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Abstract
The current state of aspect-oriented programming (AOP) has raised concerns 

regarding various limitations that AOP languages have. The issue is that AOP 

languages are not robust enough when the basis program is changed. There are 

many new proposals for AOP languages with new features that attempt to restrict 

or give more expressiveness to the programmer in order to force a new context 

where the problems can be mitigated. Some of those languages are designed as 

extensions of AspectJ. Existing open AspectJ compilers can be used for 

implementing such an extension, but this can quickly become a complicated task 

of extending the complex processes of lexing, parsing and weaving, of which the 

compilers offer low-level abstractions. Thus, there is a need for an easily 

extensible AspectJ foundation for a simpler and faster development of language 

extensions.

We have developed such a foundation and in this thesis we describe the design

of the implementation. We provide an overview of a testing process to determine 

its validity. Finally, we implement one proposal for an AspectJ extension and 

evaluate the extensibility and ease of use of our foundation in comparison to 

other existing AspectJ compilers.

1. Introduction
Motivation. An easy approach to implement an aspect-oriented language 

would be to extend an existing AOP compiler. This is not always the best 

approach, however. Existing compilers may force the programmer to use or 

extend, components, that they rely on, which are not trivial to understand. They 

might have not been designed to conform to the same goals you seek or are simply

not suited in the context of your design approach.

A simplified overview of the workflow of a compiler includes the following 



sequence of operations. The source file is first subjected to a lexical analysis that 

breaks the stream of characters of the file into meaningful “chunks” (sometimes 

called tokens). The module that does this is called a tokenizer (or a lexer). After that, 

these tokens are processed according to the syntactical rules of the language, 

specified in a formal grammar. This part of the process is called parsing and the 

module that does that is called a parser. Finally, the parsed input is stored in a 

specific format to be interpreted and used to generate code. In AOP, for example, 

this is the step where the advice information would be woven into the original 

classes on a bytecode level in a complex process called weaving. Extending 

existing compilers requires some form of manual configuration to these weaving 

mechanics. This can prove to be a significantly inaccessible task for the average 

programmer. With our approach, we delegate the weaving process to the official 

AspectJ weaver, thereby freeing users of our implementation to focus more on the

syntax of their language extension, rather than the complexity coming from 

handling the weaving mechanics. Splitting up the aspect information to be woven

and the base Java statements is also accomplished in a clear and concise way 

through the use of Java annotations, which programmers are usually familiar 

with. These two factors alone reduce the complexity in using our implementation

in comparison to existing AspectJ compilers.

For our implementation we carried out a model-driven engineering (MDE) 

approach. More specifically, we used the EMFText framework to develop a 

metamodel and grammar for AspectJ, which were used to generate an AspectJ 

parser. To handle the weaving process, we can delay it to the point that a class 

loader loads the class files and defines them to the Java Virtual Machine (JVM). 

This approach is called load-time weaving. Weaving in such a way can be done with

the standard AspectJ load-time weaver, without the need for any user 

modifications. To accomplish this, however, we would need to “carry” the aspect 



information to be woven in the .class file. We are doing this by transforming the 

aspect classes to the annotated style introduced in AspectJ 5. They can then be 

compiled with a regular Java compiler. The transformation is achieved through 

the use of a model-to-model transformation language.

Design Goals. Our approach is to implement a flexible AspectJ grammar with 

the following primary design goals:

• simplicity – we will measure simplicity by the number of concerns (e.g. 

lexing, parsing, weaving) that the programmer has modified over the lines 

of code (LOC) that he has written when implementing new functionality. 

• extensibility – we will measure extensibility by the average number of 

artifacts (e.g. metamodel entities/AST nodes, syntax rules) that the 

programmer has reused when implementing new functionality.

In Section 3, where we explain our implementation of the AspectJ grammar in 

detail, we are further going to discuss the pre-existing AspectJ compilers and how 

they align with our goals and design process.

Contributions. The contributions of this thesis are the following:

• We have determined criteria for an easily modifiable implementation of 

an AspectJ compiler suitable for building research-oriented AspectJ 

extensions.

• We pose our implementation of an exstensible AspectJ grammar 

conforming to that criteria.

• We evaluate this implementation with a rigorous test process.

• We demonstrate the exstensibility of the implementation by presenting a 

grammar for an aspect-oriented programming language built on top of it.



• We evaluate our AspectJ foundation with respect to our design criteria by 

comparing our implementation of functionality from the extension with 

an implementation of the same functionality build on top of other 

existing AspectJ compilers.

Thesis Structure. The structure of the thesis is as follows. We first give an 

introduction of the necessary background information in Section 2, namely an 

overview of AspectJ, model-driven engineering and EMFText. In the following 

section we discuss in detail our implementation of an extensible AspectJ 

grammar. These two sections are written in collaboration with George de Heer 

since we both worked together on the implementation. 

Next, in Section 4 we describe the test case we did, in which we implemented 

the Natural Aspects extension on top of that grammar, and evaluate, whether the 

design meets our initial criteria of extensibility. Finally, in Section 5 we draw some

conclusions from the experience and discuss possible directions for future work.

2. Background
AspectJ. Aspect-oriented programming (AOP) is a paradigm that strives to 

increase modularity in programming by separating pieces of the program that rely 

on or affect other parts of it. While object-oriented programming (OOP) offers us 

a way to modularize common concerns, AOP offers a way to modularize cross-

cutting concerns in particular.

AspectJ is a Java extension that supports AOP. It adds a few new concepts to 

Java. A join point is a point in the program flow. Examples of join points include 

method calls, method executions, constructor executions, object instantiations 

and others. A pointcut is a predicate on a set of join points that selects a subset of 

them. Advice is code meant to be implicitly executed when the program flow 



encounters a join point matched by a pointcut. Finally, an aspect is the module 

that encapsulates all these new constructs. Another feature of AspectJ called 

inter-type delcarations, which affects the static structure of the program, namely it 

allows the programmer to add fields, methods or interfaces to existing classes,  is 

outside the scope of our research [1].

Model-driven engineering. Model-driven engineering (MDE) is a system 

development methodology that focuses on the creation and use of models. Models 

are abstract representations of the concepts related to a specific problem domain. 

A model can describe the entities in a domain, their attributes, relationships 

between them and constraints on those relationships. Models are specified using 

some notation, described in a modeling language. This notation usually consists of 

at least a description of the abstract syntax (i.e. the concepts and relationships) and 

a description of the concrete syntax (i.e. the physical appearance of those concepts 

and relationships). The abstract syntax is commonly defined through a metamodel.

All the terminology and considerations for models are applicable to the 

metamodel as well, as the metamodel is just a model of the model [2].

MDE strives to increase productivity in at least three respects. First, by raising 

the level of abstraction MDE closes the semantic gap for domain experts that may 

otherwise not be experienced in programming with a general-purpose language. 

Second, MDE tools can impose constraints and perform model validity checks to 

detect and prevent errors early in the development cycle. Model validity is the 

process of evaluating the model against different criteria, either coming from the 

metamodel or in the form of constraints, written by the programmer. Lastly, 

through the use of code generation and model transformation, MDE increases 

“automation” in software development thereby limiting the possibility of human 

errors. Code generation is the process of generating source code from the model 



while model transformation is the act of transforming a source model into a target

model through the use of transformation rules [3]. This is the primary reason why 

we find MDE to be particularly good at implementing a language conforming to 

our design goals. Most MDE tools generate a lot of the complex components (i.e. 

lexers and parsers) for the programmer, which leaves him with the task of 

implementing only a few highly modular elements (e.g. the metamodel of the 

language). Extensibility, on the other hand, can easily be achieved through the 

reuse of the metamodel or model transformations. 

Frameworks for building applications and whole systems using models are 

called modeling frameworks or language workbenches. A very mature and popular 

modeling framework is the Eclipse Modeling Framework (EMF) [4]. Its 

metamodeling language (Ecore) is based on EMOF (a standardized metamodeling 

language) and it provides easy to use tools for code generation for EMF models 

that lay the grounds for interoperability with other EMF-based applications.  

EMFText / JaMoPP. EMFText is a language workbench for defining textual

languages, be it domain-specific (DSL) or general-purpose (e.g. Java) based on 

Ecore metamodels. It provides a rich DSL for syntax specification – the Concrete 

Specification Language (CS) based on EBNF, that can generate an editor with 

features like syntax highlighting and code folding, and components to parse and 

print instances of the metamodel [5]. The general development process with 

EMFText consists of the following steps [6]:

1. Specifying the abstract syntax for the language (the .ecore metamodel)

To define a language’s metamodel we must consider how to break down the 

language into what entities it consists of, what attributes do they have and what are 

the relations or references between them. References have to further be 

distinguished into containment and non-containment references. A containment 



reference relates an element of the model (a parent) with another, defined in the 

same context (a child). A non-containment reference relates a model element with 

one that is defined somewhere else. Let us consider the example of modeling a 

standard Java class. The class entity can hold a containment reference for a 

method declaration inside the class, but to model a method call statement one 

would use a non-containment reference to that method since it can be defined 

elsewhere.

2. Specifying the concrete syntax for the language (the .cs file)

Having completed the metamodel, we continue by defining the textual 

representation of all its entities in the .cs file. The .cs file can be roughly broken 

down to two sections. The first one contains metadata for the language. This can 

be information on what the file extension for the language is going to be, what is 

the root element of the language, what are the tokens (to help the lexer tokenise 

the input correctly) and how to highlight them, and  some code-generation 

instructions. The second part of the .cs file contains the syntax rules for the 

language. A rule is a textual representation of a specific entity in the metamodel 

with its attributes and references. Various other elements such as keywords, 

operators for multiplicity (*, ?. +) and brackets for nested sub-rules are also 

regularly used in a syntax rule.

3. Generating the tools for the language

After defining the syntax specification, we can use the EMFText generator to 

create the accompanying language infrastructure. This includes the Java-based 

implementation of the metamodel, a parser and printer, reference resolvers that 

resolve names of non-containment references and classes related to an Eclipse-

based editing functionality like syntax highlighting.

4. (Optional) Customizing the tools for the language

The previous step generates a basic tooling for the language. However, EMFText 



offers ways in customizing it with additional advanced features like code 

completion, code folding, refactoring, semantic validation post parsing and more. 

For languages where the trivial reference resolvers, generated in the previous step,

are not sufficient, EMFText also provides means for writing custom ones that 

override the behaviour. This can usually be the case in general-purpose 

programming languages where references can span cross-resources like Java or 

AspectJ.

The Java Model Parser and Printer (JaMoPP) is a complete implementation of 

Java 5 in EMFText. It offers a metamodel covering the whole language, a text 

syntax conforming to the Java specification and custom-written reference 

resolvers that correctly capture the Java static semantics when cross-referencing 

metaclass entities [7].  

3. AspectJ Implementation
Before getting into the discussions of our AspectJ implementation in detail, let

us examine the existing open AspectJ compilers and how they align with our 

design goals.

AspectBench Compiler. The AspectBench compiler (abc) is a complete 

implementation of the AspectJ 5 language that “aims to make it easy to implement

both extensions and optimizations of the core language” [8]. It is based on the 

Polyglot [9] and Soot [10] frameworks. 

A simplified overview of the workflow of abc begins when the Polyglot parser 

parses the input .java source file into an abstract syntax tree (AST). It then runs a 

series of transformations to separate the AST in two parts. One part holds only 

the pure Java constructs, while the other contains the additional AspectJ 

information like the advice bodies, inter-type declarations and others. The 



process is then taken over by the Soot framework. It takes the purely Java AST 

and transforms it to its internal representation called Jimple. The framework then 

uses several modules that can convert freely between Jimples, Java byte code and 

Java source code to conduct the weaving process and output the final .class and 

.java files.

Using abc rather than our implementation has two disadvantages. First, 

Polyglot offers a clean and modular way to extend the grammar, but has a 

standard lexer for interpreting it, which is not extensible. This means that to 

make abc recognize the new language you build on top of it, one would need to 

copy and rewrite the existing lexer. This is not the case when using our approach, 

as the CS language in EMFText allows the reuse and extension of the defined 

lexing rules. Secondly, we argue that the weaving process in our approach is 

handled with less effort. The declarative way in which we “carry” the AspectJ 

information to be woven by using the annotation-based style is easier to 

understand than Polyglot’s transformations that separate its AST. It also enables 

us to delegate the complexity of the weaving process to AspectJ’s load time 

weaver, something that can not be done in abc, rather than having our users 

implement it themselves.

AspectJ-front. AspectJ-front is the combination of a syntax definition and a 

printer for AspectJ 5 and is made using the Spoofax modeling framework. The 

syntax definition is written in SDF, which is the metamodeling language in 

Spoofax. The printer is build in Stratego/XT. This is a subset of tools in Spoofax 

used specifically for program transformations. The printer is written as 

transformation rules that change the initial parse result (stored in Spoofax’s 

ATerm format) into text.

AspectJ-front by itself is an extension of a similar combination of syntax 



definition and printer for Java called Java-front. This already shows that 

extensions can be written with relative ease which matches one of our design 

criteria we set out to achieve - extensibility. AspectJ-front is also modular as the 

syntax definition is clearly separated from the printing rules. Thus, it also matches

the second criteria we have set. The reason why we did not opt to use it is because

it did not match the third design goal we have – simplicity.

We argue that picking EMF with respect to simplicity is better than the 

alternative of using Spoofax for two reasons. First, building an extension on top 

of previous work in EMF would require extending both the Ecore metamodel and

the CS syntax definition. Having done that, EMF generates a parser and printer 

for you. The same result in Spoofax would require extending the SDF syntax 

definition, but also writing a new printer. One might argue that for the additional 

cost of writing the printer by hand, Spoofax at least skips the metamodeling step, 

however this is not truly the case. A programmer still has to have a mental image 

of the metamodel to follow when writing the syntax definition. EMF simply 

externalizes that process and produces a tangible artifact (i.e. the .ecore file) that 

can be shared and used as a specification between programmers. Secondly and 

more importantly, we believe that starting out with AspectJ-front in general is the 

harder approach. AspectJ-front is not mature and lacks proper documentation. 

The tool is outdated and barely supported anymore. Furthermore, when using 

our implementation, you do not have to implement any weaving logic, which is 

not the case with AspectJ-front.

ReflexBorg. “The ReflexBorg approach is a method for implementing aspect-

oriented extensions of Java, including both their syntax and semantics” [11]. It 

consists of three layers. One layer is for the syntax definition of the language, 

written in SDF. Another is for the transformation of the abstract terms of the 



aspect language into Java code instantiating Reflex elements, which is written in 

Stratego. The final one takes care of the semantics and weaving and is written in 

Reflex. Reflex is a Java implementation of a versatile kernel for aspect-oriented 

programming using bytecode transformation.

ReflexBorg uses the same metamodeling language (SDF) and the same model 

transformation tool (Stratego) as AspectJ-front, so the same concerns apply here 

as well.

The following subsections will explain the design of our AspectJ foundation by 

examining the metamodel we have developed, the transformation to annotation-

based style and the testing process that we have used to evaluate it.

Metamodel. Following the naming convention set out from Kardelen, whose 

AspectJ prototype we used as inspiration, our metamodel consists of five 

subpacakges.

1. Commons package -  contains entities for the top-level members in AspectJ

(i.e. aspect, pointcut and advice).

2. Pointcuts package – contains entities for the 18 primitive pointcuts that the 

language supports.

3. PcExp package – contains entities for the acceptable pointcut combinators.

Those are && (and), || (or) and ! (negated).

4. Advice package – contains entities for the 5 different advice types (i.e. 

Before, After, After Returning, After Throwing and Around). 

5. Patterns package – contains entities for the pattern matching in pointcuts.

The Commons Package.



Figure 1. Overview of the Commons Package
The key design consideration here that drove the design of the whole package 

was whether an aspect should be treated “exactly” like a regular Java class. 

According to the AspectJ Developers Guide [1] an aspect declaration is 

syntactically similar to a class definition. Three of the differences they point out 

are that an aspect can cut across other types; that it can not be directly 

instantiated and that in case of nesting, the nested aspect must be static. However,

the difference that influenced our metamodel design the most was that a class can 

not contain advice code.

According to the specification a regular class can contain pointcut definitions, 

but can not contain an advice block of any kind. This meant that there is a divide 

in the contents of an aspect (i.e. contents that can also be contained in classes and 

aspect-only code). This separation can be enforced in one of two ways. One way is

to make a constrained metamodel that does not allow such mix-ups. Another 

approach is to make a more liberal metamodel that allows them, but write a post-

processing semantic check that disregards such cases. We opted for the latter for 

two reasons.



First, it simplifies the metamodel. Enforcing such a constraint in the 

metamodel would result in an overhead of entities. We would need to make one 

entity that “captures” all the class contents (e.g. methods, fields and pointucts) 

and another for the Advice. This differentiation would also result in a need for 

two more entities so that a compilation unit can hold both aspects and classes. 

Without this overhead the metamodel is more streamlined.

Secondly, the JaMoPP model that we are using as a foundation comes with 

setter and getter methods implemented for the different entities it has. Directly 

extending these entities lets us reuse these methods which eased the process of 

implementing the custom reference resolvers for our AspectJ implementation.

Having settled on this issue the design became clear. The AspectJ compilation 

unit directly extends the Java compilation unit. Since it contains a reference to 

ConcreteClassifiers, we make the aspect extend ConcreteClassifier. We also 

directly extend Implementor to complete the functionality of an aspect to 

implement another. It contains one attribute of type boolean to determine if the 

aspect is priviliged or not and one reference to a type, in case the aspect extends 

another. The ConcreteClassifier entity contains a reference to Member, which is a 

supertype for the different class members (e.g. methods, fields). Thus, we model 

the pointcut and advice as Members. Both advice and pointcut entities contain a 

reference to a pointcut expression.

The Pointcuts Package.



Figure 2. Overview of the Pointcuts Package

The package contains one entity for each of the 18 possible primitive pointcuts [1] 

and one common supertype PrimitivePointcut for easy polymorphic referencing. 

Each of the 18 entities contain a reference to the pattern they can match.

Such a design allows for an easy implementation of pointcut extensions. For a 

new type of primitive pointcuts, a programmer can add a new entity that extends 

PrimitivePointcut or he can modify it to introduce new global pointcut 

functionality.

The PcExp Package.



Figure 3. Overview of the PcExp Package

One tough problem that comes up when designing compound expressions is how

to effortlessly implement the order of precedence of the operators. Our approach 

is inspired by the design of compound Java expressions in JaMoPP.

We have a PointcutExpression entity whose syntactical rule can be simplified as 

<OrPointcutExpression> && <OrPointcutExpression>, thereby giving least priority to 

&&. An  OrPointcutExpression’s rule on the other hand can be considered as 

<UnaryPointcutExpression> || <UnaryPointcutExpression>, which gives || second 

priority. Finally, an UnaryPointcutExpression is just a PrimitivePointcut that can 

either be negated or not, determined by a boolean attribute, giving ! top priority.

The Advice Package.



Figure 4. Overview of the Advice Package

The Before and After advice are simple and inherit directly from our basic 

Advice entity without extending it with any additional functionality. The After 

Returning and After Throwing extend the After advice with the addition of one 

extra reference to the returned or thrown parameter respectively. Finally, the 

return type of Around advice determines the need to inherit from TypedElement. 

ArrayTypeable and TypeParametrizable allow the return type to be an array or a 

generic respectively. We also cover the possibility for a proceed statement in the 

Around advice with the Proceed entity. The Proceed entity is a direct subtype of 

Statement which means that, according to the metamodel, a call to proceed is valid

from every type of advice or any other Statement container. Although this is 

wrong, we again chose to have a more liberal metamodel and introduce the 

constraints in a post-processing step in the future.

The Patterns Package.



Figure 5. Overview of the Patterns Package

Due to the numerous symbols and combinations, and possible ambiguity, 

implementing the pattern matching mechanics proved to be one of the hardest 

parts of designing the metamodel. We used the abc AspectJ grammar [12] as a 

reference guide for this particular part of the process.

There are three important families of patterns. The first one is located in the 

mcf package. It contains the FieldPattern, the ConstructorPattern and the 

MethodPattern. The first one is used in case of a get and set pointcuts. The second is

used in the context of initialization and preinitialization pointcuts. The final one 

and the ConstructorPattern are subtypes of the MethodConstructorPattern since 

many of the pointcuts can match either a method call or a constructor call (e.g. 

call, execution, withincode). The second family of patterns match class names. They 

are located in the classname package and are used with respect to the within, 

handler and staticinitialization pointcuts. The final big family of patterns is 



responsible for matching types and identifiers and is located in the type package. 

Patterns from this family are used with this, target and args pointcuts.

The rest of the patterns serve as parts of or helpers to the patterns from these 

three families. 

Transformation. AspectJ 5 introduced an alternative to writing aspect 

declarations in the traditional way by incorporating a new annotation-based style.

The gained benefit is that programs written in this annotation style can now be 

compiled with a regular Java 5 compiler and be woven separately at a later stage. 

Typically both of these processes are done at compile-time by the ajc compiler. 

Separating these two concerns (compiling and weaving) is what allows us to focus 

on making a moular AspectJ implementation and handle the compiling and 

weaving processes with traditional tools (i.e. the Java compiler javac and AspectJ’s 

load-time weaver). Unlike in other AspectJ compilers like abc, not having to 

implement complex weaving mechanics is the key factor for an easier and faster 

extension development.

The following table provides an overview of the main AspectJ concepts 

written in both regular and annotation-based styles. The examples were taken 

from the official AspectJ 5 Development Kit Developer’s Notebook [1].



Regular style Annotation style

public aspect <Foo> { } @Aspect
public class <Foo> { }

pointcut <AnyCall>() : <call(* *.* (..))>; @Pointcut(“<call(* *.* (..))>”)
void <AnyCall> () { }

before() : <call(* *.*(..))> { } @Before(“<call(* *.*(..))>”)
public void bfAdvice () { }

after() : <call(* *.*(..))> { } @After(“<call(* *.*(..))>”)
public void afAdvice () { }

after() returning(Foo <f>) : <call(* *.*(..))> 
{ }

@AfterReturning(pointcut="<call(* 
*.*(..))>", returning="<f>")
public void afrAdvice (Foo <f>) { }

after() throwing(Exception  <e>) : 
<call(* *.*(..))> { } 

@AfterThrowing(pointcut="<call(* 
*.*(..))>", throwing="<e>")
public void aftAdvice (Exception <e>) { }

Object around(int <i>): <setAge(i)> {
    return proceed();
 }

@Around("<setAge(i)>")
public Object arAdvice 
(ProceedingJoinPoint jp, int <i>) {
    return jp.proceed();
}

Table 1. AspectJ Components in Regular and Annotation Style

To get the model we obtain after parsing from the regular AspectJ style to the 

annotation style, we must use a model transformation language. More precisely, 

we need a model-to-model transformation language to translate a model 

conforming  to our AspectJ metamodel to one that conforms to the Java 

metamodel provided by JaMoPP. We considered two of the most popular and 



mature transformation frameworks that support EMF-based models – Model-to-

Model Transformation (MMT) [13] and Epsilon [14].

MMT consists of two very distinct model-to-model toolkits – QVT and ATL. 

QVT is a standardized set of three model-to-model languages – QVT-

Operational, QVT-Relations and QVT-Core. The first one is an imperative 

language, while the other two are both declarative and are therefore commonly 

jointly called QVT-Declarative [15].

ATL was initially designed as an alternative to QVT before getting paired with

it in MMT. ATL supports both imperative and declarative styles of writing 

transformations. The recommended style is declarative as it is better for simple 

and straightforward transformation rules, but imperative can also be used for 

more complex ones [16]. 

Epsilon is a rich toolset that can be used for model validity, model comparison,

code generation and model-to-model transformation. The framework provides a 

language for each of those functionalities. All of those languages, however, are 

minimal extensions built on top of a common imperative language – the Epsilon 

Object Language (EOL). The language for the model-to-model transformation is 

called Epsilon Transformation Language (ETL). Like ATL it is a hybrid language in 

the sense that it supports both imperative and declarative styles of writing [14]. 

In comparison, both MMT and Epsilon allow us to have rules that transform 

any number of input models to any number of output ones. Both frameworks also

support imperative and declarative styles of writing. Finally, both frameworks are 

mature and rich, and offer a diverse set of extra functionality like syntax 

highlighting, error detection and debugging in Eclipse. With respect to these 

common classification criteria Epsilon and MMT are similar to each other. The 

only deciding requirement we had was how easy it is to call class methods outside 

the context of the transformation, since, as can be seen from  Table 1, to transform



a pointcut or advice a programmer would need to transform the pointcut 

expression they contain to a string and pass it along as a parameter of the 

annotation. Since no transformation language would be able to perform this task 

natively, we needed an easy way to call our generated printer to do that. 

In QVT such cases are referred to as “black box operations” [17]. We found 

this approach to make the project and its design more complicated. Epsilon, on 

the other hand, has a clear way of doing this and even lists it among the main 

features to use the framework [14]. Later in this section we are going to explain 

more in-depth exactly how we accomplished this task as it proved to be rather 

challenging, but this was the sole reason we picked Epsilon over MMT. The 

choice, however, will also allow us to re-use code from our transformation rules to

implement model validity or unit tests for the transformation in future work, as 

all languages in Epsilon share a common syntactical foundation.

ETL transformations are organized in a module that can contain an arbitrary 

number of uniquely named transformation rules. As well as transformation rules, 

an ETL module can optionally contain any number of pre or post blocks of 

statements which are executed before or after the transformation respectfully [18].

The following listing displays the syntax for a transformation rule and the 

post/pre blocks.



1. (pre | post) <name> {
2.     statements+
3. }
4.
5. (@abstract)?
6. (@lazy)?
7. (@primary)?
8. rule <name>
9.     transform <sourceParameterName> : <sourceParameterType> 
10.     (, <sourceParameterName> : <sourceParameterType>)*
11.     to <rightParameterName> : <rightParameterType>
12.     (, <rightParameterName> : <rightParameterType>)*
13.     (extends <ruleName> (, <ruleName>)*)? {
14.
15.     (guard (:expression) | ( { statementBlock }))?
16.
17.     statements+
18. }

Listing 1. Syntax of a Transformation Rule and Pre/Post block

The pre and post blocks consist of the respective identifiers (pre or post), an 

optional name for the block and the set of statements to be executed. The 

transformation rule can be declared as abstract, lazy or primary via annotations, 

followed by the rule identifier and the rule name. The source and target models are

declared following the transform and to keywords. A rule can also extend any 

number of different transformation rules declared after the extends keyword. 

Apart from the EOL statements a programmer can also specify a guard statement 

to limit the applicability of the rule to a selected subset of source models [18].

In the following subsections we are only going to demonstrate our 

transformation rule for the Before advice as the rest are analogous. We believe it 



still sufficiently captures most of the challenging logic we faced when designing 

the transformation.

As can be seen from Table 1, a Before advice declaration using the annotation 

style is just a regular public Java method of type void that has the @Before 

annotation. Two important considerations here are: 

1. Although the advice declaration does not have a name, the Java 

method must have an unique name.

2. The pointcut expression that the advice contains is passed as a string 

parameter to the annotation.

  Listing 2 shows our transformation rule for the Before advice.
1. rule Advice2Method
2.     transform ajAdvice : aspectj!Advice
3.      to jMethod : java!ClassMethod {
4.         
5.     jMethod.name = getUniqueAdviceName(ajAdvice);
6.     jMethod.parameters = ajAdvice.parameters;
7. }
8.
9. rule BeforeAdvice2Method
10.     transform ajBeforeAdvice : aspectj!BeforeAdvice
11.      to jMethod : java!ClassMethod
12.      extends Advice2Method {
13.         
14.      jMethod.annotationsAndModifiers.add(getAnnotation(ajLibBefore!

Commentable.allInstances().first(), "Before", ajBeforeAdvice.pcref));
15.      jMethod.annotationsAndModifiers.add(new java!Public);
16.         
17.      jMethod.typeReference = new java!Void;
18.      jMethod.statements = ajBeforeAdvice.statements;
19. }

Listing 2. Before Advice Transformation Rule



Lines 1 – 7 describe a common rule that all other advice rules extend. It takes care 

of the first consideration we noted by calling a getUniqueAdviceName helper 

method and passes along the parameters that the advice might have as parameters 

of the new method. Lines 15, 17, 18 set the method to be public, be of type void and 

pass along the body of statements the advice contains as the body of the new 

method. These three lines are common for all advice types except Around (the 

annotated method for Around has the return type of the Around advice itself and

a proceed statement will get transformed rather than copied verbatim). Thus, one 

can argue that those three lines could also be extracted to the common advice rule

and have a separate and specific rule for Around. We liked our approach better as 

an Around advice is still a type of advice and thus the relationship is still of an is-

a kind, which is best represented by inheritance. Finally, line 14 and the call to 

getAnnotation handle the second consideration we mentioned.

Let us now demonstrate the implementation of these two methods: 

getUniqueAdviceName and getAnnotation.
1. pre {
2.      var globalAdviceCounter : Integer = 0;
3. }
4.
5. operation Any getUniqueAdviceName(ajAdvice : aspectj!Advice) : String {
6.      globalAdviceCounter = globalAdviceCounter + 1;
7.      var name : String = "aj$" + ajAdvice.eClass.name + "$" + 

ajAdvice.eContainer.name + "$" + globalAdviceCounter + "$" + 
ajAdvice.hashCode();

8.         
9.      return name.replace(" ", "_");
10. }

Listing 3. Getting the Unique Name for Advice Methods



Listing 3 shows how we handle the first consideration of generating an unique 

name for the advice method. We looked at how the official AspectJ compiler 

handled the same issue and tried to imitate the same behavior. Line 7 shows how 

we form the name of the method. We start with the string aj (a mnemonic for 

AspectJ), concatenate the type of advice (in our example this would be “Before”), 

the name of the aspect that contains the advice, a global counter of advice and 

finally add a hash value. We use a pre block to create an advice counter variable as

since it gets executed only once before the actual transformation, it simulates the 

global variable we need.



1. operation Any printModelElement(elem : Any) : String {
2.     var resourcePrinter = new 

Native("org.kardo.language.aspectj.resource.aspectj.mopp.ParameterlessAspectj
Printer");

3.  
4.     if (elem.isDefined()) {
5.         return resourcePrinter.printElement(elem);
6.     } else {
7.         return "";
8.     }
9. }
10. …
11. operation Any getAnnotation(libModel : Any, annotation : String, 

pointcutExpression : aspectj!PointcutExpression) : java!AnnotationInstance {
12.     var anno = makeAnnotationInstance(libModel, annotation);
13.
14.     if (pointcutExpression.isDefined()) {
15.         var pcExp : String = printModelElement(pointcutExpression);
16.         var param = new java!SingleAnnotationParameter;
17.         param.value = getParameterValue(pcExp);
18.         anno.parameter = param;
19.     }
20.     return anno;
21. }

Listing 4. Getting the Advice Annotation with the Pointcut Expression

Creating and setting up the annotations was one of the major issues we faced 

while working on the transformation. There are two problems with this task. 

First, how to create an instance of the annotation entity of the Java metamodel 

we use that “points” to the actual annotation located in the AspectJ library. An 

annotation in JaMoPP’s Java metamodel is represented by the AnnotationInstance 

entity. It contains an optional namespace part (i.e. an ordered set of strings) for 



the fully qualified annotation name, and a name part (i.e. an element of type 

Classifier). Classifier is another entity in the metamodel, but it is abstract, which 

means we can not directly construct it and set it to the correct annotation name 

(i.e. Before in our case). What we have to do is find the correct concrete subtype of

Classifier and then assign the annotation name to it. To solve the problem we 

took all the actual .java files of the annotations from the AspectJ library, parsed 

them with JaMoPP and fed the resulting models to the transformation. At that 

point, setting the name part of the annotation we are trying to create was just a 

mapping to the correct model entity. The query to obtain the correct model is 

done in the makeAnnotationInstance method.

The second problem we faced was how to get a string representation of the 

pointcut expression that advice contain. Lines 1 – 9 of Listing 4 demonstrate our 

solution. The easiest way to accomplish this task is to call the generated printer 

for our AspectJ model and pass the pointcut expression. ETL offers an easy way 

to access a class outside the context of the transformation, however the only 

requirement is that the class has a no-argument constructor. Since the generated 

printer class does not have such a constructor, we decided to write a custom 

printer class that extends the original and write such a constructor for it. We 

prefer this over the alternative of simply adding such a constructor in the 

generated printer, as this way is more extensible and imposes a clear separation of 

the generated and non-generated code. On line 2 we create a variable that points 

to the custom printer and on line 5 we call its printElement method to obtain the 

string representation of the pointcut expression.

Testing and Evaluation. In the previous subsections we presented our 

AspectJ metamodel as well as some challenges and design decisions we faced 

along the way. In order to evaluate the approach we have devised a test suite to 



demonstrate the correct parsing of AspectJ applications in reference to the official

AspectJ compiler - ajc. 

The goals of the suite are to test 1) that our parser accepts valid AspectJ code, 2)

that the model instance created after parsing has the expected structure, 3) that 

the generated printer outputs a code representation of the model that is 

semantically equivalent to the input. To achieve these goals we employed a testing

process similar to how JaMoPP was tested [7]. The process is shown on Fig. 6.

Beginning with a valid AspectJ source file, both our generated parser and the 

Figure 6. Test Process for the AspectJ Implementation



reference one (the ajc) process the file and create their respective internal 

representations of it. In our case, this is a model instance of the AspectJ 

metamodel with unresolved cross-references. In ajc’s case, this is an abstract 

syntax tree (AST). Next,  our reference resolvers attempt to resolve the cross-

references after which the generated printer reprints the model in its text form. 

The reprinted source file is fed to the reference compiler which creates another 

AST. Finally, the AST of the reprint is compared to the original one via an AST 

matcher provided by ajc. 

We believe this approach meets the goals we set out to achieve. First, if our 

parser accepts all the valid AspectJ test programs we give it and not throw a 

parsing error, then we can conclude that the soundness property in our first goal 

is met. Secondly, the structure of the model instance is checked for correctness by

the AST matcher. If there are any unresolved or missing elements, they will cause 

resolving errors and not get reprinted, which will be detected by the AST 

matcher. Lastly, any other mismatches that might raise error messages will also be 

detected by the matcher. In those cases, we manually checked the reprinted 

source file and compared it with the original to discover the source of the error. In

nearly half of our test cases we exhibited such reprinting errors although all of the

test files were parsed without errors. Often times white space, empty blocks and 

other layout information led to the mismatches causing the errors.

Due to limitations we imposed on the metamodel by design, running our test 

suite with official AspectJ benchmarks was impractical as it would require us to go

through each source file and modify uses of functionality we did not implement. 

Thus, as input for the test process we provided 18 AspectJ files we custom wrote 

ourselves. We tried to achieve maximum coverage by writing test cases for the 

different variations of each element in our AspectJ model following the official 

AspetJ 5 Quick Reference [19]. The overview of the test files separated over the 



packages in our metamodel is the following:

• Advice package – Contains 5 test files, one for each advice type. Each file 

tests for an empty advice, for an advice that exposes a parameter, for a 

strictfp advice and for an advice written in annotation style.

• Commons package – Contains 3 test files. The first one test for possible 

classifier declarations in a compilation unit (i.e. an aspect, a class, an 

annotation, an enum and an interface). The second tests for possible 

kinds of non-AOP contents of an aspect (i.e. a nested class, a field and a 

regular method). The last one tests for possible pointcut declaration 

variations (i.e. one without a modifier, one with a modifier, one without a 

pointcut expression, one where the pointcut expression is just a primitive 

pointcut and one where it is a conjunction).

• Patterns package – Contains 8 test files that also thoroughly test the 

variations of the pattern types we have modeled (refer to the patterns 

subsection in Sec. 3).

• Pcexp package – Contains 1 test file. It checks for a pointcut declaration 

with a regular pointcut expression and one with a negated pointcut 

expression.

• Pointcuts package – Contains 1 test file. The file contains 18 pointcut 

declarations that test out possible primitive pointcuts (e.g. call, execution).

The testing was automated with the Junit framework and special effort went 

into making the environment easily extendable with more tests. A programmer 

simply has to put a valid AspectJ source file ending with the .aspectj extension of 

our implementation in the src-input folder of the testing project and then rerun 

the tests. In the end all 18 files passed the test suite.

In conclusion, we can say that while this test process does not guarantee 

completeness, it does give us enough confidence that our AspectJ implementation



can be the foundation of language extensions that can be used in practice.

To test the transformation we fed the 18 files we had written to our parser and 

ran the transformation on the results. After that, we manually ran through the 18 

outputted models and checked if they have been transformed according to the 

transformation rules in the AspectJ 5 Development Kit Developer’s Notebook [1] (part 

of those rules you can see in Table 1). 

Apart from differences in layout information, all the resulting models satisfied 

our expectations with respect to the official guide. We can, therefore, say that the 

percent of the metamodel covered by these 18 test files is also transformed 

correctly.

A better testing approach would be to write a script to run all the test files we 

have through our parser. After that, we would execute the transformation on the 

resulting models and run them through the JaMoPP printer. The resulting Java 

source files can then be put through a testing process similar to the one we used 

for the metamodel. The difference being that this time we use JaMoPP’s parser, 

the standard Java compiler javac and the JDT AST matcher rather than their 

respective AspectJ equivalents. Setting up such a testing environment would take 

much time in integrating JaMoPP, javac and the JDT matcher, so we left this for 

future work and opted for a smaller and more manual approach. 

4. Natural Aspects Implementation
Natural Aspects [20] is a proposal for a language extension of AspectJ that 

introduces a minimal amount of additions that make for a more natural style of 

aspect-oriented programming. The language allows the declaration of events. 

Event declarations are similar to aspect declarations and collect context 

information in local fields over time. Events are also side-effect free. Another 



addition to AspectJ are the event detectors. Event detectors are named pointcut 

expressions that can also contain a reference to a named event or event detector. 

The language calls the pair of (event detector, response) a basic unit. One such unit

that is introduced is the when basic unit. It can contain a special trigger operation 

that announces events upon their detection. Finally, the language proposes a 

method for aspect composition through the use of a composes clause and several 

declare statements that enforce a strict ordering of the composed aspects.

Natural Aspects strives to achieve three main goals: (1) complete separation of 

event identification from response; (2) natural composition of both events and 

aspects; and (3) loosen the coupling between the aspects and the base program.

Metamodel. The structure of the Natural Aspects metamodel contains four 

subpackages:

1. Commons package – contains entities for the top-level members in Natural 

Aspects (i.e. an event, an event detector and the new extended aspect).

2. BasicUnits package – contains entities for the when basic unit and the 

accompanying trigger statement.

3. Composition package – contains entities for the composition of aspects and

the local declare statements that determine the ordering in those cases.

4. EventDetectors package – contains entities for the new primitive pointcuts 

(i.e. those that refer to a named event and a named event detector).

The Commons Package.



The compilation unit directly reuses the AspectJ compilation unit without 

extending it with any functionality. 

The NaturalAspect is the new entity that models the concept of aspects in the 
language. The main change to aspects that the language introduces is the ability 
of an aspect to be defined as a composition of other aspects. The new entity 
reuses the old one from the AspectJ implementation and, in addition, inherits 
from Compositor, which is a new entity introduced in this extension. The role of 
the Compositor entity is to be an interface from which you inherit aspect 
composition behavior.

The Event entity models the new concept of events. The structure of the Event 

entity is similar to that of an aspect (i.e. it inherits from the same supertypes - 

ConcreteClassifier and Implementor) with the addition of Parametrizable to 

account for the parameters that an event can expose.

Finally, the EventDetector represents the concept of event detectors in the 

language. Event detectors are named pointcut expressions that can be written 

outside the scope of an aspect declaration. To make event detectors on the same 

structural level as aspects and events, they must also extend ConcreteClassifier.

Figure 7. Overview of the Commons Package



The BasicUnits Package.

The WhenBU entity is a direct extension of  Advice as basic units are practically 

renamed blocks of advice. Similarly to the Proceed entity from the AspectJ 

foundation, Trigger is a direct subtype of Statement which will result in a valid 

model from an invalid piece of code (i.e. if the trigger call happens from an advice 

not of type when). However, the same consideration there still holds. Making a 

more restrictive metamodel will result in an overhead of copied entities for every 

kind of statement, while leaving it more liberal, with a post-processing semantic 

check, results in a simpler and organized metamodel.

The Composition Package.

Figure 8. Overview of the BasicUnits Package



With the introduction of aspect composition (achievable by extending the 

Compositor interface), the language offers a few ways of controlling the ordering 

in the compound aspect. This is done via the use of declare statements. 

There are three declare statements. Let us demonstrate their functionality with

an easy example consisting of one aspect A, that is composed of aspects B and C. 

With the local declare precedence B, C statement all basic units in B will precede 

those in C. An optional keyword except can denote a list of pairs of basic units 

whose order is the reverse of that stated in the declare statement. The local declare

overriding B, C means that if basic units from B and C are applicable at a certain 

join point, only those from B will respond. In addition to the except clause, this 

statement offers an optional nooveride list for basic units that do not override each 

other. Finally, the local declare ignoring B, C means that responses from basic units 

in B will not trigger if the join point was matched by an event detector in C. 

Figure 9. Overview of the Composition Package



Similar to the  nooveride clause, this statement provides a noignore one that 

overrides this behavior.

In the metamodel all three of the local declare statements share a common 

supertype DeclareDeclaration that contains a reference to the aspects mentioned in

the statement. The concrete subtypes for each of the three (PrecedenceDeclaration, 

OverridingDeclaration and IgnoringDeclaration) contain references for the exclusive 

optional clauses.

  

The EventDetectors Package.

The Natural Aspects paper [20] allows event detectors to contain pointcuts 

that refer to named events and named event detectors. To accomplish this we 

have extended the PrimitivePointcut entity from our AspectJ implementation 

with two new pointcut types. The first one is responsible for the named events 

(NamedEventPointcut) and contains a reference to an event. The other is 

accountable for the event detectors (NamedDetectorPointcut) holding a reference to

one.

Figure 10. Overview of the EventDetectors Package



Transformation. The following table gives an overview of the new concepts

introduced in Natural Aspects and how they translate to AspectJ. The examples 

were taken from the paper that proposed the extension and modified for brevity 

[20].

Natural Aspects AspectJ

When Basic Unit when(P <product>): 
<call(P.timeDone())> { }

Object around(P 
<product>): 
<call(P.timeDone())> { }

Event event <LowActivity>(P 
product) { } aspect <LowActivity> { }

Aspect aspect 
<LowActivityDiscount> { }

aspect 
<LowActivityDiscount> { }

Event Detector <FinishedProduct>:
<call(P.timeDone())>

aspect <FinishedProduct> {
  pointcut 
<FinishedProduct>Pointcut: 
<call(P.timeDone())>;
}

Table 2: Natural Aspects Components Translated to AspectJ

The when basic unit is transformed to an around advice with the same 

parameters, pointcut expression and statements. Special treatment is needed in 

case of a trigger statement in the basic unit. We are going to explain this scenario 

more in-depth in the following subsections as it was the main challenge we faced 

with this transformation.

The event is transformed into an aspect and all its attributes are copied 

verbatim.

A simple aspect (one that is not composed from other aspects) is copied 

verbatim without any modifications. In case of a compound aspect we modify the 

statements that it contains. We are going to use the following code snippet to 

illustrate the four cases for that modification depending on the three declare 



statements.
1. aspect A {
2.   BasicUnitA:
3.     after(): pcA() { }
4. }
5.
6. aspect B {
7.   BasicUnitB:
8.     before(): pcB() { }
9. }
10.
11. aspect C composes A, B { }

Listing 5. Basic Aspect Composition Example Scenario

1. No declare statements – In this case we copy BasicUnitA and 

BasicUnitB (lines 2-3, 7-8) and add them to the contents of aspect C.

2. A local declare precedence A, B statement – In this case we also copy the 

two basic units, only this time the order to add them is specific (i.e. 

BasicUnitA must be added before BasicUnitB).

3. A local declare overriding A.BasicUnitA, B.BasicUnitB statement – In 

this case we copy BasicUnitA and add it to the contents of aspect C. 

We proceed to copy BasicUnitB but before adding it to C, we modify 

the pointcut expression of the basic unit to pcB( ) & !pcA( ). This is to 

achieve the intended behavior to force the new aspect to disregard 

join points that get matched by both basic units and only respond to 

those that get matched by either one, or the other.

4. A local declare ignoring A.BasicUnitA, B.BasicUnitB statement – In this 

case we take an approach similar to the last one. Only this time we 



modify the pointcut expression of BasicUnitB to pcB( ) & !cflow(pcA( )). 

Again, this is to achieve the intended behavior of not triggering the 

response of the aspect if joint points that are in the workflow of pcA( ) 

get matched by pcB( ).

Since the event detector is a top-class entity that can be written outside of the 

scope of an aspect and in AspectJ the pointcut expression must be in one, we 

transform the event detector to an empty aspect and add a new pointcut with the 

event detector’s pointcut expression.

Handling the trigger statement in a when basic unit proved to be the hardest 

challenge while doing this transformation. There are several considerations when

mapping an event declaration with a trigger statement to  pure AspectJ syntax.

• We have to be careful not to introduce external side-effects as per design 

the event declarations should go without.

• We should have a way of determining if the event was triggered that is 

thread-safe.

• We should have a public interface to refer to the event in case of an event 

detector with a reference to that event.

The following listings demonstrate our approach in handling these problems.



1. rule WhenBU2AroundAdvice
2.     transform naWhenBU : naturalaspects!WhenBU
3.     to ajAroundAdvice : aspectj!AroundAdvice {
4.
5.     …
6.     

ajAroundAdvice.statements.addAll(getWhenStatements(naWhenBU.statements));
7.     ...
8. }
9.
10. operation Any getWhenStatements(statements : Any) : Collection {
11.     var result = new OrderedSet;
12.
13.     for (statement : java!Statement in statements) {
14.         if (statement.isTypeOf(naturalaspects!Trigger)) {
15.             result = handleTrigger(result, statement);
16.         } else {
17.             result.add(statement);
18.         }
19.      }
20.     return result;
21. }

Listing 6. When Basic Unit Transformation Rule

Line 6 of Listing 6 passes the statements of the basic unit to the 

getWhenStatements method which checks every statement whether it is a trigger 

statement, in which case it passes it along to the handleTrigger function, or 

otherwise adds it to the resulting collection. Let us now demonstrate the 

implementation of the handleTrigger method.



1. operation Any handleTrigger(col : Any, statement: Any) : Collection {
2.      var result = col;
3.      var containingEvent = statement.eContainer.eContainer;
4.
5.      //ThreadLocal Stack
6.      var stack = getThreadLocalStack();
7.      addStackToContainingEvent(stack, containingEvent);
8.
9.      //Public Pointcut as Interface to Event
10.      var pointcut = getPointcutAsInterface(statement.eContainer.pcref, stack);
11.      containingEvent.members.add(pointcut);
12.      
13.      //Side-Effect Free Populating of the Stack
14.      result.addAll(populateStack(stack));
15.
16.      return result;
17.  }

Listing 7. Handling the Trigger Statement

The method consists of three steps that address the three concerns mentioned 

before. 

First, we need a way to determine if the event is triggered. Since this can be 

accomplished from several different points in the program flow and multiple 

aspects could respond in different ways to it, a simple Boolean flag to mark if the 

event was triggered would not be enough. We have to use a thread-safe data 

structure for the possibility of multiple triggering. On line 6 we call the method 

getThreadLocalStack to create a thread-local instance of a stack and on the 

following line add it to the event that contains the when basic unit that we are 

currently transforming.

Secondly, we need to populate the stack in a way that is free of external side-



effects. This is done on line 14 by calling the populateStack method. What it does is

to push a True object in the stack that marks that we have passed a trigger 

statement, crates an Object on which to pass the result of a call to proceed( ), after 

which pops the top value of the stack and returns the created Object with the 

proceed workflow. 

Finally, we need to set up a public pointcut as an interface to other elements. 

This is achieved by calling the getPointcutAsInterface method on line 10. It takes as 

parameters the pointcut expression of the containing when basic unit and the 

newly-created stack to create a public pointcut. That pointcut’s expression is a 

conjunction of the basic unit’s expression and an if pointcut to check whether the

top element of the stack is True (i.e. if the event got triggered). The next line adds 

this newly-created pointcut to the containing event.

Testing and Evaluation. In this subsection, we are going to test the simplicity 

and ease of use of our AspectJ implementation, and evaluate it with respect to our

design goals. We  will accomplish this by demonstrating how the “named event” 

pointcut (i.e. the one that is a reference to an event) from the Natural Aspects 

extension can be implemented in the AspectBench Compiler and we will 

compare both designs. The steps to implement this functionality in abc are 

reproduced from similar pointcut extensions described in [21]. 

1. Extending the lexer

This is the first step when extending abc. In this case, the pointcut we are 

attempting to implement does not use any new keywords and so no modifications 

to the lexer are required. Such is the case with our AspectJ implementation as 

well.

2. Extending the parser

The next step is to extend the parser with a syntax rule for the new pointcut. 



In the case of abc the new syntax rule would like this:
1. extend basic pointcut expr ::=
2.     EVENT :x LPAREN formal parameter list opt:a RPAREN : y
3.     {:
4.     RESULT = parser.nf.PCEvents(parser.pos(x,y), a);
5.     :}

Listing 8. Extending a Grammar Rule in ABC

The keyword extend signifies that the new rule should be added to the rules that 

already exist for basic_pointcut_expr. Line 2 describes the signature (i.e. event 

reference, followed by a parameter list, enclosed in brackets). Finally, on line 4, the

result is a call to the node factory of the parser class.

On the other hand, the same syntax rule written in the CS language of 

EMFText looks like this:
eventdetectors.NamedEventPointcut ::= eventId[] "(" namedEventPattern? ")";

Listing 9. Writing a Grammar Rule in Our Implementation

Similarly, this rule also begins with a reference to the event, followed by a  pattern

enclosed in brackets.

3. Adding new AST nodes

Any functionality with which we wish to extend the abc must be represented in 

Polyglot’s AST. For a clear way of extending the AST, the abc team first suggests 

to define an interface for the new AST nodes.



1. public interface EventPointcutDecl extends PointcutDecl {
2.     public void registerEventPointcut(EventPointcuts visitor,
3.                                                                           Context context,
4.                                                                           EAJNodeFactory nf);
5. }

 Listing 10. An Interface for the New AST Node

The next step is to write a concrete class implementing this new interface. Here, 

some boilerplate code is required (a constructor, methods that allow visitors to 

visit the pointcut and a concrete implementation of the registerEventPointcut). 

Finally, in order to make sure that we can instantiate this new node, we have to 

write a subclass to abc’s default node factory and create a method for obtaining an

instance of the EventPointcutDecl.
1. public EventPointcutDecl EventPointcutDecl (Position pos,
2.                                                                                                Event ev,
3.                                                                                                FormalParameterList fpl, 
4.                                                                                                String name,
5.                                                                                                TypeNode voidn ) {
6.     return new EventPointcutDecl_c(pos, ev, fpl, name, voidn);
7. }

Listing 11. Obtaining an Instance of the EventPointcutDecl

Now the parser can produce EventPointcutDecl when it encounters the appropriate

tokens for them.

In the context of our approach, the equivalent process is to extend the 

language’s metamodel, as it is the internal representation of our front-end 

framework (i.e. EMFText). In our case, this process is more visual than textual, 

but there are tools (e.g. Emfatic) that offer us the possibility to declare the new 



metamodel entity with a textual definition. 
1. class NamedEventPointcut extends aspectj.pointcuts.PrimitivePointcut {
2.     val aspectj.patterns.parameterlist.TypeIdWildcardPatternList 

namedEventPattern;
3.     ref commons.Event[1] eventId;
4. }

Listing 12. Adding an Event Pointcut Entity in the Metamodel

4. Adding new join points

The following step is to extend the list of possible join points if necessary. The 

named event pointcut does not define a new type of join point and so no 

interaction is necessary here. The same also holds for our AspectJ 

implementation.

5. Extending the pointcut matcher

Once the corresponding join point shadows have been created in the previous 

step, writing the back-end files becomes easier. In abc there is a back-end class 

called pointcut matcher that tries every pointcut at every join point shadow found. 

For the named event pointcut, we have to check whether the current shadow is a 

ReferenceShadowMatch and if so verify that the event being referenced matches the

event id that the pointcut syntax rule starts with. 



1. protected Residue matchesAt(ShadowMatch sm) {
2.     if (!(sm instanceof ReferenceShadowMatch))
3.         return null;
4.     Reference event ref = ((ReferenceShadowMatch) sm).getReference();
5.     if (!getReferenceId().matchesType(event_ref))
6.         return null;
7.
8.     return AlwaysMatch.v();
9. }

Listing 13. Extending the Pointcut Matcher

This process in abc has no similar equivalent in our approach. The matching of 

the event from the pointcut to the actual event being referred to in our 

implementation is done for you by reference resolver classes that EMFText 

generates automatically. Although sometimes their default behavior is not 

sufficient and one has to implement his own extensions of them, this was not the 

case with resolving the named event pointcut. 

We are now going to evaluate both designs with respect to the criteria we set 

out to follow. In terms of simplicity, the abc had to be modified in three out of the 

five concerns that we introduced. The LOC that were written to solve these three 

concerns amounted to more than 27. By our plain definition the factor of 

simplicity is close to a 1/9. In our implementation we had to modify two out of the 

five concerns for the total amount of 5 LOC, resulting in the superior factor of 2/5.

There are two main reasons behind this success. First, the MDE approach we 

use offered us an easier solution when we had to extend the abstract 

representation of the language. Secondly, our approach abstracts over much of 

the back-end logic (i.e. in this case the pointcut matcher) resulting in less concerns

to modify.



In terms of our extensibility criteria, both designs had an similar amount of 

reused artifacts (i.e. 2 - 3). 

5. Conclusion and Future Work
We have presented our implementation of AspectJ and its use as a basis for the

development of AspectJ extensions. Our primary design goal of making a 

foundation that is easier to use due to the disentanglement from the weaving 

mechanics in AspectJ was met. We demonstrated a case study in which we 

developed one language extension using our implementation. It served to further 

evaluate our foundation as modular and extensible. Finally, we conducted a 

simple comparison between implementing a piece of functionality in both our 

and an existing open AspectJ implementation (i.e. the AspectBench Compiler). 

With respect to our criteria for extensibility both implementations fared equally 

well, but when comparing them by our definition of simplicity the abc was trailing

behind. This is due to the fact that our implementation abstracts over much of the

hard and complex back-end logic.

There are three directions where our implementation can be improved in 

future work. First, our implementation does not cover the full 100% AspectJ 

functionality. We are missing the inter-type declarations, the declare statements 

of AspectJ and the percflow aspect declarations. We left the implementation of 

these concerns for a future time, although they should not be hard to model. 

Secondly, there are a few places where the metamodel is “loose” with what is 

acceptable syntax (e.g. a class can contain an advice block, there can be a proceed 

statement in any type of advice, not only in an Around). This was done in favor of

a more streamlined and easy to follow metamodel. Such invalid cases should be 

waded out with model validity checks in a post-processing step which we left to 

implement in the future. Finally, doing more tests on the metamodel and 



transformation would give us more confidence in the strength and correctness of 

our implementation.
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