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Abstract

Over the years, the number of transistors that is available to hardware de-
signers has exponentially increased. Because of this it is very important to
have an effective hardware description language. One of the most important
hardware description languages is the VHSIC hardware description language
(VHDL). To cope with the increased number of transistors one could ask the
question: ”What language constructs can be added to the VHSIC hardware
description language to keep it effective and relevant for the future?”. To an-
swer this question, a basic understanding of how compilers work is needed. The
compiler starts by lexing files and then parsing the output of the lexer into an
abstract syntax tree. Once the abstract syntax tree is made it can be traversed.
Also a good understanding of how simulation- and synthesis-tools work is impor-
tant. Simulators work with two types of events: timed events and delta events.
The timed events cause signal changes and each timed event is followed by one
or more delta events to bring the system back into a stable state. Synthesis
tools are less predictable than simulation tools, since it is not always clear what
exact gate level description the synthesis tool will come up with.
The language enhancements that have been added to the language are: An in-
dependent compilation order of the input files, having no separation between
the declaration area and the body area of architectures, subprograms, entities
and blocks, being able to assign signals immediately after declaring them, being
able to overload the assignment operator so less type transformation functions
are needed, having namespaces that encapsulate all language elements and a
new and fast attribute system.
To be able to use these enhancements, a compiler is created that can compile the
language with enhancement, back to the VHDL 2008 standard. The compiler
uses five passes. During the first pass the VHDL files are linked and parsed.
In the second pass all the declaration elements are collected. During the third
pass these elements are linked together. In the fourth pass the expressions are
reparsed since they are context sensitive. Finally the output of the compiler is
generated during the fifth pass.
Next the compiler is tested with a use-case design of Astron. With some small
changes, the design can be compiled with the new compiler, and can be tested
with the test-bench that was also provided by Astron. After this, parts of the
code have been rewritten with the new language constructs and the output was
tested successfully with the same test-bench.
A multi-pass compiler gives a lot of freedom in terms of what can be added to
the language. We can conclude that the new features improve the language,
but that they are hard to implement on the existing compilers. In general the
conclusion can be made that due to the design of the VHDL language it is hard
to add new features to it.
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Chapter 1

Introduction

We can only see a short distance ahead, but we can see
plenty there that needs to be done.

Alan Turing 1950

1.1 Brief history of hardware design

In 1981 the United states department of defence faced the problem of the rapid
semiconductor downscaling, which made the reproduction of old designs quite
difficult. This was mostly due to the poor behavioural description of the de-
signs, which where made with several languages, which behaved differently on
different simulators [1]. To solve this problem the VHSIC hardware description
language (VHDL)[2] was commissioned which had to be technology indepen-
dent and replace the existing languages. At that time, programmable logic had
been around for several years. The first field programmable gate array (FPGA)
was released in 1985 however, which makes it quite unlikely that the design-
ers of VHDL will have had these kind of devices in mind when designing the
language. Ironically VHDL is nowadays mostly used for FPGA designs. When
VHDL was officially released in 1987, a single chip could hold approximately
300.000 transistors. In 2012 Nvidia released the Keppler GK110 architecture,
which contains more than 7 billion transistors [3] (which is approximately 23000
times as much). Though it must be mentioned that this GPU architecture has
quite some repetitive logic, one can deduce that the size of the designs are much
larger than 25 years ago, and therefore the descriptions are much more complex.
Another important language that emerged is Verilog [4]. The newest versions
of Verilog are now called System Verilog [5]. This thesis will focus on VHDL
however.

1.2 Problem statement

Now that it is clear that the complexity of the work of designing a single chip
has significantly increased in the past 25 years, one can conclude that it would
be desirable to have a hardware description language (HDL) that is more ef-
fective than the currently available hardware description languages. ’Effective’
alludes to the amount of code needed to describe hardware, the time needed for
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detecting bugs, the rate at which bugs are introduced and the maintainability
of existing code. With this in mind the following question is posed:

What language constructs can be added to the VHSIC hardware description
language to keep it effective and relevant for the future?

To answer this question several language constructs are introduced that
could be added to the language. To test the effects these additions have on
the design speed, the language compiler and the language itself, a compiler is
created that can compile a design that makes use of the proposed additions,
to a behaviourally and constructionally equivalent design which is VHDL 2008
compliant. This second design could in turn be compiled by a VHDL 2008
compliant compiler like depicted in figure 1.1.

Figure 1.1: Tool flow with the new compiler.

1.3 Structure

In chapter 2: ’Compilers’ starts with a short introduction on how compliers
work because this can have a large impact on the design of a language, and will
thus also have effect on the additions that can or cannot be made to VHDL.
Chapter 3: ’Synthesis versus Simulation’ shows how VHDL simulators work
and gives some important differences between simulation and synthesis tooling.
Chapter 4: ’Language Enhancements’ shows the language enhancements that
are added to the language. Chapter 5: ’The Compiler Design’ shows the design
of the compiler that should compile the language with enhancements back to
the VHDL 2008 standard. In chapter 6: ’A Use Case’ the compiler is put to the
test, and finally chapter 7: ’Conclusion & Future work’ gives the conclusions
that can be drawn from this work.
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Chapter 2

Compilers
A parser for things
Is a function from strings
To lists of pairs
Of things and strings.

Graham Hutton 2007

This chapter will shortly explain how most compilers work. This is done
because the structure of a programming language is much influenced by the
way compilers work.

The task of a compiler is to translate a file or a set of files to another file or
set of files. One could for example make a compiler that translates a C-program
to machine code or a compiler that translates French texts to English texts.
When the compiler starts with an input file, it reads this file as a stream of
characters. These characters are processed by a compiler part called the Lexer
(also sometimes referred to as Tokenizer). The Lexer groups the characters it
receives into structures called tokens and outputs these tokens as a new stream.
Some characters are often dropped, like whitespace characters. This is also the
case with VHDL, because they do not hold any significance any more (they
are only used for spacing between the tokens). The resulting token stream is
fed to a compiler part called the Parser. The Parser takes the tokens and tries
to structure them into a tree structure called an abstract syntax tree (AST).
This structuring is done based on a set of rules that describe the structure
of the language. Listing 2.1 gives an example of a textual representation of
some of these rules. This textual representation is a simplified form of the
extended Backus–Naur form (EBNF) [6] which is an extension of the normal
Backus–Naur form (BNF). The main difference is that EBNF is more expressive,
and is therefore used more often by language designers. The presented rules are
a simplified version of the actual syntax rules of the official VHDL specification.
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signal_assignment = target '<=' delayed_value;
delayed_value = value ('AFTER' delay)?
value = Constant;
delay = value Unit;
target = Identifier;

Constant = Digit Digit*;
Unit = 'hr' | 'min' | 'sec' | 'ms' | 'us' | 'ns' | 'ps' | 'fs';
Identifier = Character (Character | Digit)*;

Listing 2.1: Simplified EBNF.

The ‘*’-sign implies that the preceding rule is repeated zero or more times
and the ‘?’-sign signals that the rule is optional. Though not in this example,
the ’+’-sign denotes that the preceding rule is repeated one or more times.
The ‘|’-sign denotes a choice between rules and brackets are used for grouping
syntax rules. Text between quotes are tokens that must match a token of the
input stream. Rules marked with a capital also mark tokens, but instead of
having a literal representation, like the tokens between quotes, these tokens are
identified by some rules that define the structure of the token. The constant
rule for example will match to all tokens that have an integer representation.

Figure 2.1 gives a graphical impression of what the Lexer and the Parser do
with a small piece of VHDL code. The tokens can now be found at the leaves
of the AST, and the syntax rules of the EBNF are at the branches.

Figure 2.1: Graphical representation of the front-end of a compiler.

Once the AST is constructed the tree can be ‘walked’. This means that a
process iterates trough the tree and take certain actions when certain nodes are
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reached. What these actions are depends on what the compiler must achieve.
Each time a process walks through the entire tree is called a ’compiler pass’.
The first pass can be done while the parser is constructing the AST.

2.1 The parser

Generating an AST from a token stream is not a straight forward task. Several
methods of doing this are developed, but the focus in this thesis will be on the
recursive descend method.

When the parser receives its first token it will try to match this token with
a start rule of the BNF. In the example the start rule is the signal assignment
rule. When entering the signal assignment rule the parser will first have to
match the target rule. The parser now enters the target rule and detects it has
to match an Identifier. The parser will match the ‘val’ token with the Identifier
rule. After this, the parser is at the end of the target rule and will continue
with the signal assignment rule. According to the BNF the next token should
be ‘<=’, which it is. Now the parser will enter the delayed value rule. The
first rule of the delayed value rule is processed in a similar fashion as the target
rule. Now the parser has to decide whether the (’AFTER’ delay) part is used.
This can be done quite easily because this part can only be used if the next to-
ken is ’AFTER’. In the example this is the case, so the (’AFTER’ delay) part is
evaluated. After this the delayed value and signal assignment rules are finished.

2.1.1 LL(1) Grammars

The parsing of the presented example grammar is quite easy compared to the
actual VHDL grammar. This has several reasons. The first reason is that the
example grammar is an LL(1) grammar. This means that when the parser can
read its input tokens from left to right, and when the compiler must make a
decision, it can do this based on the next incoming token (like with the (’AF-
TER’ delay) part). The VHDL grammar is not LL(1). An example of this can
be seen in the three simplified VHDL rules of Listing 2.2.

concurrent_statement = procedure_call | signal_assignment;
procedure_call = Identifier '(' association_list ')';
signal_assignment = target '<=' delayed_value;
target = Identifier;

Listing 2.2: Non LL(1) grammar.

When the parser enters the concurrent statement rule and has received an
identifier token it cannot decide whether the procedure call rule, or the sig-
nal assignment rule should be chosen. Instead the parser will have to look one
token ahead to see whether that token is ’(’ or ’<=’. There are several ways to
deal with this problem, but they are outside the scope of this text. It is impor-
tant to remark however that the number of tokens that have to be read and the
number of rules the parser has to choose from, can be significant for the VHDL
grammar, which has a negative effect on the performance of the compiler.
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2.1.2 Context sensitivity

Another issue of the VHDL grammar is its context sensitivity. In listing 2.3
for example it is not possible to determine what ’foo(x)’ means. It could be a
call to a function called foo with argument x, it could also mean that foo is an
array and so foo(x) means element ’x’ of foo, but it could also mean that x is
casted to a type called foo. The actual meaning of this statement is dependent
on how foo and x are declared, which is done somewhere in the context of the
statement, hence context sensitive.

y := foo(x);

Listing 2.3: A context sensitive statement.

2.1.3 Left recursion

A final problem of the VHDL EBNF is that it has left recursive syntax rules.
This means that there exists a path through the syntax rules where the same
rule is visited twice without a token being consumed in between. This is an
insurmountable issue for most parsers, because they can get caught in this loop
when trying to determine the right path through the EBNF. Often these rules
can be rewritten to make them non left recursive. Listing 2.4 gives a very simple
example of a left recursive EBNF and the same rule rewritten to make it non
left recursive.

Left recursive: a = a? | B;
Non left recursive: a = B+;

Listing 2.4: Left recursion
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Chapter 3

Synthesis versus Simulation

Program testing can be a very effective way to show the pres-
ence of bugs, but it is hopelessly inadequate for showing their
absence.

Edsger W. Dijkstra 1972

In this chapter some of the differences between synthesis tools and simu-
lation tools are shown. It is important to understand these differences when
transformations are made from the ”new version of VHDL” to the VHDL 2008
version.

3.1 The VHDL Simulator

The difficulty of making a good VHDL simulator is coping with the large amount
of parallelism. Parallelism can lead to race conditions and deadlocks if not han-
dled properly. It is therefore important to understand which pieces of code can
be executed sequentially and which pieces can be executed in parallel.
Concurrent statements can all be executed in parallel. These are essentially
all the statements that can be found directly in architecture bodies. Sequen-
tial statements cannot be executed in parallel and these are essentially all the
statements that can be found in sub-programs and processes. All concurrent
statements can be transformed into processes without sensitivity lists, but with
a ’wait on’-statement and putting all the signals of the sensitivity list in that
statement. Processes with sensitivity lists can also be converted to a process
without a sensitivity list by also adding a ’wait on’ clause at the end of the
process. Concurrent signal assignments (assignments that use the ”<=” assign-
ment operator) can be converted by creating a process with a ’wait on’ clause at
the end, which contains all the signals at the right hand side of the assignment
operator. All concurrent statements can be converted in similar ways.

3.1.1 Events

Simulators are event based. This means that time does not progress contin-
uously, but with jumps. To understand this way of simulating, two types of
events need to be distinguished; timed events and delta events. Timed events
are moments at which some signal is scheduled to change. They can be ordered
based on the moment in time they occur. In the time gab between the timed
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events the system is considered stable.
Delta events follow each other in an infinite small time frame. They are the
result of a timed event, and will –in most cases– bring the system back to a
stable state. Delta events will continue to occur until the system is stabilized.
It is possible to write code for a hardware model that will never become stable
after some timed event. As a result there will be an infinite number of delta
events. Simulators therefore detect when the number of delta events reaches a
certain threshold. When this threshold is reached the simulator normally breaks
off the simulation with a warning or error message. Figure 3.1 gives a graphical
impression of what the architecture of a VHDL simulator could look like.

Figure 3.1: Diagram of a HDL simulator.

After the first delta cycle is finished the simulator will check if there are
signals that have a different value than before the cycle started. If so, a new
cycle will be started with the new value of the signal. In this cycle all ’wait on’
clauses that include the changed signal will continue to run until a new wait
statement is encountered. At some point there might be transactions (setting
the value of a signal) on the signals, but the values remain the same. At this
point the delta loop is finished and the next timed event is started. When
there are no more timed events the simulator will finish the simulation. Often
test benches have a clock signal that will keep adding timed events and these
simulations will never be finished by the simulator.
The order in which the processes are executed is not important and can be
nondeterministic. The only race condition that can occur is when multiple
processes try to change the value of the same signal within a delta cycle. In
VHDL this issue can be solved in two ways; using resolved signals (for example
signal type std logic) or using unresolved signals (for example signal type
std ulogic).
The simulator is able to detect when a signal is written twice within the same
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delta cycle. When this happens for an unresolved signal the simulator will
simply give an error. If the signal is of a resolved type however, a resolution
function is used to determine the actual value of the signal. In this case, the
first process that writes to the signal can do this in the same way this normally
happens. Subsequent processes use a special function that is part of the resolved
type called a resolution function, in combination with the value they want to
write and the value the previous process has written. The resolution function
normally makes use of a resolution table. When the resolution function is called,
it looks-up one of its input values on the horizontal axis of the table, and its
other input value on the vertical axis. The location where these two axes cross
contains the resulting value of the function. This also shows why resolution
tables –though not required by the language– should always be symmetrical.
Table B.1 shows the resolution table of ’std logic’. The coloured entries show
that the result is the same if one would first write a ’1’ and then a ’0’ or vice
versa.

U X 0 1 Z W L H -
U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
- U X X X X X X X X

Table 3.1: Resolution function table of std logic.

3.2 The VHDL Synthesis Tool

Most synthesis tools convert a register transfer level (RTL) description to a
gate level description. An RTL description describes how data flows between
registers, and how this data is functionally manipulated in between these reg-
isters. When the synthesis tool creates a gate level description from the RTL
description, it preserves the registers and the functional behaviour, but gives
an exact description of which gates are used, and how they are connected to
get the functional behaviour that was described in the RTL description. Both
descriptions can be VHDL code, and if they are, both descriptions can be sim-
ulated. The gate level description simulation, also called the post-synthesis
simulation, will be more accurate, since the delays of the actual hardware cells
are now known. Of course not all VHDL constructs can be supported by syn-
thesis tools like delays for example, but a lot is supported nowadays. There is
a VHDL sub-standard for synthesis which defines a minimum set of constructs
a synthesis tool must support to be IEEE compliant, however this standard is
currently marked as withdrawn because it was considered unnecessary and was
not used by many synthesis tool vendors[7]. The standard does not specify what
the resulting hardware should look like, but the behaviour of each construct is
specified. The fact that the resulting hardware can differ from tool to tool, can
cause language transformations to have different results while the behaviour of
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the design remains the same. This is especially true for VHDL, because be-
haviours can often be described in several ways. It is therefore not possible
to guarantee that language transformations made by a compiler, will have any
negative or positive effects on the resulting hardware.
When it comes to hierarchy, most synthesis tools prefer to completely flatten
the design, meaning that all hierarchy is lost. This can be advantageous when
optimizing the design, because logic that used to be in different hierarchies can
now be combined or evaluated together. It is often also possible to give the syn-
thesis tool some regions that should be evaluated separately. The goal of this is
to still have some kind of encapsulation of certain parts of the design after syn-
thesis, which can be used when mapping the design on a chip. Cache memory
can for example be grouped together. Since a cache memory uses little energy
compared to its surface area the power lines can be relatively narrow when
designing an application specific integrated circuit (ASIC). The computational
part needs much more energy and thus needs wider power lines. Having this
post synthesis hierarchy makes routing the design much easier while still having
an optimized design. There is much more involved in designing the resulting
ASIC or FPGA, but this is outside the scope of this report.
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Chapter 4

Language Enhancements

If someone claims to have the perfect programming language,
he is either a fool or a salesman or both.

Bjarne Stroustrup

In this chapter discusses the constructions that are added to VHDL which should
make the language easier to use. Though there are many things that can be
thought of, this thesis will focus on structuring the code which should be par-
ticularly beneficial for large projects.

4.1 Independent Compilation Order

The current version of VHDL is sensitive to the order in which files are com-
piled. Unlike most other languages that have this dependency VHDL is not
capable of specifying this order in the language itself. Instead this must be
done with a compiler setting that specifies the compilation order. This can be
particularly problematic when using large designs or when the design must be
compiled by different compilers (for example a simulator and a synthesis tool).
Some tools try to solve this issue by automatically generating the compilation
order, however this does not always yield the right result.
There are essentially three ways of solving this issue. The first one is to add
language constructs that give the user the possibility of textually specifying the
compilation order. A second option is to let the language specify the dependen-
cies of each design unit (which are entities architectures packages and so on) and
compile these before the design unit itself is compiled. This is essentially what
the C-language does. The automatic compilation order generation of VHDL
compilers work in a similar way. Issues can however arise with this approach
when there is a circular dependency between design units.
The third option is using a compiler with multiple passes. In a first pass iden-
tifiers and declarations can be collected. Then, during the second pass, these
identifiers and declarations can be linked to each other. After this pass, signal
declarations have a link to the declaration of their type for example. After this,
in a third pass, the expressions can be evaluated.
The latter option is not practical for all languages since the design of a language
can be such that there cannot be a finite number of passes, however for VHDL
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this option should be possible. It is also the only option that effectively relieves
the programmer from the burden of specifying the compilation order (or even
think about it for that matter). It does however come at the cost of extra com-
pilation passes. Nevertheless this option is chosen for the compiler since it is
the only solution that really solves the compilation order issue.

4.2 Declaration Area’s

Constructs like architectures, entities, procedures and blocks are divided into
two parts; the declaration area and the body area. In the declaration area (like
the name suggests) several things can be declared, like types, variables, signals,
sub-programs and so on. In the body area the declared elements can be used.
So, variables can be assigned to and sub-programs can be called for example.
The advantage of having these two separate regions is, that when the body area
starts, the compiler knows exactly what elements can be used in that area.
If one takes a closer look at what actually happens when a signal is declared
inside a declaration area, it becomes clear that actually several things happen.
First of all the compiler is told that there exists a signal, and that the signal
has a name which can be used to refer to it. Secondly the compiler is told what
properties the signal has by assigning a type to the signal. Finally, the signal
can optionally have an initial value (which should be of the same type as the
type of the signal). For variables this approach is the same.
In the body area the declarations can be used. The motivation for this approach
becomes clear when a closer look is taken at the VHDL simulator. Since each
process can be considered to be a small program, the simulator will need to
reserve some memory space for the process. When generating machine code for
the process, the memory allocation operations must be performed before the
machine code for the actual body can be generated. If the compiler is single
pass, this can only work if all declarations appear before any operations. The
separation of declaration and body area ensures this.
The previous section showed the reason for using a multi-pass compiler. Us-
ing such a system remits the motivation for having a separate declaration and
body region. In a multi-pass compiler the memory allocation machine code can
be generated once the types of the (signal) declarations are linked to the type
declarations, as this is the moment at which the memory needed for that dec-
laration is known. In a subsequent pass, the machine code for the expressions
can be generated.
To stay backward compatible, separated regions will still be supported. The
original declaration statements and the ’BEGIN’-keyword (which separates the
two regions) are therefore made optional. Adding all the declarations that can
be made in the declaration part declarable in the body part is also made pos-
sible. The result will be that declarations can be done in both the declaration
and body area, and that the declaration area can be completely omitted by the
user. Listing 4.1 shows the original EBNF and the new EBNF of the architec-
ture rule. The rules for other elements of the language that have a separate
declaration and body region are modified in a similar fashion.
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Before: After:
architecture_body architecture_body
: ARCHITECTURE Identifier : ARCHITECTURE Identifier

OF entity_name IS OF entity_name IS
block_declarative_item* (block_declarative_item* BEGIN)?

BEGIN (block_declarative_item |
concurrent_statement* concurrent_statement)*

END ARCHITECTURE? Identifier? ';' END ARCHITECTURE? Identifier? ';'
; ;

Listing 4.1: No declaration area in the architecture.

Having no separation between the declaration and body parts has some
advantages. Signals that are only used for intermediate values and thus do not
have a meaningful name can be declared near the place they are actually used.
Signals (or variables) that do have a significant meaning or function can still
be declared at the beginning of a module, but these declarations are no longer
cluttered by the less significant ones. Another advantage of not having two
separate regions is that it opens the possibility of directly assigning a signal or
variable. This is discussed in the next section.

4.3 Direct Assignment

Now that there no longer are separate declaration and body regions, opportu-
nities arise for combining elements of both regions. One of the things that can
be combined is the signal declaration and the assignment of this signal. This
means that on the same line a signal is declared, also a value can be assigned to
it. This can be combined with the initial value assignment of the signal. Listing
4.2 gives an example of how this new construct could be used.

SIGNAL x : std_logic := '0' <= not y;

Listing 4.2: Direct signal assignment.

This new construct not only shortens the code, but it also encourages the
user to use more intermediate variables. This will shorten the average expression
length which makes the code easier to debug and because the expressions become
less complex, the speed at which bugs are introduced will be reduced.
A disadvantage of using more intermediate signals is that they can negatively
influence the simulation speed if the compiler does not do some optimizations.
This speed reduction is caused by more delta cycles being started, when more
signals are subsequently assigned to. Listing 4.3 shows two pieces of code; one
with intermediate signals and one without. Figure 4.1 shows the two delta cycles
of both implementations.

-- Without intermediate signals -- With intermediate signals
SIGNAL a, d : std_logic := '1'; SIGNAL a, b, c, d : std_logic := '1';
SIGNAL u, v, w: std_logic := '0'; SIGNAL u, v, w: std_logic := '0';
d <= ((a xor u) xor v) xor w; b <= a xor u;

c <= b xor v;
d <= c xor w;

Listing 4.3: Signal assignments with and without intermediate signals.

17



Figure 4.1: Delta cycles of the assignments with and without intermediate signals.

A smart compiler will be able to combine the subsequent signal assignments
if it can detect that the signals are not used anywhere else. The resulting perfor-
mance should then be the same as the listing without the intermediate signals.
A performance improvement is also possible. If in the example signal ’w’ changes
instead of signal ’u’ then only one ’xor’-expression has to be evaluated instead
of all the ’xor’-expressions. A smart compiler might however also be able to do
this with the assignment without intermediate signals.

4.4 Assignment Operator Overloading

VHDL is said to be strongly typed. There is however no complete consensus in
the field on the definition of ”strongly typed”[8]. Knowing the type of each vari-
able, expression and sub-expression at all times, would probably be a sufficient
definition for now. Because of the strong type system, it is not always trivial to
convert one type into another. If an integer constant would have to be con-
verted to an unsigned for example, a conversion function would be needed.
It would be much more natural if this could be done without the conversion
function. This is however not in compliance with the strong type system.
An approach that can be taken is to look in a different way at an assignment. If
the assignment would be seen as an operation, then it could also be seen as an
operation that converts one type into another. To do this, functionality needs to
be added to the assignment operator. A language construct called overloading
can be used for this. Overloading is normally done with functions, but when
the assignment operator is looked at as if it is a function then it could also be
overloaded.
Function overloading means that two or more functions with the same name can
be created. When the function is used, the compiler decides which function is
used based on the types of the arguments and the return type. Listing 4.4 gives
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an example of this. Unlike most other languages, functions in VHDL can be
overloaded based on there return type. There is a good reason why these other
languages do not allow this, however this is outside the scope of this thesis. By
letting the assignment operator be overloaded in several ways, it could be used
to assign different types to each other in a predefined way.

FUNCTION foo(bar : integer) RETURN boolean; --this one is used
FUNCTION foo(bar : string) RETURN boolean; --this one isn't used
SIGNAL x, y : integer;

x <= foo(y);

Listing 4.4: Function overloading.

VHDL essentially has two types of functions; procedures and functions. A
procedure is essentially a function without a return type. Though it may seem
logical to see the assignment as a function, a procedure will be more practical
in this case. Procedures do not have a return value, but they can have output
arguments. An assignment operator in procedure form would be a procedure
with one input argument and one output argument like shown in listing 4.5.

PROCEDURE "<=" (input: IN integer; output: OUT signed);

Listing 4.5: Procedure for overloading an assignment operator.

The procedure is chosen over a function because properties of the output
value can now be read. When referring to listing 4.5, the vector length of the
output signal can be gotten for example. This would not have been possible
if a function would have been used for this.
A good example is when one would use a assignment overload of the to signed
function of the numeric std library. This function can convert an integer to a
signed variable, but this function needs two arguments; the integer value and the
length of the signed variable. It needs this length because the function cannot
get the length of the return type because it cannot access the return type. Using
a procedure for the overload solves this problem since the return type is now
an argument. Listing 4.6 gives a complete example of the implementation of an
overloaded assignment operator and how it can be used.
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1 LIBRARY ieee;
2 USE ieee.std_logic_1164.all;
3 USE ieee.numeric_std.all;
4 PACKAGE numeric_std_additions IS
5 PROCEDURE "<=" (input: IN integer; output: OUT signed);
6 END PACKAGE;
7
8 PACKAGE BODY numeric_std_additions IS
9 PROCEDURE "<=" (input: IN integer; output: OUT signed) IS

10 BEGIN
11 output := to_signed(input, input'LENGTH);
12 END PROCEDURE;
13 END PACKAGE BODY;
14
15 LIBRARY ieee;
16 USE ieee.std_logic_1164.all;
17 USE ieee.numeric_std_additions.all;
18 ENTITY foo IS
19 PORT (a: IN integer; b: OUT signed);
20 END ENTITY;
21
22 ARCHITECTURE arch OF foo IS
23 BEGIN
24 b <= a;
25 END ARCHITECTURE;

Listing 4.6: assignment operator overloading.

At line 5 the overload procedure is declared. Like every procedure declara-
tion the declaration starts with the PROCEDURE-keyword. This is followed by
the signal assignment operator between quotation marks to indicate that this
procedure is an assignment overload. Next there is the input argument followed
by the output argument. On lines 9 to 12 the body of the overload is imple-
mented. The to signed function is used at line 11 to convert the integer into
a signed type.
At line 24 the assignment overload is used. Since ’a’ is of type integer, and ’b’ is
of type signed, ’a’ can normally not be assigned to ’b’. The compiler will detect
this and finds that there is an overload for the assignment that can convert an
integer into a signed type. The output of the compiler will therefore replace the
assignment of ’a’ to ’b’ with a call to the assignment overload procedure where
’a’ will be the first argument, and ’b’ will be the second argument.

4.5 Namespaces

Most non-natural languages have one or more encapsulation methods. So does
VHDL. There is a clear hierarchical structure with the libraries on top followed
by packages, entities, architectures and so on. These in turn can encapsulate
sub-programs for example. Packages are the only second level hierarchy where
the contents of the hierarchy level can be accessed by all other hierarchies. A
sub-program that is declared inside a package can for example be called from
an entity. Packages also are the only second level hierarchy that do not contain
any functionality Themselves; all functionality is contained within sub hierar-
chies of the package. Taking these points together the conclusion can be made
that a package is a container for language elements that can be accessed from
anywhere in the language.
When looking at the formulation of libraries it would be practically the same
as the formulation of packages. The only real difference is that the name of
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the library is not determined by the language itself, but by the tool that uses
the language files. As a result designers often create only one package within a
library with (almost) the same name as the library.
The declaration of a package consists of two parts; The package itself and the
package body. The package body contains all the functional elements, and the
package essentially defines which of these elements can be accessed and how they
are accessed. The result is that the separation of the package and the package
body is essentially an elaborate way to solve scope visibility.
A single package cannot be split up unto different files. The same holds true for
a package body. As a result these package files and especially the package body
files become quite large (over 1000 lines).
To summarize, there are essentially four issues. The function of packages and
libraries are very similar, The names of libraries cannot be described by the
language itself, but must be described by the tool that uses the code, making
elements in packages is solved in an unnecessary complicated way and package
files become too large. To solve all these issues a namespace construct is pro-
posed.
The namespace is like a package, however it can be split up over multiple files.
Also namespaces can contain everything that is normally contained within a
package, a package body and everything that is normally put directly inside a
library (like an entity). Also for sub-programs the sub-program header is im-
plicitly made by the compiler if no other sub-program headers are declared for
that sub-program.

The declaration of the namespaces will be much like a package declaration.
Listing 4.7 shows the BNF of the new language construct. The namespace can
be preceded by context items which are library clauses, use clauses and context
clauses. Also the entities, architectures configurations and context declarations
inside a namespace can be preceded by context items. Namespace constructs
with the same name can be declared in multiple files. The compiler will virtually
combine these namespaces into a single one. Context items that are used on a
namespace in one file will only have effect on that file and will thus not have
effect on the other files where the same namespace is declared.

namespace_body
: NAMESPACE namespace_name IS

(
context_item* (

entity_declaration
| configuration_declaration
| architecture_body
| context_declaration

)
| namespace_declarative_item

)*
END NAMESPACE? namespace_name? ';'

;

namespace_name
: Identifier ('.' Identifier)*
;

Listing 4.7: BNF of the namespace construct.

The namespace declarative item contains everything that one would
normally find in a package. Since there are no longer separate package and pack-
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age body regions, another easier way of declaring what is visible from outside
the namespace and what is not is needed. For this two access modifiers are in-
troduced, namely ’public’ and ’private’. In contrast to most languages, elements
in a namespace are public by default when no access modifier is used, since public
access is demanded most of the time. When a namespace declarative item
is declared as private, the elements can only be accessed by other namespace de-
clarative items in the same namespace, and they cannot be accessed by en-
tities, architectures, configurations and contexts, even if these are declared in
the same namespace. Listing 4.8 shows the BNF of the namespace declara-
tive item rule.

namespace_declarative_item
: (PUBLIC | PRIVATE)? (

alias_declaration
| attribute_declaration
| attribute_specification
| component_declaration
| constant_declaration
| disconnection_specification
| file_declaration
| group_declaration
| group_template_declaration
| package_body
| package_instantiation_declaration
| signal_declaration
| subprogram_body
| subprogram_declaration
| subprogram_instantiation_declaration
| subtype_declaration
| type_declaration
| variable_declaration

)
;

Listing 4.8: BNF of the namespace declarative item.

4.6 Fast Attributes

VHDL has two types of attributes; predefined attributes and user-defined at-
tributes. The predefined attributes are properties of the language element for
which they are defined. For array types for example, the length attribute is
defined which gives the number of elements in the array.
The user-defined attributes are used to add extra properties, also sometimes
called meta data, to elements in the language. This data can later be read and
used. User-defined attributes can also be used by tool vendors to get or add tool
specific properties to the language. For the Altera Quartus II software one can
for example tell the language compiler to limit the fan-out of a certain register,
tell which language version to use, or tell which top level entity ports should be
mapped to which pins on the physical chip.
To apply and use a user-defined attribute there are some steps involved. First
the attribute has to be declared. During the declaration, the name and the type
of the attribute is defined. Secondly the attribute has to be created for one or
more language elements. By doing this, the attribute that was just declared is
referenced, the compiler is told which language element the attribute is created
for, the compiler is told which type the language element has and what the value
of the attribute is. Finally the attribute data from the language element can be
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gotten. Listing 4.9 shows an example of creating and using an attribute for a
signal.

1 ARCHITECTURE implementation OF attributeExample IS
2 -- Declare the attribute.
3 ATTRIBUTE exampleAttribute : string;
4
5 -- Declare a signal we will create the attribute for.
6 SIGNAL sig : integer;
7
8 -- Create the attribute for the signal.
9 ATTRIBUTE exampleAttribute OF sig: SIGNAL IS "Hello World!";

10 BEGIN
11 -- Use the attribute
12 ASSERT FALSE REPORT sig'exampleAttribute;
13 END ARCHITECTURE;

Listing 4.9: Declaring, defining and using an attribute.

When this code is run, the user will get the message ”Hello World!”. This
is because the assertion at line 12 will fail. Therefore the simulator will dis-
play the exampleAttribute attribute of the sig signal. At line 9 this
exampleAttribute attribute is created for the sig signal with the string
value ”Hello World!”, so this message will be displayed.

At the line 9 it can be seen that some of the information that is given to
the compiler is redundant. Since it is known that sig is a signal, and no other
elements with the same name exist, there should be no real need to tell the
compiler explicitly that sig is a signal in this case.
Several file types have been developed to pass this information to the tools that
use VHDL while attributes could be used just as well. This is probably due to
the fact that adding attributes is to much ’work’ for the designer. Therefore
propose a simpler way to create attributes for language elements is proposed.
Listing 4.10 shows the creation of the same attribute as the previous example,
but now in the proposed way.

1 ARCHITECTURE implementation OF attributeExample IS
2 -- Declare the attribute.
3 ATTRIBUTE exampleAttribute : string;
4
5 -- Declare a signal with an attribute.
6 {exampleAttribute : "Hello World!"}
7 SIGNAL sig : integer;
8 BEGIN
9 -- Use the attribute

10 ASSERT FALSE REPORT sig'exampleAttribute;
11 END ARCHITECTURE;

Listing 4.10: Declaring, defining and using an attribute with the new language construct.

The same information is contained within the attribute creation, but now
the code is shorter. This is possible because the positional information of the
statement is used. This means that the compiler knows that the attribute is
declared for the sig element because this is the first language element after the
attribute declaration; The position of the attribute creation compared to the
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signal declaration defines what language element the attribute is created for.
Now that the compiler knows the attribute is declared for sig, it also knows
that sig is of element type SIGNAL, since this is part of the declaration of sig
at line 7. Listing 4.11 shows the BNF for the new syntax rule.

relative_attribute_specification
: '{' Identifier (OF entity_designator)? ':' expression '}'
;

Listing 4.11: new attribute BNF.

With this improvement it is more likely that the attributes are used more
often and can take over the tasks of the external meta data files like SDC[9] and
SDF[10].
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Chapter 5

The Compiler Design

divide et impera
Philip II of Macedon

This chapter will discuss the compiler that converts the VHDL with the
added features to the VHDL 2008 standard. The effects that the added fea-
tures have on the design of the compiler are also shown. The compiler does
not support everything a normal VHDL compiler supports. Generics are for
example not supported. Also ranges of array types are not exactly known by
the compiler. This is partly because the range could be set by a generic. Most
elements of the language are supported however.
Some of the images in this chapter might be too small for some readers. There-
fore larger versions of these images are included in appendix A.

5.1 A Five Pass System

As mentioned in the previous chapter, compilation of designs would become
easier if there is no specific order in which the files have to be compiled. To
make this possible the compilation process will have to be split up into several
passes. The goal is to do as much as possible within one compilation pass, to
keep the number of passes as low as possible. There is however a minimum
number of passes. This minimum is determined by the dependencies within the
language.

As mentioned before, there is a clear dependency between declarations and
statements. A signal assignment statement for example, assigns a value to
a signal that was declared earlier by a signal declaration. There also exists a
dependency between the declarations them selves. The signal declaration assigns
a type to the signal it declares. This type is declared somewhere else, maybe
even in an other file. The following sections will show how these dependencies
are dealt with. The five pass compiler is explained with the aid of the VHDL
code of listing 5.1. The AST and the class diagrams of in the upcoming sections
are simplified versions of the actual AST and class diagrams; only the elements
which are relevant to the example are shown.
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1 architecture arch of ent is
2 signal x : std_logic;
3 signal y : std_logic_vector(7 downto 0);
4 begin
5 y <= x(0);
6 end;

Listing 5.1: Example architecture.

5.1.1 Pass 1: Lexing and Parsing

The first step that needs to be done is the lexing and parsing. For this a tool
called ANTLR[11] is used. This tool can generate a lexer and a parser from
an EBNF. In contrast to most VHDL compilers, our parser does not have any
knowledge of the context of the lines it is parsing. When it comes to expressions,
VHDL is a context sensitive language. Expressions can be found within variable
and signal assignment statements. To cope with this issue expressions are parsed
without the context during this pass, and are re-parsed later in a different pass
when the context is known. Parsing the expressions without the context is
possible, however some elements will be identified incorrectly. At this point the
parser will just choose one of the possibilities, which will likely be wrong. This
will be fixed once the context of the expression is known, which is during pass
4. Figure 5.1 shows the resulting AST of listing 5.1.

Figure 5.1: Data structure after pass 1.

5.1.2 Pass 2: Element Collecting

Ones the AST is generated it can be traversed. During this pass all the scopes
and all declarations are collected. By doing this, the first context information
is gathered. It is now known for example what the scopes of all the declarations
are. For each element that is collected, a separate object with a reference to the
location in the AST where the VHDL object was declared is created. Figure 5.2
shows these objects graphically. The links to the AST’s are depicted with yellow
arrows and the links between objects with blue arrows. The parts that where
already there from the previous pass are behind the shaded surface. The nodes
and leaves of the AST’s contain the locations of the text stream where they
originate from. This information can be used when showing an error message
to the user with the location of the error.
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The only links between the objects that are made at this point, are the links that
can be made based on the hierarchical structure of the language. The compiler
knows for example, that the signal declarations are part of the architecture,
since this can be directly deduced from the structure of the AST. A link to the
entity of the architecture can for example not be made at this point since the
entity could be declared in another file and may not be compiled at this point.

Figure 5.2: Data structure after pass 2.

5.1.3 Pass 3: Element Linking

At this point all elements of the code are collected and they can now be linking
them together. First the architectures are linked to their entities, and the
package bodies to the packages. This is done first because when the entity for
example has a use-directive (for example USE ieee.std logic 1164.all;)
this use directive is also valid for the architectures of the entity. The same
holds true for packages and package bodies. After this, the types of the signal
declarations with the type declarations can be linked. This is done based on
the name of the type and a list of all the types that are in scope. Figure 5.3
shows the example with arrows for the entities and the types. Since the type
declarations and the entity declaration are not part of the example code, the
arrows cannot be drawn to these objects in the figure, but the reader should
be able to imagine what this construction would look like. If the entity or type
declarations would not exist, the compiler will give an error message.

27



Figure 5.3: Data structure after pass 3.

5.1.4 Pass 4: Expression Parsing

At this point the expressions can be re-parsed because now all the context
information has been collected. Figure 5.4 shows the AST of the re-parsed
expressions. The parser now knows that x is a std logic vector and not a
function. After this objects can be created for the expression AST’s like during
pass 2. At the same time type checking is started. If types do not match or if
there are ambiguous expressions the compiler is able to find them and report
an error.

Figure 5.4: Data structure of the expression after pass 4.

5.1.5 Pass 5: Generating Output

The final step in the compilation process is generating the output. This is
done by traversing the object tree. Each object generates its output via a
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special output writer. This writer takes care of the correct outlining of the
code. Listing 5.2 shows the output of the compiler. Each entity, architecture,
package, package body and each configuration is put in its own file. Therefore
the number of files after the compilation is larger than the number of input
files. The files have logical naming, which makes it easy to find elements in the
output of the compiler.

1 ARCHITECTURE arch OF ent IS
2 SIGNAL x : std_logic;
3 SIGNAL y : std_logic_vector(7 DOWNTO 0);
4 BEGIN
5 y <= x(0);
6 END ARCHITECTURE;

Listing 5.2: Example architecture after compilation.

The output of the compiler is almost exactly the same as the input. This is
what one could have expected since VHDL 2008 code was compiled to VHDL
2008 code. The next step is adding the new language structures to the compiler
so the compiler can actually do something useful.

5.2 Type checking

In section 5.1.4 was mentioned that after each expression is parsed it is type
checked. Type checking is the process of making sure that all types that go
into a function or operation are what these operations and functions expect.
If one would for example give a function that expects a bit, not a bit, but an
integer, the compiler should give an error saying that the types are incompatible.
To be able to do this the compiler needs to find the result type of each sub
expression. Listing 5.3 shows a simple expression, and figure 5.5 shows the
resulting expression tree after parsing. The types of the expression can be
determined in two ways; top down and bottom up. The compiler –like most
compilers– uses the bottom up approach.

SIGNAL x, y, z, u: integer := 4;
u <= x + y - z;

Listing 5.3: A simple expression.

Figure 5.5: Expression tree of listing 5.3.

The bottom up approach starts by determining the types at the bottom of
the tree. In this case these are tokens x and y. These tokens are combined in the
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addition branch. VHDL has an addition operator for several types like signed
numbers, unsigned numbers, natural numbers, but in this case the compiler will
choose for an addition that adds two integers, since its input types are integers.
The result of the addition is also of type integer. Now the type of the subtraction
is evaluated. The subtraction is also defined for several types, but the result of
the addition is an integer and z is an integer, so a subtraction of two integers is
used, resulting in an integer. This means that the final result of the expression
is also an integer. Now that the expression is type checked the compiler can
check if the type result of the expression matches the type of the target signal
u. This is the case and so the type checking succeeds. If the compiler would not
have found an addition or a subtraction that matched the input types it would
have given an error.
Though a bottom up approach is chosen, VHDL compilers should use a top
down approach, since all other compilers use a top down approach. By using
a bottom up approach type qualifiers will be needed at different places to let
the code compile. Therefore some expressions that regular VHDL compilers can
evaluate cannot be evaluated by our compiler and vice versa.

5.3 The new language constructs

Now that the architecture of an easy to adapt compiler that can parse and check
VHDL is created, the compiler can be augmented with the new features. The
first addition is the independent compilation order. This feature can be got for
free because of the flexible multi-pass set-up of the compiler.
The second addition is being able to do declarations in the body regions. First
the parser has to be changed so it accepts this new structure like showed in list-
ing 4.1. It is also important to preserve the order of the declarations. When the
compiler reaches pass 2, it can register the declarations in the body region the
same way as the declarations in the declaration area. The rest of the compiler
does not have to be changed; when the compiler starts writing its output it will
put all declarations in the declaration region and the rest in the body region.
Next there is the direct signal assignment. The BNF of the direct signal assign-
ment is depicted in listing 5.4. When this rule is visited during pass 2, both a
signal declaration object and a signal assignment statement object is created.
During the following passes both objects are treated like they would if they were
declared separately. So again with little effort the new feature is implemented
by making use of the flexible compiler design.

direct_concurrent_simple_signal_assignment
: SIGNAL target ':' subtype_indication signal_kind?
(

(':=' expression '<=' GUARDED? delay_mechanism? waveform ';')
|
('<=' GUARDED? delay_mechanism? waveform (':=' expression)? ';')

)
;

Listing 5.4: A simple direct signal assignment.

The assignment operator overloading feature makes use of the type checking
system. The first step is done during pass 4. Once the expression of a statement
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is type checked, the compiler will check if the type of the left side of the assign-
ment matches the type on the right side of the assignment. If this is not the
case, the compiler will look for an assignment overload procedure that converts
the right side type to the left side type. If this is not the case an error will
be given, but if such a procedure does exist, the statement is flagged so pass
5 will know that the assignment operator is overloaded. When pass 5 reaches
an assignment statement that is flagged by pass 4 it will generate output that
contains the assignment overload procedure. The exact output is dependent on
the type of the assignment. VDHL 2008 has seven types of signal assignment
statements, and three types of variable assignment statements. The assignment
overloading mechanism can be used for all variable assignments and for two of
the signal assignment statements. The ones that cannot be correctly converted
are the release and force assignments, since force and release statements can-
not be included in procedure arguments. Also the simple waveform assignment
cannot be converted, since it contains delay mechanisms.
The signal assignments that can be converted sometimes need to be packed in a
process. Listing 5.5 shows a conditional signal assignment, and listing 5.6 shows
the output of the compiler for this assignment. Other assignments are done in
a similar way.

1 ARCHITECTURE arch OF testEnt IS
2 signal y: integer;
3 constant u: integer := 3;
4 constant v: integer := 4;
5 constant w: integer := 5;
6
7 signal x: unsigned(7 DOWNTO 0) <=
8 u when y = 1 ELSE
9 v when y = 10 ELSE

10 w;
11 END ARCHITECTURE;

Listing 5.5: overloaded concurrent conditional signal assignment.

1 ARCHITECTURE \work.arch\ OF \work.testEnt\ IS
2 SIGNAL y : integer;
3 CONSTANT u : integer := 3;
4 CONSTANT v : integer := 4;
5 CONSTANT w : integer := 5;
6 SIGNAL x : unsigned(7 DOWNTO 0);
7 BEGIN
8 PROCESS (ALL) IS
9 BEGIN

10 IF (y = 1) THEN
11 \<=\(x, u);
12 ELSIF (y = 10) THEN
13 \<=\(x, v);
14 ELSE
15 \<=\(x, w);
16 END IF;
17 END PROCESS;
18
19 END ARCHITECTURE;

Listing 5.6: Compiler output.

The signal assignment at lines 7 to 10 of listing 5.5 are converted to the
process statement at lines 8 to 17 of listing 5.6. Each condition of the original
code is converted to an if-else branch in the process. At each branch (at lines
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11, 13 and 15) the assignment overload procedure is used to convert the integer
types to the unsigned type.

The next feature is the namespace construct. The output files of the com-
piler are put in folders which have the same name as the library of the elements
in the files. Also each namespace is put in its own folder, so it is treated
like a library. If the namespace contains package elements, these are put in a
package with the same name as the library. Each entity- and architecture-
name is prefixed with the namespace name and separated with a dot like
\NamespaceName.EntityName\. Also all the references to the entities and ar-
chitectures are prefixed. In pass 2 all the namespaces are registered and put
the elements that are declared inside it. The namespace class shares most of
its behaviour with the package class. Therefore only a limited amount of code
needs to be implemented create the namespace class. When the compiler gen-
erates the output files for the elements inside the namespace during pass 5, it
does this dependent on whether the elements are in the namespace.
Finally there is the new attribute system. When the compiler encounters an at-
tribute that is declared in the new way, it will put this attribute in a temporary
list. Then, for each following element in the same scope, the target properties of
the attribute is compared by the compiler, with the properties of the element.
If they match, the attribute is removed from the temporary list and is registered
as an attribute of the element. If the end of the scope in which the attribute
is declared is reached, and the attribute is still not removed from the list, the
compiler checks if the attribute can be bound to the scope. If not, the compiler
will give an error to indicate it cannot bind the attribute to anything. When
the compiler reaches pass 5, the attributes are generated like they where created
using the original attribute system.
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Chapter 6

A Use Case

The three most dangerous things in the world are a program-
mer with a soldering iron, a hardware type with a program
patch and a user with an idea.

Rick Cook in: The Wizardry Consulted 1995

To see if the added features will have the wanted effects, the compiler needs
to be tested, and its results must be compared to the original code. To do this a
design of a beam-former is used that was received from Astron[12]. The design
consists of about 340 design files and some test-bench files.

6.1 The beam-former

A beam-former is a device that can be used in combination with a phaced array
antenna. Figure 6.1 gives a schematic representation of such a antenna array.

Figure 6.1: Schematic representation of a phaced-array antenna.
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In this example the antennas are spaced with an equal distance. The green
lines in the figure represent a wave front that is reaching the antenna array.
As can be seen, the wave front reaches antenna 1 first, then antenna 2, then
antenna 3 and finally antenna 4. Because the antennas are equally spaced, the
delay between the signal reaching antennas 1 and 2, equals the delay between
antennas 2 and 3, and antennas 3 and 4. The actual value of the delay is depen-
dant on the propagation speed of the wave, which can be considered a constant,
and the angle of the wave front relative to the orientation of the antenna array.
The delay will be the largest when the wave comes in perpendicular to the an-
tenna array, in which case the delay would be the distance between the antennas
divided by the propagation speed of the wave. The other extreme is when the
wave comes in parallel to the antenna array, in which case the delay will be zero.
All other delays will be somewhere between these two values. These delays and
angles can be interpolated, giving every angle a corresponding delay.
Because of this relation between the angle and the delay, it is possible to ’listen’
in a particular direction; by delaying the incoming signals of the arrays, and
adding them up, all the signals that are not coming from the chosen angle are
attenuated.

Figure 6.2: Moments in time at which the wave hits the antennas.

Because delaying signals is costly in terms of hardware, a ’trick’ can be used.
When looking at figure 6.2, one can see a wave and the moments at which the
wave hits each antenna of figure 6.1. If the signal can be considered as a sine
wave, the delay corresponds to a phase shift. So by phase shifting the incoming
wave at each antenna, so that the lines of figure 6.2 will be on top of each other,
the same is reached as delaying the signals.
The phase shift can be done by multiplying the incoming samples of the antennas
with a range of smartly chosen constants. This is what the beam-former does.
The use-case contains these multipliers, but also some statistics components and
interface components.

6.2 Compiling the original design

Since our compiler does not support all features of VHDL, some files have been
adapted to make them suitable for our compiler. A list of the modified files can
be found in appendix B. This list also gives the reason for the modifications of
the files. The following sections will shortly explain the modifications and why
they were made.
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Overloads on return type

Our compiler does not allow function overloading on the return type. Therefore
all the functions in the use-case that are overloaded on there return type are
renamed so they all have unique names.

Identifier reuse

At some places in the use-case, the same name is used for both a function and
for signals. The compiler currently does not support this. It probably would
not take much effort to implement this, but for the time being the signals have
been renamed.

Type inversion

Because of the bottom up type checking approach, discussed in section 5, there
are some places in the code where the compiler has to be told what type some
literals have. This also means that there are probably some places in the code
where types have been explicitly identified while our compiler does not need
this, but all the other compilers do.
There are also some places where our compiler cannot determine the return type
of an attribute. Here the type also has been specified. With these changes the
use case can be compiled.

6.3 The test-bench

Checking if the output of our compiler is still functionally equivalent to the
original code has to be done next. This is done using the Astron test-bench
system. The test-bench is driven by the python language. A Python script
generates the test-vectors and the control signals and sends these through files
to the Modelsim environment. When the VHDL model has processed the input
vectors it puts the results back in a file which is read by the Python script. In
parallel, the python script does the same computations as the VHDL model,
and once the output from the test-bench is read it compares the results.
When the output of our compiler is taken as the VHDL model, it can be seen
that the results are the same as the original VHDL model that was received from
Astron. Next parts of the code are rewritten, but now with the new language
constructs.

6.4 The new features

Appendix D shows a rewritten version of one of the VHDL files of the beam-
former. At line 6 the declaration of a namespace can be seen. The namespace
contains an entity (line 8) and an architecture (line 28). The architecture does
not contain the begin keyword. The architecture starts with an assert state-
ment and is followed by two signal declarations. The second signal declaration
is directly assigned a value.
The output of the compiler for the architecture of this file can be found in ap-
pendix E. The architecture does not contain any use-statements since these are

35



at the entity declaration. All the signal declarations and a constant declaration
have been moved to the declaration part. The declarations that where directly
assigned to are now split up into a separate declaration and a separate state-
ment. The name of the architecture is prefixed with the namespace name and
all references to this architecture will also use the prefixed name. Several other
files also have been adapted. These files also contain the signal overloading.
The new attribute system could not be tested with this use case since attributes
are not used in the design. When the new files are compiled and tested with
the test-bench, the results equal the other simulations.
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Chapter 7

Conclusion & Future work

At the start of this thesis the question ”What language constructs can be added
to the VHSIC hardware description language to keep it effective and relevant for
the future?” was posed. Six improvements have been shown; an independent
compilation order, declarations inside body areas, direct signal assignments,
assignment operator overloading, namespaces and a new attribute system. To
be able to have an independent compilation order a five pass compiler has been
introduced. Having multiple passes has shown to give flexibility in terms of
features that can be added to the language. Also the declaration outside the
body areas and the direct signal assignment features make use of this multi-
pass system. Whether the code is easier to read because of these features is
somewhat subjective, but in our experience it is. Being able to directly assign
some signals makes the code a little shorter, but its biggest advantage is being
able to see the type of the assigned signal or variable at the place it is assigned
to. The namespaces have shown to work well and have some nice encapsulation
properties.
Though the conclusion can be made that the language becomes more convenient
to use with the added features, a side note must also be made. Because most of
the added features rely on the five pass system, the additions are less likely to be
adopted by the existing tool vendors since this would mean that their existing
compilers would completely have to be rewritten. The use of a pre-compiler like
the one that is presented in this thesis will take too much effort to completely
and correctly implement, and therefore these features are not very likely to
be adopted. Furthermore not many other features could be added, since the
existing parts of the language make the freedom of new features quite limited.
The conclusion can be made that the relevance of VHDL mostly comes from
the relevance it had in the past, and the lack of competition of other languages.
Not from the features it currently has or will have in the future. Therefore the
future of VHDL is mostly dependent on what other languages will do.

7.1 Future work

The features that are presented in this thesis focus mostly on the structuring
of the code. With the number of available transistors the need for higher ab-
straction levels also has grown. An example for this need is the fact that Astron
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uses python scripts to check the functional behaviour of the VHDL code. It is
still important however to be able to make these abstractions more concrete in
small steps, which is not always trivial.
Since the possibility to add new features to VHDL is limited, it is probably a
good idea to create a new language. Though many attempts for this have been
made, none of them have truly succeeded. This has several reasons. First of
all it is important not to make the same mistakes the designers of the current
hardware description languages made. Secondly it is important that the current
set of features that designers have is not limited. And finally it is important to
be able to slowly integrate the language into the existing environments. This
could be done by first making the language compilable to either VHDL or Ver-
ilog so that the language can be synthesized by all existing synthesis tools. One
important pitfall many of the failed HDL’s have made is taking a programming
language as a starting point, and add features for hardware simulations. Though
this gives extensive library support, many of the programming features do not
translate to hardware or result in very poor hardware. To prevent confusion on
what is synthesizeble and what is not, the new language should be very clear
in this. All in all, such a language will be quite difficult to create and therefore
VHDL will be around for some time to come.
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Nomenclature

ANTLR ANother Tool for Language Recognition

ASIC Application Specific Integrated Circuit

AST Abstract Syntax Tree

BNF Backus-Naur From

EBNF Extended Backus-Naur From

FPGA Field Programmable Gate Array

HDL Hardware Description Language

RTL Register Transfer Level

SDC Synopsys Design Constraint

SDF Standard Delay Format

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit
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Appendix A

Figures of chapter 5
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Figure A.1: Data structure after pass 1.
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Figure A.2: Data structure after pass 2.
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Figure A.3: Data structure after pass 3.
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Figure A.4: Data structure of the expression after pass 4.
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Appendix B

Modified files

Name Return Overload Id reuse Type Inversion
common async.vhd X
” clip.vhd X
” clock active detector.vhd X
” complex mult.vhd X
” complex mult a str stratix4.vhd X
” debounce.vhd X
” evt.vhd X
” fifo sc a stratix4.vhd X
” init.vhd X
” iobuf in.vhd X
” mult add2 a stratix4.vhd X
” pkg.vhd X
” reg r w.vhd X
” reorder symbol.vhd X
” resize.vhd X
” stable delayed.vhd X
” str pkg.vhd X
dp distribute.vhd X
dp fifo dc mixed widths.vhd X
dp mux.vhd X
dp packet enc.vhd X
dp stream pkg.vhd X
ram cr cw.vhd X
ram crw crw.vhd X
ram crwk crw.vhd X

Table B.1: Resolution function table of std logic.
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Appendix C

st acc (original)

1   -------------------------------------------------------------------------------

2   --

3   -- Copyright (C) 2010

4   -- ASTRON (Netherlands Institute for Radio Astronomy) <http://www.astron.nl/>

5   -- P.O.Box 2, 7990 AA Dwingeloo, The Netherlands

6   --

7   -- This program is free software: you can redistribute it and/or modify

8   -- it under the terms of the GNU General Public License as published by

9   -- the Free Software Foundation, either version 3 of the License, or

10   -- (at your option) any later version.

11   --

12   -- This program is distributed in the hope that it will be useful,

13   -- but WITHOUT ANY WARRANTY; without even the implied warranty of

14   -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

15   -- GNU General Public License for more details.

16   --

17   -- You should have received a copy of the GNU General Public License

18   -- along with this program.  If not, see <http://www.gnu.org/licenses/>.

19   --

20   -------------------------------------------------------------------------------

21   

22   LIBRARY IEEE, common_lib;

23   USE IEEE.std_logic_1164.ALL;

24   USE IEEE.numeric_std.ALL;

25   USE common_lib.common_pkg.ALL;

26   

27   

28   -- Purpose:

29   --   Accumulate input data to an accumulator that is stored externally. In this

30   --   way blocks of input samples (e.g. subband products) can be accumulated to

31   --   a set of external accumulators. At the in_load the accumulator input value

32   --   is ignored so that the accumulation restarts with the in_dat.

33   --

34   -- Description:

35   --   if in_load = '1' then

36   --     out_acc = in_dat + 0         -- restart accumulation

37   --   else

38   --     out_acc = in_dat + in_acc    -- accumulate

39   --

40   -- Remarks:

41   -- . in_val propagates to out_val after the pipeline latency but does not 

42   --   affect the sum

43   

44   ENTITY st_acc IS

45   GENERIC (

46   g_dat_w : NATURAL;

47   g_acc_w : NATURAL; -- g_acc_w >= g_dat_w

48   g_hold_load : BOOLEAN := TRUE;

49   g_pipeline_input : NATURAL; -- 0 no input registers, else register input 

after in_load

50   g_pipeline_output : NATURAL -- pipeline for the adder

51   );
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52   PORT (

53   clk : IN STD_LOGIC;

54   clken : IN STD_LOGIC := '1';

55   in_load : IN STD_LOGIC;

56   in_dat : IN STD_LOGIC_VECTOR(g_dat_w-1 DOWNTO 0);

57   in_acc : IN STD_LOGIC_VECTOR(g_acc_w-1 DOWNTO 0);

58   in_val : IN STD_LOGIC := '1';

59   out_acc : OUT STD_LOGIC_VECTOR(g_acc_w-1 DOWNTO 0);

60   out_val : OUT STD_LOGIC

61   );

62   END st_acc;

63   

64   

65   ARCHITECTURE rtl OF st_acc IS

66   

67   CONSTANT c_pipeline : NATURAL := g_pipeline_input + g_pipeline_output;

68   

69   -- Input signals

70   SIGNAL hld_load : STD_LOGIC := '0';

71   SIGNAL nxt_hld_load : STD_LOGIC;

72   SIGNAL acc_clr : STD_LOGIC;

73   

74   SIGNAL reg_dat : STD_LOGIC_VECTOR(g_acc_w-1 DOWNTO 0) := (OTHERS=>'0');

75   SIGNAL nxt_reg_dat : STD_LOGIC_VECTOR(g_acc_w-1 DOWNTO 0);

76   SIGNAL reg_acc : STD_LOGIC_VECTOR(g_acc_w-1 DOWNTO 0) := (OTHERS=>'0');

77   SIGNAL nxt_reg_acc : STD_LOGIC_VECTOR(g_acc_w-1 DOWNTO 0);

78   

79   -- Pipeline control signals, map to slv to be able to use common_pipeline

80   SIGNAL in_val_slv : STD_LOGIC_VECTOR(0 DOWNTO 0);

81   SIGNAL out_val_slv : STD_LOGIC_VECTOR(0 DOWNTO 0);

82   

83   BEGIN

84   

85   ASSERT NOT(g_acc_w < g_dat_w)

86   REPORT "st_acc: output accumulator width must be >= input data width"

87   SEVERITY FAILURE;

88   

89   ------------------------------------------------------------------------------

90   -- Input load control

91   ------------------------------------------------------------------------------

92   

93   p_clk : PROCESS(clk)

94   BEGIN

95   IF rising_edge(clk) THEN

96   IF clken='1' THEN

97   hld_load <= nxt_hld_load;

98   END IF;

99   END IF;

100   END PROCESS;

101   

102   nxt_hld_load <= in_load WHEN in_val='1' ELSE hld_load;

103   

104   -- Hold in_load to save power by avoiding unneccessary out_acc toggling when 

in_val goes low  

105   -- . For g_pipeline_input>0 this is fine

106   -- . For g_pipeline_input=0 this may cause difficulty in achieving timing closure 

for synthesis

107   use_in_load : IF g_hold_load = FALSE GENERATE

108   acc_clr <= in_load; -- the in_load may already be extended during in_val
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109   END GENERATE;

110   use_hld_load : IF g_hold_load = TRUE GENERATE

111   acc_clr <= in_load OR (hld_load AND NOT in_val);

112   END GENERATE;

113   

114   -- Do not use g_pipeline_input of u_adder, to allow registered acc clear if 

g_pipeline_input=1

115   nxt_reg_dat <= RESIZE_SVEC(in_dat, g_acc_w);

116   nxt_reg_acc <= in_acc WHEN acc_clr='0' ELSE (OTHERS=>'0');

117   

118   no_input_reg : IF g_pipeline_input=0 GENERATE

119   reg_dat <= nxt_reg_dat;

120   reg_acc <= nxt_reg_acc;

121   END GENERATE;

122   gen_input_reg : IF g_pipeline_input>0 GENERATE

123   p_reg : PROCESS(clk)

124   BEGIN

125   IF rising_edge(clk) THEN

126   IF clken='1' THEN

127   reg_dat <= nxt_reg_dat;

128   reg_acc <= nxt_reg_acc;

129   END IF;

130   END IF;

131   END PROCESS;

132   END GENERATE;

133   

134   

135   ------------------------------------------------------------------------------

136   -- Adder for the external accumulator

137   ------------------------------------------------------------------------------

138   

139   u_adder : ENTITY common_lib.common_add_sub

140   GENERIC MAP (

141   g_direction => "ADD",

142   g_representation => "SIGNED", -- not relevant because g_out_dat_w = g_in_dat_w

143   g_pipeline_input => 0,

144   g_pipeline_output => g_pipeline_output,

145   g_in_dat_w => g_acc_w,

146   g_out_dat_w => g_acc_w

147   )

148   PORT MAP (

149   clk => clk,

150   clken => clken,

151   in_a => reg_dat,

152   in_b => reg_acc,

153   result => out_acc

154   );

155   

156   

157   ------------------------------------------------------------------------------

158   -- Parallel output control pipeline

159   ------------------------------------------------------------------------------

160   

161   in_val_slv(0) <= in_val;

162   out_val <= out_val_slv(0);

163   

164   u_out_val : ENTITY common_lib.common_pipeline

165   GENERIC MAP (

166   g_representation => "UNSIGNED",
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167   g_pipeline => c_pipeline,

168   g_reset_value => 0,

169   g_in_dat_w => 1,

170   g_out_dat_w => 1

171   )

172   PORT MAP (

173   clk => clk,

174   clken => clken,

175   in_dat => slv(in_val),

176   out_dat => out_val_slv

177   );

178   

179   END rtl;

180   
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Appendix D

st acc rewritten

1   LIBRARY IEEE, common_lib;

2   USE IEEE.std_logic_1164.ALL;

3   USE IEEE.numeric_std.ALL;

4   USE common_lib.common_pkg.ALL;

5   

6   NAMESPACE st_lib IS

7   

8   ENTITY st_acc IS

9   GENERIC (

10   g_dat_w : NATURAL;

11   g_acc_w : NATURAL; -- g_acc_w >= g_dat_w

12   g_hold_load : BOOLEAN := TRUE;

13   g_pipeline_input : NATURAL; -- 0 no input registers, else register 

input after in_load

14   g_pipeline_output : NATURAL -- pipeline for the adder

15   );

16   PORT (

17   clk : IN std_logic;

18   clken : IN std_logic := '1';

19   in_load : IN std_logic;

20   in_dat : IN std_logic_vector(g_dat_w - 1 DOWNTO 0);

21   in_acc : IN std_logic_vector(g_acc_w - 1 DOWNTO 0);

22   in_val : IN std_logic := '1';

23   out_acc : OUT std_logic_vector(g_acc_w - 1 DOWNTO 0);

24   out_val : OUT std_logic

25   );

26   END st_acc;

27   
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28   ARCHITECTURE rtl OF st_acc IS

29   

30   ASSERT NOT(g_acc_w < g_dat_w)

31   REPORT "st_acc: output accumulator width must be >= input data width"

32   SEVERITY FAILURE;

33   

34   ------------------------------------------------------------------------------

35   -- Input load control

36   ------------------------------------------------------------------------------

37   SIGNAL hld_load : std_logic := '0';

38   SIGNAL nxt_hld_load : std_logic <=

39   in_load WHEN in_val = '1' ELSE

40   hld_load;

41   

42   p_clk: PROCESS(clk)

43   IF rising_edge(clk) THEN

44   IF clken = '1' THEN

45   hld_load <= nxt_hld_load;

46   END IF;

47   END IF;

48   END PROCESS;

49   

50   -- Hold in_load to save power by avoiding unnecessary out_acc toggling when 

in_val goes low  

51   -- . For g_pipeline_input>0 this is fine

52   -- . For g_pipeline_input=0 this may cause difficulty in achieving timing 

closure for synthesis

53   SIGNAL acc_clr : std_logic;

54   use_in_load: IF g_hold_load = FALSE GENERATE

55   acc_clr <= in_load; -- the in_load may already be extended during in_val

56   END GENERATE;

57   use_hld_load: IF g_hold_load = TRUE GENERATE

58   acc_clr <= in_load OR (hld_load AND NOT in_val);

59   END GENERATE;

60   

61   -- Do not use g_pipeline_input of u_adder, to allow registered acc clear if 

g_pipeline_input=1

62   SIGNAL nxt_reg_dat : std_logic_vector(g_acc_w - 1 DOWNTO 0) <= RESIZE_SVEC(

in_dat, g_acc_w);

63   SIGNAL nxt_reg_acc : std_logic_vector(g_acc_w - 1 DOWNTO 0) <=

64   in_acc WHEN acc_clr = '0' ELSE

65   (OTHERS => '0');

66   

67   SIGNAL reg_dat : std_logic_vector(g_acc_w - 1 DOWNTO 0) := (OTHERS => '0');

68   SIGNAL reg_acc : std_logic_vector(g_acc_w - 1 DOWNTO 0) := (OTHERS => '0');

69   no_input_reg: IF g_pipeline_input = 0 GENERATE

70   reg_dat <= nxt_reg_dat;

71   reg_acc <= nxt_reg_acc;

72   END GENERATE;

73   

74   

75   
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76   gen_input_reg: IF g_pipeline_input > 0 GENERATE

77   p_reg: PROCESS(clk)

78   IF rising_edge(clk) THEN

79   IF clken = '1' THEN

80   reg_dat <= nxt_reg_dat;

81   reg_acc <= nxt_reg_acc;

82   END IF;

83   END IF;

84   END PROCESS;

85   END GENERATE;

86   

87   ------------------------------------------------------------------------------

88   -- Adder for the external accumulator

89   ------------------------------------------------------------------------------

90   u_adder : ENTITY common_lib.common_add_sub

91   GENERIC MAP (

92   g_direction => "ADD",

93   g_representation => "SIGNED", -- not relevant

94   g_pipeline_input => 0,

95   g_pipeline_output => g_pipeline_output,

96   g_in_dat_w => g_acc_w,

97   g_out_dat_w => g_acc_w

98   )

99   PORT MAP (

100   clk => clk,

101   clken => clken,

102   in_a => reg_dat,

103   in_b => reg_acc,

104   result => out_acc

105   );

106   

107   ------------------------------------------------------------------------------

108   -- Parallel output control pipeline

109   ------------------------------------------------------------------------------

110   SIGNAL in_val_slv : std_logic_vector(0 DOWNTO 0);

111   SIGNAL out_val_slv : std_logic_vector(0 DOWNTO 0);

112   CONSTANT c_pipeline : natural := g_pipeline_input + g_pipeline_output;

113   

114   in_val_slv(0) <= in_val;

115   out_val <= out_val_slv(0);

116   

117   u_out_val : ENTITY common_lib.common_pipeline

118   GENERIC MAP (

119   g_representation => "UNSIGNED",

120   g_pipeline => c_pipeline,

121   g_reset_value => 0,

122   g_in_dat_w => 1,

123   g_out_dat_w => 1

124   )

125   PORT MAP (

126   clk => clk,

127   clken => clken,

128   in_dat => slv(in_val),

129   out_dat => out_val_slv

130   );

131   

132   END rtl;

133   END NAMESPACE;
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Appendix E

st acc rewritten compiler
output

1   

2   ARCHITECTURE \st_lib.rtl\ OF \st_lib.st_acc\ IS

3   SIGNAL hld_load : std_logic := '0';

4   SIGNAL acc_clr : std_logic;

5   SIGNAL reg_dat : std_logic_vector (g_acc_w - 1 DOWNTO 0) := (OTHERS => '0');

6   SIGNAL reg_acc : std_logic_vector (g_acc_w - 1 DOWNTO 0) := (OTHERS => '0');

7   SIGNAL in_val_slv : std_logic_vector (0 DOWNTO 0);

8   SIGNAL out_val_slv : std_logic_vector (0 DOWNTO 0);

9   CONSTANT c_pipeline : natural := g_pipeline_input + g_pipeline_output;

10   SIGNAL nxt_hld_load : std_logic;

11   SIGNAL nxt_reg_dat : std_logic_vector (g_acc_w - 1 DOWNTO 0);

12   SIGNAL nxt_reg_acc : std_logic_vector (g_acc_w - 1 DOWNTO 0);

13   BEGIN

14   ASSERT

15   not ((g_acc_w < g_dat_w))

16   REPORT

17   "st_acc: output accumulator width must be >= input data width"

18   SEVERITY

19   FAILURE;

20   nxt_hld_load <= in_load WHEN (in_val = '1') ELSE

21   hld_load;

22   

23   p_clk: PROCESS(clk) IS

24   BEGIN

25   IF rising_edge(clk) THEN

26   IF (clken = '1') THEN

27   hld_load <= nxt_hld_load;

28   END IF;

29   END IF;

30   END PROCESS;

31   

32   use_in_load: IF (g_hold_load = FALSE) GENERATE

33   BEGIN

34   acc_clr <= in_load;

35   END GENERATE;
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36   use_hld_load: IF (g_hold_load = TRUE) GENERATE

37   BEGIN

38   acc_clr <= in_load or (hld_load and not in_val);

39   END GENERATE;

40   nxt_reg_dat <= RESIZE_SVEC(in_dat, g_acc_w);

41   nxt_reg_acc <= in_acc WHEN (acc_clr = '0') ELSE

42   (OTHERS => '0');

43   

44   no_input_reg: IF (g_pipeline_input = 0) GENERATE

45   BEGIN

46   reg_dat <= nxt_reg_dat;

47   reg_acc <= nxt_reg_acc;

48   END GENERATE;

49   gen_input_reg: IF (g_pipeline_input > 0) GENERATE

50   BEGIN

51   p_reg: PROCESS(clk) IS

52   BEGIN

53   IF rising_edge(clk) THEN

54   IF (clken = '1') THEN

55   reg_dat <= nxt_reg_dat;

56   reg_acc <= nxt_reg_acc;

57   END IF;

58   END IF;

59   END PROCESS;

60   

61   END GENERATE;

62   u_adder: ENTITY common_lib.common_add_sub

63   GENERIC MAP(

64   g_direction => "ADD",

65   g_representation => "SIGNED",

66   g_pipeline_input => 0,

67   g_pipeline_output => g_pipeline_output,

68   g_in_dat_w => g_acc_w,

69   g_out_dat_w => g_acc_w)

70   PORT MAP(

71   clk => clk,

72   clken => clken,

73   in_a => reg_dat,

74   in_b => reg_acc,

75   result => out_acc)

76   ;

77   in_val_slv(0) <= in_val;

78   out_val <= out_val_slv(0);

79   u_out_val: ENTITY common_lib.common_pipeline

80   GENERIC MAP(

81   g_representation => "UNSIGNED",

82   g_pipeline => c_pipeline,

83   g_reset_value => 0,

84   g_in_dat_w => 1,

85   g_out_dat_w => 1)

86   PORT MAP(

87   clk => clk,

88   clken => clken,

89   in_dat => slv(in_val),

90   out_dat => out_val_slv)

91   ;

92   END ARCHITECTURE;
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