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Abstract

This research is about the performance and optimization of the BUbiNG web crawler, an open-source
web crawler developed by Paulo Boldi et al [2]. This web crawler aims to have high throughput in terms
of crawled pages per unit time. The data structures of the web crawler that we consider are the sieve,
the workbench and the workbench virtualizer. The goal is to have as many hosts as possible in the
workbench, which is the crucial datum in order to have high throughput of the web crawler. In order to
improve the number of hosts in the workbench, the workbench virtualizer can be used for URLs that are
already extracted from the sieve. In case the workbench virtualizer is not used, we derived analytical
results when assuming that the host sizes are homogeneous. When the host sizes are heterogeneous
we find that several hosts dominate the workbench, resulting in a low throughput of the web crawler. To
overcome this problem, the workbench virtualizer is used. We found that no natural decision policies
for the workbench virtualizer improve the throughput of the web crawler. Instead, using the workbench
virtualizer for the hosts that dominate the workbench results in a decision policy that overcomes these
hosts from dominating the workbench.
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Chapter 1

Introduction

A web crawler is a system that systematically downloads a large number of web pages from the world
wide web. Web crawlers start with a list of URLs to visit, these URLs are called seeds. When the web
crawler visits a given seed, all the hyperlinks on the page are identified and are added to the list of URLs
to visit.

1.1 The BUbiNG Web Crawler

The BUbiNG web crawler is an open-source web crawler, developed by Paulo Boldi et al. [2]. This web
crawler aims to guarantee high throughput, to overcome the limits of single-machine tools and at the
same time to scale linearly with the amount of resources available, i.e., the throughput can be scaled
linearly just by adding resources.

In the development of a web crawler, politeness limits should be taken into account. In [1] Paulo Boldi
et al. describe politeness as ”A parallel crawler should never try to fetch more than one page at a time
from a given host. Moreover, a suitable delay should be introduced between two subsequent requests
to the same host.”. Fetching more than one page at a time from a given host overloads the server of
the host. Due to this politeness limits it is impossible to crawl more than one URL from the same host at
the same time. Therefore the throughput of the web crawler is maximized when there is the possibility
to crawl from as many hosts as possible. Moreover, according to the designers of the BUbiNG web
crawler, ”because of politeness, the number of distinct hosts currently being visited is the crucial datum
that establishes how fast or slow the crawl is going to be”, see [2].

In the BUbiNG web crawler, a decision process takes place. The parts of the crawler that play a role in
the decision process are described shortly.

• The sieve is the data structure where URLs to be crawled are kept.
• The workbench is the data structure that represents the URLs already got from the sieve.
• The workbench virtualizer is a second data structure which is a sequence of (virtual) queues. It

contains the URLs already extracted from the sieve, but they are not yet put in the workbench.
• The distributor is the thread that has to make a decision. The distributor orchestrates the move-

ment of URLs out of the sieve, either to the workbench or to the workbench virtualizer, and loads
as necessary URLs from the workbench virtualizer into the workbench.

A schematic overview of the relation between the sieve, workbench and workbench virtualizer is given
in Figure 1.1.
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Workbench Workbench virtualizer

Sieve

Figure 1.1: A schematic overview of the parts of the web crawler that play a role in the decision process.

The distributor fills the workbench with URLs, coming either from the sieve or from the workbench
virtualizer. The distributor’s goal is to assign the URLs to the workbench, by deciding whether to accept
a URL from the sieve or from the workbench virtualizer, in such a way that the throughput is maximized.
The throughput is maximized by maximizing the number of hosts the URLs belong to, considering the
URLs that are in the workbench. Notice that if the distributer decides not to accept a URL from the
sieve, this URL goes to the workbench virtualizer. The decisions that the distributor has to make can be
translated to a one-player game with a set of rules. The player has to make the decisions and the goal
of the game is to make the decisions in such a way that an objective is maximized. The objective is to
maximize the number of hosts the URLs belong to in the workbench. For more details about the game
the reader is referred to Chapter 2.

1.2 Research Question and Overview of the Thesis

The BUbiNG web crawler is a recently developed web crawler and the decision process of this web
crawler has not been studied before. Moreover, the designers of the web crawler manage to get the
throughput high in the beginning of the crawling process, but after a while the throughput starts to decay.
The goal of this thesis is to make an improvement for the throughput of the BUbiNG web crawler, more
specifically:

Can we optimize the decision process in the BUbiNG web crawler to maximize the number of hosts the
URLs belong to in the workbench?

We start with the modeling of the game without the workbench virtualizer. Next we use it as a reference
point to analyze strategies for the use of the workbench virtualizer. When there is no workbench virtu-
alizer, no decisions have to be made and part of the problem studied is related to the birthday problem.
The birthday problem is a well-known problem and it occurs frequently in literature after it has been
proposed by von Mises in 1939. His question was: ”How many people must be in a room before the
probability that some share a birthday, ignoring the year and ignoring leap days, becomes at least 50
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percent?” Assuming that every day is equally likely for a birthday and excluding leap years, it is well
known that the answer to this question is 23 people. The exact relation to the birthday problem is ex-
plained in Chapter 3.

This thesis is structured as follows. In Section 1.3 the related research is described. Secondly, the
game is described more explicitly in Chapter 2. In Chapters 3 and 4 the game is modeled and an-
alyzed without the use of the workbench virtualizer. Chapter 5 shows the numerical results in case
the workbench virtualizer is not used. Data analysis can be found in Chapter 6. Then, in Chapters 7
and 8 strategies are implemented for the use of the workbench virtualizer. Finally, the conclusions are
formulated and further research opportunities are discussed in Chapter 9.

1.3 Related work

This is the first research about the optimization of the decision process in the BUbiNG web crawler. To
the best of our knowledge, no similar problem exists in literature. We describe two related problems that
are used in our analysis.

To analyze the web crawler without the workbench virtualizer, we use a closed queueing network. Since
the number of URLs in the workbench remains the same, the stochastic process that describes the dy-
namics to the workbench is closely related to closed queueing systems. In this closed queueing system
the jobs are the URLs to be crawled, whereas each server contains a queue of URLs belonging to the
same host. A job is served when the URL is crawled.
Closed queueing networks have been thoroughly studied by S. Lagershausen in [9], although one of
their assumptions made for the closed queueing networks is that the servers of the queueing netwerk
are connected in series and that every job receives service in the same order. For the closed queueing
network studied in this thesis it is not known beforehand to which server the job goes after it has been
served. Note that when in our case a job has been served, i.e. a URL has been crawled, it is removed
from the workbench and a new URL is drawn from the sieve. Another research by K. Trivedi and R.
Wagner [14] considers a decision model for closed queueing networks. In their model each server in
the closed queueing network has the capability of processing bi work units per time. The objective is to
maximize the systems throughput, however, the speed of the servers, bi, are their decision variables.
In the closed queueing network studied in this thesis the goal is to be in certain states of the queueing
system, because then the throughput of the web crawler is maximized.

At the beginning of the web crawling, in the initial phase, the workbench needs to be filled with a certain
number of URLs. The number of different hosts in the workbench is interesting and this is related to
the birthday problem. This short overview from the literature regarding the birthday problem is by no
means complete. Related to this research is the generalization of the birthday problem to a total number
of x birthdays by F.H. Matis [11]. In that paper the number of birthdays is generalized as well as the
percentage, i.e., the probability that some share a birthday becomes at least q percent.
The birthday problem can also be generalized to an occupancy problem, see for example Gnedin et
al. [5]. In the classical occupancy scheme, balls are thrown independently at a fixed infinite series of
boxes, with probability pj of hitting the j th box. When the boxes are considered to be the hosts and the
balls as the URLs, we consider the number of different hosts for a fixed amount of URLs.
Another aspect is the uniformity assumption of the birthday problem that, among others, has been dis-
cussed by W. Knight and D. Bloom in [8]. The initial phase is related to the birthday problem when
assuming uniformity to our ’birthdays’ and therefore these studies about the uniformity of the birthday
problem are rather interesting. In reality every birthday is not equally likely and in [8] it is shown that a
non-uniform distribution of the birthdays increases the probability of sharing a birthday.
The birthday problem has also been extended to the probability that in a group of n randomly chosen
people r people have the same birthday by E.H. Mckinney [12] and the probability that two birthdays fall
within d adjacent days by J.I.Naus [13]. In the latter case the birthdays do not have to be on the same
day, but they can be in a range of d adjacent days. These two examples do not necessarily apply to the
problem studied in this thesis, but give an idea of how widely studied the birthday problem is.
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Chapter 2

The Game Formalism of the BUbiNG
Web Crawler

Below we describe the parts of the web crawler that play a role in the decision process. A more detailed
description of the BUbiNG web crawler can be found in [2].

• The sieve is the data structure where URLs to be crawled are kept. This data structure is referred
to as the source.

• The workbench is the data structure that represents the URLs already got from the sieve. The
workbench is referred to as the online structure.

• The workbench virtualizer is a second data structure which is a sequence of (virtual) queues. It
contains the URLs already extracted from the sieve, but they are not yet put in the workbench.
This data structure is referred to as the offline structure.

• The distributor is the thread that has to make a decision. The distributor orchestrates the move-
ment of URLs out of the sieve, either to the workbench or to the virtual queues, and loads as
necessary URLs from the virtual queues into the workbench.

The distributor decides which URL to put in the online structure, the URL is either coming from the
source or from the offline structure. The distributor wants to assign the URLs to the online structure in
such a way that the number of hosts the URLs belong to is maximized.

2.1 The Game

The decision process can be described as a game as follows:

• The distributor is the player in the game.
• A ball is a URL to be crawled.
• The color of the ball represents the host the URL belongs to.
• Each ball of a same color is assigned a number consecutively.
• Removing a ball from the online structure is equivalent to crawling a URL.

The game board, the rules and the goal of the game are introduced in this chapter. Additionally, an
example is given.

2.1.1 The Game Board
The parts of the web crawler that play a role in the decision process are now described in the game
board.

The source produces the balls, where each ball has a color and a number. The balls with the same
color are numbered consecutively. Every color has it’s own probability and the probabilities are not the
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same for every color.

The online structure is a data structure that keeps the balls. It can keep up to, a fixed number, K
balls at a time. The balls in the online structure are divided by color and each color is ordered by num-
ber.

The offline structure is a sequence of z queues, where some of them may be empty. Each queue
contains some balls with possibly a mix of colors.

2.1.2 The Game Rules
The rules consist of several steps. The rules of the game are summarized in a flow chart, see Figure
2.1.

1. If the online structure is non-empty, one of the colors present in the online structure is chosen
uniformly at random. The first ball of that color is removed from the online structure and disappears
from the game.

2. The player has two choices:

a) take the first ball of a non-empty queue in the offline structure (which is only possible if the
offline structure is non-empty) and put it in the online structure in the appropriate place, or,

b) ask a new ball from the source. If there is already some ball of the same color as the one
extracted present in the offline structure, the player is forced to choose ii) below. Otherwise
the player can choose between the following two alternatives:

i) put the ball in the online structure (in the appropriate place), or,
ii) put the ball in the offline structure, at the end of one of the queues. There is one restric-

tion: if k is the largest index of a queue containing a ball of the same color as the one
extracted, the ball must be placed in some queue Q[h] for some h ≥ k.

3. Step 2 is repeated until there are exactly K balls in the online structure.

2.1.3 The Goal of the Game
The goal of the game is to get the largest possible number of colors in the online structure on average.
This is achieved by finding a strategy for the decisions that have to be made. Due to the politeness
limits, the web crawler has a high throughput when there is a possibility to crawl URLs from as may
hosts as possible. The strategy of the player is based on some limited knowledge, namely:

• the player doesn’t know what color the source will produce, not even knows the probability of each
color to be drawn from the source nor the number of existing colors,

• there is a bound on the number of non-empty queues that can be used in the offline structure,
• searching in the queues in the offline structure and changing the positions of the balls in a queue

in the offline structure is computationally demanding, because a disk head has to move physically.
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Figure 2.1: Flow chart of steps 1 and 2 of the game rules.
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2.2 An Example

Consider the following example, see Figure 2.2. It is assumed that the number of positions in the online
structure, K, equals 8. The rules of the game are followed for this example, this is explained below the
figure.

Online Structure

3 4
1 2 3
4
2 3

Offline Structure

Q1

Q2

Q3

Q4

Qz

5 4 4 6
5 7 5 2
8 6
2 5 9

Source

3

Figure 2.2: An illustration of the game.

1. Suppose that a yellow ball is removed, this is Yellow#1

2. The player has to choose whether to do a or b.

a) If a is chosen, ball Red#5 is put in the online structure at the end of the queue with red balls.

b) If b is chosen, there is no choice for the player since the ball from the source has a color
which is already presented in the offline structure. Therefore the player is forced to put the
ball in the offline structure at the end of queue i, i ≥ 4.

3. Step 2 should be repeated, since the number of balls present in the online structure is smaller
than K.

The example shows that it might happen that a color is not present anymore in the online structure,
while it is still present in the offline structure. In the example this is the case for the orange balls. The
result is that when a ball is drawn from the source that has a color that is not present in the online
structure, in this case orange, the rules force the player to put the orange ball into the offline structure,
while for the player it would have been best to put the orange ball in the online structure.

Furthermore the example shows that if the player wants to have a ball with a color that is not present in
the online structure, for example cyan, the player either needs to accept a ball from the offline structure
in the next 8 steps or hope to retrieve a ball from the source that has a color that is not present in the
online structure nor in the offline structure..
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Chapter 3

Initial Phase

The game that has been described in Chapter 2 is modeled and analyzed in both this chapter and
Chapter 4 without the use of the offline structure. This means that the player of the game has no
decision to make and that the rules of the game are the following:

1. If the online structure is non-empty, one of the colors present in the online structure is chosen
uniformly at random. The first ball of that color is removed from the online structure and disappears
from the game.

2. The player has no choice but to ask a new ball from the source. This ball goes into the online
structure (in the appropriate place).

Before this procedure can start, the online structure needs to be filled with K balls. Since there is no
offline structure, K balls are drawn from the source and are put in the online structure in the appropriate
place. This initial phase is modeled and analyzed in this chapter, in Chapter 4 the implementation of the
game without decisions is modeled and analyzed. When modeling the game, the assumption is made
that the total number of colors equals C.

3.1 The Birthday Problem

Although it might not be obvious at first sight, the initial phase is related to the birthday problem. The
relation is the following: suppose that the balls are the people and the colors are the birthdays. When
the balls are put in the online structure, people with birthdays are put together in a room. In the classical
birthday problem it is assumed that the birthdays correspond to a uniform distribution, see for example
E. H. McKinney, [12]. In our case we assume that the colors can have a general distribution.

In order to analyze the initial phase, let N(i, t) be the number of colors that have i balls in the on-
line structure at time t. The number of different colors in the online structure at time t is equal to∑K
j=1N(j, t). Remember that there is a total number of C colors and define N(0, t) = C −

∑K
j=1N(j, t)

as the number of colors that are not represented in the online structure.

3.2 Number of Colors after drawing K Balls

In order to get an expression for the expected number of colors in the online structure after drawing K
balls, let Zi define a random variable:

Zi =

{
1, if there is no ball of color i in the online structure,
0, otherwise.

Let p = (p1, ..., pC) be the probability vector such that pi is the probability to draw a ball of color i from
the source. The expression for the expected number of colors in the online structure is formulated in the
first lemma.

9



Lemma 3.2.1 (Expected number of colors at t = K). The expected number of colors in the online
structure at time t = K is

E

 K∑
j=1

N(j,K)

 = C −
C∑
i=1

(1− pi)K . (3.1)

Proof. By definition of Zi, E [N(0,K)] =
∑C
i=1 E [Zi]. A queue is empty after K steps with probability

(1− pi)K , where pi is the probability for color i to be drawn from the source. Hence, E [Zi] = (1− pi)K
and this gives an expression for E [N(0,K)]:

E [N(0,K)] =

C∑
i=1

(1− pi)K .

Note that this lemma can be extended such that it holds for every t ≤ K.

Corollary 3.2.1 (Expected number of colors for uniform distribution of p at t = K). When p corresponds
to a uniform distribution, the expected number of colors in the online structure at time t = K is

E

 K∑
j=1

N(j,K)

 = C

(
1−

(
1− 1

C

)K)
.

If the number of colors in the online structure,
∑K
j=1N(j, t), is known, it is also possible to calcu-

late the probability to draw a color from the source that is not present in the online structure, Pnew =
C−

∑K
j=1N(j,K)

C , and the probability to draw a color from the source that is present in the online structure,

Pold =
∑K
j=1N(j,K)

C . Limiting behavior when p corresponds to a uniform distribution is the following:

K∑
j=1

E [N(j,K)] = C

(
1−

(
1− 1

C

)K)
,

= C

(
1−

(
1− K

C
+O

(
K

C2

)))
,

= K −O
(
K

C

)
.

This means that with high probability every position in the online structure contains a different color at
t = K. If C = K the following relation is obtained:

K∑
j=1

E [N(j,K)] = K

(
1−

(
1− 1

K

)K)
,

= K

(
1− 1

e
+

1

2Ke
+O

(
1

K2

))
,

= 0.6321K +
1

2e
+O

(
1

K

)
. (3.2)

Note that this analysis for a uniform distribution of p is a generalized version of calculating the average
number of unique birthdays in a group, see S. Goldberg [6] for the calculations with n people and 365
birthdays.

Using Lemma 3.2.1 the upcoming theorem can be shown.

Theorem 3.2.1 (Maximization of the expected number of colors at t = K). The expected number of
colors in the online structure at time t = K is maximized when the probabilities for each color to be
drawn from the source correspond to a uniform distribution.
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Proof. The goal is to maximize C −
∑C
i=1(1− pi)K subject to

∑C
i=1 pi = 1. According to the method of

Lagrange multipliers Λ(p1, ..., pC , λ) = C −
∑C
i=1(1 − pi)K + λ

(∑C
i=1 pi − 1

)
. Note that derivatives of∑C

i=1 (1− pi) and
∑C
i=1 pi with respect to pi exist for all pi. It follows that

dΛ

dλ
=

C∑
i=1

pi − 1 = 0,

dΛ

dpi
= (K − 1)(1− pi)K−1 + λ = 0, ∀pi.

Therefore λ = −(K − 1)(1− pi)K−1 ∀pi and so pi = 1
C ∀pi.

In the next chapter it is shown what happens to
∑K
j=1 E [N(j, t)], t ≥ K.
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Chapter 4

Dynamics: no Offline Structure

After the online structure has been filled with K balls, the game is modeled without the offline structure.
The model is a closed queueing network with K customers in the network. Again it is assumed that the
total number of colors equals C. When the online structure is filled with K balls, the queueing model is
analyzed with the help of recurrence relations. Every time step one ball of a color is removed from the
online structure uniformly at random and one ball is drawn from the source according to the probability
distribution p = (p1, ..., pC), where pi is the probability to draw a ball from the source with color i. This
ball is added to the online structure. We are interested in the number of colors that is present in the
online structure.

4.1 Closed Queueing Network

Let (q1, ..., qC) be the state of the Markov chain, were qi is the number of balls of color i in the online
structure. The balance equations for the closed queueing network are:

P (q1, ..., qC) =

C∑
i,j:qj≥1

P ((q1, ..., qC) + ei − ej)
1

NNZ(q + ei − ej)
pj ,

where NNZ(x) is the number of non-zeros in the vector x. The probability to draw a color from the
source that is not present in the online structure, Pnew, is:

Pnew =
∑

k:(q−ej)k=0

pk.

In particular, when all colors are equally likely to be drawn from the source, so pi = 1
C , i = 1, ..., C, it

holds that Pnew =
C−NNZ(q−ej)

C . If C tends to infinity, this fraction tends to 1. Intuitively, we may expect
that there are almost K different colors in the online structure when C is much larger than K.

Let N(i, t)(q(t)) = |{c : qc(t) = i}|, where c is a color, be the number of queues of length i at time
t. For ease of notation we write N(i, t) instead of N(i, t)(q(t)). Note that this notation corresponds
to the notation introduced in Chapter 3. Remember that the number of non-zero queues is equal to∑K
j=1N(j, t), this is the number of different colors in the online structure at time t, and the number of

colors that are not represented in the online structure is defined by N(0, t) = C −
∑K
j=1N(j, t). Note

that
∑K
j=0 jN(j, t) = K, this is the total number of positions in the online structure.

4.2 Homogeneous Colors

To analyze the expected number of colors in stationarity, recurrence relations are used. For the dynam-
ics it is assumed that the probability for each color to be drawn from the source corresponds to a uniform

13



distribution. If there are N(i, t) queues of length i at time t, t ≥ K, there are several of possibilities for
N(i, t+1). The cases i = 0, i = 1 and i = K are discussed separately. Recall that N(0, t) is the number
of colors not present in the online structure. The first case that is discussed is i = 0.

• N(0, t+ 1) = N(0, t)− 1
This happens when a ball is removed from a queue that has length greater than 1 and afterwards
a ball is drawn from the source that has a color that is not present in the online structure.

• N(0, t+ 1) = N(0, t)
The number of empty queues remains the same if:

– a ball is removed from a queue with length greater than 1 and afterwards a ball is added to
the online structure that has a color that is already present in the online structure, or,

– a ball is removed from a queue of length 1 and afterwards a ball is added that has a color is
not present in the online structure.

• N(0, t+ 1) = N(0, t) + 1
If a ball is removed from a queue with length 1 and a ball is added that has a color that is already
present in the online structure, then the number of colors not represented in the online structure
increases. Note that the number of colors already present in the online structure is decreased by
1 since a ball from a queue with length 1 has been removed.

All these cases are summarized in the following equation:

N(0, t+ 1) =



N(0, t)− 1, w.p.
(

1− N(1,t)∑K
j=1N(j,t)

)
C−

∑K
j=1N(j,t)

C ,

N(0, t), w.p.
(

1− N(1,t)∑K
j=1N(j,t)

) ∑K
j=1N(j,t)

C +

N(1,t)∑K
j=1N(j,t)

(
1−

∑K
j=1N(j,t)−1

C

)
,

N(0, t) + 1, w.p. N(1,t)∑K
j=1N(j,t)

∑K
j=1N(j,t)−1

C .

Note that there are only three options, because it is impossible that N(0, t + 1) = N(0, t) − K or
N(0, t+ 1) = N(0, t) +K, with K ≥ 2. The next special case is i = 1.

• N(1, t+ 1) = N(1, t)− 2
When a ball is removed from a queue with length one and afterwards a ball is drawn from the
source from which the queue length was one, the number of queues with length one is decreasing
by two.

• N(1, t+ 1) = N(1, t)− 1
The number of queues with length one decreases by 1 if:

– a ball is removed from a queue with length one and thereafter a ball is drawn from the
source that does not have a color that is not present in the online structure nor a color that
corresponds to a queue with length 1, or,

– a ball is removed from a queue with at least length three and afterwards a ball is drawn with
a color corresponding to a queue with length 1.

• N(1, t+ 1) = N(1, t)
The number of queues with length one remains the same if:

– a ball is removed with a color corresponding to a queue with length one and afterwards a ball
is added to the online structure that has a color that is not present in the online structure, or,

– a ball is removed from a queue that contains at least three balls and a ball is added of a color
with at least two balls in the online structure, or,
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– a ball is removed from a queue with length two and afterwards a ball is added to a queue
with length one.

• N(1, t+ 1) = N(1, t) + 1
An increase of the number of queues with length one happens if:

– a ball with a color corresponding to a queue with a length of at least three is removed followed
by a draw of a ball from the source that has a color that is not present in the online structure,
or,

– the number of queues with length two decreases and thereafter a ball is drawn from the
source that has a color that corresponds to a queue with length greater than 1.

• N(1, t+ 1) = N(1, t) + 2
If a ball is removed that has a color corresponding to a queue with length two and afterwards a
ball is drawn from the source that has a color that is not present in the online structure, then the
number of queues with length one increases by two.

All these possibilities lead to the following equation:

N(1, t+ 1) =



N(1, t)− 2, w.p. N(1,t)∑K
j=1N(j,t)

N(1,t)−1
C ,

N(1, t)− 1, w.p. N(1,t)∑K
j=1N(j,t)

∑K
j=2N(j,t)

C +

(
1− N(1,t)+N(2,t)∑K

j=1N(j,t)

)
N(1,t)
C ,

N(1, t), w.p. N(1,t)∑K
j=1N(j,t)

C−
∑K
j=1N(j,t)+1

C +(
1− N(1,t)+N(2,t)∑K

j=1N(j,t)

) ∑K
j=2N(j,t)

C + N(2,t)∑K
j=1N(j,t)

N(1,t)+1
C ,

N(1, t) + 1, w.p.
(

1− N(1,t)+N(2,t)∑K
j=1N(j,t)

)
C−

∑K
j=1N(j,t)

C + N(2,t)∑K
j=1N(j,t)

∑K
j=2N(j,t)−1

C ,

N(1, t) + 2, w.p. N(2,t)∑K
j=1N(j,t)

C−
∑K
j=1N(j,t)

C .

The reasoning for i = 2, ..,K − 1 is very similar to the case that i = 1. Since some differences occur,
the possibilities are described still.

• N(i, t+ 1) = N(i, t)− 2
When a ball is removed from a queue with length i and afterwards a ball is drawn from the source
that has a color from which the queue length was i, the number of queues with length i is decreas-
ing by two.

• N(i, t+ 1) = N(i, t)− 1
The number of queues with length i decreases by 1 if:

– a ball is removed from a queue with length i and afterwards a ball is drawn with a color that
does not corresponds to a queue with length i− 1 and length i, or,

– a ball is removed from a queue that does not have length i nor i+ 1 and afterwards a ball is
drawn with a color corresponding to a queue with length i.

• N(i, t+ 1) = N(i, t)
The number of queues with length i remains the same if:

– a ball is removed with a color corresponding to a queue with length i and afterwards a ball is
added with a color corresponding to a queue with length i− 1, or,

– a ball is removed from a queue that does not have length i nor length i+ 1 and afterwards a
ball is added to a queue that does not have length i− 1 nor length i. Note that it can happen
that a ball is removed from a queue with length i− 1. If this case the probability that a ball is
added to a queue that does not have length i− 1 nor length i is different than when a ball is
removed from a queue that does not have length i− 1, i and i+ 1. Or,
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– a ball is removed from a queue with length i + 1 and afterwards a ball is added to a queue
with length i.

• N(i, t+ 1) = N(i, t) + 1
An increase of the number of queues with length one happens if:

– a ball with a color corresponding to a queue that does not have length i nor length i + 1 is
removed from the online structure, followed by a draw of a ball from the source corresponding
to a queue with length i− 1. Note that it can happen that a ball is removed from a queue with
length i− 1. If this is the case, the probability that a ball is added to a queue that has length
i− 1 is different than when a ball is removed from a queue that does not have length i− 1, i
and i+ 1. Or,

– the number of queues with length i + 1 decreases and thereafter a ball is drawn from the
source that has a color that corresponds to a queue that does not have length i−1 nor length
i.

• N(i, t+ 1) = N(i, t) + 2
If a ball is removed corresponding to a queue with length i+ 1 and afterwards a ball is drawn from
the source with a color corresponding to a queue with length i − 1, then the number of queues
with length i increases by two.

The possibilities lead to the following equation:

N(i, t+ 1) =



N(i, t)− 2 w.p. N(i,t)∑K
j=1N(j,t)

N(i,t)−1
C ,

N(i, t)− 1 w.p. N(i,t)∑K
j=1N(j,t)

(
1− N(i−1,t)+N(i,t)

C

)
+(

1− N(i,t)+N(i+1,t)∑K
j=1N(j,t)

)
N(i,t)
C ,

N(i, t) w.p. N(i,t)∑K
j=1N(j,t)

N(i−1,t)+1
C +(

1− N(i−1,t)+N(i,t)+N(i+1,t)∑K
j=1N(j,t)

)(
1− N(i,t)+N(i−1,t)

C

)
+

N(i−1,t)∑K
j=1N(j,t)

(
1− N(i,t)+N(i−1,t)−1

C

)
+

N(i+1,t)∑K
j=1N(j,t)

N(i,t)+1
C ,

N(i, t) + 1 w.p.
(

1− N(i−1,t)+N(i,t)+N(i+1,t)∑K
j=1N(j,t)

)
N(i−1,t)

C + N(i−1,t)∑K
j=1N(j,t)

N(i−1,t)−1
C +

N(i+1,t)∑K
j=1N(j,t)

(
1− N(i−1,t)+N(i,t)+1

C

)
,

N(i, t) + 2 w.p. N(i+1,t)∑K
j=1N(j,t)

N(i−1,t)
C .

Note that for i > K
2 , N(i, t) can only be 0 or 1. Moreover, only one N(i, t), i > K

2 can be equal to 1. The
last case that is discussed is i = K.

• N(K, t+ 1) = N(K, t)− 1
When a ball is removed from a queue with length K and afterwards a ball is added to a queue
that does not have length K − 1, then the number of queues with length K decreases by one.

• N(K, t+ 1) = N(K, t)
The number of queues with length K remains the same if:

– a ball is removed from a queue with length K and afterwards a ball is added to a queue with
length K − 1, or,
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– a ball is removed from a queue that does not have length K and after that a ball is drawn
from the source that corresponds to a queue with length not equal to K − 1. Note that when
a ball is removed from a queue that does not have length K, it might happen that a ball is
removed from a queue with length K−1. In the latter case the probability that a ball is added
to a queue with length not equal to K − 1 is different than when a ball is removed from a
queue that does not have length K − 1 nor length K.

• N(K, t+ 1) = N(K, t) + 1
Suppose that a ball is removed from a queue with length not equal to K − 1 and afterwards a ball
is drawn from the source corresponding to a queue with length K − 1, then the number of queues
with length K is increased by one. Note that when a ball is removed from a queue that does not
have length K − 1, it can happen dat a ball is removed from a queue with length K. In that case,
the probability that a ball is added to a queue with length K − 1 is different than when a ball is
removed from a queue that does not have length K − 1 nor length K.

This is summarized in the following equation:

N(K, t+ 1) =



N(K, t)− 1, w.p. N(K,t)∑K
j=1N(j,t)

(
1− N(K−1,t)+1

C

)
,

N(K, t), w.p. N(K,t)∑K
j=1N(j,t)

N(K−1,t)+1
C +(

1− N(K−1,t)+N(K,t)∑K
j=1N(j,t)

)(
1− N(K−1,t)

C

)
+

N(K−1,t)∑K
j=1N(j,t)

(
1− N(K−1,t)−1

C

)
,

N(K, t) + 1, w.p.
(

1− N(K−1,t)+N(K,t)∑K
j=1N(j,t)

)
N(K−1,t)

C + N(K−1,t)∑K
j=1N(j,t)

N(K−1,t)−1
C .

Now it is possible to proof the following theorem.

Theorem 4.2.1 (Expected number of colors in stationary regime with homogeneous colors.). When
there are K positions in the online structure, the total number of colors is C and the probability for each
color to be drawn from the source is 1

C it follows that the mean field approximation of E
[∑K

j=1N(j, t)
]
,

the number of colors in the online structure, is KC
K+C−1 .

Proof. From the dynamics for N(i, t+ 1), i = 0, ..,K, these expectations follow.

E[N(0, t+ 1)] = E[N(0, t)] + E

[
N(1, t)∑K
j=1N(j, t)

]
+

∑K
j=1 E[N(j, t)]

C
− 1

C
E

[
N(1, t)∑K
j=1N(j, t)

]
− 1 (4.1)

E[N(1, t+ 1)] = E[N(1, t)] +
2

C
E

[
N(1, t)∑K
j=1N(j, t)

]
− E

[
N(1, t)∑K
j=1N(j, t)

]
− E[N(1, t)]

C
+

E

[
N(2, t)∑K
j=1N(j, t)

]
− 1

C
E

[
N(2, t)∑K
j=1N(j, t)

]
+ 1−

∑K
j=1 E[N(j, t)]

C

E[N(i, t+ 1)] = E[N(i, t)] +
2

C
E

[
N(i, t)∑K
j=1N(j, t)

]
− E

[
N(i, t)∑K
j=1N(j, t)

]
− E[N(i, t)]

C
+

E

[
N(i+ 1, t)∑K
j=1N(j, t)

]
− 1

C
E

[
N(i+ 1, t)∑K
j=1N(j, t)

]
+

E[N(i− 1, t)]

C
− 1

C
E

[
N(i− 1, t)∑K
j=1N(j, t)

]

E[N(K, t+ 1)] = E[N(K, t)] +
1

C
E

[
N(K, t)∑K
j=1N(j, t)

]
− E

[
N(K, t)∑K
j=1N(j, t)

]
+

E[N(K − 1, t)]

C
−

1

C
E

[
N(K − 1, t)∑K
j=1N(j, t)

]
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Because of stationarity E[N(i, t + 1)] = E[N(i, t)] for i = 0, ...,K. However, it is not possible to solve
these equations and therefore a mean field approximation is applied. The random variable N(i, t) is
replaced by a constant ν(i, t). Applying stationarity and the mean field approximation to (4.1) results in:

0 =
ν(1, t)∑K
j=1 ν(j, t)

+

∑K
j=1 ν(j, t)

C
− 1

C

ν(1, t)∑K
j=1 ν(j, t)

− 1.

Solving ν(1, t) in terms of
∑K
j=1 ν(j, t) and C gives

ν(1, t) =

∑K
j=1 ν(j, t)

[
C −

∑K
j=1 ν(j, t)

]
C − 1

.

Rewriting the other equations in a similar way results in the following recursive equations for ν(i, t),
i = 1, ...,K.

ν(1, t) =

∑K
j=1 ν(j, t)

[
C −

∑K
j=1 ν(j, t)

]
C − 1

(4.2)

ν(2, t) =

[
C +

∑K
j=1 ν(j, t)− 2

C − 1

]
ν(1, t)−

∑K
j=1 ν(j, t)

C − 1

C − K∑
j=1

ν(j, t)


=

[
C +

∑K
j=1 ν(j, t)− 2

C − 1

]
ν(1, t)−

∑K
j=1 ν(j, t)

C − 1
ν(0, t) (4.3)

ν(i+ 1, t) =

[
C +

∑K
j=1 ν(j, t)− 2

C − 1

]
ν(i, t)−

∑K
j=1 ν(j, t)− 1

C − 1
ν(i− 1, t) (4.4)

ν(K, t) =

∑K
j=1 ν(j, t)− 1

C − 1
ν(K − 1, t)

Equation (4.4) holds for i = 2, ..,K − 2. The claim is that the solution of these equations is ν(i, t) =[
C −

∑K
j=1 ν(j, t)

] ∑K
j=1 ν(j,t)

C−1

(∑K
j=1 ν(j,t)−1
C−1

)i−1
and this is shown by induction. From (4.2) and (4.3) it

is known that the desired relation holds for i = 1 and i = 2.

ν(1, t) =

∑K
j=1 ν(j, t)

[
C −

∑K
j=1 ν(j, t)

]
C − 1

ν(2, t) =

∑K
j=1 ν(j, t)

C − 1

∑K
j=1 ν(j, t)− 1

C − 1

C − K∑
j=1

ν(j, t)


Now suppose that for ν(i− 1, t) and ν(i, t) it holds that

ν(i− 1, t) =

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i−2
,

ν(i, t) =

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i−1
,

then it should be true that ν(i + 1, t) =
[
C −

∑K
j=1 ν(j, t)

] ∑K
j=1 ν(j,t)

C−1

(∑K
j=1 ν(j,t)−1
C−1

)i
. From equation
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(4.4) it follows that:

ν(i+ 1, t) =

[
1 +

∑K
j=1 ν(j, t)− 1

C − 1

]
ν(i, t)−

∑K
j=1 ν(j, t)− 1

C − 1
ν(i− 1, t),

=

[
1 +

∑K
j=1 ν(j, t)− 1

C − 1

]C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i−1
−

∑K
j=1 ν(j, t)− 1

C − 1

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i−2
,

=

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i
,

for i = 2, ...,K − 2. Obviously, since the relation holds for i = K − 2 it also folds for i = K − 1. So it is
true that:

ν(i, t) =

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i−1
,

=

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)

C − 1

C − 1∑K
j=1 ν(j, t)− 1

(∑K
j=1 ν(j, t)− 1

C − 1

)i
.

This relation holds for i = 1, ...,K, by definition ν(0, t) = C −
∑K
j=1 ν(j, t). Note that

∑K
i=0 iν(i, t) = K,

so

K =

K∑
i=0

iν(i, t) =

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)∑K

j=1 ν(j, t)− 1

K∑
i=0

i

(∑K
j=1 ν(j, t)− 1

C − 1

)i
.

Applying
∑∞
i=0 ix

i = x
(x−1)2 , |x| < 1 is possible because K is large and

∑K
j=1 ν(j,t)−1
C−1 < 1. Since there

are K positions in the online structure it follows
∑K
j=1 ν(j, t) 6= C and therefore the fraction can not be

equal to 1. Note that if C = K then
∑K
j=1 ν(j, t) 6= K, because if this would be true then ν(1, t) = K. By

(4.2) this results in ν(1, t) = 0, a contradiction. Note that by replacing the finite sum by an infinite sum
the residual term is

∞∑
i=K+1

i

(∑K
j=1 ν(j, t)− 1

C − 1

)i
=

(∑K
j=1 ν(j, t)− 1

C − 1

)K+1 ∞∑
i=0

(i+K + 1)

(∑K
j=1 ν(j, t)− 1

C − 1

)i
,

= (K + 1)

(∑K
j=1 ν(j, t)− 1

C − 1

)K+1 ∞∑
i=0

(∑K
j=1 ν(j, t)− 1

C − 1

)i
+

(∑K
j=1 ν(j, t)− 1

C − 1

)K+1 ∞∑
i=0

i

(∑K
j=1 ν(j, t)− 1

C − 1

)i
,
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which is exponentially decreasing in K. So we have

K =

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)∑K

j=1 ν(j, t)− 1


∑K
j=1 ν(j,t)−1
C−1(∑K

j=1 ν(j,t)−1
C−1 − 1

)2 −O

(∑K
j=1 ν(j, t)− 1

C − 1

)K+1

 ,

=

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)∑K

j=1 ν(j, t)− 1

∑K
j=1 ν(j, t)− 1

C − 1

(
C − 1∑K

j=1 ν(j, t)− C

)2

−

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)∑K

j=1 ν(j, t)− 1
O

(∑K
j=1 ν(j, t)− 1

C − 1

)K+1
 ,

=
(C − 1)

∑K
j=1 ν(j, t)

C −
∑K
j=1 ν(j, t)

−

C − K∑
j=1

ν(j, t)

 ∑K
j=1 ν(j, t)∑K

j=1 ν(j, t)− 1
O

(∑K
j=1 ν(j, t)− 1

C − 1

)K+1
 ,

which results in the approximation of
∑K
j=1 ν(j, t) being KC

K+C−1 . Note that there is a devision by C −∑K
j=1 ν(j, t), but

∑K
j=1 ν(j, t) 6= C, as has been explained before.

By definition of Pnew, Pnew =
C−

∑K
j=1 ν(j,t)

C , the probability to draw a ball from the source that is not
present in the online structure approximates C−1

K+C−1 . This theorem has some immediate results.

Corollary 4.2.1 (Expected number of queues with length i with equally likely colors.). When there are
K positions in the online structure, the total number of colors is C and the probability for each color to
be drawn from the source us 1

C it follows that E [N(i, t)] approximates KC2(K−1)i−1

(K+C−1)i+1 .

Corollary 4.2.2 (Limiting behavior with equally likely colors.). When there are K positions in the online
structure, the total number of colors C tends to infinity and the probability for each color to be drawn
from the source is 1

C it follows that
∑C
j=1N(j, t) = K and Pnew = 1.

Corollary 4.2.3. Suppose there are K positions in the online structure, the total number of colors is C
and the probability for each color to be drawn from the source is 1

C . If both K and C are multiplied with
the same constant a, then

∑C
j=1N(j, t) approximates a KC

K+C and Pnew approximates C
K+C .

Proof. It has been shown that

C∑
j=1

N(j, t) =
KC

K + C − 1
,

=
KC

K + C

[
1

1− 1
K+C

]
,

=
KC

K + C

[
1 +O

(
1

K + C

)]
.

Multiplying both K and C by a gives

C∑
j=1

N(j, t) =
a2KC

aK + aC

[
1 +O

(
1

aK + aC

)]
,

= a
KC

K + C

[
1 +O

(
1

K + C

)]
.
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For Pnew it has been shown that

Pnew =
C − 1

K + C − 1
,

=
C

K + C

[
1

1− 1
K+C

]
− 1

K + C

[
1

1− 1
K+C

]
,

=
C

K + C

[
1 +O

(
1

K + C

)]
− 1

K + C

[
1 +O

(
1

K + C

)]
.

Multiplying both K and C by a gives

Pnew =
aC

aK + aC

[
1 +O

(
1

aK + aC

)]
− 1

aK + aC

[
1 +O

(
1

aK + aC

)]
,

=
C

K + C

[
1 +O

(
1

K + C

)]
− 1

a

1

K + C

[
1 +O

(
1

K + C

)]
.

The statement follows.

Corollary 4.2.4 (Expected number of colors in stationary when C = K with equally likely colors.). When
there are K positions in the online structure, the total number of colors is K and the probability for each
color to be drawn from the source is 1

K it follows that E [N(i, t)] approximates K+1
2i+1 , the number of colors

in the online structure approximates K
2 + 1

4 and Pnew approximates 1
2 .

Proof. Using the obtained relations from the theorem and applying C = K yields:

ν(i, t) =
KC2(K − 1)i−1

(K + C − 1)i+1
,

=
K3(K − 1)i−1

(2K − 1)i+1
,

= K

(
K

2K − 1

)2(
K − 1

2K − 1

)i−1
,

= K

(
K

2K

[
1

1− 1
2K

])2
(

K − 1

2(K − 1)

[
1

1 + 1
2(K−1)

])i−1
,

= K

(
1

2

[
1 +

1

2K
+O

(
1

K2

)])2(
1

2

[
1−O

(
1

K

)])i−1
,

=
K + 1

2i+1
+O

(
1

K

)
,

K∑
j=1

ν(j, t) =
KC

K + C − 1
,

=
K2

2K − 1
,

=
K2

2K

[
1

1− 1
2K

]
,

=
K

2

[
1 +

1

2K
+O

(
1

K2

)]
,

=
K

2
+

1

4
+O

(
1

K

)
,
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Pnew =
C − 1

K + C
,

=
K − 1

2K
,

=
1

2
− 1

2K
.

4.3 Heterogeneous Colors

In order to make a generatlization of the dynamics, letM(i, t) be the set of the color numbers from which
the queues have i balls at time t, so M(i, t)(q(t)) = {c : qc(t) = i}. For ease of notation we write M(i, t)
instead of M(i, t)(q(t)). When at time t there are N(i, t) queues of length i, t ≥ K, the possibilities
for N(i, t + 1) are the same as for the uniform distribution and therefore are not repeated. Moreover,
the same special cases are introduced, i.e., i = 0, i = 1, and i = K. In the following subsection only
the recurrence relations are obtained, proofs on the number of colors in the online structure are left for
future research.

4.3.1 Recurrence Relations

Before we provide the equations, we note the following. Suppose that a ball is removed from a queue
with length i. This means that a color is removed from M(i, t). The probability for this to happen to a
color k ∈M(i, t) is the same for every color in M(i, t). The probability that after a color is removed from
M(i, t) also a color is added to M(i, t) is:

∑
k∈M(i,t)

1∑K
j=1N(j, t)

 ∑
j∈M(i,t)

pj − pk

 =
N(i, t)∑K
j=1N(j, t)

∑
j∈M(i,t)

pj −
∑
j∈M(i,t) pj∑K
j=1N(j, t)

,

=
N(i, t)− 1∑K
j=1N(j, t)

∑
j∈M(i,t)

pj .

The same can happen when a ball is removed from a queue with length i+ 1. Then a color is added to
M(i, t) by removing a ball from N(i+ 1, t). If afterwards a ball is added to a queue with length i, a color
is added to M(i, t). The probability for this to happen is:

∑
k∈M(i+1,t)

1∑K
j=1N(j, t)

 ∑
j∈M(i,t)

pj + pk

 =
N(i+ 1, t)∑K
j=1N(j, t)

∑
j∈M(i,t)

pj +

∑
j∈M(i+1,t) pj∑K
j=1N(j, t)

.

The last special case that is discussed is the following. Suppose that a ball is removed from a queue
with length i + 1. This means that a color is removed from M(i + 1, t) and a color is added to M(i, t).
Suppose that afterwards a ball is drawn from a queue that does not have length i nor length i+ 1. Then
although M(i + 1, t) and M(i, t) have changed, the colors that are in both of them did not change. So
the probability for this to happen is

N(i+ 1, t)∑K
j=1N(j, t)

1−
∑

j∈M(i+1,t)

pj −
∑

j∈M(i,t)

pj

 .

The dynamics are given now:
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N(0, t+ 1) =



N(0, t)− 1, w.p.
(

1− N(1,t)∑K
j=1N(j,t)

)∑
j∈M(0,t) pj ,

N(0, t), w.p.
(

1− N(1,t)∑K
j=1N(j,t)

)(
1−

∑
j∈M(0,t) pj

)
+

N(1,t)∑K
j=1N(j,t)

∑
j∈M(0,t) pj +

∑
j∈M(1,t) pj∑K
j=1N(j,t)

,

N(0, t) + 1, w.p. N(1,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(0,t) pj

)
−

∑
j∈M(1,t) pj∑K
j=1N(j,t)

,

N(1, t+ 1) =



N(1, t)− 2, w.p. N(1,t)−1∑K
j=1N(j,t)

∑
j∈M(1,t) pj ,

N(1, t)− 1, w.p. N(1,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(0,t)∨M(1,t) pj

)
+(

1− N(1,t)+N(2,t)∑K
j=1N(j,t)

)∑
j∈M(1,t) pj ,

N(1, t), w.p. N(1,t)∑K
j=1N(j,t)

∑
j∈M(0,t) pj +

∑
j∈M(1,t) pj∑K
j=1N(j,t)

+(
1− N(1,t)+N(2,t)∑K

j=1N(j,t)

)(
1−

∑
j∈M(0,t)∨M(1,t) pj

)
+

N(2,t)∑K
j=1N(j,t)

∑
j∈M(1,t) pj +

∑
j∈M(2,t) pj∑K
j=1N(j,t)

,

N(1, t) + 1, w.p.
(

1− N(1,t)+N(2,t)∑K
j=1N(j,t)

)∑
j∈M(0,t) pj+

N(2,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(0,t)∨M(1,t) pj

)
−

∑
j∈M(2,t) pj∑K
j=1N(j,t)

,

N(1, t) + 2, w.p. N(2,t)∑K
j=1N(j,t)

∑
j∈M(0,t) pj ,

N(i, t+ 1) =



N(i, t)− 2, w.p. N(i,t)−1∑K
j=1N(j,t)

∑
j∈M(i,t) pj ,

N(i, t)− 1, w.p. N(i,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(i,t)∨M(i−1,t) pj

)
+(

1− N(i,t)+N(i+1,t)∑K
j=1N(j,t)

)∑
j∈M(i,t) pj ,

N(i, t), w.p. N(i,t)∑K
j=1N(j,t)

∑
j∈M(i−1,t) pj +

∑
j∈M(i,t) pj∑K
j=1N(j,t)(

1− N(i−1,t)+N(i,t)+N(i+1,t)∑K
j=1N(j,t)

)(
1−

∑
j∈M(i,t)∨M(i−1,t) pj

)
+

N(i−1,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(i,t)∨M(i−1,t) pj

)
+

∑
j∈M(i−1,t) pj∑K
j=1N(j,t)

+

N(i+1,t)∑K
j=1N(j,t)

∑
j∈M(i,t) pj +

∑
j∈M(i+1,t) pj∑K
j=1N(j,t)

,

N(i, t) + 1, w.p.
(

1− N(i−1,t)+N(i,t)+N(i+1,t)∑K
j=1N(j,t)

)∑
j∈M(i−1,t) pj+

N(i−1,t)−1∑K
j=1N(j,t)

∑
j∈M(i−1,t) pj + N(i+1,t)∑K

j=1N(j,t)

(
1−

∑
j∈M(i−1,t)∨M(i,t) pj

)
−

∑
j∈M(i+1) pj∑K
j=1N(j,t)

,

N(i, t) + 2, w.p. N(i+1,t)∑K
j=1N(j,t)

∑
j∈M(i−1,t) pj ,
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N(K, t+ 1) =



N(K, t)− 1, w.p. N(K,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(K−1,t) pj

)
−

∑
j∈M(K,t) pj∑K
j=1N(j,t)

,

N(K, t), w.p. N(K,t)∑K
j=1N(j,t)

∑
j∈M(K−1,t) pj +

∑
j∈M(K,t) pj∑K
j=1N(j,t)

+(
1− N(K−1,t)+N(K,t)∑K

j=1N(j,t)

)(
1−

∑
j∈M(K−1,t) pj

)
+

N(K−1,t)∑K
j=1N(j,t)

(
1−

∑
j∈M(K−1,t) pj

)
+

∑
j∈M(K−1,t) pj∑K
j=1N(j,t)

,

N(K, t) + 1, w.p.
(

1− N(K−1,t)+N(K,t)∑K
j=1N(j,t)

)∑
j∈M(K−1,t) pj + N(K−1,t)−1∑K

j=1N(j,t)

∑
j∈M(K−1,t) pj .

The dynamics result in the following expectations for the number of queues with length i:

E [N(0, t+ 1)] = E [N(0, t)] + E

[
N(1, t)∑K
j=1N(j, t)

]
−

∑
j∈M(0,t)

pj − E

[∑
j∈M(1,t) pj∑K
j=1N(j, t)

]
,

E [N(1, t+ 1)] = E [N(1, t)] +
∑

j∈M(0,t)

pj −
∑

j∈M(1,t)

pj − E

[∑
j∈M(2,t) pj∑K
j=1N(j, t)

]
+ E

[
2
∑
j∈M(1,t) pj∑K
j=1N(j, t)

]
+

E

[
N(2, t)∑K
j=1N(j, t)

]
− E

[
N(1, t)∑K
j=1N(j, t)

]
,

E [N(i, t+ 1)] = E [N(i, t)] +
∑

j∈M(i−1,t)

pj −
∑

j∈M(i,t)

pj − E

[∑
j∈M(i+1,t) pj∑K
j=1N(j, t)

]
+ E

[
2
∑
j∈M(i,t) pj∑K
j=1N(j, t)

]
−

E

[∑
j∈M(i−1,t) pj∑K
j=1N(j, t)

]
+ E

[
N(i+ 1, t)∑K
j=1N(j, t)

]
− E

[
N(i, t)∑K
j=1N(j, t)

]
,

E [N(K, t+ 1)] = E [N(K, t)] +
∑

j∈M(K−1,t)

pj + E

[∑
j∈M(K,t) pj∑K
j=1N(j, t)

]
− E

[∑
j∈M(K−1,t) pj∑K
j=1N(j, t)

]
− E

[
N(K, t)∑K
j=1N(j, t)

]
.

In stationarity E [N(i, t+ 1)] = E [N(i, t)] for i = 0, ...,K. However, these equations can not be solved
and a solution to this problem is left for future research. When the probabilities for each color to be
drawn from the source correspond to a uniform distribution, the same equations are obtained as in
Theorem 4.2.1. It is expected that, as was the case after K steps, it can be proven that the expected
number of colors in the online structure in stationarity is maximized when the probabilities for each color
to be drawn from the source correspond to a uniform distribution. Since there is no expression yet for
the number of colors in the online structure for a general distribution, this is also left for future research.

4.3.2 The Role of Super Colors
Super colors are colors with a high probability to be drawn from the source, especially compared to
the other colors. It turns out that the super colors dominate the online structure, see the results in
Section 5.3 and Section 5.5, Figures 5.10, 5.11b, 5.16, 5.17, 5.19, 5.20 and 5.21. As a result of the
super colors, the number of colors in the online structure stays low in stationarity. This is what the
designers of the web crawler observe. The rate at which balls are removed from the online structure is

E
[

1∑K
j=1N(j,t)

]
and let p∗ = max

i
pi. When p∗ > E

[
1∑K

j=1N(j,t)

]
> 1

K , the super color dominates the

online structure, since they are added more often to the online structure than they are removed from

the online structure. It is expected that when p∗ < E
[

1∑K
j=1N(j,t)

]
, the super color does not dominate

the online structure anymore, because then the rate out of the online structure is greater than the rate
into the online structure.
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Chapter 5

Numerical Results: no Offline
Structure

The results in this chapter are shown to support the analytical results that have been derived in Chapter
3 and Chapter 4. Moreover, the results are used as a reference point to analyze the strategies for the
use of the offline structure.

In this section we provide numerical results for the case there is a finite number of colors C and that
there are K positions in the online structure. The model has been presented in Section 4.1. Several
distributions are used to invoke the frequency of colors to be drawn from the source. Note that in prac-
tice the frequency of colors corresponds to the size of the hosts. The results shown are for the uniform,
exponential, normal, Poisson and power law distribution.

All the results presented in this thesis are unique due to the fact that a single simulation is performed.
However, if the same simulation would be repeated the stationary behavior is equal.

5.1 Uniform Distribution

In this section the assumption is made that the probabilities for a color to be drawn from the source
correspond to a uniform distribution, that is, pi = 1

C ∀i = 1, ..., C. For the uniform distribution a distinction
is made between a total number ofK colors and a total number of C colors. This is done since analytical
results have been obtained for both cases in Section 4.2.

5.1.1 K Colors
Consider the case that there are K colors in the game. Figure 5.1 shows a progression of the number
of colors in the online structure.
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Figure 5.1: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time. The probability to draw
a color from the source corresponds to a uniform distribution.

At time t = 0 the number of colors in the online structure is zero and accordingly, the probability to draw
a ball from the source with a color that is not present in the online structure equals 1. After K time steps
the online structure is completely filled and it is expected that there are approximately 0.6321K different
colors in the online structure, see (3.2). This is what the numerical result shows as well. Every time step
after t = K one ball is removed from the online structure and one ball is added to the online structure.

The result in Figure 5.1 also corresponds with the other analytical results that have been derived in
Section 4.2. These analytical results are that Pnew approximates 1

2 and that the number of colors in
the online structure in stationarity approximates K

2 . The following figure shows the plots for N(i, t), the
number of queues with length i at time t, i = 0, 1, 2, 3, 4, 5, when K = 10000. Again, these results are in
accordance with the analytical result: E [N(i, t)] approximates K

2i+1 , see Corrolary 4.2.4.
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Figure 5.2: The number of queues in the online structure with length i, i = 0, 1, 2, 3, 4, 5 as a function of the time t.
C = K and the probability to draw a color from the source corresponds to a uniform distribution.

Note that N(0, t) is decreasing in the beginning, this is caused by the fact that all the positions in the
online structure are empty at t = 0. For the same reason in the plots for N(i, t), i = 1, ..., 5 the number
of colors in the queue with length i is increasing.

5.1.2 C Colors

Also in case there is a total number of C colors in the game, it turns out that the numerical results indeed
correspond to the obtained analytical results.

Variation of the total number of colors

Figure 5.3 presents the numerical results using a fixed value of K and different values for C.
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Figure 5.3: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of C.
K = 1000 and the probability to draw a color from the source corresponds to a uniform distribution.
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The figure shows that if C increases, while K remains the same, Pnew tends to 1. This is in accordance
with the analytical results that are obtained in Section 4.2, as both Pnew and the number of colors in the
online structure are increasing in C. Furthermore it has been shown in Section 4.2 that if C tends to
infinity that Pnew tends to 1 and the number of colors in the online structure tends to K. Note that when
C = K the results are the same as for the case that there were K colors in the game, see Figure 5.1.
The expected number of colors at t = K also corresponds with the analytical result and as C tends to
infinity, the expected number of colors at time K goes to K.

Variation of the number of positions in the online structure

Varying the number of positions K, when the probability vector p corresponds to a uniform distribution,
is presented in Figure 5.4. Also this figure is in accordance to the analytical resuls: if C >> K the
probability to draw a ball from the source with a color that is not present in the online structure tends to
1.
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Figure 5.4: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of
K. C = 1000 and the probability to draw a color from the source corresponds to a uniform distribution.

The analytical results say that when, for example, K = 100 and C = 1000 the number of colors in the
online structure is expected to be 91 in stationarity and Pnew approximates 91%. With these parameters
the expected number of colors in the online structure at time K is 95. Figure 5.4 suggests that this is
indeed the case.

5.2 Exponential Distribution

In this subsection the probability vector p corresponds to an exponential distribution with mean λ. Since
it is a discrete version of the exponential distribution this comes down to a geometric distribution with
success probability 1− e− 1

λ .

Variation of the total number of colors

Figure 5.5 shows variation of the total number of colors C for a fixed value of K, the number of positions
in the online structure, and a fixed value of the mean λ.
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Figure 5.5: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of C.
K = 1000 and the probability to draw a color from the source corresponds to an exponential distribution with mean
λ = 1000.

In case that C = λ, Figure 5.5 shows that Pnew is about 1
2 and that the number of colors in the online

structure is approximately K
2 . This was also the case for the uniform distribution if C = K. The

cumulative distribution function for the uniform distribution is linear in C. The cumulative distribution
function for the exponential distribution is:

F (c, λ) =
1− e− c

λ

1− e−Cλ
,

where c = 1, ..., C is the color. The normalization is applied because the sum of the elements in the
probability vector p should be 1. It turns out that in case C = λ the uniform distribution is a good
approximation for the exponential distribution. This is explained below. Note that when C = λ, the
cumulative distribution function is

F (c, λ) =
1− e− c

λ

1− e−1
,

Now let g(c) be the difference between F (c, λ) and c
λ , the cumulative distribution function of the uniform

distribution. So,

g(c) =
1− e− c

λ

1− e−1
− c

λ
,

g′(c) =
1

λ

[
e−

c
λ

1− e−1
− 1

]
.

Note that the function g(c) is a concave function. The derivative is a decreasing function, because e−
c
λ

is a decreasing function and 1 − e−1 is just a constant. At c = 0, g′(c) = 1
e−1

1
λ > 0 and at c = C,

g′(c) = 2−e
e−1

1
λ < 0 and it follows that g(c) is a concave function and the extreme value is a maximum.

Solving the equation g′(c) = 0 yields:

1

λ

[
e−

c
λ

1− e−1
− 1

]
= 0,

e−
c
λ = 1− e−1,
c = −λ ln(1− e−1),
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and it follows that the top of the concave function is at c = −λ ln(1−e−1). The function value at this point
is 1

e−1 + ln(1− e−1) = 0.12. This means that the difference between the uniform cumulative distribution
function and the exponential cumulative distribution function is at most 0.12 and this could explain why
the exponential distribution for p in case C = λ gives similar results as the uniform distribution for p.

In the case C 6= λ and when C goes to infinity, the cumulative distribution function reduces to

F (c, λ) = 1− e− c
λ .

Because of the discrete exponential distribution the probability that a ball has color c , where c = 1, ..., C,
is the following:

P (color = c) = e−
1
λ (c−1) − e− 1

λ c,

= e−
1
λ (c−1)(1− e− 1

λ ). (5.1)

Note that there will be convergence of the number of colors in the online structure from a certain point
onwards when C goes to∞, because the colors at the tail of the distribution are very unlikely to retrieve
from the source. Figure 5.5 indeed illustrates this behavior and it means that Pnew is independent of
the total number of colors C. The convergence can also be seen in the expected number of colors at
time K. With a constant mean λ = 1000 and with K = 1000 the expected number of colors at time K
converges to approximately 796.

Variation of the number of positions in the online structure

Figure 5.6 shows what happens when the number of positions in the online structure, K, is changing,
while the total number of colors C and the mean of the exponential distribution λ are fixed.
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Figure 5.6: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of
K. C = 100000 and the probability to draw a color from the source corresponds to an exponentail distribution with
mean λ = 1000.

If K changes, the probability to draw a color from the source remains the same, as well as the number
of elements in the probability vector p that are almost zero. The difference is the number of positions
in the online structure to fill. This explains the convergence from a certain value of K onwards. The
behavior at t = K is explained by (3.1).
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Variation of the mean λ

The last figure for the probability vector that corresponds to an exponential distribution shows a variation
of λ, the mean of the exponential distribution.
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Figure 5.7: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of λ. C = 100000, K = 1000 and the probability to draw a color from the source corresponds to an exponential
distribution with mean λ.

When λ increases, the figures shows that the number of colors in the online structure increases, as
well as Pnew. Remember the formula of the probability that a ball is of color c, see (5.1). When C is a
constant and λ is a variable then this is an increasing function, as the derivative shows:

dP (color = c)

dλ
= e−

c
λ

[
c(e

1
λ − 1)− e 1

λ

]
.

So when λ increases, the probability to draw of a ball with color c from the source increases. Note
that normalization applies in order to keep a cumulative distribution function. Therefore, there are more
colors in the online structure since the number of colors with probability of (almost) zero to be drawn
from the source decreases.
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5.3 Normal Distribution

In this subsection, the probability vector p has a normal distribution with mean µ and standard deviation
σ.

Variation of the total number of colors

In Figure 5.8 the total number of colors C is changing, while the number of positions in the online
structure, K, and both the mean µ and the standard deviation σ of the normal distribution are fixed.
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Figure 5.8: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of C.
K = 1000 and the probability to draw a color from the source corresponds to a normal distribution with µ = 1000
and σ = 100.

First of all, note that Figure 5.8 shows that the behavior of the number of colors in the online structure in
stationarity is very different from the case the probability vector p corresponds to a uniform distribution.
Figure 5.8 also shows that the number of colors in the online structure and Pnew are independent of the
total number of colors. This is because the probability vector p corresponds to a normal distribution and
it is known from the normal distribution that 99.7% of the values are within three standard deviations
from the mean. Therefore there are about 6σ elements in this vector that are non-zero. So, only when
C 6= µ, the probability vectors p are just shifted versions of each other. When C = µ the mean lies at the
edge of the range of the values, and therefore in this case there are only 3σ elements in the probability
vector that are non-zero. This explains why the number of colors in the online structure is now about
half the number of colors from the case C 6= µ. It also explains why the number of colors in the online
structure after K steps is approximately the same for all values of C, C 6= µ.
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Variation of the number of positions in the online structure

The next variable that changes is K, the number of positions in the online structure. The other variables,
C, the total number of colors, µ, the mean of the normal distribution, and σ, the standard deviation of
the normal distribution, are fixed.
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Figure 5.9: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of
K. C = 100000 and the probability to draw a color from the source corresponds to a normal distribution with mean
µ = 10000 and standard deviation σ = 1000.

When K is increasing towards C, the probability of drawing a ball that has a color that is not present in
the online structure is converging to the same value when K ≥ 6σ. Since there are about 6σ different
colors, for the other colors the probability is about 0, this results in the same number of colors in the
online structure when K is increasing. Note that the number of colors in stationarity is smaller than
6σ.The number of colors in the online structure at time t = K is also converging to the same value
when K ≥ 6σ, the reasoning is similar.
In case K < 6σ, there are more possible colors than number of positions in the online structure and
therefore the number of colors in the online structure is lower than when K ≥ 6σ.
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Variation of the mean µ

Now the variable µ, the mean of the normal distribution, varies, while the other variables C, the total
number of colors, K, the number of positions in the online structure, and σ, the standard deviation of
the normal distribution, are fixed.
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Figure 5.10: The number of colors in the online structure (left) and the probability to draw a ball from the source that
has a color that is not present in the online structuree, Pnew, (right) as a function of the time for different values of
µ. C = 100000, K = 1000 and the probability to draw a color from the source corresponds to a normal distribution
with mean µ and standard deviation σ = 100.

Figure 5.10 illustrates that the number of colors in the online structure is independent of the mean of the
distribution, except for the case when µ = σ and µ = 2σ. This is again due to the fact that the non-zero
elements of the probability vector p are in an interval of approximately 6σ. Hence when µ ≥ 3σ, the
number of colors in the online structure is independent of mean of the distribution, as well is Pnew.

In the case µ = σ there is only one standard deviation at the left side of µ and so something else
happens. There are a couple of colors that have, especially compared to the rest of the colors, a much
higher probability to be drawn from the source and can be seen as a super color. Therefore, the number
of colors in the online structure is really small. Pnew is big instead because there is a high probability
that a color is drawn from the source that is not in the online structure, but the probabilities of the other
colors are relatively small. Also, the removal of the balls from the online structure is uniformly at random
over the number of colors present, while the probability to draw the super color is big compared to the
other colors. This results in the fact that there are a few colors dominating the online structure.

If µ = 2σ there are 2 standard deviations at the left side of the mean with slightly higher probabili-
ties than at the right side of the mean. This explains the behavior in this case, since there is not one
color with much higher probability than the other colors but there are some colors with a bit higher prob-
ability to be drawn from the source. Still, the removal of the balls from the online structure is uniformly
at random over the number of colors present. Therefore, the same kind of behavior occurs as for µ = σ.

When µ ≥ 3σ the probability distributions are just shifted versions of each other and this explains
the result. The expected number of colors in the online structure at t = K is equal to 373 according to
(3.1). The left figure shows that this is indeed the case.
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Variation of the standard deviation σ

Figures 5.11a and 5.11b show some variations of σ, the standard deviation of the normal distribution.
The total number of colors, C, the number of positions in the online structure, K, and the mean of the
normal distribution, µ, are fixed.
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(a) Variation of σ from 10 to 100.
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(b) Variation of σ from 100 to 1000.

Figure 5.11: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of
σ. C = 100000, K = 1000 and the probability to draw a color from the source corresponds to a normal distribution
with mean µ = 1000 and standard deviation σ.

These figures show the same behavior as with changing µ. When there is an interval of 3σ at both
sides of the mean, nothing special happens. When this is not the case, for example when σ = 800, then
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there are some colors with a much higher probability to be drawn from the source compared to the other
colors, the super colors. Still, the removal of the balls from the online structure is uniformly at random
over the number of colors present in the online structure. Therefore the number of colors in the online
structure is rather small, while Pnew is big instead.

5.4 Poisson Distribution

Instead of a probability vector p that corresponds to a normal distribution, this vector now corresponds
to a Poisson distribution with mean λ. It is known that when λ is large, the Poisson distribution is
approximated by the normal distribution with mean λ and standard deviation

√
λ.

Variation of the total number of colors

In Figure 5.12 the total number of colors C varies. The number of positions in the online structure, K,
as well as the mean of the Poisson distribution, λ, are fixed.
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Figure 5.12: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of C. K = 1000 and the probability to draw a color from the source corresponds to a Poisson distribution with mean
λ = 1000.

This figure shows that Pnew is independent of the total number of colors C and that the number of colors
in the online structure is also independent of C. Note that C = λ is an exception and this is discussed
later on.

The Poisson distribution is approximated by the normal distribution when λ is large and from the normal
distribution it is known that 99.7% of the values are within three standard deviations from the mean.
So with the choice of λ = 1000 there are approximately 190 non-zero elements in p. For this reason
the number of colors in the online structure stays quite low. In case when C 6= λ, for each value of C
the probability vectors p are shifted versions of each other and hence Pnew is independent of the total
number of colors C and the number of colors in the online structure is independent of C as well. Due
to this shifting of the probability vector, the number of colors in the online structure at time t = K is
approximately the same for all values of C 6= λ. Note that when, for example, C = 1200 there are also
not yet 3 standard deviations on both sides of the mean of the distribution and therefore the stationary
behavior will be slightly different.
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In case C = λ the mean of the distribution lies at the edge of the range of values, since p has length C.
Since almost all the values are within three standard deviations of the mean, which is now only possible
at one side of the mean, there are about half of the number of colors in the online structure compared
to the case C 6= λ.

Figure 5.13 shows that indeed the Poisson distribution is approximated by the normal distribution. In
this figure the probability vector p has a normal distribution with µ = λ and σ =

√
µ. The parameters C,

the total number of colors, and K, the total number of positions in the online structure, are the same as
in Figure 5.12.
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Figure 5.13: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of C. K = 1000 and the probability to draw a color from the source corresponds to a normal distribution with mean
µ = 1000 and standard deviation σ =

√
µ.

This figure is approximately the same as the figure with the probability vector that corresponds to the
Poisson distribution. Some difference might occur due to the fact that it is a single simulation.
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Variation of the number of positions in the online structure

The following figure shows a variation of K, the number of positions in the online structure. The total
number of colors C and the mean of the Poisson distribution λ are fixed.
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Figure 5.14: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of K. C = 100000 and the probability to draw a color from the source corresponds to a Poisson distribution with
mean λ = 1000.

Figure 5.14 shows that when K is getting closer to C the probability of drawing a ball from the source
that has a color that is not present in the online structure converges to the same value for all K. The
number of colors in the online structure also converges to the same value for all K. Note that in this
case the number of positions in the online structure is greater than the number of colors, since there are
a lot of colors with probability of zero to be drawn from the source. Besides, the number of colors with
probability of (almost) zero to be drawn from the source remains the same when changing K. These
observations also explain why the number of colors in the online structure at time t = K are hardly
dependent on K.
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Variation of the mean λ

In the last figure with a Poisson distributed probability vector p there is a variation of λ, the mean of the
Poisson distribution. The total number of colors C and the number of positions in the online structure K
are fixed.
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Figure 5.15: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values of
λ. C = 100000, K = 1000 and the probability to draw a color from the source corresponds to a Poisson distribution
with mean λ.

Figure 5.15 shows that when λ increases, Pnew and the number of colors in the online structure also
increase. This is indeed true because when the Poisson distribution has a higher mean, it also has
a larger variance and hence a larger standard deviation. Therefore, since the Poisson distribution is
approximated by the normal distribution for high values of λ, there are less colors which have a proba-
bility of almost 0 to be drawn from the source. There are two exceptions, namely the case that λ = 0
and when λ = C. When λ = 0, Pnew of course is zero since the mean and variance are 0. For the
other case, the mean of the distribution lies at the end of the interval and therefore the result is slightly
different. The number of colors in the online structure after K steps is according to (3.1), e.g., when
λ = 55000 the expected number of colors in the online structure at time t = K equals 599.
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5.5 Power Law

The probability vector p is in this section distributed according to the power law. This means that the
probability for a certain color c = 1, ..., C is

P (color = c) =
c−γ∑C
n=1 n

−γ
.

A super color is a color that has a big probability to be drawn from the source, especially compared to
the other colors. A super color dominates the online structure and it is possible that there is more than
one super color.

Variation of the total number of colors

The changing variable in this section is C, the total number of colors. The number of positions in the
online structure K is fixed, as well as γ.
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Figure 5.16: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of C. K = 1000 and the probability to draw a color from the source corresponds to a power law distribution with
γ = 1.1.

When adding K balls to the online structure, the online structure is filled with a certain amount of dif-
ferent colored balls. This is in accordance with (3.1), for C = 10000 the expected number of colors in
the online structure at time t = K equals 404. However, when removing a ball from the online structure
this is done uniformly at random over the number of colors in the online structure while the probability to
draw one of the super colors in every step is big. In the end the online structure is highly dominated by
just a few colors, while the probability to draw a ball from the source that has a color that is not present
in the online structure is relatively big. This is exactly what the designers of the BUbiNG web crawler
observed.

Also, note that the number of colors in the online structure is lower than with the exponential distri-
bution of the probability vector p. This is due to the choice of the mean of the exponential distribution,
λ.
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Variation of the number of positions in the online structure

A variation of K, the number of positions in the online structure, gives the result as shown in Figure
5.17. The total number of colors C and γ are fixed.
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Figure 5.17: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of K. C = 100000 and the probability to draw a color from the source corresponds to a power law distribution with
γ = 1.1.

Increasing K only results in some more colors in the online structure during the initialization. Afterwards
the super colors come into play and in stationarity the number of colors in the online structure is small.
When γ is rather small, the probability for each color to occur tends to 1. By normalization, the cumula-
tive distribution function is the same as the one from the uniform distribution. This is what can be seen
in the Figure 5.18.
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Figure 5.18: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of K. C = 100000 and the probability to draw a color from the source corresponds to a power law distribution with
γ = 0.1.

41



Note that the power law distribution is exactly equal to the uniform distribution when γ = 0.

Variation of γ

What happens when changing γ? The previous paragraph showed that when γ tends to 0 the same
behavior occurs as when the probability vector p did correspond to a uniform distribution. The following
figure shows variation of γ and therefore, among other things, this behavior is observed again.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

600

700

800

900

1000

Time

N
u

m
b

e
r 

o
f 

c
o

lo
rs

Number of colors

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
n

e
w

P
new

 

 

γ = 0
γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9
γ = 1

Figure 5.19: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of γ. C = K = 1000 and the probability to draw a color from the source corresponds to a power law distribution
with parameter γ.

When C = K and γ grows, the number of colors present in the online structure decreases. This is due
to the fact that in that case there are a few colors with a high probability to be drawn from the source and
all the other colors have a small probability. Besides, the removal of the balls from the online structure
happens uniformly at random over the number of colors present in the online structure. What happens
when C 6= K can be seen in the following figure.
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Figure 5.20: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of γ. C = 100000, K = 1000 and the probability to draw a color from the source corresponds to a power law
distribution with parameter γ.

This is a more extreme case than when C = K. Since there are more available colors, in the beginning
there are more colors present in the online structure. Afterwards, the super colors come into play and
so the number of colors in the online structure converges to a relatively small number. The smaller γ the
smaller the biggest probability from the probability vector p, converging towards a uniform distribution of
p. Therefore the decrease in the number of colors in the online structure is less fast when γ is smaller
or there is no decrease at all. Increasing γ even more gives the expected behavior, as can be seen in
Figure 5.21.
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Figure 5.21: The number of colors in the online structure (left) and the probability to draw a ball from the source
that has a color that is not present in the online structure, Pnew, (right) as a function of the time for different values
of γ. C = 100000, K = 1000 and the probability to draw a color from the source corresponds to a power law
distribution with parameter γ.
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Note that for γ = 1 the behavior looks different than in Figure 5.20, but this is due to the scaling of
the x-axis. In Figure 5.21 it is observed that when γ increases, the super color(s) dominate the online
structure even more. Especially in the first K steps the super color is dominating more. Taking into
account that when γ = 5 the probability for the super color equals 0.9644, this behavior is expected. The
probability to draw a color from the source that is not present in the online structure, Pnew, is unstable.
What happens in case γ = 5 is the following. The number of colors in the online structure very often
equals 1. If another color is added to the online structure, for example the color with the second highest
probability to be drawn from the source, the probability to draw a ball from the source that has a color
that is not present in the online structure decreases by 0.0301. Since there are only two colors present
in the online structure, the probability to remove this color from the online structure is big compared to
the probability of adding it. This is why Pnew seems unstable, but this is caused by just a few of colors
that are added to the online structure. For other values of γ the reasoning is similar.
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Chapter 6

Data Analysis

We obtained the data from performed crawls showing the number of hosts with the number of associated
pages. Every color represents a host and every page is a number. The colors are ordered by the number
of associated pages and therefore color number 1 represents the host with the most associated pages.
A plot showing the probability of each color for the biggest crawl performed this far with the BUbiNG
web crawler is shown in Figure 6.1.
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Figure 6.1: The probability for each color to be drawn from the source from the biggest crawl performed thus far
with the BUbiNG web crawler. Colors are sorted by decreasing probability.

If the host sizes would be power law distributed, the log log plot would show a straight line. Still, there
is a certain number of colors that is more likely to be drawn from the source than others. Therefore
it is assumed that the colors follow a power law distribution. This data shows that about 10% of the
colors has a high probability to be drawn from the source, while the other 90% of the colors have a small
probability to be drawn from the source.
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Chapter 7

Strategies for the use of the Offline
Structure

In this chapter we introduce the offline structure into the model. Corollary 4.2.2 states that when p
corresponds to a uniform distribution and C tends to infinity, no offline structure is needed in order to
have a maximal throughput of the web crawler. Unfortunately, in practice, p does not correspond to a
uniform distribution as has been seen in Chapter 6. Since the distribution of the colors follows most
likely a power law distribution, this distribution is used. Note that the first K balls are added to the
online structure in the same way as when there was no offline structure, no other strategy is used for
this unless mentioned otherwise. Furthermore it is assumed that the offline structure is a first in first out
(FIFO) queue.

For the use of the offline structure, several strategies are evaluated for maximizing the number of colors
in the online structure. For every strategy for the use of the offline structure there is a strategy for the
source, i.e., when to accept a ball from the source, and there is a strategy for the offline structure, i.e.,
when to accept a ball from the offline structure. Finally, priority is given to one of them, i.e., the player
has to start with either the source or the offline structure.

The first strategies that are introduced are the neutral strategy and the greedy strategy. In the neu-
tral strategy every ball is accepted, whereas in the greedy strategy a ball is only accepted when it has a
color that is not present in the online structure. In Section 7.1 and Section 7.2 the neutral strategy and
the greedy strategy are considered as a strategy for both the source and the offline structure.

7.1 Neutral Strategy for the Source

In the neutral strategy for the source, every ball is accepted from the source. For the offline structure
there are two possibilities. Priority can be given to both the source and the offline structure.

Proposition 7.1.1. The player should be selective with the source.

Proof. Suppose that priority is given to the source, this means that no ball is added to the offline struc-
ture. Moreover, the offline structure is not even used and the results are the same as without the use of
the offline structure.

Suppose that priority is given to the offline structure. Since the offline structure is empty at the be-
ginning of the game and because no ball will be added to the offline structure, there is no difference to
the case that priority is given to the source.
If the offline structure is filled with, for example, K balls on beforehand the offline structure can be used.
Still, independent of the strategy for the offline structure, the offline structure does get empty at some
point in time, because there are no balls added to the offline structure. Once the offline structure is
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empty, only balls from the source can be accepted. Again the results are the same as without the use
of the offline structure. The statement follows.

7.2 Greedy Strategy for the Source

In the previous section it has been shown that the player should be selective with the source. Therefore
in this section a ball is accepted from the source if it has a color that is not yet present in the online
structure. Otherwise the ball is put in the offline structure. The strategies in this section are denoted by
”strategy source - strategy offline structure - priority”.

7.2.1 Neutral Strategy for Offline Structure
The first strategy that is explored is that a ball from the source is accepted greedily and a ball from the
offline structure is accepted neutral. Priority can be given to both the source and the offline structure.
The strategies can be found in Algorithm 1 and Algorithm 2.

Algorithm 1 Greedy - Neutral - Source Strategy

1: Draw a ball from the source.
2: if this ball has a color that is not present in the online structure then
3: if the offline structure contains this color then
4: put the ball in the offline structure.
5: Accept a ball from the offline structure.
6: else
7: put the ball in the online structure.
8: end if
9: else

10: put the ball in the offline structure.
11: Accept a ball from the offline structure.
12: end if

Algorithm 2 Greedy - Neutral - Offline Structure Strategy

1: if the offline structure is non-empty then
2: accept a ball from the offline structure.
3: else
4: use Algorithm 3.
5: end if

Note that Algorithm 3 is the algorithm to accept a ball from the source that has a color that is not present
in the online structure. This algorithm is used in other strategies as well.

Algorithm 3 Accept a ball from the source that has a color that is not present in the online structure.

1: while no ball has been added to the online structure do
2: Draw a ball from the source.
3: if this ball has a color that is not present in the online structure then
4: if the offline structure contains this color then
5: put the ball in the offline structure.
6: else
7: put the ball in the online structure.
8: end if
9: else

10: put the ball in the offline structure.
11: end if
12: end while
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Proposition 7.2.1. The Greedy - Neutral - priority strategy gives the same results in stationarity as
without the use of the offline structure for any priority-rule.

Proof. Suppose that priority is given to the source. If a ball is not accepted from the source, this ball
goes to the offline structure. Afterwards a ball is accepted from the offline structure, which is the ball
that has just been put in the offline structure.

If priority is given the the offline structure, the following happens. As long as the offline structure is
empty, only the source plays a role. However, there will be some balls drawn from the source that are
not accepted to the online structure. Since the offline structure is not empty anymore, the offline struc-
ture has priority. Therefore all the balls that have been put in the offline structure are accepted to the
online structure in the next steps. The statement follows.

Since we know that the strategies mentioned in Algorithms 1 and 2 do not work, we try the following
variant. Suppose now that priority is given to the source, but that the offline structure is filled with, e.g.,
K balls beforehand. Figure 7.1 presents the results.
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Figure 7.1: The number of colors in the online structure (left) and the probability that a color is in the offline
structure, Poffline, (right) as a function of the time for different values of the total number of colors C. The strategy
can be found in Algorithm 2. The number of positions in the online structure K = 1000 and γ = 1

Note that Poffline is dependent on the initialization of the number of balls in the offline structure. In this
case the offline structure has been filled with K balls.

Proposition 7.2.2. The Greedy-Neutral-Source strategy when the offline structure is filled on before-
hand with a certain number of balls gives the same results in stationarity as without the use of the offline
structure.

Proof. Suppose that a ball is not accepted from the source, then this ball goes to the offline structure
and is replaced by a ball that is drawn from the same probability distribution. The statement follows.

7.2.2 Greedy Strategy for Offline Structure
The other possibility is to accept a ball from the offline structure greedily as well. Priority is given to the
offline structure, see Algorithm 4 for the Greedy - Greedy - Offline Structure strategy.
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Algorithm 4 Greedy - Greedy - Offline Structure Strategy

1: if the first ball in the offline structure has a color that is not present in the online structure then
2: accept a ball from the offline structure.
3: else
4: use Algorithm 3.
5: end if

Only accepting a ball when it has a color that is not present in the online structure seems like a good
strategy, however after a while all the colors are present in the offline structure and it is not possible
anymore to continue. This leads to the following proposition.

Proposition 7.2.3. The Greedy - Greedy - Offline Structure Strategy, see Algorithm 4, can not be
continued after finite time.

Proof. After finite time the offline structure contains (almost) all colors and therefore it is computationally
hard, or even impossible, to find a color that is neither present in the online structure nor present in the
offline structure.

Moreover it might happen that, after removing a ball from the online structure, the colors that are not
present in the offline structure are present in the online structure. This means that, when the union
of colors in the online structure and offline structure is equal to all possible colors, it is impossible to
draw a color from the source that is neither present in the online structure nor present in the offline
structure.

Figure 7.2 gives an example of this behavior, although the simulation is stopped when the probability
that a color is present in the offline structure is greater than 0.99. Beyond that, it is computationally hard
to draw a color that is not present in the online structure from the source that can be accepted to the
online structure.
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Figure 7.2: The number of colors in the online structure (left) and the probability that a color is in the offline
structure, Poffline, (right) as a function of the time for different values of the total number of colors C. The strategy
can be found in Algorithm 4. The number of positions in the online structure K = 1000 and γ = 1. The drop occurs
when the simulation stops.

Adapting the strategy in such a way that when the probability that a color is in the offline structure is
greater than 0.99, a ball from the offline structure is accepted gives the results presented in Figure 7.3.
The strategy is can be found in Algorithm 5.
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Figure 7.3: The number of colors in the online structure (left) and the probability that a color is in the offline
structure, Poffline, (right) as a function of the time for different values of the total number of colors C. The strategy
can be found in Algorithm 5. The number of positions in the online structure K = 1000 and γ = 1.

Algorithm 5 Greedy - Greedy - Offline Structure Strategy - 2

1: if the first ball in the offline structure has a color that is not present in the online structure then
2: accept a ball from the offline structure.
3: else
4: while no ball has been added to the online structure do
5: if the probability that a color is in the offline structure is greater than 0.99 then
6: accept a ball from the offline structure.
7: else
8: Draw a ball from the source.
9: if this ball has a color that is not present in the online structure then

10: if the offline structure contains this color then
11: put the ball in the offline structure.
12: else
13: put the ball in the online structure.
14: end if
15: else
16: put the ball in the offline structure.
17: end if
18: end if
19: end while
20: end if

Proposition 7.2.4. The Greedy - Greedy - Offline Structure Strategy - 2, see Algorithm 5, does not
improve the stationary behavior of number of colors in the online structure.

Proof. When the probability that a color is in the offline structure is greater than 0.99, balls from the
offline structure are accepted. The offline structure is filled with colors that have been rejected to the
online structure earlier and therefore contains the super colors. These super colors are now accepted
to the online structure and dominate the online structure.

Since the previous adaptation does not give the desired result, the strategy in Algorithm 4 is adapted
differently and when the second ball in the offline structure has a color that is not present in the online
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structure the ball before this one is also accepted. This strategy can be found in Algorithm 6. It is known
that it in practice it takes a lot of time to do this search in the queue, although it is still checked whether
this improves the result. Also in this case the simulation is stopped when the probability that a color is
present in the offline structure is greater than 0.99, since accepting a ball from the offline structure when
this is the case results in the super colors dominating the online structure.

Algorithm 6 Greedy - Greedy - Offline Structure Strategy - a

1: if the first ball in the offline structure has a color that is not present in the online structure then
2: accept a ball from the offline structure.
3: else if the second ball in the offline structure has a color that is not present in the online structure

then
4: accept a ball from the offline structure.
5: else
6: use Algorithm 3.
7: end if

Proposition 7.2.5. The Greedy - Greedy - Offline Structure Strategy - a, see Algorithm 4, can not be
continued after finite time.

Proof. The proof follows the same reasoning as for Proposition 7.2.3. Noting that the second ball in the
offline structure usually does not have a color that is not present in the online structure, because all the
dominating colors have been put in the offline structure, concludes the proof.

Numerical results of this strategy can be found in Figure 7.4.
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Figure 7.4: The number of colors in the online structure (left) and the probability that a color is in the offline
structure, Poffline, (right) as a function of the time for different values of the total number of colors C. The strategy
can be found in Algorithm 6. The number of positions in the online structure K = 1000 and γ = 1. The drop occurs
when the simulation stops.

This strategy does not improve the previous strategy, see Figure 7.2, and it also does not increase the
time until the probability that a color is present in the offline structure is greater than 0.99. Following
similar reasoning as in the proof of proposition 7.2.5, checking whether the third ball in the offline struc-
ture has a color that is not present in the online structure does not result in an improvement of the
number of colors in the online structure as well. This has been tested numerically and the numerical
results support this conjecture. Since the search in the queue in the offline structure takes a lot of time
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in practice and is computationally demanding, a strategy in which all the balls before the first ball with a
color that is not present in the online structure are accepted is not taken into account.

In this subsection priority has been given to the offline structure. Another possibility would be to give
priority to the source. However, since balls from the offline structure are accepted greedily it is not
necessary to check the offline structure more than once in every step. Remember that it could be
computationally hard to draw a ball from the source that has a color that is not present in the online
structure. Therefore it is better to check if the offline structure has a ball that has a color that is not
present in the online structure before a ball is drawn from the source. The case to give priority to the
source is therefore not taken into account. Considering all the results, the expectation is that the result
is similar to the case where priority is given to the offline structure.

7.3 Randomized Strategy

The next strategy for the offline structure that is considered is randomization. This strategy can be found
in Algorithm 7.

Algorithm 7 Randomized Strategy

1: With probability r accept a ball from the source.
2: With probability 1− r do
3: if the offline structure is non-empty then
4: accept a ball from the offline structure.
5: else
6: accept a ball from the source.
7: end if

Note that in the randomized strategy no priority is given the source nor to the offline structure.

Proposition 7.3.1. In the randomized strategy, see Algorithm 7, no ball is added to the offline structure.

Proof. As long as the offline structure is non-empty, a ball from the source is accepted to the online
structure.

Therefore the results are the same as without the offline structure. It also does not make sense to add,
for example, K balls to the offline structure, because the offline structure does get empty at some point
in time and then again no ball is added to the online structure. The following version is explored.

53



Algorithm 8 Randomized Strategy - a

1: while no ball has been added to the online structure do
2: Draw a ball from the source.
3: if the probability that a color is in the offline structure is greater than 0.99 then
4: put the ball in the offline structure.
5: Accept the first ball from the offline structure.
6: else
7: With probability r
8: if the color of the ball is already present in the offline structure then
9: put the ball in the offline structure.

10: else
11: put the ball in the online structure.
12: end if
13: With probability 1− r
14: put the ball in the offline structure.
15: Accept the first ball from the offline structure.
16: end if
17: end while

Proposition 7.3.2. In the Randomized strategy - a, see Algorithm 8, the result in stationarity is the
same as without the use of the offline structure.

Proof. If a ball goes to the offline structure, a ball is accepted from the offline structure as well. This is
the same ball, so the statement follows.

Also when it is checked whether the offline structure contains 99% of the probability distribution before
drawing a ball from the source, the offline structure remains empty and the reasoning is similar. The
results are therefore the same as without offline structure.

Another possibility can be found in Algorithm 9. Numerical results are presented in Figure 7.5.

Algorithm 9 Randomized Strategy - b

1: With probability r do
2: if the probability that a color is in the offline structure is greater than 0.99 then
3: accept a ball from the offline structure.
4: else
5: use Algorithm 3.
6: end if
7: With probability 1− r do
8: if the offline structure is non-empty then
9: accept a ball from the offline structure.

10: else
11: accept a ball from the source.
12: end if
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Figure 7.5: The number of colors in the online structure (left) and the probability that a color is in the offline
structure, Poffline, (right) as a function of the time for different values of r. The strategy can be found in Algorithm
9. The total number of colors C = 10000, the number of positions in the online structure K = 1000 and γ = 1.

So it is actually hard to make a good use of the offline structure. In the first steps the behavior of
the randomized strategy is better for certain values of r. However, stationarity is showing the same
behavior as when there was no offline structure. Notice that when r = 0 there will not be any ball in the
offline structure and therefore the result is the same as it was without the offline structure. When r = 1
the result is almost the same as when only accepting a ball that has a color that is not present in the
online structure. However, now only from the source a ball with a color that is not present in the online
structure is accepted. Since the strategy when a ball is accepted greedily from both the source and the
offline structure works good until most of the colors are present in the offline structure, we combine the
Randomized strategy - b and the Greedy-Greedy-Offline Structure Strategy as presented in Algorithm
10. Figure 7.6 shows what happens when changing r.
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Figure 7.6: The number of colors in the online structure (left) and the probability that a color is in the offline
structure, Poffline, (right) as a function of the time for different values of r. The strategy can be found in Algorithm
10. The total number of colors C = 5000, the number of positions in the online structure K = 1000 and γ = 1.
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Algorithm 10 Randomized Strategy and Greedy-Greedy-Offline Structure Strategy combined

1: if the probability that a color is in the offline structure is greater than 0.99 then
2: Draw a ball from the source.
3: if this ball has a color that is not present in the online structure then
4: put the ball in the online structure.
5: else
6: With probability r
7: if possible then accept the ball to the online structure.
8: else
9: put the ball in the offline structure.

10: Accept a ball from the offline structure.
11: end if
12: With probability 1− r
13: put the ball in the offline structure.
14: Accept a ball from the offline structure.
15: end if
16: else
17: use Algorithm 3.
18: end if

Note that it can be impossible to accept a color from the source that is not present in the online structure.
It might happen that all the colors that are not in the offline structure are in the online structure so it is
impossible to find a color that both is not present in the online structure and can be accepted to the
online structure. The randomization combined with the Greedy-Greedy-Offline Structure Strategy has
no effect at all.

7.4 Mice and Elephant Strategy

Considering all the results, the above strategies result in a small number of colors in the online structure
in stationarity. The upcoming strategy is inspired by M. Crovella et al. [4]. In this article the authors
examine whether web servers might provide better service by using non-traditional service ordering for
connections. Their goal is to improve the mean response time of the web server and it turns out that it
is better to schedule the connections first with the shortest remaining processing time instead of using
a processor sharing discipline.
Our goal is to maximize the number of colors present in the online structure. The removal of the balls
from the online structure can be seen as a sort of shortest remaining processing time when there are
K colors present, because when doing so priority is given to colors with smaller probability to be drawn
from the source as much as possible.

The notion of ”mice and elephants” was considered in the literature, for example in telecommunica-
tions. By L. Guo and I. Matta [7] mice are defined as the internet connections that are short in terms
of the amount of traffic they carry, while elephants are the small fraction of the connections that carry a
large portion of the traffic. N. Brownlee and K. Claffy [3] define elephants as ”high volume transmission
control protocol (TCP) streams” and mice are the ”small TCP streams”. As a last example, by M.A.
Marsan et al. [10], mice are the short-lived TCP flows and elephants are the long-lived TCP flows.

Following similar analogy, in the mice and elephant strategy the colors are divided into two classes.
The first class is the one that corresponds to the large hosts, the elephants. The colors corresponding
to the large hosts have high probability to be drawn from the source. The second class is the one that
corresponds to the small hosts, the mice. The colors corresponding to the mice have smaller probability
to be drawn from the source.

The strategy can be found in Algorithm 11. From now on every elephant color has it’s own queue
in the offline structure.
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Algorithm 11 Mice and Elephant Strategy

1: if a color is present in the offline structure, while it is not present in the online structure then
2: accept this ball to the online structure.
3: else
4: while no ball has been added to the online structure do
5: Draw a ball from the source.
6: if this ball has a color that belongs to the mice then
7: accept the ball to the online structure.
8: else
9: put the ball in the offline structure in the queue corresponding to the color.

10: end if
11: end while
12: end if

Note that priority is given to the offline structure. If it is possible to accept a ball from the offline structure
the player of the game does not have to hope to draw a ball from the source with a color that belongs to
the mice, but can immediately accept a ball that has a color that is not present in the online structure.

The next question is, when a color has to be classified as mice and when color has to be classified
as elephant. Let c be the number of elephant colors and let the total probability of the elephants be
1− q.
A first guess would be that when the probability for a color to be drawn from the source is smaller than
1
K a color is considered to be a mice. As has been argued in Section 4.3.2, in this case the rate of a
color into the online structure is smaller than the rate of a color out of the online structure. In order to
test this, a new variable β is defined. Let a color be a mice when the probability for that color to be
drawn from the source is smaller than 1

βK . See Figure 7.8 for some results. For comparison it is shown
in Figure 7.7 what the behavior is for the parameters used in case there is no offline structure.
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Figure 7.7: The number of colors in the online structure without the use of the offline structure as a function of
the time for different values of γ. The total number of colors C = 100000 and the number of positions in the online
structure K = 1000. The probability to draw a color from the source corresponds to the power law with parameter
γ.

Note that the number of colors in the online structure is still decreasing for γ = 0.5. If γ = 0.3 the power
law distribution is close to a uniform distribution and this explains the stationarity. Numerical results
show that the number of colors in the online structure does not decrease until at least t = 108.
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(a) γ = 0.3
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(b) γ = 0.5
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(c) γ = 0.7
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(d) γ = 0.9
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(e) γ = 1.1
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(f) γ = 1.3
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(g) γ = 1.5
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(h) γ = 1.7

Figure 7.8: The number of colors in the online structure for several combinations of γ and β. The total number of
colors C = 100000 and the number of positions in the online structure K = 1000.
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The first guess, consider a color to be a mice if the probability for it to be drawn from the source is smaller
than 1

K , does not give a good performance. However, the results do show that with this strategy for the
use of the offline structure the number of colors in the online structure is increased, see Figure 7.7 to
compare without the use of the offline structure. Note that in some figures there is no convergence yet.
In some other figures, for example Figure 7.8g for β = 1, the number of colors in the online structure
is decreasing. This is because among the mice there are still colors that dominate the online structure.
Also, Figure 7.8h suggests that it is not possible to increase the number of colors in the online structure
by increasing β further. However, this is not true. Increasing β to, for example 200, gives results with at
stationarity about 950 different colors in the online structure. In Table 7.1 and 7.2 the number of elephant
colors c and their corresponding probability 1− q are shown for the same parameters as in Figure 7.8.

Table 7.1: The number of elephant colors, c, for combinations of γ and β. The total number of colors C = 100000
and the number of positions in the online structure K = 1000.

γ
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

β

1 0 2 25 68 86 72 52 38
2 0 10 69 148 162 123 83 57
3 0 22 124 233 234 168 109 72
4 0 40 187 320 304 210 133 86
5 1 62 257 411 372 249 154 98
6 2 90 334 503 439 287 174 109
7 4 123 416 597 506 323 193 119
8 6 160 504 693 571 358 211 129
9 9 203 596 790 635 392 228 138
10 14 251 693 888 699 425 245 147

Table 7.2: The probability of an elephant color to be drawn from the source, 1 − q, for combinations of γ and β.
The total number of colors C = 100000 and the number of positions in the online structure K = 1000.

γ
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

β

1 0 0.0027 0.0587 0.2627 0.5635 0.7866 0.8965 0.9462
2 0 0.0080 0.0889 0.3180 0.6162 0.8222 0.9184 0.9594
3 0 0.0127 0.1110 0.3524 0.6454 0.8404 0.9291 0.9655
4 0 0.0179 0.1291 0.3774 0.6655 0.8525 0.9360 0.9696
5 2.2140e-04 0.0227 0.1447 0.3978 0.6807 0.8612 0.9407 0.9722
6 4.0124e-04 0.0278 0.1587 0.4145 0.6929 0.8681 0.9443 0.9742
7 7.0655e-04 0.0329 0.1713 0.4290 0.7033 0.8737 0.9473 0.9758
8 9.7250e-04 0.0378 0.1830 0.4418 0.7119 0.8784 0.9497 0.9771
9 0.0013 0.0429 0.1939 0.4533 0.7195 0.8824 0.9517 0.9782

10 0.0019 0.0480 0.2041 0.4636 0.7262 0.8858 0.9534 0.9791

One would expect that the stationary behavior of the online structure is not influenced by the number
of colors after K steps, the initialization. Another possibility for the initialization is to only accept one
ball of the elephant colors and if another ball is drawn with the same elephant color it goes to the offline
structure. With this other initialization the elephant colors also can not dominate the online structure
during the initialization, while with the previous strategy they could. The next figure shows the behavior.
Note that due to the parameters chosen the number of elephant colors and the probability of an elephant
color to be drawn from the source can be found in Table 7.1 and Table 7.2 respectively.
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(a) γ = 0.3
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(b) γ = 0.5
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(c) γ = 0.7
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(d) γ = 0.9
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(e) γ = 1.1
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(f) γ = 1.3
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(g) γ = 1.5
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(h) γ = 1.7

Figure 7.9: The number of colors in the online structure for several combinations of γ and β. The total number of
colors C = 100000 and the number of positions in the online structure K = 1000.
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The expectation is indeed right that in stationarity the behavior is similar, see Figure 7.8 for comparison.
However it takes less steps to reach stationarity and therefore on average the number of colors in the
online structure is higher when using the new initialization. The reason for this is that the elephant colors
do not get a chance to dominate the online structure, and hence stationarity is achieved in a smaller
number of steps. An advantage of the decrease of the number of steps is that the computations to reach
stationarity take less time. A disadvantage is the use in practice, because then it is not known what the
probability is for a color to be drawn from the source and so it is not known on beforehand which color
is considered to be an elephant color. The remedy for this is discussed in Chapter 8.

7.4.1 Analysis on the Mice and Elephant Strategy
The elephant colors, colors 1, ..., c, have a total probability of 1− q to be drawn from the source and the
mice, colors c+ 1, .., C, have a total probability of q to be drawn from the source. Let η1 be the number
of colors in the online structure within the elephants and let η2 be the number of colors in the online
structure from the mice. Then because of stationarity:

η2 −
η2

η1 + η2

αη2
η2

+ q∗ = η2,

where α is the fraction of unique colors in the online structure among the mice and q∗ is the probability
to draw a ball that has a color, corresponding to a mice, that is not present in the online structure. Then
it follows that

αη2
η1 + η2

= q∗,

η2 =
η1q
∗

α− q∗
≤ cq∗

α− q∗
≤ cq

α− q
,

where the first inequality follows because it could happen that not all the elephants are present in the
online structure. Unfortunately it is not possible to get expressions for α.

Note the analogy of q∗

α−q∗ with the mean number of customers in the system of an M |M |1 queue,
λ

µ−λ . In the case studied here α is the departure rate of unique ”mice” queues and q∗ is the arrival rate
of unique ”mice” queues. To have a stable queue, in the latter case it should hold that λ < µ. This
explains why q∗ < α.
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Chapter 8

Strategy in practice

In Chapter 7 several strategies for the use of the offline structure have been tried. The mice and elephant
strategy worked best and therefore in this chapter possibilities for the implementation in practice are
discussed.

8.1 Parameters Used

Here we introduce realistic parameters. The number of positions in the online structure K largely de-
pends on the machine that is used, but is in the range of [107, 108]. The total number of colors in the
biggest crawl performed this far is of order 107, see Chapter 6. In this chapter also the distribution for a
color to be drawn from the source has been discussed, the power law distribution. Although a distribu-
tion is known, in practice it is not known for example which color has which probability to be drawn from
the source and it is also not known on beforehand how many colors there are.

To start with, the assumption still holds that there are C colors. To decrease the computation time
of the simulations, the total number of colors and the number of positions in the online structure do not
have realistic values for the practical use and in this chapter they are chosen to be 100000 and 1000
respectively.

Our goal now is to implement the mice and elephant strategy when the probability distribution of colors
is not known on beforehand. In other words, the implementation that works good in theory has to be
adapted for the use in practice. This leads to the following version of the mice and elephant strategy.
Suppose now that a color is considered to be an elephant color when the number of balls of this color
in the online structurer exceeds δ. This strategy is also used in the first K steps, the initialization, to
decrease the number of steps towards stationarity. The strategy remains the same as in Algorithm 11,
only the definition of mice and elephant colors has changed. The results are shown in Figure 8.1.
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(a) γ = 0.3
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(b) γ = 0.5
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(c) γ = 0.7
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(d) γ = 0.9
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(e) γ = 1.1
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(f) γ = 1.3
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(g) γ = 1.5
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(h) γ = 1.7

Figure 8.1: The number of colors in the online structure for several combinations of γ and δ. The total number of
colors C = 100000 and the number of positions in the online structure K = 1000.
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The number of elephant colors that corresponds to the figures above can be found in Table 8.1. The
strategy is working robust. Of course the number of elephant colors is decreasing when δ is increasing.
Also, it does not come as a surprise that when δ = 1 the number of colors in the online structure is
almost equal to K. This is due to the number of elephant colors. The strategy when δ = 1 is almost the
same as the greedy strategy where balls were only accepted when they have a color that is not present
in the online structure. A difference is that when a ball with an elephant color is removed from the online
structure, most likely a ball of this color is available in the offline structure since every elephant color
has it’s own queue in the offline structure.

Table 8.1: The number of elephant colors, c, for combinations of γ and δ. The total number of colors C = 100000
and the number of positions in the online structure K = 1000.

γ
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

δ

10 0 4 39 103 183 259 322 377
9 0 3 37 107 189 273 341 397
8 0 4 51 120 213 294 380 421
7 0 5 55 141 244 326 401 472
6 0 9 70 164 275 380 451 524
5 0 14 72 202 326 433 534 588
4 0 26 114 270 411 539 625 693
3 2 40 199 421 586 712 804 876
2 40 173 500 798 1027 1188 1231 1269
1 2162 2711 3026 3133 3034 2832 2613 2487

Note that this adapted strategy does not give the same number of elephant colors every time a simu-
lation is done. Therefore the probability of an elephant color, 1 − q, also changes. Table 8.2 gives the
probability for the elephant colors to be drawn from the source. In Table 8.3 an upper bound for the
probability of an elephant color can be found i.e., it is assumed that the elephant colors are the c colors
with highest probability to be drawn from the source.

Table 8.2: The probability of an elephant color to be drawn from the source, 1− q, for combinations of γ and δ. The
total number of colors C = 100000 and the number of positions in the online structure K = 1000.

γ
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

δ

10 0 0.0041 0.0702 0.2915 0.6246 0.8626 0.9594 0.9892
9 0 0.0036 0.0684 0.2931 0.6273 0.8652 0.9607 0.9896
8 0 0.0043 0.0779 0.3013 0.6368 0.8686 0.9628 0.9900
7 0 0.0050 0.0805 0.3121 0.6470 0.8733 0.9637 0.9908
6 0 0.0073 0.0874 0.3240 0.6561 0.8800 0.9660 0.9914
5 0 0.0089 0.0885 0.3381 0.6689 0.8854 0.9687 0.9921
4 0 0.0130 0.1043 0.3602 0.6853 0.8939 0.9712 0.9929
3 1.3966e-04 0.0159 0.1255 0.3928 0.7088 0.9039 0.9748 0.9940
2 0.0017 0.0320 0.1698 0.4393 0.7448 0.9209 0.9797 0.9953
1 0.0358 0.1116 0.2842 0.5498 0.8061 0.9422 0.9862 0.9970
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Table 8.3: An upper bound on the probability of an elephant color to be drawn from the source, 1 − q, for com-
binations of γ and δ. The total number of colors C = 100000 and the number of positions in the online structure
K = 1000.

γ
0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

δ

10 0 0.0044 0.0708 0.2917 0.6260 0.8632 0.9597 0.9893
9 0 0.0036 0.0693 0.2944 0.6286 0.8657 0.9609 0.9897
8 0 0.0044 0.0789 0.3027 0.6381 0.8693 0.9631 0.9901
7 0 0.0051 0.0813 0.3145 0.6487 0.8741 0.9641 0.9909
6 0 0.0075 0.0894 0.3257 0.6579 0.8810 0.9663 0.9915
5 0 0.0098 0.0903 0.3414 0.6708 0.8866 0.9692 0.9922
4 0 0.0140 0.1076 0.3640 0.6881 0.8956 0.9717 0.9931
3 4.0124e-04 0.0179 0.1320 0.3997 0.7138 0.9061 0.9754 0.9942
2 0.0040 0.0394 0.1825 0.4541 0.7526 0.9234 0.9806 0.9955
1 0.0681 0.1627 0.3326 0.5829 0.8217 0.9473 0.9874 0.9973

The upper bound of the probability of an elephant color is getting better for larger values of δ and γ. But
it can be seen from these data that it is likely the c colors with highest probability to be drawn from the
source are the elephant colors.

Comparing the results of the new definition of an elephant color with the results of the previous def-
inition in Figure 7.8 leads to the following conclusions. Note that it is only possible to compare the
solutions when the number of elephant colors are about the same. If this is the case, both methods
give similar behavior in stationarity, see for example for the parameters γ = 1.3, δ = 5 and β = 10. This
result makes sense, since a similar amount of colors is put in the offline structure. Moreover, most of
the elephant colors will be the same colors.

One observation about this strategy is that the number of elephant colors changes when the total num-
ber of steps performed in a simulation, denoted by T , changes. In Table 8.4 the number of elephant
colors is shown for different values of T . For every value of T two simulations are done, also to show
that the number of elephant colors is not necessarily the same in every simulation. For γ the value
0.9 has been chosen. The reason for this is that with this value for γ there is a significant amount of
elephant colors, while the computation time is much lower than for example with γ = 1.7. This makes
sense because in the latter case the probability of drawing an elephant color from the source is close
to 1 and therefore it is computationally demanding to search for a ball with a color that belongs to the
mice.

Table 8.4: The number of elephant colors, c, for combinations of δ and T . The total number of colors C = 100000,
the number of positions in the online structure K = 1000 and γ = 0.9.

T
100000 200000 300000

Simulation 1 Simulation 2 Simulation 1 Simulation 2 Simulation 1 Simulation 2

δ

10 91 91 103 102 108 112
9 97 93 111 116 121 124
8 108 101 119 133 130 137
7 121 119 145 135 162 151
6 129 139 168 164 176 180
5 169 158 196 195 216 222
4 210 214 264 265 289 303
3 315 317 409 382 450 477
2 579 607 795 786 912 927
1 2100 2082 3112 3093 4006 3993

The table shows that indeed the number of elephant colors increases when T increases. This makes
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sense, because every color that happens to have δ colors in the online structure is considered to be an
elephant color. Therefore it would make sense to search for elephant colors for a fixed amount of steps
and afterwards use these elephant colors. The fixed amount is chosen in such a way that afterwards all
the dominating colors are part of the elephant colors. Before this is implemented in a final strategy, first
it is checked whether it is realistic to give every elephant color it’s own queue in the offline structure.

8.2 Use of Offline Structure

At this moment, every elephant color has it’s own queue in the offline structure. To see whether it is
possible to implement this in practice, we give a short explanation of how the offline structure is used in
practice.

Every queue is a file and every time a queue is accessed it needs to be opened:

• either the queue is opened when it is needed and then it can be closed when it is not needed
anymore. Both operations are very costly. Or,

• the queue remains open, but there is a limit on the number of open files. This limit is in the order
of 102 or 103 at most.

Every time a ball goes to the end of the queue the ball needs to be written at the end of the queue. A
disk head has to move to the end of the queue physically. If the balls are put at the end of the same
queue, this is not a problem. As soon as the writing has to be done at the end of many queues in an
interleaved way, the head starts to move back and forth which is extremely costly.

In order to measure how often the head has to move back and forth when every color has it’s own
queue in the offline structure, we make the following calculation. Suppose that a variable m(t) indicates
how many times the head has to move back and forth in the interval [0, t]. It is assumed that all files
remain open, although in practice there is a limit. Then the costs per time unit at time t are calculated
by m(t)

t . The results in Figure 8.2 are calculated during the same simulation as for the results in Figure
8.1.

When the costs are smaller than 1 this means that on average in every step the head has to move
at most once. If the costs are greater than 1 during every step the head has to move at least once on
average. This can happen because all the elephant colors that are drawn from the source need to be
put at their places. Notice that when γ < 1.5 there is not yet a convergence in the expected number
of costs, but most likely this happens when there are more steps performed in the simulation. When
γ ≥ 1.5 there is a convergence in the costs. Still, the costs are high and the head has to move about 14
times per step on average when γ = 1.5. This is very often and since it is a costly operation, it is tested
what happens when there is just one queue in the offline structure.

Figure 8.3 shows the differences between giving every elephant color it’s own queue and having just one
queue in the offline structure. For the first case figures are shown from Figure 8.1, they are repeated for
comparison.
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(a) γ = 0.3
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(b) γ = 0.5
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(c) γ = 0.7
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(d) γ = 0.9
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(e) γ = 1.1
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(f) γ = 1.3
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(g) γ = 1.5
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(h) γ = 1.7

Figure 8.2: The costs of moving the disk head back and forth for several combinations of γ and δ. The total number
of colors C = 100000 and the number of positions in the online structure K = 1000.
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(a) γ = 0.7
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(b) γ = 0.7
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(c) γ = 0.9
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(d) γ = 0.9
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(e) γ = 1.1
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(f) γ = 1.1
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(g) γ = 1.3
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(h) γ = 1.3

Figure 8.3: Comparison of the number of colors in the online structure for several combinations of γ and δ when
using a single queue for every elephant color in the offline structure (left) and when using one queue in the offline
structure for all elephant colors (right). The total number of colors C = 100000 and the number of positions in the
online structure K = 1000.
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Figure 8.3 shows that in case there is just one queue in the offline structure the number of colors in
the online structure does not significantly decrease. The number of elephant colors in case there is
one queue in the offline structure is shown in Table 8.5. Note that there is no simulation performed for
the combination γ = 1.3 and δ = 1 because of computation time. Computation for the combination
γ = 1.3 and δ = 2 took 13 hours and since the number of dominating colors is even higher for δ = 1
this computation also requires a lot more time. Moreover, in case δ = 1 every color is an elephant color
once it has appeared in the online structure and when a color appears in the online structure once does
not imply that the color is an elephant color. Therefore from this moment onwards δ = 1 is omitted.
Since the costs in case every elephant color has it’s own queue are rather high, as has been shown in
Figure 8.2, in practice preference is given to one queue in the offline structure.

Table 8.5: The number of elephant colors, c, for combinations of γ and δ. The total number of colors C = 100000
and the number of positions in the online structure K = 1000. The offline structure consists of one queue.

γ
0.7 0.9 1.1 1.3

δ

10 40 114 222 331
9 41 131 234 364
8 48 138 264 411
7 56 164 309 456
6 71 196 349 535
5 85 237 437 647
4 141 329 584 863
3 217 532 875 1270
2 589 1128 1733 2429
1 4335 5699 7084 -

Also in this strategy, when using one queue in the offline structure, when the number of steps that is
performed increases also the number of elephant colors increases. In Table 8.6 the number of elephant
colors is shown for different values of T . Again for every value of T two simulations are done, also to
show that the number of elephant colors is not necessarily the same in every simulation.

Table 8.6: The number of elephant colors, c, for combinations of δ and T . The total number of colors C = 100000,
the number of positions in the online structure K = 1000 and γ = 0.9. The offline structure consists of one queue.

T
100000 200000 300000

Simulation 1 Simulation 2 Simulation 1 Simulation 2 Simulation 1 Simulation 2

δ

10 99 99 114 114 122 119
9 101 104 131 126 143 125
8 118 116 138 144 163 158
7 129 137 164 162 175 192
6 150 155 196 188 202 205
5 179 187 237 238 276 263
4 262 253 329 328 367 353
3 376 371 532 508 607 612
2 762 768 1128 1100 1389 1423

The tables show that indeed the number of elephant colors increases when T increases. This makes
sense, because every color that happens to have δ colors in the online structure is considered to be
an elephant color. This number increases when T increases. When taking a closer look at the table
it is noted that for δ = 9 it happens that for a simulation the number of elephant colors is smaller for
T = 300000 then for T = 200000. Also, the number of elephant colors is higher when there is just
one queue in the offline structure instead of one queue for every elephant color, see Table 8.4 for
comparison. The reason for this is that it happens less often that a ball can be accepted from the offline
structure, since now there is just one queue in the offline structure. The time span to search for elephant
colors is discussed in the next section.
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8.3 Time Span to search for Elephant Colors

It is expected that when choosing δ big enough that there will be convergence of the number of elephant
colors. To this end, Table 8.7 shows the number of elephant colors for combinations of δ and T , for larger
values of T than in Table 8.6.

Table 8.7: Extension of Table 8.6. The number of elephant colors, c, for combinations of δ and T . The total number
of colors C = 100000, the number of positions in the online structure K = 1000 and γ = 0.9. The offline structure
consists of one queue.

T
400000 500000 600000

δ

10 129 138 137 141 151 141
9 137 139 156 156 158 155
8 167 166 178 171 176 183
7 192 190 198 195 201 215
6 233 225 244 244 254 263
5 283 302 301 314 321 334
4 421 420 444 436 474 450
3 683 676 753 743 767 799
2 1618 1605 1756 1805 1982 1946

In Table 8.7 it can be seen that it happens more often that a longer simulation run does not necessarily
yields more dominating colors and this supports the thought of convergence of the number of elephant
colors. Since these are all separate simulations, two simulations are performed with total length of
T = 500000 and every 50000 steps the number of elephant colors is shown. This can be found in Table
8.8 and Table 8.9.

Table 8.8: The number of elephant colors, c, for combinations of δ and T during a simulation. The total number of
colors C = 100000, the number of positions in the online structure K = 1000 and γ = 0.9. The offline structure
consists of one queue.

T · 103

50 100 150 200 250 300 350 400 450 500

δ

10 77 95 105 114 120 123 130 133 139 139
9 87 106 121 130 136 140 145 153 156 159
8 95 120 132 141 150 160 163 167 172 175
7 105 128 146 154 170 181 190 195 200 206
6 124 153 174 190 200 213 225 234 238 242
5 144 187 213 236 254 268 278 295 304 317
4 181 254 290 325 362 372 388 408 426 436
3 281 377 447 513 562 620 666 707 734 766
2 542 791 961 1116 1253 1385 1491 1589 1691 1770
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Table 8.9: The number of elephant colors, c, for combinations of δ and T during a simulation. The total number of
colors C = 100000, the number of positions in the online structure K = 1000 and γ = 0.9. The offline structure
consists of one queue.

T · 103

50 100 150 200 250 300 350 400 450 500

δ

10 77 90 103 109 113 125 130 132 137 140
9 86 107 117 132 139 145 152 154 158 160
8 89 115 129 142 147 152 159 166 173 180
7 104 133 153 173 181 188 192 197 205 209
6 129 155 173 183 193 202 215 223 234 237
5 162 199 232 251 266 279 289 296 304 310
4 191 247 292 320 348 378 404 419 429 444
3 292 390 460 507 552 587 630 662 688 715
2 548 761 956 1124 1250 1368 1483 1582 1681 1776

The table shows that the number of elephant colors keeps increasing, although the amount in which it
is increasing does decrease. Note that since the number of elephant colors keeps increasing it might
happen that at some point in time (almost) all the colors are considered to be an elephant color and
when having one queue in the offline structure it is not possible anymore to continue. There is one
example in which there is no increase of the number of elephant colors, δ = 10 from T = 450000 to
T = 500000 in Table 8.8, but this does not necessarily imply that there is convergence. Therefore,
suppose for a certain amount of time T ∗ a ball is considered to be an elephant color when the number
of balls of this color exceeds δ. After this time T ∗ no colors are added to the list of elephant colors and it
is assumed that from this point onwards the colors with a higher probability to de drawn from the source
are already added to the list of elephant colors. The results are presented in Figure 8.4, the number of
elephant colors can be found in Table 8.10.

Table 8.10: The number of elephant colors, c, for combinations of δ and T ∗. The total number of colors C = 100000,
the number of positions in the online structure K = 1000 and γ = 0.9. The offline structure consists of one queue
and the total number of steps performed T = 500000.

T ∗ · 103

50 100 150 200 250 300 350 400 450 500

δ

10 72 100 108 119 116 125 132 134 140 144
9 81 102 116 128 132 133 141 149 152 154
8 92 115 132 145 144 154 166 154 177 176
7 104 123 144 154 168 180 183 199 190 195
6 126 152 170 180 201 204 238 227 237 245
5 157 185 221 235 253 268 281 291 301 312
4 201 249 291 329 343 370 378 413 429 428
3 296 377 460 510 531 596 646 693 719 728

The results in Figure 8.4 show that T ∗ needs to be bigger when δ increases, but in general when T ∗

increases the number of colors in the online structure does not change. The number of elephant colors
also show this behavior, because the number of elephant colors can be lower for higher values of T ∗

than for smaller values of T ∗, see for example for δ = 10.
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(a) δ = 3
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(b) δ = 4
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(c) δ = 5
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(d) δ = 6
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(e) δ = 7
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(f) δ = 8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

Time

N
u

m
b

e
r 

o
f 

c
o

lo
rs

Number of colors

 

 

T*= 50000

T*= 100000

T*= 150000

T*= 200000

T*= 250000

T*= 300000

T*= 350000

T*= 400000

T*= 450000

T*= 500000

(g) δ = 9
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(h) δ = 10

Figure 8.4: Comparison of the number of colors in the online structure for several combinations of δ and T ∗. The
total number of colors C = 100000 and the number of positions in the online structure K = 1000.
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In order to give a rule of thumb for the time to search for elephant colors, T ∗ , more research has to be
done. Still, it can be said that if after a reasonable amount of steps in the crawling process the number
of colors in the online structure does not change, no search for more elephant colors has to be done.
It it turns out that the number of colors in the online structure does decrease, some elephant colors
can be added to the list of elephant colors. If not, the crawling process can be continued without more
searching for elephant colors.

Before introducing the final strategy a value for δ is chosen. Based on all the simulations performed,
δ = 5 seems like a proper choice. The motivation for this choice is the following. Choosing δ = 1 is
no option, because then every color is an elephant color once it has been in the online structure only
once. This is not a proper definition for an elephant color. The same reasoning holds for δ = 2 and
also with δ = 3 there is not much fluctuation possible in the number of balls of a certain color in the
online structure. For all the examples that are shown it is clear that the number of elephant colors is
significantly lower with δ = 5 instead of δ = 4 and it also gives a bit more space for fluctuations for the
number of colors in the online structure before a color is considered to be an elephant color. Still, for
δ = 5 the results are good and therefore this seems a proper choice as a rule of thumb for when a color
is considered to be an elephant color. This choice for δ is implemented in the final strategy.

8.4 Recommended Strategy

In the previous sections the final strategy has been designed and adapted, and in this section this is
summarized. The final strategy takes practical issues into account, such as a disk head moving back
and forth when different queues in the offline structure are considered and the fact that no probability
distribution is known for the total number of colors. The offline structure consists of one queue. The
recommended strategy can be found in Algorithm 12.

Algorithm 12 Recommended Strategy

1: if the first ball of the offline structure has a color that is not present in the online structure then
2: accept this ball to the online structure.
3: else
4: while no ball has been added to the online structure do
5: Draw a ball from the source.
6: if this ball has a color that belongs to the mice then
7: accept the ball to the online structure.
8: else
9: put the ball in the offline structure.

10: end if
11: end while
12: while the number of colors in the online structure is not stable do
13: if from a certain color there are 5 balls in the online structure then
14: this color belongs to the elephants.
15: end if
16: end while
17: end if

If the search for elephant colors has quit and the number of colors in the online structure decreases
significantly, start adding color to the elephants again.

A possible adaptation to this strategy would be the following: if a ball has an elephant color and it
is neither in the online structure nor in the offline structure, accept this ball to the online structure. This
adaptation could slightly change the results presented in this thesis, but not considerably.
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Chapter 9

Conclusions and Discussion

9.1 Conclusions

In this thesis, the decision process for the BUbiNG web crawler has been optimized. First the web
crawler has been studied without the workbench virtualizer, this is taken as a reference frame. In this
case it is shown analytically that the throughput of the web crawler can be maximized if the distribution
of the hosts the URLs belong to corresponds to a uniform distribution. Note that this is only the case
when the total number of hosts is significantly greater than the number of positions in the workbench.
This result means that if the probability to draw a URL from a certain host from the sieve corresponds
to a uniform distribution, the workbench virtualizer is not necessary at all in order to maximize the web
crawler’s throughput. In practice, the probability to draw a URL from a certain host from the sieve does
not correspond to a uniform distribution but it behaves more like a power law distribution. For the remain-
der of the conclusions it is assumed that the probability to draw a URL from a certain host corresponds
to a power law distribution.

It has been shown analytically that large hosts represent a problem. These hosts dominate the work-
bench and therefore the number of different hosts in the workbench remains low. This is what the
designers of the web crawler also observed in practice.

After these analyses, several strategies have been tested numerically for the decision policies of the
web crawler. Natural strategies did not work, because the workbench virtualizer is not always useful.
For example in the greedy strategy, see Algorithm 4, after a finite time the workbench virtualizer con-
tains so many hosts that it is computationally hard or even impossible to draw a host from the sieve that
is not present in the workbench.
Another possible strategy that has been tested is randomization, i.e., with probability r a URL from the
sieve is accepted and with probability 1 − r a URL from the workbench virtualizer is accepted. Using
this strategy no URL goes to the workbench virtualizer and therefore the strategy does not make any
difference compared to the case without the use of the workbench virtualizer.
Several variations on these strategies are tested as well, but none of them resulted in an improvement
in throughput for the BUbiNG web crawler.

The mice and elephant principle that occurs in telecommunications leads to a strategy that improves
the throughput of the web crawler. The main idea of this strategy is that hosts that are drawn frequently
from the sieve are seen as the elephants, while the hosts that are drawn less frequently from the sieve
are considered to be mice. Suppose that a URL is accepted to the workbench when the host belongs
to the mice and that every elephant host has it’s own queue in the offline structure. Thus, when a URL
with an elephant host is drawn from the source this URL goes to the workbench virtualizer and therefore
this host can not dominate the workbench.

Several variations of the mice and elephant strategy have been tested. The recommended variation
of this strategy in order to optimize the decision process of the BUbiNG web crawler is presented in
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Algorithm 12. Using this strategy, the throughput of the web crawler is about 90% of the maximum
throughput. Note that this depends on the parameters used.

9.2 Discussion

In this thesis the assumption has been made that the total number of hosts is finite. This seems like a
realistic assumption, because in practice the number of web pages is finite.

Analytical results are obtained in case there is no workbench virtualizer. The main assumption for
the analytical results is that the hosts are homogeneous. For future research, expressions can be de-
rived for stationary behavior when the distribution of hosts to be drawn from the sieve is heterogeneous.
Furthermore it might be possible to prove that without the use of the workbench virtualizer the number
of distinct hosts in the workbench is maximized when the probability for each host to be drawn from the
sieve is homogeneous.
The strategies for the use of the workbench virtualizer have been implemented in this thesis numerically.
For future research possibly analytical results can be obtained to support the numerical results.

It is assumed that in practice the probability to draw a host from the sieve is power law distributed.
The data set available suggests that the distribution in practice behaves similar as the power law distri-
bution: there are a couple of hosts with a high probability to be drawn from the source, while other hosts
have a small probability to be drawn from the source. Still, this might need further research.

The recommended strategy uses the time span to search for elephant hosts, T ∗. However, in prac-
tice at some point in time a host is completely crawled and a new large host can appear. Instead of T ∗

we may use a different mechanism.

In this thesis the implementation of the mice and elephant strategy is not addressed, but we devel-
oped an approach to identify the problems and foresee the performance of strategies in practice.
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