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Abstract

In this research we develop a new mathematical model for negotiations

that is able to serve as the basis for a Negotiation Support System. We

start by examining the existing models in the literature. We de�ne the

key properties of real-world negotiations that are missing in the existing

models and propose a new model that does have these properties. We

analyse this model by proving several consistency theorems. Because there

is no easy closed form expression for the negotiation outcome, we perform

numerical studies to determine the e�ect of the strategy parameters on

the outcome of the negotiations.

We then use these observations to develop a procedure with which

we estimate the strategy of the other agent and optimize our strategy,

given the estimated strategy of the other agent. Finally, we use MAT-

LAB simulations to analyse the performance of this procedure for various

strategies of the other agent. From these simulations we conclude that the

estimation and simulation procedure yields a signi�cantly better outcome,

and should therefore be used whenever possible. We also discuss exten-

sions our proposed negotiation model and give a number of suggestions

for future research.
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1 Introduction

Everyone uses negotiation in real-life scenarios. When buying a new car or a
new house, people generally negotiate about the price and terms of delivery.
Negotiation also occurs often in businesses. For example, consider the negotia-
tion about a software project for which price, delivery date and scope have to
be determined. Over multiple sessions, both parties exchange o�ers and give
feedback on each others o�ers. After a number of sessions, consensus is reached
and a contract is signed. The �nal contract is a legally binding document that
outlines the responsibilities of both parties to each other. For large projects,
the outcome of these negotiations are very important, because a large amount
of money can be involved.

Many business processes can be supported by systems based on mathemati-
cal models. At this moment however, no system is available to help negotiators
determine a good strategy for negotiations. Given that negotiations are so im-
portant, we will develop a mathematical model to support these negotiators.
Especially for large projects, if we can improve the negotiation outcome for one
of the parties by even a small amount (e.g. reduce the �nal price of a project
by 1%), a negotiation support system could generate a lot of added value for
the decision maker. This research is the �rst step for ORTEC to develop such
a negotiation support system.

Negotiation Setting

We will look at the following negotiation setting for this research. Two parties
are negotiating about a contract consisting of, possibly, multiple issues. Both
parties do not only have con�icting interests, they also have di�erent priorities
regarding the issues. We will assume negotiation is conducted over multiple
rounds or sessions.

Consider the case where a buyer and a seller negotiate about the delivery
and price of a product. The buyer wants to minimize the cost and the delivery
time, the seller wants to maximize them. However, the buyer might be in a
hurry to get the product, so for him, delivery time is most important. For the
seller, the delivery date might not matter much, but he does care about the
price.

1.1 Research goal

Outline of a support system

We will create a mathematical model to serve as the basis for a decision support
system for contract negotiations. As the name says, a decision support system
supports the decision maker, it does not replace him. The negotiator should be
able to use the output of the system as guidelines and use his expert opinion to
�ll in the details. A realistic use for such a Negotiation Support System (NSS)
is the following. During the negotiations, after an o�er has been made by the
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other party, the user of the NSS enters this o�er into the system. The system
then updates and gives a suggestion for a next o�er.

Scope

Our model has to support one of the negotiating parties. To do this, our model
will only use information that is given by this party or obtained during the
negotiations. Also, we do not want to replace the negotiator, instead, we support
him in obtaining a good outcome. Our model will be able to update its advice
according to the realization of the negotiation. The model will also be suitable
for negotiations with multiple dimensions. In this research we will only look at
scenarios where there exists a contract that is preferable over disagreement for
both parties.

1.2 Research Questions

The objective of this research is to develop a mathematical model that can serve
as the basis for a Negotiation Support System. To do that, we must �rst answer
the following research questions:

• How can we model contract negotiations mathematically?

� What existing models are there?

� What assumptions do we need to make?

� How can we model the behavior of the opposing party?

• How can we optimize the negotiation strategy of the user?

• How can we measure the performance of our model?

Approach

Game theory studies the strategic interaction of self-interested agents [19]. In
particular, bargaining theory seems to be well suited for this problem. The
simplest bargaining model looks at the scenario where two agents must agree
on the division of a single pie. This is a good starting point for our research,
because it describes a very simple negotiation setting. We will then use concepts
from these game theoretical bargaining models as the basis for our new model.
We will start with a simple model and expand this by broadening its scope and
relaxing its assumptions. We make sure that the model only needs data that is
realistically obtainable and that it provides output that is actually useful to the
user. We will also test the performance of our model. We do this by performing
simulations for di�erent types of behavior by the other party.
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1.2.1 Structure of the Report

In the remainder of this report, we will �rst look at the relevant literature on
this topic. We then present a basic model and some initial analysis on this
model. We will extend this basic model to a more general one and perform
detailed analysis (both numerical and analytical) on the performance. As a �nal
step, we provide a method for estimating the strategy of the other party and
optimizing our strategy, given this estimate. We will evaluate the performance
of this method by simulations. We end by drawing conclusions from these results
and suggesting a number of directions for future research.
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2 Literature Study

In this chapter we will discuss the literature relevant to negotiations. We will
start by looking at some general concepts from game theory which are useful to
analyze negotiations. We will then look at models that analyze negotiations in
various settings. The next research area we look is automated negotiations. Au-
tomated negotiation has been an active area of research in the area of computer
science and arti�cial intelligence in the last few years. The goal of automated
negotiation is to design systems that can negotiate autonomously, an example
of an application for such systems is (automated) negotiation in e-commerce.
We also brie�y discuss some past initiatives in the area of negotiation support
systems. Finally, we determine the limitations of the current theory.

2.1 Game Theory

Game theory studies the strategic interaction of multiple players that are all
trying to maximize their outcome. In game theory, we assume that the players
are perfectly rational. This perfect rationality consists of two parts [2]:

1. Rationality: Agents maximize their own utility (and will always take the
action that accomplishes this)

2. Rationality is common knowledge: Agents know that all other agents are
rational (and that all agents know this, and they know that all agents
know this ad in�nitum)

We need these assumptions on the behavior of the players to be able to analyze
the outcome of games. If we look at simple games, that is, games consisting of a
single play where players act simultaneously, we can use the Nash Equilibrium
[17] to determine equilibrium behavior. A set of strategies for each player form
a Nash Equilibrium if no player can improve his outcome by changing his strat-
egy. In other words, all strategies are best responses to each other. All of the
game theoretical analysis assume perfect rationality and analyse the equilibrium
outcome of the game.

In games consisting of multiple periods, or games were players act sequen-
tially, we use a game tree to model the game. In such a game, the notion of
a Nash Equilibrium is not strong enough. In general there may be many Nash
Equilibria in such games. A sub-game perfect equilibrium is a re�nement of the
Nash Equilibruim [19]. A set of strategies is a sub-game perfect equilibrium if it
is a Nash Equilibrium not only in the whole tree, but also in every sub-game. A
sub-game is a �new� game starting from one of the decision nodes in the game
tree. By de�nition every sub-game perfect equilibrium is a Nash Equilibrium,
but the converse is not true. It is beyond the scope of this thesis to list all im-
plications of this re�ned de�nition of an equilibrium, but the interested reader
is referred to [5].
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Information setting

The simplest games we can look at are game of perfect information. Perfect
information means that all players know everything there is to know about the
state of the game [19]. That is, they know the current state of the game, the
decisions available to all players and the payo�s that are obtained by all players.
Chess is an example of a game of perfect information.

It may be the case that players do not know the exact payo�s of the game,
or that we only know that the opponent can be any of a number of types (each
having di�erent payo�s). In such a case, players are said to have incomplete
information.

Lastly, players may not know what state the game is in, in such a case, a
game is said to have imperfect information. An example of a game of imperfect
information is poker. The state of the game is determined by the cards in each
players hands, but each player only knows the cards in his own hand.

2.2 Negotiation Theory

We will now turn our attention to a more speci�c area of game theory, namely
negotiation theory.

2.2.1 De�nitions

Pareto optimality A solution is Pareto optimal if there is no other solution
that improves the payo� of one agent, without making the other agent worse o�
[7]. A Pareto optimal solution is preferable to a non-Pareto optimal solution.
However, obtaining a Pareto optimal solution might be hard when both parties
have private information about their utilities [23].

Utility In all of the multiple-issue models, a utility function is used to compare
solutions. A utility function u(x1, . . . , xn) : Rn → R assigns a single value
(usually in [0,1]) to every possible contract. Instead of comparing the negotiation
outcome by comparing the scores on all issues xi individually, we use the utility
to compare the various outcomes. Each agent has its own utility function and
they are assumed to be Von Neuman/Morgenstern expected utility maximizers
[25]. We say a utility function is (linear) additive if u(x1, . . . , xn) =

∑n
i=1 wi ·

u(xi). Here wi is the weight of issue i and u(xi) is the utility of issue i. If a utility
function is linear additive, the utilities of the various issues are independent in
the sense that we can determine the outcome of a contract by looking at the
outcome of each issue individually.

Reservation Utility The reservation utility of an agent is the minimal ac-
ceptable outcome of the negotiation. This does not necessarily have to be zero.
In game theoretical models, the reservation utility is assumed to be known. In
the non-game theoretical models (e.g. [11]), authors suggest determining the
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Best Alternative Outcome to Negotiation (BATNA), and set the reservation
utility equal to the utility of this BATNA.

Zone of Agreement When both parties have their own reservation utility,
we can de�ne the zone of agreement as the set of all solutions that are acceptable
to both players. If players negotiate about the division of a pie of size 1 and
both players want at least 40% of the pie, the zone of agreement is to give a
piece of pie in the interval of [0.4,0.6] to player one (and the rest to player two).

2.2.2 Nash bargaining solution

Nash [17] used an axiomatic approach to predict the outcome of a bargaining
situation where two parties negotiate about the division of a single pie. He
viewed the negotiation process as a black box and only looked at the outcome
of the process. If both agents have public utility functions and obtain a utility
of 0 for disagreement, he showed that the only solution that satis�ed his four
axioms of rationality is the solution that maximizes the product of the utilities
of both agents. The interested reader is referred to [21] for a thorough review
of these axioms.

2.2.3 Alternating O�er Protocol

Instead of Nash' axiomatic approach, Rubinstein [22] speci�ed a negotiation
protocol and analyzed the behavior of rational agents that use this protocol. In
order to ensure that agents reach an agreement, he assumed that agents either
incur a �xed cost per negotiation period, or that they both have a discount
factor δi. The interpretation of this discount factor is that a pie that is worth
1 in the �rst period to player i, is only worth δi in period 2, δ2i in period 3,
etc. Either of these two assumptions is needed to ensure that agents have an
incentive to reach agreement sooner rather than later.

In his setting, agents have perfect information about each other. Two agents
negotiate about a single issue and they both have their own discount factor δ1
and δ2. Agents alternate making o�ers. In particular, in every time period, the
�active� agent has the following options:

1. Accept the previous o�er

2. Reject the o�er and propose a new o�er

3. Quit the negotiations

Rubinstein shows that, in this setting, the only Subgame Perfect Equilibrium is
that agreement is reached in the �rst time period, and that agent 1 receives a
fraction 1−δ1

1−δ1δ2 of the total. Notice that the player that starts the negotiations
has an advantage if both players have equal discount factors.
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2.2.4 Strategy choice

We can identify two classes of strategy in the literature. Time dependent strate-
gies and tit-for-tat strategies. We will describe both of them.

Time Dependent Strategy A time dependent strategy that is often used in
literature (e.g. [10, 13, 7]) is:

ui(t) = 1− (1− rui)
(
t

Ti

)
1
βi (2.1)

Here rui is the reservation utility of agent i, Ti is his deadline and βi is a
parameter controlling the behavior of agent i. The reason that it is used often,
is that it controls the time dependent behavior of the negotiating agents by just
a single parameter βi. Using di�erent values of βi in (2.1), we can de�ne three
general types of strategies.

1. β < 1 :Boulware: The agent maintains his initial o�er until he is close to
the deadline, then concedes up to his reservation utility.

2. β = 1: Linear: The agent concedes utility linearly.

3. β > 1 :Conceder: At the start of the agent, he quickly concedes up to his
reservation utility.

Figure 2.1: Time Dependent strategies[13]

In �gure 2.1 each line corresponds to one of these strategies. From equation
2.1 we can see that the utility of an o�er from a player using this strategy does
not depend on the o�er of the other party. So whether the other party makes
a small concession or a very large one, we do not change the utility of our next
o�er.
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Behavior dependent strategy Another class of strategies is the behavior
dependent strategies. In particular, tit-for-tat is often used (e.g. [9, 6]). In this
strategy, we base our behavior on the behavior of the other party. Informally,
this strategy tries to match the behavior of the other party. If the other party
makes a large concession, we respond by also making a large concession. If the
other party does not make any concession, or makes a greedy move, we respond
in kind.

Figure 2.2: Classi�cation of o�ers [9]

To be able to match the behavior of the other party, Hindriks et al.[9] de�ne
a number of categories for the o�ers of the other party. In �gure 2.2 these are
displayed. For example, a fortunate move is a move that increases the utility of
both parties, whereas a sel�sh move only increases the utility of a single party.
Hindriks et al. show that a tit-for-tat strategy that uses these classi�cations
does well in automated negotiations. Note however, that in order to classify
moves in this manner, we must know (or at least have a good idea) about the
utility function of the other party.

2.2.5 Incomplete information

Until now, we assumed both agents had complete information about themselves,
but also about their opponents. Fatima et al. [23] look at various scenarios
where agents use a time-dependent strategy, but have incomplete information
about the other party's deadline, discount factor and/or reservation price. They
also consider the cases where agents have asymmetric information, e.g. one
agent might have complete information, while the other agent does not have any
information about the other party. They determine the equilibrium outcome in
each of these scenarios. Their analysis is based on the following two theorems:

1. At the deadline, rational agents will o�er their reservation utility.

2. Agents use either an extreme conceder, a linear or an extreme boulware
strategy.
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They prove the correctness of both theorems. The �rst one is true in all cases.
For the second one, they show that, under the assumption of time-dependent
strategies, the extreme conceder, linear and extreme boulware strategy dominate
all other strategies. An agent using an extreme boulware strategy does not
make any concessions until very close to its deadline, then it (almost) instantly
concedes to its reservation utility. On the other hand, an extreme conceder
agent (almost) instantly concedes to its reservation utility. This limitation in
available strategies makes the analysis by [23] ill-suited for applications in real-
world negotiations. In the real world, both parties are expected to use less
extreme strategies (even if they are not optimal). They will slowly concede
utility until agreement is reached.

2.2.6 Agenda

In all of the above models, we negotiate about all the issues simultaneously. It
is also possible that we negotiate on the issues one-by-one. In such a case, it is
important to consider the order of the issues on the agenda, as they can greatly
a�ect the (equilibrium) outcome of the negotiations [8, 26].

2.3 Automated Negotiation

2.3.1 ANAC

There is a yearly competition for automated negotiation agents called ANAC
(Automated Negotiating Agents Competition) [1]. Here, teams of students or
researchers can submit an agent that negotiates competitively against other
agents on a prede�ned domain. In previous years, all of the utility function
were linearly additive. This year, non-linear utilities are considered for the �rst
time. All of the successful agents use some sort of opponent model that tries to
determine how the utility of the opponent behaves, this works well because of
the large amount of o�ers per negotiation session and the linearity of the utility
functions

2.3.2 Mediated negotiations

As we noticed before, in a general setting it may be hard to achieve Pareto
optimal outcomes. One of the ways to remedy this is to consider mediated
negotiations. In this setting, agents share (some) private information with an
unbiased mediator who then suggests possible contracts. Examples of such
mediators can be found in [12, 14]. It is beyond the scope of this research to
analyse these in detail, because we aim to create a Negotiation Support System
(NSS) that supports a single party.

2.3.3 O�er protocols

A di�erent way to approach automated negotiations is to look at the way in
which agents generate their o�ers. Lai et al. [13, 14] assume both agents use
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(2.1), with some �xed parameter βi to determine the utility of an o�er. All o�ers
that satisfy Equation (2.1) lie on an iso-utility plane. The authors analyze the
following o�er selection rule: �Select as the next o�er the o�er (on the iso-utility
plane) that is closest to the previous best o�er by the opponent�. They show by
simulations that the outcome of negotiations (assuming a rather speci�c form
of convex utility functions) under this protocol are close to Pareto optimal.

2.3.4 Opponent Learning

In almost all of the models, the opponents utility is assumed to be private
information. There is a wide variety of methods to learn the opponents utility.
The o�ers made by the opponent is used as input for these methods. Among
others we can use:

• Bayesian Learning [10]

• Frequency-based Learning [3]

• Fuzzy Constraints [15]

• Genetic Algorithms [16]

These learning models have the following limitations. They require a large
amount of o�ers to be e�ective, and they generally require utility functions to
be linear.

2.4 Negotiation Support Systems

Various research has been done on the design of a Negotiation Support System.
A NSS can be used to support a single party, or it can be used as a mediator.
Using a NSS as a mediator, we can obtain higher total utilities [12], but both
parties would have to agree to use such a mediator, which might be di�cult to
implement in the real world.

2.4.1 Pocket Negotiator

There is a Pocket Negotiator project by Hindriks et al. [4] from a research
group in Delft. Over the past few years, they published a number of articles
on various aspects of negotiations. A result of this research program, is that
they now have a web-based application called the pocket negotiator that can
assist in everyday negotiations. This application includes a method of preference
elicitation, visualization of the utility of o�ers and suggestion of a next o�er.
However, its scope is di�erent from ours, in that they assume the utility function
of both parties to be known (or that both parties use the pocket negotiator to
determine them) and are linear additive and that there is only a small amount
of issues to be negotiated.
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2.5 Limitations of current work

In this section we will discuss the limitations of the works we described above.

2.5.1 Perfect Rationality

Game theoretical models are based on the assumption that agents are perfectly
rational and that this rationality is common knowledge (i.e. they know that
the other agent is also perfectly rational). This assumption is of great impact
on how these models can be used. It causes all of the models to be descriptive
models, because perfect rationality implies that agents act according to their
optimal strategy. We could compute these equilibrium strategies, but by our
assumption, they are already known to the agents, so this analysis would not
provide any new information.

2.5.2 Automated Negotiation models (Learning modules)

All of the automated negotiation agents use some sort of opponent model to
model the utility of the other agent. In order to identify trade-o�s between
issues, such a model is necessary. However, the models described in the literature
have major draw-backs. They require a large amount of o�ers by the other party
before they can accurately estimate the utility of the opponent. Moreover, most
of the learning modules make major assumptions about the form of the utility
function of the other party.

2.5.3 Contribution of this research

Because of these limitations, the models and methods from literature are ill-
suited for applications in a real-world negotiation. In this research, we take
a di�erent approach. We do not assume agents act according to the perfect
rationality principle, and we do not need a large amount of historical data for
our model.
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3 Basic ENO model

In this section we will �rst look at the properties of real-world negotiations and
then describe a basic version of our negotiation model.

3.1 Business Setting

Example

An example of a type of contract we will consider is a cost-plus contract. This
type of contract is often used in construction. In this type of contract, we have
a buyer and a seller. The buyer contracts the seller to realize a construction
project (boat/house/road etc). The buyer reimburses the seller for all costs
made and the seller receives an additional fee based on his performance. The
structure of this fee is such that it incentives the seller to do well. If the seller
performs well according to the performance measures de�ned in the contract,
he will receive a larger fee.

In the contract, negotiating agents decide upon the following:

• Target performance

• Fee

• Legal issues

We will assume the target performance is speci�ed in terms of:

• Cost estimate

• Time estimate

This cost estimate is speci�ed in detailed terms of the estimated value of various
cost drivers. For example, the expected amount of labor and cost of this labor,
expected amount of material and cost of material, etc.

The fee is based on the performance of the seller. That is, it is based on
the realization of the performance measures as speci�ed in the contract. Both
parties have con�icting interests about the speci�cation of the target perfor-
mance. The buyer wants the target performance to be a challenging target.
The seller wants the target performance to be set as �low� as possible, such that
it is easily achievable and his own pro�t is maximized. We will only look at
the negotiations dimensions which are measurable, so legal issues will not be
considered.

Properties of a real-world negotiation

Based on discussions with people that have extensive negotiation experience,
we have determined the following key properties for real-world negotiations:

• Their duration is between 5 and 10 rounds
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• Agents will make a concession in every round

• There is often no historical information on the behavior of the other party

As we have seen in the literature review, the game theoretical models violate
the �rst two requirements and the automated negotiation models require either
a large negotiation history, or much more than 5 to 10 rounds.

3.2 A General Mathematical Model

We �rst present the general mathematical model for negotiations. We consider
a model where two agents negotiate about a contract of r issues x1, . . . , xr. For
example, one could consider a project for which the cost and deadline have to
be negotiated. Let X1, . . . , Xr be the sets of feasible outcomes of each issue.
Then X = X1 × · · · ×Xr is the set of all possible contracts. If no agreement is
reached during the negotiations, the negotiation ends without a contract being
signed, so neither party will receive anything. The negotiations we will look
at, consist of multiple rounds (t1, . . . , tN ), where tN is the round in which the
negotiations end. Agents alternate making o�ers. That is, in time period t, we
will perform action at and the other party will perform an action at, where:

at =


Accept the previous o�er pt−1

Quit the negotiations

Propose a new contract pt ∈ X

Each agent has a utility function ui(x) to compare di�erent possible outcomes
with each other. So ui(x) : X → [0, 1]. Both agents want to maximize their
own utility, but this utility function is private information. That is, agents only
know their own utility function, but do not know the utility function of the
other party.

3.2.1 Implication of business setting for mathematical model

The business setting we are considering has the following consequences for our
model. Everything in the contract except the time estimate can be speci�ed
in terms of monetary value. This means that it is possible to de�ne a utility
function to compare di�erent contracts. We will assume negotiation is conducted
over multiple sessions. Each round corresponds to a time period. A round begins
with an o�er from our party (the buyer). During a session, the seller will provide
feedback on our o�er. This feedback is of the form of a countero�er: ut ∈ X

As discussed in Section 2, we do not want to take the game theoretic ap-
proach and assume agents act according to the perfect rationality principle,
because this is not a realistic assumption.

3.2.2 Additional Assumption

The model we de�ned above is incomplete. The missing ingredient is that we
need to model the impact of our actions. What happens if we propose a certain
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contract? What is a good contract to propose? To answer those questions, we
have identi�ed two options:

• Heuristically de�ne what constitutes a �good� proposal and look at a
single-period problem.

• Explicitly de�ne how the other party responds to our o�ers and look at
all of the periods.

The advantage of the �rst option is that it reduces the problem to a tractable
single-period problem. The challenge is to �nd a good measure for the quality
of a proposal.

The advantage of the second option is that a solution to the model gives us
a global solution (over multiple time periods) instead of a local solution. Such
a solution will provide a strategy for the whole negotiation, instead of just the
current period. The drawback is that we need to explicitly model the behavior
of the other party. It is di�cult to de�ne this behavior, especially at the start of
the negotiation. We think it is unrealistic to de�ne this behavior appropriately.
We will therefore look at a heuristic way to measure the quality of a solution in
a single period. In the next section, we will propose a model based on such a
measure.

3.3 Basic estimated negotiation outcome model

We will now describe the basic version of our Estimated Negotiation Outcome
(ENO) model. In the analysis of this model, we will look at a single dimension
problem. In Section 8, we will discuss how the model can be extended to multiple
dimensions In the remainder of this report, we will use the following notation:

• un is the o�er made by us in round n

• un is the o�er made by the other party in round n

• If either party accepts the previous o�er, we interpret this as making the
same o�er as the previous one (e.g. un = un−1 if we accept in round n).

We also assume neither party aborts the negotiations prematurely. Given an
o�er of the other party un−1 and a countero�er by us un, we de�ne the estimated
negotiation outcome (ENO) as:

ENO = un −
1

2
(un − un−1)

Intuitively, this means that if we are given an o�er and a countero�er , we expect
the negotiation to end at a point in the middle of those two o�ers. We can
also use a di�erent estimation technique (i.e. use something more complicated
than ending in the middle), but the key assumption is that we estimate the
negotiation outcome based on the utilities of the o�er and countero�er. By
doing this, we have a well-de�ned single-period problem that we can solve.
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We cannot simply �nd an o�er that maximizes the ENO. Trying to maximize
the ENO yields the trivial solution of always sending the same o�er (of maximum
utility), independent of the actions of the other party. Instead of maximizing
the ENO, we de�ne a di�erent objective. At the start of the negotiation we set
a target that we want to achieve. Call this T. After every negotiation session
t, we want to �nd the o�er un such, that the estimated negotiation outcome
equals our target:

un −
1

2
(un − un−1) = T (3.1)

This basic model is essentially a tit-for-tat strategy that we have seen in
the literature. If the other party makes a large concession, we respond by
doing the same. If he makes a very small concession, we do not concede much
either. Because we look at all dimensions independently, we do not need a utility
function, but we can talk about the value of an o�er directly.
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3.4 Analysis of basic ENO model

In this section we will analyze the performance of the ENO model if both parties
use the strategy given by this method. The �rst agent is the maximizing agent,
he has a Target T . The second agent is a minimizing agent, his target is T̄ . The
utility of the initial o�er of the maximizing agent is 1, the utility of the initial
o�er of the minimizing agent is 0. Starting with the maximizing agent, both
parties will make o�ers according to the ENO model. Recall that we de�ned
the ENO as:

ENO =
1

2
(ut + ut)

Where ut and ut are the o�ers of respectively the maximizing and the min-
imizing party.

The �rst (maximizing) agent will select o�ers according to Equation 3.2:

1

2
(ut + ut−1) = T (3.2)

Which means their o�er will be:

ut = 2T − ut−1

The second (minimizing) agent will select o�ers according to Equation 3.3:

1

2
(ut + ut) = T (3.3)

So their o�er will be:

ut = 2T − ut
It is easy to see that we can only reach agreement if T < T̄ , because agents

only accept o�ers that are better than their targets Moreover, in order for the
model to be consistent, we want agents to make a concession in each negotiation
round. A su�cient condition for this is that both u1 < 1 and u1 > 0; once both
agents make a concession in the �rst round, they will then make a concession
in every next round as well.

We can now analyze the behavior of both agents analytically and �nd a
closed-form expression for the o�ers they make in every round.

Theorem 1. In the basic ENO model, the o�ers made in round n are given by:
un = 2n(T − T ) + 2T and un = 2n(T − T ).

Proof. Assuming agreement is reached after round n, we have:
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u0 = 1 u0 = 0

u1 = 2T − 0 = 2T u1 = 2T − u1
u1 = 2T − 2T

u2 = 2T − u1 u2 = 2T − u2
u2 = 4T − 2T u2 = 4T − 4T

...
...

un = 2n(T − T ) + 2T un = 2n(T − T ) (3.4)

The �rst time either un ≤ T or un ≥ T , the negotiations end (and no further
o�ers are made). We are interested in the number of rounds it would take to
reach agreement in this model, let Nagree be the number of this round. In
Theorem 2, we see that we can �nd a closed-form expression for this.

Theorem 2. In the basic ENO model, negotiations last for Nagree rounds,

where Nagree =
⌈

T
2(T−T )

⌉
Proof. We want to �nd the lowest possible value for n ∈ N, such that:

2n(T − T ) + 2T ≤ T or 2n(T − T ) ≥ T

We can rewrite this as:

2n(T − T ) ≥ T or 2n(T − T ) ≥ T

Or in a single equation:

2n(T − T ) ≥ min{T , T}

We know that we can only reach agreement when T is less than T , so we
know that the minimum is attained at T . Furthermore, because 2n(T − T ) is
increasing in n, we can �nd Nagree easily:

Nagree =

⌈
T

2(T − T )

⌉
(3.5)

Using Equation 3.5, we can see that the number of rounds before agreement
is reached behaves as we would intuitively expect. As we increase our target,
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we will need more rounds to reach agreement. Also, as the zone of agreement
(T − T ) gets smaller, we will need more rounds to reach agreement. When:⌈

T

2(T − T )

⌉
=

⌈
T

2(T − T )

⌉
The o�er of the maximizing party in round n will be accepted, otherwise

the o�er of the minimizing party will be the one that is accepted. Now that we
know when agreement is reached, we can use this to determine (the utility of)
the point at which agreement is reached, by substituting n in Equation 3.4.

Remark

If both parties use the ENO strategy, the strategies are equivalent to a linear
concession strategy where agents concede a �xed amount of utility in each time
period. However, there is an important di�erence between the ENO strategy
and the linear concession strategy we saw in the literature review. The strategy
we saw in the literature is independent of the o�ers from the other party, so
if the other party deviates from his strategy, we would still make the same
concession. The basic ENO strategy does depend on the behavior of the other
party, reduces to a linear concession strategy if and only if the other party also
uses a basic ENO strategy.

There is a small disadvantage to being the �rst party to make a concession. If
we randomly assign targets (T < 0.5 and T > 0.5) and compute the negotiation
outcome in the way we described above, we can see at what point in the interval
of possible agreements [T, T ] the outcome lies. The mean point of agreement
lies at around 0.45 · (T − T ), so this basic model slightly favors the minimizing
party. This e�ect is explained by the fact that the maximizing party has a
disadvantage, because he has to make the �rst o�er.

Limitations

The basic ENO model is very limited. We exactly mirror the behavior of the
other agent. For example, if the other agent makes a concession of 0.1, we
respond by doing the same. Also, an o�er is accepted by an agent whenever
it is better than his target, even though he might be able to obtain a better
outcome if he would continue to negotiate. To solve these limitations, in the next
section, we present a general ENO model that does not have these problems.
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4 General ENO model

In this section we will provide a more general ENO model. In this model, we
no longer assume negotiations end exactly in the middle of the last two o�ers.
We also provide a method for updating our target during the negotiations, so
that we can achieve a better outcome.

Concession rate

We �rst rewrite the ENO Equation 3.1 to:

un+1 = T + (T − un)

Now, we can de�ne a more general ENO strategy. Given our target T and
the previous o�er by the other party un the ENO strategy selects the next o�er
un+1 according to:

un+1 = T + γ(T − un)

With some parameter γ that represents the concession rate. The interpre-
tation is that if γ equals 1, then we expect the negotiations to end exactly in
the the middle between the last two o�ers and this model is reduced to the
basic model we analysed in the previous section. If γ is large, that means the
negotiator will start far away from his target, and make large concessions in
each negotiation round. When γ is low, our initial o�er will already be close to
our target, but we are not willing to concede much throughout the negotiations.
This kind of strategy can often be seen when negotiating about the price of a
house.

Target adjustment rate

Instead of setting a target once, at the start of the negotiations, we can also
dynamically adjust our target to obtain a better outcome. If the other party
also uses an ENO model to determine his o�ers, he will never make an o�er
equal to his target. This means, that if he makes an o�er that exceeds our
target (we are once again the maximizing party), we should not directly accept
it, because he is still 'willing' to concede even further. In particular, with some
parameter δ, we can set our new target to be:

Tnew = un−1 + δ(un−1 − un−1) (4.1)

Or, for the minimizing party:

Tnew = un − δ(un−1 − un−1) (4.2)

We update our target whenever Equation (4.22) gives us a Tnew higher than
our old target T . In doing this, we again need to be aware that the same two
things might go wrong is we chose δ too large.
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The target adjustment rate δ can be seen as the aggressiveness of the nego-
tiator. If δ is low, this means our target will not get updated much. If δ is large
however, we update our target very aggressively. In Section 5 we will see that
we can expect a better outcome if we employ an aggressive strategy, however
this will also lead to longer negotiations. The basic ENO model did not update
its target, so it used δ = 0.

When both parties use this model, neither of them will ever accept any o�er
by the other party. To remedy this, we will say that the negotiations end as
soon as the di�erence between the last two o�ers is less than some �xed value
ε, which should be set by the user.

Possible pitfalls

We need to be careful in adjusting our target. In particular, we need to be
aware that two things might go wrong:

1. The model might tell us to not make any concession in the next round,
so: un+1 > un

2. There might be no agreements possible with our new target. That is:
Tnew > T

Both of these are the result of choosing δ too large, or, in other words, updating
our target too ambitiously. The �rst condition is an internal consistence condi-
tion. It does not depend on the behavior of the other party. The second one is
an external consistency condition, as it depends on the (to us unknown) target
of the other party. In the next section we will analyse these conditions in detail.

Example To give some intuition of when these problem occur, consider the
following example. We are negotiating about buying an item and we want to
pay at most 30 euro. The other party wants to sell it for at least 25 euro (this is
of course not known to us). Now assume that in the last round of negotiation,
our o�er was to pay 16 euro, and their countero�er was 26 euro and that our δ
is 1

4 . Equation 4.23 will tell us to adjust our target to 26− 1
4 (26− 16) = 23.75

which is less than the target of the seller. Intuitively, this problem occurred
because the other party's o�er was much closer to their own target than our
last o�er was, so he conceded much faster than we expected.

4.1 Formal Description of ENO strategy

The ENO strategy uses the modelling parameters γ, δ and T0, where T0 is the
initial target of the maximizing party. Similarly, the minimizing party has the
parameters γ, δ, T 0. Furthermore, without loss of generality, we will assume
u0 = 1, u0 = 0 and that the maximizing party has to make the �rst concession.
In round n, the ENO strategy for the maximizing party will then be to select
an o�er according to:

un+1 = Tn + (Tn − un) (4.3)
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Where: Tn = max{un−1 + δ(un−1 − un−1), Tn−1} (4.4)

The ENO strategy for the minimizing party is:

un = T + γ(Tn − un) (4.5)

Where: Tn = min{un − δ(un−1 − un−1), Tn−1} (4.6)

Negotiations will end in the �rst round N where either:

uN − uN < ε or uN − uN−1 < ε (4.7)

Here, ε is the stopping criterium, which is de�ned by the user.
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4.2 Analytical Results

In this section we will analyse the general ENO model. In particular, we derive
conditions for when the model is consistent with the properties of real-world
negotiations. We will assume both agents use an ENO strategy. We will derive
results and consistency conditions for the parameters of the maximizing agent.
Because the minimizing agent also uses an ENO strategy, the conditions for the
parameters of the minimizing agent are similar.

De�nition 3. A negotiation model is internally consistent when for all rounds
n the inequality un+1 < un holds.

This condition follows from the requirement that in real-world negotiations,
agents make a concession in every round. In this analysis, we will focus on the
maximizing agent, but we can easily de�ne a similar condition for the minimizing
agent. In the analysis, we will see that the model is internally consistent when:

u1 < 1 and u1 > 0 (4.8)

and when the following inequality holds:

δ <
1

1 + γ
(4.9)

De�nition 4. A negotiation model is externally consistent when for all rounds
n the inequality Tn < Tn holds.

This condition ensures that the Zone of Agreement never becomes empty. In
the ENO model, agents try to adjust their target according to Equation 4.22. In
the analysis, we will see that, in order for the model to be externally consistent,
we require that:

T0 < T 0 (4.10)

and:

δ <
γ

1 + γ
(4.11)

The following theorem illustrates the importance of external consistency.

Theorem 5. If a model is not externally consistent, no agreement will be
reached.

Proof. It is trivial to prove this. An agent will only ever accept an o�er that
lies in the Zone of Agreement. If this zone is empty, because the model is not
externally consistent, no agreement can be reached.

We are now ready to present the main theorem of this section.
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Theorem 6. Whenever the negotiation parameters are such that Equations
4.8,4.9,4.10 and 4.11 hold, the ENO model is internally and externally consis-
tent, and negotiations end in �nite time.

The remainder of this section is dedicated to proving Theorem 6. We will do
this by �rst proving this theorem for a simple case where neither agent updates
their target (i.e.δ = δ = 0) and both agents use the same concession rate (i.e.
γ = γ). We then show that this same results hold for the general cases where
both agents do adjust their targets and do not have the same concession rate.

4.3 ENO model analysis: Same concession rate

We will start by looking at the case where both agents use a static ENO strategy
with the same concession rate (i.e. γ = γ) . That is, they both set a target at
the start of the negotiations and accept any o�er that is better than their target.
This means that δ = δ = 0. Because of this, in order to be externally consistent,
we only require that Equation 4.10 holds. The maximizing agent selects their
next o�er according to equation 4.12 and the minimizing agent selects o�ers
according to equation 4.13.

un = T0 + γ(T − un−1) (4.12)

un = T 0 + γ(T − un) (4.13)

Either agent will accept the o�er of the other agent, whenever this o�er is
better for them than their target. Whenever an o�er is accepted, the negotia-
tions end.

We want to show two things. First, we want to show that the model is
internally consistent, that is, both agents make a concession in every round.
Next, we want to show that the sequences of o�ers (un) and (un) converge to a
value in [T, T ] (for ease of notation, we will use T and T instead of T0 and T 0).
We can now explicitly write down the o�ers of both agents for every negotiation
round n and derive a closed-form expression for the o�ers made in round n:

Lemma 7. When γ = γ and δ = δ = 0, the o�ers made in all rounds n ,where

agreement is not yet reached, are given by: un = T
∑2n
i=1 γ

i−1 − T
∑2(n−1)
i=1 γi

and un = T
∑2n
i=1 γ

i−1 − T
∑2n
i γi.

Proof. We can prove this by simply applying Equations 4.12 and 4.13 to the
o�ers made in every round.
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u0 = 1 u0 = 0

u1 = (1 + γ)T u1 = (1 + γ)T − γu1
u1 = (1 + γ)T − (γ + γ2)T

u2 = (1 + γ)T − γu1 u2 = (1 + γ)T − γu2
u2 = (1 + γ)T − γ

(
(1 + γ)T − (γ + γ2)T

)
u2 = (1 + γ)T − γ

(
(1 + γ + γ2 + γ3)T − (γ + γ2)T

)
u2 = (1 + γ + γ2 + γ3)T − (γ + γ2)T u2 = (1 + γ + γ2 + γ3)T − (γ + γ2 + γ3 + γ4)T

...
...

un = T

2n∑
i=1

γi−1 − T
2(n−1)∑
i=1

γi un = T

2n∑
i=1

γi−1 − T
2n∑
i

γi

Which proves the Lemma.

Before we can move on to the analysis of the model, we will de�ne the
concessions cn, cn of the maximizing resp. minimizing agent in round n as:

cn = un − un−1 (4.14)

cn = un−1 − un

Theorem 8. Suppose Equation 4.17 holds then, when both agents use an ENO
strategy with parameters γ = γ and δ = δ = 0, the model is internally consistent.

Proof. We will prove this by showing that in each round, both agents make a
concession. By using the de�nition of the concession in each period, we can
easily show the following:

cn = un − un−1

= T + γ(T − un−1)− T + γ(T − un−2)

= γ(un−2 − un−1)

= γ(cn−1) (4.15)

Similarly, we can show that:

cn = γ(cn) (4.16)

By our assumption that u1 < 1, we have that c1 = u0 − u1 > 0. Because
γ > 0, we know that c1 > 0, but this means that c2 will also be larger than
zero. This will continue for every n.
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An interesting result of this theorem is that the only period in which the
ENO strategy could fail to suggest a concession is in the �rst period. From
Lemma 7, we can directly see that this condition for internal consistency is
equivalent to:

(1 + γ)T < 1 and (1 + γ)T − (γ + γ2)T > 0 (4.17)

Once we are past the �rst period, the strategy will tell us to make a conces-
sion in every period after that. The reason the model can fail in the �rst period
(even when T < T ) is that the targets could be too close to the initial o�ers u0
or u0. If this is the case, the ENO strategy will suggest a concession of negative
size.

By Theorem 8 we know that the sequence of o�ers for the maximizing agent
is decreasing and the sequence for the minimizing agent is increasing. This is
not quite enough to guarantee an outcome of the negotiations, both sequences
could converge to a di�erent value. It could be the case that the sequence
of the maximizing player converges to some value larger than T and that the
minimizing sequence converges to a value less than T . Fortunately, in Theorem
9 we prove this will never happen.

Theorem 9. Suppose parameters are such that Equations 4.10 and 4.17 hold,
then when both agents use an ENO strategy with parameters γ = γ and δ = δ =
0, negotiations will end in �nite time, for any value of γ. Moreover, the model
is internally and externally consistent.

Proof. We have already seen that Equations 4.10 and 4.17 are su�cient condi-
tions for internal and external consistency. To prove that negotiations also end
in �nite time, we will split this proof three cases for di�erent values of γ. For
γ = 1, we have already shown this is true in Section 3.4. First, we will look at
γ < 1. To prove negotiations will end, it su�ces to show that for some �nite
value of n, un < T . By applying Lemma 7, we know that:

un = T

2n∑
i=1

γi−1 − T
2(n−1)∑
i=1

γi

= (T − T )

2n∑
i=1

(
γi−1

)
+ (1 + γ2n−1)T

So we require that for some n:

(T − T )

2n∑
i=1

(
γi−1

)
+ (1 + γ2n−1)T < T

Or, by rearranging the terms:

(T − T )

2n∑
i=1

(
γi−1

)
> (γ2n−1)T (4.18)
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Because T − T > 0 and γ < 1, as n increases, the left-hand side of this
equation will converge to some positive value. The right-hand side will converge
to 0. So clearly for some �nite n, Equation 4.18 will hold and negotiations end.

Next, we will look at γ > 1. We again use the concessions cn and cn that
we de�ned in 4.14. To show that negotiations must end, it su�ces to show
that the sequence (c1, c1, . . . cn, cn) is strictly increasing. If both agents make
increasingly large concessions, at some point they will �reach� each other. For
this, we will again use Equations 4.13 and 4.12:

cn = γ(cn−1)

cn = γ(cn)

Because γ > 1, it follows that cn > cn−1 and cn > cn, so the sequence
(c1, c1, . . . cn, cn) is strictly increasing and we are done.

4.4 ENO model analysis: Di�erent concession rates

We will now look at the case where both agents have a di�erent values of γ, so
now γ 6= γ. By applying the de�nition of the ENO strategy, we can easily see
that Equation 4.8 is now equivalent to:

(1 + γ)T < 1 and (1 + γ)T − γ(1 + γ)T > 0 (4.19)

We will again show that the ENO strategy will make a concession in every round
and that negotiations still end in a �nite amount of time. In this more general
case, it is trivial to see that Theorem 8 still holds. The only di�erence is that
instead of cn = γ(cn), we now have cn = γ(cn). Because γ > 0, the same
arguments hold.

Theorem 10. Suppose parameters are such that Equations 4.19 and 4.10 hold,
then when agents use an ENO strategy with parameters γ and γ and δ = δ = 0,
negotiations will end in �nite time, for any values of γ and γ. Moreover, the
model is internally and externally consistent.

Proof. The idea is to show that if both agents have a di�erent γ negotiations
will end faster than if both agents would use γ∗, where γ∗ = min{γ, γ}. To do
this, we again look at cn and cn.

cn = γ(cn−1)

≥ γ∗(cn−1) (4.20)

cn = γ(cn)

≥ γ∗(cn) (4.21)

Combining the inequalities in 4.20 and 4.21, we see that when both agents
have a di�erent value for γ, negotiations would end faster than if both agents
would use γ∗and that in every period, both agents make a concession that is
at least as large as when they would both use γ∗. Because of Theorem 9, this
directly implies the theorem holds.
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Again, as we have seen in the proof of theorem 9, we require that u1 < 1
and u1 > 0. If this requirement does not hold, agents will make concessions of
negative size, so instead of converging to an agreement, they diverge and will
never reach any agreement.

4.5 General ENO model analysis

Now we are ready to move to the most general case, where agents do update
their Targets (i.e. δ, δ ≥ 0). Recall that in the previous section, we have de�ned
the way in which an ENO agent updates his target:

Tnew = un−1 + δ(un−1 − un−1) (4.22)

Or, for the minimizing agent:

Tnew = un − δ(un−1 − un−1) (4.23)

We �rst look at the consistency conditions in this general case and then
prove the �nite time convergence property.

External consistency

Lemma 11. The general ENO model is externally consistent, whenever the
inequality δ < γ

1+γ holds.

Proof. We have already shown the model is consistent whenever targets are not
updated, so we only need to look at the rounds in which a target is updated.
Let n be any round in which the maximizing agent updates his target. For ease
of notation, we will use T instead of Tn. We know that:

Tn = un−1 + δ(un−1 − un−1)

= T + γ(T − un) + δ
(
un − T − γ(T − un)

)
= (1 + γ − δ − δγ)T − (γ − δ − δγ)un (4.24)

By our assumption, the following inequality holds:

δ <
γ

1 + γ

We can rewrite this to:

0 < (γ − δ − δγ)

We know the other party did not accept our last o�er, so un > Tn. This
means we can multiply both sides of this equation by (Tn − un) to obtain:
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0 > (γ − δ − δγ)(Tn − un)

We now add T to both sides:

T > (1 + γ − δ − δγ)T − (γ − δ − δγ)un

Finally, we note that the right hand side of this inequality is equal to Equa-
tion 4.24, which means that T > Tn, proving the theorem.

Internal consistency

Lemma 12. The general ENO model is internally consistent, whenever the
inequality δ < 1

1+γ holds.

Proof. We use the de�nition of the ENO strategy to show this. We only need
to show that whenever we update our target, the internal consistency condition
holds, because in the previous part, we have shown that it holds whenever we
do not update our target.

We can rewrite the o�er we make in the next period as:

un+1 = Tnew + γ(Tnew − un)

= (1 + γ)un + (1 + γ)δ(un − un)− γun
= un + (1 + γ)δ(un − un) (4.25)

By assumption, we know that the following inequality holds:

δ <
1

1 + γ

Or, equivalently:
(1− δ − δγ) > 0

Because we know the other agent did not accept our last o�er, we have that
un > un, so this condition reduces so we can multiply by (un − un):

(1− δ − δγ) (un − un) > 0

This is the same as:

(1− δ − δγ)un > (1− δ − δγ)un

Which we can rearrange to obtain:

un > un + (1 + γ)δ(un − un)

Here we note that the right-hand side of the equation equals Equation 4.25.
Which proves that un > un+1 which is the de�nition of internal consistency.
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The �nal lemma we need to prove Theorem 6:

Lemma 13. For any values of the parameters, such that the ENO model is
externally consistent, negotiations end in �nite time.

Proof. We prove this by comparing this general model to the case where δ = 0,
which we already analysed in Theorem 10. Let T ? = supn{Tn} and T ? =
infn{Tn}. Also, let u?n and u?n be the o�ers made when both parties use a
strategy with a �xed Target (δ = 0) equal to T ? and T ?. By de�nition, we
have that for all n, Tn ≤ T ? and Tn ≥ T ?. If we insert these inequalities into
Equations 4.12 and 4.13, we can easily see that:

Tn + γ(Tn − un−1) ≤ T ? + γ(T ? − un−1)

This means that for all n, un ≤ u?n.Similarly, we can show that un ≥ u?n.
This means that, in the general model where δ and δ do not necessarily equal 0,
negotiations end more quickly than when both agents would use strategy with
a �xed targets equal to T ? and T ?. By applying Theorem 10, we now know
negotiations end in �nite time.

If we combine the last three Lemmas, we have proven Theorem 6.

Conclusion

In this section we have de�ned consistency conditions. We have shown for which
values of the parameters the ENO model is consistent. In the next section, we
will perform further numerical analysis on the ENO model.
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5 Numerical Analysis

In this section, we will analyze the behavior of the ENO strategy numerically
by using a MATLAB simulation.

5.1 Motivation for numerical Analysis

The negotiation outcome is fully determined by the value of all of the parameters
γ, δ, T, γ, δ, T . Unfortunately, we can not �nd a nice closed form formula for the
negotiation outcome, because in every round, either party might adjust it's
target according to 4.22. Let Tn and Tn be the current target at round n. Then
we have that:

Tn = max {Tn−1, un−1 + δ(un−1 − un−1)} (5.1)

The o�er at round n is:

un = Tn + γ(Tn − un−1)

Plugging in the de�nition of Tn from equation 5.1, we obtain:

un = max {Tn−1, un−1 + δ(un−1 − un−1)}+γ(max {Tn−1, un−1 + δ(un−1 − un−1)}−un−1)
(5.2)

We go one step further, and look at un.

un = Tn + γ(Tn − un)

Using the de�nition of Tn and equation 5.2, we get:

un = min
{
Tn−1, un − δ(un − un−1)

}
+ γ[min

{
Tn−1, un − δ(un − un−1)

}
−max {Tn−1, un−1 + δ(un−1 − un−1)}
+γ(max {Tn−1, un−1 + δ(un−1 − un−1)} − un−1)]

This equation expresses un in terms of the o�ers made in round n− 1:un−1

and un−1. We could continue, and express un in terms of the o�ers of any
previous round, but it is clear that this quickly becomes a mess of nested min
and max operators. So while it is possible to �nd a closed form equation for
the o�ers in any round, this equation will not be very useful. The best way
to evaluate the o�ers in any round n, is by doing it iteratively, that is, we �rst
compute u1, then u1, etcetera. We implemented the ENO strategy in MATLAB.
In the next section we will look at the numerical results of this.

Performance Measures

To measure the performance of a negotiation strategy, we will de�ne two per-
formance measures. Recall that T is the target of the maximizing party and T
the target of the minimizing party. Let N be the number of the round where
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agreement is reached and uN the utility of the agreement. The performance
measures we are interested in are:

1. Number of the round where agreement is reached: N

2. Point in the Zone of Agreement at which agreement is reached:R = uN−T
T−T

By de�nition, no agent will accept an o�er that is worse than their target, so if
agreement is reached, it will always lie in the Zone of Agreement [T, T ]. This
means that R will lie in the interval [0, 1]. When R equals one, uN = T . This
is the best possible outcome for the maximizing agent. When R equals zero,
uN = T . This is the best possible outcome for the minimizing agent.

5.2 Performance

We can now look at the performance of our ENO strategy.

Performance against a Random Strategy

We de�ne the following strategy for the minimizing party: Accept any o�er for
which un ≤ T , otherwise o�er:

un = un−1 + x(un−1 − T )

Where x is a random variable distributed uniformly on [0, 1/2]. We limit
this to half the distance, because we want to guarantee that the dynamic ENO
strategy is able to adjust its target without problems, and because we want to
prevent the random agent from being able to o�er its target in the �rst round.
In Table 1 and Table 2, the results of an ENO strategy with γ = 1, δ = 1/4
versus an opponent with a random strategy are displayed. For other values of
the parameters, we obtain similar results.

Targets Mean number of rounds: N Mean outcome R

T = 0.48,T = 0.52 7.8 0.69

T = 0.48,T = 0.57 5.6 0.69

Table 1: Dynamic ENO (γ = 1, δ = 1/4) versus Random, we are the maximizing
party. Results are signi�cant at p < 0.05

Targets Mean number of rounds: N Mean outcome R

T = 0.48,T = 0.52 6.8 0.31

T = 0.48,T = 0.57 5.2 0.30

Table 2: Dynamic ENO (γ = 1, δ = 1/4) versus Random. 10000 runs, we are
the minimizing party. Results are signi�cant at p < 0.05
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We see that the ENO agent performs signi�cantly better than the random
agent. In Table 1, the ENO agent is the maximizer, so it wants a value of
R as close to 1 as possible. In Table 2, the ENO agent is the minimizer and
wants a value of R close to 0. Recall that in our model, the maximizing agent
is always the �rst one to make a concession. When we compare the outcome
values in both tables, we see that it does not matter whether the ENO agent
is the minimizing or maximizing agent. It does in�uence the number of rounds
the negotiations last.

5.2.1 Model Analysis

We will now look at the outcome of negotiations when both agents use an ENO
strategy. First, we will �x the targets, and analyze the performance when the
agents have di�erent values for γ and δ. Then we will consider the case where
both parties have the same parameters γ and δ, but di�erent targets. The goal
of these analyses is to provide insight on how the various parameters e�ect the
outcome of the negotiations. Because there are a lot of di�erent parameters, we
will only vary them one by one. In all of the plots we present, we have used a
step size of 0.01.

Symmetrical case: Variable γ We �rst look at the symmetrical case. Here
both parties will use the same strategy.

In the top graph of Figure 5.1, we can see the e�ect of the value of γ on the
outcome of the negotiations. On average, the negotiations end in the middle
of the Zone of Agreement, however we can see that the outcome for di�erent
values of γ �uctuates around R = 0.5. The main thing to conclude from these
�uctuations is that, even if both agents use the same strategy, negotiations do
not end always at R = 0.5.

Sawtooth This �uctuation results in a sort of sawtooth function. We can
explain this by looking at the bottom graph of Figure 5.1. We can see that for
values of γ between 0.5 and 1, the outcome is increasing. In this same interval,
the minimizing agent is the �rst to adjust its target. Because both agents have
the same parameters, after the �rst adjustment of the target by either party,
from there on, both agents will adjust their target in every round by a �xed
percentage of the distance between the last two o�ers. However, the �rst time
the target is adjusted, the size of this adjustment could be less than this �xed
fraction. In particular, the minimizing party will adjust its target in the �rst
round, whenever the �rst o�er by the maximizing party is less than 0.8. This
corresponds to a γ of less than 1. As γ gets closer to 1, the minimizing party is
able to adjust its target less, so he �loses out� more in his �rst adjustment.
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Figure 5.1: E�ect of γ = γ on the negotiation outcome.T = 0.4,T = 0.6,δ = 1/4.
The top �gure shows the e�ect of γ on the negotiation outcome, the bottom
�gure shows which agent is the �rst to adjust his target. (e.g. for γ < 1, this is
the minimizing agent)

In Figure 5.2 we can see the e�ect of γ on the duration of the negotiations.
We note that as γ gets closer to 1.5, the duration of the negotiations increases
quickly. This is because we are getting close to the theoretical bound for internal
consistency (see previous section) δ < 1/γ. We can not increase γ further than
1.5 , because we showed in the previous section that the inequality (1+γ)T < 1
must hold.
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Figure 5.2: E�ect of γ = γ on the duration of the negotiations.T = 0.4,T =
0.6,δ = 1/4

Symmetrical case: Variable δ In Figure 5.3 we see the e�ect of δ on the
negotiation outcome. We see a similar pattern to the case of a variable γ. The
outcome �uctuates around the value of 0.5. In contrast to the previous case, we
now see that the negotiation outcome is increasing whenever the maximizing
party makes the �rst o�er. The reason for this is that an increase in δ corre-
sponds to a larger �rst concession rather than a smaller concession (which was
the case for an increase in γ). We see that as δ gets larger, the �uctuations of
the outcome become smaller.
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Figure 5.3: E�ect of δ=δ on the negotiation outcome.T = 0.48,T = 0.52,γ = 1.
The top �gure shows the e�ect of δ on the negotiation outcome, the bottom
�gure shows which agent is the �rst to adjust his target.

In Figure 5.4 we see that the e�ect of δ on the number of rounds is similar
to that of γ. As δ gets closer to its theoretical bound (see previous section), the
number of rounds increases quickly.

Figure 5.4: E�ect of δ=δ on the duration of the negotiation. T = 0.4,T =
0.6,γ = 1
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Variable Zone of Agreement The next set of parameters we can look at
is the targets for both agents. First we will look at what happens when we
increase the distance between the targets, then we will look at what happens if
we move the zone of agreement closer to one of the initial o�ers. For both cases,
the duration of the negotiation behaves as expected. If the zone of agreement
is larger, negotiations will end sooner. On the x-axis in Figure 5.5 we have our
Target. The Target of the other party is always set to 1− T , so the further we
move to the right on this axis, the smaller the zone of agreement is. We can see
that when both parties use the same γ and δ, there are very large �uctuations
of the negotiation outcome. Further inspection tells us that as δ gets larger,
these �uctuations become less extreme. Also note that when δ = 0, the peaks
lie at R = 1 and R = 0. So by allowing the agents to adjust their targets, the
outcome of the negotiations will be less dependent on the size and location of
their initial targets.

Figure 5.5: E�ect of the size of the zone of agreement on the outcome. γ =
1,δ = 1/4,T = 1− T

We also see these large �uctuations if we look at Figure 5.6. Here, the target
of the other party equals T +0.04. This means the size of the zone of agreement
is constant, but we vary its location. Here, we see that the negotiation outcome
depends greatly on the location of the Zone of Agreement.
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Figure 5.6: E�ect of the location of the ZoA on the outcome. γ = 1,δ = 1/4,T =
T + 0.04

Asymmetrical case: γ We now look at the case where agents have a di�erent
value of γ. We will keep all other parameters �xed. In Figure 5.7 we see the
same peaks that we saw in the symmetrical case (Figure 5.1), but now there is
also an upward trend. If γ is larger than γ, we do better than the other agent,
if it is less, we will do worse.

Figure 5.7: Dynamic ENO versus Dynamic ENO, T = 0.4,T = 0.52,δ = δ =
1/4,γ = 1

When we look at the duration of the negotiations in Figure 5.8, we see
roughly the same pattern as for the symmetrical case.
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Figure 5.8: E�ect of the value of γ on the duration of the negotiation. T =
0.4,T = 0.52,δ = δ = 1/4,γ = 1

Asymmetrical case: δ Finally, we consider the case where both agents have
the same γ, but a di�erent δ. In Figure 5.9, we see that this graph is much
smoother than the one of γ in Figure 5.7. We also see that if δ is large enough,
we are able to obtain the best possible outcome, whereas it is impossible to pick
a γ to get the best possible outcome.

Figure 5.9: E�ect of δ on the negotiation outcome. T = 0.4,T = 0.52,δ =
1/4,γ = γ = 1

In Figure 5.9, we saw that this best possible outcome is obtained for δ larger
than 0.325. If we look at Figure 5.10, we see that for this value of δ, negotiations
will still end in only 7 rounds.

40



Figure 5.10: E�ect of δ on the duration of the negotiation. T = 0.4,T = 0.52,δ =
1/4,γ = γ = 1

Conclusion

We have seen that increasing γ or δ will yield a better negotiation outcome at
the cost of negotiations lasting longer. A decision maker that uses this ENO
model will have to make this trade-o�.
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6 Optimization and Estimation

In this section we will describe a method to estimate the parameters of the other
party and optimize our parameters, given this estimate.

6.1 Optimization

If we know the value of the parameters of the other party γ, δ, T 0, we want
to be able to �nd the optimal value of our parameters γ, δ, such that we get
the best possible outcome in at most N more rounds. It is important that we
include the condition that we reach agreement in at most Nmax rounds, because
otherwise the optimal parameter setting would always (trivially) be to set the
parameters to their theoretical bounds (See section 4.2 for these bounds). We
can write this as a mathematical programming problem, where γ, δ, T 0, T0 are
known parameters:

maxuNmax

s.t.

un = Tn + γ(Tn − un−1) ∀n ≥ 1

un = Tn + γ(Tn − un) ∀n ≥ 1

Tn = max {Tn−1, un−1 + δ(un−1 − un−1)} ∀n ≥ 1

Tn = min
{
Tn−1, un − δ(un − un−1)

}
∀n ≥ 1

uN − uN < ε

un, un, Tn, Tn ∈ (0, 1) ∀n ≥ 1

γ, δ ∈ R+

u0 = 1

u1 = 0

We can use standard techniques from linear programming to replace the
max and min operators in the restrictions by using additional binary variables
and big-M constraints. We are still left with a quadratic term the constraints
involving γ and δ. which means that we have a mixed integer quadratically
constrained program (MIQCP). We can see this when we look at the constraint
in equation 6.1:

un = Tn + γ(Tn − un−1) ∀n ≥ 1 (6.1)

We multiply the variables γ with the variables Tn and un−1, so this is a
quadratic constraint. Because this is an equality constraint, this constraint
does not represent a convex region. This makes the problem more di�cult
and makes it impossible to it solve using mixed integer programming solver.
However, because all variables are bounded, we will be able to use the non-
linear solver BARON [24] to solve this problem.
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E�ect of T 0 When we look at the in�uence of the inital values of the op-
timization, the �rst thing we note is that T 0 only a�ects the outcome if it is
actually used to determine u1. It is only used whenever the inequality holds:

T 0 < u1 − δ(u1 − u0) (6.2)

If this inequality does not hold, T 0 has no e�ect on both the outcome and
the number of rounds of the negotiation. Now let us assume inequality 6.2 holds.
Then we can look at the e�ect of a change in T 0.

E�ect of Nmax We see that for low values of Nmax, there is no parameter
setting that obtains a good outcome. Because we cannot negotiate for more
than Nmax rounds, the only way to reach agreement is set our parameters to
0. This means that we will instantly make an o�er that equals our target and
then make the same o�er in all the remaining rounds. When N is large, we
can obtain the 'optimal' outcome of T 0. Increasing Nmax beyond this point will
not yield a better outcome, because the other party will never accept any o�er
worse than it's target.

6.2 Estimation of Parameters

The ENO strategy we have looked at so far only uses the last two o�ers (and our
target) in determining the next action. In this section we will estimate the pa-
rameters of the other party, based on the whole history (u0, u0, . . . , un−1, un−1)
of the negotiations. We will then combine this estimate with the QCP opti-
mization we described in the previous section to improve our parameters γ and
δ.

6.2.1 Opponent model

For estimating the parameters of the other party, we will assume he uses an
ENO strategy with unknown parameters γ, δ, T 0. If he follows the ENO strategy
exactly, we can easily deduce his parameters from his o�ers. In practice, people
will most likely not follow the ENO strategy exactly. This can be due to various
reasons, for example:

• Agents might round their o�er up or down

• Agents might use heuristic guidelines (that only somewhat resembles an
ENO strategy) instead of this strategy

To estimate the parameters of the other party, we will assume he does not change
his parameters during the course of the negotiations. Let n be the current round.
To be able to use the QCP optimization procedure, we need to determine γ, δ
and Tn. We observe the following behavior of the model in all simulations:

Conjecture 14. Let N be the �rst round in which TN > TN−1, then for every
n ≥ N , we have Tn+1 > Tn.

43



While we have been unable to �nd an analytical proof for this conjecture, it
holds for every negotiation we simulated and analysed throughout this research.

According to this conjecture, we can split the negotiation history in two
parts. Before round N , the other party never updates his target, after round
N , he updates his target in every round. Because we have no information other
than the negotiation history, we will also need to determine the value of N from
the negotiation history.

Before updating the target In the rounds where the other party does not
update his target, the ENO model says he should o�er:

un = Tn + γ(Tn − un)

We can separate the parameters we want to estimate from the input:

un︸︷︷︸
y

= (1 + γ)T︸ ︷︷ ︸
α1

− γun︸︷︷︸
α2x

(6.3)

We can use equation 6.3 to apply Linear Least Squares regression [20]. This
means we can get a the estimate for γest according to:

γest =
Cov(x, y)

V ar(x)

Furthermore, we can get a (1− α) con�dence interval for γest as:

[γest − sγestt∗n−2, γ
est + sγestt

∗
n−2]

Where sγest is the standard error of the estimated value of γ, and t∗n−2 is
the (1 − α/2)'th quantile of the Student's t-distribution with n − 2 degrees of
freedom. Here we note that we need at least 3 data points before we are able
to provide this con�dence interval.

After updating the target In the rounds where he does update his target,
he will make o�ers according to:

un = un − δ(un − un−1)− γδ(un − un−1)

This is equivalent to:

un = (1− δ − δγ)un︸ ︷︷ ︸
ηun

+ (δ + δγ)un−1︸ ︷︷ ︸
θun−1

Unfortunately, we can see in this last equation that η = 1 − θ. This means
that we cannot solve for both δ and γ from the estimates of η and θ. So we
have:

un = θun + (1− θ)un−1 (6.4)
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Recall from Section 4.2 the de�nition of the concession (cn and cn) in round
n:

cn = un − un−1

cn = un−1 − un

Then we can rewrite equation 6.4 as:

cn︸︷︷︸
yn

= θ (un − un−1)︸ ︷︷ ︸
xn

(6.5)

We can use equation 6.5 to apply Linear Least Squares regression with a
zero value for the intercept term. [20]:

θ
est

=

∑n
i=1(un − un−1)cn∑n
i=1(un − un−1)2

And the (1− α) con�dence interval is:

[θ
est − sγestt∗n−1, θ

est
+ sγestt

∗
n−1]

Where sγest is the standard error of the estimated value of θ, and t∗n−1 is the
(1−α/2)'th quantile of the Student's t-distribution with n−1 degrees of freedom.
Here we note that we need at least 2 data points before we are able to provide
this con�dence interval.

6.2.2 Estimation Procedure

If we would know the �rst round in which the other party updates his target
(N), we could split the negotiation history into two parts. For all the o�ers
in rounds before N , we �nd a Linear Least Squares (LLS) �t of equation 6.3.
For all o�ers in rounds after N , we �nd a Linear Least Squares (LLS) �t for
equation 6.5. We then �nd γ from α2 and δ from θ. The last parameter we
need to �nd to be able to run the optimization is Tn and we can �nd its value
by plugging in the estimated value of δ in Tn = un − δ(un − un−1).

Of course, we do not know the round in which the other party �rst updates
his target, but there are only n (recall that n is the current round) possible
values for it. So instead of running this estimation procedure once, we run it
n times, for n di�erent values of N and look at which model is the best �t for
the negotiation history. The best �t is the set of parameters having the lowest
squared di�erence between the predicted o�ers (by using an ENO strategy with
these parameters) and the actual o�ers. In pseudo code, this looks like algorithm
1.
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Algorithm 1 Parameter Estimation

Input : Negot ia t ion h i s t o r y
f o r i =1:LastRound do

(a1, a2)=LLS( a l l rounds be f o r e i )
(θ)=LLS( a l l rounds a f t e r i )

Compute γi and δi from (a2 , θ )

Ri=Squared e r r o r with (γi, δi )
endfor
N=argmini{Ri}
Output : N, γN , δN
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7 Simulations

In this section we present the results of numerical simulations in MATLAB. The
goal of these simulations is to evaluate the performance of the estimation and
optimization method.

7.1 Optimization and estimation

In algorithm 2 we describe the procedure to for optimizing our parameters. In
every round, we obtain a new estimate for the parameters of the other party. We
then use those parameters as input for the optimization to �nd better parameters
for ourselves.

Algorithm 2 Optimization and Estimation

input : History , Nmax , n
i f 2<n<Nmax

(γ ,δ ,T )=EstimateParameters ( His tory )

(γ ,δ)=OptimizeParameters (γ ,δ ,T ,Nmax−n)
end
un=MakeOffer (γ ,δ ,T,un−1 )
output :un ,γ ,δ

We again note that before we can get an estimate for all relevant parameters,
we need information from at least three previous rounds. The algorithms for
the functions EstimateParameters and OptimizeParameters are described in the
previous section.

To test the e�ect of estimating and optimizing the parameters, we use simu-
lations. In these simulations, we will use an ENO strategy with algorithm 2 to
update our parameters in every round. The other party uses an ENO strategy
with �xed parameters. We will also provide results for the case where the other
party uses an ENO strategy with �xed parameters, but with added random
noise.

7.2 Implementation

We �rst go over some of the details of the implementation.

Numerical Optimization There is no non-linear solver available in MAT-
LAB, so instead we do the optimization by a numerical grid search. This means
that we simply try every possible value of γ and δ with a stepsize of 0.01 and see
which gives the best outcome. This optimization takes 2-5 seconds in the MAT-
LAB implementation, and is the biggest bottleneck in terms of computational
power needed for the simulations.
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Parameter Selection procedure For every simulation run, we need to select
parameters for both parties. We do this by randomly drawing them from the
following uniform distributions:

• γ, γ ∼ U(0.5 , 2)

• δ, δ ∼ U(0 , 0.4)

• T ∼ U(0.25 , 0.49]

• T ∼ U(T + 0.01 , T + 0.3)

• Nmax ∼ Udiscrete(5 , 10)

When we have selected all parameters, we �rst run a simulation of the negotia-
tions where neither party updates his target. If these negotiations are too short
(less than 3 rounds) or too long (more than 15 rounds) we delete them, because
real-world negotiations are expected to last between 5 to 10 rounds, and we are
interested in the performance of our strategy in real-world settings.

Estimation and Optimization procedure

We now present the details of the implementation of the estimation and opti-
mization procedure.

Insu�cient information on δ If the other party has not updated his target
when we estimate his parameters, we cannot get any information on the value
of this δ. Because we do need this parameter for the optimization procedure,
we need to make an assumption on it. In the simulations, we will determine
which of the following two assumptions is best:

• δ = 0

• δ = δ

Insu�cient information on γ We have seen that, if the other updates his
target in the �rst round, we cannot obtain an estimate for γ. When we do not
have enough information, we will assume γ = 1.

Nmax is too low In the optimization, there might be no possible value for
our parameters that will ensure agreement before Nmax. If this is the case, we
will run the optimization again for Nmax + 1, and if needed again for Nmax + 2,
up to Nmax + 5. This will make sure that the optimization will always give an
output such that agreement is reached.
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Not updating target in every round The estimation procedure we de-
scribed in Section 6 is based on the fact that, once the other party updates his
target, he will keep updating it in every next round. However, this only hap-
pens when both parties use �xed parameters. Because we can now change our
parameters during the course of the negotiation, this theorem no longer holds.
If there is not much variance in the parameters of the other party, we likely have
a very good estimate of their parameters once they update their target for the
�rst time. So in every round, instead of only making a new estimate of their
parameters, we also compare this new estimate to our previous best estimate.
In pseudo code, our estimation algorithm is displayed in Algorithm 3. If we
compare this to the estimation algorithm we presented in Section 6, we see that
the only di�ences are the second and third line.

Algorithm 3 Implementation of Estimation Procedure

Input : Negot ia t ion h i s to ry , prev ious Estimate

(γ0, δ0)=(γoldi , δ
old

i )

R0=Squared Error with (γ0, δ0 )
f o r i =1:LastRound do

(a1, a2)=LLS( a l l rounds be f o r e i )
(θ)=LLS( a l l rounds a f t e r i )

Compute γi and δi from (a2 , θ )

Ri=Squared e r r o r with (γi, δi )
endfor
N=argmini{Ri}
Output : N, γN , δN

7.3 Results

For all simulations, we used a stopping criterion of 0.001. This means that when-
ever un− un < 0.001, the negotiations end in agreement. All of the simulations
contain 5000 runs. 5000 runs take roughly 24 hours to complete. All of the
results are presented along with one standard deviation.

To compare the outcomes between di�erent negotiations, we again use the
following performance measure:

R =
uN − T
T − T

Recall that this means that R will lie in the interval [0, 1]. When R equals
one, uN = T . This is the best possible outcome for the maximizing agent. When
R equals zero, uN = T . This is the best possible outcome for the minimizing
agent.
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Deterministic opponent

In table 7.3 we can see the main results of the simulation against a deterministic
opponent. We aborted a run whenever the negotiations took longer than 50
rounds (to save time). Any negotiation that lasts over 50 rounds is called a
failure. There are two main reasons negotiations could fail:

1. Our target is updated too aggressively (Tn > Tn).

2. We do not get information on δ, causing us to underestimate the aggres-
siveness of the opponent.

The �rst failure will only happen when we do not have enough information on
γ. In the cases where we do not get an estimate for γ, we cannot guarantee to
satisfy the external consistency condition we derived in section 4.2. The second
failure is due to not having a good estimate on δ. This can happen when he
�rst updates his target after Nmax, causing us to not take the exact value of
δ into account when optimizing our parameters. In this case, if we were to
let the negotiations run for more than 50 rounds, eventually agreement will be
reached, but it might take a very long time. Inspection of the simulation data
tells us that the majority of the failures are of type 2. A failure is counted as a
negotiation with R = 0.

Outcome: R # Rounds # failures

No Optimization 0.500±0.005 6.5±0.2 0

Optimization with initial δ = 0 0.561±0.006 7.9±0.5 367

Optimization with initial δ = δ 0.580±0.005 7.9±0.5 226

Table 3: E�ect of the optimization. Failures are counted as R = 0. Results are
95% con�dence intervals of the mean values over 5000 runs.

For the negotiations in �rst row in Table 7.3 we disabled the estimation/op-
timization procedure. We do not change our parameters during the course of
these negotiations. We simply randomly chose them once and then keep them
�xed. We use the 'No Optimization' scenario as a base case to evaluate the
performance of the estimation/optimization procedure.

We see than on average, when no optimization is used, the result is at R =
0.5. This means that there is no advantage in being the �rst (or second) to make
a concession. We see that, if we assume δ = δ whenever there is insu�cient
historical information to provide a good estimate leads to a better outcome and
less failures. We will continue to use the initial assumption of δ = δ for the
remainder of the simulations. Another observation is that when we use the
optimization procedure, negotiations will last longer than without it.

A more detailed look at the data tells us that the optimization procedure
improves the negotiation outcome in 70% of the simulated negotiations.
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Analysis of simulation outcome

In the next analysis, we will look at the e�ect of the various parameters on
the improvement of the outcome. This is the improvement that is gained by
using the estimation and optimization procedure described in Algorithm 2, over
having �xed parameters during the whole negotiations.

7.3.1 E�ect of Nmax

In �gure 7.1 we can see the e�ect of Nmax on the improvement of the outcome.

Figure 7.1: E�ect of the maximum number of allowed rounds on the outcome.

We see that if we allow the negotiations to last for more rounds, we can
expect a better outcome. Figure 7.1 suggests a linear relationship between the
outcome and Nmax in these simulations.

7.3.2 E�ect of the size of the Zone of Agreement

Recall that the zone of agreement (ZoA) is de�ned as [T, T ]. An agreement will
always lie within this interval. In �gure 7.2.
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Figure 7.2: E�ect of the zone of agreement on the outcome. Step-size bars: 0.01

We clearly see that as the Zone of Agreement gets larger, we get less im-
provement from our optimization. If both parties are already close to agreement,
we cannot to gain much from optimizing. This is what happens when the ZoA
is large: both parties will make large concessions early in the negotiations and
will already be close to agreement when we start optimizing. Because we start
running the optimization at the third round, there will be limited room for
improvement.

7.3.3 E�ect of δ and δ

In the next two �gures, we will look at the e�ect of δ and δ on the average
improvement.

Figure 7.3: E�ect of δ and δ on the improvement.

We see that we can obtain the best improvement if either δ, or δ is small.
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If either is large, there is much less to be gained by running the optimization.
When δ is large, we will often not be able to improve much, because we require
that the negotiations end before Nmax. Also, for large δ, the other party will
have often updated his target before we are able to get a good estimate of his
parameters and optimize our parameters. Because of this, a large part of the
Zone of Agreement will not be reachable anymore, so we cannot expect a large
improvement.

7.3.4 E�ect of γ and γ

There is no e�ect of either γ or γ on the mean improvement. In �gure 7.4, the
value of γ is plotted against the mean improvement.

Figure 7.4: E�ect of γ on the improvement.

When we look at Figure 7.4, we see that there is no connection between γ
and the mean improvement. For γ we get the same result.

Semi-random opponent

We model a semi-random opponent as follows. Similar to the deterministic case,
we draw random values for his parameters δ, γ, T at the start of the negotiations.
Then, in every round, instead of using these �xed parameters, we draw a new
γi from a uniform interval: (γ − εγ , γ + εγ) and δi from (δ − εδ, δ + εδ). So
every round the opponent gets a new set of parameters. We can control the
variance by the value of ε. In Table 7.3.4, we see the results of an ENO strategy
without the optimization/estimation procedure. In Table 7.3.4, the ENO agent

53



does optimise his parameters. We see that a �xed ENO strategy does slightly
better against a semi-random strategy than against a �xed ENO strategy.

R # Rounds # Fails

Low Variance:εδ = εγ = 0.05 0.525±0.003 6.9±0.1 0
High Variance:εδ = 0.1,εγ = 0.2 0.526±0.002 6.2±0.1 0

Table 4: E�ect of the optimization. R is the outcome without optimization
procedures. Results are 95% con�dence intervals of the mean values over 5000
runs.

R # Rounds # Fails

Low Variance:εδ = εγ = 0.05 0.631±0.003 7.5±0.3 10
High Variance:εδ = 0.1,εγ = 0.2 0.601±0.003 6.9±0.3 2

Table 5: E�ect of the optimization. R is the outcome with optimization pro-
cedures. Results are 95% con�dence intervals of the mean values over 5000
runs.

In both cases, without optimization, R = 0.50. This means that a �xed
ENO strategy, has the same performance against a semi-random ENO strategy
as it has against a �xed ENO strategy. We see the best performance for the
optimization procedure in the low variance case. By comparing the results in
Table 7.3.4 and 7.3.4 we see a signi�cant improvement is gained by using the
optimization method. Another interesting thing to note is that there are less
failures against semi-random opponents than there were against deterministic
opponents. This is because, even if we get a bad estimate on their parameters,
the other party can still randomly make a concession, speeding up the process
of reaching an agreement. We see this speedup in the data when we look at
the average number of rounds. As we increase the variance, we reach agreement
more quickly.

7.3.5 Conclusion

We have seen that using the estimation and optimization procedure produces
better results than not using it, against both semi-random and deterministic be-
havior of the other party. We therefore recommend using this in the negotiation
support system.
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8 Extention: Multiple Dimensions

In this section we will discuss the application of the ENO model to multiple
dimensions. We negotiate about a contract with m issues: x1, . . . , xm. We want
to maximize all issues, and on all of these dimensions, our initial o�er is 1. The
other party's initial o�er is 0 on all dimensions, and he wants to minimize all
issues.

Independent utilities

The easiest case is when the targets for the various dimensions are independent.
This means that we have a target of the form: x1 = T1, . . . , xm = Tm. Where Ti
is the target for dimension i. In �gure 8.1 we see an example of two dimensions.

Figure 8.1: Both parties have independent targets on all dimensions. The zone
of agreement is the colored rectangle.

When we have independent issues, we can directly apply the ENO model, be-
cause we can evaluate an o�er on each dimension separately. Updating a target
on one of the dimensions does not impact the targets on the other dimensions,
so we do not run into any problems.
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The user of the model will be able to set his negotiation parameters γi and
δi for each dimension. By doing this, he can assign importance to each of the
dimensions. For example, if he decides issue i∗ is most important, he can set δ∗i
to a high value. He will then negotiate more aggressively on dimension i.

The advantage of having independent dimensions, is that it is very easy for
negotiators to determine targets independently and that they often do so already
in practice. The disadvantage is that they are unable to express relationships
between the di�erent dimensions. However, we can often overcome this by
aggregating several dimensions. We can use aggregation whenever there is an
objective relation between two negotiation dimensions. For example, suppose
we negotiate about the sale of a product, we have to agree upon a (one-time)
purchase cost and a (monthly) maintenance cost. The user of the model wants
to minimize the total cost over the duration of the contract. Instead of treating
these two issues as separate dimensions, we can compute the total cost for any
o�er made by the other party and use the single negotiation dimension �total
cost� for the ENO model. Figure8.2 displays an example of negotiations among
two independent dimensions.

Figure 8.2: Example of a negotiation outcome. O�ers are depicted as crosses.

Linearly dependent utilities

When we are dealing with multiple issues that are not independent, we need to
be able to evaluate o�ers. The standard way of doing this is by using a utility
function f(x1, . . . , xm) → [0, 1]. The other party will have his own (di�erent)
utility function f(x1, . . . , xm).

Each party's target can be speci�ed as a �xed value of their utility function.
So we have f(x1, . . . , xm) = T and f(x1, . . . , xm) = T as the targets. We will
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�rst restrict ourselves to utility function of the form:

f(x1, . . . , xm) =

m∑
i=1

λixi

where:

m∑
i=1

λi = 1

So the total utility of an o�er is a linear combination of the dimensions. This
means that the user can fully specify his utility function by assigning weights
to each dimension. In �gure 8.3 we see an example of this in two dimensions.

Figure 8.3: Placeholder 2

To apply the ENO model to a setting with linearly dependent utilities, we
need to do two things:

1. Select the utility of our next o�er

2. Out of all o�ers with this utility, select the best one

We would like to use the ENO strategy to select the utility of our next o�er.
Recall that this would mean we select our next o�er according to:
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f(un+1) = T + γ(T − f(un))

Here, un+1and un are the o�ers. However, because both parties use di�erent
utility function, we cannot do this. T is de�ned in terms of our utility function,
but f(un) lives in the utility space of the other party. If we were to subtract
the two, we would be comparing apples and oranges. If the utility functions
of both parties are similar (i.e. the weights for all dimensions are similar), we
could substitute f(un), by f(un).

The next step is selecting an o�er, Lai et al. [13] have shown that selecting
an o�er closest to the previous o�er by the other party leads to a negotiation
outcome that is close to Pareto optimal.

min ||un+1 − un|| (8.1)

s.t. f(un+1) = T + γ(T − f(un)) (8.2)

un+1 ∈ X

It is beyond the scope of this research to examine the case of linear depen-
dent utilities in more detail. It would, however, be an interesting direction for
future research. In particular, we would like to know whether selecting an o�er
according to 8.2 yields a good solution.

Non-linear utilities

The last option is to use non-linear utilities. To extend the ENO model, we
would need to �rst determine a function for our utility. While there are methods
to determine a linear utility function (e.g. SMART [18]) and methods that
compare multiple options without explicitly constructing a utility function (e.g.
AHP [18]), there are no methods to construct general non-linear utility function
for the whole negotiation space. It is beyond the scope of this research to develop
such a method.

Conclusion

We conclude that it is far from trivial to extend the ENO model to multiple
dimensions with dependent targets. The most natural extension is to use linearly
dependent utilities, however more research should be done before we can apply
the ENO model to this setting.
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9 Conclusion

In this research, we developped a new mathematical model for contract negoti-
ation. We did this by answering the following research questions:

• How can we model contract negotiations mathematically?

We looked at various negotiation models from the literature. We have seen that
these models have several limitations that make them unusable for a Negotion
Support System. In particalar, these models use the unrealistic assumption of
perfect rationality of the agents, or require a large amount of historical data
to function properly. The ENO model we develop in this research solves these
problems.

• How can we measure the performance of our model?

We have done this in three steps. We �rst de�ned consistency conditions and
have shown, analytically, for which values of the parameters the model meets
these requirements. We then de�ned a measure with which we can compare
the outcome of di�erent negotiations. By numerical analysis, we determined
the e�ect of the model parameters on the outcome and duration of the nego-
tiations. Finally, we performed simulations to analyse the performance of the
optimization procedure.

• How can we optimize the negotiation strategy of the user?

In Section 6 we describe a method for optimizing the strategy parameters during
the negotiation. It �rst estimates the negotiation parameters of the other agent
based on the previous o�ers he made during the negotiations. By performing
simulations, we have seen that applying this procedure, signi�cantly improves
the negotiation outcome, even when the other agent does not follow an ENO
strategy exactly.

Future Research

There are many possible directions for future research. We will brie�y go over
the most interesting ones in this section.

• Can we determine a good strategy at the start of the negotiations?

The current optimization procedure provides a suggestion for our δ and γ, given
the o�ers made by the other agent so far. We would also like to create a method
to suggest a strategy at the start of the negotiations. This means that if we
have historical data at the start of the negotiations, we would like to also be
able to suggest an initial o�er and initial target.

• How does the ENO strategy perform against real people?

It would be interesting to verify the ENO model in negotiations between real
people. How does the strategy we described in this research do against actual
people?
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• How can the model be extended to (linearly) dependent dimensions?

As we have seen in Section 8, there is still work to be done whenever the nego-
tiation dimensions are dependent. In particular, linearly dependent dimensions
seem realistic, but we need some modi�cations and additions to the ENO model
before it can be applied to linearly dependent dimensions. In particular, a
method to estimate the weights of the other party should be developed.

• How should we adjust the ENO model when the other agent does not use
a �xed strategy?

Throughout this research we assumed the other party uses a strategy with �xed
parameters. If the other party does not have �xed parameters (because he might
also try to optimize his parameters after every round), how should we adjust
our strategy? The optimization method we described will probably need to be
adjusted in this case.

Conclusion

The ENO model is a more realistic model of negotations than the extisting
models, because it does not have the strong limitiation of the existing models.
There are still many possibilities for future research, but the ENO model we
presented here can be used as the basis for a Negotiation Support System. We
created a prototype of such a NSS in AIMMS. This prototype can now be used
by actual negotiators.
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