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Abstract

For the last decades, increasing the computational performance of a micropro-
cessor chip was mainly achieved by scaling transistor sizes. Not only can more
transistors be placed in a single die, smaller transistors allow higher clock fre-
quencies. While transistor sizes are still decreasing, designers are facing mayor
power consumption issues which prevent further performance improvements by
simply increasing clock frequencies. A clear trend is visible where multiple cores
are added to the same chip to form so-called multi-core systems.

The same trend is visible in the embedded systems domain where System-on-
Chips (SoCs) are transformed into Multi-Processor System-on-Chips (MPSoCs).
An MPSoC can either be homogeneous (consisting of identical processing ele-
ments) or heterogeneous (consisting of different types of processing elements,
e.g. Central Processing Units (CPUs) and weakly programmable hardware ac-
celerators). Communication between the processing elements is taking place via
a Network-on-Chip (NoC).

At the University of Twente multiple researchers are working on an MPSoC
called Starburst. The main characteristics of this platform are: (1) the Star-
burst platform is a scalable distributed shared memory many-core system, (2) it
targets real-time streaming applications where firm real-time requirements are
assumed and (3) the set of applications to be run on the platform (and thus the
communication pattern) is unknown at design time, which requires the platform
to be flexible.

The Starburst platform was originally designed as a homogeneous MPSoC con-
sisting of multiple identical soft-core CPUs. As a case study a Phase Alter-
nating Line (PAL) video decoding application was mapped onto the platform.
The demonstrator produced a video quality far from commercially acceptable
and for some operations multiple parallel executing CPUs were required. This
case study showed that the computational power was simply limited by the per-
formance of the CPUs in the system. In order to improve the computational
performance of the Starburst platform weakly programmable hardware acceler-
ators were added, which transformed Starburst from a homogeneous MPSoC to
a heterogeneous MPSoC.

A problem of this approach is the fact that a hardware accelerator can only
process a single data stream. In order to process multiple data streams, multiple
physical copies of this hardware accelerator have to be added to the platform.
This thesis focussed on techniques to share hardware accelerators across multiple
data streams, as it was expected that one shareable hardware accelerator has
a lower area footprint than multiple unshared accelerators. Additionally, the
platform is becoming more flexible in the sense that more applications are able
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to execute on the same platform.

We solved this problem by implementing a centralized component called a gate-
way. The gateway is used to buffer multiple incoming data streams, and to push
packets of data at high speed sequentially through the accelerators. Most accel-
erators have a configuration and/or state. Context switches are applied where
the configuration and state for a certain data stream is loaded into the accel-
erator and extracted after a specific number of samples have been processed.
A dataflow model of the sharing mechanism is constructed, which allows us to
give real-time guarantees such as latency and throughput.

A case study was carried out which focussed on the audio part of the PAL
signal. As this signal contains a stereo audio signal, we have used the hardware
accelerator sharing mechanism to decode the left and right audio stream on the
same set of accelerators, where a continuous (real-time) audio signal is produced.
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Chapter 1

Introduction

1.1 Context

When Intel invented the microprocessor in 1971, probably no one would have
expected the impact it would have and unimaginable evolution it would go
through in the upcoming decennia. Starting with a clock speed of 740 kilohertz
and equipped with a mere 2300 transistors, 43 years later the latest Intel Haswell
chips have around 1.4 billion transistors, operating on clock-speeds of several
gigahertz.

The demand for such increases can be explained by looking at for example
the domain of consumer electronics, such as video or audio applications. New
standards such as Digital Audio Broadcasting (DAB), its successor DAB+, High
Definition (HD) video (at a resolution of 1920 × 1080 pixels) and its successor
Ultra High Definition (UHD) or 4K video (at a resolution of 3840×2160 pixels)
clearly explain the demand for embedded systems with enough computing power
to run these applications. The fact that a lot of these embedded systems are
battery powered (e.g. mobile phones) explains why power efficiency is a second
import requirement.

For the last decades, increasing the computational performance of a micropro-
cessor chip was mainly driven by scaling transistor sizes. Reducing the size of a
transistor has three important benefits [7]:

1. When reducing the dimension of a transistor, its total area reduces quadratic.
E.g. a reduction of 30% (×0.7) in dimension, corresponds to a 50% shrink
in area (×0.72). Or, as Moore‘s law dictates, allows the number of tran-
sistors to double.

2. A smaller transistor allows a higher clock frequency, due to lower internal
delays. Increasing the clock-frequency directly improves the computa-
tional performance.

3. A smaller transistor requires less power to operate on.

While the dimensions of transistors are still decreasing, improving the perfor-
mance by increasing the clock frequency stalled some years ago when hardware
designers hit the ”power wall” : the amount of energy required to power all
transistors is larger than the amount of energy that can be supplied and can be
dissipated. Instead of increasing the clock frequency, designers had to come with
other ways to exploit the potential performance out of the increasing number of
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transistors. This led to the development of so-called multi-core systems, where
multiple processing cores have been placed in the same circuit.

Looking again at the application domain, a lot of the audio- and video appli-
cations are integrated in embedded systems. A clear trend is visible where all
components (e.g. a general-purpose processor, a Digital Signal Processor (DSP)
and memory) that are required to run these applications are integrated in a
single die and form a SoC. The trend of adding multiple processing cores in
the same circuit is also visible in this domain, resulting in the development of
MPSoCs.

MPSoC can be divided in two distinct classes; the first class consists of homo-
geneous architectures which are based on the replication of identical processing
units. The advantages of these types of architectures are mainly the ease of
programmability, the flexibility, fault tolerance and scalability [19]. The other
class consists of the heterogeneous architectures where next to the processors for
example weakly programmable hardware accelerators have been added. Even
though in general they are harder to program and are less flexible, they possess
better energy efficiency compared to homogeneous architectures. Furthermore,
they can improve real-time behavior by reducing conflicts among processing
elements and tasks [30].

There are two broad classes of applications: data-oriented and control-oriented
applications [6]. Image processing and audio processing are examples of applica-
tions belonging to the domain of data-oriented or streaming based applications.
Usually a sequence of computations is applied on a stream of data, with little
or no reuse of data. This is why the computations can often be executed in
parallel. The other class consist of control-oriented applications such as an ABS
controller in a car or a system to control the position of a robotic arm. The
code of these applications often contain a lot of conditional branches, need to
keep track of a large amount of state and often has a high amount of data reuse.
This complicates parallel execution of computations.

Real-time systems are computing systems with a temporal constraint. The
correctness of the result does not only depend on the value of the computation,
but also at the time at which the result is produced [10]. This means that
real-time systems must react within precise time constraints to events in the
environment. The maximum time within which it must complete its execution
is called a deadline. Based on the consequences of missing a deadline three
categories of real-time systems can be distinguished:

∙ Hard - Missing a deadline is highly undesirable and may cause catas-
trophic consequences.

∙ Firm - Missing a deadline is highly undesirable, but does not cause any
damage.

∙ Soft - Deadline misses lead to a graceful performance degradation.

When executing real-time applications, the ability to analyze a system is an
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important requirement in order to give real-time guarantees. The analysis of
heterogeneous designs is becoming increasingly complex, when multiple types of
processing units (with different programming models), connected via some sort
of interconnect, are added to the system. It is important to maintain as much
analyzability per processing unit as possible. During this research an existing
heterogeneous MPSoC will be modified. The most important requirement of
these modifications is the fact that this happens while preserving analyzability.

1.2 Research platform

The previous section explained the context of this research. This section will
focus on the research platform, in order to understand and formulate the prob-
lem description. Afterwards, the platform will be discussed in more detail in
Chapter 3.

At the University of Twente multiple researchers are working on an MPSoC
called Starburst. The main characteristics of this platform are [23]:

∙ The platform is a scalable distributed shared memory many-core system.

∙ The Starburst platform targets real-time streaming applications where
firm real-time requirements are assumed. Deadline misses are highly un-
desirable but not catastrophic.

∙ The set of applications to be run on the platform (and thus the communica-
tion pattern) is unknown at design time. For this reason, the architecture
must be flexible.

The Starburst MPSoC is being developed on a Xilinx ML605 development
board. This development board is equipped with a Virtex-6 Field-Programmable
Gate-Array (FPGA). A high level overview of the platform is given in Figure 1.1.

The platform consists of a power-of-two number of processing tiles. The pro-
cessing tiles, also called MicroBlaze tiles, are equipped with a Xilinx MicroBlaze
CPU, and are denoted with MBx in Figure 1.1. The figure displays a 32-core
configuration, which is currently also the maximum given the FPGA resources.
One additional processor is added to the platform, running embedded Linux.
This processor is connected to (and in control of) several on-board peripher-
als like the Ethernet port or the Universal Serial Bus (USB) controller. The
linux core is therefore mainly used for interaction with the environment. The
processors are so-called softcore CPUs, which can be fully implemented in recon-
figurable hardware by the logic synthesis tools. Due to this reconfigurability it
is possible to configure the CPU at design time, where different components like
a Floating Point Unit (FPU), barrel shifter, hardware multiplier or hardware
divider may be added to the system.

The processing tiles and the Linux core are connected to an interconnect which
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Figure 1.1: High level overview of the Starburst platform (the arrows indicate
master/slave relations)

facilitates communication on the platform. The interconnect consists of two
separate parts. The first part is the Warpfield arbitration tree which makes
communication from and to shared resources like external Double Data Rate
type 3 SDRAM (DDR3) memory possible. This is a latency-critical channel,
where the performance of the platform directly degrades with a higher latency.
Take for example a read operation from external DDR3 memory. When one of
the CPUs issues a read operation, this CPU has to wait until its instruction has
propagated through the complete interconnect, data is fetched out of memory
and is propagated back through the interconnect before the CPU can continue
with its computation. Meanwhile stall cycles are inserted in the pipeline of the
CPU which results in a degradation of performance. For this reason the latency
introduced by the arbitration tree is kept as low as possible. The arbitration
tree provides a slave interface to each Microblaze in the system. When a Mi-
croblaze issues a read- or write-request this request is packetized and is given a
timestamp and source ID. The packets enter a binary tree where at each step
local arbitration based on the timestamp is applied. This way arbitration is
applied according to a First-come, First-served (FCFS) policy, where a packet
with the lowest timestamp is allowed to proceed first.

The second part is the Nebula ring network. This part implements all-to-all
communication between the processing tiles. Instead of the more conventional
interconnects like busses and mesh networks, this interconnect has a ring topol-
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ogy with a very small area footprint [13]. Figure 1.2 gives an overview of
the Nebula ring network. This figure shows that each CPU is connected via
a Network Interface (NI) to a router, and each router is connected to its two
neighbouring routers to create a ring-like structure. In the same figure the prin-
ciple of executing a streaming application on the platform is depicted. Together
the processors are processing a stream of data, by sending the results of their
computation to another processor in the system, creating a chain of processors.

Figure 1.2: Schematic overview of the Nebula ring

As discussed in the previous section, the Starburst platform targets (real-time)
streaming applications. A key advantage of streaming applications is the fact
that they usually are latency insensitive, which means that the latency intro-
duced by the communication channel has no influence on the performance of
the complete system, if the throughput of the communication channel is high
enough. Latency is a fundamental problem in digital circuit design because of
the limited speed at which a signal by definition can travel. With digital circuits
becoming increasingly larger, signals have to travel larger distances. But also
when clock frequencies are increasing, the latency (expressed in the number of
clock cycles) will increase. The Nebula ring network tries to exploit this latency
insensitive property by only supporting posted write actions; a CPU does not
have to wait on data being accepted by a receiver, instead the processor can
immediately continue with its computations when data has been placed on the
ring interconnect without having to insert stall cycles. Lossless communica-
tion, which guarantees that no data will be dropped during communication, is
achieved in the software layers running on top of the hardware platform. Ba-
sically, after writing a packet to another processing tile, the receiving tile will
write a message back, to acknowledge that the sending tile can write a new
packet.

In order to demonstrate the performance of the Starburst platform multiple
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applications have been mapped onto it. One of these applications is a PAL
video decoder [13], which is a good example of a streaming application, where
a sequence of computations has to be applied on the incoming stream of data.
This case-study showed that the processing power of the homogeneous Starburst
platform was simply limited by the computational power of the general purpose
CPUs in the system. For example, the video decoder required four (out of 32)
fully utilized CPUs to do one specific operation (I/Q amplitude detection).

Hardware acceleration

A commonly used technique to improve the performance of computationally ex-
pensive functions is to accelerate them using hardware accelerators. Hardware
accelerators are dedicated pieces of hardware designed for one specific operation.
By using hard-wired implementations the overhead of general purpose architec-
tures is avoided, which results in increased performance and energy efficiency
by orders of magnitude compared to an implementation on a general purpose
architecture [17]. In [16] support for hardware accelerators was added to the
Starburst platform. With this addition the Starburst platform changed from an
homogeneous architecture to a heterogeneous architecture consisting of a mix of
identical processors and a set of weakly programmable hardware accelerators.

Figure 1.3: Schematic overview with one hardware accelerator, connected to the
Nebula ring interconnect

Figure 1.3 gives a schematic overview of how hardware accelerators are inte-
grated into the Starburst platform. As depicted in this figure, hardware ac-
celerators are connected to the Nebula ring interconnect, just as how the pro-
cessors are being connected; via a NI on a router. The hardware accelerators
are again connected in a way optimized for streaming applications; a CPU will
feed the hardware accelerator with data, when the hardware accelerator finishes
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its computation it will forward the result to a second CPU. As discussed, loss-
less communication between CPUs is achieved in the software layers running on
the processors. For the hardware accelerators another form of flow-control was
required, this is because they are unaware of memory addresses and have no
software running which manages communication.

Credit-based flow-control was implemented for this purpose. Chapter 3 will
focus on this communication protocol in more detail, for now only the ba-
sic principle will be explained. Every hardware accelerator is equipped with
a hardware-based First-in, First-out (FIFO)-buffer. Credits are denoting the
number of free buffer positions in this FIFO-buffer. Processing tiles are only
allowed to send data to a hardware accelerator if they have at least one credit,
which corresponds to free space in the FIFO-buffer. When the hardware accel-
erator accepts a data sample, a credit is sent back over an additional credit-ring
(see Figure 1.3) to the corresponding processing tile.

When a hardware accelerator receives a data sample, it is unable to determine
the sender or the recipient; this information is simply not embedded in the
data stream. Instead, the NIs to which the hardware accelerators are connected
are programmed to give them the required knowledge. One register holds the
memory address to which the accelerator has to forward its computed results, a
second register holds the memory address to which credits have to be returned,
furthermore a counter is implemented to keep track of the number of credits.
This is an important property; a processor has to configure the hardware accel-
erator before the stream of data can be processed by the accelerator.

As a case-study, the PAL video decoder was modified, where the computation-
ally expensive I/Q amplitude detection operation was implemented in hardware.
This case-study showed some interesting results; mapping this specific opera-
tion on an hardware accelerator freed four CPUs, while the performance of this
specific operation increased by 366%.

1.3 Problem Description

The previous two sections described the context of this research, and gave a high
level overview of the research platform. This section will describe the problem
in more detail.

As discussed before, the Starburst platform is designed to be flexible, because
the set of applications to be run on the platform is unknown at compile time.
The addition of hardware accelerators increases the performance, however it
reduces the flexibility of the platform. It is, for example, currently impossible to
process more than one stream by a single hardware accelerator, instead multiple
(physical) copies of the same accelerator have to be added to the platform at
design time.
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Integrating hardware accelerators into the Starburst platform showed another
interesting result. While hardware accelerators are able to process data at high
speed, measurements (in [16]) indicated that the utilization of their hardware
accelerator was around 6%. It turned out that if a CPU is used to feed an
accelerator with new data, the throughput of the CPU is the bottleneck and
therefore directly limiting the utilization of the hardware accelerator. As a
solution one could reduce the computational performance of an accelerator in
order to let it better match the computational performance of a CPU. Generally
this results in a lower area footprint, as the implemented logic is used multiple
times for one computation. Trading area for speed is a common practice when
designing (digital) hardware.

The need for a more flexible usage of hardware accelerators, combined with the
fact the hardware accelerators are currently most of the time in an idle state
waiting for new data, sparked the idea to multiplex multiple data streams over
the hardware accelerators. The idea is that by sharing these hardware accel-
erators across multiple streams, the platform is becoming more flexible in the
sense that more applications are able to execute on the same platform. A sec-
ond advantage of mapping multiple streams over a single hardware accelerator
is the fact that this opens the door of increasing the utilization of the hardware
accelerator, where the additional logic of the accelerator is used more efficiently.

Sharing one (high performance) accelerator instead of adding multiple (low per-
formance) physical copies is an interesting consideration. The first solution is
expected to be more flexible in the sense that more applications can be executed
on the same platform. The second solution is expected to be less complicated,
because no (complex) sharing mechanisms have to be implemented. The de-
cision was made to focus on the first option where multiple data-streams are
multiplexed over a single hardware accelerator. A flexible solution is preferred
and eventually high speed data coming from external peripherals such as an
Analog to Digital Converter (ADC) daughter board should be processed on the
hardware accelerators, which requires high performance accelerators in the first
place. It is however unknown what additional hardware is required to facilitate
hardware accelerator sharing, and whether this additional hardware can justify
the amount of hardware saved by sharing these components. This is something
which will be part of this thesis.

When designing a method which implements hardware accelerator sharing, the
most important requirement of this method is the fact that it should be pre-
dictable. We define predictability as the ability to construct a sufficiently accu-
rate temporal analysis model of the hardware design for which a computational
efficient analysis algorithm exists. With this model calculations can be per-
formed and useful numbers can be extracted. One can think of numbers like
minimum throughput or maximum latency when processing a data stream over
a shared hardware accelerator. For this reason multiple real-time analysis meth-
ods are discussed in Section 2.2. Processing multiple data streams over a single
hardware accelerator can be seen as a form of resource sharing. Capturing the

8



effects of resource sharing in a real-time analysis model will be discussed in
Section 2.3.

A producer can start using a hardware accelerator after it has been configured.
As discussed before, a hardware accelerator should be programmed with an ad-
dress to which data has to be forwarded to and an address to which credits
have to be returned. Furthermore, most accelerators operate based on a certain
configuration. One can think of the coefficients of an Finite Impulse Response
(FIR) filter or the mixing frequency of a digital signal mixer. The configuration
can easily be altered by writing new configuration values to specific registers of a
hardware accelerator over the Nebula ring interconnect. In the case of hardware
accelerator sharing this means that it should be able to handle multiple accel-
erator configurations. Next to a configuration, a hardware accelerator might
have state. One could think of the registers of an FIR filter which hold the
intermediate results. Again, this means that the hardware accelerator should
be able to handle multiple states in order to process multiple data streams.

There are some preliminary ideas to handle configuration and state. For exam-
ple by equipping a hardware accelerator with multiple sets of registers which
hold the configuration and state for multiple data streams. This way the hard-
ware accelerator will use a set of registers based on the incoming data stream. A
second idea solves this problem by constantly updating the state and configura-
tion from a remote CPU, before a data stream is processed by this accelerator.
While the first solution raise questions about the increased hardware usage and
flexibility, the context switches of the second idea will introduce an overhead
which will reduce the utilization and throughput of the hardware accelerator.
How to handle state and configuration is a problem which will be researched
during this thesis.

Currently the hardware accelerators exhibit a relative low utilization, where they
are most of the time waiting on new data to be processed. The CPUs seem to be
the bottleneck, where they are simply unable to feed the accelerators with data
fast enough. Increasing the utilization of the hardware accelerators is something
which has to be taken into account when designing a method to share hardware
accelerators.

1.4 Research Questions

The goal of this research is to multiplex multiple data streams over a hardware
accelerator. This way the Starburst MPSoC is becoming more flexible, more ef-
ficient and can have a lower area footprint. The targeted streaming applications
have firm real-time requirements, and for this reason we aim for a predictable
and analyzable solution. The goal is to come with an initial implementation
to give an evaluation of hardware costs and resource utilization. From this
summary, the following research questions are extracted:
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∙ How to handle multiple configurations and states for a hardware acceler-
ator?

∙ Is it possible to increase the currently low utilization of the hardware
accelerators via hardware accelerator sharing?

∙ Which techniques can reduce the overhead introduced by switching be-
tween data-streams?

∙ What additional hardware is required to share hardware accelerators, and
can this additional hardware be justified by the amount of hardware saved
by sharing hardware accelerators?

∙ Can a (detailed) dataflow model of this sharing protocol be constructed,
and related to that, can an abstraction of this dataflow model be created,
which is easier to use at the cost of a less accurate dataflow model?

∙ Can the real-time behaviour be accurately predicted?

∙ Can we find an algorithm to calculate proper buffer sizes, and related to
that, can we compute at which granularity the switches between data-
streams should take place?

1.5 Contributions

As the main contributions of this work we:

∙ Identify multiple architectural alternatives (Chapter 4).

∙ Develop a hardware accelerator sharing mechanism which can be used to
process multiple data streams on the same set of hardware accelerators
(Chapter 5). This implementation includes:

– A gateway module implemented on a MicroBlaze CPU, used to man-
age the accelerators and to implement a Round-Robin scheduling
policy.

– An interface from this gateway module to the hardware accelerators,
to be able to read and write configuration and state from and to the
accelerators.

– A Direct Memory Access (DMA) controller, used to speed up the
transfer of data through the accelerators.

∙ Construct a dataflow analysis model which can eventually be used to de-
termine proper buffer sizes and to calculate achieved throughput (Chapter
6).
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∙ Create an operation setup where hardware accelerator sharing is used to
run a PAL audio application (Chapter 7). This setup is used for the
evaluation of hardware costs and performance.

1.6 Outline

The remainder of this thesis starts by presenting related work in Chapter 2.
It includes research about hardware accelerator integration methods, real-time
analysis models, and modelling run-time arbitration in dataflow models. After
that, the research platform is presented in more detail in Chapter 3.

Next we will focus on actual problem of this thesis, starting with presenting
multiple architectural alternatives in Chapter 4, where the details of the actual
implementation are presented in Chapter 5. Next, a dataflow model of the
sharing mechanism is constructed in Chapter 6, and a case study is carried
out in Chapter 7 focussing on decoding stereo audio via hardware accelerator
sharing.

Finally, conclusions and future work are included in Chapter 8
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Chapter 2

Related Work

This chapter will focus on related work concerning hardware accelerator shar-
ing. Section 3.2.5 will focus on different architectures to integrate hardware
accelerators. In Section 2.2 different real-time analysis models will be discussed.
Capturing the effects of (run-time) arbitration in a Synchronous Dataflow (SDF)
model will be discussed in Section 2.3. We end the chapter with a section fo-
cussing on state of the art architectures.

2.1 Hardware accelerator architectures

As discussed in Section 1.3 hardware accelerators are being integrated into
the Starburst platform in a specific way. This chapter will focus on different
architectures to integrate hardware accelerators, in order to find its advantages
and disadvantages.

Instruction Set Extension

One traditional way of integrating hardware accelerators is by means of Instruc-
tion Set Extension (ISE). With this technique the Instruction Set Architecture
(ISA) of a CPU is expanded, by adding pieces of hardware to the pipeline of
the original CPU. This principle is depicted in Figure 2.1.

Figure 2.1: Hardware Accelerator integration using Instruction Set Extension

The Starburst MPSoC is equipped with Xilinx MicroBlaze softcore CPUs [37].
The CPUs are configurable at design time, where different components like a
FPU, barrel shifter, hardware multiplier or hardware divider may be added to
the system. These customizations are good examples of ISE.
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Also the well-known x86 ISA, which can be found in most desktop computers,
is extended multiple times in the last two decades, examples of these extensions
are: MMX introduced with the Intel Pentium CPU, Streaming SIMD Extensions
(SSE) (Intel Pentium III), SSE2 and SSE3 (Intel Pentium 4) and SSE4 (Intel
Core). Also the switch from 32 bit to 64 bit CPUs in 2003 was also achieved
with an ISE (called AMD64 or x86-64).

When executing an operation on a connected hardware accelerator, the issuing
CPU has to wait until the result of this operation has been returned. This
introduces latency which directly influences the performance of the issuing CPU.
An advantage of adding an hardware accelerator via an ISE is the fact that
hardware is placed relatively close to the processor, with a relative low latency
as a result. A clear disadvantage is the fact that the hardware accelerator is
connected directly to a CPU, which makes sharing of the accelerator among
multiple CPUs impossible.

Remote Procedure Call

Another way to integrate hardware accelerators is by means of a Remote Pro-
cedure Call (RPC). With a RPC the programmer has the ability to execute an
instruction or a set of instructions at another place in the system. This tech-
nique is depicted in Figure 2.2, where the CPU and hardware accelerator are
both connected to the same interconnect.

Figure 2.2: Hardware Accelerator integration using a Remote Procedure Call

An example of integrating hardware accelerators by means of a RPC is the
ST33F1M CPU developed by STMicroelectronics [24], targeting the domain of
security applications (e.g. Pay TV, banking and transit). The micro-processor
is based on a Cortex M3 CPU, where several external hardware modules have
been added to a local bus. Examples of these modules are a Cyclic Redundancy
Check (CRC) module, a Random Number Generator (RNG) and a coprocessor
called Nescrypt which is used to execute specific security operations.

Integrating hardware accelerator using a RPC means that this component is
connected to some sort of interconnect. An advantage is the fact that this
opens the door of sharing this component across multiple CPUs, as these CPUs
are all able to access this component. A disadvantage of this approach is the
increased latency, and therefore a lowered utilization of the issuing CPU.
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Stream Processing Hardware Accelerators

While there are clear differences between integrating hardware accelerators by
means of an ISE or RPC, there are some similarities. One of them is the fact
that in both cases the issuing CPU is also the CPU to which data has to be
returned. Returning data to the same CPU is often not an optimized method
for streaming applications. The best way to deal with the data resulting from
an operation is send it away to another CPU. This way the issuing CPU can
already start working on the next block of data, without having to care about the
returning data. Adding hardware accelerators in a stream is a method optimized
for streaming applications. This method is depicted in Figure 2.3. Not having
to return data back to the issuing processor has an additional advantage; it
opens the door of chaining multiple hardware accelerators together, which is
also displayed in this figure. In [16] support for hardware accelerators was
added to the Starburst platform, where the accelerators have been added in a
stream.

Figure 2.3: Stream processing hardware accelerators

Not having to wait on the data to be returned, means that the issuing CPU
can start working on the next packet of data. This follows the concept of SDF
models. In these models each task can be mapped on either a CPU or hardware
accelerator, constructing a stream of tasks. Furthermore, if the connection
between the CPU and hardware accelerator has enough buffering capacity, this
interconnect does not have any influence on the utilization of the issuing CPU.
When the hardware accelerators and CPUs are connected to the same shared
interconnect, this again opens the door to share the hardware accelerators across
multiple CPUs.

Another property of a stream processing hardware accelerator is the fact that for
a certain stream of data it has to be configured once, after which it will operate
completely stand-alone. Looking at the current situation of the Starburst plat-
form only one stream of data can be mapped over a hardware accelerator. This
means that the programmer has to configure a hardware accelerator only once,
the state of this accelerator is of no concern at all to the programmer. When
multiple data streams are mapped over one hardware accelerator, configuration
and state are suddenly becoming of utmost importance. The hardware acceler-
ator has to use to correct configuration and state for a specific data stream.
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2.2 Real-time analysis models

Real-time analysis techniques are used to guarantee the correct real-time be-
haviour of a system. In this section three main analysis techniques will be
discussed.

Event Models

Event Models (EM) [15] is the underlying analysis technique in the SymTA/S
approach. This technique uses propagation of traffic, by characterizing the
traffic with a period 𝑃 and a jitter 𝐽 . Jitter is the maximum deviation between
the arrival time of the k-th event, relative to the k-th period. The method is
not suitable for cyclic graphs, where the addition of a feedback loop will result
in an infinitely large jitter [2]. Furthermore, this technique can result in a low
accuracy because it does not capture the correlation between different streams
accurately [14]. This is because the correlation is captured in the time interval
domain, which may result in a pessimistic characterization.

Real-time Calculus

Real-time Calculus (RTC) [11] is an analysis technique originating from the
Network Calculus domain. It is also based on the characterization of traffic
between components, however the correlation between streams is captured in
the time domain, instead of the time interval domain. It has been shown that
the Event Models technique is a special case of what can be represented with
RTC.

A few years ago, this technique has been showed to be applicable for applications
modelled as cyclic Homogeneous Synchronous Dataflow (HSDF) graphs [25].
However, it cannot handle a combination of cyclic resource dependencies and
data dependencies [14].

Synchronous Dataflow

SDF [20] [3] is a popular and widely studied dataflow modelling language for
streaming applications. It computes end-to-end delay not based on the sum of
delays, but on the schedule computed given worst-case firing durations. SDF
uses graphs consisting of nodes and edges denoting respectively actors and de-
pendencies between these actors. Actors produce and consume tokens, which are
containers consisting of a fixed amount of data. The tokens are communicated
over the edges in the SDF graph. SDF can handle a combination of resource and
data dependencies, and is able to capture the correlation between data streams.
Furthermore, analytical analysis is possible in the form of MaxPlus-algebra and
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Maximum Cycle Mean (MCM) analysis. These techniques can be used to anal-
yse temporal properties (e.g. deadlock freedom) or resource requirements (e.g.
buffer sizes) for a practical implementation of the model.

2.3 Arbitration

In an MPSoC streams of data are processed by tasks, running on the processing
elements of the MPSoC. In order to reduce costs, resources are being shared
among these tasks, e.g. running multiple tasks on a single processor, letting
multiple tasks share a single memory port or sharing the links of an NoC. Arbi-
tration is the key ingredient to share these resources while guaranteeing temporal
constraints such as throughput and latency constraints. The same holds when
multiplexing multiple data streams over a single hardware accelerator. In order
to guarantee temporal constraints, some form of arbitration is required. Fur-
thermore, we want to be able to capture the effects of sharing such a resource
in an SDF model. This chapter will focus on arbitration methods which can be
captured in an SDF model.

Offline/online scheduling

One specific form of resource sharing is executing multiple tasks on a single CPU,
where the CPU itself is a shared resource. In order to be able to meet temporal
constraints, a designer has usually two options in a real-time system: calculating
an offline schedule or using a run-time scheduler belonging to a specific class of
schedulers. Scheduling at run-time instead of determining a fixed schedule at
compile time is attractive for e.g. the following reasons [29]:

1. A high resource utilization can be obtained even in cases where there are
tasks with a significant variation in their execution time and/or execution
rate.

2. There is no need to compute and store a schedule for each combination of
jobs that is simultaneously active.

3. Executing an arbitrary combination of tasks is simplified.

(Non-)Starvation free scheduling

In [3, 4, 28] the effects of sharing resources in the case that Time-Division
Multiplexing (TDM) or Round-Robin (RR) arbitration is applied is captured in
the response time of the actors in an SDF model. Wiggers [29] extends this work,
by showing that the effects of run-time scheduling can be captured in an SDF
model if the scheduler belongs to the class of Latency-Rate (ℒℛ) servers, which
is a broader class than only TDM and RR schedulers. The concept ℒℛ server
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comes from the Network Calculus domain, where the effects of scheduling traffic
passing through routers in a packet-switched network is captured in a simple
and elegant model. The theory of this approach is based on a busy period of
a session. A server belongs to the class of ℒℛ servers if the average rate of
service offered during a busy session, over every interval starting at time Θ from
the beginning of the busy period, is at least equal to its reserved rate 𝜌. The
parameter Θ is called the latency of the scheduler.

The next example is taken from [2] and will show how the effects of a TDM
scheduler can be captured in a dataflow model. Figure 2.4 gives a schematic
overview of a TDM scheduler. The scheduler can be modelled by a large rotating
wheel where a task 𝑎(𝑖) has a time-slice 𝐵 in a total period 𝑃 . When the time-
slice 𝐵 is depleted, the task is pre-empted. Only when a new period 𝑃 is started,
the task will get a new time-slice.

𝑎(𝑖) 𝑏(𝑖)
FIFO FIFO

P

B

Figure 2.4: Task scheduled under TDM with a fixed budget B (in red) during a
period P (in blue)

�̂�(𝑖) �̂�(𝑖)

𝜌(𝑖)

Figure 2.5: Single actor dataflow model

Figure 2.5 shows a single actor SDF-model. The idea is that the effects of
scheduling a task under TDM is captured in the execution time 𝜌(𝑖). The first
step is determining the total execution time 𝜌(𝑗), which is the time between
the arrival time of a task on edge 𝑎(𝑖) and the time at which the processor
has finished processing this task. Figure 2.6 shows this principle. The total
execution time 𝜌(𝑗) is determined by the original execution time 𝑥(𝑗), plus the
total time at which task 𝑎(𝑖) is not being serviced, which is equal to 𝑃 − 𝐵,
multiplied with the maximum number of pre-emptions task 𝑎(𝑖) can encounter,

which is equal to ⌈𝑥(𝑗)

𝐵 ⌉. Because the arrival time of task 𝑎(𝑖) is unknown
at compile time, the worst-case situation has to be taken into account; which
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happens when task 𝑎(𝑖) arrives just as budget 𝐵 has been depleted. Therefore
the ceiling function is used in this equation.

𝑃

𝐵

𝜌(𝑗) ≤ 𝑥(𝑗) + (𝑃 −𝐵)⌈𝑥(𝑗)
𝐵 ⌉

Figure 2.6: Execution of a task during its time slices

The next step is proving that the dataflow model in Figure 2.5 is a valid
abstraction of the TDM scheduler in Figure 2.4. An abstraction is valid if the
arrival times of tokens on the edges of the SDF-model in Figure 2.5 are not
earlier than the arrival times on the edges of the model in Figure 2.4, which
corresponds to ∀𝑖 ≥ 0, (∀𝑗, 𝑎(𝑗) ≤ �̂�(𝑗)) ⇒ 𝑏(𝑖) ≤ �̂�(𝑖). While the prove is beyond
the scope of this example, mathematical induction can be used for this prove.

In [14] it is shown that also the effects of non-starvation free schedulers such as
Static Priority Pre-emptive scheduling can be modelled in a dataflow graph. For
a certain task 𝜏𝑖 the maximum amount of time it takes to execute 𝑞 consecutive
executions is calculated (denoted by 𝑤𝑖(𝑞)), by including the computation time
of the set of tasks ℎ𝑝(𝑖) with a higher priority running on the same processor.
It requires iterative fixed-point computation to calculate the response time, and
therefore no closed-form expression for the throughput like MCM exists. This
method requires, next to the execution times of all the tasks, knowledge about
the arrival rates of these tasks.

2.4 State of the Art

This chapter will focus on related work considering the sharing of hardware
accelerators in an MPSoC.

In [8] the difference between equipping all CPUs in the system with a dedicated
(tightly connected) hardware accelerator and sharing a hardware accelerator on
a globally shared On-chip Peripheral Bus (OPB) is investigated, by mapping an
image compression algorithm on the system. The architecture uses a centralized
Synchronization Engine which offers locks and barriers to the CPUs. When a
CPU locks the shared accelerator, all subsequent requests will be queued and
handled at a later stage. Interrupts are used to inform the requesting accelerator
the computation is finished.

Bouthaina et al. [9] propose another architecture to share hardware accelera-
tors in a heterogeneous MPSoC. The architecture consists of a mix of private
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and shared hardware accelerators connected to respectively private and shared
busses. Furthermore, shared memory between the processors make communi-
cation between the processors possible. Mutexes and locks are used to solve
concurrency problems, when multiple processors want to use the same shared
hardware accelerator.

In [12] Cong et al. research hardware accelerator sharing on a different archi-
tecture. The platform in this research consists of a mesh network to connect all
components in the system, where the processors share components like Level-2
(L2)-caches, global memory and hardware accelerators. Concurrency problems
introduced when sharing hardware accelerators are solved using a hardware
based arbiter, called Global Accelerator Manager (GAM). When a processor
wants to use a hardware accelerator, the processor has to lock the accelerator
via the GAM. The GAM can either give the processor permission to use the
accelerator (1), give an instruction to wait (2) or reject access to the accelerator
(3). Based on this reply, the requesting processor may decide to continue the
computation in software.

While the authors of [8], [9] and [12] are able to improve the performance, reduce
energy consumption or hardware costs by implementing and sharing hardware
accelerators, they do not consider real-time applications. Mutexes and hardware
locks are used to acquire an accelerator, which will make real-time analysis
probably complex or even impossible.

Tong et al. [26] try to schedule multiple radio standards (with different through-
put constraints on a multi-standard multi-channel channel decoder. The decoder
basically consists of a CPU and several weakly programmable hardware accel-
erators with limited buffer sizes, all connected to a local NoC. The CPU in this
cluster is in control of all hardware accelerators. It updates the configuration of
the modules and is able to chain multiple hardware accelerators together.

On the CPU a RR scheduler per hardware accelerator is implemented. In order
to run applications where multiple hardware accelerators are forced to execute
simultaneously (due to the limited buffer sizes), they propose a so-called coupled
scheduling policy. Next, they propose an algorithm to calculate synchronization
times and Worst-Case Waiting Times (WCWTs) under this coupled schedul-
ing policy. This way they are able to guarantee throughput constraints, when
executing applications on the channel decoder.

A difference compared to the Starburst platform is the fact that one of the
hardware accelerators in this system is able to read data from shared external
memory directly. This component is always the first accelerator in a chain of
accelerators, and is basically a combination of a hardware accelerator and a
DMA engine. On Starburst the hardware accelerators are not equipped with a
DMA engine, instead they are as small and simple as possible and relying on
a producer to feed them with data over the Nebula ring interconnect, they are
unable to initiate a read action themselves.

Furthermore, a local NoC with a mesh topology is used to chain multiple hard-
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ware accelerators together. The routing of this NoC is determined by the ap-
plication mapped onto the platform. The Starburst platform is equipped with
a ring interconnect, as discussed in Chapter 3. It has, in comparison to mesh-
networks in general, relative low hardware costs, which scales linear to the num-
ber of connected cores. Using the Nebula ring interconnect instead of a mesh
network is an attractive option to reduce hardware costs.

Tong et al. do not consider all overhead sources; scheduling on the CPU in-
troduces an overhead, the same holds for the time it takes to reconfigure the
hardware accelerators or to get the state out of the accelerators. Additionally,
no mechanism or protocol which makes sure that all data samples have been
processed by the hardware accelerators before they are being reconfigured is be-
ing discussed. The same holds for a mechanism which ensures that enough free
space is available in order to store all computed results. Furthermore, they only
give a (detailed) Cyclo-Static Dataflow (CSDF) model for their specific case-
study, without providing a dataflow model with a higher level of abstraction.
Via such models specific details can be hidden.

2.5 Summary

Traditionally hardware accelerators are being integrated via an ISE or a RPC.
The biggest disadvantage of these methods is the fact that the results of the
computation are being returned to the issuing processor. During this computa-
tion the issuing processor has to wait for the computation to finish which results
in a degradation of performance. On the Starburst platform hardware acceler-
ators are integrated in a way that is optimized for streaming applications. The
processors and hardware accelerators are connected to a ring interconnect, and
instead of letting the hardware accelerators return the results of their compu-
tations to the issuing processor, the results are forwarded to the next step in
the chain. This way the issuing processor can already start working on its next
computation.

When executing real-time applications, the ability to analyze a system is an
important requirement in order to give real-time guarantees. The Starburst
MPSoC targets streaming applications with firm real-time requirements. The
following real-time analysis techniques have been discussed; Event Models, Real-
time Calculus and Synchronous Dataflow. Of these techniques, SDF analysis
turned out to be the only applicable option. In contrast to Event Models and
Real-time calculus, SDF can handle cyclic graphs, can handle a combination of
data and resource dependencies and can be used to give a closed-form expression
for throughput. Furthermore, other parts of the Starburst platform, like the
Nebula ring interconnect, are already modelled with SDF models. Sticking to
one analysis technique instead of having to use multiple techniques makes real-
time analysis more convenient.
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Arbitration is the key ingredient when guaranteeing temporal constraints while
sharing resources. This section focussed on capturing arbitration effects in a
dataflow model. When a scheduler belongs to the class of ℒℛ-servers (like
Round-Robin or TDM), it can be modelled with an SDF-graph. In contrast to
Static Priority Pre-emptive scheduling, no fixed point computation is required
to calculate the total waiting time.

Sharing hardware accelerators while providing real-time guarantees is a rather
new concept. To the best of our knowledge only one comparable study has been
performed in this area. The architecture in this research uses, compared to the
Starburst architecture used in our research, an interconnect with a mesh topol-
ogy which has a much larger area footprint compared to the ring topology used
on the Starburst platform. It is unknown whether our ring interconnect is suit-
able to implement hardware accelerator sharing, and what additional hardware
is required to implement this technique.
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Chapter 3

Starburst Platform

Chapter 1 gave an introduction to the research platform, this chapter will discuss
the platform in more detail.

The Starburst hardware/software MPSoC platform is currently being developed
within the University of Twente. The main goal for this project is to research
and exploit: [1]

1. MPSoC architectures with means for low power, composability, and re-
configurability.

2. A design flow for MPSoC based systems using high level synthesis.

3. An MPSoC run-time system management. By means of dynamic recon-
figuration, the run-time system is capable of dealing with adaptive service
requirements and platform variability.

The platform can be divided in three parts. The first part is the physical
hardware platform which will be discussed in Section 3.1. Section 3.2 will focus
on the reconfigurable hardware, such as the processing tiles, communication
network and hardware accelerators. Section 3.3 covers the software layer running
on the Starburst platform.

3.1 Hardware Platform

The Starburst MPSoC is being developed on a Xilinx ML605 development
board. This development board is equipped with a Virtex-6 FPGA, consisting of
241,152 Logic Cells. Each Logic Cell contains four Look-Up Tables (LUTs) and
eight flip-flops. Besides the FPGA, the ML605 development board is equipped
with several peripherals which are used throughout the Startburst platform.
Figure 3.1 gives an overview of the development board, in which several pe-
ripherals are indicated. The most important components are the 512MB DDR3
memory, the Ethernet connection, the DVI output, the CompactFlash storage,
the Universal Asynchronous Receiver/Transmitter (UART) interface, and the
USB port.
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Figure 3.1: ML605 development board

3.2 Starburst

Figure 3.2 depicts a high level overview of the Starburst platform. In this figure
the 32-core configuration is displayed, which is (given the available resources of
the FPGA) currently the configuration with the maximum number of cores. In
this figure different classes of components can be identified. The platform con-
sists of a power-of-two processing tiles, a Linux tile dedicated to I/O capabilities
(both depicted in blue), the Nebula ring network for all-to-all communication
between the processing tiles and an arbitration tree to access DDR3 memory
and several shared peripherals (both depicted in green). The components are
red are peripherals available on the Starburst platform.

In the following sections these different components will be discussed in more
detail. First, the processing tiles will be discussed in section 3.2.1. The Linux
tile, which is actually a processing tile with some additional hardware, will be
discussed in section 3.2.2. In Section 3.2.3 the Warpfield arbitration tree will
be discussed. The Nebula ring network makes all-to-all communication between
the cores possible and will be discussed in Section 3.2.4.
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Figure 3.2: High level overview of the Starburst platform. Arrows indicate
master-slave relations.

3.2.1 Processing tile

The basis of the Starburst platform is formed by the processing tiles, which are
based on Xilinx MicroBlaze CPUs. Figure 3.3 gives an overview of a processing
tile. The different components in this figure are discussed below.

The Xilinx MicroBlaze CPU is a Reduced Instruction Set Computer (RISC),
organized as a Harvard architecture. This means that the CPU has separate
bus interfaces for data and instruction access [37]. The Xilinx MicroBlaze is a
so-called softcore which can be fully implemented in reconfigurable hardware by
the logic synthesis tools. Due to this reconfigurability it is possible to configure
the CPU at design time, where different components like a FPU, barrel shifter,
hardware multiplier or hardware divider may be added to the CPU.

The MicroBlaze CPU is equipped with two caches; one instruction cache and
one data cache. The caches are implemented without cache coherency between
the processing tiles, there is only a write-back policy active. The size of these
caches is configurable at design time, by default (and throughout this report)
it has a size of 32 kB. When small streaming applications are executed, all
instructions should fit into the instruction cache, which greatly reduces the
number of requests to the shared memory.

Each processing tile is equipped with local data memory (4 kB by default). This
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Figure 3.3: Processing tile

memory is connected using a single cycle Local Memory Bus (LMB), and used
for local data storage. This memory is also used for local kernel administration,
e.g. cache sizes and the number of processing tiles in the system. Scratchpad
Memory (SPM) is connected via the same LMB. This SPM is used for all-to-all
communication between the processing tiles instead of using the shared memory
for this purpose. This communication protocol will be discussed in Section 3.3.2.

TDM is used to implement multi-threading on the processing tile. For this
purpose, and in order to keep track of time, a dedicated hardware timer is
added to each processing tile.

3.2.2 Linux tile

The Starburst platform contains exactly one Linux tile, which is almost an
exact copy of a regular processing tile. The only hardware extension to the
Xilinx MicroBlaze is the addition of a Memory Management Unit (MMU), which
is necessary to be able to run Linux. The Linux tile is mainly used for I/O
purposes, e.g. to communicate with the host PC, or control USB connected
peripherals.

Compared to a processing tile, the Linux tile is equipped with additional pe-
ripherals connected via its local Processor Local Bus (PLB). Examples of these
components are the Ethernet controller, the controller for the Compact Flash
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Figure 3.4: Linux tile

(CF) card, an the controller for the USB port.

3.2.3 Warpfield

The processing tiles and the Linux tile are connected to an interconnect which
facilitates communication on the platform. The interconnect consists of two
separate parts. The first part is the Warpfield arbitration tree. The arbitration
tree is mainly used to access the DDR3 memory, but other components like the
DVI controller and UART interface are also accessible through this interconnect.

The arbitration tree is developed to solve two traditional problems: super-linear
scaling of hardware resources to the number of cores and a high latency for
memory reads [23]. In order to overcome these problems an arbitration tree has
been developed with the following features:

1. Starvation-free scheduling.

2. Work-conserving to optimize for latency.

3. Scales linearly in hardware costs to the number of cores.

4. Pipelined and decentralized arbitration to avoid long wires for high per-
formance.

The arbitration tree provides a PLB slave interface to each Microblaze in the
system. When a Microblaze issues a read- or write-request this request is pack-
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etized and is given a timestamp and source ID. The packets enter a binary tree
where at each step local arbitration based on the timestamp is applied. This
way arbitration is applied according to a First-come, First-served (FCFS) policy,
where a packet with the lowest timestamp is allowed to proceed first.

The last step is a demultiplexer, which routes the data to the correct peripheral.
An additional demultiplexer is used to send data coming from the peripherals
back to the corresponding Microblaze based on the source ID, without the need
for any arbitration.

3.2.4 Nebula ring

The second part of the Starburst interconnect is the Nebula ring interconnect.
This part of the interconnect provides an all-to-all communication network as a
latency-tolerant interprocess channel. This in contrast to the Warpfield arbitra-
tion tree, which is a latency-critical channel. In the latter type of channel, the
performance degrades immediately with a higher latency. In the case of latency-
tolerant channels this degradation depends on the application [23]. The Nebula
ring interconnect has a small area footprint compared to other ring topologies.
This small area footprint was achieved by: [13]

1. Making the Nebula ring unidirectional, which makes routing decisions triv-
ial.

2. Under the assumption that slaves always accept data, FIFO buffers at the
output of the network are omitted.

3. There is no need for FIFO buffers in the routers, because no contention
or head-of-line blocking can occur.

4. There is no support for back-pressure. When a packet has entered the
ring, it will travel one hop every cycle until it reaches its destination.

5. The ring provides automatic serialization, therefore no arbitration is re-
quired when multiple masters want to write to the same slave.

Figure 3.5 gives a schematic overview of the Nebula ring NoC. In this schematic
we can identify typical NoC components like routers and NIs. Every processing
tile is connected via a NI to a router, and by connecting every router to its two
neighbouring routers, a ring-like structure is created. The NIs form the bridges
between the (network unaware) processing tiles and the networking part of the
NoC.

The basic idea of the ring interconnect is that when a data packet has entered the
ring (i.e. has acquired a free slot), it can always proceed to a next router, until
it has reached it’s destination. Therefore, a data packet has to be buffered in the
NI until it is accepted on the ring. When a packet has reached its destination,
the corresponding router will remove the packet from the ring and delivers it to
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Figure 3.5: Schematic overview of the Nebula ring

the connected NI. This action frees the occupied slot, so it can later be used to
transfer a new data packet.

This construction, however, introduces starvation. If a processing tile would
occupy all free slots, other processing tiles might never get access to send their
data packets. To guarantee a processing tile access to the ring (and therefore
eliminating starvation) a fairness protocol is implemented. All slots on the
ring are labelled and a processing tile is only allowed to use a slot, when the
slot-label equals the ID of the processing tile. This way all processing tiles
are guaranteed to have an equal share of the total bandwidth. This traffic is
classified as Guaranteed Service (GS) traffic.

The drawback of this fairness protocol is the fact that a lot of empty slots
cannot be used by other processing tiles, reducing the available bandwidth of
the ring interconnect. A work-conserving principle is introduced, by allowing
slots to be hijacked under very strict conditions. The idea is that when an empty
slot passes a router, this router may hijack this slot if the destination router is
reached before the owner of the slot is reached. An overview of the rule set as
implemented in the Nebula ring router, is given in Table 3.1. This traffic is
classified as Best Effort (BE) traffic.

3.2.5 Hardware Accelerator integration

As discussed in Section 1.3 support for hardware accelerators was added to the
Starburst MPSoC, in order to improve both computational performance and
power efficiency [16]. The hardware accelerators are just like the processing
tiles directly connected to the Nebula ring interconnect, as depicted in Figure
3.6.
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Table 3.1: Rule set Nebula ring router
1. Incoming packets addressed to the local node are ejected to the local

node.
2. All other incoming packets are passed to the neighbour router if the

current slot does not belong to the local node and the local node has a
packet to send.

3. Insert a packet on the ring if the local node has a packet to send and the
slot is available.
A slot is available if at least one of the following rules is true:

1. The slot ID is equal to the local node ID.
2. The target address of the local packet is reached before the current slot

passes its owner and the slot is free.
3. The target address is equal to owner of the slot and the slot is free.

In order to achieve lossless communication on the Nebula ring, some form of
flow-control is required. For the processing tiles flow-control is implemented in
the software layer (more about this in Section 3.3.2). Hardware accelerators
however are unaware of memory addresses, have no SPM an have no software
running to manage communication. For this reason an alternative form of flow-
control was required.

Credit-based hardware flow-control is implemented for this purpose. At the
consuming side a hardware based FIFO buffer is implemented, which stores
incoming data samples, before they are accepted by the hardware accelerator.
The number of credits denote the depth of the FIFO, between a producer and
a consumer. A producer consumes a credit when data is produced, a consumer
will send a credit back when data is accepted. Credits are sent over a dedicated
credit-ring (see Figure 1.3), rotating in the opposite direction compared to the
data-ring. This means that a credit has to travel the same distance as the data
has to travel, which can reduce the total hop delay of data plus credit packet
when cores and hardware accelerators are placed close to each other [16].

The idea of these hardware accelerators is that they are operating on a (con-
tinuous) stream of data. The accelerators receive their data from one of the
processing tiles over the Nebula ring network, and after processing the data is
sent to a second processing tile, which will perform further processing on the
stream of data. A problem was the fact that hardware accelerators are unaware
of memory addresses in the system and are therefore unable to directly commu-
nicate with the processing tiles in the system. In order to give the accelerators
the required knowledge to make communication possible, the NIs are extended
with an additional module called a ringshell. A ringshell is equipped with a
set of programmable registers; one of these registers stores the address to which
credits have to be returned, another register stores the address to which data has
to be forwarded to. Furthermore, a ringshell is equipped with a programmable
counter which stores the number of credits. An advantage of this set-up is the
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Figure 3.6: Schematic overview of two processing tiles and one hardware accel-
erator, connected to the Nebula ring interconnect

possibility to easily chain multiple accelerators by letting one accelerator for-
ward its data to a second accelerator and letting this second accelerator sending
its credits back to the first one.

The last step is to return from the flow-controlled stream of data to a mem-
ory mapped processing tile. Simply writing to the SPM of a processing tile is
not supported, due to the absence of any form of flow-control. Furthermore,
a hardware accelerator is only able to send data to a fixed address, where the
SPMs have to be addressed consecutively. The ideal situation is to be able to
emulate the software based FIFO communication (See Chapter 3.3.2), which
is used to communicate data between processing tiles. The author from [16]
determined this is not a trivial hardware design, and therefore came up with a
temporary solution, where a hardware based FIFO buffer is directly connected
to a MicroBlaze using a Fast Simplex Link (FSL). The FSL is an extension to
the MicroBlaze execution pipeline, with an unidirectional point to point com-
munication interface. With this construction a hardware accelerator is writing
data in this hardware FIFO buffer, the consuming MicroBlaze will poll this
buffer over the FSL interface to check whether new data is available. Figure 3.7
gives a complete overview of the integration of hardware accelerators including
the ringshells and a FSL-link.

3.3 Software

The previous sections discussed the two lower (hardware) layers of the Startburst
platform. This section will focus on the software layer running on top of this
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Figure 3.7: Schematic overview of two processing tiles and one hardware accel-
erator, connected to the Nebula ring interconnect.

hardware.

3.3.1 Helix kernel

Every processing tile in the system runs a small Portable Operating System
Interface (POSIX) compatible operating system. This kernel has support for
the newlib C library and implements multi-threading based on the Pthread
standard. A TDM scheduler is implemented to switch between the threads on a
processing tile. For this reason every processing tile is equipped with a dedicated
hardware timer, which is the only interrupt source on a processing tile.

The Helix kernel runs several deamons for services like memory management,
communication, synchronization, profiling, statistics and scheduling.

3.3.2 CFIFO

One service which deserves special attention is the service which offers commu-
nication on the Starburst platform. One specific (and most frequently used)
communication protocol is the software based C-HEAP FIFO (CFIFO) [22] im-
plementation. With this implementation core-to-core communication can be set
up for arbitrary data-types, with a configurable FIFO-depth and block-size.

The protocol uses a double read- and write-pointer administration (rp, wp)
stored in the SPM at both the producing and consuming side, as depicted in
Figure 3.8. In this administration, the pointers rp’ and wp’ are copies of the
pointers rp and wp. The copies of these pointers are updated after a read-
or write action has been completed. Thus, these copies are always a delayed
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version of the original pointer, and give therefore a conservative estimation of
the amount of free or occupied positions in the software FIFO.

Figure 3.8: CFIFO administration overview

An advantage of this double administration is the fact that the producer and
consumer only have to poll their local SPM to check if there is respectively free
space or new data available. This does not only reduce the latency, it also makes
sure that no shared memory bandwidth is wasted polling for free space or new
data. The tokens itself, and the updates of the read- and write-pointers are also
sent over the Nebula ring-network, which is a further reduction of the consumed
shared memory bandwidth.
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Chapter 4

System Architecture

This chapter will focus on a solution for our problem, by discussing several
architectural alternatives.

4.1 Architectural Alternatives

While multiple system architectures were considered during this research, two
basic principles can be identified. As an example Figure 4.1 illustrates the
internals of an accelerator, where a set of arbitrary hardware operations are
connected in a pipeline. Data enters the accelerator on the left side, and leaves
the systems after it is being processed at the right side. Registers (𝑟𝑒𝑔0, 𝑟𝑒𝑔1)
are placed in between the operations, and store the intermediate results. Some
operations may require a certain configuration, which is stored in an additional
register (𝑐𝑜𝑛𝑓1).

OP0
data in data out

OP1 OP2reg0 reg1

conf1

Figure 4.1: Hardware Accelerator pipeline

A problem arises when data samples from multiple data streams enter this
system. The state and configuration registers can only store the contents for
one data stream, mixing of data streams is simply not allowed. There are two
basic solutions for this problem.

The first solution is based on the duplication of registers, which is displayed in
Figure 4.2. In this image, the original pipeline is modified, were each register is
replaced by a set of registers. Multiplexers and demultiplexer are used to select
the correct register, based on the incoming data stream. In this example the
registers are duplicated to support three data streams.

The second solution is based on TDM, where a data stream is given exclusive
access on a hardware accelerator for a certain amount of time. Instead of dupli-
cating each configuration and state register, the architecture is modified in such

35



OP0 OP1 OP2

reg0 0

reg0 1

reg0 2

reg1 0

reg1 1

reg1 2

conf1 0

conf1 1

conf1 2

data in 1

data in 0

data in 2

select

data out 1

data out 0

data out 2

select

Figure 4.2: Hardware Accelerator pipeline with duplicated registers

a way that these registers are (remotely) readable and writeable. After config-
uring the registers for a specific data stream, the corresponding data stream can
be processed. Afterwards, the state of the accelerator is saved, and the state
and configuration for another stream is loaded.

An advantage of the first solution is its simplicity; due to the nature of the Neb-
ula ring network data is automatically serialized. For this reason each clock-
cycle only one data-sample will enter the hardware accelerator, which means
that no contention of data will occur. Hardware costs are the biggest concern
of this solution. With hardware accelerators becoming increasingly complex, an
increasing number of registers have to be duplicated to support multiple data
streams. This means that more registers and (de)multiplexers have to be added
to the system. Additionally, duplication of registers is not always straightfor-
ward (e.g. when a design contains Intellectual Property (IP)) or even impossible
when specific on-chip components of an FPGA are used (e.g. dedicated multi-
pliers [35], which contain internal registers which are not remotely accessible).
For this reason the decision was made to focus on the second solution, based on
TDM.

4.2 Time Division Multiplexing

A sharing mechanism based on TDM can be implemented in various ways.
Three options were identified; local, distributed and centralized. These options
will now briefly be discussed.

The first solution is to apply TDM scheduling locally at each hardware accel-
erator. This requires modifications to the hardware accelerators; FIFO-buffers
have to be added to buffer all incoming data streams, logic is required to let
the accelerators reconfigure themselves and a scheduler has to be implemented
which makes sure that the data streams are processed in the correct order.
A clear disadvantage of this approach is the fact that only a fixed number of
streams are supported. Additionally, a large number of registers are added to a
hardware accelerator which may remain completely unused when not all stream
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slots of the accelerator are occupied.

Another option is a more distributed solution, where the processors (who are
sharing the same hardware accelerator) are required to program the accelerator,
feed it with data and save the state afterwards themselves. When a processor is
done, it informs the next processor that it can safely start using the accelerator.
A clear advantage is the fact that this sharing mechanism could be implemented
completely in software, an thus no additional hardware is required. A disad-
vantage of this approach is the fact that this will not improve the utilization of
the accelerators, as the low-speed data streams coming from the processors are
processed in a sequential order.

The last option is a centralized solution, which is based around components
which we call gateways. This idea is depicted in Figure 4.3. As discussed, the
processors of the Starburst MPSoC are not able to read and write data fast
enough over their local PLB. As a result, the utilization of the hardware ac-
celerators remains relatively low. A gateway component (GW0 ) will temporary
save the incoming low-speed data streams, and pushes the streams one at a time
at high speed through the hardware accelerators. A second gateway (GW1 ) is
used to route the data stream to the correct receivers.

Figure 4.3: Hardware Accelerator sharing via gateways

The centralized solution turned out to be best solution for our problem; addi-
tional hardware is required but is has to be implemented only once, the uti-
lization of the hardware accelerators is improved by streaming data streams at
high speed over the hardware accelerators and depending on the application it
is likely that this solution will also work when the application is mapped on
hardware accelerators only.

4.3 Accelerator Gateway

As discussed in the previous section, the hardware accelerators will be shared
via a centralized component called a gateway. This section will discuss several
important aspects of this component.
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4.3.1 Arbitration

When designing a method which implements hardware accelerator sharing, the
most important requirement of this method is the fact that it should be pre-
dictable. As discussed predictability is the ability to construct a sufficiently
accurate temporal analysis model of the hardware design for which a compu-
tational efficient analysis algorithm exists. With this model calculations can
be performed and useful numbers (e.g. minimum throughput and maximum
latency) can be extracted.

Section 2.2 focussed on different predictable scheduling techniques. As discussed
in this chapter, it is possible to capture the effects of run-time scheduling in a
dataflow model, if the scheduler belongs to the class of ℒℛ-servers. Examples
of such schedulers are TDM and Round-Robin schedulers.

Furthermore, the scheduler is required to be non-preemptive. Preemption is the
operation of suspending a running task, where the execution is resumed at a later
moment in time [10]. On a CPU this technique is implemented in the operating
system, and can for example be used to make sure that all tasks running on
a CPU get some amount of processing time. The need for a non-preemptive
scheduler can best be explained with an example. Figure 4.4 gives a schematic
overview of a gateway, a hardware accelerator and a consumer. The orange
arrow indicates the stream of data through the routers, NIs and the hardware
accelerator. Actual data is depicted by the blue tokens on these arrows.

Figure 4.4: Non-preemption example: a gateway and a consumer are communi-
cating data via a Hardware Accelerator

Assume now that preemption is possible. In order to implement preemption,
the complete context of this pipeline need to be saved such that this context can
be restored at a later moment in time. This means that all data (depicted by
the blue dots in Figure 4.4) residing in the relevant components like the routers,
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NIs and hardware accelerators has to be saved. And that is something which
is highly undesirable, as there is currently no way to read the contents out of
these components or write this data back at a later moment in time.

For this reason, the scheduler has to be non-preemptive, which means that a
predefined amount of data (a data packet) has to be completely processed by the
gateway before a switch to another stream is allowed. Furthermore, all data has
to be received by the consumer, which makes sure that the complete processing
pipeline is empty. For this purpose Round-Robin arbitration is implemented.
Round-Robin is a simple scheduling policy, where tasks are being processed
without priority in a cyclic order. Furthermore, it is a non-preemptive scheduler
belonging to the class of ℒℛ servers, allowing us to create a dataflow model of
it.

4.3.2 Buffering

As discussed in the previous section, the Round-Robin scheduler operates on
packets of data, which have to be processed completely before a data packet
from another stream can be processed. As the data packets have an (at design
time determined) fixed size and are processed in a fixed cyclic order, this knowl-
edge allows us to determine temporal properties like the maximum latency and
minimum throughput at which the data packets are being processed. The fixed
size of a data packet allows us to put an upper bound on its processing time,
which is the time it takes to completely process a data packet.

In order to be able to put an accurate upper bound on the processing time, it
is required that a complete data packet is available in the corresponding input
buffer of the gateway before it is being serviced. When the gateway would
already start processing an incomplete data packet, the time at which the data
packet is completely processed depends on the throughput of the preceding actor
which is feeding the gateway with data, which is most of the time a low speed
data stream coming from one of the CPUs. Taking worst-case situations into
account forces us to base the response time calculations on these low throughput
data streams, cancelling all benefits of using the gateway to push data at high
speed through the accelerators.

In Figure 4.5 a CSDF⋆ graph is depicted, where a gateway (GW ) is communi-
cating data via an accelerator (Acc) to some consumer (Cons). For simplicity
execution times have been omitted, as we are only interested in the consump-
tion and production rates on the edges between the actors. A data packet with
a size of 𝑆 samples is being processed by this chain of actors. Checking the
presence of a complete data packet in the gateway module (marked in red) can
be modelled in this CSDF graph by consuming all 𝑆 tokens in the first iteration,
in the remaining iterations no tokens are consumed.

⋆An introduction on (C)SDF is given in Chapter 6
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Figure 4.5: CSDF graph of an accelerator pipeline

Communication between the gateway and the hardware accelerator is taking
place on a word by word basis, which results in 𝑆 × 1 single word transactions
from the gateway to the accelerator. Besides checking the presences of a com-
plete packet at the input of the gateway, the gateway should also make sure
that enough free space at the end of the pipeline is available, which makes sure
a complete packet can be stored without stalling. In Figure 4.5 this corresponds
to checking the number of tokens on the edge running from the consumer to the
accelerator (marked in blue), this edge should at least hold 𝑆 tokens in order
to store a complete packet without stalling. Letting the gateway check buffer
capacity at the consumer is problematic as it is currently only able to check
the presences of buffer capacity at the accelerator, denoted by the number of
tokens on the edge between actors Acc and GW (marked in green). A mecha-
nism to check for free space at the output is required, which will be discussed
in Chapter 5.

In theory the gateway could start processing a packet without checking the pres-
ence of free space at the output, however in that situation the total processing
time will then depend on the throughput at which the consumer in Figure 4.5 is
able to process the incoming data words. When the consumer is a task mapped
on one of the CPUs in the system, this results in a relative low throughput.
Again, taking worst-case situations into account forces us to base the process-
ing time calculations on this low throughput at which the consumer is able to
process data, cancelling all benefits of using the gateway to push data at high
speed through the accelerators.

Concluding, input and output buffers are required to store complete packets of
data, both at the input and output of the pipeline formed by the accelerators
between the in- and output gateway. Via these input and output buffers and
the requirement that only completely received packets are being processed high
throughputs can be guaranteed, which is otherwise hard or even impossible.

4.3.3 Algorithm

The scheduling algorithm implemented in the gateway can best be explained
with the pseudocode listed in Algorithm 1. This pseudocode shows how two
streams (𝑠𝑡𝑟𝑒𝑎𝑚 𝑎 and 𝑠𝑡𝑟𝑒𝑎𝑚 𝑏) are being serviced.

40



Algorithm 1 Gateway Algorithm

1: procedure gateway
2: loop:
3: if ((stream a has data) and (output buffer has free space)) then
4: configure the accelerators
5: load state into the accelerators
6: process data for stream a
7: wait for all data to be processed
8: save state of the accelerators
9: end if

10: if ((stream b has data) and (output buffer has free space)) then
11: configure the accelerators
12: load state into the accelerators
13: process data for stream b
14: wait for all data to be processed
15: save state of the accelerators
16: end if
17: goto loop.
18: end procedure

The algorithm starts by checking whether a stream has data available in its
input buffer, and if enough space at the output is available (Line 3). If so, the
accelerators for this streams have to be configured, by loading its configuration
and state. During the next step the data samples of 𝑠𝑡𝑟𝑒𝑎𝑚 𝑎 are pushed
through the connected accelerators. As discussed in the previous section, the
algorithm can only continue if all data has been received by the consumer. If
all data has been received the current state of the accelerators is being saved
before the next stream is being serviced. Next, all other streams are processed
in a cyclic order.

4.3.4 Data Packets

One interesting property of the scheduling policy is at which granularity the
data streams are being multiplexed over the hardware accelerators. As discussed
in the previous section, a predefined amount of data (a data packet) is being
processed before a next stream can be processed. Changing the size of a data
packet has two consequences;

1. Context switches introduce an overhead, mainly caused by the time it takes
to reconfigure the accelerators. This overhead will reduce the utilization
and therefore the maximum throughput which can be achieved over an
accelerator. In this sense, one should minimize the number of context
switches in order to reduce the introduced overhead, e.g. by maximizing
the size of the data packets.
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2. Data packets have to be buffered before they can be processed. In that
sense, one should minimize the size of the data packets, as this allows
smaller buffer sizes. With smaller buffer sizes, less memory has to be
added to the system. Furthermore the latency introduced by the sharing
mechanism is minimized.

The calculation of proper buffer sizes is a trade-off between maximizing the
throughput over the accelerators and minimizing memory usage. This calcula-
tion will be discussed as future work in Section 8.2.

4.4 Summary

This chapter focussed on the system architecture. The decision was made to
implement a centralized gateway component. This gateway will buffer incoming
(low speed) data streams, and will push them each at high speed through the
accelerators. With this technique little to no modifications are required on
the hardware accelerators and offers a possibility to improve the currently low
utilization of the hardware accelerators. Round-Robin scheduling will be applied
in this gateway component, where packets of data are processed in a cyclic order.
Buffers to hold complete packets of data will be implemented both at the input
of the gateway and after the last accelerator.
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Chapter 5

Implementation

The previous chapter gave an overview of the system architecture. As explained
a centralized gateway module will be implemented, which will take care of buffer-
ing incoming data streams and performing arbitration between the streams.
This chapter will focus on the implementation of this module.

5.1 Hardware

A wide variety of tasks has to be supported by the gateway, such as:

∙ Buffering of incoming data streams.

∙ Reconfiguring of hardware accelerators.

∙ Performing arbitration over the data streams.

∙ Checking for free space at the output.

∙ Pushing data streams at high speed through the accelerators.

One question directly popped up during the design of this gateway; should the
gateway be implemented in software, running on one of the processors in the
system, should it be implemented completely in hardware, or is a combination of
both worlds the best trade-off. When answering this question, one has to con-
sider flexibility, hardware costs and power efficiency. Eventually the decision
was made to start with a solution completely in software, running on one of the
processors in the system. The idea behind this choice was to quickly implement
a sharing mechanism in software, and then gradually replace parts of this (slow)
software solution with a more efficient implementation in hardware. One of the
advantages of using a CPU to implement accelerator sharing is the fact that
communication between processors and the gateway module is already imple-
mented, as the existing C-HEAP FIFO (CFIFO) protocol (see Section 3.3.2)
can be used for this purpose.

In the next sections the hardware components which were added to the gateway
are discussed.
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5.1.1 Accelerator Interface

The Nebula ring interconnect only supports write operations. A processor is
able to write data to specific registers of an accelerator, in order to fill it with
configuration and state. Reading the contents of these registers, in order to
extract the state of an accelerator, or to debug the contents of an accelerator
during code development, turned out to be more problematic. As a solution to
this problem a so called read-back mechanism was introduced in [16]. By writing
a SPM address to specific addresses of an accelerator, the accelerator will take
care of sending the contents of the corresponding register to the supplied SPM
address. This way a read operation is replaced by two separate write actions.

This solution is in its current state unusable, because the requesting processor
is unable to safely determine when the contents of the requested register has
arrived in its local SPM. Another concern is the fact that the returning data
has to travel across the complete remaining part of the Nebula ring. This
means that the latency introduced by this part of the network has a direct
influence on the time it takes to reconfigure an accelerator, and thus also a
(negative) influence on the utilization of the hardware accelerators. Because the
Starburst MPSoC is becoming increasingly larger in terms of actors (processing
tiles and accelerators) connected to the Nebula ring, the size of the Nebula
ring is expected to constantly increase which will result in a degradation of
(reconfiguring) performance.

As a (temporary) solution a so-called Accelerator Interface has been developed.
This hardware component is used to connect the accelerators directly to the
local PLB of the gateway, giving the gateway the ability to easily read config-
uration and internal state out of the accelerators. This module is clearly not
implemented as a permanent solution; it scales poorly, and has a large area
footprint. However, as future modifications on the network are expected (See
section 8.2), this solution was preferred as it was easy to prototype and allowed
us to quickly focus on the actual multiplexing problem.

An overview of the Accelerator Interface module is depicted in Figure 5.1. A
Xilinx PLB Slave Single component [33] was used for this purpose. This IP
simplifies the connection of custom hardware to the PLB, as it translates the
rather complex PLB protocol to the much simpler Intellectual Property Inter-
connect (IPIC) protocol. This IPIC protocol turned out to be pin-compatible
with the configuration interface on the accelerators. By default, the Accelera-
tor Interface is mapped on the address range 0x20000000 - 0x200001FF, where
each accelerator has a sub-map of 0x40 bytes. (𝐴𝑐𝑐0 is mapped on 0x20000000
- 0x2000003F, 𝑎𝑐𝑐1 on 0x20000040 - 0x2000007F, etc). Based on this address,
custom logic has been added, which will pass on the read or write actions to the
correct accelerator.

Figure 5.2 gives an overview of a processing tile, which is now equipped with an
Accelerator Interface. Connections are made between the Accelerator Interface
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Figure 5.1: Accelerator Interface

and the ringshell of a NI. The ringshell is the modular addition to the NI which
implements for example credit based communication. The ringshell was modi-
fied where a port was added to let it connect to the Accelerator Interface and
logic was added to read and write state and configuration via this interface. By
adding the required hardware to this modular extension, there was no need to
modify each hardware accelerator separately.

Figure 5.2: Gateway overview, including Accelerator Interface
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5.1.2 Direct Memory Access

By implementing the gateway module in software one problem remains unsolved;
a CPU is relatively slow and therefore unable to stream data at high speed
through the accelerators.

The first step in order to come with a solution was to find the cause of this
problem. For this reason performance measurements on the CPUs have been
performed. As discussed in Section 3.3.2, the CFIFO communication protocol
allows the processors to communicate with each other over the Nebula ring
network. Via this protocol the communication of arbitrary data types with
arbitrary sizes is possible.

The performance measurements focussed on the throughput at which data is
communicated via this CFIFO protocol. By letting two neighbouring CPUs
communicate data via a CFIFO buffer with a depth of 1, the impact of the packet
size on the achieved throughput is investigated. By using two neighbouring
processors we can in theory use the complete bandwidth of the Nebula ring
interconnect, under the assumption that no other tasks are executing on the
system. Each experiment starts by taking a snapshot of the hardware timer at
the producing CPU. After sending multiple packets to the consumer, another
timer snapshot is taken. Based on these two snapshots, the size of one packet and
the total number of packets, the total throughput can be calculated. Sending a
large number of packets (16 million) resulted in a total processing time of around
15 seconds for the smallest packet size. This way we tried to average out the
jitter introduced by for example the caching mechanism, the kernel switches or
the time it takes to start and stop the hardware timer. The results of these
measurements are displayed in Figure 5.3.

The graph in this figure has an interesting S-shape. This shape can be explained
by looking at the acknowledgement which is returned after a consumer has fin-
ished reading its received data. Sending a packet with a size of 4 bytes means
that an equally sized acknowledgement is returned. However, this acknowl-
edgement has to travel a larger distance over the ring interconnect, resulting
in a large overhead. Increasing the packet size will clearly reduce this over-
head. Based on this graph, there is a turning point around a packet size of 32
bytes. With this size, the time it takes to send 32 bytes equals the amount of
time it takes to return the acknowledgement. Further increasing the packet size
results in a decreasing overhead and thus an increased throughput. An inter-
esting property of this graph is the fact that throughput seems to be limited
at 50MB/s. Further increasing the packet size has little to no impact on the
achieved throughput.

Further research learned that the throughput of a processing tile is limited by
its local PLB. As multiple masters are connected to the same bus, arbitration
by a central controller is applied which takes 3 clock cycles [32]. Fetching data
from cache or local memory will take in the best case situation 1 clock cycle.
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Figure 5.3: CFIFO performance measurements

Sending data to the correct peripheral and routing an acknowledgement back
takes another 4 clock cycles, resulting in a total time of 8 clock cycles per
transaction. With a clock-speed of 100MHz a maximum throughput of 100

8 =
12.5MS/s or 50MB/s can be achieved. This confirms the bottleneck as already
identified in Figure 5.3.

Bursting is a technique which can be used to improve data transfer speeds.
Instead of communicating one word, multiple words are communicated during
one transaction. This reduces the transaction overhead, resulting in higher data
rates. The first idea was to implement a so-called DMA controller in the form
of the Xilinx XPS central DMA controller IP-core [34]. A DMA-controller is
a hardware component which can be used to copy a programmable quantity
of data from a programmable source address to a programmable destination
address. During this transaction no processor intervention is required, and is
able (in contrast to a CPU) to burst the data. Figure 5.4 gives an overview of the
gateway module equipped with a DMA controller. By default the SPM (denoted
”8K RAM”) is connected to the much faster LMB. As this bus only supports
a single master component, the SPM had to be moved to the PLB to let the
DMA-controller communicate with it. The dashed red line in Figure 5.4 displays
the communication pattern; the first step is to program the DMA-controller (1),
the next step is to read a block of data from the SPM (2) and during the last
step this block of data is forwarded via the NI to another processing tile (3).

One disadvantage of this approach is the fact that the NIs don’t have support
for burst transactions. This means that a block of data can be read from local
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Figure 5.4: Gateway overview, including DMA Controller

memory, but the DMA-controller still has to use single word transactions to
forward its data to a NI. As no improvement in throughput is expected this
way, two possible solutions for this problem are identified:

1. Modify the NI to support burst transactions.

2. Modify the DMA-controller to directly connect it to a NI, this way com-
pletely bypassing the PLB.

Within the Starburst project, a hardware module was already being developed
which incorporated a custom written DMA-controller in order to stream data
from external memory at high speed over the Nebula ring interconnect and vice
versa. This module can be used for benchmarking or debugging purposes. The
decision was made to reuse parts of this component in order to make a DMA-
controller which directly connected to the ring interconnect. Compared to the
Xilinx DMA IP-core a lower area footprint was expected, as less functionality
is required (more on this in section Section 7.1).

An overview of this custom written DMA component is given in Figure 5.5. The
module consists of a PLB master controller, and a PLB slave controller. Both
controllers implement a state machine which handles the PLB communication
protocol. Via the PLB slave controller the module can be configured, after
which the master controller will start fetching data from memory. This data
is stored in a FIFO-buffer, after which it is being streamed to the NI via the
Fifo2NI component.
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Figure 5.5: Schematic overview of the RingDMA controller

Figure 5.6 gives a new overview of the gateway module with this custom written
DMA-controller incorporated. As depicted the DMA-controller is connected to
a dedicated NI and router. Even though the additional NI will result in a higher
area footprint, there are preliminary ideas to place the hardware accelerators
on a dedicated interconnect which requires an additional NI in the first place.
This idea will be discussed in more detail as future work in Section 8.2.

Figure 5.6: Gateway overview, including custom DMA Controller

Currently a CPU has to poll the DMA-controller to check whether it has fin-
ished moving the data. Improvements are expected when the polling mecha-
nism is replaced by for example an interrupt mechanism, because polling the
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DMA-controller will generate traffic on the PLB resulting in a degradation of
performance. An interrupt mechanism will inform the CPU as soon as it has
finished moving all data. Implementing a solution based on interrupts would
require a lot of modifications to the Helix kernel running on the CPUs. That
was not a feasible solution considering the remaining time for this project at
that point in time, and can therefore be considered as future work.

With the DMA-controller incorporated in the system, new performance mea-
surements have been performed. The results of these measurements are depicted
in Figure 5.7. As the minimal bursting size of this DMA-controller is 32 bytes,
experiments with smaller packet sizes have been omitted. Data is communicated
according to the CFIFO protocol, were the DMA-controller is used for the ac-
tual transfer of data. Overhead is introduced by the acknowledgement which
is returned when a complete packet has been received and by configuring the
DMA-controller. For the smallest packet size of 32 bytes this overhead caused a
slightly lower throughput compared to the software solution. For larger packet
sizes a clear improvement is visible, boosting the throughput to 217MB/s for
a packet size of 2048 bytes. This is an improvement of 444% compared to
the software solution. As the Nebula ring interconnect has a theoretical max-
imum throughput of 400MB/s, 54% of this theoretical maximum throughput
was used after implementing the DMA-controller. Overhead sources which pre-
vent a 100% utilization are for example the polling mechanism, the return of a
credit over the opposite part of the ring network and overhead introduced by
reconfiguring the DMA controller before a transfer can take place.
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Figure 5.7: DMA performance measurements. The dashed line in red illustrates
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The DMA-controller can be used according to the register map in Figure 5.8.
By default the DMA-controller will be placed at address 0x900000. After con-
figuring the source and destination registers, the transaction can be started by
writing a ’1’ to the enable-bit in the control register. Currently the processor
has to poll the status register to check whether the DMA-controller has finished
the transaction.

0131

Source address 0x00

Source length (in bytes) 0x04

Destination address 0x08

Unused Done
R 0x0C - Control register

Unused
Enable
R/W 0x10 - Status register

Figure 5.8: DMA-controller address map

5.1.3 Exit Gateway

In the previous two sections two modifications to the gateway module have
been discussed; an Accelerator Interface which allows the gateway to easily read
and write data from and to the connected accelerators. The second addition is
a DMA controller, which makes it possible to stream data at high(er) speeds
through the accelerators. This section will focus on one missing feature, which
is the ability to check whether enough free space is available at the output in
order to store a completely processed data packet. This requirement has been
discussed in Section 4.3.2. In the current implementation it is only possible to
check the presence of tokens on the connection between the gateway and the first
connected accelerator, it is impossible to determine if free space at the output
is available.

As explained in Section 3.2.5 returning from a memory unaware hardware ac-
celerator to a memory aware processor is currently achieved with a hardware
FIFO-buffer directly connected via a FSL-link to a processor. As there is no
way to easily extract the amount of free space available in this FIFO-buffer, this
solution is not suitable for our problem. Furthermore, a fundamental problem
of this FIFO-buffer is the fact that each processor has to be equipped with this
additional hardware in order to let it communicate with a hardware accelerator.
For the CPUs in the system this problem has already been solved via the CFIFO
communication protocol, as discussed in Section 3.3.2. Via this communication
protocol a processor is able to determine if free space for a complete packet is
available at the receiving side before a data packet is directly written in the
local memory of the receiving CPU.

This gave us the idea to use the CFIFO communication protocol to solve the
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missing piece of the puzzle. The idea is to implement a regular CFIFO buffer
between a gateway and a consumer. However, instead of writing data directly
to the local memory of the receiving CPU, data is streamed through these
accelerators into the local memory of the receiving processor. Afterwards the
receiving processor is informed that new data is available. Via this protocol
the gateway is able to determine the availability of free space which solves our
problem. An additional (and highly appreciated) advantage is the fact that the
hardware FIFO-buffers and FSL-links can be completely omitted as the results
are directly streamed into local memory.

There are however two problems concerning this idea:

1. A hardware accelerator is equipped with a programmable register which
stores the address where data has to be forwarded to. This way data can
only be forwarded to one fixed address (keyhole addressing), where the
SPM of the receiving processor has to be addressed incrementally.

2. The receiving processor should be informed that new packet of data is
available. However, this can only be done if all data has passed through the
chain of accelerators and is stored in the SPM of the receiving processor,
as it would otherwise process invalid and incorrect data.

In order to solve those two problems we propose to use an additional compo-
nent placed directly after the chain of accelerator called an Exit Gateway. The
purpose of this component is to:

1. Generate incrementing addresses for the incoming data packets, in order
to be able stream the incoming data packets directly to the SPM of a
receiving processor.

2. Count the number of processed words, in order to determine if a complete
packet has been processed.

3. Inform the receiving processor that a new packet has been received, ac-
cording to the CFIFO protocol.

The positioning of this component is displayed in Figure 5.9. As discussed the
exit gateway is positioned right after the last accelerator, and is connected to
the accelerator interface. This way the gateway (𝐺𝑊0) is able to program this
component with a start address and a packet size and after sending all data it
is able to check if all data has passed this component.

After adding the Exit Gateway to the Starburst platform (see Appendix A.1 for
detailed information), the module can be programmed according to the register
map as displayed in Figure 5.10. As an accelerator is forwarding data to this
component a credit return address has to be programmed in the ringshell of the
Exit Gateway (at address 0x00), all other ringshell registers are unused. The
second step is to program a start address pointing to the SPM of the receiving
processor (at address 0x14). Besides this address the packet size (at address
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Figure 5.9: Hardware Accelerator sharing overview, including exit gateway

0x18) has to be programmed and the word counter has to be set to zero (at
address 0x1C).

After programming the Exit Gateway, the earlier discussed DMA controller can
start streaming data. However, instead of polling the DMA controller to check
if all data has been processed, the gateway should poll the Exit Gateway (at
address 0x10) to determine if the programmed number of words have passed this
component. This is still a sub-optimal solution, where additional traffic is gen-
erated over the PLB limiting the achievable throughput of the DMA controller.
Just as the DMA controller a solution based on interrupts is preferred but not
yet implemented. A solution based on interrupts can therefore be considered as
future work.

0131

Credit Return Address 0x00 (Ringshell)

Data Forward Address (unused) 0x04 (Ringshell)

Data Snoop Address (unused) 0x08 (Ringshell)

Number of Credits (unused) 0x0C (Ringshell)

Unused Done
R 0x10 - Status register

Start Address 0x14

Packet Size 0x18

Word Counter 0x1C

Figure 5.10: Exit Gateway address map
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5.2 Software

An important aspect of hardware accelerator sharing is the fact that the config-
uration and state for multiple data streams needs to be managed. As discussed
in Section 5.1.1 an Accelerator Interface was added to the gateway, which al-
lows the gateway to write and read data from and to the accelerators. This
section will focus on the software side, where a mechanism to handle multiple
configurations and states will be discussed.

As discussed it is required to manage multiple configurations and state for a
single accelerator, however it is also possible to chain multiple accelerators to-
gether. This means that for a single data stream the state and configuration
for an arbitrary number of accelerators needs to be managed. An efficient data
structure was required to store this information. The fact that hardware accel-
erators can be chained together was the inspiration to store the configuration
and state in a linked list. A linked list is a data structure consisting of a set of
nodes, where each node consists of some data and a pointer to the next node
in the list. The configuration and state for a single accelerator is stored in such
a node. Next, multiple nodes are chained together where the order of nodes
represents the required chaining of accelerators. An advantage of this linked list
is the fact that an arbitrary number of nodes (and thus hardware accelerators)
can efficiently be chained together, where the node in software maps directly to
a accelerator in hardware.

Writing software for the Starburst platform requires the programmer to be care-
ful, as the CPUs are implemented without an MMU no memory protection is
available. Writing to the memory space of another process will not raise any
exceptions and will result in undefined behaviour. Besides that it is required
to determine for each accelerator to which physical address data has to be for-
warded or to which address credits have to be returned. Using an incorrect
address will simply deadlock the complete stream of data. Writing (and thor-
oughly testing) code once and reusing this code multiple times at other positions
in the system is the key to solve these kind of bugs in the code. For this rea-
son the accelerator administration was developed via an Object Oriented (OO)
approach (in C++), which offered powerful techniques like polymorphism and
inheritance.

An Unified Modeling Language (UML) class diagram is displayed in Figure 5.11,
and gives an overview of the most important classes and their relations. The
earlier discussed linked list consists of Accelerator objects, where each accelera-
tor has a aggregation relationship to a next Accelerator object. The Accelerator
class contains code which is equal for all accelerators, e.g. code to calculate the
address to which an accelerator has to forward data, or to which address credits
have to be returned. The Accelerator class contains two functions writeState()
and saveState() which can be used to load or save the configuration and state to
or from an accelerator. The idea is that when either of these functions is called,
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the objects in the linked list will recursively call this function on the next object
in the linked list after executing their own code. As the actual behaviour of
these functions depends on the type of accelerator, subclasses are used to imple-
ment this specific functionality (e.g. the classes FIR Filter, FM Demodulator
and Mixer in Figure 5.11). To be more specific, those two functions are pure
virtual functions, which makes the Accelerator class abstract. This basically
means that a programmer is forced to implement the functions in a subclass,
it is impossible to directly instantiate the Accelerator class. Furthermore, the
configuration and state also depends on the type of accelerator and is therefore
also stored in these subclasses. This way accelerator-specific functionality is im-
plemented via a technique called polymorphism, inheritance allows us to reuse
code which is common to all accelerators.

AccList

setNext(Accelerator*)
getNext(): Accelerator*
setupStream()
saveState()
writeState()

Accelerator
parent: AccList*
data_fwd_addr: int
credit_ret_addr: int
num_credit: int
setNext(Accelerator*)
getNext(): Accelerator*
setupStream()
 
 

FIR Filter
taps[]: int
state_I[]: int
state_Q[]: int
saveState()
writeState()

FM Demodulator
angle_prev: double
saveState()
writeState()

Mixer
angle_cur: double
angle_inc: double
saveState()
writeState()

writeState()
saveState()

0..1

1first

next

Figure 5.11: UML diagram accelerator administration

After creating a list of accelerator objects in software, a connection with the real
hardware has to be made. First, it should be checked whether the requested
accelerator is present in the system, whether it is unused and at which physical
address the accelerator can be found. For this reason a central administration is
maintained, implemented in the AccList class. A component called a ring map is
added to the Starburst platform. This is a simple Read-Only Memory (ROM)
which contains a layout of the Starburst platform. Based on this layout the
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Acclist class is able to determine if a requested accelerator is present, available
and at which address the accelerator can be found. Right after creating the
linked list, the programmer has to call the function setupStream(). This function
will be recursively called by the accelerator objects in order to determine the
availability and physical address for all accelerators in the linked list.

In Appendix A.2 an example is given, showing how to instantiate and use this
software implementation.
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Chapter 6

Dataflow analysis

The previous chapter focussed on the implementation of the sharing mechanism.
In this chapter we present the temporal analysis model. We start with a model
where just one stream is being serviced by a gateway, next this model is extended
to incorporate multiple streams.

6.1 Introduction

A dataflow model is a directed graph 𝐺𝑆(𝐸, 𝑉 ), consisting of actors 𝑣 ∈ 𝑉
and edges 𝑒 ∈ 𝐸, where each edge describes a directed channel between actors:
𝑒𝑖 = (𝑣𝑖, 𝑣𝑗). Edges represent unbounded queues to store tokens. Actors have a
firing rule; when at least a specific number of tokens (called quanta) is present at
all input edges the actor fires. When this happens all tokens at the input edges
are instantly consumed, and after a certain execution time a specific number of
tokens is produced at the output edges. When enough tokens are available an
actor can fire multiple times simultaneously. Self edges with one token can be
added to an actor in order to prevent parallel execution when this is not desired.

A large number of dataflow models exists, with different types of firing rules. In
this chapter the following tree dataflow models are used: HSDF, SDF and CSDF.
These models are visualized in Figure 6.1, and will now shortly be discussed.

v0
1 1

v0
2 3

v0
< 2, 1 > < 1, 4 >

HSDF

SDF

CSDF

Figure 6.1: Visualization of a number of dataflow models

HSDF is dataflow model with a firing rule where all actors will consume one
token on each incoming edge, and produce one token on each outgoing edge [3].
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This in contrast to SDF where an arbitrary number of tokens are consumed
and produced. CSDF [5] extends SDF by introducing the concept of phases.
Each actors cycles through a predefined number of phases, where 𝜌𝑣(𝑝) is de-
noting the execution time for phase 𝑝. 𝜋(𝑒𝑖𝑗 , 𝑝) and 𝛾(𝑒𝑖𝑗 , 𝑝) are respectively
denoting the production quanta and consumption quanta on edge 𝑒𝑖𝑗 during
phase 𝑝. Furthermore, the number of phases for actor 𝑣𝑖 is denoted as 𝜃(𝑣𝑖).
It is important to note that all actors do not need to have the same number
of phases. Overlapping firings are not allowed [5], which means that all actors
have an implicit self-edge with a single token on it. One exception to this rule
are single-phase actors, we allow them to fire concurrently. Self-edges have to
be added to prevent overlapping firings.

Two important properties are being used in this discussion; refinement and
abstraction [2]. A component is said to refine another component in the temporal
domain if:

∀𝑖,𝑚 ∙ 𝑎′𝑚(𝑖) ≤ �̂�𝑚(𝑖) ⇒ ∀𝑗, 𝑛 ∙ 𝑏′𝑛(𝑗) ≤ �̂�𝑛(𝑗) (6.1)

Where 𝑎𝑚 are the input ports and 𝑏𝑚 the output ports of component 𝐶, and 𝑎′𝑚
the input ports and 𝑏′𝑚 the output ports of component 𝐶 ′. In other words, this
implies that one component 𝐶 ′ refines a component 𝐶, then in the worst-case
situation tokens produced by 𝐶 do not arrive earlier than tokens produced by
𝐶 ′. Refinement is denoted as 𝐶 ′ ⊑ 𝐶. The opposite of refinement is abstraction.
Abstraction is most of the time used to reduce the number of cases that need
to be considered during analysis, this comes however at a cost of a reduced
accuracy.

6.2 Nebula Ring Network

An important property of the Nebula ring network is the fact that it can be
modelled with a dataflow model. There are two types of traffic on the Neb-
ula ring network (CFIFO communication and credit-based communication), the
dataflow models of both communication protocols will be discussed in the next
sections.

6.2.1 CFIFO Communication

A CFIFO software buffer with capacity 𝛼 is modelled as an SDF graph as
depicted in Figure 6.2. The model consists of a producer 𝑃 and consumer 𝐶,
with execution times 𝜌𝑃 and 𝜌𝐶 . Both actors are connected to a ring with a
total size of 𝑁 hops, which means that communication between actors P and C
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Figure 6.2: SDF model Nebula ring interconnect

is rate limited to 1
𝑁 as a router has to wait 𝑁 cycles in the worst case situation

before his own slot⋆ will pass again.

Latency is introduced by the network, where the worst-case situation occurs
when the own slot has just moved away. This introduces a latency of 𝑁 − 1
cycles, after this amount of cycles the slot passes the router again. The number
of hops needed to get from 𝑃 to 𝐶 is defined as 𝐷. This results in a total latency
of 𝑁 + 𝐷 − 1 cycles. Two separate actors are used to model latency (𝐿𝐷) and
rate (𝑅𝐷) between actors 𝑃 and 𝐶, where we need to subtract the execution
time of the rate limiter (𝑁) from the execution time of the latency actor. This
results in the following execution times:

𝑅𝐷 = 𝑁

𝐿𝐷 = (𝑁 + 𝐷 − 1) −𝑁 = 𝐷 − 1

When S tokens have been received and consumed by the consumer, a token will
be sent back to the producer. The communication between 𝐶 and 𝑃 is again
rate limited by 1

𝑁 , which is modelled by actor 𝑅𝐶 . The distance between 𝑃
and 𝐶 was defined as 𝐷. A credit has to travel across the opposite part of the
ring, which means that it has to travel 𝑁 −𝐷 hops. As the credit has to wait
at most 𝑁 − 1 cycles before it is accepted by the ring, this results in a total
latency of (𝑁 −𝐷) + (𝑁 − 1) = 2𝑁 −𝐷 − 1. Subtracting the execution time
of the rate limiter from the execution time of the latency actor results in the
following execution times:

𝑅𝐶 = 𝑁

⋆Every router passes data and addresses to its neighbouring router, both of which may be
empty. These pairs are unique and defined as a slot on the ring network. By labelling each slot
with an unique and incrementing number we can distinguish between slots. By numbering the
routers in the same manner we introduce the concept of an owned slot when these numbers
match.
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𝐿𝐶 = (2𝑁 −𝐷 − 1) −𝑁 = 𝑁 −𝐷 − 1

Note that the presented dataflow model is based on the worst-case (guaranteed)
bandwidth of 1

𝑁 . In Section 3.2.4 the work conserving principle of the Nebula
ring was explained. The idea is that when an empty slot passes a router, this
router may hijack this slot if the destination router is reached before the owner
of the slot is reached. The theoretical upper bound decreases linearly with
the number of hops data has to travel. When data is addressed to its direct
neighbour all slots may be hijacked (under the assumption that all slots are
empty), when an actor is sending data to itself no slots may be hijacked, resulting
in the already calculated lower bound of 1

𝑁 . The bandwidth 𝐵 can therefore be
described as:

1

𝑁
≤ 𝐵 ≤ 𝑁 −𝐷 + 1

𝑁

Where 𝐵 is the total bandwidth, 𝑁 the ring size and 𝐷 the number of hops
data has to travel. Being able to hijack other slots also has consequences on the
total latency introduced by the ring interconnect. The worst case situation has
already been discussed, which happens when a slot has just passed the router
which forces the router to wait 𝑁 − 1 cycles. Additionally, data has to travel 𝐷
hops resulting in a total latency of 𝑁 +𝐷− 1 cycles. In the best case situation
data can directly hijack another slot, which takes 1 cycle. Combining this with
the fact that data has to travel 𝐷 hops results in a latency of 𝐷+ 1 cycles. The
bandwidth 𝐿 can therefore be described as:

𝐷 + 1 ≤ 𝐿 ≤ 𝑁 + 𝐷 − 1

6.2.2 Credit-based Communication

As discussed in Section 3.2.5 hardware accelerators are integrated into the Star-
burst platform, where communication is taking place based on credits. An
accelerator is equipped with a hardware FIFO buffer, where credits are denot-
ing the number of free positions in this buffer. Accelerators are consuming data
word-by-word, where a credit is sent back to the producer after the consumption
of each word. A producer is therefore only allowed to send data if it has at least
one credit.

Figure 6.3 shows an SDF model of this accelerator communication protocol,
where producer 𝑃 is communicating data with accelerator 𝐴𝑐𝑐. For simplicity an
ideal network is assumed, where the latency and rate actors have been omitted.
The model in Figure 6.3 implies that a buffer with size 𝛼 ≥ 𝑆 is always required.
However, hardware accelerators often consume and produce only one word per
time unit, and as such it is not desirable to have a large input buffer. A problem
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occurs when a packet with a size of 𝑆 has to be communicated, where 𝑆 > 𝛼.
In that situation the model will deadlock as none of actors is able to fire.

P Acc1 1

ρ̂P ρ̂Acc

α

S 1

1S

Figure 6.3: Potentially dead-locked accelerator communication model

Figure 6.4 shows an CSDF model of the accelerator communication model. A
packet of 𝑆 words is communicated in 𝑆 separate phases, where single words are
written at the end of each phase. After word has been accepted by accelerator
𝐴𝑐𝑐, a credit is sent back to the consumer. In contrast to the previous model,
this model is dead-lock free if 𝛼 < 𝑆.

P Acc 1

<ρP (0), ..., ρP (S − 1)> <ρAcc(0)>

α

<S×1> <1>

<1><S×1> <1>

<1>

Figure 6.4: CSDF accelerator communication model

Figure 6.5 depicts the same CSDF model, where the earlier discussed latency
and rate actors have been added. In contrast to the CFIFO communication pro-
tocol, credits are travelling on a dedicated credit-ring, rotating in the opposite
direction. This has consequences for the latency actor 𝐿𝐶 , as the credits have
to travel the same distance (𝐷 − 1) as the actual data.

6.3 Single data stream

With the dataflow models of the communications protocols introduced, we can
now focus on the dataflow model of the sharing mechanism. As discussed in
the previous sections ( Section 4.3.2 and Section 5.1.3) the gateway and a con-
sumer are communicating data via a CFIFO software buffer. However instead
of streaming the data directly to this consumer, data is streamed through one or
more hardware accelerators in order to process the data stream. For this reason
we start with a SDF model of a CFIFO software buffer, which is depicted in
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Figure 6.5: CSDF accelerator communication model

Figure 6.6. The software buffer has a depth of 𝛼, which is modelled by the
back-edge (with 𝛼 initial tokens) running from the consumer 𝐶0 to the gateway
𝐺𝑊0. A packet of 𝑆 words is being communicated. An interesting property of
this model is that while a packet of 𝑆 words is being communicated, 𝑆+1 tokens
are being produced and consumed. This extra token models the update of the
write-pointer (See Section 3.3.2) just after sending all words to the consumer.
It is important to note that normally the sum of tokens one these edges reflects
the total buffer capacity. Due to the return of the single token this is not true
in our situation, as the total buffer capacity equals 𝛼 × 𝑆. For simplicity an
ideal network is assumed which allows us to remove the latency and rate actors
modelling the network characteristics.

GW0 C0

1
1

α

1

S + 1

1

S + 1

S + 1 S + 1

ρ̂GW0
ρ̂C0

Figure 6.6: SDF model: CFIFO communication protocol

In the previous section it was explained why a CSDF model is required to
accurately model credit-based communication with a hardware accelerator. For
this reason the SDF model in Figure 6.6 is modified to a CSDF model which is
depicted in Figure 6.7. Instead of producing 𝑆 + 1 tokens at once in the case of
the SDF model, tokens are produced during 𝑆 + 1 separate phases in the CSDF
model.

Instead of communicating data directly to consumer 𝐶0, data is streamed through
one or more accelerators. For this reason edge 𝑒(𝐺𝑊0, 𝐶0), is removed from the
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Figure 6.7: CSDF model: CFIFO communication protocol

model in Figure 6.7, and an accelerator is added. The modified model is dis-
played in Figure 6.8. The gateway and accelerator are communicating data
credit-based, where the accelerator has a hardware FIFO buffer with a depth of
𝛿0. This depth is modelled via a back-edge with 𝛿0 initial tokens running from
the accelerator to the gateway.

GW0 C0

<1, S × 0>

<1>

α

Acc

<S × 1, 0>

<S × 1, 0>

< 1 >

< 1 >

δ0

<1>

<S + 1>

<S × 0, 1>

<S + 1, S × 0>

Figure 6.8: CSDF model: Hardware Accelerator added

The next step is adding the Exit Gateway which was discussed in detail in Sec-
tion 5.1.3. The purpose of this component is counting the number of words
which have been processed, which allows the gateway to determine if the com-
plete accelerator pipeline is empty. It also generates addresses in order to cor-
rectly address the consumer. The addition of the Exit Gateway is depicted
in Figure 6.9. The accelerator is communicating data with the Exit Gateway
credit-based, where this component is equipped with a hardware FIFO buffer
with a depth of 𝛿1. This is modelled via a back edge running from actor 𝐺𝑊1

to actor 𝐴𝑐𝑐. After receiving and producing 𝑆 tokens, the Exit Gateway will
generate the pointer update for the CFIFO protocol itself, which means that in
total 𝑆 + 1 tokens are produced by this actor.⋆

The last step is adding an edge running from actor 𝐺𝑊1 to 𝐺𝑊0 without initial
tokens. This models the requirement that 𝑆 words have been processed by the

⋆The functionality to let the Exit Gateway generate the pointer update is not yet imple-
mented, instead this is currently solved in software where the gateway (𝐺𝑊0) is sending the
pointer update.

63



GW0 C0

<1, S × 0>

<S + 1>

<1>

α

GW1Acc

<S × 1, 0>

<S × 1, 0>

< 1 >

< 1 > < 1 > <S × 1, 0>

< 1 > <S × 1, 0>

<(S + 1)× 1>

δ0 δ1

<1>

<S + 1>

<S × 0, 1>

<S + 1, S × 0>

Figure 6.9: CSDF model: Exit Gateway added

Exit Gateway, which makes sure that the complete accelerator pipeline is empty.
A token will appear on this edge right after 𝑆 tokens have been received. Actor
𝐺𝑊0 will wait for this token before it continues. The addition of this edge is
depicted in Figure 6.10.
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Figure 6.10: CSDF model: Back-edge added

6.3.1 Abstraction

The constructed CSDF model is, apart from the missing network actors, rather
detailed. While the amount of detail is not a real problem when the gateway is
processing just one data stream, it is becoming a problem when multiple data
streams are being processed. What we are actually (only) interested in is the
total amount of time (in the worst-case situation) it takes to process a data
packet of 𝑆 samples. This amount of time is defined as the difference between
the moment of time 𝐺𝑊0 consumes all input tokens and the moment the last
sample has left the exit gateway 𝐺𝑊1. If this amount of time is calculated for
all data streams which are processed by the gateway, the influence of the data
streams on each other can be determined.

For this reason an abstraction of our CSDF model will be constructed which
allows us to hide specific details. This principle is depicted in Figure 6.11. As

64



we are only interested in the moment the last gateway produces the last token of
a packet, the idea is to represent the gateway, the accelerators, the exit gateway
and all network actors (all covered by the dashed red box) in a single actor
𝐺𝑊 ′. As discussed, this abstraction is valid if component 𝐺𝑊 ′ never produces
tokens earlier than the original set of components which are covered by the red
dashed box.

The consumption of tokens happens in both situations at the same moment
of time; in the original CSDF model all 𝑆 + 1 tokens are consumed in the first
phase, the same holds for a tokens from edge 𝑒(𝐶0,𝐺𝑊0). In the abstraction this is
also true, as actor 𝐺𝑊 ′ will instantly consume the same amount of tokens. The
production of tokens by actor 𝐺𝑊1 happens in 𝑆 + 1 independent phases, actor
𝐺𝑊 ′ will produce all 𝑆+1 tokens after an execution time of 𝜌′𝐺𝑊 . This basically
means that the abstraction is valid if actor 𝐺𝑊 ′ will not produce tokens earlier
than the last token production of actor 𝐺𝑊1. This forces us to calculate the
worst-case production time of the last token on actor 𝐺𝑊1, according to the
refinement property this production time can then be used to determine 𝜌′𝐺𝑊 .
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Figure 6.11: CSDF model: Abstraction
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6.3.2 HSDF conversion

In the introduction of this chapter HSDF was already introduced. HSDF is
a restricted version of SDF where all actors will consume one token on each
incoming edge, and produce one token on each outgoing edge [3]. HSDF graphs
can be executed in a self-timed manner. During self-timed execution all actors
will execute as soon there is at least one token on each incoming edge. If the
graph is strongly connected (from each actor all other actors are reachable) and
the order of tokens is maintained (by giving each actor a self-edge with one
initial token, or by giving the actor a constant response time) the HSDF graph
has strong analytical properties.

The first property is the fact that a graph is deadlock-free if each cycle in the
graph has at least one token. Secondly, the execution of HSDF graphs is mono-
tonic, which means that decreasing actor firing times or increasing initial tokens
will result in non-increasing actor start times. The reason for this behaviour is
the fact that an earlier token arrival time cannot result in a later actor start
time. And third, an HSDF graph will always enter a periodic regime. Or more
precise, after an initial phase 𝐾 ∈ N the execution enters an periodic regime
with a period 𝜇.𝑁 , with 𝑁 ∈ N describing the number of produced tokens dur-
ing one period (the cyclicity) and 𝜇 ∈ R the inverse of the average throughput.
This means that for all actors 𝑣 ∈ 𝑉 , 𝑘 > 𝐾 the start time 𝑠(𝑣, 𝑘 + 𝑁) of actor
𝑣 in iteration 𝑘 + 𝑁 is described by:

𝑠(𝑣, 𝑘 + 𝑁) = 𝑠(𝑣, 𝑘) + 𝜇.𝑁 (6.2)

The Maximum Cycle Mean (MCM) of a HSDF graph is equal to 𝜇 and defined
as:

MCM (𝐺) = max
𝑐∈𝐶𝐺

CM (𝑐) (6.3)

CM (𝑐) =
∑︁

𝑣 𝑜𝑛 𝑐

WCRT (𝑣)/𝑑(𝑐) (6.4)

Basically the Cycle Mean (CM) of a simple cycle 𝑐 is calculated by summing the
response times for all actors 𝑣 on cycle 𝑐, and dividing it by the total number
of tokens on cycle 𝑐 (denoted by 𝑑(𝑐)). The maximum of all Cycle Means will
then determine 𝜇, hence the name Maximum Cycle Mean.

With HSDF now shortly introduced, we can return to our original problem. The
goal is to convert our rather detailed model to a less detailed abstraction, as
was displayed in Figure 6.11. The missing piece of the puzzle is the worst-case
execution time of actor 𝐺𝑊 ′. The idea is now to calculate this execution time
based on the MCM of our original CSDF model. For this reason the original
CSDF graph is transformed into an equivalent HSDF graph [5]. A detailed
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explanation of the algorithm to transform a CSDF graph to an HSDF graph is
beyond the scope of this thesis. It is sufficient to know that this transformation
is applied by mapping all separate phases of a CSDF actor to individual HSDF
actors and constructing new edges between the HSDF actors, with the correct
number of initial tokens. This introduces some serious problems in our situation;
the size and structure of the equivalent HSDF graph depends both on the packet
size 𝑆, and the number of initial tokens 𝛿0 and 𝛿1. (See Figure 6.11)

We could solve this problem by using specific tools which are able to automate
the transformation, like Hebe [27]. This tool was used during this thesis, and
was able to successfully calculate an equivalent HSDF graph and extract its
MCM. There was however one large drawback of this approach. It is virtually
impossible to predict the impact on the transformed HSDF graph if the original
CSDF graph is (slightly) modified. A different packet size 𝑆 or different number
of initial tokens 𝛿0 or 𝛿1 forced us to do a completely new transformation and
MCM calculation. Eventually, it is required to calculate an appropriate packet
size 𝑆. A parametric solution is preferred in this situation, where the impact of
tuning certain parameters is directly visible.

6.3.3 HSDF model

The previous section learned that an (automatic) CSDF to HSDF conversion
is not preferable. The size and structure of the resulting model depends on
multiple parameters such as the packet size 𝑆, as the gateway actors with 𝑆 + 1
phases are mapped onto 𝑆 + 1 separate HSDF actors. Instead of applying
transformations we have manually constructed an HSDF model, which will be
discussed in this section.

One of the reasons which forced us to use CSDF to model the accelerator shar-
ing mechanism is the fact that after communicating 𝑆 tokens a single token is
returned from 𝐺𝑊1 to 𝐺𝑊0 (See Figure 6.12). It is hard to model this be-
haviour accurately in a (compact) HSDF model. However, the token from 𝐺𝑊1

to 𝐺𝑊0 is communicated only during the last iteration, when all other tokens
have already been communicated. This allows us to distinguish two independent
phases: during the first phase 𝑆 tokens are communicated from 𝐺𝑊0 to 𝐺𝑊1,
during the second phase a single token is returned. The total processing time
can therefore be determined by calculating and summing the processing times
for both separate phases.

Figure 6.13 shows a new and detailed HSDF model, with two gateways (𝐺𝑊0

and 𝐺𝑊1), an accelerator and network actors (𝐿* to model latency, 𝑅* to model
bandwidth). As this is an HSDF model, the actors have a fixed (production
and consumption) quanta of 1. Instead of having 𝑆 duplicated actors to model
the fact that 𝑆 tokens are communicated (what happened with the CSDF to
HSDF transformation), the actors in this model have to fire 𝑆 times in order to
communicate 𝑆 tokens.
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Figure 6.12: CSDF model
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Figure 6.13: HSDF model of two gateways and one hardware accelerator

6.3.4 Schedule Definitions

The total processing time will be calculated by means of an execution schedule.
The schedule function 𝑠(𝑣, 𝑘) represent the time at which the instance 𝑘 of
actor 𝑣 is fired [21]. As firings are counted from 0, instance 𝑘 corresponds to
the (k+1)-th firing. The finishing time of the k-th firing of actor 𝑣 is denoted as
𝑓(𝑣, 𝑘). It always holds that 𝑓(𝑣, 𝑘) = 𝑠(𝑣, 𝑘) + 𝜌(𝑣, 𝑘). If 𝜌(𝑣) is the worst-case
firing duration, then 𝜌(𝑣, 𝑘) ≤ 𝜌(𝑣), for all 𝑘 ∈ N0.

A Self-Timed Schedule (STS) is a schedule where each actor fires as soon as all
its input edges hold enough tokens. In the case of a HSDF graph this means
that the input edges hold at least one token. When worst-case execution times
are assumed (𝜌(𝑣) instead of 𝜌(𝑣, 𝑘)) the schedule becomes a Worst-Case Self-
Timed Schedule (WCSTS). An interesting property of WCSTS has already been
discussed; after a transition phase 𝐾, the schedule will enter a periodic regime:

𝑠(𝑣, 𝑘 + 𝑁) = 𝑠(𝑣, 𝑘) + 𝜇.𝑁 (6.5)

Instead of letting a graph execute self-timed, we could delay the enabling of the
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actors to force a graph to execute with a certain period⋆ 𝑇 . The schedule is
then called a Static Periodic Schedule (SPS) and is defined as:

𝑠(𝑣, 𝑘) = 𝑠(𝑣, 0) + 𝑇.𝑘 (6.6)

In [21] it is proven that for any HSDF graph G, it is possible to find a SPS
schedule as long 𝑇 ≥ 𝜇(𝐺). If 𝑇 < 𝜇(𝐺) no SPS exists. If the period T is
chosen such that it is equal to the MCM 𝜇(𝐺), the schedule is called a Rate
Optimal Static Periodic Schedule (ROSPS):

𝑠(𝑣, 𝑘) = 𝑠(𝑣, 0) + 𝜇(𝐺).𝑘 (6.7)

Concluding, when worst-case execution times are assumed during the self-timed
execution of graph G, the graph will fire according to the WCSTS. Eventually
(after a transition phase 𝐾) the schedule will settle into a periodic behaviour,
with a period 𝜇(𝐺). On the other hand it is always possible to enforce a graph
𝐺 to execute with a period 𝑇 ≥ 𝜇(𝐺). When 𝑇 = 𝜇(𝐺) the schedule is called a
ROSPS. It is important to note that because of monotonicity in any admissible
SPS schedule actors can never fire earlier than the WCSTS. This way you can
see an SPS as an upper bound; under the WCSTS actors will never fire later
than this SPS.

6.3.5 Schedule Calculation

In the previous section we showed that the ROSPS schedule can be used as an
upper-bound, as the actors of the corresponding graph 𝐺 will never fire later
during self-timed execution. Via this periodic schedule we are able to give a
parametric solution for the total processing time, which will be discussed in this
section. In Figure 6.14 our constructed HSDF graph is displayed. What we are
interested in, is the production time of the 𝑆-th token on actor 𝐺𝑊1, defined as

𝑓(𝐺𝑊1, (𝑆 − 1)) = 𝑠(𝐺𝑊1, (𝑆 − 1)) + 𝜌(𝐺𝑊1) (6.8)

As discussed in the previous section, it is sufficient to calculate this finishing
time based on the ROSPS, during STS the firings will never happen later. From
Equation 6.7 and Equation 6.8 it follows that

𝑓(𝐺𝑊1, (𝑆 − 1)) = 𝑠(𝐺𝑊1, 0) + (𝑆 − 1) · 𝜇(𝐺) + 𝜌(𝐺𝑊1) (6.9)

From Equation 6.9 it follows that it is sufficient to calculate the first enabling
time of actor 𝐺𝑊1 (defined as 𝑠(𝐺𝑊1, 0)) which depends on the positioning of

⋆The schedule becomes periodic after a transition phase 𝑠(𝑣, 0), which depends on the
position of the initial tokens in graph 𝐺.

69



GW0 GW1Acc
δ0 δ1

LD1

LC1

LD2

LC2

RD1

RC1

RD2

RC2

ρ̂GW0 ρ̂Acc ρ̂GW1

D1
B1

B2 D2

D3

D4B4

B3

Figure 6.14: HSDF model of two gateways and one hardware accelerator

initial tokens in the dataflow graph, and the MCM of graph G (𝜇(𝐺)). Simula-
tion (or manually construction an admissible schedule) allows us to determine
𝑠(𝐺𝑊1, 0). Under the assumption that the initial tokens 𝛿0 and 𝛿1 are placed
as depicted in Figure 6.14 we have constructed a schedule as depicted in Fig-
ure 6.15.
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Figure 6.15: Execution schedule (𝛿0 = 1, 𝛿1 = 1, 𝑆 = 3). For simplicity each
pair of network-actors (𝑅* and 𝐿*) is replaced by a single actor 𝑁*.

Based on the positioning of initial tokens actor 𝐺𝑊0 is the first actor to fire at
𝑡 = 0. Next we follow the chain of actors leading to eventually the first enabling
of actor 𝐺𝑊1 at moment 𝑡 = 𝑠(𝐺𝑊1, 0) (marked in red). After the first exe-
cution we can enforce the ROSPS with period 𝜇(𝐺) eventually leading to the
𝑆−1-th enabling of actor 𝐺𝑊1 at moment 𝑡 = 𝑠(𝐺𝑊1, (𝑆−1)) (marked in red).
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When the 𝑆− 1-th firing finishes, a token is sent from actor 𝐺𝑊1 to actor 𝐺𝑊0

to inform that all data packets have been processed. In the actual implementa-
tion this acknowledgement is communicated through the Accelerator Interface,
over the local data bus of the gateway. The worst-case effects introduced by this
interconnect are modelled via actor 𝑁𝑎𝑐𝑘. When the acknowledgement reaches
actor 𝐺𝑊0, it will start reconfiguring the accelerators (with a worst-case exe-
cution of 𝜌𝑅𝑒𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒). Afterwards the gateway will start processing the next
data packet, which is marked in grey.

Next, we investigate the effects of using larger data buffers on the accelerator and
the Exit Gateway. A new (self-timed) schedule is constructed where 𝛿0 = 𝛿1 = 2.
We start with the WCSTS, which is displayed in Figure 6.16. The influence
of the larger buffer size is directly visible in the utilization of the hardware
accelerator. The schedule in Figure 6.15 shows that the accelerator is processing
data during 2 out of 6 time units. The schedule in Figure 6.16 shows that after
increasing the buffer sizes, the accelerator is processing data during 4 out of 6
time units, doubling its utilization.
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Figure 6.16: Self-timed execution schedule (𝛿0 = 2, 𝛿1 = 2, 𝑆 = 4). For sim-
plicity each pair of network-actors (𝑅* and 𝐿*) is replaced by a single actor
𝑁*.

Next, for the same configuration with 𝛿0 = 𝛿1 = 2 a new schedule is constructed.
However in contrast to the previous schedule we will construct the ROSPS
schedule, where we enforce a strict periodic firing of actors. In this specific

71



schedule it turns out that each even firing (2 and 4) of the actors is delayed
with one time unit. Based on the constructed schedule we can conclude that
the utilization remains unchanged; the accelerator is processing data during 2
out of 3 time units. This specific example also shows the pessimistic approach
of the ROSPS schedule where each odd firing (1 and 3) takes place at the same
time as the WCSTS, and each even firing (2 and 4) 1 time unit later.
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Figure 6.17: ROSPS execution schedule (𝛿0 = 2, 𝛿2 = 1, 𝑆 = 4). For simplicity
each pair of network-actors (𝑅* and 𝐿*) is replaced by a single actor 𝑁*.

Concluding, we use the ROSPS in order to determine the total processing time.
First we determine the first (worst-case) execution of actor 𝐺𝑊1, by constructing
the WCSTS. This is the time it takes to fill the complete processing pipeline,
which we denote as 𝜆𝐺𝑊1

𝜆𝐺𝑊1
= 𝑠(𝐺𝑊1, 0) = 𝜌𝐺𝑊0

+ 𝐷1 + 𝐵1 + 𝜌𝐴𝑐𝑐 + 𝐷3 + 𝐵3 (6.10)

After the first enabling of actor 𝐺𝑊1 (𝑠(𝐺𝑊1, 0)) we can fire actor 𝐺𝑊1 peri-
odically with a period equal to 𝜇(𝐺). For this reason we have to calculate the
MCM of our HSDF graph, according to Equation 6.4. All Cycle Means of our
graph are listed in Equation 6.11.
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𝜇(𝐺) = max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜇(𝑐1) =
𝜌𝐺𝑊0

+ 𝐷1 + 𝐵1 + 𝜌𝐴𝑐𝑐 + 𝐷2 + 𝐵2

𝛿0

𝜇(𝑐2) =
𝜌𝐴𝑐𝑐 + 𝐷3 + 𝐵3 + 𝜌𝐺𝑊1

+ 𝐷4 + 𝐵4

𝛿1

𝜇(𝑐3) =
𝜌𝐺𝑊0

1

𝜇(𝑐4) =
𝜌𝐴𝑐𝑐

1

𝜇(𝑐5) =
𝜌𝐺𝑊1

1

𝜇(𝑐6) =
𝐵1

1

𝜇(𝑐7) =
𝐵2

1

𝜇(𝑐8) =
𝐵3

1

𝜇(𝑐9) =
𝐵4

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.11)

From Equation 6.11 it follows that when the when 𝑐1 or 𝑐2 are the largest
cycles, increasing the number of tokens 𝛿0 or 𝛿1 directly lowers the MCM. In
that situation the MCM will be determined by either the bandwidth of the
interconnect (via cycles 𝑐6, 𝑐7, 𝑐8 or 𝑐9) or by the execution time of the gateway
actors (cycles 𝑐3 or 𝑐5) or the accelerator (cycle 𝑐4).

Based on Equation 6.9, Equation 6.10, Equation 6.11 and the constructed sched-
ules, we are able to give a parametric solution for the total time it takes to
process a packet of 𝑆 tokens:

𝜌′𝐺𝑊 (𝐺,𝑆) = 𝜆𝐺𝑊1 + (𝑆 − 1) · 𝜇(𝐺) + 𝜌𝐺𝑊1 + 𝜌𝐴𝑐𝑘 (6.12)

6.4 Multiple data streams

The previous section focussed on processing a single data stream, where a para-
metric equation for the total processing time was given. However, the purpose
of the gateway is to process multiple data streams, which will be the focus of
this section.

As discussed in Section 4.3.3 Round-Robin scheduling will be applied, where
the gateway is processing the data streams in a cyclic order. Before a data
stream can be processed the set of accelerators has to have their state loaded,
afterwards the state has to be saved. This principle can be drawn as a dataflow
graph, an example with two data streams is depicted in Figure 6.18.
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Figure 6.18: SDF model multiple data streams

In this figure two data streams are being processed which is modelled via actors
𝐺𝑊𝑠𝑡𝑟0 and 𝐺𝑊𝑠𝑡𝑟1 . We deliberately left out edges on actor 𝐺𝑊𝑠𝑡𝑟1 , as our
algorithm will proceed with a next data stream when insufficient tokens (𝑆 + 1)
are present. By leaving out these edges we assume that this actor will always
fire even when insufficient tokens are available, which models the worst-case
situation. Before data can be processed, accelerators need to be programmed
and afterwards state need to be saved. Both actions are modelled via a single
actor 𝑃𝑠𝑡𝑟𝑖 . The firing duration of this actor depends on the number of registers
which have to be save and/or loaded. The actors are connected in a cyclic order
with one initial token, which models the Round-Robin scheduling mechanism.

Assume now that on the input edge of actor 𝐺𝑊𝑠𝑡𝑟0 a complete data packet is
available. The worst case situation occurs when this packet arrives right after
actor 𝐺𝑊𝑠𝑡𝑟0 finishes its execution. This means that all remaining actors have
to fire first before actor 𝐺𝑊𝑠𝑡𝑟0 is able to fire again. Or, when a complete packet
is available in the worst-case situation all actors have to fire (including actor
𝐺𝑊𝑠𝑡𝑟0) before this packet is processed. We could draw the same graph for
actor 𝐺𝑊𝑠𝑡𝑟1 where the edges on 𝐺𝑊𝑠𝑡𝑟0 are removed. Again we can conclude
that in the worst-case situation all actors have to fire before a complete packet
is processed.

This knowledge allows us to draw a new graph as depicted in Figure 6.19, where
an expression for 𝜌𝐺𝑊 is given by Equation 6.13.
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Figure 6.19: SDF model multiple data streams

𝜌𝐺𝑊 =

𝑛−1∑︁

𝑖=0

𝜌𝐺𝑊𝑠𝑡𝑟𝑖
+

𝑛−1∑︁

𝑖=0

𝜌𝑃𝑠𝑡𝑟𝑖
(6.13)

n = number of data streams

Concluding, in this chapter the temporal analysis model of our sharing mecha-
nism is presented. Based on a detailed HSDF graph, a parametric solution for
the total processing time for a data packet is given. When multiple streams are
being processed by the same gateway we showed that in the worst case situation
all actors have to fire before a complete packet is being processed.
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Chapter 7

Evaluation

7.1 Hardware Costs

We start this evaluation with an overview of the hardware (area) costs of the
gateway component and the other components which were modified during this
project.

The Xilinx ML605 evaluation board is used as hardware platform for the Star-
burst MPSoC. The most important hardware resources of this board are: slice
registers, LUTs, LUTRAM, Block Ram (BRAM) and Digital Signal Process-
ing Element (DSP48E1). Each slice in the FPGA contains eight registers and
four LUTs. A LUT is in fact a logical function generator with six inputs and
two outputs. A LUT can also be used as a 256 bit RAM and is then called
a LUTRAM. Additionally, the FPGA is equipped with dedicated RAM called
BRAM. A BRAM can store up to 36 KB of data with a much smaller area
footprint than a equivalent implemented in LUTRAM. Finally, a DSP48E1 is
a dedicated DSP component, used for multiplications and additions. Designed
to operate on high frequencies with a area footprint much smaller than the
equivalent LUT implementation.

As a reference the hardware costs of the larger components of Starburst plat-
form are presented in Table 7.1: a Microblaze processor, a Linux processor
(equipped with a MMU) and a Multi-Port Memory-Controller (MPMC). As the
Linux processor is equipped with a MMU, this component is larger than normal
Microblaze processors.

Starburst MicroBlaze Linux MicroBlaze MPMC
Slice reg 3123 3417 4759

LUT 3929 4476 3260
LUTRAM 316 236 188

BRAM or FIFO 18 19 17
DSP48E1 6 6 0

Table 7.1: Hardware usage of reference components

Table 7.2 shows the hardware usage of a router and a NI. These components
have not been modified during this project and are only added as a reference.
Clearly visible is the small size of the components. They both have a size of

77



about 2% of a MicroBlaze CPU. The largest part of the NI are located in the
FIFO buffer inside this component which is implemented in LUTRAM.

Router NI
Slice reg 83 (2,7%) 6 (< 0,1%)

LUT 96 (2,4%) 75 (1,9%)
LUTRAM 0 56 (17,7%)

Table 7.2: Hardware usage Networking Components. The percentages show the
relative size compared to a Starburst MicroBlaze

The first hardware component added to the gateway is the Accelerator Interface
as discussed in Section 5.1.1, which allows a gateway to read data from and write
data to an accelerator over its local PLB. As this component can connect up to
7 accelerators the hardware usage for the minimal and maximal occupation has
been measured, and displayed in Table 7.3. The synthesis tooling is clearly able
to optimize the design by removing unused logic.

1 accelerator 7 accelerators
Slice reg 152 (4,9%) 152 (4,9%)

LUT 53 (1,3%) 345 (8,7%)

Table 7.3: Hardware usage Accelerator Interface. The percentages show the
relative size compared to a Starburst MicroBlaze

The hardware accelerators are connected to the Accelerator Interface via the
ringshell as explained in Section 5.1.1. As the ringshell had to be modified to
make this connection possible, the hardware usage of this component is mea-
sured and presented in Table 7.4. Even though the ringshells for a Microblaze
and hardware accelerator are based on the same VHDL-code, a different hard-
ware usage is measured in both the old and the new situation as the synthesis
tooling is able to optimize the designs by removing unused logic which depends
on the connected component.

MicroBlaze Accelerator

Old New Old
New

(FIFO depth = 1)

New
(FIFO depth = 4)

Slice reg 203 (6,5%) 237 (7,6%) 234 (7,5%) 310 (9,9%) 330 (10,6%)
LUT 133 (3,3%) 177 (4,5%) 199 (5,0%) 230 (5,8%) 268 (6,8%)

LUTRAM 0 0 0 0 (0%) 32 (10,1%)

Table 7.4: Hardware usage Ringshell. The percentages show the relative size
compared to a Starburst MicroBlaze

When we only focus on the old situation, the ringshell connected to a MicroBlaze
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is smaller than a ringshell connected to an accelerator. This difference can
be explained by the fact that a MicroBlaze-ringshell has less functionality; it
doesn’t need to return credits and doesn’t have a configuration interface as this
interface is only used to configure a hardware accelerator over the Nebula ring
interconnect.

In the new situation we have to note that the ringshell was not only modified
to let it connect to the Accelerator Interface. During the first weeks of this
research the ringshell was also modified to support multiple credits when com-
municating with a hardware accelerator. The old situation only supported a
single credit. It required the implementation of a programmable credit counter
at the producing side and a hardware FIFO-buffer at the receiving side. This
explains the increased size of a MicroBlaze-ringshell, as it is now equipped with
a programmable credit-counter. Compared to the old situation the number of
slice registers increased with 16%, the number of LUTs with 33%.

This programmable credit-counter is also present in the ringshell of a hardware
accelerator, as this counter is required to chain multiple hardware accelerators
together. Next to this counter the ringshell is also equipped with a hardware
FIFO buffer. For this reason two measurements have been performed; one with
a FIFO depth of 1 word (comparable to the old situation) and a measurement
with a FIFO depth of 4 words.

The second addition to the gateway module is the DMA-controller, which is
explained in Section 5.1.2. We first based our design on IP in the form of the
Xilinx DMA controller, eventually a custom implementation was written. Ta-
ble 7.5 presents the hardware usage of both custom implementation and the
Xilinx implementation. The difference between the two components can be ex-
plained with the fact that our custom implementation has less functionality.
The Xilinx DMA controller is able to move data aligned to the byte, whereas
our custom DMA controller requires the addresses to be word aligned. Further-
more, the Xilinx DMA controller has support for incremental addressing and
keyhole addressing, whereas our implementation always uses keyhole addressing.
The Xilinx DMA controller uses LUTRAM to store blocks of data, the custom
implementation stores this in a BRAM.

custom DMA controller Xilinx DMA controller
Slice reg 436 (13,9%) 538 (17,2%)

LUT 371 (9,4%) 593 (15,1%)
LUTRAM 0 18 (5,7%)

BRAM or FIFO 1 (16,6%) 0

Table 7.5: Hardware usage DMA-controller(s). The percentages show the rela-
tive size compared to a Starburst MicroBlaze

The last component which is required to implement hardware accelerator sharing
is the Exit Gateway which translates credit-based data to address-based data, as
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explained in Section 5.1.3. The hardware usage of this component is presented
in Table 7.6.

Exit Gateway
Slice reg 229 (7,3%)

LUT 145 (3,6%)

Table 7.6: Hardware usage Exit Gateway. The percentages show the relative
size compared to a Starburst MicroBlaze

Concluding, this means that, apart from the networking components like the
NI, router and ringshell, a dedicated MicroBlaze, DMA-controller, Accelera-
tor Interface and Exit Gateway is required to implement hardware accelerator
sharing. The total combined (minimal) hardware usage of these components
is presented in Table 7.7. The numbers show that there currently is a large
overhead in terms of hardware usage. There are some ideas to reduce these
hardware costs, which are discussed in Section 8.2.

Total HW usage
Slice reg 3940 (126,2%)

LUT 4498 (114,5%)
LUTRAM 316 (100%)

BRAM or FIFO 19 (105,6%)
DSP48E1 6 (100%)

Table 7.7: Combined hardware usage of all required components
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7.2 Case study: PAL audio decoding

In the final section of this evaluation chapter the accelerator sharing mechanism
will be evaluated using a realistic application. During a recent study a PAL video
application has been developed for the Starburst MPSoC. In this demo a PAL
signal is decoded and displayed on a VGA screen, where the analogue signal
is completely processed in the digital domain on the processing tiles. Later
hardware accelerators have been added to the platform to speed up specific
parts of the application. This case study will focus on the audio part of the
PAL standard, as this part is not yet implemented on the Starburst platform.
As the standard supports stereo audio this case study will use the hardware
accelerator sharing mechanism in order to decode the two audio channels (the
left and right audio channel) with the same set of hardware accelerators.

Figure 7.1 gives an overview of the PAL standard. The spectrum consists of a
luminance carrier which creates basically a black and white image. Years later
color was added to the standard, in the form of a chrominance signal which is
modulated over the chrominance carrier at 4, 43MHz . The PAL standard sup-
ports two FM-modulated audio carriers; the first carrier positioned at 5, 5MHz
and a second carrier at 5, 5MHz + 242KHz [18]. The two streams can either be
used to embed two different mono audio channels or to embed one single stereo
audio channel. In the latter situation the first carrier contains a mix of the left
and right channels (𝐿+𝑅

2 , for backwards compatibility purposes) and the second
carrier only the right stream.

4.43MHz

5.5MHz
242KHz

Luma carrier

1.25MHz

Chroma carrier

Chrominance

Luminance

FM carriers

Figure 7.1: PAL spectrum

Figure 7.2 shows the set of operations which have to be applied on the incoming
data stream 𝑦𝑖𝑛. The first operation is mixing the left and right audio stream,
resulting in a complex-valued data stream at baseband. The next step involves
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a low-pass filter and a down-sample operation, to obtain a data stream with a
lower bit-rate. In the next step the FM signal is demodulated which results in
a real-valued data stream. After this operation another low-pass filter and a
down-sample operation is applied. As discussed the first stream contains both
the left and right audio track 𝐿+𝑅

2 . This means that subtracting 𝑅
2 leaves 𝐿

2 .

FMDemod

FMDemod

fLO left

fLO right

yin

+
−

Figure 7.2: FM decoding pipeline

An interesting observation is the fact that the two audio channels require the
same processing steps. That means that if these operations are implemented
in hardware, the two data streams could possible be mapped on the same set
of hardware accelerators. Additionally, one data stream requires two low-pass
filter and down-sample operations and two vector operations (a signal mixer
and demodulator). This makes the PAL audio decoding application an ideal
candidate to demonstrate hardware accelerator sharing, as it turned out that it
is possible to map the complete application on two hardware accelerators.

In the next sections these two hardware accelerators will be discussed.

7.2.1 CORDIC

Both the signal mixer and the FM decoder are vector operations. One way to
perform vector operations is using the Coordinate Rotation Digital Computer
(CORDIC) algorithm, which was first published in 1959. The algorithm allows
efficient vector operations, and can efficiently be implemented in both hardware
and software. The CORDIC algorithm will now briefly be explained.⋆

Consider the iterative rotation of vector (𝑥𝑖, 𝑦𝑖)𝑇 by an angle 𝑎𝑖 to obtain
(𝑥(𝑖+1), 𝑦(𝑖+1))𝑇 :

[︂
𝑥(𝑖+1)

𝑦(𝑖+1)

]︂
=

[︂
cos 𝑎𝑖 − sin 𝑎𝑖
sin 𝑎𝑖 cos 𝑎𝑖

]︂ [︂
𝑥𝑖

𝑦𝑖

]︂

⋆Source: Implementation of Digital Signal Processing, course by S.H. Gerez, Twente Uni-
versity
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This can be rewritten to:

[︂
𝑥(𝑖+1)

𝑦(𝑖+1)

]︂
= cos 𝑎𝑖

[︂
1 − tan 𝑎𝑖

tan 𝑎𝑖 1

]︂ [︂
𝑥𝑖

𝑦𝑖

]︂

Suppose now that tan 𝑎𝑖 is chosen such that tan 𝑎𝑖 = 𝑑𝑖2
−𝑖, with 𝑑𝑖 = ±1, as this

allows the rotation to be calculated without multiplications as a multiplication
with 2−𝑖 can be implemented with only shift operations. The only exception is
the multiplication with the first factor cos 𝑎𝑖 = 1√

1+2−𝑖
. This factor is called the

𝐾 factor, and can be calculated at design time via:

𝐾 =

𝑛−1∏︁

𝑖=0

1√
1 + 2−𝑖

The principle behind the CORDIC algorithm is depicted in Figure 7.3. Suppose
that vector 𝑣0 is rotated by angle 𝛼. What the CORDIC algorithm will do
is rotating vector 𝑣0 in multiple iterations (3 iterations in this specific exam-
ple) to end up with vector 𝑣3. By storing the corresponding angles arctan 2−𝑖

(45.0∘, 26.6∘, 14.0∘, etc.) in a Look-Up Table (LUT), the CORDIC algorithm
can keep track of the total rotation via an angle accumulator 𝑧𝑖.

α
1

2

3

1

v0

v2

v1

v3

Figure 7.3: CORDIC algorithm illustration

The first step is to initialize the angle accumulator 𝑧0 with this angle 𝛼. Based
on the value in the angle accumulator 𝑧𝑖, the values 𝑑𝑖+1 are chosen such that
the angle accumulator will converge to 0. At the same time, the values 𝑑𝑖 are
used to perform the actual rotation, which can be implemented with just shift
operations (apart from the multiplication with the 𝐾 factor):

[︂
𝑥(𝑖+1)

𝑦(𝑖+1)

]︂
= 𝐾𝑖

[︂
1 −𝑑𝑖2

−𝑖

𝑑𝑖2
−𝑖 1

]︂ [︂
𝑥𝑖

𝑦𝑖

]︂

The mode of operation in this example is called rotation mode, where a vector
can be rotated by an arbitrary angle 𝛼. Another mode of operation is called
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vectoring mode. In vectoring mode the angle of a vector can by calculated. After
initializing the angle accumulator 𝑧0 at zero, the algorithm tries to rotate the
vector towards the x-axis by converging 𝑦𝑖 towards zero. Meanwhile the angle
accumulator stores all subsequent rotations. When the algorithm has finished,
the angle accumulator 𝑧𝑛 stores the angle of the original vector.

The idea is to implement one CORDIC module, which can be used in both
rotation and vectoring mode. In rotation mode, the cordic module can be used
as a signal mixer. By equipping the module with an angle register and an angle
increment register, the module will automatically increment the angle register
when a new data sample has been received. Based on the value in the angle
increment register, the mixing frequency can be programmed. In vectoring
mode, the module can be used as an FM demodulator. FM demodulation
equals determining the angle between subsequent input vectors. By placing the
CORDIC module in vectoring mode, the angle of a vector can be calculated.
By storing the last calculated angle, the angle between subsequent samples can
be determined.

Instead of developing this module from scratch, IP in the form of the Xilinx
CORDIC LogiCORE was used [36]. This decision was made to reduce develop-
ment and testing time. A problem of this approach is the fact that the Xilinx
CORDIC module can only be implemented in either rotation mode or vectoring
mode. A combination of those two modes was not possible. First two separate
hardware accelerators have been developed, one accelerator with a CORDIC in
rotation mode, and one accelerator with a CORDIC in vectoring mode. Later,
the two IP cores were embedded in one hardware accelerator, in order to demon-
strate that one CORDIC module could be used to implement the complete PAL
audio decoding application. Designing a custom CORDIC module with support
for both modes remains future work. The hardware usage of the three hardware
accelerators are presented in Table 7.8.

CORDIC
(Mixer)

CORDIC
(FM demodulator)

CORDIC
(Combined)

Slice reg 1714 (54,9%) 1008 (32,2%) 2658 (85,1%)
LUT 1882 (47,9%) 1053 (26,8%) 2906 (73,9%)

LUTRAM 162 (51,2%) 2 (0,6%) 164 (51,8%)
BRAM or FIFO 2 (11,1%) 0 0

Table 7.8: Hardware usage CORDIC. The percentages show the relative size
compared to a Starburst MicroBlaze

After adding the CORDIC accelerator to the Starburst platform, the module
can be programmed according to the register map as displayed in Figure 7.4.
The module can be programmed as a signal mixer by writing a 0 to the mode
bit in the control register (address 0x10). A 1 will program it as a FM decoder.
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0131

Credit Return Address 0x00 (Ringshell)

Data Forward Address 0x04 (Ringshell)

Data Snoop Address 0x08 (Ringshell)

Number of Credits 0x0C (Ringshell)

Unused
Mode
R/W 0x10 - Control register

Previous angle (FM decoder) 0x14

Angle register (Mixer) 0x18

Angle increment register(Mixer) 0x1C

Figure 7.4: CORDIC address map

7.2.2 FIR Filter

As depicted in Figure 7.2 the decoding pipeline requires multiple low-pass filters.
After the first operation (the signal mixer) the (complex valued) data signal is at
baseband. The low-pass filter is then used to remove all signals not belonging
to our data signal. Additionally the bit-rate is reduced via a down-sample
operation. A second low-pass filter (and down-sample operation) is implemented
after the FM decoder.

In the digital domain signal filters can typically be considered in two categories:
Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. The
output of a FIR filter is computed as a weighted, finite term sum of past and
present filter inputs. (See Equation 7.1) A FIR filter has no feedback, i.e. the
output is independent of previous output values, it only depends on previous
input values. This makes the impulse response of the filter finite, hence the
name Finite Impulse Response. This in contrast to IIR filters, where feedback
is present. (See Equation 7.2) Due to this feedback the impulse response of a
IIR filter is infinite.

𝑦[𝑛] =

𝑀∑︁

𝑘=0

𝑏𝑘𝑥[𝑛− 𝑘] (7.1)

𝑦[𝑛] =

𝑁∑︁

𝑙=1

𝑎𝑙𝑦[𝑛− 𝑙] +

𝑀∑︁

𝑘=0

𝑏𝑘𝑥[𝑛− 𝑘] (7.2)

Advantages of a FIR filter over an IIR filter is the fact that they are in general
easier to design to meet certain specifications, can easily be designed to have
a linear phase response and are (due to the missing feedback) always stable.
The main disadvantage is the fact that in general a FIR filter requires more
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computational power compared to IIR. The decision was made to use a FIR
filter to implement the low-pass filtering operations of the PAL audio decoder,
where the advantages of a FIR filter outweighed its disadvantages, i.e. we prefer
an easier to design, always stable and a linear phase response filter over a higher
required computational power. Again, the idea is to implement a single FIR
filter in the form of a hardware accelerator, and share this accelerator across
multiple streams.

A FIR filter has two important properties; it has certain scaling factors or
coefficients (𝑏𝑘 in Equation 7.1) and delay elements which store delayed input
values (𝑥[𝑛− 𝑘] in Equation 7.1). This means that when a FIR filter is shared
across multiple data streams, it should be possible to load a different set of
coefficients. Additionally, it should have the functionality to extract and load
the contents of the delay elements which is the state of the filter. Implementing
the FIR filter via Xilinx IP turned out to be impossible, as there is simply no
way to extract the contents of the delay elements. This forced us to build a
filter ourselves, with the discussed functionality implemented.

FIR filters can be implemented according to different structures. Discussing
these structures separately is far beyond the scope of this thesis, instead we will
only focus on one type of structures, namely Direct-Form structures. Direct-
Form means that the transfer function (See Equation 7.1) is directly evaluated.
Figure 7.5 shows the so-called Direct Form I structure. In this structure the
delay elements are placed before the multipliers. A disadvantage of this approach
is the fact that large combinatorial paths are created, i.e. starting from the input
of the filter (𝑥[𝑛]) the signal has to travel (in the worst-case situation) across
the first multiplier (with coefficient 𝑏0) and all adders to eventually reach the
output of the filter (𝑦[𝑛]). A large combinatorial path means that a signal has
to travel a longer distance, which in general means that lower clock-speeds are
achievable.

𝑦[𝑛] = 𝑏0𝑥[𝑛] + 𝑏1𝑥[𝑛− 1] + 𝑏2𝑥[𝑛− 2] + 𝑏3𝑥[𝑛− 3]

∑ ∑ ∑∑

b0 b1 b2 b3

z−1 z−1 z−1x[n]

y[n]

Figure 7.5: FIR filter structure (Direct Form I, 𝑁 = 3)

An improved structure is the Direct Form II structure, which is depicted in
Figure 7.6. This structure is also called a transposed form filter. Compared
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to the former structure, the delay elements are placed after each multiplier
and adder. This structure will lead to exactly the same output, however the
combinatorial path is reduced to only one multiplier and one adder for all taps.
This means that higher clock-speeds are achievable, or at least the synthesis
tooling has a less difficult job mapping the hardware. For this reason the FIR
filter is implemented according to this structure.

∑ ∑ ∑∑

b3 b2 b1 b0

z−1 z−1 z−1

x[n]

y[n]

Figure 7.6: FIR filter structure (Direct Form II (Transposed form), 𝑁 = 3)

The FIR filter is designed to support complex-valued data signals. Data samples
are 32 bit wide, and contain a 16 bit I (In-phase) and a 16 bit Q (Quadrature)
field. Both the I and Q signals are fixed point signals with 15 fractional bits. For
this reason the filter is equipped with two identical processing pipelines; one for
the I signal and one for the Q signal, where the coefficients at both pipelines are
identical. Additionally, the number of taps is configurable at design time which
allows us to easily alter the filter size. The structure of this filter is depicted in
Figure 7.7, where the two separate pipelines are clearly visible.

∑ ∑ ∑∑

bn b2 b1 b0

z−1 z−1 z−1

xQ[n]

yQ[n]
...

...

b2 b1 b0

∑ ∑ ∑∑
z−1 z−1 z−1

yI/Q[n]

bn

...

...

xI [n]

xI/Q[n]

yI [n]

Figure 7.7: FIR filter structure with two identical pipelines for the I and Q
signals

As depicted in Figure 7.2, after the low-pass filters down-sample operations are
applied in order to reduce the bit-rates of the data streams. Instead of imple-
menting a down-sampler in a separate hardware accelerator, this functionality
is implemented in the same module as the FIR filter. Down-sampling with a
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factor N means that only every N-th sample is passed through, all other sam-
ples are dropped. The down-sampler is therefore implemented as programmable
counter which increments at every data sample coming out of the filter. After
N samples a reset of the counter is applied and a single data sample is passed
through.

After adding the FIR filter accelerator to the Starburst platform, the module can
be programmed according to the register map as displayed in Figure 7.8. With a
limited address-range for an accelerator filter coefficients are sequentially loaded
via a single coefficient register (address 0𝑥14) starting with coefficient 𝑏0 and
ending with coefficient 𝑏𝑛. The same holds for the contents of the delay elements,
which can be sequentially saved and loaded via the registers at addresses 0x18
and 0x1C. Registers 0x20 and 0x24 are used to program the down-sampler.

0131

Credit Return Address 0x00 (Ringshell)

Data Forward Address 0x04 (Ringshell)

Data Snoop Address 0x08 (Ringshell)

Number of Credits 0x0C (Ringshell)

Reserved for future usage 0x10 - Control register

Tap coefficients 0x14

Intermediate results (I samples) 0x18

Intermediate results (Q samples) 0x1C

Decimation factor 0x20

Decimation counter 0x24

Figure 7.8: FIR filter address map

Table 7.9 presents the hardware usage of the FIR filter. The first column shows
the hardware usage for a 2× 33 taps filter (33 taps for both the I and Q signal).
Additionally the average hardware usage for a single tap is presented. From
Table 7.9 we can conclude that the hardware usage of our 2 × 33 taps filter is
substantial. Compared to a MicroBlaze CPU it has twice the number of slice
registers, is nearly three times as large in the number of LUTs and uses five
times as much LUTRAM. Additionally, for each multiplication and addition
a dedicated DSP48E1 element is used⋆, where a MicroBlaze uses 6 of these
elements.

⋆Both operations (a multiplication and addition) can be implemented via a single DSP48E1
element but require modifications to the VHDL source code. Basically the code should be
written according to a specific coding template (See [31], page 168) which allows the synthesis
tooling to place both operations on a single DSP48E1 element.
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FIR Filter
(2× 33 taps)

FIR Filter
(Average tap size)

Slice reg 6512 (208,5%) 99 (3,1%)
LUT 10837 (275,8%) 164 (4,1%)

LUTRAM 1650 (522,2%) 25 (7,9%)
DSP48E1 132 (2200,0%) 2 (33,3%)

Table 7.9: Hardware usage FIR Filter. The percentages show the relative size
compared to a Starburst MicroBlaze

We have to note that the FIR filter is implemented fully pipelined and able to
process data samples each clock-cycle. This clearly comes at a cost where a
lot of hardware is required to implement the FIR filter. We could reduce the
degree of parallelism in order to save hardware at a cost of a lower throughput.
However, a lower throughput means a longer processing time, and requires more
memory to buffer the incoming data streams in the gateway.

7.2.3 Application

With the CORDIC and FIR modules implemented, we can now focus on the
software application. At the base of this software application is a FM encoding
and decoding application developed in GNU Radio. GNU Radio is a free and
open-source Software Defined Radio (SDR) development toolkit that provides
signal processing blocks which can be used to implement software radios, with
or without the use of external RF hardware.

The big advantage of the GNU Radio application was the fact that it could be
used as a reference design. Instead of equipping the Starburst platform with
an ADC daughter-board to capture and process an actual PAL signal, we have
used the GNU Radio application to synthesise an artificial PAL audio signal⋆.
This signal could then be decoded on the Starburst platform and compared to
the results of the GNU Radio application to check it for correctness.

The first step is dividing the decoding pipeline in separate partitions, as dis-
played in Figure 7.9. A partition is a set of operations which can concurrently
be mapped on the set of shared accelerators which are managed by the gateway.
Partition 1 and 2 consists of a signal mixer, a FIR filter and a down-sample
operation. As presented in Figure 7.1 the spectrum has two separate audio
signals. By programming the CORDIC module as a signal mixer and tuning
the mixing frequencies (𝑓𝐿𝑂𝑙𝑒𝑓𝑡

and 𝑓𝐿𝑂𝑟𝑖𝑔ℎ𝑡
) the audio signals are mixed to

baseband. The incoming data stream 𝑦𝑖𝑛 has a sample-rate of 2.8MHz , which
is down-sampled after the FIR filter with a factor 8 to reduce it to 352.8KHz .

⋆The synthesized test signal is not yet completely according to the PAL specification as
presented in [18]. Specific parameters such as mixing frequency, impulse response of the FIR
filters and down-sample rates have to be tuned to fit the specification.
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The gateway will start with partition 1, where the results are streamed to the
SPM of the gateway. This way the results can be processed further (partition
3) at a later point in time. After processing partition 1, the gateway will switch
to partition 2. The same incoming stream 𝑦𝑖𝑛 is processed with another mixing
frequency, where the results are again stored in the SPM of the gateway to be
able to process the data during partition 4.

FMDemod

FMDemod

fLO left

fLO right

yin

+
−

2

1

4

3

Figure 7.9: Partitioned FM decoding pipeline

Partition 3 and 4 consists of a FM demodulator, a FIR filter and a down-
sample operation. For this reason the CORDIC module is programmed as an
FM demodulator, a new impulse response is loaded into the FIR filter and
the sample-rate is again reduced with a factor 8, resulting in a sample-rate of
44.1KHz . The results of both partitions are streamed to a MicroBlaze processor
which is applying the subtraction as displayed in Figure 7.9. After the left and
right audio streams are extracted, the result can be streamed to a play-back
device such as an USB sound-card or to the connected host computer.

7.2.4 Results

The PAL audio decoder application is constantly switching between the four
partitions presented in Figure 7.9. As discussed in Chapter 6 the total processing
time for these four partitions depends on the actual streaming of data and
the reconfiguring time. First we have measured the (constant) reconfiguring
time. Measurements showed that programming the FIR filter and cordic module
takes 25 microseconds in total (where 110 configuration and state registers are
written). Extracting the state out of these accelerators takes 16 microseconds
(where 68 state registers are read). In both situations this means that reading
and writing a configuration or state register takes on average 23 clock cycles.

The PAL audio decoder is applying two down-sample operations, both with
a factor 8. This means that for every 8 × 8 = 64 input samples 1 sample is
produced at the output of the processing pipeline. As we have to count the
number of processed data samples in the Exit Gateway (See Section 5.1.3), we
are forced to use data packets with a multiple of 64 samples, as this results
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in the production of an integer number of data samples at the output of the
processing pipeline.

The goal of this application is to reach a minimal throughput of 44.1KB/s
at the output of the processing pipeline, in order to get a continuous (real-
time) audio stream. This throughput has been measured by starting a timer
when the first sample leaves the processing pipeline, after a specific number of
samples have been counted the timer is stopped which allows us to calculate the
achieved throughput. For the minimal packet size of 64 samples a throughput
of 5.51KB/s was achieved. For this reason the packet size was increased as a
larger packet reduces the reconfiguring overhead which increases the achieved
throughput. For different packet sizes throughput measurements have been
performed, which are presented in Figure 7.10.
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Figure 7.10: PAL audio decoder performance measurements. The red line at
44.1KB/s depicts the minimal throughput which results in a continuous (real-
time) audio stream.

From Figure 5.3 we can conclude that minimal packet size of 576 samples is
required. With a total down-sampling factor of 64 this results in the production
of 9 data samples at the output. Interesting is to note the total processing
times for the four partitions with this specific packet size, which are presented
in Table 7.10. What we can conclude is that the four partitions are serviced
in 194 microseconds, where in total 9 audio samples are produced. This means
that the actual streaming of data takes 12+12+3+3

194 = 15% of the total processing

time, during the remaining 4*(25+16)
194 = 85%(!) the gateway is reconfiguring the

accelerators.
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Action
Execution time
(in microseconds)

Load state 1 25
Stream 576 samples 12

Save state 1 16
Load state 2 25

Stream 576 samples 12
Save state 2 16
Load state 3 25

Stream 72 samples 3
Save state 3 16
Load state 4 25

Stream 72 samples 3
Save state 4 16

Total 194

Table 7.10: PAL audio decoder processing times
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Chapter 8

Conclusion and Future Work

In this thesis a hardware accelerator sharing mechanism was added to the Star-
burst platform. In this chapter the conclusions are summarized and future work
is presented.

8.1 Conclusion

The implemented accelerator sharing mechanism is based on a centralized com-
ponent called a gateway. This centralized component will buffer multiple in-
coming data streams and will sequentially push them through the shared ac-
celerators. The gateway is currently implemented on a dedicated MicroBlaze
processor equipped with several hardware extensions.

An important property of the sharing mechanism is the fact that most accelera-
tors have a certain configuration and/or state for a specific data stream. When
multiple streams are being processed by a hardware accelerator multiple config-
urations and/or states needs to be managed. Basically a context switch need to
take place where the current state is saved and a the configuration and state for
the new data stream is restored. This bring us to the first research question:

1. How to handle multiple configurations and states for a hardware
accelerator?

The MicroBlaze CPUs and hardware accelerators are connected to the Nebula
ring network. This network has, as discussed in Section 3.2.4, only support for
write operations. This property turned out to be problematic for the sharing
mechanism as it is required to read the state out of an accelerator before a
new state could be loaded. For this reason an Accelerator Interface was added
to the gateway (see Section 5.1.1) which allows the gateway to read and write
the contents in the hardware accelerator over its local data-bus. This way the
write-only Nebula ring network could be bypassed. The gateway manages the
configuration and state for multiple data streams in software. (see Section 5.2)

Managing the state and configuration on a CPU in software turned out to be
the most flexible and easiest to prototype solution. This solution is flexible
as we are (under the assumption that enough memory is available to store
configuration and state) not limited to a maximum number of data-streams.
The downside of this approach is the fact that this is not the best solution in
terms of performance.
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In a previous master’s thesis support for hardware accelerators was added to the
Starburst platform. Afterwards a case study was carried out, which showed that
the utilization of their hardware accelerator was around 6% when a MicroBlaze
CPU. For this reason the following research question was formulated:

2. Is it possible to increase the currently low utilization of the hard-
ware accelerators via hardware accelerator sharing?

In Section 5.1.2 we explained that a MicroBlaze CPU is unable to feed an
accelerator with data fast enough. It turned out that the local data-bus of
a MicroBlaze CPU is the limiting factor; communicating one data word takes
(at least) eight clock cycles. When a hardware accelerator is implemented fully
pipelined (and thus able to process a data sample each clock-cycle) its utilization
will never exceed 12.5% when a MicroBlaze CPU is feeding it with data.

The gateway is implemented on a MicroBlaze CPU which means that its per-
formance was also limited by its local data bus. For this reason the gateway
is equipped with a DMA controller. A DMA controller is a hardware compo-
nent used to copy a programmable amount of data from one location to another
location in the system without processor intervention. Additionally, a DMA
controller is able to burst blocks of data, drastically reducing the communica-
tion overhead.

As a case study a PAL audio decoder was implemented on the Starburst plat-
form, where the left and right audio channel are processed on the same set of
hardware accelerators, doubling its utilization. Therefore we can conclude that
hardware accelerator sharing is a suitable method to increase the utilization of
a hardware accelerator. We have to note however that the context switching
overhead in this case study is substantial; around 85% of the time the accelera-
tors are being (re-)programmed, the actual streaming of data takes around 15%
of the total time. These numbers bring us to the next research question:

3. Which techniques can reduce the overhead introduced by switching
between data streams?

An answer to this question is not given in this thesis. The case study showed
that the hardware accelerator mechanism was working correctly, even with the
substantial context switching overhead. Time limitation prevented us to focus
on reducing this overhead. There are some preliminary ideas to reduce this
context switching overhead, but the details are not yet worked out. The ideas
are discussed as future work in Section 8.2.

4. What additional hardware is required to share hardware accelera-
tors, and can this additional hardware be justified by the amount of
hardware saved by sharing hardware accelerators?

Section 7.1 focussed on the hardware usage of the implemented hardware com-
ponents. The sharing mechanism uses a dedicated MicroBlaze CPU, extended
with an Accelerator Interface and a DMA controller. Measurements showed
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that the Accelerator Interface has a size of roughly 5% of a MicroBlaze CPU,
the DMA controller has a size of roughly 12%.

Answering the quantitative question if this additional hardware can be justified
by the amount of hardware saved by sharing hardware accelerators is difficult to
answer, as it depends on the hardware accelerators which are being shared. For
the hardware accelerators implemented during our case study we can conclude
that it is better to share the accelerators than implementing multiple acceler-
ators of the same type. The CORDIC modules have a size (depending on the
mode of operation) of 30% or 50% of a MicroBlaze CPU. The implemented FIR
filter has a size of multiple MicroBlazes.

The size of other commonly used hardware accelerators in the DSP domain
(e.g. Viterbi, Reed-Solomon or FFT) is expected to be substantial. Sharing
these large components to process multiple channels or multiple standard is
preferred. For small hardware accelerators we have to conclude that it might be
better to simply duplicate them, as the hardware used for the sharing mechanism
introduces a large overhead.

Even when hardware costs is of no concern we think that the sharing mech-
anism is a valuable addition, as it drastically increases the flexibility of the
Starburst platform. This platform is currently being developed on a FPGA al-
lowing us to change the accelerator configuration to fit a specific application.
When Starburst would be implemented in an Application-Specific Integrated
Circuit (ASIC), the freedom to change the accelerator configuration is lost,
which clearly shows the advantages of the sharing mechanism. With the shar-
ing mechanism implemented we are able to run a wide variety of applications
on the same (fixed) accelerator configuration.

An important requirement of the sharing mechanism was the fact that it had
to be predictable. Where predictability is defined as the ability to construct a
sufficiently accurate temporal analysis model of the hardware design for which a
computational efficient analysis algorithm exists. With this model calculations
can be performed and useful numbers can be extracted. One can think of
numbers like minimum throughput or maximum latency when processing a data
stream over a shared hardware accelerator. For this reason the following research
question was formulated:

5. Can a (detailed) dataflow model of this sharing protocol be con-
structed, and related to that, can an abstraction of this dataflow
model be created, which is easier to use at the cost of a less accurate
dataflow model?

In Chapter 6 we have showed that we are able to create a dataflow model
of the sharing mechanism. The gateway module implements a Round-Robin
scheduler, which is sequentially processing a predefined amount of data (a data
packet) from each data stream. A detailed dataflow model is used to calculate
the total processing time for a single data packet from a specific data stream.
Next, an abstraction of this dataflow model is created which can then be used to
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calculate the worst-case servicing time under the Round-Robin scheduler, where
the processing times for all other data packets are included.

6. Can the real-time behaviour be accurately predicted?

While we are able to capture the effects of the hardware accelerator sharing
mechanism in a dataflow model, the question remains if this dataflow model
accurately predicts the actual behaviour in a practical setting. Time limitations
prevented us to fully answer this question, there is for example no dataflow
model of the PAL audio decoding application which could help us answering
this question.

In [2] accuracy is defined as the difference between the average and a reliable
estimate of the worst-case situation. An advantage of using hardware acceler-
ators is the fact that their temporal behaviour can be accurately determined.
In contrast to the MicroBlaze CPUs they are not equipped with caches, not
connected to shared DDR3 memory or running a task scheduler. This allows us
to determine parameters (in terms of clock-cycles) such as latency and through-
put. This in contrast to e.g. the MicroBlaze on which the gateway application
is executing.

The gateway itself is implemented on a MicroBlaze CPU where the previously
discussed disadvantages apply. As a simple test we have disabled both the in-
struction and data cache, which resulted in an average throughput of 3.62KS/s,
where we would normally achieve the required 44.1KS/s. This clearly shows
why caches in a real-time context are problematic; taking worst-case situations
in account (disabling the caches) results in a performance degradation with a
factor of 12.

The Nebula ring network is another interesting component which has an influ-
ence on the accuracy. The gateway is equipped with a DMA-controller, in order
to speed up the transfer of data. While we are able to guarantee a minimum
throughput, a work-conserving principle was added to the Nebula ring network,
where we are able to hijack unused slots on the ring. Even if the partitioning of
tasks (and thus the data streams on the Nebula ring) is known at design-time,
we are unable to exactly predict slots which may be hijacked, which influences
the accuracy.

7. Can we find an algorithm to calculate proper buffer sizes, and
related to that, can we compute at which granularity the switches
between data-streams should take place?

This research question remains unanswered in this thesis and can therefore be
seen as future work. We have a rough idea of the steps we need to take to
calculate the buffer sizes, but this has not yet resulted in a complete algorithm.
Appendix A.3 shows an example where most steps are explained.
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8.2 Future Work

During this research a number of research question have been answered related
to the sharing hardware accelerators. However, there are still many improve-
ments we can think of. A list of ideas will now be presented, where some of
these improvements are discussed.

∙ The sharing mechanism has, in its current state, a large context switching
overhead. In Section 7.2.4 we showed that it takes on average 23 clock
cycles to read or write a word from and to a hardware accelerator. With a
reduced context switching overhead higher throughputs can be achieved.
Different solutions are possible, including but not limited to:

– Using a DMA controller to speed up the transfer of configuration
data from and to the accelerators. As the gateway module is already
equipped with a DMA controller, we could reuse this component for
this purpose limiting the additional required hardware.

– Equipping the hardware accelerators with additional hardware to
store multiple configurations and states. This way the gateway will
just inform the accelerators to switch to a specific configuration. In
theory we could reduce the context switching time to several clock
cycles, drastically reducing the context switching overhead. On the
other hand, via this construction only a limited number of configu-
rations is supported.

∙ In the current situation, the hardware accelerators are directly connected
to the Nebula ring interconnect. While this is a rather simple solution,
there are some drawbacks. When data is processed via our sharing mecha-
nism, we want the data to be processed as fast as possible with the lowest
amount of latency. This way data packets (and buffer sizes) can be kept
as small as possible.

The Nebula ring interconnect does not really fit these requirements; only a
part of the total throughput can be guaranteed (GS traffic), the rest of the
traffic has to be claimed by hijacking other slots (BE traffic). The amount
of slots which may be hijacked depends on the partitioning of tasks on the
Starburst platform. When two processors are communicating data, where
the samples are passing a set of hardware accelerators, only a specific
amount of slots my be hijacked by these accelerators resulting in larger
packet sizes and larger buffer sizes. Furthermore, when multiple accelera-
tors are chained together, a lot of intermediate results are communicated
over the Nebula ring interconnect.

One idea to solve this problem is by introducing an additional interconnect,
where the hardware accelerators are connected to. The advantage of this
approach is the fact that the two types of traffic (CFIFO and credit-
based) are moved to separate interconnects, greatly reducing the amount of
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interference. This idea is depicted in Figure 8.1. In the image two separate
ring networks are visible, where the gateway is the connecting link. While
just one additional network is depicted, we could create multiple smaller
ring networks, creating clusters of accelerators.

Figure 8.1: Separate Accelerator Network

For the processing tiles in the system nothing will change; currently data
is streamed to the accelerators via the gateways, the same is true when
an additional interconnect is added. When this separate interconnect will
use the same ring-like structure no increase in hardware is expected as the
same number of routers and network interfaces is required. On the other
hand, support for credit-based flow-control can be completely removed
from the Nebula ring interconnect, as all accelerators are no longer con-
nected to this network. However, it is unknown if the ring-like structure
is the best solution for this additional network. The Starburst platform
is focussing on streaming applications, which are latency tolerant. Traffic
between the two gateways is clearly not latency tolerant as an increased
latency will result in a increased processing time and therefore a lower
throughput.

∙ An algorithm to calculate proper buffer sizes is still missing. We have some
rough ideas how to solve this problem, an example is given in Appendix
A.3.

∙ The gateway is constructed around a regular MicroBlaze CPU. By de-
fault this CPU is equipped with several additional hardware components
like a hardware multiplier, hardware divider, barrel shifter and FPU. As
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the gateway is not using these kind of operations, they could simply be
removed which results in a reduction of hardware area.

∙ The idea of placing the accelerators on an additional interconnect is al-
ready discussed. If this idea would be implemented, this opens the door to
merging the two separate gateways (the processor and the Exit Gateway)
in one single component, greatly simplifying the design.

∙ In the current implementation, the gateway processor will send an updated
write pointer to the consumer, when all data samples have been processed.
This functionality should be implemented in the Exit Gateway, as was
discussed in Chapter 6.

∙ A lot of research is done into automatic partitioning and mapping of tasks
on the Starburst platform. Integrating the hardware sharing mechanism
into these tools (called Omphale) would increase the usability if the Star-
burst platform, as the programmer is currently required to manually pro-
gram the gateway (scheduler) and the accelerators.
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Appendix A

How to use Hardware Accelerator Shar-

ing

A.1 Hardware Modifications

The Starburst platform is generated based on a XML-file. This section will
focus on the modifications to this XML-file to implement hardware accelerator
sharing.

The first modification is the enabling of the Accelerator Interface and the DMA-
controller on the MicroBlaze where the gateway will be mapped on. Additionally
we need to make sure that the SPM is connected to the PLB which makes sure
that the DMA controller is able to reach this memory. For these reason we need
to set the following parameters:

1 <parameter id=”a c c i n t e r f a c e ” type=”boolean ” value=”true ”/>
2 <parameter id=” f i f o o n p l b ” type=”boolean ” value=”true ”/>
3 <parameter id=”ringdma ” type=”boolean ” value=”true ”/>

Next, we need to reserve a NI and router for the DMA-controller. This can be
done by adding the following external accelerator:

1 <a c c e l e r a t o r id=”dma0” type=”ringdma ” parent=”mb2” extern=”true ”>
2 <parameter id=”plb addr ” type=”boolean ” value=”true ”/>
3 </ a c c e l e r a t o r>

The last step is adding an Exit Gateway. This can be done by adding the
following accelerator:

1 <a c c e l e r a t o r id=”c2a0 ” type=”cred i t 2addr ” parent=”mb2”>
2 <parameter id=”bu f f e r ” type=” in t ” value=”4 ”/>
3 <parameter id=”plb addr ” type=”boolean ” value=”true ”/>
4 </ a c c e l e r a t o r>
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A.2 Software Example: Accelerator Management

The following code shows how to manage the configuration and state for multiple
accelerators, as explained in Section 5.2.

1

2 // Instantiate an AccList class , and add accelerator (

sub)classes to the linked list.

3 AccList *foo = new AccList ();

4 foo ->setNext(new RingDma ()); // Always first component

in the linked list

5 foo ->setNext(new CordicMix(mixing_frequency));

6 foo ->setNext(new FirFilter(coefficients ,

num_coefficients , downsample_factor));

7 foo ->setNext(new CreditToAddr ()); //Exit gateway ,

always last component in the linked list

8 foo ->setupStream ();

9

10 // Instantiate a second AccList class , and add

accelerator (sub)classes to the linked list.

11 AccList *bar = new AccList ();

12 bar ->setNext(new RingDma ()); // Always first

component in the linked list

13 bar ->setNext(new CordicMix(mixing_frequency));

14 bar ->setNext(new FirFilter(coefficients ,

num_coefficients , downsample_factor));

15 bar ->setNext(new CreditToAddr ()); //Exit gateway ,

always last component in the linked list

16 bar ->setupStream ();

17

18 while(true) {

19

20 {

21 // Stream 1: Check for data at the input and free space

at the output. Configure DMA controller and C2A

component

22 }

23

24 foo ->writeState ();

25

26 {

27 // Stream 1: Stream input data , poll exit gateway to

see if all data has been processed and inform

receiver all data has been received

28 }
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29

30 foo ->saveState ();

31

32 {

33 // Stream 2: Check for data at the input and free space

at the output. Configure DMA controller en C2A

component

34 }

35

36 bar ->writeState ();

37

38 {

39 // Stream 2: Stream input data , wait until all data has

been received and inform receiver all data has

been received

40 }

41

42 bar ->saveState ();

43 }

A.3 Buffer Size Calculation

A (complete) algorithm to calculate proper data packet and buffer sizes is cur-
rently missing, and can be seen as future work. However we think it should be
possible to calculate these sizes via (integer) linear programming which we will
show via an example.

Suppose that we have two data streams 𝛼0 and 𝛼1 which are being processed by
a gateway, with throughput constraints 𝑥0 and 𝑥1. The first stream is executed
on a set of accelerators which is modelled by dataflow graph 𝐺0, the second
data stream is modelled via dataflow graph 𝐺1. As the switching between data
streams introduces an overhead (mainly caused by reconfiguring the accelera-
tors), the gateway is processing packets of data of these data streams. What we
are interested in is the minimal size of the data packets 𝑆0 and 𝑆1, in order to
meet the given throughput constraints.

In Chapter 6 we showed that we are able to give a parametric solution for the
time it takes to process a complete data packet, where the total processing time
depends on some constant latency 𝜆 (e.g. the time it takes to fill the pipeline
and to return an acknowledgement from the Exit Gateway to the first gateway)
and on the packet size 𝑆. Which gives:

𝜌′(𝐺,𝑆) = 𝜆(𝐺) + (𝑆 − 1) · 𝜇(𝐺)
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The reconfiguring time can be modelled via two actors 𝑃0 and 𝑃1. As the
gateway is processing the streams in a cyclic order via a Round-Robin scheduler,
this means that the total worst-case processing time for one scheduling iteration
of this example equals:

𝜌𝑡𝑜𝑡𝑎𝑙 = (𝜆(𝐺0) + (𝑆0 − 1) · 𝜇(𝐺0)) + 𝑃0 + (𝜆(𝐺1) + (𝑆1 − 1) · 𝜇(𝐺1)) + 𝑃1

As during one iteration 𝑆0 and 𝑆1 tokens are produced respectively for streams
𝛼0 and 𝛼1, the following throughput is achieved for stream 𝛼0:

𝑆0

(𝜆(𝐺0) + (𝑆0 − 1) · 𝜇(𝐺0)) + 𝑃0 + (𝜆(𝐺1) + (𝑆1 − 1) · 𝜇(𝐺1)) + 𝑃1

And for stream 𝛼1:

𝑆1

(𝜆(𝐺0) + (𝑆0 − 1) · 𝜇(𝐺0)) + 𝑃0 + (𝜆(𝐺1) + (𝑆1 − 1) · 𝜇(𝐺1)) + 𝑃1

The equations above clearly state an optimization problem; increasing the packet
size of one data stream to increase the achieved throughput negatively influences
the achieved throughput for the other data stream. For this reason we define
the following LP:

minimize 𝑆0 + 𝑆1

subject to
𝑆0

(𝜆(𝐺0) + (𝑆0 − 1) · 𝜇(𝐺0)) + 𝑃0 + (𝜆(𝐺1) + (𝑆1 − 1) · 𝜇(𝐺1)) + 𝑃1
≥ 𝑥0

𝑆1

(𝜆(𝐺0) + (𝑆0 − 1) · 𝜇(𝐺0)) + 𝑃0 + (𝜆(𝐺1) + (𝑆1 − 1) · 𝜇(𝐺1)) + 𝑃1
≥ 𝑥1

𝑆0 ≥ 0, 𝑆1 ≥ 0

It is important to note that the first two constraints can be rewritten into two
simple linear equations, as the terms 𝜆(𝐺0), 𝜇(𝐺0), 𝜆(𝐺1), 𝜇(𝐺1), 𝑥0 and 𝑥1 are
constants. Time limitations prevented us to fully implement and test the above
LP, and can therefore be seen as future work.

A.4 FIR Filter Design

The impulse response for the FIR filter can be designed via the fdatool from
Matlab. After designing the filter we need to quantize the coefficients via the
option ’Set quantization parameters’, where we can use the following parameters.

104



∙ Filter arithmetic: Fixed point

∙ Filter precision: Specify

∙ Numerator word length: 32 (Best-precision fraction lengths: uncheck)

∙ Numerator frac. length: 31

∙ Use unsigned representation: uncheck

∙ Scale the numerator coefficients to fully utilize dynamic range: uncheck

∙ Input word length: 16

∙ Input fraction length: 15

∙ Output word length: 16

∙ Output fraction length: 15

∙ Rounding mode: Nearest

∙ Overflow mode: Saturate

∙ Product word length: 32

∙ Product fraction length: 31

∙ Accum. word length: 32

∙ Accum. fraction length: 31

Via ’Targets’ -> ’Generate C header ...’ we can generate a C-header file, con-
taining the filter coefficients, which can directly be loaded into the FIR filter.
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