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Abstract

Concept detection is the process of extracting sémaneaning from data. Video data is a
popular choice on which to operate, as there @& afl visual, audio, and textual information to
index and search. Ultimately one would like to depea set of semantic concepts that spans the
search space, but this requires defining thousahdencepts. In order to detect such a copious
amount of concepts, generic concept detectors twakle employed. There is a continuous drive
in research to discover better ways to perform gemencept recognition.

This thesis starts with a literature overview, syiug past and future trends in concept
detection. Past classification systems were oftderlvased systems that made use of specific
domain knowledge to perform their tasks. While fiomal, these systems could not readily be
extended beyond their domain. State of the artsifieation systems on the other hand, use
statistical models, in the form of Support Vectoad¥iine classifiers, to recognize an unbounded
set of concepts.

The initial thrust of this investigation was to exae the potential of using SVM classifiers
to detect an abstract concept, such as ‘happinegselating simpler, indicative concepts. This
proved infeasible, and the focus of this reseastfaime to improve weak classifiers by exploiting
the knowledge of more discernable, related clasEbsee techniques were developed in this
study that did this, each applicable to a diffetgpe of inter-conceptual relationship. This thesis
aims to assess the performance and the assoctaatstiaints of these developed techniques.

The Sibling-confusion removal and Ancestor boostiechniques require an ontology, a
tree-like structure that models semantic relatigpeshetween concepts by linking relationships in
a hierarchy. The Sibling-confusion removal techeigiitempts to improve detector performance
by removing false positives caused by similaritietween sibling concepts. The Ancestor
boosting technique aims to improve poorly perfomgnichild detectors by leveraging the
functionality of their more powerful ancestor coptdetectors.

The final technique used a statistical methodcthiesquare test, to identify concepts in the
dataset that frequently appeared simultaneouslync€u recognition was improved by
combining the outputs from related detectors togaze a single concept.

In the course of the experiments, a number of mdastraints for each technique became
apparent and explain the results thus obtainedin§ibonfusion removal proved to be a
worthwhile technique when the ontology providesamoept grouping, which is semantically
related, closed, and for which only one conceptig in each shot. Ancestor boosting appears
to be a promising technique, as evinced by subatantrease in detector performance for some
concepts in the dataset. For Ancestor boostingaidk successfully, however, it is necessary that
ancestor and child concepts be tightly linked seroally and that ancestor detectors perform
robustly. Chi-square boosting is a powerful techeigas it identifies concept relationships that
are not immediately obvious from their semanticirdgbns. Most of the discovered concept
relationships may be used to produce improved qurdetectors.

The MediaMill Challenge dataset, consisting of Hginantic concepts, was used to test
the effectiveness of each technique. The mean geemaecision (MAP) of each original concept
detector was compared against the mean averagsipnescore of the revised concept detectors.
In the Sibling-confusion removal experiment, 30 oli64 distinct concepts had improved MAP
scores, while 17 out of 61 distinct concepts hagraved MAP scores in the Ancestor boosting
experiment. The Chi-square boosting experimentamaighprovement in 22 out of 36 concepts.
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Chapter 1

Introduction

When a person goes to a public library to lookedrook, he first goes to the card catalogue and
looks for a book in the category he desires withacatalogue. Thus he has a fuzzy idea of what
he is looking for, in the sense that he knows a kew words to describe it. The catalogue is
ordered so that the keywords will narrow his seanctil he finds what he is looking for. This
assumes however, that each book has been previadslyed and placed within the catalogue. If
one extends the metaphor to searching for videtag®m one realizes that the audio, video, and
text streams that make up the video recording nalst somehow be indexed. This is
complicated however by that fact that a human waudiéx by providing a textual summation of
the content. To a computer however, the video strsamerely a sequence of images, with each
image being a set of colored points. This is knewthe semantic gap.

Nonetheless, it is possible to train a computeetmgnize low-level features, such as the
colors of an image, and associate them with coscdjte implicit loss of data associated with
indexing, plus the ill-defined nature of semantancepts means that this process introduces
error. In addition, most sophisticated conceptsardy be recognized by the presence of simpler
concepts. For example, a car-chase scene couldbenitgcognized if previous classifiers have
recognized multiple cars following each other aghhspeeds. The art then, is to map low-level
features to a concept vocabulary that covers theahudanguage that minimizes error and provide
maximum concept coverage.

Early research focused on combining multimodal uesatextractors in various ad-hoc
approaches to identify specific concepts. Unfortelya this does not scale well, as the
combination of feature extractors is case specliits one cannot use the same combination of
feature extractors to recognize a different condelaire recent research, such as the TRECVID
high-level feature extraction task, focuses on enm@nting a framework of generic concept
detectors to define a vocabulary that spans theahutanguage. This task can be done by
defining each concept as a unique blend of comstitéeatures, or defines the concept to be
identified in terms of other concepts. The chajkers to find an optimal combination of feature
vectors and classifiers; and concept detectiorate temains wide open to further research.

1.1 Goals

The initial aim of this research was to utilize ggmnantic relationships between some basic
concepts to develop a concept detector capableeobgnizing an abstract concept like
‘happiness’ in a dataset. Such a detector proviedsible, and the focus of this research became
to develop methods to improve weak classifiersxplating the knowledge of more discernable,
related concepts.

The hypothesis is that concept detectors can beowed for concepts, which are
semantically or statistically related, by makingeusf the additional information these
relationships provide.
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1.2 Approach

An initial literature study was performed in orderdiscern past and current trends in research
with respect to semantic concept detection. Thigystevealed that SVM classifiers were the
most promising classifiers to date, and so it wasidked to detect an abstract concept, such as
‘happiness’, by relating simpler, indicative contsepsing SVM. A preliminary investigation
showed this was not possible given the limitatiafisthe available datasets. Instead, three
techniques, inspired by the previously discovergerdture, were developed to validate the
hypothesis.

An ontology was created that models semanticiogiglips between concepts by linking
relationships in a hierarchy. Two techniques, Sdpconfusion removal and Ancestor boosting
utilized this ontology. The Sibling-confusion renabvechnique attempts to improve detector
performance by removing false positives causedilyiesities between sibling concepts. The
Ancestor boosting technique aims to improve popdsforming child detectors by leveraging the
functionality of their more powerful ancestor coptdetectors.

A final technique was developed that used the Sgbiare test to identify concepts that
frequently appeared simultaneously. Concept ratdognwas improved by combining the
outputs from related detectors to recognize a singhcept.

The mean average precision was computed for @letimcepts in the dataset, before and
after the application of these techniques. Theeim®e in mean average precision scores for some
concepts serves to confirm the hypothesis.
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1.3 Organization of this paper

This paper is organized as follows:

Chapter 2Concept detection in literatureliscusses past and present research effortsaepo
detection. The aim of this survey was to presernibua concept detection techniques,
their comparative merits, and the applicabilityledse techniques in detecting a wider set
of concepts. The trend in research is moving a@nay knowledge-based systems to
generic concept classifiers afforded by Supporttdfelelachines.

Chapter 3Methodology describes various practical issues related talloece of supervised
learner, annotation software, and dataset. In catipn with some preliminary findings,
these choices affected a change in the methodpobaph.

Chapter 4]nter-conceptual boosting experimentescribes three techniques which aim to
improve concept detector performance by using kadgé of the semantic and statistical
concept relationships in a dataset. The Siblingu=an removal technique attempts to
improve detector performance by removing falsetp@s caused by similarities between
sibling concepts. The Ancestor boosting technigoms & improve poorly performing
child detectors by leveraging the functionalitytieéir more powerful ancestor concept
detectors. In Chi-square boosting, concept recmgnivas improved by combining the
outputs from related detectors to recognize a singhcept. These techniques were
evaluated on the MediaMill dataset, and their tssule analyzed.

Chapter 5Conclusion discusses the conclusions of the paper and sisggether refinements in
the techniques applied.

Annex 1,SVM Theorypresents a summarized mathematical backgrouSdmbort Vector
Machines and briefly introduces the parameterrggttthat influence the development of
a SVM model.

Annex 2,Sibling-confusion removal resulfgresents the results obtained using the Sibling-
confusion removal technique developed in Chapter 4.

Annex 3,Ancestor boosting resultpresents the results obtained using the Ancéstasting
technique developed in Chapter 4.

Annex 4,Chi-square boosting resultpresents the results obtained using the Chi-sduaosting
technique developed in Chapter 4.
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Chapter 2

Concept detection in literature

This chapter presents a review of a selection pépa showing a chronological progression,
documenting the progress made in research ineleedf concept detection. The aim of this
survey was to discover the various concept detetgiohniques used in research, their
comparative merits, and the applicability of thesghniques in detecting a wider set of concepts.
Some statistical classification systems and teclasgresented here provide the basis for work
done in chapter 4.

2.1 Related Works

For video data, there are three types input streimasudio, video, and text (transcriptions of the
words spoken in the segment). Feature extractimm,tis the action of determining the

characteristics for of the video fragment, in arfiyttee three modalities, to detect some sort of
concept. Some examples of features are: colordmetos (indicative of the colors in the video),

edge orientation histograms (represents the vagdgses of shapes in the video), Mel-frequency
cepstrum coefficients (indicative of the rate ofebe of the audio), or word frequency (the
number of occurrences of various words of (spokewj). The process of combining these

features in order to recognize a particular seroancept is known as classification, or fusion.

Early research on semantic concept meta-classdicakamined ad-hoc rule based domain
knowledge schemes, Bayesian classifiers (BN), hewtwork classification (NN), Gaussian
mixture models(GMM), modeling via ontologies, Supgpdector Machines(SVM), or Hidden
Markov models(HMM). The various approaches areeeiftatistical in nature (Bayesian, GMM,
HMM, SVM), or are knowledge based, using knowledfehe domain (rule based, modeling
using ontologies).

The drive to create a framework of detectors capatlil recognizing generic concepts
precludes the use of domain-based classifiers satidei reason for the trend towards statistical
methods in research. This is not to say that doragsed meta-classifiers perform poorly. Often
they make use of insights, such as the dependegtgyebn two concepts, that short circuit the
whole machine learning process of statistical n#gh®aving much development time. Their
failure is in being unable to function properly fevents outside their specific domain. For
example, the highlights detection of Babaguchi (@iscussed in 2.2) would fail for say,
Formula 1. The reasoning behind using statistitassification is that enough features are
considered that a concept is identified correcttymatter the domain. In addition, the detection
process as a whole is more robust, as more feaareesonsidered, and as such the error
contribution per individual feature is lessened.

Of course, there are various problems for statistitassifiers. In general, increasing the
feature set improves the accuracy of the performamat also leads to over-training and the curse
of dimensionality. The curse of dimensionality ascas a result of an increasing feature space,
when the increase in dimensions causes the distagtveeen objects to become increasingly
similar, and hence the objects become harder tmgissh and thus classify [63]. Likewise the
time needed for the actual machine learning processases exponentially with the amount of
features under consideration. Knowledge based ifilasssimply avoid this by reducing the
feature set by using knowledge of the domain. Aeottonsideration is that the SVM fusion can
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be performed in various ways, each with its owdédwdfs between extensibility, robustness, and
the time spent on learning the semantic concepts.

Recent research shows a distinct preference for SVddsification, because it gives
superior performance over other statistical appgreacand because it is robust against
overtraining and the curse of dimensionality[30dr Further understanding of the mathematical
reasons for this, see Annex 1. Although some dorapproaches are still attempted, statistical
classification is now the trend. In the field ofng@in knowledge classifications, the work done on
ontologies is a recent innovation. However, in thigance ontologies are often deployed on top
of a generic classifier (such as SVM’s) to prodachybrid attempting to incorporate domain
knowledge on top of a statistical classifier.

Early research focused on developing ad-hoc comeepgnition systems. They were rule-
based, and operated on a fixed domain. Theseaeavel in section 2.2. The desire to detect a
much larger concept set led to the developmentatiEtcal concept detection methods, and are
discussed in 2.3.

2.2 Domain Based Classification

Some of the first multimedia information retrie\aistems to be developed investigated sports
video. The system by Babaguchi and Nitta[7] wasgiesl to analyze sports video, specifically
baseball and American football, and determine thesgnce of semantic concepts such as
highlights, live plays, crowd cheering, and theetygf scene currently playing. Highlights were
detected by examining the text stream for domagtifip keyword phrases such as “touchdown”
and then finding the corresponding time intervaltie video stream. Crowd cheering was
determined by the short time energy feature ofabdio stream. Using the idea that crowd
cheering was indicative of a highlight moments, @ensophisticated detector was developed by
excluding highlights without cheering [7]. Thisssgm is an example of how specialized domain
knowledge can readily provide a successful solutiordentifying a specific semantic concept,
such as highlights. The extensibility of the sysismowever open to question.

Haering et al [20], however, did develop a systeraksg extensibility. The prototype
system was designed to detect animal hunts inifeldideo, which is a complex semantic event.
The promise of extensibility comes from the devetept of a modular, tiered system to allow
easy redeployment for the detection of differemhaetic events. The first tier of the system
extracted basic color, texture, and motion features/ing object blobs as well as shot boundary
locations. Using these features, a neural netwaterchined the class of the object under
consideration. Nine of them were specific animéil®e non-animals corresponding to rocks,
sky/clouds, grass, trees, and a final unknown clBiss third, and highest, tier of the system, in
essence the meta-classifier, used domain specifgs to detect semantic events based on a
combination of mid-level object descriptors sp#tiar temporally ordered based on the features
from the first level.

Despite using domain specific knowledge, the systemeadily extensible since the first
tier is entirely domain independent; they are lewel image features after all, as is the second
tier. The neural network classifier needs to beaneéd to recognize additional objects, to be
extended, but that cannot be avoided. Only thed tier would have to be adapted to a new
domain, since the rule-based inferences of theé dingl second tier features would be different
[20]. Arguably, a statistical classifier could rapé the third tier, but at the cost of time spant o
the machine learning process. Accommodating the-lsabed semantic events to an increase in
the number of objects could get exponentially caxpl
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Returning to concept detection in sports video, [B4] developed a somewhat domain
(team-sport) independent system capable of handiEmantic events which do not have
significant audio/video features, such as whengrsare given yellow/red cards in soccer. He
argues that most audio/video patterns are insafftty distinct to recognize such semantic
events. Likewise he argues that his system idlyeextensible. His approach is to detect generic
video concepts, using Hidden Markov Models (HMMym the audio/video stream, such as shot
category, focal distance, special view categostdfzone, camera motion direction, and motion
activity. Another HMM classifier is used to detdloe transition between such events in the video
stream. Domain dependencies are introduced indima bf external text streams detailing for
instance game rules (important for field type aratah duration), player names (facilitates text
analysis), and event types (linking event typefi WY patterns detected by the HMM), to detect
more detailed semantic concepts. The assumptibinly noteworthy events are included in a
match report.

Sports events defined in a text stream are aligigaghst previously detected generic video
events, which constitute another classificatiorbfgm. Xu compares three fusion methods, a
rule-based scheme, a probabilistic aggregatiornsehand one using Bayesian inference that
perform this alignment. The rule based scheme sligxt events within a temporal window
based on the number of matches between text exedtthe externally provided, domain specific
event model. Since text and video stream eventssarally misaligned by some offset, the
aggregation method models a semantic event a®thbiged probability of the event occurring
in one stream and the probability of the event owog in the other stream, offset by some
margin. The margin is determined by gradient delsgenng a training phase. The last fusion
method, Bayesian Inference, considers whether ant@ccurring in one stream occurs within a
fixed offset in the other stream [64].

In terms of precision and recall, rule-based fusgimes the best performance, with
Bayesian inference only mildly less accurate. Aggt®n is the poorest performer [64]. All
results have precision and recall above 84%. Xibates this discrepancy to sensitivity of the
aggregation method and the large randomness in difsets. The rule-based method benefits
from using the additional detail possibly in th&ttetream and as such can correctly identify
more events. The Bayesian Inference is unable sbdand hence performs slightly worse. [64]

Xu’'s system is a reasonably generic system fortspavith good precision and recall.
There is support for extending the system, the oalyeat being that every sport needs external,
domain specific parameters. Xu argues that thia dah often automatically be retrieved and
parsed, whereas event models are non-volatile @testruction. Provided there is some operator
assistance to develop these models, the systemsu@wort a large number of sports. For
increased performance, rule based fusion could rbplayed, requiring additional operator
assistance to develop these alignment rules. Bbglat drop in performance, but no requirement
for human intervention, Baysian Inference wouldisaf

The chronological progression of papers presenged Hlustrate the advances in concept
detection. Early systems were ad-hoc attempts timnpe some basic highlight detection [7] or
animal recognition [20]. More sophisticated systettempted to move beyond the fixed domain
constraints of knowledge-based systems. Xu’s sp@tsction system [64] does this by utilizing
a collection of rules necessary to recognize theasg¢ic events specific to a domain. He contends
that these event-rules can easily be generateglafdt new domain. Nonetheless, this ultimately
seems too impractical an approach for a systemntishes to detect generic concepts.
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2.3 Statistical Based Classification

The papers reviewed in this section perform clasgibn using statistical methods, such as
Hidden Markov models [1,2], Gaussian mixture mod&]sor Support Vector Machines [1, 26,
30, 47, 55]. They are of interest because chromcddly early papers contrast various
classification methods, and determine that SVM gjisperior classification performance [1, 26,
30, 47]. Later papers describe various methodgrtbdr improve SVM performance [26, 55, 62].

Alatan’s system [2] aims to detect dialogue scenesideo, and uses Hidden Markov
Models (HMM) as the classifier. The dialogue scarestory, is defined as a set of consecutive
shots that make up a meaningful and distinct daatwhole story. An example of this would be a
scene from a news broadcast. This would contaishbes of the news anchor introducing a news
item, the news item itself, and possibly any codirig remarks made back in the studio. A scene
is always present in video, irrespective the gemms] thus scene detection results in the
partitioning of the video into semantically meariuiglogical units. What makes scene detection
difficult is the absence of a fixed format to arseeCare must be taken to neither miss shots that
should be part of a scene, nor to accidentally isidmla scene because of intermittent shots that
break the visual flow (such as a close up) andgesemantically relevant to the whole.

Alatan models a scene as consisting of three elesmeeople, conversation, and a location.
People are detected using face detection, whileoaigdclassified as either music, speech or
silence. Shifts in location are detected by analyzhe histograms of several consecutive shots.
The results of each detector are then used assigban HMM to detect, and classify, scenes as
either establishing, dialogue, or transitional, theee types most commonly used by film
directors. He argues for HMM over rule-based, deieistic methods because HMM allow for
random behavior, such as extraneous shots witkteae, as one might expect when analyzing
video without any prior knowledge of the conte@. |

The use of a HMM classifier avoids the domain deleeice of rule based classifiers, and
can readily be made more robust by adding morssifilexs as inputs. This would not however,
require the alteration of the pre-existing classfi Likewise more semantic inferences, for
example more distinct scene types, could be madsianding the output classification set of the
particular HMM, although as with adding additiocédssifiers as inputs, each alteration requires
the retraining of the HMM.

Snoek and Worring [47] also developed a systeru$ar in the news and sports (soccer)
domain. They propose a framework, called TIME, \whi& a multimodal approach to tackle the
problems of context and time-synchronization comnmrthese domains. This framework is
evaluated using three statistical classifiers, @é&ision trees, Maximum Entropy, and SVMs.
The choice for statistical classifiers was maderder to provide for a robust performance in
domains such as soccer, where events are spansexicdependent, and unpredictable.

Low level feature extractors operating on the vid#eam detect various multimodal
events, such as the camera shot type, microphooie txt shots, panning camera, speech,
speech excitement, motion intensity, close-up, geddted keywords. These features have
additional context information added by temporaiyating them using the labels {precedes,
meets, overlaps, starts, during, finishes, equda}s producing events. Events are assumed to
always have at least a time distance of T1, dueise. If events are separated by an interval of
T2, then they are assumed to have no temporalaesiip with each other. Semantic concepts
can thus be modeled as a combination of time oddératures within a certain interval, as
determined by a classifier.
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C4.5 decision trees place these events into aytree based on a gain ratio determined at
training time. Each concept is a leaf node in tee,tand the time-ordered events form decision
nodes higher up in the tree. The more importanetkeat is to the classification task, the higher it
is in the tree [47]. A Maximum entropy (MaxEntassifier estimates the conditional distribution
of a concept in a video, given certain constraifitese constraints are features, whose values are
determined from the training set [47,68].

In the soccer domain, where concepts such {goigweard, substitutions} concepts were
looked for, C4.5 decision trees gave the pooredopeance. MaxEnt and SVM detected all
semantic concepts equally well. What differentiatteeim was that the SVM classifier required
considerably less training time than the MaxEnbatgm to achieve this result [47]. In the news
domain, where concepts such as {reporting ancharnahbgue, split-view interview, and
weather-report} were sought, the SVM classifierpgutormed the C4.5 and MaxEnt classifiers,
both of whom performed similarly. In an additioredperiment to test the effectiveness of the
TIME framework, SVM based classification on the sedomain was performed with temporal
relations enabled and disabled. For most semaaticepts, the additional information provided
by the TIME framework yielded increased performanmecept for the weather report, where
results were comparable [47].

The Time framework demonstrates that it is possitieadd additional contextual
information, in this case a temporal ordering,dw level concepts. This additional information
results in better performance of the classifienthéen it is not provided. This Time framework
also suggests that SVM classifiers outperform Qesision trees and MaxEnt classifiers over
two different domains, and one could speculatetthiatwould also apply for other domains.

One of the earliest applications of a SVM classifieas a 2002 system from Carnegie
Mellon which integrated a video camera and two opbiones in a tape-recorder like system. The
video camera provided input to two face recognitietectors, while the microphones had feature
detectors checking for speech identification byilsirity and pitch. The purpose of the system
was to remind the user of the last conversatioanif, had with a dialogue partner. The results
clearly demonstrated that the individual detecésults, or a summation of their results, resulted
in a significantly poorer performance than whenirtloitputs were fused using an SVM (late
fusion) classifier [30].

IBM [1] has also focused research on multimediaieeal. Rather than attempting a
domain specific application, their system was exityi designed to explore concept detection
and the performance of various fusion schemes.rBystem used machine learning over low
level features on the audio, visual and text chisnttedetermine the most effective model for
various concepts. For all fusion methods howevate lfusion was employed to combine
unimodal features concept classification. Statstidassification, through the use of Support
Vector Machines, and probabilistic modeling apphes; such as Gaussian Mixture Models
(GMM), HMM, and Bayesian networks, were investigaht&MM and SVM performance was
compared for visual features, while GMM and HMM fpemance was compared for fusion of
audio features. The resultant concepts were camsidenimodal, or atomic concepts. An
investigation was made into the appropriate fusmael for high level concepts; concepts which
can only be inferred by the presence of other quscand low level features and are generally
multimodal in nature. For this task, the performeant Bayesian networks was compared with a
SVM classifier [1]. The video footage from the TREQ@01 corpus was used for evaluation.

For unimodal classification of visual features, géhiexamined SVM versus GMM
performance for visual concepts such as {outdosky, rocket, fire/smoke}, SVM classifier
performance considerably outperformed GMM accuradty over 90% precision for most of the
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recall range. Even with a small training set, SVMssifiers provided a reasonably accurate
detection performance. [1]

For unimodal classification of audio features, hiexamined HMM versus GMM
performance for the classification of {rocket ergyiexplosion, music, speech, speech + music},
HMM precision outperformed GMM'’s over all recallluas [1]. These concepts were then used
in an additional experiment examining the bestdiiginethod to detect the semantic concept,
‘rocket launch’. Explicit fusion used the class#fion results from the previous unimodal
classifiers as inputs into a Bayesian network tteaethis concept. Implicit fusion uses the
following function to generate a score for eachosgr:

F(c) =f(cy.... ¢) = Score(9)/(2(Score(g...¢)) where Score(cis the unimodal score for each
concept in a shot.

Each concept is normalized by the sum of all tleeescfor concepts present in a given shot. For
this particular concept, implicit fusion outperfaethexplicit fusion over all recall values. [1]

Although implicit outperformed explicit fusion, | auld question the validity of this
classifier. Implicit fusion is discriminative in hae as it boosts the most dominant audio cue. In
this particular instance, the semantic concept gbeket launch’, is detected given the more
basic concept of a rocket engine explosion. Siheeetis only a single concept which positively
contributes to the ‘rocket launch’ event, implititsion, which discriminates between various
audio cues, will naturally give a good score. liksly that this method would fail on high-level
semantic concepts, which might be made up of meltgistinct audio cues, unlike explicit
fusion.

The experiment examined semantic classificatiotm@frocket launch’ event over multiple
modalities. Recall the visual unimodal classifielestected concepts such as {outdoors, sky,
rocket, fire / smoke} while the audio unimodal difier detected the ‘rocket engine’ event.
These concepts were used as inputs for a Bayelsiasifer in order to detect the rocket launch
event. The SVM classifier instead took visual cqtse {outdoors, sky, rocket, fire/smoke},
audio concepts {rocket engine explosion, musicespespeech + music}, and the occurrence of
the word ‘rocket launch’ from automatic speech ggttion as inputs to classify the rocket
launch event. Both gave comparative precision dkierrecall curve, and outperformed any
unimodal classifiers alone. The SVM classifier adstperformed the Bayesian classifier [1].

The research performed a comparative analysis wdus semantic classifiers. Gaussian
mixture models clearly were less suitable than EildMarkov models (HMM) or Support Vector
Machines (SVM) for unimodal classifiers. Possiblyrtifier experimentation could have
successfully demonstrated, however, the effects®mé implicit over explicit fusion (Bayesian
Network). Both multimodal Bayesian Networks and @up Vector Machines (SVMs)
performed better than their unimodal counterpantsl had comparative precision and recall in
detecting the rocket launch event.

lyengar[26] et al, 2003, also from IBM, extendée twork from [1]. Using the same
setup of basic concepts, they showed that a SVB&ifiar outperformed a Bayesian network for
the detection of the rocket launch semantic concafftough not by too large a margin. Of
additional interest is the questions raised ovenréguirements of an extensible, generic semantic
concept detection system.

Apart from the obvious challenge how to make thstesy as accurate as possible, the
research also addressed coverage, which is a nreefmuhow many concepts a multimedia
retrieval system can define reliably. Their Disanitative Model Fusion (DMF), actually a
multimodal SVM based classifier, is considered maecurate because it equaled or
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outperformed the best unimodal specialized detedtwrconcepts in the TREC 2002 corpus. The
DMF system was tightly coupled to an annotationtesys allowing for the quick addition of
arbitrary semantic concepts given some sample .sBotsarbitrary concepts were thus defined
and DMF gave significantly better results than sgeed detectors created for the occasion.
Thus the system demonstrated its easy extenditbditincorporate additional concepts. Open
guestions were left regarding what constituted ptin@al number of basis detectors, the total
discriminatory capacity of the DMF framework givench a basis set of detectors, and the
minimum required training set size per concept.[dble research considered several key issues
regarding classification in relation to developiaggeneric, easily extensible, robust semantic
concept detection engine.

In a similar investigation into classifier perfornt@ by IBM [55], the thrust was more on a
comparison of early fusion and a late fusion met{tedned normalized ensemble fusion) that
retained some decision making control over classifiombinations. The argument was that,
although early fusion preserves all information duffers from some practical constraints, such
as a limit in the numbers of training examplespatlin computational resources for training, and
the risk of over fitting the data. An alternativate fusion method was developed. Early fusion
was performed by merging the feature sets, beferéopning training to create a classifier.
Normalized ensemble fusion consisted of normaliZing output of individual SVM feature
classifiers, via rank, range, or Gaussian norm@dina Per semantic concept, the most high
performing and complementary set of feature clessifwas chosen for aggregation by a
combiner function. The combiner function considersiimum, maximum, average, product,
inverse entropy, and inverse variance combinatiorsrive at a classifier for a concept.

As a final experiment, all the SVMs that made uacept classifier were evaluated using
varying kernels. Kernels are functions which transf inputs into a higher dimensional space,
and are further explained in Annex 1. When evathgathese combinations against the validating
set, the resultant classifier was chosen that sw¥idently classified their samples, as measured
by a samples’ distance from the separating hymareplThus in normalized ensemble fusion, the
classifier was trained by the most confidently sifesd concept, using a feature selection set that
gave the best average precision. This fusion metvasl the best performing system at TREC
2002. It also outperformed early fusion, which lzadaverage precision of 0.5896 versus 0.71
[55]. The research developed a strong late fusiethad which combines the power of SVM
classifiers with a semantic concept-specific s@ftision combinatory function and a powerful
late fusion concept detector.

Also originating from the IBM labs is the idea tohance the semantic classifier by using
additional information provided by a hierarchicete of related semantic concepts, in other
words, an ontology [62]. In statistical modeling thassumption is that a high correlation in the
feature space will produce similar classificatiantput, although there might not actually be a
relation between the semantic concepts. Thus, edlyea the case where there are few training
examples, unreliable classifications are the regdt example, the concept ‘Desert’, of which
there were only 17 instances, in a data set of 9882 only correctly detected with an average
precision of 0.06. In the same dataset, ‘Outdoevigh 2473 occurrences, was detected with an
average precision of 0.58. This illustrates how iasufficient training set leads to a poor
classifier.

The research developed two algorithms to enharassitier performance. When training
the classifier of a child concept, the confidenoeres of the more reliable ancestor classifiers are
considered and influence a child concept detectmtse. The extent of the boosting-influence of
the ancestors on the child node is related to ttwifidence score distributions. If a child and its
ancestor have a similar confidence score distobytihey are likely to tightly relate too on a
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semantic level, and the ensuing boost in confideicoee becomes greater too. Boosting is done
for all ancestors of a child concept. The othepatgm considers the confusion factor, which is
defined as the probability of misclassifying dattione semantic-class, while in reality the data
belongs to a mutually exclusive different classatdDpoints are checked to see if they have not
been placed in the wrong semantic class, and thigdemce scores are updated accordingly. Each
semantic concept was initially modeled using SVNIke resultant output classifications are
screened for confusion and boosted according tosémeantic relations in the ontology [62].
When tested using the TRECVid-2003 data, this ogipbased classifier outperformed the
previously developed Discriminitative Model Fusiorethod [26] by 6% over 17 concepts, and
by 23% over 64 concepts. It bettered the best ut@ndassifiers by 42% [62].

The research is of significant importance as it olesirates the next evolutionary step of
semantic machine learning, which relies on semarmiationships, as evinced in the use of
language ontology. Of course, this system too wak bn top of SVM classifiers, but the
addition of ontology was key in outperforming plé&&VM meta-classifiers, such as the DMF
system. It also compensates for a weakness of Sbsitiers, when there are simply too little
training data from which to derive an adequatesifi@stion model.

The papers presented here describe the chrondlpgamression of research into statistical
classifiers. Early papers compared and contraghwsaiclassifiers, finally settling on SVM as the
most effective classification method [1, 2, 26, 83]. SVM'’s solid mathematical foundation,
further detailed in Annex 1, make it robust agamertraining and the curse of dimensionality.
Later papers examined various ways to combine SVgkdiers in order to best perform concept
recognition. SVM classification was either perfodvan a large, multimodal feature vector, in a
process called early fusion, or used to combineotitputs of several unimodal classifiers, in a
process called late fusion [1, 26, 55]. A final @aplescribes ontology assisted classification.
SVM classification performance is improved by cdesing semantically related concepts [62].
This theory constitutes the basis for two of thehteques developed in this study, which are
presented in chapter 4.

A table on the following page provides an overvigvihe papers discussed in this chapter.
They are categorized by whether the techniquesepted are domain specific or generic, the
unimodal classifiers used, the meta-classifiersludee best overall meta-classifier, and the year
in which the paper was published.
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Table 1 Classification overview

Author|Domain/  |Unimodal Meta-Classifiers Best Meta-Classifier Year
Generic  |Classifiers Compared
[7] Domain |Feature Based |Rule Based Rule Based 2003
specific
(sports)
[20] |Domain |Neural Network|Rule Based Rule Based 2000
specific
(animal
hunt)
[64] |Domain |Feature Rule Based/ Rule Based 2006
specific  |based/HMM Probabilistic/
(sports) Bayesian Inference
[47] |Generic |Feature based |C4.5 decision SVM 2005
trees/MaxEnt/SVM
[2] Generic  |Feature based [HMM HMM 2001
[30] |Domain |Feature based |Combination of SVM 2002
specific individual classifiers vs.
(hardware SVM fusion
package)
[1] Generic  |SVM/ Rule Based vs. BN, BN and SVM outperformed 2003
GMM/ BN vs. SVM and individual classifiers
HMM individual classifiers
[26] |Generic |SVM/ BN vs. SVM SVM 2003
GMM/
HMM
[55] |Generic |SVM Early fusion vs. Normalized ensemble 2003
normalized ensemble (fusion
fusion (late fusion with
soft decision
combinatory logic)
[62] |Generic |SVM SVM vs. SVM + SVM + ontology boosting {2004

ontology boosting

12
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Chapter 3

Methodology

The initial goal of this thesis was to develop ¢ed®r capable of recognizing an abstract high-
level concept such as ‘happiness’. This chapteaildethe basic research that was performed
towards that end. This involved choosing a datasstjpervised learner, and a video annotation
tool. The lessons learned from these investigaliehso a revision of the initial research goal.

3.1 Basic terminology

The terminology further used is defined as folloAdow-level feature is a piece of audio, video,
or text data that has been extracted from a videgnient. Possible examples are color
histograms, Mel-ceptstrum coefficients, or a woregtiency count. A supervised learner, or
classifier, learns to recognize these featurestanassociate them with a particular semantic
concept. A semantic concept is the generic ternagsdating a particular notion or idea. For
example, a ‘car’ would be a semantic concept, a®iiveys the notion of a particular type of
motorized vehicle. In TRECVID terminology, a semaconcept is called a ‘high-level feature’,
but that usage is not employed in this paper. Mostepts have a direct link to the feature space.
A concept is termed, high-level, when the concegst & particularly abstract definition. A high-
level concept cannot easily be recognized by asifiesoperating on the existing feature space,
although a human may easily be able to do so.i$lksown as the semantic gap. Concepts such
as ‘love’, ‘happy’, ‘sad’, or ‘anger are all examep of high-level concepts. Since high-level
concepts are not readily detectable from the feaspace, than can only be inferred from other
concepts. One might even coin the term, intermed@atel concepts, for the concepts that serve
as indicators of a high-level concept. For examijaejing’ or ‘funeral’ are intermediate-level
concepts indicative of ‘sadness’.

3.2 Choosing a video annotation tool

Given a video source, every defined concept reguare associated ground-truth file. This file
lists the frames of the video in which a conceptuos, and is required for the machine learning
process. The features in the specified frames aesl Wo train a detector to recognize that
particular concept. This means, that at a minimgraund-truth annotations have to be created
for the high-level concept that is the goal of tl@search. Creating ground-truth annotations is a
time intensive task, as one must examine each frameeat a time, marking the presence of the
desired concept.

The freely available data annotation tool, Video&xij56], was assessed for its potential
usefulness in future annotation tasks. It perfoansotations on a shot level, which has two
benefits. The annotation effort is acceleratechlaames within a shot share the same ground-
truth label. Furthermore, it allows for easier liige of temporal concepts, that is, concepts
whose meanings become apparent over the coursecoéssive frames. VideoAnnex permits
region-level annotation, where the user draws andimg box around a particular area,
representative of a concept. Also worth mentionsghat this annotation tool also performs
audio playback and therefore allows annotationooicepts which have distinct audio cues. Even
with such a comprehensive and efficient tool asedgiinnex at our disposal, annotation efforts
are very time consuming and require a significamestment in man-hours.
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3.3 Choosing a dataset

Choosing a video dataset on which to perform erpanis is not a trivial issue, as there are a
number of factors influencing the decision proceéldse more abstract the desired high-level
concept, the harder it is to create a detectottfais less low-level features have a direct bearin
on the concept. This means that most of the carntab must come from the detection of
intermediate concepts, rather than from featureesgéor example, the abstract concept ‘sadness’
might only be inferred from concepts such as ‘ayymeople’ or ‘funeral’. The immediate
consequence of this is that one must also consitlether these intermediate concepts are also
present in any dataset. These too then, must hawadytruth annotations created for them. One
would need a large digitized video collection taerewontain sufficient instances of all the
necessary intermediate and high-level concepts,aalditionally one would have to make the
annotation effort.

This led to consider the TRECVID 2005 corpus, whigemed sufficiently large at 169
hours of news video footage, and had several dmles of concept lexicons with associated
ground truth annotations. These are: the LSCOMskte[35], the MediaMill Challenge set [43],
and the complete LSCOM set [32].

LSCOM-lite

The LSCOM-lite set was the result of a common aatiant effort by the TRECVID-2005
participants, and contains the ground truth aniwtatfor a collection of 39 concepts. The aim of
the LSCOM-lite set was to maximally partition trensantic space, using a minimal amount of
concepts, analogous to partitioning the spacedrget of hyper cubes. After considering a study
of what events were considered newsworthy, the UBdi@ developers chose 7 dimensions,
each segmented by concepts chosen for their eadetextion and the frequency in which they
appeared in search tasks. Most of the concepts tihenTRECVID 2003 feature extraction task
were included in this set. The annotation softwesed for this set operated on a static key frame
level, thus restricting the concepts to ones thatd:be identified visually. Temporal concepts, or
concepts relying on audio features, could not legl UEB5] The deliberate choice for semantically
diverse concepts, and the lack of sufficient intediate level concepts, makes this collection a
poor basis for the development of a high-level ephaletector.

MediaMill

The MediaMill challenge set augmented the LSCOIMixicon, to arrive at a total of 101
concepts. However, the MediaMill developers maigdi the same requirement of visual-only
concepts as the LSCOM-lite developers did [35]. WWprof mention however, is that the
MediaMill Challenge set also includes the low-lefedtures with the ground truth annotation of
each frame. In addition, optimized detectors ao®ipged for each concept [43].

LSCOM

The LSCOM annotation set, first used for TRECVIDO&0 has a larger set of concept
annotations, for a total of 856 concepts. Howewetly half of these actually occur in the
TRECVID 2005 video footage. Nonetheless, some @f ¢oncepts include in this set are
intermediate level concepts, and as such are dftgrevalue towards developing a high-level
concept detector. [32]

The full set of LSCOM ground truth annotations offehe best concept lexicon for
developing a high-level concept detector. The sédnge, and the concepts can be arranged in a
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hierarchy that could ultimately be used to dedue® gresence of high-level concept such as
‘happiness’, ‘anger’, and ‘sadness’. However, na-level features or concept detectors were
included, and therefore the choice of datasetdele more limited MediaMill challenge set.

3.4 Choosing a Supervised learner

The literature survey from chapter 2 lists a nundferiassification methods that have been used
in research to perform concept recognition. Theyuided knowledge-based schemes, Bayesian
classifiers, neural network classifiers, Hidden kéar Models (HMM), and Support Vector
Machines (SVM).

Knowledge-based approaches in literature were awagtricted to a fixed domain, and
were not readily extensible to include new concefitsa result, | rejected this approach, as it
seemed unlikely that any rule-based system woutibime robustly when tested against a generic
video stream.

Comparative studies from the literature survey bapter 2 have shown that SVM
outperformed the above-mentioned methods in tefnaassification performance. The success
of SVM performance is due to its sophisticatedhirag procedure, which involves mapping input
vectors to a higher dimensional space, thus sigiptifthe task of finding a maximally separating
decision boundary. For more specifics, see Appendlix Besides superior classification
performance, SVMs have also been reported as bmpgble of handling high-dimensional
feature vectors without any detrimental effectswedl as being capable of functioning when
given only few training examples. For these reashasdecision was made to use SVMs as the
supervised learner of choice for the classificaggperiments performed in this study.

3.5 SVM in practice

Section 3.3 discusses three lexicons of semanticepis and their associated ground truth
annotations. Although the full LSCOM annotation f@med the best basis for defining high-
level semantic concepts as it had the richest qureet, only the MediaMill Challenge set was
ready for immediate SVM classification experimegitgen its inclusion of low-level features for
each semantic concept in the set. Thus the Medialdih set is used for the first experiments
with SVM classifiers, as the data set permitteddbeduct of early and late fusion classification
experiments for comparison against the baselindtses

From a literature survey, it transpires that lytfee most predominant SVM classifier in
use is LIBSVM [12]. The second most cited SVM cifiss is SVM-Lite [28], which is
optimized and extended with a graphical user iat&fcalled SVM-Dark [37]. Both were
installed on a 3.2 Ghz home computer. An initiggemxment was conducted using SVM-Dark on
the MediaMill experiment 3 ‘beach’ concept, whicbneists of 120 features. SVM-Dark was
tasked with finding the optimum parameters for @ flgeach’ detector. To perform 10 iterations
on a reduced instance of the training set took Bshadrhe full 40 megabyte training set ran for
over 15 hours, occupied 4 gigabytes of temporaagespand failed to terminate.

A working ‘beach’ SVM classifier was eventuallyeated and run against the provided
test set. The results were surprising, so a neactvedetector was created using LIBSVM, with
similar results. Although this classifier had acwacy of 99.9381% on the test set, all the results
were classified as being in the same class. SubsedBVM classifiers created using both
programs for ‘dog’, from MediaMill experiment 4 te@es, encountered the same problem. The
classifiers were scoring highly in terms of classifion accuracy, but only placing the test inputs
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into one class. Both ‘beach’ and ‘dog’ have veny faositive training examples, on the order of
<50 while there are over 10,000 negative examples.

The lack of positive examples means it is veryiclift to train SVM classifiers sufficiently
capable of recognizing the ‘beach’ and ‘dog’ cortsepThe challenge is in discovering the
optimum parameters for the classifiers. (See Appemd for further information about
parameters that influence the creation of a SVMsifeer.)

The use of SVM-Dark was discontinued, as LIBSVM waeedter suited at finding the
optimum classifier parameters. On average, paranedening took between 4 to 10 hours per
concept. Eventually successful classifiers for bttbach’ and ‘dog’ were created after an
exhaustive search for the correct kernel parameters

3.6 Adjustment of the research approach

The use of any publicly available video source \wascluded by the lack of ground truth
annotations, and annotating a video source by handid have proved to be too labor intensive.
This led to the examination of three collectionsgodund truth annotations of the TRECVID
2005 corpus. Of these, the MediaMill dataset wasseh because it was the only collection to
contain both the ground truth annotations and #aufes of each frame, as well as optimized
detectors for each concept. Although it would héeen possible to create detectors for the
concepts in the full LSCOM collection given the N&dill features, this would have been too
computationally intensive. The MediaMill concepxiton, however, was more limited than the
LSCOM caollection, and did not have many conceptsivisemantically indicated a high-level
concept. Cursory experiments with the SVM classti@d shown that it was quite hard, and time
consuming, to get decent detection results for esmne simple concepts within the MediaMill
dataset.

The lack of concepts semantically indicative oighHevel concept, and the poor detection
results of these basic concepts suggested it wékelynthat any combination of simple
classifiers could feasibly be used to create a-leghl concept detector. This led to a shift from
the original research goal. Instead of creatinggh-tevel concept detector by detecting and
relating the underlying concepts, the aim of thedgtwould be to improve existing concept
detectors by considering the presence of semalgtieddted concepts.
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Chapter 4

Inter-conceptual boosting experiments

There are various ways to improve the performariae generic SVM concept detector. Simply
selecting better training parameters when gengyatie SVM model will yield an improvement.
Other possibilities are applying different classifion schemes such as early or late fusion. The
following three experiments aim to improve detegerformance by use information about the
relationships between concepts. Semantic relatippshs modeled in an ontology, are used by
the Ancestor boosting and Sibling-confusion remdeahniques. Concept correlations garnered
by a Chi-square test, are used by the Chi-squansting technique. These techniques are used to
develop new detectors for each concept in a dathkese new detectors are compared against
the original detectors for each concept, to seethnethere is an improvement in the mean
average precision (MAP) scores. These scores wilidported and analyzed in order to better
understand the effectiveness, and shortcomingsadi technique.

4.1 Experiment Setup

The subsequent experiments were performed on thdiaMdl dataset, using the 120
features and detectors from the MediaMill Experitroollection. This particular collection was
chosen because it used all possible features (Expetr 1 examines graphical features only,
Experiment 2 examines textual features only) ans tihe link between features and semantic
content in each shot seemed most complete anditetsict (Experiment 4 combines the scores
from Experiments 1 and 2, adding a layer of indicey). Early fusion detectors were used as a
baseline detector for each concept. Training wafpeed on a set that consisted of 70% of the
data, and results were computed against a test@®tisting of the remaining 30% of the data
[43].

The mean average precision (MAP) score is usedotopare various concept detector
results. This value is computed by taking the ayemaf the precision scores of the relevant shots
from a ranked list of detector confidence scores.

Let Precision(i) be the precision at rank i, whprecision is defined as the number of relevant
and found shots over the set of found shots. LégRet(i) be a function which states whether
the shot at i is relevant. Then for a concept Wtshots of which #relevant are relevant, the MAP
score is defined as:

MAP: 1/#relevant %, >N (Precision(i)*Relevant(i))

Mean average precision is a useful metric as ithinaes precision and recall into one single
value. MAP emphasizes returning more relevant skattier, and as such is an appropriate
choice of metric for comparing concept detectors.

A dictionary defines words in terms of other rethteords. Similarly, the presence of one
concept could indicate the presence of a relatedequ. The following experiments detail three
unique approaches to modeling inter-conceptualtiogiships to boost individual classifier
performance. The first two experiments place thecepts present in the data set into a tree
hierarchy, based on a statistical analysis of theaurrences, resulting in an ontology. This is a
structured approach to modeling the relationshgigveen various concepts, akin to a dictionary
in real life. Once in a tree structure, the consemt the sibling and ancestor-child axis’ are
consulted when generating a concept classifier. thind experiment generates an unstructured
set of highly correlated concept pairs presenhédata set. When generating a concept detector,
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9 [ Root Mode
o 7 animal truth

the presence of a highly correlated concept camsbd to (Y bird truth
distinguish ambiguous low-level features. [ dogruth

The first step is to generate the ontology itsadfin [ fish ruth
the adjacent figure. This was done by calculating [ horse_racingruth
posterior probabilities of each concept againstatiers | = [ bicycleruth
in order to determine which concepts were supersit! ¢ ] building truth
the others. Given a posterior probability P(A|B)ncept [} gavernment_building tnuth
A was placed as an ancestor node in the ontolod\Baas [ housetruth
a child node of A when the posterior probabilitgeaded [ tower.truth

a certain threshold value. For this experiment,
threshold was set at 95%. This results in a nat

o= 7 drawing_cartaon truth
o= 7 explosion ruth

hierarchy that reflects the relationships of thea@pts | o 9ace
within the data set. The focus of the following estment | o 5 fag tuin
was to enhance concept classifiers which sharedatm® | o 5 yraghics tutn
sibling axis. Examples of this are the conce| ¢ 5nusetut
{government, building, house, and tower}, which aake [ horse_racing truth
‘building’ parent concept. The concepts are relal . oo
semantically on the parent axis, but are semaltic [y anchorrth
mutually exclusive on the sibling axis. Since on [y courtiut
posterior probabilities were used to generate thelogy, '
this procedure is inadequate to definitely concltilet h duo-émhmrum
sibling classes are mutually exclusive. (3 mesting ity

D newspaper.iruth
4.2 Experiment 1: Sibling-confusion [3 offce truth
removal [ splitscreen.truth
Sibling concepts are semantically very related, sl §-tad studio tuth
tends to be reflected in their feature sets, whitsio are 03 anchor

likely to be very similar. This causes confusionaosg
their concept detectors, which are unable to djsish
the features correctly, resulting in many falseitpees.

D duo_anchar truth
D newspaper.iruth
D splitscreen truth

Based on work by Wu [48], th&ibling-confusion [ weather fnuth
removal technique reduces the amount of false ipesit [ tabletruth
detected by normalizing detector scores based en [ weather fruth
confusion factor, a number that indicates the iliced of !

a false positive occurring for a particular shot.

This experiment assumes once all the concepts have ket ph the tree-hierarchy
and the ancestor-child relationships have been detednihat the set of sibling concepts of
a sub-tree is distinct and completée assumption of mutual exclusivity of sibling cepts is
crucial to the experiment. If a shot has been dladsas a member of the parent class e.g.
{building}, then it must be one of the specific lchclasses, either: {government building, house,
tower}. However, as the specificity of the concaptreases, so does the scarcity of positive
training examples resulting in less robust condepéctors. As such there is a significant chance
that shots may score highly among several siblorgept detectors, especially if there is little to
distinguish between the concepts, resulting in rsévialse positives. This is known as the
confusion factor [48]. This experiment focuses oodifying sibling concept detectors to deal
with the confusion factor. By reducing the amouhtfadse positives between sibling concept
detectors, the mean average precision of eachtdeteid be increased.
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Intuitively, the confusion factor is only an impant consideration when a shot scores
highly on two or more sibling class detectors. Ooihe detector can be correct, and the others
must be detecting false positives (because mukahligvity is assumed on sibling classes in the
ontology, due to their semantic meanings). Formallyen shot s, concept;,Gand the set of
concepts Gying, Which are the sibling concepts of, Ghe confusion factor is defined as
P(s|G)-max(P(s|Guing). the difference between the probability tha am example of Gind the
highest scoring sibling concept. P(}|iS the confidence score given by the SVM classifor
that concept. For this experiment, an early fugidediaMill experiment 3) type classifier was
used, that learned each concept from 101 low-leatures.

The initial confidence score P(g|@r each concept in the data set must be updattake
the confusion factor into account. As such, theegairequation for this update becomes:

P(s|G)updated P(S|@initiar* f(confusion factor),

where the confidence score is updated as a funefitre confusion factor:
P(S|G)updatea= P (S|Qinitiar * [f(P(S|Ginitiar -Max(P(s|Gibiing))|

The function max simply returns the highest scositjng concept, P(sksiing), of C.

Several considerations, such as the magnitude ignd&the confusion factor, have to be
taken into account when determining the functiorsndall confusion factor implies that there are
two highly scoring concept detectors (or trivialyo low scoring ones). This in turn means that
P(s|G)updatesought to be significantly smaller, as to refldet tincertainty of placing shot s in the
correct concept class. A large, positive confugamior on the other hand, implies that shot s is
most likely of class Cand not likely to occur in any of the sibling das. As such, P(S)Gdated
must remain large. The large, negative confusiatofacase implies that shot s is most likely a
member of Gping @and unlikely to be a member of. @s such, it is safe to reduce the score of
P(S|G)updates €v€N mMore. Finally, one must consider the ratelange between each of the
extremes presented above. A large positive camiusictor requires that P($)éaacaStay large,
while a small confusion factor requires a sharppdi® P(S|Qupdaes ThiS suggests that the
relationship between confusion factor aR¢s|G)updateaiS NON-linear, and in fact ought to be
exponential. The function f(x)Zeneets all these requirements resulting in:

P(s|®) updatea= P(S|Qinitial * © (P(s[Ciinitial -max(P(s|Csibling))
The final step is to normalize the results back the range [0-1]
P(s|G)updated= P(S|Qinitias * € (P(s|Ci)initial -max(P(s|Csibling)y

In essence, this formula can be thought of the abration of confidence scores based on
the interference from closely related sibling atsssThis formula was used to update the
confidence scores of the sibling concept detedtotise MediaMill dataset, for which afterwards
the MAP was computed. The results obtained by d@xeg&ibling-confusion removal on the test
set are presented in Annex 2, with an analysigtfen the following section, 4.3.

4.3 Sibling-confusion removal analysis

In this experiment, 30 out of 64 concepts had impdoMAP scores. All concept groupings but
the {indoor, outdoor} set showed a general decrégaswerall MAP after the confusion removal
technique had been applied. A few concepts hadchatmincrease, but only in the third or fourth
decimal place, so as to be negligible. Other caiscepthose groupings show a comparatively
larger decrease. Only groupings in which all thecepts showed an improved MAP score were
actually considered improved by this techniqguesTues beg the question whether the confusion
removal technique actually works. The increashéenMAP of the concept ‘indoor’, from 0.59 to
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0.60, and the concept ‘outdoor’, from 0.71 to 0.8Bpuld be taken as a qualified success
however. What then, however, are the reasons #®rgémeral decrease in MAP over many
sibling-concept groupings?

At the start of the experiment, it was hypothesitieat all sibling groupings had to be
mutually exclusive. More correctly, such a settualse closed, and each concept within has to be
complementary to all the others. That is to saguasng parent concept,@vas detected in
shot s, one, and only one, of the child concepsrttade up the sibling concept set also had to be
detected in the shot,

VCi eC, e G occurs in $>VCsipiing €Cp @ Cipiing# Ci — Csiniing d0€S not occur in s.

Although these properties fortuitously hold for teet {indoor, outdoor}, this however
could not always be enforced for other groupings.

In part, the fault lies with the automated ontolaptermination process. Although it was
able to determine parent-child relationships, iswet able to adequately group the various
sibling concepts according to their semantic retethips. As a result, ‘tony blair’ was omitted
from the government leader set of {allawi, arratash_jr, bush_sr, hu_jintao, kerry, lahoud,
powell}, thus violating the desired closure progettikewise an unrelated group of siblings such
as {anchor, duo_anchor, newspaper, splitscreenthegdawas entirely possible too, thus
violating the property that each element had taheecomplement of the remainder of the set.
The failure to make the correct sibling sets at skenantic level means that the confusion
removal algorithm is doomed to failure prior to exeon.

The following example illustrates the effects aflaiting the closure rule when creating set
groupings. In this scenario, the sibling concepts@ C; and Gyissing CmissinglS SO termed because
it is alternately included in the set of siblinghcepts in the ontology.

Consider again the formula: P(3|fuated P(S|Qinitar * € PEICHNAl-max(P(siCsiblinglg,

Let shot s contain the concept.&ing and let the initial detector scores be {P{s{C.40,
P(s|§)=0.41, P(s|&issing=0.9}initial-

The first case is whenyfgsing is included in the sibling concept set. Becausen@ G are
semantically related to.ssing they get an ambivalent detector score on siebwever, because
shot s scores so highly on concepiséng there is a sharp drop in their modified predicsiafter
confusion removal, {P(s|§>0.089, P(s|3=0.092, P(s|fissing=0.54}.

The second case is wheRiingiS omitted from the sibling concept set, the scones after
confusion removal are: {P(s)€0.145, P(s|(}~0.152}, which is less of a decrease in confidence
estimations. This in turn impacts the mean avepageision score, as it computes, per concept,
the average precision over a list sorted accortdirmpnfidence scores. Thus P{0.089
(Cmissingnot omitted) would correctly rank lower on the lisan P(s|0=0.145 (Guissingomitted).

The other case to be considered is when the elenreatset are not all complementary to
the rest, per the requiremeC; €C, ¢ C occurs in $>VCsipiing €Cp ® Csiviing # G = Csivling
does not occur in s. Consider three conceptg, ¢ and G,}. Concepts & ang Cry are sibling
concepts, while @s an independent concept, unrelated to both. h&it s contain the conceptg C
and G, and let the resultant detector scores be {R=P03, P(s|J=0.92, P(s|&)=0.11} initial.

C« and G, are complementary over shot s, which is refleétetheir confidence scores, and
approximate 1 and 0O respectively.i€independent of either however. Because itesgmt in the
sibling group its confidence score is includedha talculation, which entirely ruins the updated
scores and the resultant MAP score, {P(s1C.34, P(s|$=0.33, P(s|&)=0.02} (incorrect- Cis
included) Omitting € however, gives the following scores, {P(s|Ck)=0.P{s|Cm)=0.02}
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(correct- Qis excluded). In a rank ordered list, the incarsaores, from the inclusion @ the
calculations, would be much lower on the list, tigi&ly, and would thus lower the MAP score.

Thus the presence of an extraneous concept @bidence of one as a result of a poorly
constructed ontology can lower the MAP scores bfted concepts in the resultant sibling sets.
This undoubtedly played a significant role for tipenerally lower scores, but is not the entire
explanation, as even groupings which have been @adeto ensure the set properties discussed
above perform worse after confusion removal. Exasgf this are the sets {male, female} or
{drawing, cartoon}

There is a simple, numeric explanation that alsstrbe considered. Confusion removal is
a normalization operation, due to the divisionhe te-ranked score by e.

Recall:
P(s|®)updated P(S|@initial * € (P(s|Ciinitial -max(P(s|C siblingjg,

Inherently, re-ranked scores are lower than thefial values, due to the exponentiaf ‘&<e.

The insight however, is that shots which have aofotonfusion, have an exponentially lower
value, so in a rank-ordered list, the only posgievhich change are those of shots with a lot of
confusion amongst related concepts. In theory,gsh@ild mean that the mean average precision
scores for all concerned concepts should staycstatimprove as a result of the lower positions
in the ranked list of the false positives. How caimen, that the {male, female} set has decreased
MAP scores overall? ‘Male’ has an initial MAP 00678, which drops to 0.0675, and ‘female’
has an initial MAP of 0.0609, which drops to 0.04T5e simple answer is that sometimes the
detectors themselves are not up to the task. snekmmple, both the male and female detectors
gave low confidence estimates, which tended toh@tsSwhich contained the concept and shots
that did not, received indistinguishable estimai¢® lack of detector certainty is compounded in
the exponent, which approached 0, resulting ingeladrop in the ranked list.

The final consideration is that the confusion reat@lgorithm only works if there are, in
fact, false positives to remove. If there are none algorithm only causes a decrease in the
MAPs of the concepts under consideration. An exarmpthis occurrence is the animal
grouping, consisting of {bird, dog, fish, horse}ll et properties discussed previously are valid
for this grouping. Nonetheless, the MAP of the lwothcept drops from 0.761 to 0.744, the MAP
of dog stays at 0.103, the MAP of fish stays a0®,4s does the MAP of horse at 0.0003. The
ideal case would be detectors that gave confidsooees: P(si>1 and P(s|Gying) =0. In
practice however, P(s)€1 and P(s|Guing)>0 resulting in a non-trivial value in the expohen
(P(sIChinital -max(P(sICsiblinglsy '\vhich causes a change in the position in thiee list of a shot-score,
and ultimately a decrease in the concept MAP.

Ontology assisted confusion removal is a tool thadploys the semantic relationships
between sibling concepts in order to adjust a detscconfidence level depending on the
likelihood of a misclassification. In the currerdtd set, only the {indoor, outdoor} set showed
noticeable improvement, while the {beach, riverirsming pool, waterfall} showed a very mild
improvement. Nonetheless, confusion removal hasnpel, although it also has some
requirements that make it fragile to deploy, tagfte for this data set at least. Firstly, it reqai
a concept grouping that is semantically relateaked, and where, for every shot, each concept is
complementary to the set of remaining conceptss ©not a major obstacle, but does require
human intervention to achieve. Secondly, there lmsic level of performance required by the
concept detectors of a sibling set before any pesimprovement is noticeable. The effect of
weak concept detectors is compounded, to the dattiof all, by this technique. Finally, there
must be a certain amount of false positives in ¢bacept set under consideration for the
technique to be worthwhile. If the number is insiéint, the MAP might even decrease slightly.
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The last point is not too much of an issue, bec&ilskng-confusion removal runs in linear time
with respect to the size of the dataset, and egeautickly. As such, a trial-and-error approach is
sufficient to determine the concepts that benggitnfthe application of this technique.

4.4 Experiment 2: Ancestor boosting

This experiment builds upon the concept ontologymfrthe previous experiment. Instead of
considering sibling concepts it focuses on the qtachild relationship between concepts. That is,
the concern here is the concepts which are seralintielated, where a parent concept is the
superset of the child concept. For example, the&oin‘water body’ encompasses the concepts
beach, river, swimming pool, and waterfall in thentirety. The goal is to improve the
performance of a child-concept detector by considethe results from the related parent-
concept detector. This is a more detailed exananaif a technique first done by Wu [48].

Fewer concept examples are present in the datasgeneral when a concept is
semantically more specific. This adversely impaleestraining phase of such a concept detector,
and results in a less robust detector. Ancestorcequs, however, have broader semantic
definitions and thus occur more frequently in tléadset, and as such are detected more robustly.
The idea behind this experiment is to leverage ghdormance of the more accurate and
powerful ancestor-concept detectors to boost thoeance of their child-concept detectors.
Since the ancestor and child concepts are semiintiekated it seems plausible to combine the
results of their detectors. Thus one compensatea fless accurate, but specifically targeted,
child concept detector by using a more robust docedetector with a broader semantic
coverage.

Thus a child concept detector is a linear interjimbaof all the ancestor detectors, whose
weights are determined in a training phase. Thedidpelow illustrates the idea.

C, (Parent concept detector) + Instances of concept C,

* * | S Istances of concept C;

C, (hoosted chﬂd‘?i-etectmr):?h G e
+ Cl - CE
1:,, + o * *
+ C, (Child c‘éﬁcept % e
deter:tor)+ + *
e

4 ®

Expressed formally, the updated confidence detéatahild concept € given shot s
and ancestor concepts;{C. G}, would have the following formula:

P(s|G)’= LP(s|®)+ AP(s|§)+...+ MP(s|G)

The parametersare determined by empirically finding the optimuraights through the use of
the Expectation Maximization (EM) algorithm detdili@ [34] and presented below:

1. A concept grouping is selected, consisting dfiiéd concept {G}, and its ancestors,
{Cz. ..Cn}.

22



Exploiting inter-conceptual relationships to boost SVM classification

2. Eachi;... 7, is initialized with a random number in the ran@el].
Steps 3 and 4 are iterated uhticonverges:

3. For every concept;€{C,C;...C}
For every shot s in the set of shots predictirgdiild concept, C
Bi = Lses(MP(SIG) Xk "P(SIQ)™)

4. ki:Bi /ZBJ

After sufficient iterations),; will have been determined. These can then be tasepdate the
shot scores for that particular child concept detec

New child concept detectors were created fortaldlaconcepts in the MediaMill dataset by
interpolating various ancestor-child concept corabans. The\ parameters were determined for
all concepts in a particular ancestor-child set;unning the EM algorithm detailed above against
the training set. In this experiment, 30 iteratioveye done. MAP scores for each concept were
determined after performing Ancestor boosting oenth using the recently discovered
parameters on each ancestor-child concept in 8tes&. The results are presented in Annex 3
and analyzed in 4.5. The original MAP scores faldcboncepts are listed, followed by the MAP
scores after ancestor boosting. Some conceptsitraining set did not have scores in the full
range [0-1], and were first normalized for comptiaefore the EM algorithm was applied. This
affected thel values, and changed the resultant MAP scores, hwisicalso displayed. For
comparison purposes, sometimes an ancestor comaspgimitted from a sub tree.

4.5 Ancestor boosting analysis

In this experiment, 17 out of 61 distinct concelpésl improved MAP scores. The assumption
behind this experiment was that child concepts oolur rarely in a dataset, and thus have weak
concept detectors. These child detectors are ingritly able to recognize the low-level features
that determine the semantic meaning of the conéeqtestor concepts, on the other hand, occur
more often, and thus have stronger detectors. Sagentically a child concept is automatically
a subset of the parent concept, the assumptidmatstiie low-level features that determine the
child concept are also the features that deterthe@arent concept. Thus it should be possible to
interpolate the scores from the ancestor and dulitept detectors for a particular shot, and
arrive at a more definitive detector than the owdji This should be conceived of as the
expansion of the classification boundary of theldcldetector, based on the classification
boundaries of the ancestor concepts. This sectialyzes and reflects upon the results garnered
from the application of the ancestor boosting meétbio the MediaMill dataset.

Of the 94 sub-trees, 18 concepts had better MAR®escwhen normalization occurred
before boosting, 11 had worse scores, and the neleawere unaffected by normalization. Since
the MAP results with normalization were generalligtgly better, these values are cited in
subsequent passages. Out of 94 sub-trees, 21 gaveved results after ancestor boosting, while
the remainder performed worse. The most noticeafypeovements were the sub-trees {desert,
outdoor}, where the ‘desert’ MAP improved from 0.183 (96% increase), {anchor, studio,
indoor}, where the ‘anchor MAP improved from 0.61® 0.635 (2.6% increase), and
{swimming pool, water body}, where the ‘swimming ggo MAP improved from 0.0014 to
0.0054 (285% increase). The remaining 73 sub trebsse detectors performed worse after
boosting, had MAP scores that sometimes varied lynilobut sometimes by as much as one
significant figure.

There are two possible causes for the variatiohdAR amongst the sub-trees:
* The semantic distance between concepts; and
= Stronger child detectors than ancestor detectors.

23



Exploiting inter-conceptual relationships to boost SVM classification

The semantic distance is the subjective measurthefcloseness in meaning of two
concepts. In the context of the ontology of theadet, ‘building’ is semantically close to ‘house’,
while ‘building’ is rather more semantically distafmom ‘outdoor’. Although these concepts
share the same ancestor-descendant axis, they diffssiderably in meaning. A ‘house’ is an
instance of a ‘building’, while a ‘building’ is lated ‘outdoors’. Thus the first two are very
similar, while the latter is a much more genericalion. As such, the probability of the ‘house’
and ‘building’ concepts co-occurring in a shot exwhigh. The likelihood that ‘outdoors’ and
‘building’ co-occur is considerably less.

This has bearing on the interpolation process, hée various child and ancestor
detectors are interpolated together to form a neteador. The EM algorithm determines the
optimum weightings for the contribution from theildrand ancestor detectors. If some of these
ancestor-child concepts are not concurrent thenntterect weighting is found, resulting in an
overall MAP decrease for the interpolated detector.

This can be seen in the results, as the ‘housaedses when boosted by its ancestors
‘building’ and ‘outdoor’, from 0.00664 to 0.0060Bbut increases to 0.00804 when boosted by
‘building’ alone. Likewise, the MAP for the ‘anchodetector improves when boosted by
‘studio’, from 0.06192 to 0.6358, but only improwes0.6354 when boosted by both ‘studio’ and
‘indoor’. It can be argued that an anchor is muatrenclosely related to a studio, than to the
location ‘indoors’. Thus semantically close ancestooost a child concept, while semantically
remote ancestors only detract from it.

The set {basketball, walking and running, peopkan interesting examination of the issue
of semantic distance. These concepts seem relatetdone would suspect an increase after
ancestor boosting. The resultant drop in MAP, f@di791 to 0.0054 suggests otherwise. For this
sub-tree, parameter estimation greatly favors fle®ple’ concept, and the resultant detector is
more of a reduced ‘people’ detector than one tlaat cognize ‘basketball’. In reality, the
semantic distance, as a measure of concurrencyyebpt ‘basketball and ‘people’ is
considerable. In the dataset, most drops in MAHop®ance are caused by the semantic
dissimilarity between ancestor and child concepts.

Some however, are simply caused by over-interpolaffhe premise of ancestor boosting
is that the child-concept detector is insufficignttained, and that the semantically similar
ancestor detector is more than up to the task.h&t tase, linear interpolation is entirely
appropriate. However, for some concepts in thesegtéhe child detector is entirely capable, and
the ancestor classifier is the weaker classifidre Thore abstract ‘water body’ and ‘animal’
concepts are examples of this. Interpolating witkse concepts only cause a loss in specificity in
the resultant detector, as is illustrated in thepdrin performance for the {river, water body}
detector, from MAP 0.653 to 0.253, and the {bindinaal} detector, from MAP 0.761 to 0.747.

Ancestor boosting is a promising technique, asaadrnby the number of improved child
detectors in the dataset. For ancestor boostimgpt& successfully, however, it is necessary that
ancestor and child concepts be tightly linked seroally, as this implies a high degree of
concurrency. Some concepts in the dataset conteaidibe notion that ancestor concepts would
have better performing detectors than their childcepts. Where this was the case, the resultant
interpolated detectors performed worse than thgirai concept detector. An interesting research
qguestion would be to see how much the performaha@mous child concepts would improve
were the dataset seeded with additional intermedetel ancestor concepts. Another research
idea would be to perform the ancestor boosting waittsVM classifier, instead of linearly
interpolating the detectors. That is, the SVM dfesswould take the outputs of the child and
ancestor classifiers, and internally generate abawatory classifier. There is a risk that the EM
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algorithm for the)l parameter training over-trains, and that a SVMssifeer would be more
robust under different testing conditions.

4.6 Experiment 3: Chi-Square boosting

In the previous two experiments, an ontology wasdu® determine the relationships between
concepts, prior to concept boosting. Inspired by ¥6&¥] and Hauptmann[23], who used the chi-
square test to find related concept pairs, thiexgent determines concept correlations through
the application of this method. The chi-square dests not imply a structured relationship, as the
tree-hierarchy of an ontology might, but simply ntldes concept pairs that are significantly

related, in other words, concepts that frequentlyuo together in the same shot.

The assumption made is that the training set, auntathe ground-truth values on which
the chi-test operates, is representative of thgetadataset. Provided this is true, the concept
relationships learned from the training set cand® to improve the detectors of the whole set.

The insight behind this method is that if a concepsignificantly related to another
concept, then the chance of the other related pbralso appearing in a shot is very high. In
essence, one could use the detector for one coaocepstill detect the related concept, simply
because the presence of one implies the other. Bmes could compensate for a poorly
performing concept detector by using the detectunfthe related concept. If the representative
features of each of the concomitant concepts arly fadependent of each other, a combined
detector could potentially perform more robustly mth concepts because it would perceive
both sets of representative features. If one sé&aifires was feint, it could still detect the othe
set of features.

4.7 Chi-Square explained

Pearson’s chi-square test was used to evaluate aacept pair in order to determine
whether they had similar frequency distributionstfeeir ground-truth values. The chi-square is
the result of the sum of all the squares of théeddhce of the observed frequency and the
expected frequency, divided by the expected frequeifihis is expressed in the following
formula:

v’= Y =1 (O-E)YE, where Qis the observation, and; the expected value, at the i-th
element in a table with n elements.

In order to get meaningful results this entailedtipaning the ground truth set, and for each
concept-pair, drawing up contingency tables thaaitkel the number of concept occurrences in
each partition. For example:

#of observed occurrences Frames 1...k k+1...2k n-k+1...n

Concept 1 2 4 6 Row total=12
Concept 2 1 2 3 Row total=6
Totals Column total=3|Column total=6]|... Column total=9| Grand total=18

Thus for the above example, where concepts 1 amd &ubdivided into partitions of size k:
Let k=3

The expected value is computed by taking the raad(igrand total*column total(i). E.g. for
i=4 (the above table has 6 elements in total-theldment is the first column of the second row)
E,=(6/18*3)
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v*=(2-(12/18*3)§/(12/18*3)+(4-(12/18*6)¥/(12/18*6)+...+(6-(12/18*9F/(12/18*9)+
(1-(6/18*3)%/(6/18*3)+(2-(6/18*6)Y/(6/18*6)+...+(3-(6/18*9Y/(6/18*9)=0

If ¥ is less than a threshold value, determined byuting the chi-square distribution for the
degrees of freedom and the significance value, thertwo concepts are deemed related. The
significance value used for the chi-square testhigexperiment was 0.05, as this is considered
the criterion for statistical significance. There &-1) degrees of freedom in the above example.
Consultation of the chi-square distribution forl(kdegrees of freedom and a significance value
of 0.05 gives a value of approximately 5.991. Beeai=0<5.991, the two concepts are related.
In practice, the row totals are determined fromgraund-truth annotations for each concept, and
the column totals are calculated at run time, diseéslegree of freedom.

In order to perform a meaningful chi-square tés¢, key-frames and their ground-truth
values had to be partitioned into smaller setse gértition size for these sets had to be carefully
chosen. There are concepts in the MediaMill datagdt fewer than 100 instances so the
partition size had to be significantly less thaattl©ne criterion for the validity of the chi-sgear
test is that each cell has to have at least 5 ehisens. A decrease in the partition size results i
more concept-pairs being identified, at the exp@fisa increase in the number of false positives
as the 5-observation requirement is violated. Thisspecially likely with sparse concepts. The
following example illustrates the effect of a dexse in partition size. Consider two concepts,
with a partition size of 2 on their ground-trutHues:

Concept 1 T FF T FF

Concept 2 TT FF TF FF

For the sake of the argument, say that these twoegis are not related according to the chi-test,
because even though the first column has an equaliat of true shots for both concepts, they
differ in the third column. Partitions containingly false shots are ignored. With only one out of
two partitions in common, the frequency distribnsoof the two concepts are too dissimilar to

consider them significantly related. Decreasing phetition size from 2 to 1 would cause the

following:

Concept 1 T T F F T T " F F

Concept 2 T T F F T F . F F

Now the two concepts have three out four partitionsommon, which would be cause enough to
consider them significantly related. A small enougdrtition induces a similar frequency
distribution between concepts, because of theatrasmount of elements per partition. Hence the
5-observation requirement as the minimum size f@asdition in a chi-square test. For video
retrieval, it should probably be larger than that.

With a partition size of 10, 55 concept pairs wiglentified, although a number of these
were false positives, i.e. {duo_anchor, clintom}stead, a partition size of 40 was used for the
experiment, which identified 23 concept pairs.

New concept detectors were created for each ofgberted concepts, by interpolating the
concepts of each pair using the procedure firsbrted in section 4.3. When a specific concept
appeared in more than one pair, a detector wasecréy interpolating all the related concepts.
The MAP results for the updated concept detectoespaesented in Annex 4. Concept pair
generation was done using the whole data setho# the training and test sets combined, in
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order to get a fairer idea of concept relationshifgameter training, as per 4.3, was done on the
training set alone though.

4.8 Chi-Square boosting analysis

The 23 identified concept pairs were made up afitd§ue concepts. 22 of these 36 concepts had
detectors who showed an improvement in MAP. 46aliete were created as a result of pair-wise
concept interpolations, and 9 concept detectorsltess from interpolations of more than two
concepts. The MAP results obtained with a normdlizaining set were better than those without
normalization, and so the normalized values ard tmethis analysis.

27 of the 46 concept pairs showed an improveméet énterpolation. Of the 27, 18
concepts in a pair both improved. It is interestiogexamine a few concept pairs, and to
speculate about their results.

For the sets: {horse, horse_racing} and {flaggflasa}, ‘flag_usa’ and ‘horse_racing’ are
in fact strict subsets of ‘flag’ and ‘horse’. Incta this had already been established in the
ontology and ancestor boosting section of 4.2. Materesting is that the ancestor detectors
perform better when combined with their child dé&tes. This is contrary to the assumption that
ancestor detectors are stronger than their chiléctters, which was made in the Ancestor
boosting section. A possible explanation for thehdvior may rest with the distinguishing
features for the semantic content of each conaepich varies slightly, and the number of
training examples for each concept. ‘Horse_raciaga ‘horse’ detector, with an added motion
component. Likewise ‘flag_usa’ is a ‘flag’ detectaith specialized color components specific to
the American flag. Child detectors that detect gpeed feature components with a high degree
of certainty boost the ancestor concept detectbmsse’ and ‘flag’. The child components,
‘horse_racing’ and ‘flag_usa’, benefit from ancestietectors more capable of detecting the
generic concept. In essence, both ancestor amdl abricept detectors engage in a sort of mutual
error compensation. A possible explanation for wigse detectors are able to engage in mutual
error compensation may be that the individual detscare not expert enough, due to a lack in
positive training examples. In the whole set, there around 500 positive examples for ‘flag’,
400 for ‘flag_usa’, around 50 for ‘horse’ and 40 fitag’.

Different cases are concept pairs: {building, tgwébuilding, house}, {graphics, charts},
and {graphics, maps}. Although ‘building’ and ‘gtaips’ are still the supersets of {house, tower}
and {charts, maps} respectively, they are largantthe combined sum of these child subsets.
The child concepts improve because of the contohurom more powerful ancestor detectors,
per the reasoning originally discussed in the Atmrelsoosting section. More interesting is the
improvement of the superset concepts, ‘buildingl araphics’. Using ‘building’ as an example,
one should realize that ‘house’ and ‘tower’ makeadprge proportion of the ‘building’ set, with
a minor feature contribution from other conceptse Generic ‘building’ detector thus is capable
of recognizing the various specialized buildingamees. The ‘building’ detector becomes much
more specialized, however, after interpolation weitiner ‘house’ or ‘tower’. Since the detector is
better able to recognize the specialized buildimgfances that occur frequently, i.e. it is less
confused by the features from the infrequently ateg sub-types; there is an overall increase in
detection performance. This is illustrated by fhet that the MAP increase for the interpolated
detector resulting from {house, tower} is greateaurt the increase for {house, building}, and that
there are many more instances of ‘tower’ in thelthog’ set, than there are instances of ‘house’.
Of note is that the interpolated building detec{building, house, tower} specializing in
recognizing the most predominant building subtypbesuse’ and ‘tower’ gives a MAP of
0.23409, thus outperforming the specialized detsctesulting from interpolating {building,
tower} or {building, house} alone. The ‘graphicdmrcept behaves similarly. A MAP gain, from
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MAP: 0.38149 to MAP: 0.38153, is seen for ‘graphigben specializing it on ‘maps’, which is
the most predominantly occurring subtype. A MAPrdase is observed when specializing it on
the less frequently occurring child class, ‘charfd'so specializing ‘graphics’ on both ‘charts’
and ‘maps’ leads to a MAP decrease.

The final category of observations pertain thecepn pairs which are disjoint, such as
{lahoud, chair}, {military, fire weapon} or {duo_arhor, swimming pool}. Neither concept is a
subset or superset of the other, and has only mkmmified because the chi-square test has
noticed their similar frequency distributions. Theig not appear in the ontology used in the
Sibling-confusion removal and Ancestor boosting htegues, nor would one make the
association giving the semantic connotations oheamcept. These pairs simply occur because
many shots which contain ‘lahoud’ also containtaaic. The fact that both the revised detectors
for ‘chair and ‘lahoud’ show improvement suggekere is merit in detecting for disjoint
concepts that often occur together. Like the {fllgg_usa} concept detectors, the revised
detectors for ‘chair’ and ‘lahoud’ are more robastthey detect for both sets of representative
features. However, the same sources of error fag{fflag_usa} are also possible for {lahoud,
chair}, as all concepts have relatively few postivaining examples. An additional potential
source of error is the size of the partition. Afetiént partition size might result in a chi-square
test that does not consider {lahoud, chair} to hauailar frequency distributions. Still, the
improvement in MAP mitigates the argument.

One can make a number of categorizations abeuyfies of MAP improvements observed
in the results.

= Child (subset) concepts leveraged the functionalittheir more powerful ancestor concept
detectors. These concepts are identical to thainoéstor Boosting, section 4.3, and the
same sources of error apply.

= Parent (superset) concepts which benefited frontialmng on their most frequently
occurring child concepts.

= Concepts that singularly, or mutually, benefitezhirdetecting the related concept and thus
implicitly a different feature set. These concepiay be entirely disjoint, or part of an
ancestor-descendent relationship. This categaifyeisnost interesting, as one would not
associate some of the disjoint concepts togetheause of their different semantic
meanings.

4.9 Chi-square Conclusion

Chi-square is a powerful method because it dissowemncept relationships which are not
immediately apparent from their semantic meaning.contrast, the relationships used for
Ancestor boosting are taken straight from an ogldrhe two methods are complementary
however. Most of the relationships discovered ircéstor boosting can also be seen in the chi-
square results. Some, such as {desert, outdoomatre

The chi-square determines concept relationships fthe ground-truth annotations. This
does make the assumption that the training se¢psesentative of the larger dataset, lest the
incorrect relationships be made. In contrast Arwdsbosting is dependent only on an ontology,
which is independent of the training set, as datermined only based on the semantic meanings
of the various concepts. Nonetheless, more contdegtsesult in a MAP gain are identified with
chi-square than with Ancestor boosting, a total2@f for chi-square compared with 17 for
Ancestor boosting.

Chi-square is sensitive to variations in the sizéhe partitions used to divide the ground-
truth annotations of each concept. A number ofofacinfluence the choice of partition size, and
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more research needs to be done on the choice titigrasize and significance level in order to
determine the best values that return the largestuat of concept pairs while minimizing the
amount of irrelevant pairs.

Another matter for future consideration is replgcithe concept detector interpolation
procedure with a SVM classifier. As previously sthin 4.3, there is a risk that the EM algorithm
for the A parameter training over-trains, and that a SVMsifeer would be more robust under
different testing conditions.
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Chapter 5

Conclusion

The literature survey that was the formative pathis thesis covered the early beginnings
of semantic concept detectors up to the stateeofithsystems and techniques used today. This
served to introduce three techniques, which furimgrove modern concept detectors, based on
the exploitation of the inter-conceptual relatiapshbetween the various semantic concepts
within a dataset.

The first two techniques, Sibling-confusion remowald Ancestor boosting, employ an
ontology to determine the relationships betweerctireepts of a dataset.

Sibling concepts are semantically very related, thigltends to be reflected in their feature
sets, which also are likely to be very similar. STtdauses confusion among their concept
detectors, as they misclassify data into one semalaiss while in reality the data belongs to a
different, mutually exclusive, sibling class. ThilBig-confusion removal technique reduces the
amount of false positives detected by normaliziagedtor scores based on the confusion factor, a
number that indicates the likelihood of a falseitpas occurring for a particular shot. When run
on the MediaMill dataset, Sibling-confusion remoregulted in improved MAP scores for 30 out
of 64 concepts. Although the technique showed spromise, it was sensitive to a number of
negative influences. This technique was hampered pyor set of sibling concept groupings
provided by the ontology. These groupings havedotain concepts which are semantically
related, closed, and where, for every shot, eanbeg is complementary to the set of remaining
concepts, which was not always the case. Nexte tisea basic level of performance required by
the concept detectors of a sibling set before asjtipe improvement is noticeable. The effect of
weak concept detectors was compounded by the afpiphc of Sibling-confusion removal.
Finally, there have to be a certain amount of falsstives in the concept set under consideration
for the technique to be worthwhile. In many casks was not so, and the application of the
technique led to a decrease in MAP.

Sibling-confusion removal can easily be improvedrbfining the ontology on which it
depends. A human operator can better order theeptsavithin the ontology to create the correct
sibling concept groupings on which this technigepehds. Since Sibling-confusion removal
runs in linear time with respect to the size of dagaset, and executes quickly, a trial-and-error
approach can be used to determine the conceptsbvadfit from the application of this
technique.

The premise of the Ancestor boosting techniqubeas ancestor concepts occur more often
in the dataset, and thus have more robust detedtwas child concepts. Because ancestor
concepts are supersets of child concepts, andstimudd occur together, it is possible to improve
child concept detectors by interpolating them wtitleir ancestor concept detectors, thereby
increasing the decision boundaries of the childceph detectors. When applied to the dataset,
Ancestor boosting resulted in improved MAP scoras 17 out of 61 distinct concepts. The
failure to improve certain concept detectors was ttuthe semantic distance between the child
and ancestor concepts, which meant that there oféanlittle correlation between ancestor and
child concepts. Another reason was that the ndtah ancestor concept detectors were more
robust than child concept detectors proved to bermect.

Further improvements for this technique could bleieed performing ancestor boosting
with a SVM classifier, instead of linearly interptihg the detectors. That is, the SVM classifier
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would take the outputs of the child and ancestassifiers, and internally generate a combinatory
classifier. There is a risk that the EM algorithon the . parameter estimation over-trains, and
that a SVM classifier would be more robust undéedent testing conditions.

Chi-square boosting utilizes the chi-square testiéotify concepts with similar frequency
distributions from a sample of the dataset. Thissed to infer concepts that frequently occur
together. Detector performance is increased beadeisetors can make use of the presence of
one concept to infer the presence of the relatetequt. Chi-square boosting resulted in an
improvement in 22 out of 36 concepts. Comparativitlig is a greater increase than delivered by
the Ancestor boosting and Sibling-confusion remaeahniques. The concept improvements
could be attributed to: child concepts leveraghmgfunctionality of their more powerful ancestor
concept detectors (identical to Ancestor boostipgyent concepts which specialized on their
most frequently occurring child concepts, and cpteavhich singly or mutually benefited from
detecting the related concept and thus implicittifeerent feature set.

Chi-square does not depend on an ontology to detergoncept relationships. It does,
however, assume that the training set is a repiasen sample of the overall dataset when
determining the various concept relationships. jiare is also sensitive to variations in the
significance level and partition size parametersenviperforming the chi-test to determine
concept relationships. This should be further enqulan order to determine whether additional
concept relationships could be discovered that evdebd to further concept boosting. The
interpolation procedure that creates new concefgctiEs is identical to the one in Ancestor
boosting, and for like reasons it should be deteechivhether an SVM classifier should replace
this interpolation procedure.

A further direction of research is to investigtite effects of combining the three
techniques presented. Ancestor boosting and Clarsduoosting are very similar in nature, so
the logical approach would be to take the uniothefconcept detectors resulting from these two
techniques, prior to applying Sibling-confusion aal. It is not possible to applying Sibling-
confusion removal first, as the re-ranking procechneaks the confidence metric. A brief inquiry
suggests that the above combination results irtiaddl MAP improvements, better than the best
single boosting technique. A table with some prelary findings follows:

Table: Combined boosting
IAncestor or Chi
Best Ancestor Boosting followed by,
Original |or Chi boosting [Sibling-confusion Best single Sibling-confusion  [Combined %
Concept MAP MAP removal MAP detector % changelremoval MAP change
Charts 0.2541 0.2658 0.2697 6.13% 0.3049 19.98%
Maps 0.3039 0.3383 0.2989 11.32% 0.2878 -5.31%
Tower 0.0235 0.0254 0.0223 8.07% 0.0255 8.46%
House 0.0066 0.0080 0.0066 21.15% 0.0081 21.37%
Government
building 0.0793 0.0793 0.0793 0.02% 0.0794 0.09%

There are too few concepts in the current dataseever, which have both MAP improvements,
from Ancestor or Chi-square boosting, and whiclb al® sibling concepts, to make informed
judgments about the effectiveness of combiningetheshniques.
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Annex 1

SVM Theory
Given training vectors (i.e. low-level graphical «
textual features)jxand their associated class labe
(i.e. whether a semantic concept in the shot, t| | Il s[idte | Feature space
or false) y, (x;, y;) for i=1, 2...L where L is the
number of training samples, and labgle{1,-1}, [ ] L
a SVM must construct a model from this trainir 4

set which will allow it to predict unlabeled vedol

in the future. It does so by applying a functifgn ""ﬁ

which maps the training vectors ixto a higher 5
dimensional space, whereupon the SVM finds [ [
linearly separating hyperplane that maximal ]
separates the two classes. [24, 25] The intuit ]
idea behind the mapping is to ensure that ther -
an easy, linearly separable classification of t
training set in the higher dimension, even if tr
was not the case in the dimension of the input

space. Source[24]

This transformation also reduces the risk of cwke&imensionality [63], and the maximally
separating hyper plane prevents overtraining.

The formula of a hyper plane is given by x.w+b=0eweéhw is the normal vector, |b|/||w|| the
perpendicular distance from hyperplane to the orignd ||w|| the Euclidian norm of w. Given a
hyperplane, x.w +b, which separates the two clasefine d+ and d- as the shortest distance
from the hyperplane to the closest positively alndest negatively labeled examples. Then the
margin of the hyperplane can be given as+dl-. [11] The SVM algorithm seeks to find the
hyperplane with the largest margin, intuitively Base this ensures the data is as ‘far’ away as
possible from the decision boundary, thus miningzthe risk of over fitting the data and of
misclassifying future examples.

Thus for the linearly separable case, the conssr@n the training data can be formulated
as follows:

I Xyw+b>+1 for y=+1
1 Xiyw+b<-1 for y=-1, which combined is written as:
1] yi(Xyw+b)-1>0 for all i

The points for which equality | holds lie on hypergaH, : x;w+b=1, with normal w and
perpendicular distance from the origin |1-b|/||w|].

The points for which equality Il holds lie on hypempé H : xw+b=-1, with normal w and
perpendicular distance from the origin |-1-b|/||w]|.

Hence the margin=.d d= (1-b)/||w||-(-1-b)|/[|w]| = 2/]||w]|
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In order to maximize the margin, ||w||/2 =
w'w/2 must be minimized, subject to the
constraints y¥xjw+b)-1 >0 for all i [11].
Therefore the problem of finding the optimal
hyperplane is a constrained quadratic
optimization problem, which is solvable in
polynomial time [24]. Training points which
satisfy equality 1ll, and thus lie on either of the
hyper planes Hor H,, are called support
vectors because they actively affect the
solution. These points are marked with an
extra circle. The above proof does not consider
the non-separable case, which could occur
with erroneous training points or true
positives, outliers on the far side of the
decision boundary.

Source: [11]

Nonetheless, a linearly separating hyperplane canohstracted by introducing a slack
variable &. The minimization problem then becomes’w/2+ G=1SL & subject to the
constraintg/i(x.w+b)-1 #; >0V, & >0 [25] . Thus positive valugs >0 correspond to training
examples that have violated the constraints, eitiey are misclassified or they are correctly
classified and fall within the margin.

C is a parameter, chosen by the user, which assigmsnalty to error. Outliers can be
considered support vectors that contribute to thegment of the hyper plane-decision boundary.
As such, C can be varied to affect the~
influence. Erroneous seeming data points ¢
be penalized and have their influence reduc
on the selection of the hyper plane-decisi
boundary. This would maximize the margil
and would correspond to selecting a low
value, thus moving the hyperplane away frc
the outliers. If instead, outliers were to t
favored, as would be the case if they we
treated as true positive classifications, a hi
C value ought to be chosen. This would mo
the hyperplane closer to the outliers, there
minimizing training error but also resulting il
a decreased margin. [10]

Earlier it was stated that SVMs map input de
into a much higher dimensional feature spa
where it would be much more likely that th_
data was linearly separable. Source: [11]

This mapping is done by a functignand the SVM conditions become:
Minimize w,b,& : w'w/2+ G=13L & ;
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subject to the constraints ((x;).w+b)-1 +; >0 V;, & >0 [25]

An important point is that computationally, the al@bes not explicitly have to be mapped
to the higher-dimensional space which is an expensperation, rather computing the dot
product in this space is sufficient.[10, 24, 25] #s&h, SVMs use kernel functions of the form:
K(X i,%)= ¢(xi")o(X;) to perform this transformation.

Kernels currently in use are:

linear: K(x, x) = X'i;

polynomial: K(x, %) = (x"ix; + re v> 0.

radial basis function (RBF): K(xx) = exp(~||x — %9, v> 0. =1/ (25%)),
sigmoid: K(x, x) = tanh¢x;"x; +r). [24, 25]

wherer, d, andy are kernel parameters that are experimentallyéted through cross-
validation during the SVM learning stage.

The sigmoid kernel trains a SVM as a 3-layer nenetvork. [24][11] For general purpose
classification, both the RBF [25] and polynomiaD]Jlkernels are recommended. Hsu et al.
further endorse the RBF kernel because it is alinear mapping, thus allowing for training data
which is not separable in the input domain. Alée, RBF kernel supersedes the linear kernel, as
the linear kernel is a special case of a RBF keiftey also argue that the RBF kernel is simpler
to train than the polynomial kernel, as it has lksmel parameters, one as opposed to two.
Finally they argue that RBF kernels do not suffenf numerical difficulties, O<j<1, whereas
the polynomial kernely&’ix; + r>1) ¢ may go to infinity, or zeroyk'ix; + r<i) d for large d.
Likewise they argue that the sigmoid kernel maybeotalid for certain parameters. [25]

During SVM training with the RBF kernel, the paraersy, C, and the positive and
negative weights of training examples may be vateedroduce a different model. Theand C
have been discussed thoroughly above, but thertgameights have not been mentioned. These
weights are used in cases where there are fewiy@osihining examples. By assigning a higher
weight to positive examples, the SVM is forced nolude the positive instances of a class in
determining the demarcating hyperplane. This ieessary for cases with a significantly larger
number of negative examples; where if the positvegght is not set, the SVM may optimize on
the many negative examples and create a decisiomdaoy unable to detect positive instances. It
may be trivially accurate as it is able to clasgiiggative instances with a high degree of
certainty, but it isn’t able to detect the fewenant, positive cases of the class at all.
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The following table shows the sibling concepts pnesn the ontology, their original MAP, and

the updated MAP after the confusion removal alparithad been run. Their parent concept is
listed as well, or Root, if they had none. Somdirgibsets had additional concepts added, labeled
superset, or concepts removed, labeled subset. Wddsdone because the operation seemed

Annex 2

Sibling-confusion removal results

logical from a semantic perspective, in order tm gasight into whether it affected the MAP.

Table 2 Sibling-confusion removal results

Parent class Concept Original MAP| Updated MAP | Performance
change
Studio splitscreen 0.3210 0.3373 5.08%
Root (subset) ‘location’ snow 0.0452 0.0472 4.42%
Studio newspaper 0.1212 0.1263 4.20%
Face bush_jr 0.0396 0.0407 2.70%
Sports soccer 0.0793 0.0814 2.59%
Face table 0.0375 0.0385 2.57%
Face kerry 0.0022 0.0022 2.00%
Original indoor outdoor 0.7095 0.7212 1.65%
Studio weather 0.7068 0.7181 1.60%
Root node indoor 0.5926 0.6019 1.56%
Face clinton 0.1894 0.1923 1.54%
Face powell 0.0849 0.0859 1.21%
Face tony_blair 0.0147 0.0148 0.89%
\Vehicle car 0.2458 0.2479 0.85%
Root(subset) ‘program type’ |Drawing_cartoon 0.1811 0.1823 0.66%
Root(subset) ‘program type’ |Drawing_cartoon 0.1811 0.1823 0.62%
Animal dog 0.1027 0.1034 0.61%
government leader (superset) |hassan_nasrallah 0.0044 0.0045 0.46%
government leader (superset) bush_sr 0.0001 0.0001 0.31%
Face arrafat 0.0342 0.0343 0.25%
Face bush sr 0.0001 0.0001 0.13%
Face sharon 0.0348 0.0348 0.13%
Building house 0.0066 0.0066 0.11%
Face monologue 0.0736 0.0736 0.08%
Face hassan_nasrallah 0.0044 0.0045 0.07%
\Water body (superset) swimming pool 0.0014 0.0014 0.03%
Root(subset) ‘program type’ |[Entertainment 0.2565 0.2566 0.03%
Building govt. building 0.0793 0.0793 0.02%
\Water body (superset) waterfall 0.4152 0.4153 0.02%
\Water body waterfall 0.4152 0.4153 0.02%
Face duo_anchor 0.1080 0.1080 0.01%
Animal fish 0.4075 0.4076 0.01%
Original drawing drawing 0.0440 0.0440 0.01%
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\Water body (superset) river 0.6540 0.6540 0.00%

Sports cycling 0.8875 0.8875 0.00%

Face allawi 0.0022 0.0022 0.00%

government leader (superset) kerry 0.0022 0.0022 0.00%

explosion nightfire 0.2489 0.2489 0.00%

explosion candle 0.0801 0.0801 -0.01%
\Water body swimming pool 0.0014 0.0014 -0.01%
Root (subset) ‘location’ studio 0.6653 0.6652 -0.02%
\Water body (superset) beach 0.0652 0.0652 -0.03%
\Water body beach 0.0652 0.0652 -0.03%
Root(subset) ‘program type’ |[Entertainment 0.2565 0.2564 -0.04%
government leader (superset) arrafat 0.0342 0.0341 -0.14%
Face anchor 0.6192 0.6172 -0.33%
People male 0.0678 0.0676 -0.38%
Sports football 0.0197 0.0196 -0.38%
Face lahoud 0.1151 0.1146 -0.47%
government leader (superset) |ahoud 0.1151 0.1145 -0.55%
Root (subset) ‘location’ Mountain 0.0918 0.0912 -0.60%
Root (subset) ‘location’ Desert 0.0933 0.0927 -0.66%
government leader (superset) |powell 0.0849 0.0842 -0.83%
Studio anchor 0.6192 0.6138 -0.88%
Face hu_jintao 0.0436 0.0432 -0.95%
government leader (superset) bush_jr 0.0396 0.0392 -1.01%
Sports golf 0.0424 0.0419 -1.09%
Root(subset) ‘program type’ weather 0.7068 0.6974 -1.34%
\Vehicle truck 0.0418 0.0411 -1.53%
Animal horse 0.0003 0.0003 -1.60%
Face splitscreen 0.3210 0.3158 -1.61%
government leader (superset) lallawi 0.0022 0.0022 -1.67%
government leader (superset) |hu_jintao 0.0436 0.0428 -1.93%
Animal bird 0.7611 0.7442 -2.23%
\Vehicle bus 0.0088 0.0086 -2.25%
government leader (superset) [clinton 0.1894 0.1848 -2.41%
government leader (superset) ftony blair 0.0147 0.0143 -2.52%
Sports tennis 0.2985 0.2905 -2.68%
\Vehicle aircraft 0.1147 0.1115 -2.82%
Original drawing cartoon 0.2783 0.2683 -3.57%
Face male 0.0678 0.0654 -3.57%
Sports basketball 0.1791 0.1720 -3.94%
Face female 0.0610 0.0579 -5.11%
Studio duo_anchor 0.1080 0.1024 -5.17%
Building tower 0.0235 0.0223 -5.26%
Root (subset) ‘location’ water body 0.1317 0.1213 -7.93%
Face government_leader 0.2218 0.2000 -9.83%
\Vehicle tank 0.0107 0.0097 -10.06%
\Vehicle boat 0.0834 0.0714 -14.34%
government leader (superset) [sharon 0.0348 0.0280 -19.41%
Root(subset) ‘program type’ |Sports 0.2307 0.1678 -27.28%
Root(subset) ‘program type’ |Sports 0.2307 0.1667 -27.78%
Sports racing 0.1754 0.1261 -28.08%
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Root (subset) ‘location’ urban 0.1948 0.1351 -30.63%
People female 0.0610 0.0406 -33.44%
\Vehicle bicycle 0.2234 0.1223 -45.25%
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Annex 3

Ancestor boosting results

The original MAP score for the child concept igdi, followed by the MAP score after ancestor
boosting. Some concepts in the training set didhaoe scores in the full range [0-1], and were
first normalized for compliance. This affected thevalues, and changed the resultant MAP
scores, which is the last category on display. d@nparison purposes, sometimes an ancestor
concept was omitted from a sub tree. The child ephés the leftmost element in each set, and
ancestors are listed in ascending order.

Table 3 Ancestor boosting results

Original |Boosted| Boosted and |[Performance
Sub-tree Concept MAP MAP Normalized change

MAP

swimming pool, water body swimming pool| 0.0014 0.0054 0.0054 285.54%
tank, vehicle tank 0.0107 0.0300 0.0250 132.91%
desert, outdoor desert 0.0933 0.1837 0.1837 96.87%
swimming pool, water body,
outdoor swimming pool| 0.0014 0.0021 0.0021 48.04%
basketball, sports basketball 0.1791 0.2207 0.2207 23.26%
bus, vehicle bus 0.0088 0.0117 0.0108 21.89%
house, building house 0.0066 0.0080 0.0080 21.15%
maps, graphics maps 0.3039 0.3383 0.3383 11.32%
explosion, violence explosion 0.0782 0.0857 0.0857 9.61%
tower, building tower 0.0235 0.0239 0.0254 8.07%
tennis, sports tennis 0.2985 0.3184 0.3184 6.65%
charts, graphics charts 0.2541 0.2657 0.2658 4.58%
anchor, studio anchor 0.6192 0.6358 0.6358 2.69%
anchor, studio, indoor anchor 0.6192 0.6355 0.6355 2.62%
anchor, indoor anchor 0.6192 0.6334 0.6334 2.29%
horse_racing, horse horse_racing 0.0003 0.0003 0.0003 0.71%
flag_usa, flag flag_usa 0.1568 0.1573 0.1573 0.31%
night fire, explosion night fire 0.2489 0.2495 0.2495 0.25%
studio, indoor studio 0.6653 0.6657 0.6657 0.05%
face, people face 0.8921 0.8922 0.8922 0.01%
cycling, bicycle cycling 0.8875 0.8875 0.8875 0.00%
allawi, government leader, face |allawi 0.0002 0.0002 0.0002 0.00%
drawing, drawing_cartoon drawing 0.0440 0.0440 0.0440 0.00%
cartoon, drawing_cartoon cartoon 0.2783 0.2783 0.2783 0.00%
fish, animal fish 0.4075 0.4066 0.4066 -0.22%
car, vehicle car 0.2458 0.2432 0.2432 -1.08%
football, sports football 0.0197 0.0194 0.0194 -1.19%
basketball, walking_running basketball 0.1791 0.1753 0.1765 -1.47%
bird, animal bird 0.7611 0.7466 0.7466 -1.92%
candle, explosion candle 0.0801 0.0784 0.0784 -2.16%
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urban, outdoor urban 0.1948 0.1877 0.1877 -3.65%
golf, sports golf 0.0424 0.0404 0.0404 -4.70%
bush_jr, government leader,

face bush_jr 0.0396 0.0375 0.0375 -5.30%
soccer, sports soccer 0.0793 0.0745 0.0745 -6.07%
anchor, face anchor 0.6192 0.5714 0.5714 -7.72%
military, walking_running military 0.2370 0.2370 0.2182 -7.93%
split screen, indoor split screen 0.3210 0.2950 0.2954 -7.96%
house, building, outdoor house 0.0066 0.0061 0.0061 -8.82%
splitscreen, studio, indoor split screen 0.3210 0.2923 0.2926 -8.85%
smoke, violence smoke 0.3659 0.3323 0.3324 -9.15%
cloud, sky cloud 0.0785 0.0710 0.0710 -9.53%
river, waterbody river 0.6540 0.5872 0.5872 -10.20%
boat, vehicle boat 0.0834 0.0747 0.0747 -10.41%
weather, indoor weather 0.7068 0.6024 0.6024 -14.78%
weather, studio, indoor weather 0.7068 0.6013 0.6013 -14.93%
horse racing, horse, animal horse_racing 0.0003 0.0002 0.0002 -15.58%
truck, vehicle truck 0.0418 0.0348 0.0348 -16.65%
cloud, sky, outdoor cloud 0.0785 0.0612 0.0612 -22.05%
aircraft, vehicle aircraft 0.1147 0.0880 0.0879 -23.40%
Original arrafat arrafat 0.0342 0.0259 0.0261 -23.53%
female, face female 0.0610 0.0466 0.0466 -23.66%
road, outdoor road 0.2123 0.1598 0.1599 -24.65%
football, walking_running football 0.0197 0.0137 0.0137 -30.59%
female, face, people female 0.0610 0.0408 0.0408 -33.05%
mountain, outdoor mountain 0.0918 0.0610 0.0610 -33.55%

government
government leader, face leader 0.2218 0.1404 0.1404 -36.71%
tower, building, outdoor tower 0.0235 0.0145 0.0145 -38.15%
kerry, government leader kerry 0.0022 0.0013 0.0013 -38.36%
male, face, people male 0.0678 0.0406 0.0406 -40.07%
tree, outdoor tree 0.0626 0.0344 0.0344 -45.05%
male, face male 0.0678 0.0360 0.0360 -46.85%
soccer, walking_running soccer 0.0793 0.0418 0.0410 -48.30%
male, people male 0.0678 0.0347 0.0347 -48.82%
female, people female 0.0610 0.0304 0.0304 -50.13%
cycling, sports cycling 0.8875 0.3986 0.3986 -55.09%
tennis, walking_running tennis 0.2985 0.1311 0.1298 -56.52%
car, vehicle, outdoor car 0.2458 0.0989 0.0989 -59.76%
monologue, overlayed text monologue 0.0736 0.0291 0.0291 -60.49%
river, waterbody, outdoor river 0.6540 0.2532 0.2532 -61.28%
office, indoor office 0.0452 0.0166 0.0166 -63.25%
monologue, people monologue 0.0736 0.0251 0.0251 -65.90%
racing, sports racing 0.1754 0.0577 0.0577 -67.10%
boat, vehicle, outdoor boat 0.0834 0.0268 0.0268 -67.88%
meeting, indoor meeting 0.2109 0.0645 0.0645 -69.40%
government

Original government building  |building 0.0793 0.0246 0.0225 -71.70%
military, walking_running,

people military 0.2370 0.0596 0.0596 -74.85%
table, indoor table 0.0375 0.0093 0.0093 -75.22%
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dog, animal dog 0.1027 0.0214 0.0214 -79.22%
football, walking_running,

people football 0.0197 0.0040 0.0040 -79.45%
duo_anchor, studio, indoor duo_anchor 0.1080 0.0213 0.0214 -80.22%
duo_anchor, indoor duo_anchor 0.1080 0.0207 0.0207 -80.85%
court, indoor court 0.0297 0.0055 0.0055 -81.45%
night fire, violence night fire 0.2489 0.0451 0.0452 -81.83%
police_security,

walking_running police_security| 0.0825 0.0122 0.0130 -84.21%
prisoner, people prisoner 0.0508 0.0069 0.0069 -86.35%
beach, waterbody beach 0.0652 0.0037 0.0082 -87.39%
police_security,

walking_running, people police_security| 0.0825 0.0090 0.0090 -89.10%
newspaper, studio, indoor newspaper 0.2109 0.0127 0.0127 -93.96%
newspaper, indoor newspaper 0.2109 0.0121 0.0121 -94.27%
soccer, walking_running, people| soccer 0.0793 0.0027 0.0027 -96.55%
basket ball, walking_running,

people basketball 0.1791 0.0054 0.0054 -96.97%
tennis, walking_running, people | tennis 0.2985 0.0043 0.0043 -98.55%
beach, waterbody, outdoor beach 0.0652 0.0008 0.0008 -98.76%
bicycle, vehicle bicycle 0.2234 0.2234 0.0010 -99.54%
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Annex 4

Chi-square boosting results

The concepts listed were identified using a chiasguest with significance value of 0.05, and
evaluated for the ground-truth shots, which wemtiti@ned into blocks of 40. The original MAP
score for the each concept is listed, followed gy MAP score after interpolation with the
related concept. Some concepts were related to thareone other concept, and detectors were
created for the total related set. Some conceptiseiriraining set did not have scores in the full
range [0-1], and were first normalized for comptianThis affected th& values, and changed
the resultant MAP scores, which is the last categardisplay.

Table 3 Chi-square boosting
results

Concept pair Concept Original MAPUpdated MAP| Updated [Performance
and change
normalized
MAP
swimmingpool, duo_anchor swimming pool 0.0014 0.0034 0.0034 140.07%
bicycle, cycling bicycle 0.2234 0.3444 0.3444 54.14%
house, building house 0.0066 0.0080 0.0080 21.15%
maps, graphics maps 0.3039 0.3383 0.3383 11.32%
tower, building tower 0.0235 0.0239 0.0254 8.07%
waterbody, beach, waterfall, boat  |waterbody 0.1317 0.1382 0.1421 7.86%
waterbody, boat waterbody 0.1317 0.1382 0.1382 4.94%
people, face people 0.8897 0.9311 0.9311 4.65%
charts, graphics charts 0.2541 0.2657 0.2658 4.58%
fireweapon, military fireweapon 0.0602 0.0622 0.0628 4.33%
waterbody, waterfall waterbody 0.1317 0.1369 0.1369 3.93%
anchor, studio anchor 0.6192 0.6358 0.6358 2.69%
flag, flag_usa flag 0.1196 0.1224 0.1224 2.35%
\vehicle, car \vehicle 0.2706 0.2725 0.2726 0.72%
horse_racing, horse horse racing 0.0003 0.0003 0.0003 0.71%
\vehicle, truck, car \vehicle 0.2706 0.2724 0.2725 0.69%
building, house, tower building 0.2326 0.2322 0.2341 0.62%
building, tower building 0.2326 0.2322 0.2341 0.61%
fireweapon, walking_running, militaryfireweapon 0.0602 0.0603 0.0605 0.54%
flag_usa, flag flag usa 0.1568 0.1573 0.1573 0.31%
night fire, explosion night fire 0.2489 0.2495 0.2495 0.25%
duo_anchor, beach duo anchor 0.1080 0.1080 0.1083 0.22%
duo_anchor, swimmingpool, beach |duo anchor 0.1080 0.1080 0.1083 0.22%
lahoud, chair lahoud 0.1151 0.1152 0.1152 0.06%
building, house building 0.2326 0.2327 0.2327 0.02%
explosion, night fire explosion 0.0782 0.0782 0.0782 0.01%
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explosion, night fire, candle explosion 0.0782 0.0782 0.0782 0.01%
graphics, maps graphics 0.3815 0.3815 0.3815 0.01%
face, people face 0.8921 0.8922 0.8922 0.01%
horse, horse_racing horse 0.0003 0.0003 0.0003 0.01%
chair, lahoud chair 0.2613 0.2613 0.2613 0.00%
drawing_cartoon, drawing drawing cartoon|  0.1811 0.1811 0.1811 0.00%
duo_anchor, swimmingpool duo anchor 0.1080 0.1080 0.1080 0.00%
cycling, bicycle cycling 0.8875 0.8875 0.8875 0.00%
drawing, drawing_cartoon drawing 0.0440 0.0440 0.0440 0.00%
cartoon, drawing_cartoon cartoon 0.2783 0.2783 0.2783 0.00%
explosion, candle explosion 0.0782 0.0782 0.0782 -0.01%
\vehicle, truck vehicle 0.2706 0.2706 0.2706 -0.01%
drawing_cartoon, drawing, cartoon |drawing cartoon| 0.1811 0.1811 0.1811 -0.02%
drawing_cartoon, cartoon drawing cartoon| 0.1811 0.1811 0.1811 -0.02%
walking running, fireweapon walking running 0.3379 0.3378 0.3378 -0.02%
studio, anchor studio 0.6653 0.6645 0.6645 -0.12%
graphics, maps, charts graphics 0.3815 0.3809 0.3809 -0.16%
graphics, charts graphics 0.3815 0.3790 0.3790 -0.65%
military, fireweapon military 0.2370 0.2350 0.2349 -0.88%
fireweapon, walking_running fireweapon 0.0602 0.0596 0.0596 -1.05%
car, vehicle cartoon 0.2458 0.2432 0.2432 -1.08%
waterbody, beach waterbody 0.1317 0.1260 0.1302 -1.17%
candle, explosion candle 0.0801 0.0784 0.0784 -2.16%
boat, waterbody boat 0.0834 0.0790 0.0790 -5.27%
truck, vehicle truck 0.0418 0.0348 0.0348 -16.65%
beach, duo_anchor beach 0.0652 0.0005 0.0276 -57.70%
beach, waterbody beach 0.0652 0.0037 0.0082 -87.39%
beach, waterbody, duo_anchor beach 0.0652 0.0036 0.0076 -88.41%
waterfall, waterbody waterfall 0.4152 0.0053 0.0053 -98.72%

47



	Microsoft Word - Chapterfusionv35fina2l.doc 48
	Microsoft Word - Chapterfusionv35fina2l.doc 49
	Microsoft Word - Chapterfusionv35fina2l.doc 50
	Microsoft Word - Chapterfusionv35fina2l.doc 51
	Microsoft Word - Chapterfusionv35fina2l.doc



