
Creating a Modular AspectJ Foundation
for Simple and Rapid Extension

Implementation

by

Hristofor Mirchev

EWI

FMT

EXAMINATION COMMITTEE

dr. C.M. Bockisch

prof.dr.ir. M. Aksit

30.09.2014

Abstract
The current state of aspect-oriented programming (AOP) has raised concerns

regarding various limitations that AOP languages have. The issue is that AOP

languages are not robust enough when the basis program is changed. There are

many new proposals for AOP languages with new features that attempt to restrict

or give more expressiveness to the programmer in order to force a new context

where the problems can be mitigated. Some of those languages are designed as

extensions of AspectJ. Existing open AspectJ compilers can be used for

implementing such an extension, but this can quickly become a complicated task

of extending the complex processes of lexing, parsing and weaving, of which the

compilers offer low-level abstractions. Thus, there is a need for an easily

extensible AspectJ foundation for a simpler and faster development of language

extensions.

We have developed such a foundation and in this thesis we describe the design

of the implementation. We provide an overview of a testing process to determine

its validity. Finally, we implement one proposal for an AspectJ extension and

evaluate the extensibility and ease of use of our foundation in comparison to

other existing AspectJ compilers.

1. Introduction
Motivation. An easy approach to implement an aspect-oriented language

would be to extend an existing AOP compiler. This is not always the best

approach, however. Existing compilers may force the programmer to use or

extend, components, that they rely on, which are not trivial to understand. They

might have not been designed to conform to the same goals you seek or are simply

not suited in the context of your design approach.

A simplified overview of the workflow of a compiler includes the following

sequence of operations. The source file is first subjected to a lexical analysis that

breaks the stream of characters of the file into meaningful “chunks” (sometimes

called tokens). The module that does this is called a tokenizer (or a lexer). After that,

these tokens are processed according to the syntactical rules of the language,

specified in a formal grammar. This part of the process is called parsing and the

module that does that is called a parser. Finally, the parsed input is stored in a

specific format to be interpreted and used to generate code. In AOP, for example,

this is the step where the advice information would be woven into the original

classes on a bytecode level in a complex process called weaving. Extending

existing compilers requires some form of manual configuration to these weaving

mechanics. This can prove to be a significantly inaccessible task for the average

programmer. With our approach, we delegate the weaving process to the official

AspectJ weaver, thereby freeing users of our implementation to focus more on the

syntax of their language extension, rather than the complexity coming from

handling the weaving mechanics. Splitting up the aspect information to be woven

and the base Java statements is also accomplished in a clear and concise way

through the use of Java annotations, which programmers are usually familiar

with. These two factors alone reduce the complexity in using our implementation

in comparison to existing AspectJ compilers.

For our implementation we carried out a model-driven engineering (MDE)

approach. More specifically, we used the EMFText framework to develop a

metamodel and grammar for AspectJ, which were used to generate an AspectJ

parser. To handle the weaving process, we can delay it to the point that a class

loader loads the class files and defines them to the Java Virtual Machine (JVM).

This approach is called load-time weaving. Weaving in such a way can be done with

the standard AspectJ load-time weaver, without the need for any user

modifications. To accomplish this, however, we would need to “carry” the aspect

information to be woven in the .class file. We are doing this by transforming the

aspect classes to the annotated style introduced in AspectJ 5. They can then be

compiled with a regular Java compiler. The transformation is achieved through

the use of a model-to-model transformation language.

Design Goals. Our approach is to implement a flexible AspectJ grammar with

the following primary design goals:

• simplicity – we will measure simplicity by the number of concerns (e.g.

lexing, parsing, weaving) that the programmer has modified over the lines

of code (LOC) that he has written when implementing new functionality.

• extensibility – we will measure extensibility by the average number of

artifacts (e.g. metamodel entities/AST nodes, syntax rules) that the

programmer has reused when implementing new functionality.

In Section 3, where we explain our implementation of the AspectJ grammar in

detail, we are further going to discuss the pre-existing AspectJ compilers and how

they align with our goals and design process.

Contributions. The contributions of this thesis are the following:

• We have determined criteria for an easily modifiable implementation of

an AspectJ compiler suitable for building research-oriented AspectJ

extensions.

• We pose our implementation of an exstensible AspectJ grammar

conforming to that criteria.

• We evaluate this implementation with a rigorous test process.

• We demonstrate the exstensibility of the implementation by presenting a

grammar for an aspect-oriented programming language built on top of it.

• We evaluate our AspectJ foundation with respect to our design criteria by

comparing our implementation of functionality from the extension with

an implementation of the same functionality build on top of other

existing AspectJ compilers.

Thesis Structure. The structure of the thesis is as follows. We first give an

introduction of the necessary background information in Section 2, namely an

overview of AspectJ, model-driven engineering and EMFText. In the following

section we discuss in detail our implementation of an extensible AspectJ

grammar. These two sections are written in collaboration with George de Heer

since we both worked together on the implementation.

Next, in Section 4 we describe the test case we did, in which we implemented

the Natural Aspects extension on top of that grammar, and evaluate, whether the

design meets our initial criteria of extensibility. Finally, in Section 5 we draw some

conclusions from the experience and discuss possible directions for future work.

2. Background
AspectJ. Aspect-oriented programming (AOP) is a paradigm that strives to

increase modularity in programming by separating pieces of the program that rely

on or affect other parts of it. While object-oriented programming (OOP) offers us

a way to modularize common concerns, AOP offers a way to modularize cross-

cutting concerns in particular.

AspectJ is a Java extension that supports AOP. It adds a few new concepts to

Java. A join point is a point in the program flow. Examples of join points include

method calls, method executions, constructor executions, object instantiations

and others. A pointcut is a predicate on a set of join points that selects a subset of

them. Advice is code meant to be implicitly executed when the program flow

encounters a join point matched by a pointcut. Finally, an aspect is the module

that encapsulates all these new constructs. Another feature of AspectJ called

inter-type delcarations, which affects the static structure of the program, namely it

allows the programmer to add fields, methods or interfaces to existing classes, is

outside the scope of our research [1].

Model-driven engineering. Model-driven engineering (MDE) is a system

development methodology that focuses on the creation and use of models. Models

are abstract representations of the concepts related to a specific problem domain.

A model can describe the entities in a domain, their attributes, relationships

between them and constraints on those relationships. Models are specified using

some notation, described in a modeling language. This notation usually consists of

at least a description of the abstract syntax (i.e. the concepts and relationships) and

a description of the concrete syntax (i.e. the physical appearance of those concepts

and relationships). The abstract syntax is commonly defined through a metamodel.

All the terminology and considerations for models are applicable to the

metamodel as well, as the metamodel is just a model of the model [2].

MDE strives to increase productivity in at least three respects. First, by raising

the level of abstraction MDE closes the semantic gap for domain experts that may

otherwise not be experienced in programming with a general-purpose language.

Second, MDE tools can impose constraints and perform model validity checks to

detect and prevent errors early in the development cycle. Model validity is the

process of evaluating the model against different criteria, either coming from the

metamodel or in the form of constraints, written by the programmer. Lastly,

through the use of code generation and model transformation, MDE increases

“automation” in software development thereby limiting the possibility of human

errors. Code generation is the process of generating source code from the model

while model transformation is the act of transforming a source model into a target

model through the use of transformation rules [3]. This is the primary reason why

we find MDE to be particularly good at implementing a language conforming to

our design goals. Most MDE tools generate a lot of the complex components (i.e.

lexers and parsers) for the programmer, which leaves him with the task of

implementing only a few highly modular elements (e.g. the metamodel of the

language). Extensibility, on the other hand, can easily be achieved through the

reuse of the metamodel or model transformations.

Frameworks for building applications and whole systems using models are

called modeling frameworks or language workbenches. A very mature and popular

modeling framework is the Eclipse Modeling Framework (EMF) [4]. Its

metamodeling language (Ecore) is based on EMOF (a standardized metamodeling

language) and it provides easy to use tools for code generation for EMF models

that lay the grounds for interoperability with other EMF-based applications.

EMFText / JaMoPP. EMFText is a language workbench for defining textual

languages, be it domain-specific (DSL) or general-purpose (e.g. Java) based on

Ecore metamodels. It provides a rich DSL for syntax specification – the Concrete

Specification Language (CS) based on EBNF, that can generate an editor with

features like syntax highlighting and code folding, and components to parse and

print instances of the metamodel [5]. The general development process with

EMFText consists of the following steps [6]:

1. Specifying the abstract syntax for the language (the .ecore metamodel)

To define a language’s metamodel we must consider how to break down the

language into what entities it consists of, what attributes do they have and what are

the relations or references between them. References have to further be

distinguished into containment and non-containment references. A containment

reference relates an element of the model (a parent) with another, defined in the

same context (a child). A non-containment reference relates a model element with

one that is defined somewhere else. Let us consider the example of modeling a

standard Java class. The class entity can hold a containment reference for a

method declaration inside the class, but to model a method call statement one

would use a non-containment reference to that method since it can be defined

elsewhere.

2. Specifying the concrete syntax for the language (the .cs file)

Having completed the metamodel, we continue by defining the textual

representation of all its entities in the .cs file. The .cs file can be roughly broken

down to two sections. The first one contains metadata for the language. This can

be information on what the file extension for the language is going to be, what is

the root element of the language, what are the tokens (to help the lexer tokenise

the input correctly) and how to highlight them, and some code-generation

instructions. The second part of the .cs file contains the syntax rules for the

language. A rule is a textual representation of a specific entity in the metamodel

with its attributes and references. Various other elements such as keywords,

operators for multiplicity (*, ?. +) and brackets for nested sub-rules are also

regularly used in a syntax rule.

3. Generating the tools for the language

After defining the syntax specification, we can use the EMFText generator to

create the accompanying language infrastructure. This includes the Java-based

implementation of the metamodel, a parser and printer, reference resolvers that

resolve names of non-containment references and classes related to an Eclipse-

based editing functionality like syntax highlighting.

4. (Optional) Customizing the tools for the language

The previous step generates a basic tooling for the language. However, EMFText

offers ways in customizing it with additional advanced features like code

completion, code folding, refactoring, semantic validation post parsing and more.

For languages where the trivial reference resolvers, generated in the previous step,

are not sufficient, EMFText also provides means for writing custom ones that

override the behaviour. This can usually be the case in general-purpose

programming languages where references can span cross-resources like Java or

AspectJ.

The Java Model Parser and Printer (JaMoPP) is a complete implementation of

Java 5 in EMFText. It offers a metamodel covering the whole language, a text

syntax conforming to the Java specification and custom-written reference

resolvers that correctly capture the Java static semantics when cross-referencing

metaclass entities [7].

3. AspectJ Implementation
Before getting into the discussions of our AspectJ implementation in detail, let

us examine the existing open AspectJ compilers and how they align with our

design goals.

AspectBench Compiler. The AspectBench compiler (abc) is a complete

implementation of the AspectJ 5 language that “aims to make it easy to implement

both extensions and optimizations of the core language” [8]. It is based on the

Polyglot [9] and Soot [10] frameworks.

A simplified overview of the workflow of abc begins when the Polyglot parser

parses the input .java source file into an abstract syntax tree (AST). It then runs a

series of transformations to separate the AST in two parts. One part holds only

the pure Java constructs, while the other contains the additional AspectJ

information like the advice bodies, inter-type declarations and others. The

process is then taken over by the Soot framework. It takes the purely Java AST

and transforms it to its internal representation called Jimple. The framework then

uses several modules that can convert freely between Jimples, Java byte code and

Java source code to conduct the weaving process and output the final .class and

.java files.

Using abc rather than our implementation has two disadvantages. First,

Polyglot offers a clean and modular way to extend the grammar, but has a

standard lexer for interpreting it, which is not extensible. This means that to

make abc recognize the new language you build on top of it, one would need to

copy and rewrite the existing lexer. This is not the case when using our approach,

as the CS language in EMFText allows the reuse and extension of the defined

lexing rules. Secondly, we argue that the weaving process in our approach is

handled with less effort. The declarative way in which we “carry” the AspectJ

information to be woven by using the annotation-based style is easier to

understand than Polyglot’s transformations that separate its AST. It also enables

us to delegate the complexity of the weaving process to AspectJ’s load time

weaver, something that can not be done in abc, rather than having our users

implement it themselves.

AspectJ-front. AspectJ-front is the combination of a syntax definition and a

printer for AspectJ 5 and is made using the Spoofax modeling framework. The

syntax definition is written in SDF, which is the metamodeling language in

Spoofax. The printer is build in Stratego/XT. This is a subset of tools in Spoofax

used specifically for program transformations. The printer is written as

transformation rules that change the initial parse result (stored in Spoofax’s

ATerm format) into text.

AspectJ-front by itself is an extension of a similar combination of syntax

definition and printer for Java called Java-front. This already shows that

extensions can be written with relative ease which matches one of our design

criteria we set out to achieve - extensibility. AspectJ-front is also modular as the

syntax definition is clearly separated from the printing rules. Thus, it also matches

the second criteria we have set. The reason why we did not opt to use it is because

it did not match the third design goal we have – simplicity.

We argue that picking EMF with respect to simplicity is better than the

alternative of using Spoofax for two reasons. First, building an extension on top

of previous work in EMF would require extending both the Ecore metamodel and

the CS syntax definition. Having done that, EMF generates a parser and printer

for you. The same result in Spoofax would require extending the SDF syntax

definition, but also writing a new printer. One might argue that for the additional

cost of writing the printer by hand, Spoofax at least skips the metamodeling step,

however this is not truly the case. A programmer still has to have a mental image

of the metamodel to follow when writing the syntax definition. EMF simply

externalizes that process and produces a tangible artifact (i.e. the .ecore file) that

can be shared and used as a specification between programmers. Secondly and

more importantly, we believe that starting out with AspectJ-front in general is the

harder approach. AspectJ-front is not mature and lacks proper documentation.

The tool is outdated and barely supported anymore. Furthermore, when using

our implementation, you do not have to implement any weaving logic, which is

not the case with AspectJ-front.

ReflexBorg. “The ReflexBorg approach is a method for implementing aspect-

oriented extensions of Java, including both their syntax and semantics” [11]. It

consists of three layers. One layer is for the syntax definition of the language,

written in SDF. Another is for the transformation of the abstract terms of the

aspect language into Java code instantiating Reflex elements, which is written in

Stratego. The final one takes care of the semantics and weaving and is written in

Reflex. Reflex is a Java implementation of a versatile kernel for aspect-oriented

programming using bytecode transformation.

ReflexBorg uses the same metamodeling language (SDF) and the same model

transformation tool (Stratego) as AspectJ-front, so the same concerns apply here

as well.

The following subsections will explain the design of our AspectJ foundation by

examining the metamodel we have developed, the transformation to annotation-

based style and the testing process that we have used to evaluate it.

Metamodel. Following the naming convention set out from Kardelen, whose

AspectJ prototype we used as inspiration, our metamodel consists of five

subpacakges.

1. Commons package - contains entities for the top-level members in AspectJ

(i.e. aspect, pointcut and advice).

2. Pointcuts package – contains entities for the 18 primitive pointcuts that the

language supports.

3. PcExp package – contains entities for the acceptable pointcut combinators.

Those are && (and), || (or) and ! (negated).

4. Advice package – contains entities for the 5 different advice types (i.e.

Before, After, After Returning, After Throwing and Around).

5. Patterns package – contains entities for the pattern matching in pointcuts.

The Commons Package.

Figure 1. Overview of the Commons Package
The key design consideration here that drove the design of the whole package

was whether an aspect should be treated “exactly” like a regular Java class.

According to the AspectJ Developers Guide [1] an aspect declaration is

syntactically similar to a class definition. Three of the differences they point out

are that an aspect can cut across other types; that it can not be directly

instantiated and that in case of nesting, the nested aspect must be static. However,

the difference that influenced our metamodel design the most was that a class can

not contain advice code.

According to the specification a regular class can contain pointcut definitions,

but can not contain an advice block of any kind. This meant that there is a divide

in the contents of an aspect (i.e. contents that can also be contained in classes and

aspect-only code). This separation can be enforced in one of two ways. One way is

to make a constrained metamodel that does not allow such mix-ups. Another

approach is to make a more liberal metamodel that allows them, but write a post-

processing semantic check that disregards such cases. We opted for the latter for

two reasons.

First, it simplifies the metamodel. Enforcing such a constraint in the

metamodel would result in an overhead of entities. We would need to make one

entity that “captures” all the class contents (e.g. methods, fields and pointucts)

and another for the Advice. This differentiation would also result in a need for

two more entities so that a compilation unit can hold both aspects and classes.

Without this overhead the metamodel is more streamlined.

Secondly, the JaMoPP model that we are using as a foundation comes with

setter and getter methods implemented for the different entities it has. Directly

extending these entities lets us reuse these methods which eased the process of

implementing the custom reference resolvers for our AspectJ implementation.

Having settled on this issue the design became clear. The AspectJ compilation

unit directly extends the Java compilation unit. Since it contains a reference to

ConcreteClassifiers, we make the aspect extend ConcreteClassifier. We also

directly extend Implementor to complete the functionality of an aspect to

implement another. It contains one attribute of type boolean to determine if the

aspect is priviliged or not and one reference to a type, in case the aspect extends

another. The ConcreteClassifier entity contains a reference to Member, which is a

supertype for the different class members (e.g. methods, fields). Thus, we model

the pointcut and advice as Members. Both advice and pointcut entities contain a

reference to a pointcut expression.

The Pointcuts Package.

Figure 2. Overview of the Pointcuts Package

The package contains one entity for each of the 18 possible primitive pointcuts [1]

and one common supertype PrimitivePointcut for easy polymorphic referencing.

Each of the 18 entities contain a reference to the pattern they can match.

Such a design allows for an easy implementation of pointcut extensions. For a

new type of primitive pointcuts, a programmer can add a new entity that extends

PrimitivePointcut or he can modify it to introduce new global pointcut

functionality.

The PcExp Package.

Figure 3. Overview of the PcExp Package

One tough problem that comes up when designing compound expressions is how

to effortlessly implement the order of precedence of the operators. Our approach

is inspired by the design of compound Java expressions in JaMoPP.

We have a PointcutExpression entity whose syntactical rule can be simplified as

<OrPointcutExpression> && <OrPointcutExpression>, thereby giving least priority to

&&. An OrPointcutExpression’s rule on the other hand can be considered as

<UnaryPointcutExpression> || <UnaryPointcutExpression>, which gives || second

priority. Finally, an UnaryPointcutExpression is just a PrimitivePointcut that can

either be negated or not, determined by a boolean attribute, giving ! top priority.

The Advice Package.

Figure 4. Overview of the Advice Package

The Before and After advice are simple and inherit directly from our basic

Advice entity without extending it with any additional functionality. The After

Returning and After Throwing extend the After advice with the addition of one

extra reference to the returned or thrown parameter respectively. Finally, the

return type of Around advice determines the need to inherit from TypedElement.

ArrayTypeable and TypeParametrizable allow the return type to be an array or a

generic respectively. We also cover the possibility for a proceed statement in the

Around advice with the Proceed entity. The Proceed entity is a direct subtype of

Statement which means that, according to the metamodel, a call to proceed is valid

from every type of advice or any other Statement container. Although this is

wrong, we again chose to have a more liberal metamodel and introduce the

constraints in a post-processing step in the future.

The Patterns Package.

Figure 5. Overview of the Patterns Package

Due to the numerous symbols and combinations, and possible ambiguity,

implementing the pattern matching mechanics proved to be one of the hardest

parts of designing the metamodel. We used the abc AspectJ grammar [12] as a

reference guide for this particular part of the process.

There are three important families of patterns. The first one is located in the

mcf package. It contains the FieldPattern, the ConstructorPattern and the

MethodPattern. The first one is used in case of a get and set pointcuts. The second is

used in the context of initialization and preinitialization pointcuts. The final one

and the ConstructorPattern are subtypes of the MethodConstructorPattern since

many of the pointcuts can match either a method call or a constructor call (e.g.

call, execution, withincode). The second family of patterns match class names. They

are located in the classname package and are used with respect to the within,

handler and staticinitialization pointcuts. The final big family of patterns is

responsible for matching types and identifiers and is located in the type package.

Patterns from this family are used with this, target and args pointcuts.

The rest of the patterns serve as parts of or helpers to the patterns from these

three families.

Transformation. AspectJ 5 introduced an alternative to writing aspect

declarations in the traditional way by incorporating a new annotation-based style.

The gained benefit is that programs written in this annotation style can now be

compiled with a regular Java 5 compiler and be woven separately at a later stage.

Typically both of these processes are done at compile-time by the ajc compiler.

Separating these two concerns (compiling and weaving) is what allows us to focus

on making a moular AspectJ implementation and handle the compiling and

weaving processes with traditional tools (i.e. the Java compiler javac and AspectJ’s

load-time weaver). Unlike in other AspectJ compilers like abc, not having to

implement complex weaving mechanics is the key factor for an easier and faster

extension development.

The following table provides an overview of the main AspectJ concepts

written in both regular and annotation-based styles. The examples were taken

from the official AspectJ 5 Development Kit Developer’s Notebook [1].

Regular style Annotation style

public aspect <Foo> { } @Aspect
public class <Foo> { }

pointcut <AnyCall>() : <call(* *.* (..))>; @Pointcut(“<call(* *.* (..))>”)
void <AnyCall> () { }

before() : <call(* *.*(..))> { } @Before(“<call(* *.*(..))>”)
public void bfAdvice () { }

after() : <call(* *.*(..))> { } @After(“<call(* *.*(..))>”)
public void afAdvice () { }

after() returning(Foo <f>) : <call(* *.*(..))>
{ }

@AfterReturning(pointcut="<call(*
.(..))>", returning="<f>")
public void afrAdvice (Foo <f>) { }

after() throwing(Exception <e>) :
<call(* *.*(..))> { }

@AfterThrowing(pointcut="<call(*
.(..))>", throwing="<e>")
public void aftAdvice (Exception <e>) { }

Object around(int <i>): <setAge(i)> {
 return proceed();
 }

@Around("<setAge(i)>")
public Object arAdvice
(ProceedingJoinPoint jp, int <i>) {
 return jp.proceed();
}

Table 1. AspectJ Components in Regular and Annotation Style

To get the model we obtain after parsing from the regular AspectJ style to the

annotation style, we must use a model transformation language. More precisely,

we need a model-to-model transformation language to translate a model

conforming to our AspectJ metamodel to one that conforms to the Java

metamodel provided by JaMoPP. We considered two of the most popular and

mature transformation frameworks that support EMF-based models – Model-to-

Model Transformation (MMT) [13] and Epsilon [14].

MMT consists of two very distinct model-to-model toolkits – QVT and ATL.

QVT is a standardized set of three model-to-model languages – QVT-

Operational, QVT-Relations and QVT-Core. The first one is an imperative

language, while the other two are both declarative and are therefore commonly

jointly called QVT-Declarative [15].

ATL was initially designed as an alternative to QVT before getting paired with

it in MMT. ATL supports both imperative and declarative styles of writing

transformations. The recommended style is declarative as it is better for simple

and straightforward transformation rules, but imperative can also be used for

more complex ones [16].

Epsilon is a rich toolset that can be used for model validity, model comparison,

code generation and model-to-model transformation. The framework provides a

language for each of those functionalities. All of those languages, however, are

minimal extensions built on top of a common imperative language – the Epsilon

Object Language (EOL). The language for the model-to-model transformation is

called Epsilon Transformation Language (ETL). Like ATL it is a hybrid language in

the sense that it supports both imperative and declarative styles of writing [14].

In comparison, both MMT and Epsilon allow us to have rules that transform

any number of input models to any number of output ones. Both frameworks also

support imperative and declarative styles of writing. Finally, both frameworks are

mature and rich, and offer a diverse set of extra functionality like syntax

highlighting, error detection and debugging in Eclipse. With respect to these

common classification criteria Epsilon and MMT are similar to each other. The

only deciding requirement we had was how easy it is to call class methods outside

the context of the transformation, since, as can be seen from Table 1, to transform

a pointcut or advice a programmer would need to transform the pointcut

expression they contain to a string and pass it along as a parameter of the

annotation. Since no transformation language would be able to perform this task

natively, we needed an easy way to call our generated printer to do that.

In QVT such cases are referred to as “black box operations” [17]. We found

this approach to make the project and its design more complicated. Epsilon, on

the other hand, has a clear way of doing this and even lists it among the main

features to use the framework [14]. Later in this section we are going to explain

more in-depth exactly how we accomplished this task as it proved to be rather

challenging, but this was the sole reason we picked Epsilon over MMT. The

choice, however, will also allow us to re-use code from our transformation rules to

implement model validity or unit tests for the transformation in future work, as

all languages in Epsilon share a common syntactical foundation.

ETL transformations are organized in a module that can contain an arbitrary

number of uniquely named transformation rules. As well as transformation rules,

an ETL module can optionally contain any number of pre or post blocks of

statements which are executed before or after the transformation respectfully [18].

The following listing displays the syntax for a transformation rule and the

post/pre blocks.

1. (pre | post) <name> {
2. statements+
3. }
4.
5. (@abstract)?
6. (@lazy)?
7. (@primary)?
8. rule <name>
9. transform <sourceParameterName> : <sourceParameterType>
10. (, <sourceParameterName> : <sourceParameterType>)*
11. to <rightParameterName> : <rightParameterType>
12. (, <rightParameterName> : <rightParameterType>)*
13. (extends <ruleName> (, <ruleName>)*)? {
14.
15. (guard (:expression) | ({ statementBlock }))?
16.
17. statements+
18. }

Listing 1. Syntax of a Transformation Rule and Pre/Post block

The pre and post blocks consist of the respective identifiers (pre or post), an

optional name for the block and the set of statements to be executed. The

transformation rule can be declared as abstract, lazy or primary via annotations,

followed by the rule identifier and the rule name. The source and target models are

declared following the transform and to keywords. A rule can also extend any

number of different transformation rules declared after the extends keyword.

Apart from the EOL statements a programmer can also specify a guard statement

to limit the applicability of the rule to a selected subset of source models [18].

In the following subsections we are only going to demonstrate our

transformation rule for the Before advice as the rest are analogous. We believe it

still sufficiently captures most of the challenging logic we faced when designing

the transformation.

As can be seen from Table 1, a Before advice declaration using the annotation

style is just a regular public Java method of type void that has the @Before

annotation. Two important considerations here are:

1. Although the advice declaration does not have a name, the Java

method must have an unique name.

2. The pointcut expression that the advice contains is passed as a string

parameter to the annotation.

 Listing 2 shows our transformation rule for the Before advice.
1. rule Advice2Method
2. transform ajAdvice : aspectj!Advice
3. to jMethod : java!ClassMethod {
4.
5. jMethod.name = getUniqueAdviceName(ajAdvice);
6. jMethod.parameters = ajAdvice.parameters;
7. }
8.
9. rule BeforeAdvice2Method
10. transform ajBeforeAdvice : aspectj!BeforeAdvice
11. to jMethod : java!ClassMethod
12. extends Advice2Method {
13.
14. jMethod.annotationsAndModifiers.add(getAnnotation(ajLibBefore!

Commentable.allInstances().first(), "Before", ajBeforeAdvice.pcref));
15. jMethod.annotationsAndModifiers.add(new java!Public);
16.
17. jMethod.typeReference = new java!Void;
18. jMethod.statements = ajBeforeAdvice.statements;
19. }

Listing 2. Before Advice Transformation Rule

Lines 1 – 7 describe a common rule that all other advice rules extend. It takes care

of the first consideration we noted by calling a getUniqueAdviceName helper

method and passes along the parameters that the advice might have as parameters

of the new method. Lines 15, 17, 18 set the method to be public, be of type void and

pass along the body of statements the advice contains as the body of the new

method. These three lines are common for all advice types except Around (the

annotated method for Around has the return type of the Around advice itself and

a proceed statement will get transformed rather than copied verbatim). Thus, one

can argue that those three lines could also be extracted to the common advice rule

and have a separate and specific rule for Around. We liked our approach better as

an Around advice is still a type of advice and thus the relationship is still of an is-

a kind, which is best represented by inheritance. Finally, line 14 and the call to

getAnnotation handle the second consideration we mentioned.

Let us now demonstrate the implementation of these two methods:

getUniqueAdviceName and getAnnotation.
1. pre {
2. var globalAdviceCounter : Integer = 0;
3. }
4.
5. operation Any getUniqueAdviceName(ajAdvice : aspectj!Advice) : String {
6. globalAdviceCounter = globalAdviceCounter + 1;
7. var name : String = "aj$" + ajAdvice.eClass.name + "$" +

ajAdvice.eContainer.name + "$" + globalAdviceCounter + "$" +
ajAdvice.hashCode();

8.
9. return name.replace(" ", "_");
10. }

Listing 3. Getting the Unique Name for Advice Methods

Listing 3 shows how we handle the first consideration of generating an unique

name for the advice method. We looked at how the official AspectJ compiler

handled the same issue and tried to imitate the same behavior. Line 7 shows how

we form the name of the method. We start with the string aj (a mnemonic for

AspectJ), concatenate the type of advice (in our example this would be “Before”),

the name of the aspect that contains the advice, a global counter of advice and

finally add a hash value. We use a pre block to create an advice counter variable as

since it gets executed only once before the actual transformation, it simulates the

global variable we need.

1. operation Any printModelElement(elem : Any) : String {
2. var resourcePrinter = new

Native("org.kardo.language.aspectj.resource.aspectj.mopp.ParameterlessAspectj
Printer");

3.
4. if (elem.isDefined()) {
5. return resourcePrinter.printElement(elem);
6. } else {
7. return "";
8. }
9. }
10. …
11. operation Any getAnnotation(libModel : Any, annotation : String,

pointcutExpression : aspectj!PointcutExpression) : java!AnnotationInstance {
12. var anno = makeAnnotationInstance(libModel, annotation);
13.
14. if (pointcutExpression.isDefined()) {
15. var pcExp : String = printModelElement(pointcutExpression);
16. var param = new java!SingleAnnotationParameter;
17. param.value = getParameterValue(pcExp);
18. anno.parameter = param;
19. }
20. return anno;
21. }

Listing 4. Getting the Advice Annotation with the Pointcut Expression

Creating and setting up the annotations was one of the major issues we faced

while working on the transformation. There are two problems with this task.

First, how to create an instance of the annotation entity of the Java metamodel

we use that “points” to the actual annotation located in the AspectJ library. An

annotation in JaMoPP’s Java metamodel is represented by the AnnotationInstance

entity. It contains an optional namespace part (i.e. an ordered set of strings) for

the fully qualified annotation name, and a name part (i.e. an element of type

Classifier). Classifier is another entity in the metamodel, but it is abstract, which

means we can not directly construct it and set it to the correct annotation name

(i.e. Before in our case). What we have to do is find the correct concrete subtype of

Classifier and then assign the annotation name to it. To solve the problem we

took all the actual .java files of the annotations from the AspectJ library, parsed

them with JaMoPP and fed the resulting models to the transformation. At that

point, setting the name part of the annotation we are trying to create was just a

mapping to the correct model entity. The query to obtain the correct model is

done in the makeAnnotationInstance method.

The second problem we faced was how to get a string representation of the

pointcut expression that advice contain. Lines 1 – 9 of Listing 4 demonstrate our

solution. The easiest way to accomplish this task is to call the generated printer

for our AspectJ model and pass the pointcut expression. ETL offers an easy way

to access a class outside the context of the transformation, however the only

requirement is that the class has a no-argument constructor. Since the generated

printer class does not have such a constructor, we decided to write a custom

printer class that extends the original and write such a constructor for it. We

prefer this over the alternative of simply adding such a constructor in the

generated printer, as this way is more extensible and imposes a clear separation of

the generated and non-generated code. On line 2 we create a variable that points

to the custom printer and on line 5 we call its printElement method to obtain the

string representation of the pointcut expression.

Testing and Evaluation. In the previous subsections we presented our

AspectJ metamodel as well as some challenges and design decisions we faced

along the way. In order to evaluate the approach we have devised a test suite to

demonstrate the correct parsing of AspectJ applications in reference to the official

AspectJ compiler - ajc.

The goals of the suite are to test 1) that our parser accepts valid AspectJ code, 2)

that the model instance created after parsing has the expected structure, 3) that

the generated printer outputs a code representation of the model that is

semantically equivalent to the input. To achieve these goals we employed a testing

process similar to how JaMoPP was tested [7]. The process is shown on Fig. 6.

Beginning with a valid AspectJ source file, both our generated parser and the

Figure 6. Test Process for the AspectJ Implementation

reference one (the ajc) process the file and create their respective internal

representations of it. In our case, this is a model instance of the AspectJ

metamodel with unresolved cross-references. In ajc’s case, this is an abstract

syntax tree (AST). Next, our reference resolvers attempt to resolve the cross-

references after which the generated printer reprints the model in its text form.

The reprinted source file is fed to the reference compiler which creates another

AST. Finally, the AST of the reprint is compared to the original one via an AST

matcher provided by ajc.

We believe this approach meets the goals we set out to achieve. First, if our

parser accepts all the valid AspectJ test programs we give it and not throw a

parsing error, then we can conclude that the soundness property in our first goal

is met. Secondly, the structure of the model instance is checked for correctness by

the AST matcher. If there are any unresolved or missing elements, they will cause

resolving errors and not get reprinted, which will be detected by the AST

matcher. Lastly, any other mismatches that might raise error messages will also be

detected by the matcher. In those cases, we manually checked the reprinted

source file and compared it with the original to discover the source of the error. In

nearly half of our test cases we exhibited such reprinting errors although all of the

test files were parsed without errors. Often times white space, empty blocks and

other layout information led to the mismatches causing the errors.

Due to limitations we imposed on the metamodel by design, running our test

suite with official AspectJ benchmarks was impractical as it would require us to go

through each source file and modify uses of functionality we did not implement.

Thus, as input for the test process we provided 18 AspectJ files we custom wrote

ourselves. We tried to achieve maximum coverage by writing test cases for the

different variations of each element in our AspectJ model following the official

AspetJ 5 Quick Reference [19]. The overview of the test files separated over the

packages in our metamodel is the following:

• Advice package – Contains 5 test files, one for each advice type. Each file

tests for an empty advice, for an advice that exposes a parameter, for a

strictfp advice and for an advice written in annotation style.

• Commons package – Contains 3 test files. The first one test for possible

classifier declarations in a compilation unit (i.e. an aspect, a class, an

annotation, an enum and an interface). The second tests for possible

kinds of non-AOP contents of an aspect (i.e. a nested class, a field and a

regular method). The last one tests for possible pointcut declaration

variations (i.e. one without a modifier, one with a modifier, one without a

pointcut expression, one where the pointcut expression is just a primitive

pointcut and one where it is a conjunction).

• Patterns package – Contains 8 test files that also thoroughly test the

variations of the pattern types we have modeled (refer to the patterns

subsection in Sec. 3).

• Pcexp package – Contains 1 test file. It checks for a pointcut declaration

with a regular pointcut expression and one with a negated pointcut

expression.

• Pointcuts package – Contains 1 test file. The file contains 18 pointcut

declarations that test out possible primitive pointcuts (e.g. call, execution).

The testing was automated with the Junit framework and special effort went

into making the environment easily extendable with more tests. A programmer

simply has to put a valid AspectJ source file ending with the .aspectj extension of

our implementation in the src-input folder of the testing project and then rerun

the tests. In the end all 18 files passed the test suite.

In conclusion, we can say that while this test process does not guarantee

completeness, it does give us enough confidence that our AspectJ implementation

can be the foundation of language extensions that can be used in practice.

To test the transformation we fed the 18 files we had written to our parser and

ran the transformation on the results. After that, we manually ran through the 18

outputted models and checked if they have been transformed according to the

transformation rules in the AspectJ 5 Development Kit Developer’s Notebook [1] (part

of those rules you can see in Table 1).

Apart from differences in layout information, all the resulting models satisfied

our expectations with respect to the official guide. We can, therefore, say that the

percent of the metamodel covered by these 18 test files is also transformed

correctly.

A better testing approach would be to write a script to run all the test files we

have through our parser. After that, we would execute the transformation on the

resulting models and run them through the JaMoPP printer. The resulting Java

source files can then be put through a testing process similar to the one we used

for the metamodel. The difference being that this time we use JaMoPP’s parser,

the standard Java compiler javac and the JDT AST matcher rather than their

respective AspectJ equivalents. Setting up such a testing environment would take

much time in integrating JaMoPP, javac and the JDT matcher, so we left this for

future work and opted for a smaller and more manual approach.

4. Natural Aspects Implementation
Natural Aspects [20] is a proposal for a language extension of AspectJ that

introduces a minimal amount of additions that make for a more natural style of

aspect-oriented programming. The language allows the declaration of events.

Event declarations are similar to aspect declarations and collect context

information in local fields over time. Events are also side-effect free. Another

addition to AspectJ are the event detectors. Event detectors are named pointcut

expressions that can also contain a reference to a named event or event detector.

The language calls the pair of (event detector, response) a basic unit. One such unit

that is introduced is the when basic unit. It can contain a special trigger operation

that announces events upon their detection. Finally, the language proposes a

method for aspect composition through the use of a composes clause and several

declare statements that enforce a strict ordering of the composed aspects.

Natural Aspects strives to achieve three main goals: (1) complete separation of

event identification from response; (2) natural composition of both events and

aspects; and (3) loosen the coupling between the aspects and the base program.

Metamodel. The structure of the Natural Aspects metamodel contains four

subpackages:

1. Commons package – contains entities for the top-level members in Natural

Aspects (i.e. an event, an event detector and the new extended aspect).

2. BasicUnits package – contains entities for the when basic unit and the

accompanying trigger statement.

3. Composition package – contains entities for the composition of aspects and

the local declare statements that determine the ordering in those cases.

4. EventDetectors package – contains entities for the new primitive pointcuts

(i.e. those that refer to a named event and a named event detector).

The Commons Package.

The compilation unit directly reuses the AspectJ compilation unit without

extending it with any functionality.

The NaturalAspect is the new entity that models the concept of aspects in the
language. The main change to aspects that the language introduces is the ability
of an aspect to be defined as a composition of other aspects. The new entity
reuses the old one from the AspectJ implementation and, in addition, inherits
from Compositor, which is a new entity introduced in this extension. The role of
the Compositor entity is to be an interface from which you inherit aspect
composition behavior.

The Event entity models the new concept of events. The structure of the Event

entity is similar to that of an aspect (i.e. it inherits from the same supertypes -

ConcreteClassifier and Implementor) with the addition of Parametrizable to

account for the parameters that an event can expose.

Finally, the EventDetector represents the concept of event detectors in the

language. Event detectors are named pointcut expressions that can be written

outside the scope of an aspect declaration. To make event detectors on the same

structural level as aspects and events, they must also extend ConcreteClassifier.

Figure 7. Overview of the Commons Package

The BasicUnits Package.

The WhenBU entity is a direct extension of Advice as basic units are practically

renamed blocks of advice. Similarly to the Proceed entity from the AspectJ

foundation, Trigger is a direct subtype of Statement which will result in a valid

model from an invalid piece of code (i.e. if the trigger call happens from an advice

not of type when). However, the same consideration there still holds. Making a

more restrictive metamodel will result in an overhead of copied entities for every

kind of statement, while leaving it more liberal, with a post-processing semantic

check, results in a simpler and organized metamodel.

The Composition Package.

Figure 8. Overview of the BasicUnits Package

With the introduction of aspect composition (achievable by extending the

Compositor interface), the language offers a few ways of controlling the ordering

in the compound aspect. This is done via the use of declare statements.

There are three declare statements. Let us demonstrate their functionality with

an easy example consisting of one aspect A, that is composed of aspects B and C.

With the local declare precedence B, C statement all basic units in B will precede

those in C. An optional keyword except can denote a list of pairs of basic units

whose order is the reverse of that stated in the declare statement. The local declare

overriding B, C means that if basic units from B and C are applicable at a certain

join point, only those from B will respond. In addition to the except clause, this

statement offers an optional nooveride list for basic units that do not override each

other. Finally, the local declare ignoring B, C means that responses from basic units

in B will not trigger if the join point was matched by an event detector in C.

Figure 9. Overview of the Composition Package

Similar to the nooveride clause, this statement provides a noignore one that

overrides this behavior.

In the metamodel all three of the local declare statements share a common

supertype DeclareDeclaration that contains a reference to the aspects mentioned in

the statement. The concrete subtypes for each of the three (PrecedenceDeclaration,

OverridingDeclaration and IgnoringDeclaration) contain references for the exclusive

optional clauses.

The EventDetectors Package.

The Natural Aspects paper [20] allows event detectors to contain pointcuts

that refer to named events and named event detectors. To accomplish this we

have extended the PrimitivePointcut entity from our AspectJ implementation

with two new pointcut types. The first one is responsible for the named events

(NamedEventPointcut) and contains a reference to an event. The other is

accountable for the event detectors (NamedDetectorPointcut) holding a reference to

one.

Figure 10. Overview of the EventDetectors Package

Transformation. The following table gives an overview of the new concepts

introduced in Natural Aspects and how they translate to AspectJ. The examples

were taken from the paper that proposed the extension and modified for brevity

[20].

Natural Aspects AspectJ

When Basic Unit when(P <product>):
<call(P.timeDone())> { }

Object around(P
<product>):
<call(P.timeDone())> { }

Event event <LowActivity>(P
product) { } aspect <LowActivity> { }

Aspect aspect
<LowActivityDiscount> { }

aspect
<LowActivityDiscount> { }

Event Detector <FinishedProduct>:
<call(P.timeDone())>

aspect <FinishedProduct> {
 pointcut
<FinishedProduct>Pointcut:
<call(P.timeDone())>;
}

Table 2: Natural Aspects Components Translated to AspectJ

The when basic unit is transformed to an around advice with the same

parameters, pointcut expression and statements. Special treatment is needed in

case of a trigger statement in the basic unit. We are going to explain this scenario

more in-depth in the following subsections as it was the main challenge we faced

with this transformation.

The event is transformed into an aspect and all its attributes are copied

verbatim.

A simple aspect (one that is not composed from other aspects) is copied

verbatim without any modifications. In case of a compound aspect we modify the

statements that it contains. We are going to use the following code snippet to

illustrate the four cases for that modification depending on the three declare

statements.
1. aspect A {
2. BasicUnitA:
3. after(): pcA() { }
4. }
5.
6. aspect B {
7. BasicUnitB:
8. before(): pcB() { }
9. }
10.
11. aspect C composes A, B { }

Listing 5. Basic Aspect Composition Example Scenario

1. No declare statements – In this case we copy BasicUnitA and

BasicUnitB (lines 2-3, 7-8) and add them to the contents of aspect C.

2. A local declare precedence A, B statement – In this case we also copy the

two basic units, only this time the order to add them is specific (i.e.

BasicUnitA must be added before BasicUnitB).

3. A local declare overriding A.BasicUnitA, B.BasicUnitB statement – In

this case we copy BasicUnitA and add it to the contents of aspect C.

We proceed to copy BasicUnitB but before adding it to C, we modify

the pointcut expression of the basic unit to pcB() & !pcA(). This is to

achieve the intended behavior to force the new aspect to disregard

join points that get matched by both basic units and only respond to

those that get matched by either one, or the other.

4. A local declare ignoring A.BasicUnitA, B.BasicUnitB statement – In this

case we take an approach similar to the last one. Only this time we

modify the pointcut expression of BasicUnitB to pcB() & !cflow(pcA()).

Again, this is to achieve the intended behavior of not triggering the

response of the aspect if joint points that are in the workflow of pcA()

get matched by pcB().

Since the event detector is a top-class entity that can be written outside of the

scope of an aspect and in AspectJ the pointcut expression must be in one, we

transform the event detector to an empty aspect and add a new pointcut with the

event detector’s pointcut expression.

Handling the trigger statement in a when basic unit proved to be the hardest

challenge while doing this transformation. There are several considerations when

mapping an event declaration with a trigger statement to pure AspectJ syntax.

• We have to be careful not to introduce external side-effects as per design

the event declarations should go without.

• We should have a way of determining if the event was triggered that is

thread-safe.

• We should have a public interface to refer to the event in case of an event

detector with a reference to that event.

The following listings demonstrate our approach in handling these problems.

1. rule WhenBU2AroundAdvice
2. transform naWhenBU : naturalaspects!WhenBU
3. to ajAroundAdvice : aspectj!AroundAdvice {
4.
5. …
6.

ajAroundAdvice.statements.addAll(getWhenStatements(naWhenBU.statements));
7. ...
8. }
9.
10. operation Any getWhenStatements(statements : Any) : Collection {
11. var result = new OrderedSet;
12.
13. for (statement : java!Statement in statements) {
14. if (statement.isTypeOf(naturalaspects!Trigger)) {
15. result = handleTrigger(result, statement);
16. } else {
17. result.add(statement);
18. }
19. }
20. return result;
21. }

Listing 6. When Basic Unit Transformation Rule

Line 6 of Listing 6 passes the statements of the basic unit to the

getWhenStatements method which checks every statement whether it is a trigger

statement, in which case it passes it along to the handleTrigger function, or

otherwise adds it to the resulting collection. Let us now demonstrate the

implementation of the handleTrigger method.

1. operation Any handleTrigger(col : Any, statement: Any) : Collection {
2. var result = col;
3. var containingEvent = statement.eContainer.eContainer;
4.
5. //ThreadLocal Stack
6. var stack = getThreadLocalStack();
7. addStackToContainingEvent(stack, containingEvent);
8.
9. //Public Pointcut as Interface to Event
10. var pointcut = getPointcutAsInterface(statement.eContainer.pcref, stack);
11. containingEvent.members.add(pointcut);
12.
13. //Side-Effect Free Populating of the Stack
14. result.addAll(populateStack(stack));
15.
16. return result;
17. }

Listing 7. Handling the Trigger Statement

The method consists of three steps that address the three concerns mentioned

before.

First, we need a way to determine if the event is triggered. Since this can be

accomplished from several different points in the program flow and multiple

aspects could respond in different ways to it, a simple Boolean flag to mark if the

event was triggered would not be enough. We have to use a thread-safe data

structure for the possibility of multiple triggering. On line 6 we call the method

getThreadLocalStack to create a thread-local instance of a stack and on the

following line add it to the event that contains the when basic unit that we are

currently transforming.

Secondly, we need to populate the stack in a way that is free of external side-

effects. This is done on line 14 by calling the populateStack method. What it does is

to push a True object in the stack that marks that we have passed a trigger

statement, crates an Object on which to pass the result of a call to proceed(), after

which pops the top value of the stack and returns the created Object with the

proceed workflow.

Finally, we need to set up a public pointcut as an interface to other elements.

This is achieved by calling the getPointcutAsInterface method on line 10. It takes as

parameters the pointcut expression of the containing when basic unit and the

newly-created stack to create a public pointcut. That pointcut’s expression is a

conjunction of the basic unit’s expression and an if pointcut to check whether the

top element of the stack is True (i.e. if the event got triggered). The next line adds

this newly-created pointcut to the containing event.

Testing and Evaluation. In this subsection, we are going to test the simplicity

and ease of use of our AspectJ implementation, and evaluate it with respect to our

design goals. We will accomplish this by demonstrating how the “named event”

pointcut (i.e. the one that is a reference to an event) from the Natural Aspects

extension can be implemented in the AspectBench Compiler and we will

compare both designs. The steps to implement this functionality in abc are

reproduced from similar pointcut extensions described in [21].

1. Extending the lexer

This is the first step when extending abc. In this case, the pointcut we are

attempting to implement does not use any new keywords and so no modifications

to the lexer are required. Such is the case with our AspectJ implementation as

well.

2. Extending the parser

The next step is to extend the parser with a syntax rule for the new pointcut.

In the case of abc the new syntax rule would like this:
1. extend basic pointcut expr ::=
2. EVENT :x LPAREN formal parameter list opt:a RPAREN : y
3. {:
4. RESULT = parser.nf.PCEvents(parser.pos(x,y), a);
5. :}

Listing 8. Extending a Grammar Rule in ABC

The keyword extend signifies that the new rule should be added to the rules that

already exist for basic_pointcut_expr. Line 2 describes the signature (i.e. event

reference, followed by a parameter list, enclosed in brackets). Finally, on line 4, the

result is a call to the node factory of the parser class.

On the other hand, the same syntax rule written in the CS language of

EMFText looks like this:
eventdetectors.NamedEventPointcut ::= eventId[] "(" namedEventPattern? ")";

Listing 9. Writing a Grammar Rule in Our Implementation

Similarly, this rule also begins with a reference to the event, followed by a pattern

enclosed in brackets.

3. Adding new AST nodes

Any functionality with which we wish to extend the abc must be represented in

Polyglot’s AST. For a clear way of extending the AST, the abc team first suggests

to define an interface for the new AST nodes.

1. public interface EventPointcutDecl extends PointcutDecl {
2. public void registerEventPointcut(EventPointcuts visitor,
3. Context context,
4. EAJNodeFactory nf);
5. }

 Listing 10. An Interface for the New AST Node

The next step is to write a concrete class implementing this new interface. Here,

some boilerplate code is required (a constructor, methods that allow visitors to

visit the pointcut and a concrete implementation of the registerEventPointcut).

Finally, in order to make sure that we can instantiate this new node, we have to

write a subclass to abc’s default node factory and create a method for obtaining an

instance of the EventPointcutDecl.
1. public EventPointcutDecl EventPointcutDecl (Position pos,
2. Event ev,
3. FormalParameterList fpl,
4. String name,
5. TypeNode voidn) {
6. return new EventPointcutDecl_c(pos, ev, fpl, name, voidn);
7. }

Listing 11. Obtaining an Instance of the EventPointcutDecl

Now the parser can produce EventPointcutDecl when it encounters the appropriate

tokens for them.

In the context of our approach, the equivalent process is to extend the

language’s metamodel, as it is the internal representation of our front-end

framework (i.e. EMFText). In our case, this process is more visual than textual,

but there are tools (e.g. Emfatic) that offer us the possibility to declare the new

metamodel entity with a textual definition.
1. class NamedEventPointcut extends aspectj.pointcuts.PrimitivePointcut {
2. val aspectj.patterns.parameterlist.TypeIdWildcardPatternList

namedEventPattern;
3. ref commons.Event[1] eventId;
4. }

Listing 12. Adding an Event Pointcut Entity in the Metamodel

4. Adding new join points

The following step is to extend the list of possible join points if necessary. The

named event pointcut does not define a new type of join point and so no

interaction is necessary here. The same also holds for our AspectJ

implementation.

5. Extending the pointcut matcher

Once the corresponding join point shadows have been created in the previous

step, writing the back-end files becomes easier. In abc there is a back-end class

called pointcut matcher that tries every pointcut at every join point shadow found.

For the named event pointcut, we have to check whether the current shadow is a

ReferenceShadowMatch and if so verify that the event being referenced matches the

event id that the pointcut syntax rule starts with.

1. protected Residue matchesAt(ShadowMatch sm) {
2. if (!(sm instanceof ReferenceShadowMatch))
3. return null;
4. Reference event ref = ((ReferenceShadowMatch) sm).getReference();
5. if (!getReferenceId().matchesType(event_ref))
6. return null;
7.
8. return AlwaysMatch.v();
9. }

Listing 13. Extending the Pointcut Matcher

This process in abc has no similar equivalent in our approach. The matching of

the event from the pointcut to the actual event being referred to in our

implementation is done for you by reference resolver classes that EMFText

generates automatically. Although sometimes their default behavior is not

sufficient and one has to implement his own extensions of them, this was not the

case with resolving the named event pointcut.

We are now going to evaluate both designs with respect to the criteria we set

out to follow. In terms of simplicity, the abc had to be modified in three out of the

five concerns that we introduced. The LOC that were written to solve these three

concerns amounted to more than 27. By our plain definition the factor of

simplicity is close to a 1/9. In our implementation we had to modify two out of the

five concerns for the total amount of 5 LOC, resulting in the superior factor of 2/5.

There are two main reasons behind this success. First, the MDE approach we

use offered us an easier solution when we had to extend the abstract

representation of the language. Secondly, our approach abstracts over much of

the back-end logic (i.e. in this case the pointcut matcher) resulting in less concerns

to modify.

In terms of our extensibility criteria, both designs had an similar amount of

reused artifacts (i.e. 2 - 3).

5. Conclusion and Future Work
We have presented our implementation of AspectJ and its use as a basis for the

development of AspectJ extensions. Our primary design goal of making a

foundation that is easier to use due to the disentanglement from the weaving

mechanics in AspectJ was met. We demonstrated a case study in which we

developed one language extension using our implementation. It served to further

evaluate our foundation as modular and extensible. Finally, we conducted a

simple comparison between implementing a piece of functionality in both our

and an existing open AspectJ implementation (i.e. the AspectBench Compiler).

With respect to our criteria for extensibility both implementations fared equally

well, but when comparing them by our definition of simplicity the abc was trailing

behind. This is due to the fact that our implementation abstracts over much of the

hard and complex back-end logic.

There are three directions where our implementation can be improved in

future work. First, our implementation does not cover the full 100% AspectJ

functionality. We are missing the inter-type declarations, the declare statements

of AspectJ and the percflow aspect declarations. We left the implementation of

these concerns for a future time, although they should not be hard to model.

Secondly, there are a few places where the metamodel is “loose” with what is

acceptable syntax (e.g. a class can contain an advice block, there can be a proceed

statement in any type of advice, not only in an Around). This was done in favor of

a more streamlined and easy to follow metamodel. Such invalid cases should be

waded out with model validity checks in a post-processing step which we left to

implement in the future. Finally, doing more tests on the metamodel and

transformation would give us more confidence in the strength and correctness of

our implementation.

References
[1] The AspectJ Team, “The AspectJTM 5 Development Kit Developer’s
Notebook.” [Online]. Available:
http://www.eclipse.org/aspectj/doc/released/adk15notebook/index.html.
[Accessed: 14-Sep-2014].
[2] J. Bézivin, “On the unification power of models,” Softw. Syst. Model., vol. 4,
no. 2, pp. 171–188, 2005.
[3] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in 2007 Future of Software Engineering,
Washington, DC, USA, 2007, pp. 37–54.
[4] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.
[5] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende,
“Derivation and refinement of textual syntax for models,” in Model Driven
Architecture-Foundations and Applications, 2009, pp. 114–129.
[6] DevBoost, “EMFText User Guide.” [Online]. Available:
https://github.com/DevBoost/EMFText/blob/master/Core/Doc/org.emftext.doc/
pdf/EMFTextGuide.pdf?raw=true. [Accessed: 15-Sep-2014].
[7] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, Jamopp: The java
model parser and printer. Techn. Univ., Fakultät Informatik, 2009.
[8] C. Allan, P. Avgustinov, A. S. Christensen, B. Dufour, C. Goard, L.
Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
J. Tibble, and C. Verbrugge, “Abc the aspectBench Compiler for aspectJ a
Workbench for Aspect-oriented Programming Language and Compilers
Research,” in Companion to the 20th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, New York, NY, USA,
2005, pp. 88–89.
[9] N. Nystrom, M. R. Clarkson, and A. C. Myers, “Polyglot: An extensible
compiler framework for Java,” in Compiler Construction, 2003, pp. 138–152.
[10] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V.
Sundaresan, “Optimizing Java bytecode using the Soot framework: Is it feasible?,”
in Compiler Construction, 2000, pp. 18–34.

[11] R. Toledo and É. Tanter, “A Lightweight and Extensible AspectJ
Implementation.,” J UCS, vol. 14, no. 21, pp. 3517–3533, 2008.
[12] L. Hendren, O. De Moor, A. S. Christensen, and others, “The abc scanner
and parser, including an LALR (1) grammar for AspectJ,” 2004.
[13] Eclipse Foundation, “Eclipse Modeling - MMT.” [Online]. Available:
http://www.eclipse.org/mmt/. [Accessed: 14-Sep-2014].
[14] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon transformation
language,” in Theory and practice of model transformations, Springer, 2008, pp. 46–
60.
[15] I. Kurtev, “State of the art of QVT: A model transformation language
standard,” in Applications of graph transformations with industrial relevance, Springer,
2008, pp. 377–393.
[16] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1, pp. 31–39, 2008.
[17] “Using black box implementations in Eclipse QVTo | Fábio Levy
Siqueira.” [Online]. Available: http://www.levysiqueira.com.br/2012/02/black-
box-eclipse-qvto/. [Accessed: 15-Sep-2014].
[18] Dimitris Kolovos, Louis Rose, Antonio García-Domínguez, and Richard
Paige, “The Epsilon Book.” [Online]. Available:
http://www.eclipse.org/epsilon/doc/book/. [Accessed: 14-Sep-2014].
[19] The AspectJ Team, “AspectJ 5 Quick Reference.” [Online]. Available:
http://www.eclipse.org/aspectj/doc/released/quick5.pdf. [Accessed: 15-Sep-2014].
[20] C. Bockisch, S. Malakuti, M. Akşit, and S. Katz, “Making aspects natural:
events and composition,” in Proceedings of the tenth international conference on
Aspect-oriented software development, 2011, pp. 285–300.
[21] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O.
Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble, “abc: An extensible
AspectJ compiler,” in Transactions on Aspect-Oriented Software Development I,
Springer, 2006, pp. 293–334.

	Abstract
	1. Introduction
	2. Background
	3. AspectJ Implementation
	4. Natural Aspects Implementation
	5. Conclusion and Future Work
	References

