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by D. Bakhuis

In this numerical study, we looked into effects of different boundary variations on the

flow dynamics of Rayleigh-Bénard convection. These simulations were done using finite

differences on a Cartesian grid for Ra = 106, 108, Pr = 1, 10. By adding locally heated

spots, so called hot spots, we tried to simulate roughness elements, and possibly position

or influence the large scale circulation. For different configurations of these hot spots,

we saw no significant effect on the flow dynamics. From this work we saw no observable

proof that hot spots can act as surrogate roughness. The next step was to add physical

roughness, by using the immersed boundary method. Again, single and even small sets

of roughness elements, which were slightly higher than twice the thermal boundary layer

thickness, did not influence the large scale circulation in a reproducible way. Placing

periodic 1D and 2D wavy patterns had a significant effect on the heat transfer rate

of the system. The last part of this thesis focuses on the distribution of equally sized

conducting and insulating areas on the top wall boundary and their effect on the flow

quantities. When dividing both areas only in two segments, Nu is approximately 2/3

of the homogeneous case. However, by maximizing the number of segments, Nu raises

to almost the complete homogeneous case. In a spectral analysis, we showed that the

distribution of these areas is indistinguishable outside the thermal boundary layer.
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CHAPTER1
Introduction

1.1 Convection

Convection can be described as the motion of fluid which is driven by differential body
forces or by surface forces which are acting on the boundary of the fluid. A differential
body force can occur if there is a difference in the fluid’s density while it is in a
gravitational field. This is a well known case and is an example of natural convection.
Convection due to surface forces can be induced by a pump or fan which forces the fluid
to move. This is an example of forced convection. Most types of convection can by
categorized in one of these groups. However, there are other mechanisms possible.

Consider a system which contains a fluid and is heated from below. Due to this heating,
the density of the fluid changes locally, resulting in a lighter fluid in the bottom and a
heavier fluid on top. This does however not guarantee convective motion. The thermal
diffusivity and viscosity of the fluid will try to prevent the onset of this instability. If we
induce a large enough temperature gradient between the bottom and top of the system,
or in other words, if we heat the system sufficiently, the state becomes unstable and the
convective motion becomes visible. This is illustrated in Figure 1.1.

Figure 1.1: An example of a system containing a fluid which is heated from below.
If the fluid is heated sufficient, convective movement will take place.

In the previous example, fluid was only heated from above, as is often the case when
boiling water. This can be problematic as the free surface induces an instability of its
own, namely the Bénard-Marangoni convection which is due to gradients in the surface
tension, which also come from temperature differences. Therefore, to avoid this, a
classical Rayleigh-Bénard setup is often used. This is a confined cell, which is not only
heated from below, but also cooled from above.

1



Chapter 1. General introduction 2

In 1900, Bénard did the first experiments of this kind [1]. He observed the appearance of
hexagonal cells after the onset of the convection. Later, in 1916 Lord Rayleigh showed
that the onset of this instability is when the temperature gradient is large enough, and
is dependent on a single dimensionless number, the Rayleigh number [2]. This number
is defined as:

Ra =
gα

νκ
∆TL3 (1.1)

where g is the gravitational constant, α the thermal expansion coefficient, ν the kinematic
viscosity, κ the thermal diffusivity, ∆T the temperature difference between the top and
bottom plate, and L is the height of the cell. Lord Rayleigh analytically obtained the
critical Rayleigh number for several boundary conditions. For two rigid wall boundaries,
he calculated that the onset of convection is at Ra = 1707.

1.2 Governing equations

For RB convection, the flow is governed by the conservation equations for mass, momentum
and heat. Mass conservation can be preserved by the continuity equation, momentum by
the Navier-Stokes equation, and heat by the heat equation. When assuming incompressibility,
these equations defined as:

∇ · ~u = 0

D~u

Dt
= −1

ρ
∇p+∇ · (ν(T )∇~u) + ρgx̂

DT

Dt
= ∇ · (κ(T )∇T )

(1.2)

here we have velocity vector ~u, time t, density ρ, kinematic viscosity ν, gravitational
constant g, vertical unit vector x̂, temperature T , and thermal diffusivity κ.

As Equation 1.2 can be challenging to solve, we use Oberbeck-Boussinesq approximation.
This simplifies the equations by stating that density differences are sufficiently small and
can be neglected, i.e. the density is kept constant. Only the density variation in the
buoyancy term of the equation of motion has to be kept using the following relation:
∆ρ = −αρ0 (T − Tref ) [3]. Here, the thermal expansion coefficient α is kept constant.
This results in dropping the temperature dependence of ν and κ and these quantities can
be treated as constants. Density and temperature are assumed to be linearly related.
Applying the approximation changes the momentum equation to:

D~u

Dt
= − 1

ρ0
∇p+ ν∇2~u+ α (T − Ttop) gx̂ (1.3)

where ρ0 is the density at the lower boundary, α the thermal expansion coefficient, and
Ttop the temperature at the top boundary.

Now, the new set of equations will be rewritten in a non-dimensional form. To do this
we need to scale all lengths by the height h of the RB system. The time t will be scaled

by the free-fall time tf =
√

h
gα∆T , where ∆T is the temperature difference between

the top and bottom boundary. All velocities will be scaled by the free-fall velocity
uf =

√
gα∆Th. The pressure will be scaled by ρ0u

2
f . To scale the temperature to its

dimensionless form we rewrite it as θ = (T − Ttop) / (Ttop − Tbottom), where Tbottom is the
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temperature at the bottom boundary. Scaling the governing equations results in their
dimensionless form:

∇ · ~u = 0

D~u

Dt
= −∇p+ θx̂+

√
Pr

Ra
∇2~u

Dθ

Dt
=

1√
RaPr

∇2θ

(1.4)

Now the equations have only two dimensionless parameters, the Rayleigh number (Ra)
and the Prandtl number (Pr). There are exactly five unknowns to be solved from five
equations, which makes this a solvable system of equations.

1.3 Direct numerical simulations

Direct numerical simulation (DNS) is a branch of computational fluid dynamics (CFD)
in which turbulent flow problems are solved. When comparing DNS to other CFD
techniques, the turbulence is solved explicitly rather than modeled, by for example a
Reynolds Averaged Navier Stokes (RANS) closure. Comparing DNS to Large Eddy
Simulation (LES), all scales of the flows are resolved. DNS can be seen as an virtual
experiment, capturing all the details of the flow at any time of the simulation. Therefore,
DNS is ideal for addressing research questions regarding turbulence physics.

DNS, has however also its drawbacks. It is commonly used for three dimensional
unsteady turbulent flows, and therefore, time dependent equations have to be solved.
To capture all required details, the grid must be fine enough and has to increase
when increasing the Reynolds number. The two main drawbacks are the extreme
computational costs and a severe limitation in maximum Reynolds number that can
be achieved.

There are many different approaches for solving flow problems which all have their own
advantages and drawbacks. Examples of these approaches are finite difference, finite
volume, and finite element methods. In this study, a matured code is used as a basis
which uses the finite difference method [4]. This code has been tested extensively and
has proven itself on other research already. A major advantage of the finite difference
scheme is that equations can be implemented relatively easy and the constraints for the
clustering of points are mild, in comparison with other methods. Also, parallelization
of such a solver can be achieved in a relatively straight forward way. This makes it easy
to extend the code to the needs of this study.

1.4 Immersed boundary method

One of the most difficult subjects in numerical simulations is flow past or around objects.
These objects can be simple spheres, complex aircraft, or special structures attached to
the boundary. One method could be to generate a grid around these structures, which
is then used to calculate the solution of the flow field. When the objects or structures
are moving, this grid has to be revised to fit the new situation and all quantities have to
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be interpolated to the new grid. This method is not only costly it terms of CPU time,
but the interpolation is also a source of error.

Another method which has the potential to simplify these problems is the immersed
boundary method (IBM). Instead of creating a specialized grid around the introduced
structures, it solves Navier-Stokes equations on a regular Cartesian grid. The new
boundaries are modeled by a new force density which represents the force of the surface
boundary acting on the fluid. The force density should be chosen such that the solution
of the Navier-Stokes equation satisfies the correct boundary conditions at the surface of
the structures. In Equation 1.5 the governing equations have been extended with the
extra force density term. Here, ~f is the force density. We have also defined two domains,
first the fluid domain Ωf in which incompressibility is assumed. The second domain is
the inside of the immersed structure, Ωb. At the boundary of this domain with the fluid
domain, Γb, we assume a no slip boundary condition. Figure 1.2 show a diagram of the
situation.

ρ

(
∂~u

∂t
+ ~u · ∇~u

)
+∇P − µ∆~u = ~f

∇ · ~u = 0 in Ωf

~u = 0 on Γb

(1.5)

In the diagram we see both domains, the white area is the fluid domain Ωf , and the gray
area is the immersed boundary domain Ωb. A regular Cartesian grid has been placed
onto both domains. The circles, filled in black, are the grid points which are immersed.
The white circles are the regular grid points in the fluid domain. The surface which
splits both domains is the immersed boundary surface Γb. On this surface we introduce
grid points which are used to calculate the force density ~f induced to the regular fluid
grid points. The force density is a function of distance from its originating grid point
and will decrease when moving away from the point. The blue dashed circle shows the
area of effect of the force originating grom the point. All points that are within this
circle ”feel” the presence of the boundary. The number of points set on the boundary of
the immersed structure depend on the irregularity of the surface. High fluctuations on
this surface increases the number of points needed to have sufficient accuracy. The exact
function for ~f needs to be modeled in such a way that the solution to Equation 1.5 meet
the boundary conditions at the surface of the structure. In this case, it has to meet the
no slip boundary condition, ~u = 0, at the surface of the immersed surface.
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Ωf

Ωb

Γb

Figure 1.2: A example of the IBM used on a wavy boundary. The white area is
the fluid, the gray area is the solid boundary, the hollow circles are the regular grid
points, the black circles are the immersed grid points. The red dots are the points used
to calculate the force density from the boundary surface on nearby grid points. The
dashed blue circle shows the area of effect from the boundary point. The black arrows
indicate the force density vector from the wall to the nearby grid point.

In case of Rayleigh-Bénard convection we do not only need to take care about the
velocities at the boundary, but also of the heat flux. Therefore, a heat flux density, ~q,
needs to be added to the heat equation part, which enforces the temperature boundary
conditions at the immersed boundary.

DT

Dt
− κ∇2T = ~q (1.6)

The advantage of using the IBM is that existing solution techniques can be used. The
grid needs no adjustments, only the additional forcing terms need to be computed.
Therefore, this method has been added to the existing finite-difference code and extensively
tested [5].

1.5 Nusselt number

The Nusselt number is a dimensionless quantity which is a measure for the average heat
transfer across the system, normalized by the purely conductive heat transfer. At the
boundary, the heat transfer can only be due to conduction, while in the middle of the
system, the heat transfer will mainly be due to convection. The definition of the Nusselt
number is:

Nu =
Q

κ∆Th−1
=

1

κ∆Th−1

(
< uzT >x,y,t −

∂ < T >x,y,t
∂z

)
(1.7)

The 〈·〉x,y,t denotes the time- and plane average, Q is the total heat transfer. Note that
all quantities are dimensional here.

In a short analysis of Equation 1.7 we can check its properties. When looking at the
fluid near the no-slip wall, we know that the velocity, uz is close to zero. Therefore, the
heat transfer can mostly be due to conduction, which can also be seen in the equation.
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Moving outside of the thermal boundary layer, we have reached 99% of the average bulk
temperature. This will result in a very small temperature gradient. The heat transfer
will then be mainly due to convection.

One way to calculate Nu is through the volume averaged convection, which is used in
this thesis. This definition uses the non-dimensional velocity u∗z and temperature θ.

Nu = 1 +
√
PrRa 〈u∗zθ〉x,y,z,t (1.8)

There are other ways to compute the Nusselt number. For example, close to the wall
we are close to the limit of conduction, and the Nusselt number can be found solely by
calculating the conduction rate. Another way, is to calculate the heat transfer can be
computed from the viscous and heat dissipation rates [6]. As all methods calculate the
same quantity, the result should be equal. However, some calculations are impractical or
cannot be used. For example, the code used in this thesis can calculate the conduction
rate near the walls, but expects them to be flat. Therefore, these results cannot be used.

1.6 Motivation and overview

In this thesis, we will focus on the effect of inhomogeneous boundary conditions on
Rayleigh-Bénard (RB) convection. Homogeneous RB has already been studied extensively
over the years, see [7, 8] for a recent review on the topic. When looking at experimental
work, in almost all cases, a certain degree of inhomogeneity can be found. The boundary
always has some microscopic roughness, and heating or cooling is never as homogeneous
as desired. This is one of the motivations to study the effect of inhomogeneities on the
heat transfer.

One of well known features of a RB system is the Large-Scale Circulation (LSC). The
LSC can consist of one or multiple rolls. The boundary layer interacts with these rolls,
due to thermal plumes, which are sheared off by the LSC. The LSC is mainly driven by
plumes, that are grouped together under the influence of the large-scale horizontal flow
near the conducting surface [9]. Several models have been proposed to predict the mean
flow structure and its dynamics [10, 11]. It would however be interesting, by introducing
additional parameters to control the LSC. For example, by making a small area on the
bottom conducting surface slightly hotter, can we influence the position of the thermal
plumes or the LSC itself?

First, we will be addressing inhomogeneous temperature boundary conditions in chapter 2.
This has already been done by adding a small temperature modulation on the wall
boundary [12]. In this study we will be using small areas with locally larger temperature,
so called Hot Spots (HS), to add the inhomogeneities. These can also be interpreted as
surrogate roughness elements. Using these HS, we investigate the influence on the large
scale circulation and the flow dynamics. These HS can have different sizes, intensities,
or even be placed as a set of multiple HS. The most ideal configuration needs to be
found.

In the next chapter, chapter 3, we will focus on physical roughness. By placing periodic
1D and 2D patterns, their effect on the dynamics of the LSC will be investigated. By
adding additional non-flat boundaries, increased plume nucleation has been observed
at the protruding edges, which changes the near wall flow dynamics such that there is
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increased the heat transfer [13, 14]. Therefore, we will also analyze the heat transfer
increase due to these structures. Secondary flow structures have been reported between
roughness elements [15]. We will also analyze the flow between the periodic roughness
elements.

The final chapter will focus on mixed insulating and conducting boundary conditions
only applied on the top wall. By varying the distribution of insulating an conducting
patches, and keeping both areas equal, we study the effect on the heat transfer of the
system.





CHAPTER2
Inhomogeneous temperature boundary conditions

2.1 Introduction

2.1.1 General introduction

In this first study we simulate doubly-periodic Rayleigh-Bénard (RB) system in a cubic
computational box. This system consist typically of a heated bottom plate and a top
plate that is cooled. One of the input parameters is the Rayleigh number, which can be
seen as the non-dimensional temperature difference between the top and bottom plate.
At a certain Rayleigh number, rolls form in the system and this is the onset of the
instability. A roll is a circulation of flow, in this case warmer, less dense fluid moving
up and lighter, denser fluid moving down. The position of this roll, which can also be
seen as a large scale circulation (LSC), is fixed in time, and appears to be determined
purely by initial conditions or numerical noise. The main focus of this study is to add
elements to the flow to fix the position of the LSC.

One idea for these elements is to put physical structures in the flow. These structures
increase the area locally, which in its turn rises the heat flux locally. We assume that
this increase might create a favorable state in which the LSC can position its upward
flow. Also the shape of the element might be beneficial for changing the direction of the
flow upwards.

The incorporate these elements into the simulation we have to make significant changes
to the program by for example hard coding the elements into the grid or using the
immersed boundaries technique. Therefore, as an initial project, we focus on simulating
these elements by spots on the boundaries which have a higher temperature. These
inhomogeneous temperature boundaries can be seen as surrogate roughness. The optimal
width and temperature of these spots for fixing the LSC in the system are to be
determined by this study.

2.1.2 Program modifications

As we are not physically implementing roughness elements, the modifications to the
program can be kept relatively simple. The starting point is the semi-staggered RB
program, which has the temperature of each cell not in the center as is the case with
a fully staggered grid, but on the cell boundaries of each cell. With the temperature
discretized this way, we can set the temperature directly, which is not the case for the
fully staggered setup. In Figure 2.1 is a diagram showing the semi-staggered grid.

9
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Pui,k ui+1,k

wi,k, Ti,k

wi,k+1, Ti,k+1

z

x

Figure 2.1: Location of all the quantities in the simulation cell projected in 2D. The
velocity vectors are placed on the borders of the cell and pressure is placed in the cell
center. The temperature resides on both, the top and bottom boundary of the cell.

The code has been extended with two new 2D arrays which represent the boundary
condition for the top and bottom plate. These can be set by the program internally
or read from an external file. The external file is in the HDF5 format and contains
the variables, densLowerBC and densUpperBC, which contain the boundary condition
values. These can be created with another environment that has better visualization
capabilities.

Statistical data is already stored in HDF5 format, however this data is reduced to 1D
data by averaging in space. As we want to see the effect in 3D, these routines were
extended with 3D statistical routines for all velocities, temperature and convective heat
flux.

2.1.3 Geometry and simulation domain

All grids that are used in this study are based on Cartesian coordinates. The grid is
uniformly spaced in both horizontal directions. The boundaries in these directions are
periodic and therefore no increased resolution is needed at the edges. In the vertical
direction the grid is non-uniform. The boundaries are solid plates and increasing the
resolution at these borders is beneficial as we can capture more details from the boundary
layer. An example of such a grid is shown in Figure 2.2.
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0
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Figure 2.2: Example of the non-uniform grid used with a decreasing mesh size at the
vertical boundaries.

All simulations that were used for the tests used a grid size of 361× 361× 289, however
some preliminary tests where done with a grid of 244× 244× 193. These grids defined
the domain in small simulation cells. As these grids are non-uniform, this result in
different minimum and maximum cell size. Table 2.1 shows the different simulation cell
dimensions for both grids.

As with all direct numerical simulations all flow scales have to be captured. The large
scale circulation needs to be completely in the domain meaning the grid needs to be wide
enough. However also the smallest scales needs to be captured which requires the grid to
be fine enough. In turbulent thermal convection these scales are the Kolmogorov (η) and
the Batchelor (ηθ) scales for the bulk, and the viscous (λu) and thermal boundary layer
thickness for the plates. To capture these small scales, the grid must be smaller than
these quantities. To see if these grids are sufficient, we can approximate λθ/h = 1/(2Nu)
and η/h = π(Pr/(RaNu))1/4. These results have been calculated for Ra = 106 and
Ra = 108, and are shown in Table 2.1. These are only approximations for λθ and η,
however as we are using Prandtl at O(1), we can assume λθ ≈ λu, and η ≈ ηθ. Therefore,
these scales can be captured with this grid and we can conclude that these grids are
sufficient.

Ra Nx ×Ny ×Nz ∆min/h ∆max/h Nu λ̄θ
h = 1

(2Nu)
η
h = π

[
Pr

(RaNu)

]1/4

106 244× 244× 193 2.3× 10−3 6.8× 10−3 9.10(±0.41) 5.3× 10−2 1.8× 10−2

106 361× 361× 289 2.3× 10−3 6.8× 10−3 9.34(±0.34) 5.2× 10−2 1.8× 10−2

108 244× 244× 193 1.1× 10−3 4.8× 10−3 32.43(±0.18) 1.6× 10−2 1.3× 10−2

108 361× 361× 289 1.1× 10−3 4.8× 10−3 32.18(±0.17) 1.6× 10−2 1.3× 10−2

Table 2.1: Simulation cell dimensions due to clustering for two grids and their
computed Nusselt numbers for two different Rayleigh numbers. From each Nusselt
number the λ̄θ/h and η/h have been calculated. Pr = 1 for all simulations.
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The absolute error seen with the Nusselt number, is the statistical convergence error.
This error has been calculated by comparing the Nusselt number for half the dataset
with the full dataset. All simulations used Ra = 108 and Pr = 1 unless otherwise stated.

2.2 Single hot spot

The first test will use a single spot with increased temperature. To keep the symmetry of
the system, the spot will also be placed on the top plate, such that there is a temperature
difference of unity. This required for the definition of the Rayleigh number, which is
used as an input parameter. The spot itself is preferably continuous, as it otherwise
could introduce singularities, therefore, the spot is defined in the following way:

Hspot(x, y) =
I

4

[
1− cos

(
2π(x0− x)

w

)][
1− cos

(
2π(y0− y)

w

)]
(2.1)

Here, x0 and y0 are the coordinates of the spot position, I is the relative intensity of the
spot and w is the width of the spot. In Figure 2.3 an example of such a spot is depicted.

w

Ly

Lx

Figure 2.3: Spot geometry.

When various parameters for the hot spot are varied, the effect on the LSC has to be
monitored. A way to do this is to find the position at which the circulation moves on
average upwards. This will be the position at which the temperature of the fluid is on
average the hottest and where on average the most plumes are ejected. Now we can
calculate the distance between this maximum and the actual position of the hot spot.

2.2.1 Width and intensity variation

In the first test we are going to vary w and I of the hot spot (HS). The position will be
fixed for all simulations. All simulations used the same initial simulation as an initial



Chapter 2. Inhomogeneous temperature boundary conditions 13

condition and this will help reduce the transient. The duration for all simulations is set
to 100 time units which gave sufficient statistical convergence. As an example, time-
and space averaged temperature field plots are shown in Figure 2.4 for two different HS
configurations. In this plot, the HS position is indicated by the yellow star. In the flow
field, there exists a point in the xy-plane, where on average the flow has the highest
vertical velocity. This point, which we will call the HVV point from now on, can be
found by finding the maximum in average temperature field. As we want to observe,
how this point behaves with respect to the HS, it has been included in the plot by the
green star. With the same reasoning, we have a lowest vertical velocity (LVV) point
which indicates the point at which the flow field has on average the highest down flow.
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Figure 2.4: Time averaged contour plots for the normalized temperature, averaged
in the vertical direction. The yellow star is the location of the HS, the green star is
maximum temperature which indicates the approximate mean location of the ejecting
plumes. The left plot show the result for w = 0.278 while the right plot uses w = 0.417.
Both have I = 10%.

For these simulations all Nu are summarized in Table 2.2. The absolute error for Nu,
shown between parenthesis, is expresses as the statistical convergence of the data. This
has been done by comparing Nu from the full dataset with Nu calculated from the same
dataset, but reduced in length.

Simulation W (Grid points) I Nu

p2t2sa-1 0.139 (50) 10% 33.69(±0.42)
p2t2sa-2 0.278 (100) 10% 34.19(±0.65)
p2t2sa-3 0.417 (150) 10% 33.50(±0.02)
p2t2sa-4 0.278 (100) 5% 33.18(±0.54)
p2t2sa-5 0.278 (100) 20% 34.00(±0.28)
p2t2sa-6 0.278 (100) 30% 33.28(±0.55)

Table 2.2: Simulation details and Nusselt number results.

The distances between the HVV, LVV, and the HS have been calculated and are shown in
Table 2.3. Except for a spot intensity of 5%, the HS position and the average maximum
and minimum temperature position are approximately on a straight line. This might be
an indication that a spot intensity of 5% is not sufficient to have any effect.
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Hot spot Distance HS to HVV Distance HS to LVV Distance LVV to HVV

W50T10 0.20 0.58 0.65
W100T10 0.23 0.54 0.65
W150T10 0.06 0.65 0.70
W100T5 0.17 0.58 0.68
W100T20 0.15 0.56 0.68
W100T30 0.09 0.46 0.55

Table 2.3: Distances between the HVV, LVV, and the HS for all simulations.

Another thing to notice is that the distance between the HVV and the LVV point is
more or less constant. As the system uses periodic boundary conditions in the horizontal
directions, there is a maximum separation between the HVV and the LVV point, which
is
√

2 ≈ 0.707.

Both, w = 0.417 and I = 30% simulations, have the distance between HVV and HS below
0.1. It is unexpected that the HVV is not exactly on top of the HS. The w and I are
relatively large when comparing those to the complete domain. HS could be positioned
randomly by the system and it could be coincidence that these HVV are close to the HS.
Therefore, we have tested if the w = 0.417 is reproducible. All simulation parameters
will be equal, except the position of the HS. The results are shown in Figure 2.5.
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(a) Hot spot at North West corner.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

T

(b) Hot spot at North East corner.
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(c) Hot spot at South West corner.
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(d) Hot spot at South East corner.

Figure 2.5: Time averaged contour plot of the normalized temperature, averaged in
the vertical direction. The yellow star indicates the HS, the green star is the HVV
which indicates the approximate mean location of the ejecting plumes.
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The figure clearly indicates that the former result is not reproducible. The HVV has
positioned itself randomly in the domain. The distance between the HVV and LVV
points seems more or less constant.

2.2.2 Longer simulation time

One of the first questions that arise is if the HVV will converge to the HS position. To
test this, the w = 1, I = 10% simulation has been resumed and the simulation time has
been extended to 350 and 550 time units. The time- and spaced averaged temperature
plots are shown in Figure 2.6.
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(a) After 100 time units.
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(b) After 350 time units.
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(c) After 550 time units.

Figure 2.6: Time averaged contour plot of the normalized temperature, averaged in
the vertical direction. The yellow star is the location of the HS, the green star is the
location of the HVV.

As can be seen, the HVV point does not move closer to the HS. From these simulations
we cannot conclude that the HVV are converging to the HS when increasing the length
of the simulation.

2.2.3 Increased Prandtl number

Until now we have not found a HS configuration to place the HVV exactly on top of the
HS.
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The Prandtl number is a dimensionless ratio for the momentum diffusivity over the
thermal diffusivity. This number can be seen as a fluid property as it is only dependent
on the type of fluid and its state. In all prior simulations, Pr = 1. By increasing this
number a factor ten, the momentum diffusivity will be dominant and therefore we expect
an increase in mobility of the roll.

This single simulation has w = 0.278 and I = 10% and was run for 200 time units.
To cut the transient, the first 50 time units were removed. The Nusselt number for
this simulation was 34.15(±0.12). The time- and space averaged temperature plot is
depicted in Figure 2.7.
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Figure 2.7: Time averaged contour plot of the normalized temperature, averaged in
the vertical direction, only taking points outside the boundary layer into account. The
yellow star is the location of the HS, the green star is the location of the HVV.

It is quite remarkable that even with Pr = 10, the HVV is not directly above the HS.
The HVV is very close now, but again not exactly on top of the HS.

2.2.4 Asymmetric hot spot

By placing the HS not only on the bottom plate, but also on the top plate, we kept
the symmetry to a certain extent. As we did not find the desired effect of placing the
HVV on top of the HS, we have chosen to omit this setting and place the HS only on
the bottom plate. Again, we set the w = 0.278, but now we set I = 20%.
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(a) Pr = 1, Nu = 34.31(±0.38)
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(b) Pr = 10, Nu = 34.36(±0.24)

Figure 2.8: Time averaged contour plot of the normalized temperature, averaged in
the vertical direction. The yellow star is the location of the HS, the green star is the
location of the HVV.

The postion of both, the HVV and the LVV, seem completely random. Until now we
have seen no significant effect of the HS on the HVV, nor the LVV. For these asymmetric
simulations, Nu is slightly higher when comparing this with the symmetric simulations.
When we look at the definition of Ra we see a linear dependence for the temperature
difference of the plates. Due to this asymmetric hot spot placement, we slightly increase
this difference and therefore, slightly increase Ra. This could be an explanation for the
Nu increase.

2.2.5 Crossing stripes

In the previous simulations the temperature inhomogeneities were created using spots.
These spots are limited in size and therefore, it might be interesting to increase such a
spot in a single dimension creating a stripe. Especially, as we have often seen a stripe-like
shape in the HVV and a stripe-like HS might be favorable for positioning the LSC. To
include the temperature stripe we will keep its sinusoidal shape in one direction. In these
simulations we placed two of such stripes, one in both horizontal directions, which cross
each other on a certain position. Two different crossing positions have been simulated.
As an additional test, both simulations have been tested with symmetric (on both plates)
and asymmetric (only on bottom plate) boundary conditions. These simulation are all
done with Ra = 108 and Pr = 1, w = 0.278 and I = 10%. The results can be seen in
Figure 2.9.
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Bottom right, symmetric. Nu = 32.64± 0.25.
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Bottom right, asymmetric. Nu = 35.20± 0.35.
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Top left, symmetric. Nu = 33.44± 0.21.
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Top left, asymmetric. Nu = 34.80± 0.03.

Figure 2.9: Time averaged contour plot of the normalized temperature, averaged in
the vertical direction. The dashed red lines indicate the center of the inhomogeneous
temperature stripes, the green star is the location of the HVV. Note that colors of
different plots are not normalized.

The first thing to notice is that the Nusselt number for the asymmetric simulations are
slightly higher. Probable reasoning could again be that the temperature difference for
the asymmetric case is larger than of the symmetric case, leading to a slightly larger
effective Ra. Also, when looking at the stripe-like shapes of the HVV, one of these
stripes always seems closely aligned to one of the stripes of the boundary condition.
The other, perpendicular stripe, is however not aligned to its counterpart. This results
in the HVV not having the center on the crossing of the stripes.

2.2.6 Boundary layer thickness

As we have inhomogeneous temperatures at the boundary, this could have an effect effect
on the thermal boundary layer thickness. A thermal boundary layer is a thin layer of
fluid, near the vicinity of a wall or object. In this layer the temperature of the fluid
changes from the temperature at the wall to the average bulk temperature. It is hard
to point an exact position at which the boundary layer ends and the bulk fluid starts.
A common definition is the distance from the wall at which the fluid temperature has
reached 99% of average bulk temperature. Another definition that is commonly used is
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the cross section between the best line fit at the beginning of the temperature profile
and the average bulk temperature. This method is sketched in Figure 2.10.
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Figure 2.10: Time averaged temperature profile near the bottom plate. The red
dashed line shows the best line fit for the first part of the temperature profile. The
blue dashed line is the average bulk temperature. An approximation for the thermal
boundary layer thickness is the cross section between both dashed lines.

Another relation that is often used as an approximation for the thermal boundary layer
is λ ≈ 1/(2Nu). This approximation is identical to the prior line method when assuming
an average bulk temperature of 0.5 and is valid for the Ra used in our simulations. When
using Nu = 33, which is approximately the value for this Rayleigh number, we find an
average thermal boundary layer thickness of 0.015.

For the homogeneous RB case, when using the line fitting method, we find λavg = 0.017,
which is slightly higher. The maximum and minimum are λmax = 0.022 and λmin =
0.014. Using the 99% approximation, are a factor five higher and probably incorrect.
For this reason, we have chosen to calculate the thermal boundary layer thickness with
the line method. For various spot configurations, the thermal boundary layer thicknesses
have been approximated in Table 2.4.

Spot λmin λmax λavg

w = 0.139, h = 10% 0.012 0.026 0.017
w = 0.278, h = 10% 0.012 0.025 0.017
w = 0.417, h = 10% 0.011 0.025 0.017

Spot λmin λmax λavg

w = 0.278, h = 5% 0.013 0.024 0.017
w = 0.278, h = 20% 0.011 0.027 0.017
w = 0.278, h = 30% 0.013 0.022 0.017

Table 2.4: Thermal boundary layer approximations for various HS configurations.

Al result had λmin close to 0.012. Changing any of the spot parameters did not
significantly change this value. λmax varied between 0.022 and 0.027. Again, no clear
relation could be made between the spot parameters and this approximated value. All
λavg were the same for all spot parameters. This is already an indication that no
significant changes in the thermal boundary layer could be observed.
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2.3 Onset of decoupling

We have not yet seen a direct coupling between the HS and the HVV. Still, we suspect
that if we only have single hot and cold spot, keeping the rest of the plate adiabatic,
that the LSC will position itself according to these spots. As an adiabatic wall needs
some modification to the code, we can simulate this by setting the plate temperature
outside of the HS to the average bulk temperature. These simulation are all done with
Ra = 108 and Pr = 1. The spots have w = 0.278 and have T = Ttop = 1 for the bottom
plate and T = Tbottom = 0 for the top plate. The spots are now step wise, meaning the
spot has a uniform temperature everywhere. This could lead to singularities, but using
a gradient would drastically reduce the effect of the spots. The result can be seen in
Figure 2.11.
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Figure 2.11: Left: time- and space averaged temperature plot in the x-y plane. The
dashed line indicates the slice which is shown in the right figure. Right: time averaged
temperature plot from the dashed line. The arrows show the velocity field. Ttop = 0.5
and Tbottom = 0.5. The HVV and LVV are exactly on top or below the spots.

As we have only two spots which on average differ with the fluid temperature, the Nusselt
number now is only 4.03 ± 0.04. We see clearly that the HVV is positioned exactly on
top of the HS and the LVV is directly below the cold spot. Another thing to notice is
that the flow narrows down to a relatively thin stream. This stream is only a third in
width of the original spot size. It also seems that there is only fluid movement in those
streams.

Now we will gradually decrease the difference between the spot and the plate it is on.
This will increase the temperature of the bottom plate and decrease the decrease it on
the top plate. By decreasing the difference, this will slowly approach the situation we
had before. At some point, there should be an onset on which the LSC decouples from
the spots.
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Figure 2.12: Ttop = 0.4 and Tbottom = 0.6. The HVV and LVV are still exactly at the
spot. The Nusselt number is increased to 7.58 ± 0.03. The streams are slighly wider
and it seems that almost all fluid is moving.
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Figure 2.13: Ttop = 0.3 and Tbottom = 0.7. The HVV and LVV are still exactly at the
spot. The Nusselt number is again increased to 12.59 ± 0.08. The streams are again
slighly wider. The fluid around the hot spot also seems to be affect by the spot.
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Figure 2.14: Ttop = 0.2 and Tbottom = 0.8. The HVV and LVV are still close but
not exactly on top of the spot and this might be around the onset of the decoupling.
Both, HVV and LVV seem also larger than the size of the spots. The spots itself are
still visible in the left plot. The Nusselt number is now increased to 18.94± 0.36.
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Figure 2.15: Ttop = 0.1 and Tbottom = 0.9. The HVV and LVV are on a complete
different position and have lost the coupling with spots. Both spots are not visible
anymore in the temperature plot. The Nusselt number for this simulation is 25.01±0.14.

As seen from the prior plots, the decoupling approximately takes place with a temperature
difference of around 0.2. If the system is completely decoupled, almost no trace of the
spots can be seen in the time- and space averaged temperature plots.

2.4 Multiple hot spots

In the study of single HS, we have tried to find a setting at which the HVV settles itself
on top of the HS. Until now we have not yet found this setting. Another interesting
question arises if we can break the large scale circulation by adding multiple spots. These
HS can again vary in size and intensity, but now also in number. First, we study a set
of four HS, which increase in intensity. Thereafter, we use multiple alternating hot and
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cold spots. Other variations will be described briefly. These simulation are all done with
Ra = 108 and Pr = 1. If not otherwise stated, the spots have w = 0.278 and I = 10%.

2.4.1 Increasing hot spot intensity

It this first test we try to break the large scale circulation by positioning four HS into the
system and increasing the intensity. The HS will be placed on equal distance from each
other, keeping the periodic boundaries in consideration. The intensity of each spot will
be increased from 20% to 50% in steps of 10%. The results can be seen in Figure 2.16.
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(a) I = 10%, Nu = 34.12± 0.09.
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(b) I = 30%, Nu = 33.67± 0.61.
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(c) I = 40%, Nu = 34.12± 0.45
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(d) I = 50%, Nu = 34.21± 0.21

Figure 2.16: Time- and space averaged temperature plot in the x-y plane. The yellow
stars are the locations of the HS, the green star is the location of the HVV.

The plots do not show a significant difference with the prior simulations. We also see no
break up of the LSC by using these spot settings. All plots show only a single HVV and
LVV, which are also seen in, for example Figure 2.6 of the single spot simulations. Some
plots have the HVV or LVV extended in a single direction, which gives it a stripe-like
fashion. However, the maximum is still visible inside this stripe.

2.4.2 Multiple hot and cold spots

Next, we simulated the system with alternating hot and cold spots. Spots are again
placed with equal distance to each other and have w = 0.278. The intensity for each
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spot is fixed and alternates between I = 20% and I = −20%. To keep symmetry,
the same spots are placed on both, the top and bottom plate. Multiple spots and
compositions have been simulated, Figure 2.17 shows only four of them.
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(a) 4 Spots,Nu = 33.69± 0.04
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(b) 4 Spots,Nu = 34.07± 0.18
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(c) 9 Spots,Nu = 33.58± 0.34

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.47

0.48

0.48

0.49

0.49

0.50

0.51

0.51

0.52

0.52

T
(d) 16 Spots,Nu = 33.65± 0.05

Figure 2.17: Time- and space averaged temperature plot in the x-y plane. The red
stars are the hot spots, blue stars are the cold spots, the green star is the location of
the HVV.

Again, all plots are more or less the same with the prior simulations. Only Figure 2.17d
does not have a distinct LVV. A break up of the LSC is not visible from these plots.
Figure 2.17b has the spots positioned in a symmetric way which seems to strengthen the
LSC. From this simulation the average temperature difference between the HVV and
the LVV is 0.11, which is the highest recorded.

2.4.3 Other variations

The set of four HS have also been tested in other configurations than varying intensity.
Also width variations, position of individual HS, rotation of all four HS, and Pr = 10
simulations have been investigated. All of these settings did not break the LSC and gave
no additional insights to this study. Therefore, further details are not given for these
tests.
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2.5 Conclusions

This chapter has studied the effect of inhomogeneous temperatures boundary conditions
on the flow dynamics. First, only single spots were placed on the boundaries, with
different dimensions and intensities. The idea was to find the spot configuration to
position or at least influence the LSC. However, none of the simulations showed a
reproducible effect on the bulk flow for any chosen spot width or spot intensity. To
ensure that the fixing process is not on a much slower time scale, a single simulation has
been extended in length to 550 large-scale turn-over times. This again did not show any
significant effect. Also placing the HS only on the bottom boundary did not show any
effects on the flow dynamics.

For the same simulations we also looked at the effects of HS on the thermal boundary
layer thickness. From these simulations we saw no significant difference in average
thermal boundary layers for various configurations of HS. The minimal and maximal
thermal boundary layers thickness could not be connected to the different HS parameters.

In a system which has both plates set to the average bulk temperature, except for one
hot spot on the bottom and one cold spot on the top. In this simulation, the large
scale circulation was perfectly aligned with both spots. After gradually decreasing the
temperature difference of each individual plate and the corresponding spot, we have
found the onset of the decoupling at a temperature difference of 0.2. When the system
is decoupled, almost no trace of the HS can be found in the flow field.

As some final tests, simulation were run with multiple HS and even stripes. These had
again no significant effect on the flow dynamics. From all these simulations we could
not observe any effect on the LSC. Observing the flow dynamics in the middle of the
system did not show any trace of the presence of a HS. This implies that we cannot use
a HS to simulate a roughness element.





CHAPTER3
Physical roughness boundary conditions

3.1 Introduction

3.1.1 General introduction

In the first study we tried to implement artificial roughness by inducing inhomogeneous
temperature boundary conditions. As these did not have the desired effect we introduce
a new study where physical roughness will be introduced into the system. In a regular
RB system the top and bottom boundaries are flat. When using periodic boundary
conditions in the horizontal plane, the flow is only restricted in the vertical direction.
By introducing roughness, we introduce additional boundaries that do not only restrict
the flow in the vertical direction but also in the horizontal direction. Including these
additional space parameters, many structures are possible, for example, simple wave-like
structures or small cavities. To include these structures, we use the immersed boundary
method (IBM). With this method we do not need to change the grid. Due to the
immersed boundary we need to two new terms, a force density ~f , and a heat flux density
~q, to the governing equations. This two terms add the artificial force density and heat
flux density as if there was an actual boundary in the fluid and enforce the boundary
conditions.

With various structures implemented we want to study the effect on different quantities
in the Rayleigh-Bénard system. First, we have a look at some global quantities such as
the Nusselt number and the bulk temperature. Also local quantities such as the local
temperature on different positions on the structures will be investigated. When varying
these different structures, we will also try to find an optimum for the heat transfer. As
there are unlimited possibilities for different structures, we will limit the structures to
1D and 2D waves, triangle waves, and single spots.

3.1.2 Program modifications

As a starting point, we use the fully staggered pencil code. This code parallelizes the
domain not in horizontal slabs, but in vertical square tubes or pencils and it has already
been proven to be very efficient. First, an existing version of the IBM has been merged
with this version of the code. The existing extension creates a new file in which the
topography of the top and bottom plate can be set. With regular IBM it is possible
to have fully immersed structures, however with this code it is only possible to have
an elevated boundary from the plate. Additional functions have been written for the
different structures used in this report.

27
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As the new code is using a different way to divide the domain, the 3D statistical routines
need to be adjusted for this. Again, all velocities, temperature, and the convectie heat
flux are stored to a HDF5 file for later analysis.

3.2 Wave patterns

3.2.1 Geometry and simulation domain

The first patterns we are going to analyze are the wave patterns in one and two
dimensions. Both patterns are only placed onto the bottom plate. The top plate is
kept flat for all simulations. The wave introduced is a sinusoidal wave with a frequency
chosen in such a way that the wave length, or a multiple of, is exactly the domain length.
The bottom or valley of the sine should not be lower than the bottom of the system.
This can easily be achieved by using the amplitude as the base height. The height of the
wave should not be to high but at least moderately higher than the boundary layer. As
an approximate for the boundary layer height we can use the relation for homogeneous
RB, 1/(2Nu), which gives us a height of about 0.016. Therefore, an amplitude of 0.025
will be high enough. The peaks of the wave will be at 0.05 with the base at 0.025. The
wave pattern in two dimensions will use the same frequency for both directions. The
equations used for creating the wave patterns are shown in Equation 3.1. The typical
geometry for the 1D and the 2D wave pattern system are shown in Figure 3.1 and
Figure 3.2.

H(x, y) = B +A sin (2πfx) x ∈ (0, 1),∀y, f ∈ N (3.1a)

H(x, y) = B +A sin (2πfx) sin (2πfy) x ∈ (0, 1), y ∈ (0, 1), f ∈ N (3.1b)

T = Tbottom

T = Ttop

λ

h

Lx

f = Lx
λ

Figure 3.1: The 2D projection of geometry used for the physical roughness wave
pattern simulations. The structures are only present on the bottom plate which has
the temperature set to Tbottom. The top plate is flat and has the temperature set to
Ttop. The wave pattern only varies in the x direction and is equal for all y.
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λ

Figure 3.2: The 2D projection of geometry used for the physical roughness 2D wave
pattern simulations. The wave length λ is the same for both directions. Again, the
structures are only present on the bottom plate.

As we are now introducing a wave pattern onto the bottom plate we are effectively
increasing the area of that plate. This increase in area will affect the heat transfer as
more fluid will be in contact with the new area. The increase in area when compared to
a flat plate has been calculated in Table 3.1.

f Awave Awave2d

1 0.6% 0.6%
2 2.4% 2.4%
3 5.3% 5.3%
4 9.2% 9.3%

f Awave Awave2d

6 19.4% 19.8%
10 46.4% 47.9%
20 130.7% 137.4%
36 280.8% 297.7%

Table 3.1: The increase in area when comparing to a flat plate for the 1D and 2D
wave pattern for various frequencies.

As for the inhomogeneous temperature simulations, the grid has been set to 361×361×
289, which is fine for Ra = 108 and Pr = 1. The height has been set to unity, however
this is only the case exactly in the valley of the wave pattern. At the peak of the wave
pattern the distance is only 0.95. Both aspect ratios in the x-, and y-direction are set
to 1 which results in a square box.

3.2.2 Flow visualization

To give a feel for the flow fields and how these structures look in the system, snapshots
have been created. In Figure 3.3 the instantaneous temperature field for four and twenty
waves are shown. Figure 3.4 shows the same temperature field for the 2D wave pattern.
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Figure 3.3: Snapshot of the instantaneous temperature field for four and twenty wave
patterns.

Figure 3.4: Snapshot of the instantaneous temperature field for four and twenty 2D
wave patterns.

3.2.3 Global quantities

First, we will focus on the effect of the patterns on the heat transfer of the system. Heat
is injected from the bottom plate, and is transfered through the fluid to the top plate, at
which it can exit the system. In Figure 3.5 the Nusselt number has been plotted in two
different ways, the regular Nusselt number in blue and the area compensated Nusselt
number in red. Error bars show the statistical convergence of the Nusselt number. When
looking at the plane Nusselt number, we see a slight increase with an optimum at the
f = 10. After the optimum the Nusselt number decreases again. When we look at the
velocity field between the wave pattern structures for f = 6 we see that the flow is on
average downwards in the center of the valley and on average upwards on the sides of
the hill. As snapshot of the average velocity profile is shown in Figure 3.6 for a single
wave structure, however this can be seen on average for all waves in this simulation.
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Figure 3.5: The Nusselt number is plotted against the frequency of the wave pattern.
In blue, the Nusselt number is plotted in its regular way, while in red the same Nusselt
number is compensated for the increase in area. In green, at a frequency of zero the
homogeneous case has been plotted for reference.
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Figure 3.6: Detail of the time and space averaged flow field in the cavity of the
sinusoidal wave structures. On average the flow is directed downwards at the center of
the valley and is directed upwards at the side walls.

When investigating the flow field between the wave pattern of f = 20 we see on average
two circulations. First the large scale circulation that is moving perpendicular over the
wavy structures, which only moves slightly with the shape of the waves. Between the
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waves, in the valley of the sinusoidal structures we see a secondary circulation, which
resembles a flow in a cavity. This can be seen in Figure 3.7.
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Figure 3.7: Detail of the time and space averaged flow field in the cavity of the
sinusoidal wave structures. Here we see the main circulation moving perpendicular to
the waves, and is almost unaffected by the cavities. In the cavities itself are secondary
circulations which resemble typical flow in a cavity circulations.

In Figure 3.5 we have also plotted in blue the Nusselt number compensated with the
increase in area by multiplying the Nusselt number with the inverse area increase,
Aflat/Awave. The compensated heat transfer rate only decreases slightly at low f but
after f = 6 drops rapidly. There is no optimum visible with the compensated Nusselt
number.

For the two dimensional wave pattern, depicted in Figure 3.8, we see a similar trend.
First, the value stays more or less the same but after a certain threshold decrease very
fast.
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Figure 3.8: Nusselt number versus the wave frequency in two dimensions. Blue is the
regular Nusselt number, red is the area compensated Nusselt number. For reference,
the homogeneous Nusselt number has been plotted at f = 0.

When comparing the average bulk temperature for the 1D and 2D wave patterns, there is
a slight difference. For low fwave they are more or less equal, but the average temperature
of the 2D wave pattern does not reach the same maximum as the with the simulation
for the 1D wave pattern.



Chapter 3. Physical roughness boundary conditions 34

0 5 10 15 20 25 30 35 40

fwave

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57
T
bu
lk

Figure 3.9: Average temperature in the bulk versus the wave frequency for the 1D
wave pattern in red and the 2D pattern shown in blue. When comparing the 1D pattern
with the 2D pattern we can see that it does not reach the same maximum.

3.2.4 Local quantities

Now we will investigate the temperature profiles at the maxima and minima of the
pattern structures. The maximum of the structure is the top of the sinusoidal wave.
For the 1D pattern this will result in a maxima that will propagate in the complete
y-direction. This data will be averaged to find the average temperature profile at the
maxima. For the 2D wave, the maximum will be on a single grid point. Now we will
investigate the temperature profiles at the maxima and minima of the pattern structures.
First we will select the time averaged temperature data exactly at the top and at the
bottom of a 1D or 2D wave pattern. If there are multiple maxima or minima, which is
the case for f > 1 and the 1D wave pattern, those will be averaged to find the average
temperature profile at the minimum or maximum of the wave pattern. The result for
the 1D wave pattern can be seen in Figure 3.10. Here, the temperature is plotted as
a difference with its corresponding wall against the distance from this corresponding
wall. As a reference, the temperature difference of the top plate is also plotted in the
same figure. For f = 1 there is only a small difference in all three temperature profiles.
Increasing the wave frequency we see an increase in temperature difference at the end
of all profiles. We also see that for almost all cases the temperature profile on the hills
of the sinusoidal patterns, shown in red, finally overlap with the temperature profile of
the valleys. Another thing to notice is, starting from f = 6, the temperature profile of
the valleys show first minor inflection points and with increasing frequency, deviating
more and more. In the f = 36 simulation we see that the profile even stays more or less
constant in the beginning.
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Figure 3.10: Temperature difference with the boundary versus the distance to the
boundary. The red dots show the average temperature on the hills of the 2D sinusoidal
waves, the blue dots show the average temperature in the valley of the 2D sinusoidal
waves, and the black dots represents the average temperature difference at the top wall.

The same analysis can be made for the 2D wave pattern. These plots are shown in
Figure 3.11. Again the same trend is shown, where at low frequencies all three profiles
overlap. Increasing the frequency results again in a small but clear difference at the
end of the temperature profiles. When comparing the shape of the valley temperature
profiles with the 1D profiles, it seems that for the 2D patterns the same shapes occur
with lower frequencies. The shape of the valley profile f = 10 of the 2D looks more
or less identical to the 1D profile at f = 20. Also the 2D valley profile f = 20 looks
identical in shape to the 1D profile at f = 36.
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Figure 3.11: Temperature difference with the boundary versus the distance to the
boundary. The red dots show the average temperature on the hills of the 2D sinusoidal
waves, the blue dots show the average temperature in the valley of the 2D sinusoidal
waves, and the black dots represents the average temperature difference with the top
wall.

3.2.5 Discussion

In this study we added physical roughness to the bottom plate. These roughness elements
will have a certain height and therefore, the effective height of the system will be less
than the hard coded unity. The height of the system is important for the Rayleigh
number, which has the height in its definition. In this definition, the height is cubed,
and will have big consequences. The height of the system varies in space and has a
maximum of unity in the valley of the 1D or 2D wave patterns and a minimum value of
0.95 on the hills of the 1D or 2D patterns and will change the Rayleigh number locally
by the following relation:

Raactual = (h(x, y))3 Rainput (3.2)

On average, the height of the system is reduced to 0.975. Using the above relation, the
actual Rayleigh number when using 108 as an input is 9.27 · 107. This is an decrease
of almost 7% and we need to keep in mind when comparing this to for example the
homogeneous RB case.

The heat transfer of the 1D and 2D stripes are almost the same, with a small advantage
to the 1D wave pattern. However, when keeping in mind that the Ra= 9.27 · 107,
the Nusselt number is actually too low. For both uncompensated cases, an optimum
was visible for the heat transfer. After applying the area increase this optimum was
not visible anymore. In Figure 3.6 we could see that the fluid flows downward in the
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center of the valley and moving upwards past the borders. This gives the impressing
the the fluid makes good use of the additional area and could be a possible explanation
for the optimum in the uncompensated data. The uncompensated Nusselt number
decreases again after around f = 10 for both cases. We saw in Figure 3.7 that there
is a secondary circulation between the waved structures. This gives the impression
that the heat transfer is not as efficient as the heat has to pass through this secondary
circulation. Another reason can be that the cavity that is created, is getting smaller as
we increase the frequency. The smaller cavity makes it more difficult for the fluid to
flow as the no slip boundary is closing from multiple sides. This might be a reason for
the uncompensated Nusselt number to decrease. The compensated Nusselt numbers for
both, the 1D and 2D wave pattern are almost identical.

The average bulk temperature of the fluid is for lower frequencies almost identical for
the 1D and 2D wave pattern. From these simulation we saw that for f = 10 and f = 20
is slightly lower. Both curves showed a small optimum around f = 10. A possible
explanation could be that these frequencies have the optimal dimensions for the flow to
use the additional surface, which we also saw in Figure 3.6. The higher frequencies had
a less optimal flow observed which could be the reason for less heat entering the system
and therefore a lower average bulk temperature.

The temperature at the top and bottom of the sinusoidal wave pattern are almost
identical for lower frequencies. At lower frequencies, the flow is less obstructed and when
zoomed in very locally, there is not much difference with both positions. When increasing
the frequency, the wall come closer to the valley, and this increases the difference between
the to positions. Eventually, when the frequency is high enough, the valleys approach
a cavity flow situation. This might possibly be a reason why at the highest frequencies
the flow stays substantially hotter, as can be see in f = 36 of Figure 3.10.

Another thing we see from the same graph is that the temperatures deviate from each
other when comparing the top plate with the bottom plate. A possible explanation for
this could be that we are breaking the symmetry of the system by including the wave
pattern on the bottom plate. At f = 1, both, the top and bottom plate profiles end
in more or less the same line. It is well known that for the homogeneous RB case, the
temperature of both profiles should be 0.5. In this case, f = 1 is quite close to the
homogeneous case and the profiles are not that different. As we have increased the
frequencies, we make the system more and more asymmetric. This might explain the
increase in difference of the profiles of the top and bottom plate. On the last graph,
at f = 36, we see that the profiles move closer again. Possibly because the cavities are
reduced to such a size that they cannot be used efficiently anymore. This reduction in
heat transfer, might be the cause for the profiles to move closer together again.

3.3 Other structures

Several other structures have been coded, such as triangle waves, single spots, arrays
of spots, and tetrahedrons. Most of these structures were used in preliminary tests to
investigate the global effect on the large scale circulation. Only the triangle wave pattern
has had a full comparison with the sinusoidal wave pattern.
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3.3.1 Triangle wave pattern

One of the other patterns that have been analyzed is the 1D triangle wave pattern.
As with the 1D sinusoidal wave, it propagates in a single direction. To parameters for
the simulations, such as amplitude, Rayleigh number, and Prandtl number are kept the
same as the 1D sinusoidal wave to compare both cases. The typical geometry is depicted
in Figure 3.12.
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Figure 3.12: The 2D projection of geometry used for the physical roughness triangle
wave pattern simulations. The structures are only present on the bottom plate which
has the temperature set to Tbottom. The top plate is flat and has the temperature set
to Ttop. The triangle wave pattern only varies in the x direction and is equal for all y.

For additional insight, plots of the instantaneous temperature field have been created.
These are shown in Figure 3.13.

Figure 3.13: Snapshot of the instantaneous temperature field for f = 4 and f = 20
triangle wave patterns.
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In Figure 3.14 we compare the Nusselt numbers of the triangle wave system with the
sinusoidal wave system. For the lower wave frequencies we do not see a lot of difference
between both systems. Only for f = 6 and f = 10 we have a slight difference with the
advantage for the sinusoidal wave.
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Figure 3.14: Comparison of the Nusselt numbers of the triangle and the sinusoidal
wave, for both the compensated and uncompensated data.

This outcome is not as was expected as it was thought that the triangle structures would
have an advantage. These structures have a peak, which could act as a nucleation point
for the ejection of plumes. When looking at the peaks we see indeed that the flow prefers
to move upward at the peak of the triangle wave, however the same is also observed at
the sinusoidal wave.

The temperature profiles, which are shown in Figure 3.15, look also identical to the
sinusoidal waves. In the lower frequency part we see an overlap of all the temperature
profiles. Increasing the frequency, again, increase the difference in temperature of the
top and bottom plate. We also see a stagnation of temperature between the gap of two
triangles in f = 36.



Chapter 3. Physical roughness boundary conditions 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6
|T
w
a
ll
−
T
|

f = 1 f = 4 f = 6

0.00 0.05 0.10 0.15 0.20

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

|T
w
a
ll
−
T
|

f = 10

0.00 0.05 0.10 0.15 0.20

z

f = 20

0.00 0.05 0.10 0.15 0.20

z

f = 36

Figure 3.15: Temperature difference with the boundary versus the distance to the
boundary. The red dots show the average temperature on the hills of the 2D sinusoidal
waves, the blue dots show the average temperature in the valley of the 2D sinusoidal
waves, and the black dots represents the average temperature difference with the top
wall.

These tests with the triangle pattern are still preliminary and more work needs to be
done. As we are increasing the frequency, the angle of the triangle also changes. It
would be interesting to see if there is an optimal angle for nucleation. We saw that there
is not a big difference between the triangle and sinusoidal wave. A possible reason could
be that for a very rough approximation we could use a triangle wave as a substitute for
the sinusoidal wave. In the valleys, the triangle wave will be a bit too high, and on the
hills it will be slightly too low. This will result in a slight difference in the local Rayleigh
number. This could partly explain the minor difference.

3.3.2 Single roughness elements

We started this study by using single roughness elements. These were used as an
possible analog to the inhomogeneous temperature boundary conditions where artificial
roughness was simulated by heating a single spot on the boundary layer. These spots
were varied in width and height to see what the effect was on the large scale circulation.

After various test we did not see anything special. The large scale circulation placed itself
in a favorable manner but we saw no dependence in position by this single roughness
element. In some simulations it seemed that the circulations position itself in a certain
way. However, moving the element to another position showed that this was not
reproducible and most probably a coincidence.
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The same elements were also placed in small arrays, consisting of five or nine roughness
elements. By placing them in a cross-like fashion we hoped to affect the large scale
circulation. However, again this did not seem to work. The large scale circulation
placed itself randomly, and is not affect by the array of roughness elements.

By introducing more roughness elements we saw a slight increase in Nusselt number,
but we have to keep in mind that we have increased the area of the bottom plate. This
is probably one of the reasons for the small increase.

3.4 Conclusions

As an analog to the first chapter, we have studied the possibility to position of influence
the LSC with a single roughness element. These elements were varied in height to a
maximum of 0.05, which is more than twice the thermal boundary layer thickness. As in
the previous chapter, we did not find a reproducible configuration for the HS to observe
any significant influence. Also placing small arrays of roughness structures did not
influence the flow dynamics. We did observe a slight increase in Nu, but this could be
related to the increase in heated area. The exact details are still open to be investigated.

The main focus of this chapter is to study the effect of 1D and 2D waved patterns on
global and local flow quantities of the system. These waved structures had an amplitude
of 0.025, with its valley set to the bottom of the system. This sets the peaks of the waved
pattern at a height of 0.05. The frequency of the pattern is varied in such a manner that
only complete wave lengths fit in the system. For the 2D system, the same frequency is
used for both directions.

When comparing theNu for the 1D and 2D systems, we observed no significant difference.
Both systems showed an increase in heat transfer, by increasing f , until an optimum
is reached. After this optimum, the heat transfer decreases again. It is suspected that
the flow can take advantage of the additional area for lower f , while for higher f , the
cavities between the waves restrict the flow to effectively use the additional space. When
compensating the Nu for the additional area, the optimum disappears and both, the
1D and 2D patterns decrease rapidly after f = 6. The simulations all used Ra = 108

and Pr = 1, however, the roughness elements reduce the height of the cell locally and
therefore, effectively reduce the Ra by 7%.

The temperature difference from both walls were almost equal at f = 1. Increasing f ,
we saw an increase in difference from both profiles. At f = 36, this difference seemed
to reduce again. This is however not perfectly clear. To confirm this trend, additional
simulations with higher f are needed.

As a preliminary investigation, triangle waves have been simulated. It has been reported
that these sharp geometries are beneficial for plume generation and therefore, increase
the heat transfer of the system [13]. From these simulations, we see no significant
difference between the triangle and the sinusoidal wave. The Ra used in our simulations
are however much lower than the ones used in the reference. The flow dynamics at the
vicinity of both structures are still in need for study and more work needs to be done.





CHAPTER4
Mixed insulating and conducting boundary conditions

4.1 Introduction

4.1.1 General Introduction

In a third study we look at the effect of mixed insulating and conducting boundary
conditions. This study has been performed in parallel to the other two chapters and has
no direct relation. The mixed conditions will only be applied to the top plate and will
add a certain degree of inhomogeneity to the system.

The importance of this problem can be motivated by various geophysical applications.
For example, ice floes in the arctic regions, which are floating slices of ice, act as almost
perfect insulators to the heat flux. It was recently shown [16], that the size distribution of
leads, which are fractures in ice floes, is multi-scale, and that the size has clear influence
on the heat flux. The showed that smaller leads, the size of a few meters, are more
efficient in heat transfer than bigger leads, the size of a few hundredths of meters.

The problem has already been studied in [17] in two dimensions. Their focus was
primarily to quantify the effect of the surface heterogeneities on the critical Rayleigh
number. They also explored the high Rayleigh number regime, which matches the
Rayleigh number of our study. In this chapter we will extent this study to three
dimensions and focus on the effect of the composition of these patterns on the Nusselt
number, at Ra = 108.

4.1.2 Program modifications

To simulate the different mixed insulating and conducting patterns we have again
modified the 3D Rayleigh-Bénard Cartesian finite difference program. As a basis the
semi-staggered program has been used. This code parallelizes the domain in slabs which
are stacked in the z direction. The reason for choosing this code is that the quantities
are fully staggered and are placed in a beneficial way in the simulation cell which makes
it easier to set Neumann boundary conditions. Figure 4.1 shows a 2D projection of the
simulation cell with the location of all the quantities.

43
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Figure 4.1: Location of all the quantities in the simulation cell projected in 2D. The
velocity vectors are placed on the border of the cell and the temperature and pressure
are place in the cell center.

To make it possible to create different insulating and conduction patterns we need an
additional two dimensional input array at each boundary which indicates if that grid
points are adiabatic or conducting. If a point is adiabatic, no heat flux is exchanged with
the boundary. This is used when calculating the second derivative. Equation 4.1 shows
the general equation, with the prefactors left out. If the boundary is set to adiabatic,
∂T
∂z |+ is set to zero. An overview of the grid points near the boundary is shown in
Figure 4.2.

∂2T

∂z2
=

∂T
∂z |+ − ∂T

∂z |−
∆z

(4.1)

TbcTNTN−1

∂zT = 0

Figure 4.2: An overview of the last grid points and their relative distances.

Again the part which computes the statistics of the program has been extended to include
time averaged 3D statistics. All velocity vectors and the temperature are written to a
HDF5 file for possible post processing. The time averaged quantities Tuz and T 2 are
also stored for possible processing.

4.2 Insulating stripes

4.2.1 Geometry and simulation domain

For this simulation different patterns have been investigated. First a pattern has been
introduced that only has a variation in a single dimension in a stripe-like fashion. The
typical geometry of this setup used is depicted in Figure 4.3. The inhomogeneities
are restricted to only the top plate (z = h) and are created by alternating adiabatic
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regions (∂zT = 0) with conduction regions (T = Ttop). The bottom plate is kept
at constant temperature (T = Tbottom). The code is again based on the classical
Oberbeck-Boussinesq approximations seen in Equation 1.4. The boundary conditions
are periodic in both horizontal directions. The stripes have a wavelength Lp and is
directed in the x-direction. The wavelength of the stripes is set in such a manner that
the conduction area is always exactly the same size as the adiabatic area. The periodicity
can be described in the following manner:





T (x, y, h) = Ttop ∀x, y ∈ [jLp, Lp2 + jLp] , j ∈ Z
∂zT (x, y, z) |z=h = 0 ∀x, y /∈ [jLp, Lp2 + jLp] , j ∈ Z
T (x, y, 0) = Tbottom ∀x, y

(4.2)

The number of stripes will be a discrete parameter for the system which will set the
wavelength. We restrict ourselves in keeping the area of the insulating an conducting
stripes equal. The number of stripes is defined in such a way that one stripe includes one
conducting stripe and one insulating stripe. This can also be seen as the frequency (f)
of the system. As it is a discrete value we will automatically fulfill that the area is equal.
However, as we have a limited amount of grid points this will limit the choice in the
number of stripes. For convenience we convert these discrete values into the continuous
wave number ks which is defined as 2πNstripes/Ly.

zT=0 T=Ttop

h

T=Tbottom

Ly

LpLp2 Lp1

ks = 2π
Lp

=
2πNstripes

Ly

`C =
Lp2

Lp

Figure 4.3: The 2D projection of geometry used for the stripes simulations.

The height domain for all simulations has been set to unity. The grid has again been
set to 361 × 361 × 289 which has proven to be a fine enough grid for our low Rayleigh
simulations. Both aspect ratios are also set to unity giving a cubic box. As the aspect
ratio are rather small there could be an issue with the aspect ratio dependence on these
lower Rayleigh number simulations. Therefore, as a test case, a simulation was run on
aspect ratio 1 and using the same conditions a simulation was run at aspect ratio 2. The
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difference in Nusselt number between the two tests was < 1% which indicates that for
this Rayleigh number the grid can be considered independent of the aspect ratio. The
same test has been done with a Rayleigh number set to 106 and here it was clearly not
the case. Therefore, the simulations with the Rayleigh number set to 106 have not been
used. All test details are shown in Table 4.1.

Ra Γ Nx ×Ny ×Nz Nu

106 1 121× 121× 145 9.39 (±0.13)
106 2 241× 241× 145 8.94 (±0.27)
106 3 361× 361× 145 8.40 (±0.11)
108 1 361× 361× 289 26.10 (±0.02)
108 2 721× 721× 289 26.89 (±0.23)

Table 4.1: Aspect ratio test details. All simulations used twenty sets of stripes at
which the size was kept equal. Prandtl was set to 1. For the Rayleigh 106 we cannot
conclude which aspect ratio is enough. For Rayleigh 108 we do not have a decreasing
trend and the aspect ratio of 1 seems acceptable.

4.2.2 Flow visualization

One of the difficulties is to visualize the flow field. Figures, shown on paper on screens
are always two dimensional and the data created here is in three dimensions. Still to give
a feel for the flow field, snapshots have been created from the temperature field. These
are created from the instantaneous fields of the f = 4 and f = 20 stripes simulations
and are shown in Figure 4.4.

Figure 4.4: Snapshots of the instantaneous temperature field for f = 4 and f = 20
conducting/insulating stripes.

4.2.3 Global quantities

One of the first questions we want to address is the influence of these stripes on the heat
transfer. Heat is injected from the bottom plate and is transported by the fluid to the top
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plate where it can exit the system. Now we restrict the system from removing the heat
by making half of the top plate adiabatic. This will of course have an effect on the heat
transfer. The heat transfer is plotted against the wave number in Figure 4.5. The error
bars have been calculated from the statistical convergence error. Not all simulations
have an optimal convergence but the results have been deemed acceptable for these
plots. As we have multiple decades of the data, it is presented in a semi-logarithmic
plot.
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Figure 4.5: Wave number versus Nusselt number. Error bars are based on the
statistical convergence of the data.

When looking at the data we see that when having only a single stripe frequency (f = 1),
meaning we have divided the top late in two equal areas, the Nusselt number is just below
22. This is around two thirds of the Nusselt number of the homogeneous case which
is 32.1(±0.06). Now when we increase the wave number, and therefore, increase the
number of stripes, the Nusselt number goes up. The last point of the graph at a wave
number of approximately 1131 a set of stripes is using exactly two grid points, one for
each type. At this point the Nusselt number is 31.3 which is almost the homogeneous
case.

For the bulk temperature, which is plotted in Figure 4.6, we see the same kind of
trend. At the first data point we see that the temperature is around two thirds of the
temperature of the bottom plate. However when we increase the the wave number the
bulk temperature goes down. At the last data point, were we again have the maximum
number of stripes possible, the bulk temperature is very close to the homogeneous case
where we expect a temperature of 0.5.



Chapter 4. Mixed insulating and conducting boundary conditions 48

100 101 102 103 104

ks

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66
T

Figure 4.6: Wave number versus the bulk temperature.

Only the f = 1 simulation had a clear effect on the large scale circulation. The average
downward flow has positioned itself in the center of the conducting area and the average
upward flow was on the adiabatic region. Again the two average ejecting regions are
positioned in such a way that the distance is maximized. Figure 4.7 shows how the f = 1
is dividing the top plate equally in half and how the large scale circulation positions itself
in the system.
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Figure 4.7: Left: a time averaged temperature slab, exactly at the border, indicating
the blue conducting area and the red insulating area. Right a time averaged
temperature slab exactly in the middle of the system. Not very surprising, there is
an averaged flow downwards below the conducting stripe (blue spot) and an average
flow moving upward on the top and bottom right corners (red spots).
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4.2.4 Local quantities

Now we focus on the local quantities. One of the interesting quantities is the temperature
close to the adiabatic wall. As there is no direct heat transfer possible at this position
we expect the temperature to be much higher than at the conducting wall. The only
heat transfer that is possible is through convection of the fluid. The temperature is
not constant at the adiabatic region. Close to the border of the adiabatic region it will
change in a continuous manner to the conductive counterpart. To give an insight on the
temperature at the adiabatic and conduction region we have calculated the average of all
adiabatic- and conducting stripes and plotted these against the wavelength in Figure 4.8
and Figure 4.9. By using the wavelength it is possible to compare the stripes from the
different frequencies with each other. The data from f = 90 and f = 180 have not been
included in the plot as these are a straight line and a single point only.
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Figure 4.8: Temperature at the insulating wall, averaged over all stripes, in time and
in the x direction for various frequencies.
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Figure 4.9: Temperature at the conducting wall, averaged over all stripes, in time
and in the x direction for various frequencies

As we would expect and Figure 4.8 shows, the temperature drops as we increase the
number of stripes. A simple explanation could be that the effective area of each
individual stripe is reduced when we increase the number of stripes. The total area
is divided by a higher number of stripes, resulting in a net lower area for each stripe.
The lower frequencies have a maximum averaged temperature that is close the bulk
temperature. However, this diverges rapidly when increase the number of stripes. For
f = 1 it is even slightly hotter than the average bulk temperature.

For the conducting stripes we see a similar but reversed trend. The temperatures are
almost zero. They are not exactly zero because the grid point is not exactly defined
at the border but in the center of the simulation cell. When the number of stripes is
increased, the average temperature also rises slightly. A reason for this could be the
influence of the adiabatic stripes which are getting closer with increasing number of
stripes. Another reason is that when we increase the number of stripes, the Nusselt
number goes up. The Nusselt number is defined as Nu = TN/dz, dz is the fixed cell
height, and TN is the temperature in the last cell, so when the Nusselt number rises,
the temperature also has to rise.

Averaging the temperature of the insulating stripes to a single value gives us the
possibility to plot this against the wave number of the stripes. Again, as we have multiple
decades of data we have presented it in a semi-logarithmic plot shown in Figure 4.10.
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Figure 4.10: Stripes vs Temperature

Next, we are use a Fast Fourier transform to convert the data to the frequency domain.
This will result in Fourier spectra in which we should see the periodicities that we have
placed onto the top plate. It will be interesting to see how these structures hold when
moving away from the wall.

In the former plots we used time averaged data to see the various effects. However,
performing a Fourier transform on time averaged data is a bad idea as the time averaging
before a Fourier transform suppresses the higher frequencies resulting in a biased plot.
Therefore, the Fourier transform should be done before the averaging is done. The
Fourier transformation has been performed on the instantaneous data. These spectra
have been averaged in time and over the y-axis. The results for various stripes near the
wall can be seen in Figure 4.11.
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Figure 4.11: Two dimensional fast Fourier transform for various stripes, close to the
top boundary, averaged in time and in the y direction.

When looking at the simulation with a single set of stripes (f = 1), we can clearly
identify two dominant lines. When the number of stripes is increased more lines are
added to the graph. As some lines overlap it is hard to identify single lines but every
increase in stripes, adds two lines to the plot. Eventually there is so much overlap that
there are no individual lines visible.

It would be interesting to see how these structures behave when we gradually move
away from the border. For this we use the f = 1 simulation and perform the fast
Fourier transform on various distances away from the border. The results are shown in
Figure 4.12.
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Figure 4.12: Two dimensional fast Fourier transform from the f = 1 simulation at
different z coordinates, averaged in the y direction.

Here we clearly see that the impact from the stripes decrease when we move further away
from the border. From z=0.998 to z=0.996, which is only a single grid point farther from
the border, the lines decrease almost half in distance apart. At z=0.992 they almost
overlap completely and at the last two plots it is hard to imagine that there have been
two lines at all. This same trend can be seen with the f = 4 simulation which is plotten
in Figure 4.13.
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Figure 4.13: Two dimensional fast Fourier transform from the f = 4 simulation at
different z coordinates, averaged in the y direction.

We can also look at the difference between the vertical temperature profiles close to
the border for the adiabatic region and the conducting region. As a comparison, the
profile from the bottom plate has been added to the plot. The results for various stripe
frequencies are plotted in Figure 4.14.
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Figure 4.14: The average temperature difference from the wall of various checkerboard
frequencies. The adiabatic plate area (red dots) and the conducting area (black dots)
are plotted as differences from the wall. The bottom plate temperature profile (blue
dots) are reversed in temperature, T (z) = 1− T (z).

4.2.5 Discussion

When looking at the heat transfer of the extreme case for a single stripe we found the
Nusselt number to be approximately two third of the homogeneous RB case. The same
goes for the bulk temperature which also is around two thirds of the homogeneous RB
case. We know from classical RB that due to symmetry of system the bulk temperature
is exactly between Ttop and Tbottom. Now that we are introducing stripes we break the
symmetry and this easy argument cannot be used. The bulk temperature cannot simply
be expressed in a function that is only dependent on plate temperatures and the stripe
frequency. Also parameters such as the Rayleigh and Prandtl numbers are relevant.
Figure 4.15 shows a simple diagram which compares the classical RB with the single
stripe system.
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Figure 4.15: Left: simple diagram showing a classical RB system with the symmetry
argument. Right: The same type of diagram for the system with a single stripe.

The function f is still an unknown function. For these simulations we did not vary
Rayleigh nor Prandtl and therefore we cannot exactly predict its behavior. However, we
can have a look at the extreme cases. When the wave number ks approaches zero, f will
approach 1. On the other side when the wave number ks goes to infinity, f goes to 0.
The same goes for the Rayleigh and Prandtl number. If one of the numbers increases, f
is expected to move towards 0, if the numbers decrease, f is expected to move towards
1. This all is summarized again in Equation 4.3.

f → 0 Ra ↑ Pr ↑ ks ↑
f → 0 Ra ↓ Pr ↓ ks ↓ (4.3)

As we see a similar trend with the heat transfer versus stripes, it is not impossible to
think that there is a function g, which behaves similar to function f , for the heat transfer.
This definitely can be called remarkable as it suggest that with a heavily patterned plate
almost the same results can be made as with a homogeneous plate. As this sounds very
interesting for various applications in industry, we should look more into this. For now
we have only applied the stripes to the top plate. It is not known if the same results
apply when the bottom plate is patterned or if both plates have the patterning.

We have learned from the spectral analysis that we can clearly identify the patterning
close to the wall. However, when moving away from the border the effects from the
patterning disappear rapidly. At z=0.992, which is about half the thermal boundary
layer thickness, the pattern can hardly be identified. Moving outside of the boundary
layer, the pattern is not visible at all. This indicates that the whole pattern effect is
made invisible by the thermal boundary layer. Only in the f = 1 simulation we saw a
clear large scale effect of the stripe, however this was expected as the flow can only be
cooled at the conducting stripe which on its turn makes the fluid move down.
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4.3 Insulating checkerboard pattern

4.3.1 Geometry and simulation domain

Now that we have investigated the stripes, we can extend the same pattern in an
additional direction. This will result in a pattern which resembles a checkerboard in
which equally size square regions are insulating or conducting. Figure 4.16 shows an
overview of the geometry.

Lx

Ly

Lp

∂zT = 0 T = Tbottom Lp1

Lp2

Figure 4.16: The checkerboard geometry is identical to the stripe pattern and is
extended in the second horizontal dimension. The system still has a single wavelength
or frequency and the conducting and insulting area is equal in all simulations.

As with the stripes, this pattern will only be present on the top plate of the system.
The periodicity is now in two directions so the equations change only slightly. Again,
the adiabatic area is equal to the conducting area, so Lp1 = Lp2 = Lp/2. All other
parameters are an exact match with the stripes simulation.





T (x, y, h) = Ttop x, y ∈ [jLp, Lp2 + jLp] , j ∈ Z
∂zT (x, y, z) |z=h = 0 x, y /∈ [jLp, Lp2 + jLp] , j ∈ Z
T (x, y, 0) = Tbottom ∀x, y

(4.4)

4.3.2 Flow visualization

Again, to give a feel for flow field, snap shots have been created from the temperature
field. These are created from the instantaneous fields with f = 4 and f = 20 and are
shown in Figure 4.17.
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Figure 4.17: Snapshot of the instantaneous temperature field for the simulations for
f = 4 and f = 20.

4.3.3 Global quantities

First, we look at the heat transfer of the system and how it compares to the stripe
simulation. The results are plotted in Figure 4.18. The first thing to notice is that the
error bars are very small when compared to the stripes simulation and these simulations
have better statistical convergence.

Another thing that we can see is that the heat transfer from the stripes and the
checkerboard simulations are approximately the same. Again, at f = 1, the heat transfer
is around two thirds of the homogeneous RB. When increasing the wave number it is
approaching the homogeneous RB Nusselt number. Also the bulk temperature is almost
identical to the stripes simulation. Only the end part of the curve looks more smooth.
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Figure 4.18: Wave number versus the Nusselt number. There is not much difference
in the Nusselt number between the checkerboard and stripes simulations.
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Figure 4.19: Wave number versus bulk temperature. Again, the curves almost
overlap.

To check how the large scale circulation is oriented with this new pattern, new plots have
been created and are shown in Figure 4.20. The average position of the upward plumes
is again right under the adiabatic region, however, this time the average position of the
downward plumes is also below the adiabatic region. As this seems peculiar another
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plot has been made which shows the y-z plane of the vertical velocity at x=0.2. This
is plotted in Figure 4.21. Here we see that the system does have a small down flow at
the conducting area, but also an upwards flow at the same position which cancel each
other out in the middle. Only at the conducting region the flow moves downwards quite
rapidly.
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Figure 4.20: Left: a time averaged temperature slab, exactly at the border, indicating
the blue conducting area and the red insulating area. Right: a time averaged
temperature slab exactly in the middle of the system. The upward flow has again
placed itself below the adiabatic area, however, the downward flow is also placed below
the adiabatic region.
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Figure 4.21: A time averaged temperature slab at x=0.25. Here we see that the
velocity vectors at the top conducting plate are pointing downwards but are opposed
by flow moving upwards from the bottom plate. Therefore, the flow is forced to move
downwards just below the insulating area, which is remarkable.

4.3.4 Local quantities

When looking at the temperature near the insulating boundary we see small but clear
difference with the stripes simulation. The average temperature difference between each
point is 0.05. The shape is however identical.
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Figure 4.22: Wave number versus the temperature at the adiabatic wall. Here a
distinct difference is visible between the checkerboard and stripes simulation.

As with the stripes, the temperature profiles near the boundaries have been plotted for
various checkerboard frequencies in Figure 4.23. These look very similar to the profiles
from the stripe simulations.
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Figure 4.23: The average temperature difference from the wall of various checkerboard
frequencies. The adiabatic plate area (red dots) and the conducting area (black dots)
are plotted as differences from the wall. The bottom plate temperature profile (blue
dots) are reversed in temperature, T (z) = 1− T (z).

4.3.5 Discussion

We have seen that the Nusselt number is the same, within the error bars for the stripes
and the checkerboard simulations. One reason for this can be that the total conducting
and insulating areas of both systems are identical and therefore, from a global perspective
does not change that much. There is only a difference in how these areas are arranged
and from these tests it seems that this does not change the global quantities as the
Nusselt number that much.

The same is the case for the bulk temperature as this is again almost the same as the
stripes simulation. We see a small difference for the extreme case of f = 1 and in the tail
of the data. A possible explanation could be that the stripes dataset was not statistically
converged enough. Still, both quantities are very close and it seems that these global
quantities are not influenced by the difference in patterns.

It is quite remarkable that for the lowest frequency, f = 1, the large scale circulation
organizes the system in such a way that the position of the average downwards flow and
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the position of the average upwards flow is always maximized. For the stripes simulation
it was possible to place the average downwards flow below the conducting region and
the average upwards flow below an insulating region. However, with the checkerboard
pattern this is not possible. Still, the system prefers the distance between both flows to
be maximized and positions the average downwards flow below the insulating region.

The average temperature just below the insulating region has a small but distinct
difference. In the stripes simulations the insulating regions are on average 0.05 hotter
than the checkerboard simulations with the same frequency. The total area of the
insulating and conducting regions are equal but when looking at the individual patches,
the checkerboard pattern is only half the area of the stripe with the same frequency.
Also, as the frequency increases, the distance between the conducting and insulating area
decreases. With the stripes this is only in one dimension while with the checkerboard
this is in two dimensions. This might also possibly be an explanation of the slightly
lower temperature.

The temperature profiles also give an interesting overview. We know from homogeneous
RB that the temperature profiles are symmetric, meaning that if we would also reverse
one of the profiles with the same method as in Figure 4.23 we would have two overlapping
lines. As we increase the frequency we see that conducting and insulating curves slowly
merge into a single line, with only a small difference very close to the wall. Also the
bulk temperature is lowering as all lines slowly move towards a 0.5 temperature.

4.4 Conclusions

In this final chapter, we looked at mixed insulating and conducting boundary conditions.
By changing the distribution of both areas, but keeping the area equal, we studied the
global and local flow quantities. These distributions are produced by 1D striped patterns
and 2D checkerboard patterns.

When comparing the stripe pattern with the checkerboard pattern, we do not see a
significant difference in heat transfer. At the lowest k we see a decreased Nu to around
2/3 of the homogeneous case. When we increase k, we see an increase in Nu for both,
the stripes and the checkerboard simulations. It is however remarkable that this heat
transfer increases to almost the homogeneous case for the last k. The same trend is also
visual from the bulk temperature, where it also seems to converge to the homogeneous
case for increasing k. The only difference between the stripes and checker simulation
is the temperature below the adiabatic region which are on average 0.05 hotter for the
stripes simulation.

In the Fourier spectra, we could observe the frequency of the adiabatic pattern close
to the top wall boundary. When moving away from the wall, the lines of the spectra
started to merge. Almost outside of the thermal boundary layer, these structures were
unrecognizable. This implies that these structures are not seen in the LSC.





CHAPTER5
Summary and outlook

5.1 Summary

In this thesis, the main focus was to study the effect of different boundary variations
on flow quantities in Rayleigh-Bénard convection. This was done numerically, using a
parallel finite difference solver. Most simulations used Ra = 108 and Pr = 1, however,
some simulations also used Ra = 106 and/or Pr = 10.

In the first chapter, small areas with locally larger temperatures, called hot spots, were
used to simulate roughness elements on the boundary walls. These elements could
possibly position or influence the large scale circulation. Various spot configurations
have been tested, but none have shown any significant or reproducible effect on the bulk
circulation. We could also not observe any influence from these spots on the thermal
boundary layer. In the extreme case, where the system only consists of a hot- and
cold spot, keeping the rest of the boundaries at the average bulk temperature, we see
a perfectly aligned large scale circulation positioned between the spots. Reducing the
temperature difference between the boundary and its corresponding spot, we found the
onset of the decoupling at a temperature difference of 0.2.

The next chapter replaced the hot spots by physical roughness. These element differ
in dimensions but had a maximum height of 0.05, which is slightly more than twice
the height of the thermal boundary layer thickness. Again, no influence on the bulk
circulation was observed. Furthermore, 1D and 2D periodic sinusoidal patterns are used
on the bottom wall boundary. With increasing f of the sinusoidal structures, Nu for
both systems increases until an optimum. After the optimum, Nu, decreases again
with increasing f . It is suspected that the flow can take advantage of the additional
area for lower f , while for higher f , the cavities between the waves restrict the flow to
effectively use the additional space. When compensating the Nu for the additional area,
the optimum disappears and both the 1D and 2D patterns decrease rapidly after f = 6.
The temperature difference from both walls were almost equal at f = 1. Increasing f ,
we saw an increase in difference from both profiles. At f = 36, this difference seemed
to reduce again. This is however not perfectly clear. We have also done preliminary
simulations on 1D triangle waves. There seemed to be no significant difference with the
sinusoidal waves.

In the final chapter we studied the distribution of equally sized conducting and insulating
areas on the top wall boundary and their effect on the flow quantities. The two areas
were divided in stripes or checkerboard patterns. When dividing both areas only in two
segments for the stripes, or four segments for the checkerboard, Nu is approximately 2/3
of the homogeneous case. However, by maximizing the number of segments in both cases,
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Nu raises to almost the complete homogeneous case. In a spectral analysis, we showed
that the distribution of these areas perfectly visible close to the wall boundary. However,
moving outside of the thermal boundary layer these structures are indistinguishable.

5.2 Outlook

For the sinusoidal geometries, we have only explored Ra = 108. At this Ra we observed
that the system could make use of the additional area until a certain f , at which
secondary circulations were visible between the cavities. By increasing the Ra, we could
possibly influence this threshold. Also different Pr should be explored to see its effect.

For both, the 1D and 2D sinusoidal patterns, we observed that the temperature profiles
of the top and bottom plate are approximately equal for f = 1. Increasing f , we saw the
profiles slightly move apart. At f = 36 it seems that the profiles are moving closer again.
To proof this is actually happening, we need to extend the simulations with higher f .

We have only looked briefly at the triangle wave and have only compare some global
quantities to the sinusoidal waves. However, it would be interesting to look at the flow
field close to the tips of these triangles, e.g. creating a time series of the velocity field
around such a tip. Also, the effect of such a geometry with higher Ra should be explored.

In the study on the mixed insulating and conducting boundary conditions we have only
focused on Ra = 108 and changing the distribution with the wave number k. With this
we are only able to see k influences on the heat transfer. Extending the simulations
to higher Ra and other Pr will give a more complete picture on the topic. We have
observed that maximizing the number of segments, we are getting very close to the
homogeneous RB result. As we have only half of the effective area on the top plate
makes this very remarkable. By applying the same pattern on both the top and bottom
plate, it is unclear whether we would still be close to the homogeneous case.
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