by using a more robust ancestor detector with a broader semantic 
coverage. 

Thus a child concept detector is a linear interpolation of all the ancestor detectors, whose 
weights are determined in a training phase. The figure below illustrates the idea. 

 

 
 
 Expressed formally, the updated confidence detector for child concept Ci, given shot s 
and ancestor concepts {Cj … Ck}, would have the following formula: 

P(s|Ci)’= λiP(s|Ci)+ λjP(s|Cj)+…+ λkP(s|Ck) 

The parameters λ are determined by empirically finding the optimum weights through the use of 
the Expectation Maximization (EM) algorithm detailed in [34] and presented below:  

1. A concept grouping is selected, consisting of a child concept {C1}, and its ancestors, 
{C2…Cn}.  
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2. Each λ1…λn is initialized with a random number in the range [0-1].  
    Steps 3 and 4 are iterated until λi  converges:  
3. For every concept Ci ∈{C1,C2…Cn} 
 For every shot s in the set of shots predicting the child concept, C1 

 βi = ∑s∈S(λiP(s|Ci)/ ∑mλj
 mP(s|Cj)

m)  
4. λi=βi /∑βj 

After sufficient iterations, λi will have been determined. These can then be used to update the 
shot scores for that particular child concept detector. 

 New child concept detectors were created for all child concepts in the MediaMill dataset by 
interpolating various ancestor-child concept combinations. The λ parameters were determined for 
all concepts in a particular ancestor-child set, by running the EM algorithm detailed above against 
the training set. In this experiment, 30 iterations were done. MAP scores for each concept were 
determined after performing Ancestor boosting on them, using the recently discovered λ 
parameters on each ancestor-child concept in the test set. The results are presented in Annex 3 
and analyzed in 4.5. The original MAP scores for child concepts are listed, followed by the MAP 
scores after ancestor boosting. Some concepts in the training set did not have scores in the full 
range [0-1], and were first normalized for compliance before the EM algorithm was applied. This 
affected the λ values, and changed the resultant MAP scores, which is also displayed. For 
comparison purposes, sometimes an ancestor concept was omitted from a sub tree.  

4.5 Ancestor boosting analysis 
In this experiment, 17 out of 61 distinct concepts had improved MAP scores. The assumption 
behind this experiment was that child concepts only occur rarely in a dataset, and thus have weak 
concept detectors. These child detectors are insufficiently able to recognize the low-level features 
that determine the semantic meaning of the concept. Ancestor concepts, on the other hand, occur 
more often, and thus have stronger detectors. Since semantically a child concept is automatically 
a subset of the parent concept, the assumption is that the low-level features that determine the 
child concept are also the features that determine the parent concept. Thus it should be possible to 
interpolate the scores from the ancestor and child concept detectors for a particular shot, and 
arrive at a more definitive detector than the original. This should be conceived of as the 
expansion of the classification boundary of the child detector, based on the classification 
boundaries of the ancestor concepts. This section analyzes and reflects upon the results garnered 
from the application of the ancestor boosting method on the MediaMill dataset. 

 Of the 94 sub-trees, 18 concepts had better MAP scores when normalization occurred 
before boosting, 11 had worse scores, and the remainder were unaffected by normalization. Since 
the MAP results with normalization were generally slightly better, these values are cited in 
subsequent passages. Out of 94 sub-trees, 21 gave improved results after ancestor boosting, while 
the remainder performed worse.  The most noticeable improvements were the sub-trees {desert, 
outdoor}, where the ‘desert’ MAP improved from 0.093 to 0.183 (96% increase), {anchor, studio, 
indoor}, where the ‘anchor’ MAP improved from 0.619 to 0.635 (2.6% increase), and 
{swimming pool, water body}, where the ‘swimming pool’ MAP improved from 0.0014 to 
0.0054 (285% increase). The remaining 73 sub trees, whose detectors performed worse after 
boosting, had MAP scores that sometimes varied mildly, but sometimes by as much as one 
significant figure.  

There are two possible causes for the variations in MAP amongst the sub-trees: 
� The semantic distance between concepts; and  
� Stronger child detectors than ancestor detectors. 



                                    Exploiting inter-conceptual relationships to boost SVM classification  
 
 
 
 

 24 

The semantic distance is the subjective measure of the closeness in meaning of two 
concepts. In the context of the ontology of the dataset, ‘building’ is semantically close to ‘house’, 
while ‘building’ is rather more semantically distant from ‘outdoor’. Although these concepts 
share the same ancestor-descendant axis, they differ considerably in meaning. A ‘house’ is an 
instance of a ‘building’, while a ‘building’ is located ‘outdoors’. Thus the first two are very 
similar, while the latter is a much more generic location. As such, the probability of the ‘house’ 
and ‘building’ concepts co-occurring in a shot is very high. The likelihood that ‘outdoors’ and 
‘building’ co-occur is considerably less.  

This has bearing on the interpolation process, where the various child and ancestor 
detectors are interpolated together to form a new detector. The EM algorithm determines the 
optimum weightings for the contribution from the child and ancestor detectors. If some of these 
ancestor-child concepts are not concurrent then the incorrect weighting is found, resulting in an 
overall MAP decrease for the interpolated detector. 

This can be seen in the results, as the ‘house’ decreases when boosted by its ancestors 
‘building’ and ‘outdoor’, from 0.00664 to 0.00605, but increases to 0.00804 when boosted by 
‘building’ alone. Likewise, the MAP for the ‘anchor’ detector improves when boosted by 
‘studio’, from 0.06192 to 0.6358, but only improves to 0.6354 when boosted by both ‘studio’ and 
‘indoor’. It can be argued that an anchor is much more closely related to a studio, than to the 
location ‘indoors’. Thus semantically close ancestors boost a child concept, while semantically 
remote ancestors only detract from it. 

The set {basketball, walking and running, people} is an interesting examination of the issue 
of semantic distance. These concepts seem related, and one would suspect an increase after 
ancestor boosting. The resultant drop in MAP, from 0.1791 to 0.0054 suggests otherwise. For this 
sub-tree, parameter estimation greatly favors the ‘people’ concept, and the resultant detector is 
more of a reduced ‘people’ detector than one that can recognize ‘basketball’. In reality, the 
semantic distance, as a measure of concurrency, between ‘basketball’ and ‘people’ is 
considerable. In the dataset, most drops in MAP performance are caused by the semantic 
dissimilarity between ancestor and child concepts.  

Some however, are simply caused by over-interpolation. The premise of ancestor boosting 
is that the child-concept detector is insufficiently trained, and that the semantically similar 
ancestor detector is more than up to the task. In that case, linear interpolation is entirely 
appropriate. However, for some concepts in the dataset, the child detector is entirely capable, and 
the ancestor classifier is the weaker classifier. The more abstract ‘water body’ and ‘animal’ 
concepts are examples of this. Interpolating with these concepts only cause a loss in specificity in 
the resultant detector, as is illustrated in the drops in performance for the {river, water body} 
detector, from MAP 0.653 to 0.253, and the {bird, animal} detector, from MAP 0.761 to 0.747. 

Ancestor boosting is a promising technique, as evinced by the number of improved child 
detectors in the dataset. For ancestor boosting to work successfully, however, it is necessary that 
ancestor and child concepts be tightly linked semantically, as this implies a high degree of 
concurrency. Some concepts in the dataset contradicted the notion that ancestor concepts would 
have better performing detectors than their child concepts. Where this was the case, the resultant 
interpolated detectors performed worse than the original concept detector. An interesting research 
question would be to see how much the performance of various child concepts would improve 
were the dataset seeded with additional intermediate level ancestor concepts. Another research 
idea would be to perform the ancestor boosting with a SVM classifier, instead of linearly 
interpolating the detectors. That is, the SVM classifier would take the outputs of the child and 
ancestor classifiers, and internally generate a combinatory classifier. There is a risk that the EM 
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algorithm for the λ parameter training over-trains, and that a SVM classifier would be more 
robust under different testing conditions.  

4.6 Experiment 3: Chi-Square boosting 
In the previous two experiments, an ontology was used to determine the relationships between 
concepts, prior to concept boosting. Inspired by Yan [67] and Hauptmann[23], who used the chi-
square test to find related concept pairs, this experiment determines concept correlations through 
the application of this method. The chi-square test does not imply a structured relationship, as the 
tree-hierarchy of an ontology might, but simply identifies concept pairs that are significantly 
related, in other words, concepts that frequently occur together in the same shot.  

The assumption made is that the training set, containing the ground-truth values on which 
the chi-test operates, is representative of the larger dataset. Provided this is true, the concept 
relationships learned from the training set can be used to improve the detectors of the whole set. 

The insight behind this method is that if a concept is significantly related to another 
concept, then the chance of the other related concept also appearing in a shot is very high. In 
essence, one could use the detector for one concept and still detect the related concept, simply 
because the presence of one implies the other. Thus one could compensate for a poorly 
performing concept detector by using the detector from the related concept. If the representative 
features of each of the concomitant concepts are fairly independent of each other, a combined 
detector could potentially perform more robustly for both concepts because it would perceive 
both sets of representative features. If one set of features was feint, it could still detect the other 
set of features. 

4.7 Chi-Square explained 
 Pearson’s chi-square test was used to evaluate each concept pair in order to determine 

whether they had similar frequency distributions for their ground-truth values. The chi-square is 
the result of the sum of all the squares of the difference of the observed frequency and the 
expected frequency, divided by the expected frequency. This is expressed in the following 
formula: 

 χ2= ∑
n
i=1 (Oi-Ei)

2/Ei  where Oi is the observation, and Ei the expected value, at the i-th 
element in a table with n elements. 

In order to get meaningful results this entailed partitioning the ground truth set, and for each 
concept-pair, drawing up contingency tables that detailed the number of concept occurrences in 
each partition. For example: 

#of observed occurrences Frames 1...k k+1...2k … n-k+1…n  

Concept 1 2 4 … 6 Row total=12 

Concept 2 1 2 … 3 Row total=6 

Totals Column total=3 Column total=6 … Column total=9 Grand total=18 
 

Thus for the above example, where concepts 1 and 2 are subdivided into partitions of size k:  

Let k=3 

The expected value is computed by taking the row total(i)/grand total*column total(i). E.g. for 
i=4 (the above table has 6 elements in total-the 4th element is the first column of the second row) 
E4=(6/18*3) 
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χ2=(2-(12/18*3))2/(12/18*3)+(4-(12/18*6)) 2/(12/18*6)+…+(6-(12/18*9) 2/(12/18*9)+ 

      (1-(6/18*3))2/(6/18*3)+(2-(6/18*6)) 2/(6/18*6)+…+(3-(6/18*9) 2/(6/18*9)=0  

If χ2 is less than a threshold value, determined by consulting the chi-square distribution for the 
degrees of freedom and the significance value, then the two concepts are deemed related.  The 
significance value used for the chi-square tests in this experiment was 0.05, as this is considered 
the criterion for statistical significance. There are (k-1) degrees of freedom in the above example. 
Consultation of the chi-square distribution for (k-1) degrees of freedom and a significance value 
of 0.05 gives a value of approximately 5.991. Because χ2=0<5.991, the two concepts are related. 
In practice, the row totals are determined from the ground-truth annotations for each concept, and 
the column totals are calculated at run time, as is the degree of freedom. 

 In order to perform a meaningful chi-square test, the key-frames and their ground-truth 
values had to be partitioned into smaller sets.  The partition size for these sets had to be carefully 
chosen. There are concepts in the MediaMill dataset with fewer than 100 instances so the 
partition size had to be significantly less than that. One criterion for the validity of the chi-square 
test is that each cell has to have at least 5 observations. A decrease in the partition size results in 
more concept-pairs being identified, at the expense of an increase in the number of false positives 
as the 5-observation requirement is violated. This is especially likely with sparse concepts. The 
following example illustrates the effect of a decrease in partition size. Consider two concepts, 
with a partition size of 2 on their ground-truth values: 

Concept 1 TT FF TT … FF 

Concept 2 TT FF TF … FF 
 

For the sake of the argument, say that these two concepts are not related according to the chi-test, 
because even though the first column has an equal amount of true shots for both concepts, they 
differ in the third column. Partitions containing only false shots are ignored. With only one out of 
two partitions in common, the frequency distributions of the two concepts are too dissimilar to 
consider them significantly related. Decreasing the partition size from 2 to 1 would cause the 
following: 

Concept 1 T T F F T T … F F 

Concept 2 T T F F T F … F F 
 

Now the two concepts have three out four partitions in common, which would be cause enough to 
consider them significantly related. A small enough partition induces a similar frequency 
distribution between concepts, because of the trivial amount of elements per partition. Hence the 
5-observation requirement as the minimum size for a partition in a chi-square test. For video 
retrieval, it should probably be larger than that.  

 With a partition size of 10, 55 concept pairs were identified, although a number of these 
were false positives, i.e. {duo_anchor, clinton}. Instead, a partition size of 40 was used for the 
experiment, which identified 23 concept pairs. 

 New concept detectors were created for each of the reported concepts, by interpolating the 
concepts of each pair using the procedure first reported in section 4.3. When a specific concept 
appeared in more than one pair, a detector was created by interpolating all the related concepts. 
The MAP results for the updated concept detectors are presented in Annex 4. Concept pair 
generation was done using the whole data set, i.e. both the training and test sets combined, in 
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order to get a fairer idea of concept relationships. Parameter training, as per 4.3, was done on the 
training set alone though. 

4.8 Chi-Square boosting analysis 
The 23 identified concept pairs were made up of 36 unique concepts. 22 of these 36 concepts had 
detectors who showed an improvement in MAP. 46 detectors were created as a result of pair-wise 
concept interpolations, and 9 concept detectors resulted from interpolations of more than two 
concepts. The MAP results obtained with a normalized training set were better than those without 
normalization, and so the normalized values are used for this analysis.  

 27 of the 46 concept pairs showed an improvement after interpolation. Of the 27, 18 
concepts in a pair both improved. It is interesting to examine a few concept pairs, and to 
speculate about their results.  

 For the sets: {horse, horse_racing} and {flag, flag_usa}, ‘flag_usa’ and ‘horse_racing’ are 
in fact strict subsets of ‘flag’ and ‘horse’. In fact, this had already been established in the 
ontology and ancestor boosting section of 4.2. More interesting is that the ancestor detectors 
perform better when combined with their child detectors. This is contrary to the assumption that 
ancestor detectors are stronger than their child detectors, which was made in the Ancestor 
boosting section. A possible explanation for this behavior may rest with the distinguishing 
features for the semantic content of each concept, which varies slightly, and the number of 
training examples for each concept. ‘Horse_racing’ is a ‘horse’ detector, with an added motion 
component. Likewise ‘flag_usa’ is a ‘flag’ detector, with specialized color components specific to 
the American flag. Child detectors that detect specialized feature components with a high degree 
of certainty boost the ancestor concept detectors, ‘horse’ and ‘flag’. The child components, 
‘horse_racing’ and ‘flag_usa’, benefit from ancestor detectors more capable of detecting the 
generic concept. In essence, both ancestor and child concept detectors engage in a sort of mutual 
error compensation. A possible explanation for why these detectors are able to engage in mutual 
error compensation may be that the individual detectors are not expert enough, due to a lack in 
positive training examples. In the whole set, there are around 500 positive examples for ‘flag’, 
400 for ‘flag_usa’, around 50 for ‘horse’ and 40 for ‘flag’. 

 Different cases are concept pairs: {building, tower}, {building, house}, {graphics, charts}, 
and {graphics, maps}. Although ‘building’ and ‘graphics’ are still the supersets of {house, tower} 
and {charts, maps} respectively, they are larger than the combined sum of these child subsets.  
The child concepts improve because of the contribution from more powerful ancestor detectors, 
per the reasoning originally discussed in the Ancestor boosting section. More interesting is the 
improvement of the superset concepts, ‘building’ and ‘graphics’. Using ‘building’ as an example, 
one should realize that ‘house’ and ‘tower’ make up a large proportion of the ‘building’ set, with 
a minor feature contribution from other concepts. The generic ‘building’ detector thus is capable 
of recognizing the various specialized building instances. The ‘building’ detector becomes much 
more specialized, however, after interpolation with either ‘house’ or ‘tower’. Since the detector is 
better able to recognize the specialized building instances that occur frequently, i.e. it is less 
confused by the features from the infrequently occurring sub-types; there is an overall increase in 
detection performance.  This is illustrated by the fact that the MAP increase for the interpolated 
detector resulting from {house, tower} is greater than the increase for {house, building}, and that 
there are many more instances of ‘tower’ in the ‘building’ set, than there are instances of ‘house’. 
Of note is that the interpolated building detector {building, house, tower} specializing in 
recognizing the most predominant building subtypes, ‘house’ and ‘tower’ gives a MAP of 
0.23409, thus outperforming the specialized detectors resulting from interpolating {building, 
tower} or {building, house} alone. The ‘graphics’ concept behaves similarly. A MAP gain, from 
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MAP: 0.38149 to MAP: 0.38153, is seen for ‘graphics’ when specializing it on ‘maps’, which is 
the most predominantly occurring subtype. A MAP decrease is observed when specializing it on 
the less frequently occurring child class, ‘charts’. Also specializing ‘graphics’ on both ‘charts’ 
and ‘maps’ leads to a MAP decrease. 

 The final category of observations pertain the concept pairs which are disjoint, such as 
{lahoud, chair}, {military, fire weapon} or {duo_anchor, swimming pool}. Neither concept is a 
subset or superset of the other, and has only been identified because the chi-square test has 
noticed their similar frequency distributions. They did not appear in the ontology used in the 
Sibling-confusion removal and Ancestor boosting techniques, nor would one make the 
association giving the semantic connotations of each concept. These pairs simply occur because 
many shots which contain ‘lahoud’ also contain a ‘chair’. The fact that both the revised detectors 
for ‘chair’ and ‘lahoud’ show improvement suggest there is merit in detecting for disjoint 
concepts that often occur together. Like the {flag, flag_usa} concept detectors, the revised 
detectors for ‘chair’ and ‘lahoud’ are more robust as they detect for both sets of representative 
features. However, the same sources of error for {flag, flag_usa} are also possible for {lahoud, 
chair}, as all concepts have relatively few positive training examples.  An additional potential 
source of error is the size of the partition. A different partition size might result in a chi-square 
test that does not consider {lahoud, chair} to have similar frequency distributions. Still, the 
improvement in MAP mitigates the argument. 

  One can make a number of categorizations about the types of MAP improvements observed 
in the results. 

� Child (subset) concepts leveraged the functionality of their more powerful ancestor concept 
detectors. These concepts are identical to that of Ancestor Boosting, section 4.3, and the 
same sources of error apply. 

� Parent (superset) concepts which benefited from specializing on their most frequently 
occurring child concepts. 

� Concepts that singularly, or mutually, benefited from detecting the related concept and thus 
implicitly a different feature set. These concepts may be entirely disjoint, or part of an 
ancestor-descendent relationship. This category is the most interesting, as one would not 
associate some of the disjoint concepts together because of their different semantic 
meanings.  

4.9 Chi-square Conclusion 
Chi-square is a powerful method because it discovers concept relationships which are not 
immediately apparent from their semantic meaning. In contrast, the relationships used for 
Ancestor boosting are taken straight from an ontology. The two methods are complementary 
however. Most of the relationships discovered in Ancestor boosting can also be seen in the chi-
square results. Some, such as {desert, outdoor} are not.  

 The chi-square determines concept relationships from the ground-truth annotations. This 
does make the assumption that the training set is representative of the larger dataset, lest the 
incorrect relationships be made. In contrast Ancestor boosting is dependent only on an ontology, 
which is independent of the training set, as it is determined only based on the semantic meanings 
of the various concepts. Nonetheless, more concepts that result in a MAP gain are identified with 
chi-square than with Ancestor boosting, a total of 22 for chi-square compared with 17 for 
Ancestor boosting. 

Chi-square is sensitive to variations in the size of the partitions used to divide the ground-
truth annotations of each concept. A number of factors influence the choice of partition size, and 
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more research needs to be done on the choice of partition size and significance level in order to 
determine the best values that return the largest amount of concept pairs while minimizing the 
amount of irrelevant pairs. 

Another matter for future consideration is replacing the concept detector interpolation 
procedure with a SVM classifier. As previously stated in 4.3, there is a risk that the EM algorithm 
for the λ parameter training over-trains, and that a SVM classifier would be more robust under 
different testing conditions.  
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Chapter 5 

Conclusion 

The literature survey that was the formative part of this thesis covered the early beginnings 
of semantic concept detectors up to the state of the art systems and techniques used today. This 
served to introduce three techniques, which further improve modern concept detectors, based on 
the exploitation of the inter-conceptual relationships between the various semantic concepts 
within a dataset.  

The first two techniques, Sibling-confusion removal and Ancestor boosting, employ an 
ontology to determine the relationships between the concepts of a dataset.  

Sibling concepts are semantically very related, and this tends to be reflected in their feature 
sets, which also are likely to be very similar. This causes confusion among their concept 
detectors, as they misclassify data into one semantic class while in reality the data belongs to a 
different, mutually exclusive, sibling class. The Sibling-confusion removal technique reduces the 
amount of false positives detected by normalizing detector scores based on the confusion factor, a 
number that indicates the likelihood of a false positive occurring for a particular shot. When run 
on the MediaMill dataset, Sibling-confusion removal resulted in improved MAP scores for 30 out 
of 64 concepts. Although the technique showed some promise, it was sensitive to a number of 
negative influences. This technique was hampered by a poor set of sibling concept groupings 
provided by the ontology.  These groupings have to contain concepts which are semantically 
related, closed, and where, for every shot, each concept is complementary to the set of remaining 
concepts, which was not always the case. Next, there is a basic level of performance required by 
the concept detectors of a sibling set before any positive improvement is noticeable. The effect of 
weak concept detectors was compounded by the application of Sibling-confusion removal. 
Finally, there have to be a certain amount of false positives in the concept set under consideration 
for the technique to be worthwhile. In many cases, this was not so, and the application of the 
technique led to a decrease in MAP. 

Sibling-confusion removal can easily be improved by refining the ontology on which it 
depends. A human operator can better order the concepts within the ontology to create the correct 
sibling concept groupings on which this technique depends. Since Sibling-confusion removal 
runs in linear time with respect to the size of the dataset, and executes quickly, a trial-and-error 
approach can be used to determine the concepts that benefit from the application of this 
technique. 

The premise of the Ancestor boosting technique is that ancestor concepts occur more often 
in the dataset, and thus have more robust detectors, than child concepts. Because ancestor 
concepts are supersets of child concepts, and thus should occur together, it is possible to improve 
child concept detectors by interpolating them with their ancestor concept detectors, thereby 
increasing the decision boundaries of the child concept detectors. When applied to the dataset, 
Ancestor boosting resulted in improved MAP scores for 17 out of 61 distinct concepts. The 
failure to improve certain concept detectors was due to the semantic distance between the child 
and ancestor concepts, which meant that there often was little correlation between ancestor and 
child concepts. Another reason was that the notion that ancestor concept detectors were more 
robust than child concept detectors proved to be incorrect.  

Further improvements for this technique could be achieved performing ancestor boosting 
with a SVM classifier, instead of linearly interpolating the detectors. That is, the SVM classifier 
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would take the outputs of the child and ancestor classifiers, and internally generate a combinatory 
classifier. There is a risk that the EM algorithm for the λ parameter estimation over-trains, and 
that a SVM classifier would be more robust under different testing conditions.  

Chi-square boosting utilizes the chi-square test to identify concepts with similar frequency 
distributions from a sample of the dataset. This is used to infer concepts that frequently occur 
together. Detector performance is increased because detectors can make use of the presence of 
one concept to infer the presence of the related concept.  Chi-square boosting resulted in an 
improvement in 22 out of 36 concepts. Comparatively, this is a greater increase than delivered by 
the Ancestor boosting and Sibling-confusion removal techniques. The concept improvements 
could be attributed to: child concepts leveraging the functionality of their more powerful ancestor 
concept detectors (identical to Ancestor boosting), parent concepts which specialized on their 
most frequently occurring child concepts, and concepts which singly or mutually benefited from 
detecting the related concept and thus implicitly a different feature set. 

Chi-square does not depend on an ontology to determine concept relationships. It does, 
however, assume that the training set is a representative sample of the overall dataset when 
determining the various concept relationships. Chi-square is also sensitive to variations in the 
significance level and partition size parameters when performing the chi-test to determine 
concept relationships. This should be further explored in order to determine whether additional 
concept relationships could be discovered that would lead to further concept boosting. The 
interpolation procedure that creates new concept detectors is identical to the one in Ancestor 
boosting, and for like reasons it should be determined whether an SVM classifier should replace 
this interpolation procedure. 

 A further direction of research is to investigate the effects of combining the three 
techniques presented. Ancestor boosting and Chi-square boosting are very similar in nature, so 
the logical approach would be to take the union of the concept detectors resulting from these two 
techniques, prior to applying Sibling-confusion removal. It is not possible to applying Sibling-
confusion removal first, as the re-ranking procedure breaks the confidence metric. A brief inquiry 
suggests that the above combination results in additional MAP improvements, better than the best 
single boosting technique. A table with some preliminary findings follows: 
 
Table: Combined boosting     
       

Concept 
Original 
MAP 

Best Ancestor 
or Chi boosting 
MAP 

Sibling-confusion 
removal MAP 

Best single 
detector % change 

Ancestor or Chi 
Boosting followed by 
Sibling-confusion 
removal MAP 

Combined % 
change 

Charts 0.2541 0.2658 0.2697 6.13% 0.3049 19.98% 
Maps 0.3039 0.3383 0.2989 11.32% 0.2878 -5.31% 
Tower 0.0235 0.0254 0.0223 8.07% 0.0255 8.46% 
House 0.0066 0.0080 0.0066 21.15% 0.0081 21.37% 

Government 
building 0.0793 0.0793 0.0793 0.02% 0.0794 0.09% 
 
 
There are too few concepts in the current dataset however, which have both MAP improvements, 
from Ancestor or Chi-square boosting, and which also are sibling concepts, to make informed 
judgments about the effectiveness of combining these techniques.  
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Annex 1  

SVM Theory 

 

Given training vectors (i.e. low-level graphical or 
textual features) xi and their associated class labels 
(i.e. whether a semantic concept in the shot, true 
or false) yi, (xi, yi) for i=1, 2…L where L is the 
number of training samples, and labels yi ∈{1,-1}, 
a SVM must construct a model from this training 
set which will allow it to predict unlabeled vectors 
in the future. It does so by applying a function φ, 
which maps the training vectors xi into a higher 
dimensional space, whereupon the SVM finds a 
linearly separating hyperplane that maximally 
separates the two classes. [24, 25] The intuitive 
idea behind the mapping is to ensure that there is 
an easy, linearly separable classification of the 
training set in the higher dimension, even if this 
was not the case in the dimension of the input 
space.      Source: [24] 

This transformation also reduces the risk of curse of dimensionality [63], and the maximally 
separating hyper plane prevents overtraining. 

The formula of a hyper plane is given by x.w+b=0 where w is the normal vector, |b|/||w|| the 
perpendicular distance from hyperplane to the origin, and ||w|| the Euclidian norm of w. Given a 
hyperplane, x.w +b, which separates the two classes, define d+ and d- as the shortest distance 
from the hyperplane to the closest positively and closest negatively labeled examples. Then the 
margin of the hyperplane can be given as  d+ + d-. [11] The SVM algorithm seeks to find the 
hyperplane with the largest margin, intuitively because this ensures the data is as ‘far’ away as 
possible from the decision boundary, thus minimizing the risk of over fitting the data and of 
misclassifying future examples.  

Thus for the linearly separable case, the constraints on the training data can be formulated 
as follows: 

  I xi
.w+b≥+1 for yi=+1 

 II x i
.w+b≤-1 for yi=-1, which combined is written as: 

III y i(xi
.w+b)-1 ≥0 for all i 

 
The points for which equality I holds lie on hyperplane H1 : xi

.w+b=1, with normal w and 
perpendicular distance from the origin |1-b|/||w||. 
The points for which equality II holds lie on hyperplane H2 : xi

.w+b=-1, with normal w and 
perpendicular distance from the origin |-1-b|/||w||.  
Hence the margin= d+ - d-= (1-b)/||w||-(-1-b)|/||w|| = 2/||w||  
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In order to maximize the margin, ||w||/2 = 
wTw/2 must be minimized, subject to the 
constraints yi(xi

.w+b)-1 ≥0 for all i [11]. 
Therefore the problem of finding the optimal 
hyperplane is a constrained quadratic 
optimization problem, which is solvable in 
polynomial time [24]. Training points which 
satisfy equality III, and thus lie on either of the 
hyper planes H1 or H2, are called support 
vectors because they actively affect the 
solution. These points are marked with an 
extra circle. The above proof does not consider 
the non-separable case, which could occur 
with erroneous training points or true 
positives, outliers on the far side of the

 decision boundary. 
Source: [11] 
    
Nonetheless, a linearly separating hyperplane can be constructed by introducing a slack 
variable ξi. The minimization problem then becomes: wTw/2+ Ci=1ΣL ξi  subject to the 
constraints yi(xi.w+b)-1 +ξi  ≥0 ∀i ,  ξi  ≥0 [25] . Thus positive values ξi >0 correspond to training 
examples that have violated the constraints, either they are misclassified or they are correctly 
classified and fall within the margin. 

C is a parameter, chosen by the user, which assigns a penalty to error. Outliers can be 
considered support vectors that contribute to the placement of the hyper plane-decision boundary. 
As such, C can be varied to affect their 
influence. Erroneous seeming data points can 
be penalized and have their influence reduced 
on the selection of the hyper plane-decision 
boundary. This would maximize the margin, 
and would correspond to selecting a low C 
value, thus moving the hyperplane away from 
the outliers. If instead, outliers were to be 
favored, as would be the case if they were 
treated as true positive classifications, a high 
C value ought to be chosen. This would move 
the hyperplane closer to the outliers, thereby 
minimizing training error but also resulting in 
a decreased margin. [10] 

Earlier it was stated that SVMs map input data 
into a much higher dimensional feature space, 
where it would be much more likely that the 
data was linearly separable.         Source: [11] 

This mapping is done by a function, φ and the SVM conditions become:  

Minimize w,b, ξ : wTw/2+ Ci=1ΣL ξi ; 
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subject to the constraints yi (φ(xi).w+b)-1 +ξi  ≥0 ∀i ,  ξi  ≥0 [25] 

An important point is that computationally, the data does not explicitly have to be mapped 
to the higher-dimensional space which is an expensive operation, rather computing the dot 
product in this space is sufficient.[10, 24, 25] As such, SVMs use kernel functions of the form:  
K(x i,xj)= φ(xi

T)φ(xj) to perform this transformation. 

Kernels currently in use are: 

linear: K(xi, xj) = xT
ixj 

polynomial: K(xi, xj) = (γxT
ixj + r)d,  γ> 0. 

radial basis function (RBF): K(xi, xj) = exp(−γ||xi − xj||
 2),  γ> 0. (γ=1/ (2σ2)), 

sigmoid: K(xi, xj) = tanh(γxi
Txj + r). [24, 25] 

where r, d, and γ are kernel parameters that are experimentally determined through cross-
validation during the SVM learning stage. 

 
The sigmoid kernel trains a SVM as a 3-layer neural network. [24][11] For general purpose 

classification, both the RBF [25] and polynomial [10] kernels are recommended. Hsu et al. 
further endorse the RBF kernel because it is a non-linear mapping, thus allowing for training data 
which is not separable in the input domain. Also, the RBF kernel supersedes the linear kernel, as 
the linear kernel is a special case of a RBF kernel. They also argue that the RBF kernel is simpler 
to train than the polynomial kernel, as it has less kernel parameters, one as opposed to two. 
Finally they argue that RBF kernels do not suffer from numerical difficulties, 0<Kij<1, whereas 
the polynomial kernel (γxT

ixj + r>1) d may go to infinity, or zero (γxT
ixj + r<1) d, for large d. 

Likewise they argue that the sigmoid kernel may not be valid for certain parameters. [25] 
During SVM training with the RBF kernel, the parameters γ, C, and the positive and 

negative weights of training examples may be varied to produce a different model. The γ and C 
have been discussed thoroughly above, but the training weights have not been mentioned. These 
weights are used in cases where there are few positive training examples. By assigning a higher 
weight to positive examples, the SVM is forced to include the positive instances of a class in 
determining the demarcating hyperplane. This is necessary for cases with a significantly larger 
number of negative examples; where if the positive weight is not set, the SVM may optimize on 
the many negative examples and create a decision boundary unable to detect positive instances. It 
may be trivially accurate as it is able to classify negative instances with a high degree of 
certainty, but it isn’t able to detect the few, relevant, positive cases of the class at all. 



 
 
 
 
 

 40 

Annex 2  

Sibling-confusion removal results 

The following table shows the sibling concepts present in the ontology, their original MAP, and 
the updated MAP after the confusion removal algorithm had been run.  Their parent concept is 
listed as well, or Root, if they had none. Some sibling sets had additional concepts added, labeled 
superset, or concepts removed, labeled subset. This was done because the operation seemed 
logical from a semantic perspective, in order to gain insight into whether it affected the MAP.  

 
Table 2 Sibling-confusion removal results    
     
Parent class Concept Original MAP   Updated MAP 
    

Performance 
change 

     
Studio splitscreen  0.3210 0.3373 5.08% 
Root (subset) ‘location’ snow  0.0452 0.0472 4.42% 
Studio newspaper 0.1212 0.1263 4.20% 
Face bush_jr  0.0396 0.0407 2.70% 
Sports soccer  0.0793 0.0814 2.59% 
Face table  0.0375 0.0385 2.57% 
Face kerry  0.0022 0.0022 2.00% 
Original indoor  outdoor  0.7095 0.7212 1.65% 
Studio weather  0.7068 0.7181 1.60% 
Root node indoor  0.5926 0.6019 1.56% 
Face clinton  0.1894 0.1923 1.54% 
Face powell  0.0849 0.0859 1.21% 
Face tony_blair  0.0147 0.0148 0.89% 
Vehicle car  0.2458 0.2479 0.85% 
Root(subset) ‘program type’ Drawing_cartoon 0.1811 0.1823 0.66% 
Root(subset) ‘program type’ Drawing_cartoon   0.1811 0.1823 0.62% 
Animal dog    0.1027 0.1034 0.61% 
government leader (superset) hassan_nasrallah   0.0044 0.0045 0.46% 
government leader (superset) bush_sr  0.0001 0.0001 0.31% 
Face arrafat  0.0342 0.0343 0.25% 
Face bush_sr  0.0001 0.0001 0.13% 
Face sharon  0.0348 0.0348 0.13% 
Building house 0.0066 0.0066 0.11% 
Face monologue  0.0736 0.0736 0.08% 
Face hassan_nasrallah   0.0044 0.0045 0.07% 
Water body (superset) swimming pool  0.0014 0.0014 0.03% 
Root(subset) ‘program type’ Entertainment  0.2565 0.2566 0.03% 
Building govt. building  0.0793 0.0793 0.02% 
Water body (superset) waterfall  0.4152 0.4153 0.02% 
Water body waterfall  0.4152 0.4153 0.02% 
Face duo_anchor  0.1080 0.1080 0.01% 
Animal fish   0.4075 0.4076 0.01% 
Original drawing  drawing  0.0440 0.0440 0.01% 
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Water body (superset) river  0.6540 0.6540 0.00% 
Sports cycling  0.8875 0.8875 0.00% 
Face allawi  0.0022 0.0022 0.00% 
government leader (superset) kerry  0.0022 0.0022 0.00% 
explosion nightfire  0.2489 0.2489 0.00% 
explosion candle  0.0801 0.0801 -0.01% 
Water body swimming pool  0.0014 0.0014 -0.01% 
Root (subset) ‘location’ studio  0.6653 0.6652 -0.02% 
Water body (superset) beach  0.0652 0.0652 -0.03% 
Water body beach  0.0652 0.0652 -0.03% 
Root(subset) ‘program type’ Entertainment  0.2565 0.2564 -0.04% 
government leader (superset) arrafat  0.0342 0.0341 -0.14% 
Face anchor  0.6192 0.6172 -0.33% 
People male    0.0678 0.0676 -0.38% 
Sports football  0.0197 0.0196 -0.38% 
Face lahoud  0.1151 0.1146 -0.47% 
government leader (superset) lahoud  0.1151 0.1145 -0.55% 
Root (subset) ‘location’ Mountain  0.0918 0.0912 -0.60% 
Root (subset) ‘location’ Desert  0.0933 0.0927 -0.66% 
government leader (superset) powell  0.0849 0.0842 -0.83% 
Studio anchor  0.6192 0.6138 -0.88% 
Face hu_jintao  0.0436 0.0432 -0.95% 
government leader (superset) bush_jr  0.0396 0.0392 -1.01% 
Sports golf  0.0424 0.0419 -1.09% 
Root(subset) ‘program type’ weather  0.7068 0.6974 -1.34% 
Vehicle truck  0.0418 0.0411 -1.53% 
Animal horse  0.0003 0.0003 -1.60% 
Face splitscreen  0.3210 0.3158 -1.61% 
government leader (superset) allawi  0.0022 0.0022 -1.67% 
government leader (superset) hu_jintao  0.0436 0.0428 -1.93% 
Animal bird   0.7611 0.7442 -2.23% 
Vehicle bus  0.0088 0.0086 -2.25% 
government leader (superset) clinton  0.1894 0.1848 -2.41% 
government leader (superset) tony_blair  0.0147 0.0143 -2.52% 
Sports tennis  0.2985 0.2905 -2.68% 
Vehicle aircraft  0.1147 0.1115 -2.82% 
Original drawing  cartoon  0.2783 0.2683 -3.57% 
Face male  0.0678 0.0654 -3.57% 
Sports basketball  0.1791 0.1720 -3.94% 
Face female  0.0610 0.0579 -5.11% 
Studio duo_anchor  0.1080 0.1024 -5.17% 
Building tower  0.0235 0.0223 -5.26% 
Root (subset) ‘location’ water body  0.1317 0.1213 -7.93% 
Face government_leader  0.2218 0.2000 -9.83% 
Vehicle tank  0.0107 0.0097 -10.06% 
Vehicle boat  0.0834 0.0714 -14.34% 
government leader (superset) sharon  0.0348 0.0280 -19.41% 
Root(subset) ‘program type’ Sports  0.2307 0.1678 -27.28% 
Root(subset) ‘program type’ Sports  0.2307 0.1667 -27.78% 
Sports racing  0.1754 0.1261 -28.08% 
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Root (subset) ‘location’ urban  0.1948 0.1351 -30.63% 
People female  0.0610 0.0406 -33.44% 
Vehicle bicycle  0.2234 0.1223 -45.25% 
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Annex 3  

Ancestor boosting results 

 

The original MAP score for the child concept is listed, followed by the MAP score after ancestor 
boosting. Some concepts in the training set did not have scores in the full range [0-1], and were 
first normalized for compliance. This affected the λ values, and changed the resultant MAP 
scores, which is the last category on display. For comparison purposes, sometimes an ancestor 
concept was omitted from a sub tree. The child concept is the leftmost element in each set, and 
ancestors are listed in ascending order. 

Table 3 Ancestor boosting results 
      

Sub-tree  Concept 
Original 

MAP 
Boosted 

MAP 
    

Boosted and 
Normalized 

MAP 

Performance 
change 

      
swimming pool, water body  swimming pool 0.0014 0.0054 0.0054 285.54% 
tank, vehicle  tank  0.0107 0.0300 0.0250 132.91% 
desert, outdoor  desert  0.0933 0.1837 0.1837 96.87% 
swimming pool, water body, 
outdoor  swimming pool 0.0014 0.0021 0.0021 48.04% 
basketball, sports  basketball  0.1791 0.2207 0.2207 23.26% 
bus, vehicle  bus  0.0088 0.0117 0.0108 21.89% 
house, building  house  0.0066 0.0080 0.0080 21.15% 
maps, graphics  maps  0.3039 0.3383 0.3383 11.32% 
explosion, violence  explosion  0.0782 0.0857 0.0857 9.61% 
tower, building  tower  0.0235 0.0239 0.0254 8.07% 
tennis, sports  tennis  0.2985 0.3184 0.3184 6.65% 
charts, graphics  charts  0.2541 0.2657 0.2658 4.58% 
anchor,  studio  anchor  0.6192 0.6358 0.6358 2.69% 
anchor,  studio, indoor  anchor  0.6192 0.6355 0.6355 2.62% 
anchor, indoor  anchor  0.6192 0.6334 0.6334 2.29% 
horse_racing, horse  horse_racing  0.0003 0.0003 0.0003 0.71% 
flag_usa,  flag  flag_usa  0.1568 0.1573 0.1573 0.31% 
night fire, explosion  night fire  0.2489 0.2495 0.2495 0.25% 
studio, indoor  studio  0.6653 0.6657 0.6657 0.05% 
face, people  face  0.8921 0.8922 0.8922 0.01% 
cycling, bicycle  cycling  0.8875 0.8875 0.8875 0.00% 
allawi, government leader, face  allawi  0.0002 0.0002 0.0002 0.00% 
drawing, drawing_cartoon  drawing  0.0440 0.0440 0.0440 0.00% 
cartoon, drawing_cartoon  cartoon  0.2783 0.2783 0.2783 0.00% 
fish, animal  fish  0.4075 0.4066 0.4066 -0.22% 
car, vehicle  car  0.2458 0.2432 0.2432 -1.08% 
football, sports  football  0.0197 0.0194 0.0194 -1.19% 
basketball, walking_running  basketball  0.1791 0.1753 0.1765 -1.47% 
bird, animal  bird  0.7611 0.7466 0.7466 -1.92% 
candle, explosion  candle  0.0801 0.0784 0.0784 -2.16% 
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urban, outdoor  urban  0.1948 0.1877 0.1877 -3.65% 
golf, sports  golf  0.0424 0.0404 0.0404 -4.70% 
bush_jr, government leader, 
face  bush_jr  0.0396 0.0375 0.0375 -5.30% 
soccer, sports  soccer  0.0793 0.0745 0.0745 -6.07% 
anchor, face  anchor  0.6192 0.5714 0.5714 -7.72% 
military, walking_running  military  0.2370 0.2370 0.2182 -7.93% 
split screen, indoor  split screen  0.3210 0.2950 0.2954 -7.96% 
house, building, outdoor  house  0.0066 0.0061 0.0061 -8.82% 
splitscreen,  studio, indoor  split screen  0.3210 0.2923 0.2926 -8.85% 
smoke, violence   smoke  0.3659 0.3323 0.3324 -9.15% 
cloud, sky  cloud  0.0785 0.0710 0.0710 -9.53% 
river, waterbody  river  0.6540 0.5872 0.5872 -10.20% 
boat, vehicle  boat  0.0834 0.0747 0.0747 -10.41% 
weather, indoor  weather  0.7068 0.6024 0.6024 -14.78% 
weather,  studio, indoor  weather  0.7068 0.6013 0.6013 -14.93% 
horse_racing, horse, animal  horse_racing  0.0003 0.0002 0.0002 -15.58% 
truck, vehicle  truck  0.0418 0.0348 0.0348 -16.65% 
cloud, sky, outdoor  cloud  0.0785 0.0612 0.0612 -22.05% 
aircraft, vehicle  aircraft  0.1147 0.0880 0.0879 -23.40% 
Original arrafat   arrafat  0.0342 0.0259 0.0261 -23.53% 
female, face  female  0.0610 0.0466 0.0466 -23.66% 
road, outdoor  road  0.2123 0.1598 0.1599 -24.65% 
football, walking_running  football  0.0197 0.0137 0.0137 -30.59% 
female, face, people  female  0.0610 0.0408 0.0408 -33.05% 
mountain, outdoor  mountain  0.0918 0.0610 0.0610 -33.55% 

government leader, face 
 government 
leader  0.2218 0.1404 0.1404 -36.71% 

tower, building, outdoor  tower  0.0235 0.0145 0.0145 -38.15% 
kerry, government leader  kerry  0.0022 0.0013 0.0013 -38.36% 
male, face, people  male  0.0678 0.0406 0.0406 -40.07% 
tree,  outdoor  tree  0.0626 0.0344 0.0344 -45.05% 
male, face  male  0.0678 0.0360 0.0360 -46.85% 
soccer, walking_running   soccer  0.0793 0.0418 0.0410 -48.30% 
male, people  male  0.0678 0.0347 0.0347 -48.82% 
female, people  female  0.0610 0.0304 0.0304 -50.13% 
cycling, sports  cycling  0.8875 0.3986 0.3986 -55.09% 
tennis, walking_running  tennis  0.2985 0.1311 0.1298 -56.52% 
car, vehicle, outdoor  car  0.2458 0.0989 0.0989 -59.76% 
monologue, overlayed_text  monologue  0.0736 0.0291 0.0291 -60.49% 
river, waterbody, outdoor  river  0.6540 0.2532 0.2532 -61.28% 
office, indoor  office  0.0452 0.0166 0.0166 -63.25% 
monologue, people  monologue  0.0736 0.0251 0.0251 -65.90% 
racing, sports  racing  0.1754 0.0577 0.0577 -67.10% 
boat, vehicle, outdoor  boat  0.0834 0.0268 0.0268 -67.88% 
meeting, indoor  meeting  0.2109 0.0645 0.0645 -69.40% 

Original government building  
 government 
building  0.0793 0.0246 0.0225 -71.70% 

military, walking_running, 
people  military  0.2370 0.0596 0.0596 -74.85% 
table, indoor  table  0.0375 0.0093 0.0093 -75.22% 
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dog, animal  dog  0.1027 0.0214 0.0214 -79.22% 
football, walking_running, 
people  football  0.0197 0.0040 0.0040 -79.45% 
duo_anchor,  studio, indoor  duo_anchor  0.1080 0.0213 0.0214 -80.22% 
duo_anchor, indoor  duo_anchor  0.1080 0.0207 0.0207 -80.85% 
court, indoor  court  0.0297 0.0055 0.0055 -81.45% 
night fire, violence  night fire  0.2489 0.0451 0.0452 -81.83% 
police_security, 
walking_running  police_security 0.0825 0.0122 0.0130 -84.21% 
prisoner, people  prisoner  0.0508 0.0069 0.0069 -86.35% 
beach, waterbody  beach  0.0652 0.0037 0.0082 -87.39% 
police_security, 
walking_running, people  police_security 0.0825 0.0090 0.0090 -89.10% 
newspaper,  studio, indoor  newspaper  0.2109 0.0127 0.0127 -93.96% 
newspaper, indoor  newspaper  0.2109 0.0121 0.0121 -94.27% 
soccer, walking_running, people  soccer  0.0793 0.0027 0.0027 -96.55% 
basket ball, walking_running, 
people  basketball  0.1791 0.0054 0.0054 -96.97% 
tennis, walking_running, people  tennis  0.2985 0.0043 0.0043 -98.55% 
beach, waterbody, outdoor  beach  0.0652 0.0008 0.0008 -98.76% 
bicycle, vehicle  bicycle  0.2234 0.2234 0.0010 -99.54% 
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Annex 4  

Chi-square boosting results 

The concepts listed were identified using a chi-square test with significance value of 0.05, and 
evaluated for the ground-truth shots, which were partitioned into blocks of 40. The original MAP 
score for the each concept is listed, followed by the MAP score after interpolation with the 
related concept. Some concepts were related to more than one other concept, and detectors were 
created for the total related set. Some concepts in the training set did not have scores in the full 
range [0-1], and were first normalized for compliance. This affected the λ values, and changed 
the resultant MAP scores, which is the last category on display.  
 
Table 3 Chi-square boosting 
results      

      

 Concept pair Concept Original MAP Updated MAP 

    

Updated 
and 

normalized 
MAP 

Performance 
change 

      

swimmingpool, duo_anchor swimming pool 0.0014 0.0034 0.0034 140.07%

bicycle, cycling bicycle 0.2234 0.3444 0.3444 54.14%

house, building house 0.0066 0.0080 0.0080 21.15%

maps, graphics maps 0.3039 0.3383 0.3383 11.32%

tower, building tower 0.0235 0.0239 0.0254 8.07%

waterbody, beach, waterfall, boat waterbody 0.1317 0.1382 0.1421 7.86%

waterbody, boat waterbody 0.1317 0.1382 0.1382 4.94%

people, face people 0.8897 0.9311 0.9311 4.65%

charts, graphics charts 0.2541 0.2657 0.2658 4.58%

fireweapon, military fireweapon 0.0602 0.0622 0.0628 4.33%

waterbody, waterfall waterbody 0.1317 0.1369 0.1369 3.93%

anchor,  studio anchor 0.6192 0.6358 0.6358 2.69%

flag,  flag_usa flag 0.1196 0.1224 0.1224 2.35%

vehicle, car vehicle 0.2706 0.2725 0.2726 0.72%

horse_racing, horse horse racing 0.0003 0.0003 0.0003 0.71%

vehicle, truck, car vehicle 0.2706 0.2724 0.2725 0.69%

building, house, tower building 0.2326 0.2322 0.2341 0.62%

building, tower building 0.2326 0.2322 0.2341 0.61%

fireweapon, walking_running, military fireweapon 0.0602 0.0603 0.0605 0.54%

flag_usa,  flag flag usa 0.1568 0.1573 0.1573 0.31%

night fire, explosion night fire 0.2489 0.2495 0.2495 0.25%

duo_anchor, beach duo anchor 0.1080 0.1080 0.1083 0.22%

duo_anchor, swimmingpool, beach duo anchor 0.1080 0.1080 0.1083 0.22%

lahoud, chair lahoud 0.1151 0.1152 0.1152 0.06%

building, house building 0.2326 0.2327 0.2327 0.02%

explosion, night fire explosion 0.0782 0.0782 0.0782 0.01%
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explosion, night fire, candle explosion 0.0782 0.0782 0.0782 0.01%

graphics, maps graphics 0.3815 0.3815 0.3815 0.01%

face, people face 0.8921 0.8922 0.8922 0.01%

horse, horse_racing horse 0.0003 0.0003 0.0003 0.01%

chair, lahoud chair 0.2613 0.2613 0.2613 0.00%

drawing_cartoon, drawing drawing cartoon 0.1811 0.1811 0.1811 0.00%

duo_anchor, swimmingpool duo anchor 0.1080 0.1080 0.1080 0.00%

cycling, bicycle cycling 0.8875 0.8875 0.8875 0.00%

drawing, drawing_cartoon drawing 0.0440 0.0440 0.0440 0.00%

cartoon, drawing_cartoon cartoon 0.2783 0.2783 0.2783 0.00%

explosion, candle explosion 0.0782 0.0782 0.0782 -0.01%

vehicle, truck vehicle 0.2706 0.2706 0.2706 -0.01%

drawing_cartoon, drawing, cartoon drawing cartoon 0.1811 0.1811 0.1811 -0.02%

drawing_cartoon, cartoon drawing cartoon 0.1811 0.1811 0.1811 -0.02%

walking_running, fireweapon walking running 0.3379 0.3378 0.3378 -0.02%

studio,  anchor studio 0.6653 0.6645 0.6645 -0.12%

graphics, maps, charts graphics 0.3815 0.3809 0.3809 -0.16%

graphics, charts graphics 0.3815 0.3790 0.3790 -0.65%

military, fireweapon military 0.2370 0.2350 0.2349 -0.88%

fireweapon, walking_running fireweapon 0.0602 0.0596 0.0596 -1.05%

car, vehicle cartoon 0.2458 0.2432 0.2432 -1.08%

waterbody, beach waterbody 0.1317 0.1260 0.1302 -1.17%

candle, explosion candle 0.0801 0.0784 0.0784 -2.16%

boat, waterbody boat 0.0834 0.0790 0.0790 -5.27%

truck, vehicle truck 0.0418 0.0348 0.0348 -16.65%

beach, duo_anchor beach 0.0652 0.0005 0.0276 -57.70%

beach, waterbody beach 0.0652 0.0037 0.0082 -87.39%

beach, waterbody, duo_anchor beach 0.0652 0.0036 0.0076 -88.41%

waterfall, waterbody waterfall 0.4152 0.0053 0.0053 -98.72%
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