

MASTER THESIS

BEHAVIOR SPECIFICATION

FOR ONTOLOGICALLY

GROUNDED CONCEPTUAL

MODELS

Ruud Wiegers

COMPUTER SCIENCE

SERVICES, CYBERSECURITY AND SAFETY

SUPERVISORS

dr. Luís Ferreira Pires

dr. João Paulo Almeida

dr.ir. Rom Langerak

02.11.2014

Abstract
Conceptual modeling of a domain of interest is an important step in the design of information

systems. To facilitate such an approach, suitable modeling languages have been developed,

among which is OntoUML, a philosophically well-founded conceptual modeling language based

on UML. However, OntoUML can be used to describe the structure of a domain, but it has not

been designed to support the description of behavior.

This thesis discusses the development a language, named OBSL, for modeling behaviors of ele-

ments of a domain, complementary to a structural specification. OBSL is designed to be expres-

sive enough to cover most common behaviors, but the focus is placed on ease of use. It de-

scribes behavior in terms of transitions between states, an abstraction that avoids the use of

temporal logic. A graphical notation for OBSL is developed, according to a theory for diagram

design aimed at cognitive effectiveness, resulting in diagrams that are intuitively appealing for

modelers, and therefore relatively easy to understand.

The semantics of OBSL is expressed in Alloy, a logic-based modeling language that has also been

used to express the semantics of OntoUML. An OBSL specification combined with its OntoUML

model can be translated to an Alloy specification, which can then be used to simulate examples

of the specified behaviors.

The language, graphical notation and transformation to Alloy are supported by a tool set, con-

sisting of a graphical editor that can be used to create and modify behavior specifications, as

well as to generate a representation in Alloy.

Acknowledgements
This thesis could not have been completed without the support of many people. I would like to

thank the following people in particular:

Luís Ferreira Pires and João Paulo Andrade Almeida, my supervisors, who through many insight-

ful Skype conversations have provided the feedback and guidance I required. Rom Langerak, my

secondary supervisor, who has always shown enthusiasm and interest, even though this thesis

lies outside his personal area of research. John, Tiago, and anyone else at NEMO who answered

my questions about OntoUML and related material. Ivan Kurtev, who supervised my research

topics, for sparking my interest in Model Driven Engineering, which started me on the road that

led to this thesis. My parents Frans and Mirjam, and my sister Ineke, for their patience and quiet

support. And finally, Irana, whose loving support has helped me through every phase of the

lengthy process of completing my studies.

Thank you.

Ruud Wiegers

Table of contents
1 Introduction .. 7

1.1 Motivation .. 7

1.2 Goals ... 8

1.3 Approach .. 9

1.4 Structure ... 10

2 Conceptual Modeling Languages ... 11

2.1 Defining conceptual modeling .. 11

2.2 Conceptualizations and Ontologies .. 13

2.3 Quality of conceptual models... 14

2.4 Other aspects ... 15

3 Unified Foundational Ontology .. 17

3.1 UFO core ... 17

3.2 Substantials .. 18

3.3 Moments .. 20

3.4 Relations ... 22

3.5 OntoUML .. 22

4 Simulation of OntoUML models ... 24

4.1 Alloy .. 24

4.2 Transformation of OntoUML to Alloy ... 25

4.3 Temporal structure ... 26

4.4 Dynamic Aspects and OntoUML ... 27

4.5 Final Considerations ... 29

5 OntoUML Behavior Specification Language ... 31

5.1 Types of behavior ... 31

5.2 Circumstances .. 33

5.3 Framework.. 34

5.4 Formal Semantics ... 36

5.5 Discussion ... 41

6 Graphical notation .. 44

6.1 Background ... 44

6.2 Domain Elements ... 47

6.3 Situations, Rules, and Rule sets .. 49

6.4 Representing absence or negation ... 51

6.5 Discussion ... 54

7 Implementation .. 55

7.1 Eclipse Modeling Framework ... 55

7.2 OntoUML Infrastructure ... 55

7.3 OBSL Tool Infrastructure .. 56

7.4 OBSL .. 57

7.5 Editor .. 57

7.6 Transformation to Alloy.. 58

7.7 Discussion ... 59

8 Case Study .. 60

8.1 Domain model .. 60

8.2 Behavior specification in OBSL ... 61

8.3 Representation in Alloy .. 64

8.4 Simulation ... 64

8.5 Discussion ... 66

9 Conclusions ... 68

9.1 Contribution ... 68

9.2 Future Work ... 68

References .. 70

7

1 Introduction
This chapter introduces the topic of this thesis. Section 1.1 provides the context and motivation for

our work. Section 1.2 describes the goals of our work, and Section 1.3 introduces the approach to

meet these goals. Section 1.4 outlines the structure of the thesis.

1.1 Motivation
The understanding and communication of ideas is essential in every field of science and engineering.

The process of capturing an abstraction of the world around us in a model, for purposes of under-

standing and communication regarding a specific domain, is called conceptual modeling [1].

Conceptual modeling plays an essential role in many areas of computer science, such as database

and information systems design, software and domain engineering, design of knowledge-based sys-

tems, requirements engineering, information integration, semantic interoperability, natural language

processing, and enterprise modeling [2].

Because conceptual models play such a key role, the quality of conceptual models is vital. There are

two important measures of the quality of a conceptual model: the suitability of the abstractions of

the conceptual model to the task of representing relevant aspects of reality, and the effectiveness

with which the model can communicate its abstractions to people [3]. Using a language specifically

engineered for the purpose of creating conceptual models gives the modeler the tools he needs to

achieve the desired level of quality. In [4], it is argued that by basing a conceptual modeling language

on a reference foundational ontology (a domain-independent description of reality), the accuracy of

the resulting conceptual models is improved.

OntoUML is an example of such a conceptual modeling language. It consists of a redesign of a subset

of UML [5] according to a reference ontology for conceptual modeling called the Unified Foundation-

al Ontology, UFO [4]. It is philosophically and cognitively well-founded, which helps improve the

soundness and completeness of conceptual models constructed using this language.

OntoUML initially focused on the structural aspects of conceptual modeling: it describes different

types of entities, their properties and parts, and the relations that connect them. OntoUML classifica-

tion is based (among other things) on the metaproperties found in OntoClean [6]. Some of these

metaproperties deal with possibility or alethic modality. This means that while OntoUML does not

include a way to explicitly express dynamic concepts (e.g. modeling of events and processes), it does

possess a limited capacity for describing dynamic aspects of modeled entities (defining ways in which

entities may change over time).

The tools supporting OntoUML include a model simulator, which aids validation of conceptual mod-

els by generating example instances: configurations of entities that are valid according to the concep-

tual model [7]. This aids a modeler during the development process, and it also facilitates communi-

cation about the conceptual model by automatically generating examples. These examples are in-

tended to demonstrate the properties of entities of a conceptual model, including the alethic modal

properties. To this end, an example is not a single world, but comprises a temporal structure, with

8

multiple worlds representing past, future, and possible worlds. The resulting simulations are suffi-

cient to show alethic properties of domain elements.

The use of complete temporal structures as examples invites a modeler to read it not only as a repre-

sentation of the alethic properties of the structural conceptual model, but as a representation of the

dynamic aspects of the domain represented by the conceptual model. The lack of expressivity of

OntoUML regarding these dynamic aspects means it is not possible to describe the behavior of the

domain entities in the conceptual model in sufficient detail. For example, consider a domain which

includes people, which may be either children or adults. OntoUML is capable of modeling these con-

cepts, but it cannot express the domain-specific constraint that persons cannot be children after

being adults. Therefore, example models may show a person as an adult in one moment, and as a

child the next. Such an example model appears to represent behavior, and specifically behavior that

does not match the domain being modeled.

1.2 Goals
This thesis aims to remedy the limitations of OntoUML concerning the representation of behaviors by

developing a language for modeling the dynamic aspects of elements of a domain. The resulting be-

havioral models will be complementary to conceptual models created with OntoUML. The formaliza-

tion of these behavioral models will be compatible with the OntoUML models they are based on, and

will be usable by the model simulator when generating examples. In this way, the purpose of the

model simulator is extended: an example model will not only represent the structural and alethic

properties of entities in a domain, but will also include their dynamic aspects.

As a secondary objective, this thesis aims to examine the benefits of developing a language that pri-

oritizes cognitive effectiveness over complete expressivity. While the language should be expressive

enough to model most behavior, the focus is on usability by modelers. We explore three facets to

achieve this. First, we aim for a language with semantics that can be understood in abstract terms,

without necessarily requiring the use of formal logic. Second, we explore the use of a visual notation

to achieve a concise and clear representation of our language. Third, we examine how the use of

model simulations can aid the modeler in creating behavioral specifications.

9

In summary, the research goals of this thesis are:

1. To identify how dynamic aspects of a domain can be represented in a conceptual model, in a

way that is complementary to a (static) conceptual model.

a. To describe the distinction between static and dynamic aspects in conceptual model-

ing.

b. To describe the limits of OntoUML with respect to describing dynamic aspects.

c. To define a modeling language capable of modeling these aspects in complementary

to static conceptual models defined in OntoUML.

2. To examine methods by which the cognitive effectiveness of a conceptual modeling language

can be enhanced.

a. To examine the effectiveness of a language which has limited expressivity (i.e., can

we define a language that do not require the user to understand formal logic?)

b. To examine the advantages of a suitable visual notation.

c. To describe ways in which integration with OntoUML’s infrastructure, particularly the

model simulator, can be used to enhance the modeling process.

3. To create a prototype as a proof-of-concept for the language and the elements of its design.

a. Develop a visual editor.

b. Develop integration with OntoUML domain models and their simulation with the

model simulator.

1.3 Approach
In order to achieve the goals as presented, we take the following approach:

1. To identify how dynamic aspects of conceptual models can be represented, we first examine

the existing work on conceptual modeling, focusing on OntoUML, and its model simulator in

particular.

2. The results of this analysis are used to design a modeling language for the behavior of con-

ceptual models. Integration with OntoUML is achieved by basing the formal semantics of our

modeling language on the semantics defined for OntoUML.

3. To create an appropriate visual representation for this language, we utilize a theory for visual

notations developed in [8].

4. To validate our approach, we create an implementation of the modeling language in the

Eclipse Modeling Framework [9]. This tool is then used to specify and simulate behaviors for

a domain ontology in a case study.

10

1.4 Structure
This thesis is further structured as follows: Chapter 1.2 presents the theoretical foundations of con-

ceptual modeling. Chapter 3 presents the structure of UFO, the foundation of OntoUML. Chapter 4

discusses the model simulator and the issues with respect to dynamic aspects of conceptual models

in OntoUML. Chapter 5 presents the language we developed to allow the specification of behaviors

of OntoUML models. Chapter 6 discusses the graphical notation for this behavior specification lan-

guage. Chapter 5.5 describes a tool to create, manage and simulate behavior specifications. Chapter

7 evaluates the approach by means of a case study.

Figure 1 summarizes the structure of this thesis.

Figure 1: Thesis structure

•1. Introduction

Theoretical
Background

•2. Conceptual Modeling Languages

•3. Unified Foundational Ontology

•4. Simulation of OntoUML models

Behavior
Specification

Language

•5. OntoUML Behavior Specification Language

•6. Graphical Notation

•7. Implementation

Evaluation •8. Case Study

•9. Conclusions

11

2 Conceptual Modeling Languages
Conceptual modeling in a broad sense is the practice of creating a description of aspects of reality for

the purpose of understanding and communication. It applies to many fields of engineering, and it

touches on the study of language, cognition, and philosophy. This broad array of sources and applica-

tions makes for a variety of definitions and terminology. For the purpose of clarity, this chapter es-

tablishes the definitions and terminology regarding conceptual modeling that is used in this thesis.

Section 2.1 describes the core concepts of conceptual modeling. Section 2.2 discusses the different

levels of abstraction in conceptual models. Section 2.3 discusses the key criteria that determine the

quality of a conceptual model. Section 2.5 discusses other criteria that influence conceptual modeling

languages. Section 2.5 describes the characteristics of OntoUML with respect to the established

framework and criteria.

2.1 Defining conceptual modeling
A suitable definition of conceptual modeling is given by Mylopoulos [1], who defines it as: “the activi-

ty of formally describing some aspects of the physical and social world around us for purposes of

understanding and communication. Moreover, it supports structuring and inferential facilities that

are psychologically grounded. After all, the descriptions that arise from conceptual modeling activi-

ties are intended to be used by humans, not machines”.

This definition highlights several aspects that are crucial to our understanding of conceptual model-

ing. Conceptual modeling is concerned with making descriptions. Conceptual models are not merely

thoughts; they are represented in some tangible form. Further, conceptual models are descriptions

of aspects of the world. A conceptual model is a description of an abstraction of reality. Different

conceptual models can describe a situation in different ways, according to their purpose. For exam-

ple, medical doctors use different conceptual models of people than accountants. Conceptual models

are models of a specific domain of discourse.

Combining these aspects, conceptual models can be described as “a representation of an abstraction

of reality”. This definition of conceptual modeling is derived from the so-called ‘triangle of meaning’

or ‘triangle of reference’ (Figure 2), which is a foundational concept in the study of language and

cognition [10].

Figure 2: Triangle of reference (terminology adapted to conceptual modeling)

represents

refers to

abstracts

Representation
(symbol)

Concept
(abstraction)

Thing
(referent)

12

To illustrate this definition, consider the statement “There is a person called John, who owns a red

car”. This is a conceptual model of a situation (according to our definition), since it is a representation

of concepts, in the form of a sentence in the English language. This sentence represents the concepts

of John, people, cars, the color red, and their relations. These concepts are mental structures, which

exist in the minds of people, such as the reader and writer of the statement that represents this con-

ceptualization. The conceptualization is an abstraction of reality itself, focusing on those aspects that

are deemed relevant by the creator of the conceptualization. In this case, the name of the person

that owns the car is included in the conceptualization, but not his age, physical location, etc.

What separates conceptual models from sentences in natural language is that conceptual models are

meant to be formal descriptions, i.e., conceptual models are intended to have well-defined seman-

tics. In Computer Science, this generally means that their semantics are defined in a mathematical or

logical structure such as first-order logic. This definition is called the formalization or axiomatization

of the conceptual modeling language. While the intent of the formalization is to provide semantics,

the use of a formalization also allows automation to be applied to the conceptual model (see Section

2.4.1).

However, such formalizations are not the primary representation of conceptual models. Conceptual

models are intended to be read by humans, so that humans can communicate about the aspects of

reality that are described. This has consequences for both the conceptualization and the representa-

tion. Both should be constructed with understandability by humans as a foremost concern.

13

2.2 Conceptualizations and Ontologies
In Computer science, conceptual models of domains are traditionally called ontologies [4], which are

related to the philosophical field of Ontology, the study of what exists. In Philosophy, the term ‘on-

tology’ is generally used to refer to a classification or description of domain-independent aspects of

entities (e.g., the nature of identity, types, properties, part-whole relations, and so on). In Computer

Science, ‘ontology’ often refers to a classification or description of what exists in the particular do-

main that is being modeled. To distinguish these, we call the former foundational ontologies, and the

latter domain ontologies.

The relation between ontologies and individual entities in a domain can be expressed as follows:

both foundational and domain ontologies define a set of world states that are valid according to the

ontology. A world state refers to a configuration of individual entities in the domain (see Figure 3).

Figure 3: Sets of admissible world states according to different ontologies [11]

In [3,4], the authors argue that in order to achieve its goals of being a suitable and clear representa-

tion of a domain, a domain ontology should be based on a foundational ontology. For example, con-

sider a domain ontology that describes cars, people, roads, cities, drivers, passengers, and their rela-

tions. A world state in which John is driving a red Volkswagen Beetle from Enschede to Amsterdam is

admissible according to this ontology. This domain ontology should be based on domain-

independent concepts, such as kinds and roles. A foundational ontology captures the domain-

independent semantics of these concepts, such as the notion that kinds can play roles, but properties

cannot. By basing the domain ontology on a foundational ontology, it is possible to create a domain

ontology that states that persons can play the role of driver with respect to a car, but it is not possi-

ble to create a domain ontology that states the color of a car is playing a role with respect to any-

thing. In this way, the grounding of domain ontologies in a foundational ontology prevents the ex-

pression of conceptualizations that are incoherent according to the foundational ontology.

14

Figure 4 summarizes the different types of conceptualization and representation and their relations.

Figure 4: Relation between ontology and conceptualization

2.3 Quality of conceptual models
 A conceptual model refers to reality (see Figure 2), and the purpose of the model is to do so accu-

rately. This reference occurs indirectly: aspects of reality are mapped to concepts, which are mapped

to a representation. The quality of a conceptual model therefore depends on the faithfulness of the-

se two mappings. The degree to which a representation matches a conceptualization is named com-

prehensibility or clarity, and the degree to which the conceptualization is a suitable abstraction of

reality is called domain appropriateness [10].

Other concerns may be important for certain conceptual modeling languages (see Section 2.4), but

comprehensibility and appropriateness are the most essential, because they are directly derived

from the defined purpose of conceptual models.

2.3.1 Clarity

In [4], Guizzardi argues that comprehensibility is based on the degree of isomorphism between con-

cept and representation. Ideal comprehensibility is reached when there is a one-to-one mapping

between elements in a representation and elements in a model. The definition of isomorphism can

be split into four properties (injectivity and surjectivity in both directions), which Guizzardi terms

lucidity, soundness, laconicity, and completeness. He shows that a mismatch between model and

Foundational

Conceptualization

Domain
Conceptualization

World State

Foundational Ontology

Domain Ontology

Instance
represents

represents

represents

Based on

Admissible
according to

Admissible
according to

Based on

Admissible
according to

15

concept reduces the quality of the model, and that a mismatch between domain conceptualization

and domain model reduces the quality of the domain model, impacting the models created from it.

In practice, representations of conceptual models often take the form of diagram-based languages

[4]. The use of visual elements impacts the clarity of the representation [8,10]: The use of visual as-

pects can suggest commonalities and differences between represented elements, and it can empha-

size or de-emphasize aspects of the conceptualization. We refer to Chapter 6 for a detailed discus-

sion of how visual aspects of a representation affect clarity.

2.3.2 Domain appropriateness

The domain appropriateness of a conceptual model is the degree to which its conceptualization suit-

ably represents reality. At first glance, this is the responsibility of the creator(s)of a conceptual mod-

el: the skill of conceptual modeling lies in the creation of suitable models. However, the design of a

conceptual modeling language should aim to facilitate the modeler in achieving his goals. As stated in

Section 2.2, the suitability of domain-specific conceptualizations is dependent on the suitability of

the foundational ontology that underlies these conceptualizations. A conceptual modeling language

can therefore improve the domain appropriateness of conceptual models by the use of a suitable

foundational ontology.

The suitability of a foundational ontology for conceptual modeling depends on how well it meets the

purpose of conceptual modeling, i.e., the usefulness of its (domain-independent) abstractions with

respect to understanding and communication between people about real-world phenomena. A

foundational ontology that is appropriate for conceptual modeling should therefore focus on a com-

mon-sense interpretation of reality, at the level at which people experience it. For instance, it should

be capable of expressing mental constructs (e.g., appointments, ownership, marriage) as well as

physical entities (e.g., people, buildings, products).

2.4 Other aspects
The design of conceptual modeling language is not only aimed at maximizing the quality of the pro-

duced conceptual models. Often, a language has other specific goals, which require a trade-off be-

tween the accuracy and appropriateness of the produced conceptual models and these other factors.

We discuss the most prevalent of these factors and their impact on the quality of the conceptual

models.

2.4.1 Formalization

Conceptual modeling languages use a mathematical system, such as first-order logic, to capture the

semantics of their conceptual models. This is referred to as the formalization of the model. A formali-

zation is an unambiguous representation of the semantics of the model. This improves its usefulness

as a tool for communication between humans, but it has also the advantage of making the semantics

suitable for automation, such as syntactic validation, visualization and simulation, or even theorem

proving or other automated reasoning tasks.

More expressive models and more elaborate automation tasks both require a stronger formalization,

and this forces a trade-off between the expressivity of the conceptual modeling language, the com-

16

putational complexity of automated reasoning tasks, and the performance and tractability of these

tasks.

OntoUML favors language expressivity over performance. Other conceptual modeling languages,

such as Z [12] and the Web Ontology Language [13], aim at enabling automated reasoning, and have

been designed with a simple formalization as an explicit criterion.

2.4.2 Implementation domain concerns

Some modeling languages are created with explicit implementation concerns. ER diagrams [14], for

example, are intended to be used as a conceptual modeling language, but with the express purpose

of modeling information systems and translating the model to a database design. This concern im-

plies that ER diagrams favor the performance of an implementation over the accuracy of the repre-

sentation.

2.4.3 User base

Some modeling languages have originally been developed for a different purpose, and have been co-

opted for use as a conceptual modeling language. Generally, the constructs of the modeling language

are related to the domain for which the language was originally intended, rather than the purpose of

expressing real-world structures and phenomena. The most notable example is UML [5], which was

originally developed to be a software design language.

Because the use of UML is ubiquitous, several studies have focused on analyzing its suitability as a

conceptual modeling language, and on modifying it towards this end. Among such adaptations of

UML is OntoUML [4], the language on which this work is based.

17

3 Unified Foundational Ontology
This chapter presents the Unified Foundational Ontology (UFO) [4]. UFO is a foundational ontology,

which is a conceptualization of the domain-independent aspects of reality. It is based on theories

from Philosophy, Cognitive Science, Linguistics and Knowledge Representation, and it is designed for

the purpose of conceptual modeling. It has been used to evaluate and redesign existing conceptual

modeling languages, as well as to provide real-world semantics for their modeling constructs [15]. In

[2], UFO has been used to redesign UML to make it more suitable for conceptual modeling, a process

that resulted in OntoUML.

A basic understanding of UFO and the terminology that is used is required for understanding concep-

tual models created with OntoUML. We outline the global structure of UFO as presented in [4]. Here

we aim for a general understanding and therefore we omit some details. We illustrate the concepts

with examples where necessary.

Section 3.1 explains the core concepts of UFO. Section 3.2 deals with the classification of substances,

Section 3.3 with properties, and Section 3.4 with relations. Section 3.5 discusses UFO’s

implementation in OntoUML.

3.1 UFO core
The Unified Foundational Ontology is a classification of the elements that make up reality into differ-

ent categories. In this section, we briefly describe the principal categories of UFO, from most general

to more specific. A further subdivision of the fundamental categories is found in the subsequent sec-

tions.

Figure 5: Fundamental categories in UFO

The topmost category is that of things, and this category encompasses all things that can exist.

Things are divided into sets and urelements, which are things that cannot be considered as sets.

Urelements are divided into universals and individuals. A universal is an entity that can in some way

be wholly and repeatedly present at many different times and places. It is a pattern of reality that

18

can be instantiated multiple times. Such instances are called individuals, and these are always single

contiguous entities that do not recur. For example, ‘Person’ is a universal, and ‘a particular person

called John’ is an individual. When the individual person ‘John’ no longer exists, he can never exist

again, but the universal ‘Person’ can be instantiated as another Person, and is wholly present in every

other person.

A universal is not simply a set of its instantiating individuals. Two universals that have the same ex-

tension (set of instantiations) are not identical. Universals are instead identified by supplied princi-

ples of application and identity, and/or in terms of the causal powers bestowed by them [16]. For

example, in a world where the universals ‘cars’ and ‘blue things’ have the same extension (the only

blue things are cars and vice versa), ‘blue’ and ‘car’ are still different, because ‘blue’ is merely a prop-

erty of a thing, whereas ‘car’ describes the identity of a thing, as well as bestowing causal powers

(cars can move).

Universals and individuals can be classified as endurants or perdurants, based on their behavior with

respect to time. Informally, endurants exist in time. They are wholly and completely present at every

moment. For example, a person observed at two different moments is still identified as the same

person, and thus is an endurant. Perdurants happen in time, and are identified by the sum of their

parts that exist in different moments. ‘A conversation’, ‘a cooking session’ and ‘a transaction’ are all

perdurants.

OntoUML is a conceptual modeling language concerned primarily with modeling the structure of

domains. As such, it builds on the ontology of endurants provided by UFO. For this reason, we omit a

discussion of perdurants.

UFO further divides endurants (both individual and universal) into substances and moments.

Endurants which cannot exist independently of others and inhere in other endurants are called Mo-

ments. Inherence is a specific type of existential dependence, difficult to characterize precisely. In-

formally, when A inheres in B, A is a property or attribute of B, or A is a way of being of B. Moments

cannot be conceived independently of the particulars they inhere in. For example, ‘John’s height’

inheres in ‘John’.

Endurants that do not inhere in others are called substantials. These are things, such as ‘cars’ and

‘people’. While they cannot inhere in other endurants, substantials may still be existentially depend-

ent on others. A person, for example, depends existentially on their brain, but ‘person’ is not a mo-

ment because a person does not inhere in their brain.

3.2 Substantials
UFO defines an elaborate subdivision of substantial universals into categories such as roles, mixins,

collectives, kinds and subkinds. This subdivision is based on metaproperties (properties of universals)

as defined in [6]. We discuss these principles informally and then explain how OntoUML uses them to

classify the universals.

19

3.2.1 Identity

The identity of a universal is defined with respect to an identity condition, a relationship defined

between two individuals. If it holds, the two individuals are the same. Universals either carry an

identity condition (inherit it from a generalization) or supply it. Each entity has only one identity

condition.

‘Person’ is a universal that supplies an identity condition. ‘Man’ and ‘woman’, as types of person,

carry the identity, but do not supply their own.

3.2.2 Rigidity

Rigidity is a metaproperty, as described in [6]. In OntoUML, rigidity is a property of universals. A

universal is rigid if it is essential to all its instances. A universal is nonrigid if it is essential to some but

not all instances. A universal is antirigid if it is not essential to any instance. A universal is essential to

an individual if and only if whenever the individual exists, it is an instance of that universal.

‘Person’ is an example of a rigid universal. Persons are always persons, and an entity cannot cease to

be a person without ceasing to exist altogether. ‘Student’ is an antirigid universal. Every student

instance is not essentially a student, i.e., all students can start or stop being a ‘student’ at some

point, while still continuing to exist. ‘Things you can sit on’ is an example of a nonrigid universal. It is

essential to individual ‘chairs’: if you can’t sit in a chair, it is no longer a chair. Crates or suitcases can

also be used for sitting on, but this is not an essential property of these things.

3.2.3 Substantial universals

Figure 3 shows the classification of substantial universals as defined by UFO, according to the princi-

ples of identity and rigidity. Instances of these categories adhere to additional rules specifying how

they may relate to other universals.

Figure 6: Substances in UFO. The categories used in OntoUML are marked in grey.

Sortal universals have an identity condition, while mixin universals do not. Substance sortals supply

the identity condition, and the other sortals carry the identity condition. Substance Sortals are all

rigid. There are three types of substance sortals: Kinds, Quantities and Collectives. Kinds are sub-

20

stance sortals that are whole and singular, such as person, car, and planet. Quantities are nominali-

zations of amounts of matter like water, sand, sugar, martini and wine. Their identity does notchange

when adding or removing some amount. Collectives are representations of collections in general,

such as a forest, a deck of cards, a pile of bricks and a pack of wolves. Subkinds are types of Sortal

that specialize other rigid sortals, e.g., man and woman, truck, van and sports car.

Phases and Roles, which are the two types of antirigid sortals defined in UFO, represent temporary

aspects of the sortals they specialize. Phases represent possible stages in the history of a substance

sortal. For example, ‘alive’ and ‘deceased’ are possible stages of a Person. Phases form a partition of

the substance sortal they specialize, based on intrinsic properties of that sortal. Roles represent tem-

porary aspects of rigid sortals based on properties that relate the sortal to external entities. For ex-

ample, Student is a role played by a person that relates them to another entity, such as a University.

Mixins are the bearers of properties that apply to dispersive types, i.e., types that are not related by

a grouping principle of identity. Categories are rigid types that represent essential properties that are

common to all their instances. An example is ‘Legal Entity’, which may apply to both persons and

organizations. Role Mixins represent abstractions of common properties of roles. Mixins represent

properties that are essential to some of its instances and accidental to others. For example, ‘thing

you can sit on’ is essential to chairs and accidental to crates.

3.3 Moments
Moments are endurants that inhere in other endurants. They are the endurants that are ‘about’ oth-

er endurants, which in some way describe the endurant they inhere in.

Using several key distinctions, UFO classifies moments into categories (Figure 7). Moments that in-

here in one endurant are intrinsic moments. Intrinsic moments are further divided into qualities and

modes. Relators are a type of moment that inheres in more than one endurant.

Figure 7: Moments in UFO

21

The simplest type of intrinsic moment is quality. A quality is an attribute of an endurant that is meas-

urable in some way. More precisely, a quality is an individual intrinsic moment inhering in an individ-

ual endurant that describes that endurant by relating it to a quale on a quality structure. For exam-

ple, ‘the weight of John’ is a quality inhering in ‘John’ that relates John to the quale ‘75kg’ on the

quality dimension ‘weight in kg’.

There are two kinds of quality structures: the quality dimension and the quality domain. A quality

dimension is a set of values that represent a measurement of a single quality (e.g., the positive real

numbers for a temperature scale, kg for weight, a 1-10 value for bitterness). Two quality dimensions

are called integral when one cannot assign a value to a quality on one dimension without assigning it

to the other (e.g., hue, saturation, and brightness, when considering color). Otherwise, two dimen-

sions are separable. A group of integral quality dimensions that are separable from all other dimen-

sions form a quality domain. For example, HSB is a quality domain for Color. A particular value on a

quality structure is called a quale.

In the realm of individuals, we speak of an individual endurant bearing a quality that is represented

by a quale. In the realm of universals, we speak of an endurant universal characterized by a quality

universal that is associated with a quality structure. An example of these relations is shown in Figure

8.

Figure 8: Example of a quality

There can be multiple quality structures used to represent a quality. The quality of Color, for exam-

ple, can be represented using a wide variety of quality domains, such as the RGB, CYMK, or CIE 1931

color spaces, or even a set of colors such as ‘red’, ‘orange’, ‘yellow’, etc.

Modes are another type of intrinsic moment. Modes cannot be described by a single quality struc-

ture, but can be conceptualized by multiple separable quality structures. Examples include beliefs,

desires, intentions, perceptions, symptoms and skills. Modes can bear other intrinsic moments, so

they may be described by a group of separate qualities.

Relators are individuals with the power of connecting entities. For example, a flight connection is a

relator that connects airports, and an enrollment is a relator that connects a student with an educa-

tional institution. A relator is a non-intrinsic moment, and it is composed of the qua individuals that

inhere in the individuals it mediates. A Qua Individual is a particular type of mode that, intuitively

22

speaking, describes the way an object participates in a certain relation. Relators are a key element in

defining material relations.

For example, the substances ‘John’ and ‘The University’ are mediated by the relator ‘the enrollment

of John at The University’. The enrollment relator is composed of the qua individuals ‘John as a stu-

dent of The University’, which inheres in John, and the qua individual ‘the university as a school for

John’, inhering in The University.

3.4 Relations
Relations are entities that glue together other entities. Each relation has a number of relata as argu-

ments, which are connected or related by that relation. We make a fundamental distinction between

formal and material relations.

Formal relations hold directly between two entities without any further intervening individual. For

example, the formal relation ‘John is taller than Mary’ holds between John and Mary without any

further individuals. There are two types of formal relations, namely comparative and basic relations.

Basic formal relations form the mathematical framework of UFO itself. They are domain-

independent, and include concepts such as specialization, inherence, instantiation and association.

These are not analyzable within UFO itself.

Comparative formal relations are domain-specific relations between entities that are founded in

qualities that are intrinsic to their relata, and so they can be reduced to relations between these

qualities. ‘John is taller than Mary’ depends on the length of both individuals, and knowing their

length is all that is required to establish the relation.

Material relations depend on some external entity. A material relation is derived from a relator, and

its relata are mediated by that relator. Examples are employments, kisses, enrollments, flight con-

nections and commitments.

Meronymic relations are relations between parts and whole. UFO’s classification of the part-whole

relations distinguishes between essential, mandatory and other types of parthood. Because parthood

relations are not relevant for this work, we omit further detail.

3.5 OntoUML
UFO was initially applied as a framework for evaluating the ontological foundations of UML. This

resulted in the definition of OntoUML, which a UML re-design, implemented as an UML Profile that

extends the UML classification structure with the concepts of UFO. This provides ontological founda-

tions to UML, making it suitable to be used as a conceptual modeling language. OntoUML can be

used for the definition of domain ontologies.

The mapping of UFO’s ontological concepts to the model elements of OntoUML is straightforward in

most cases. The categories of UFO are present in OntoUML as specializations of existing UML model

elements (see Figure 9). Instances of these categories (Universals) may be related by specialization,

as described in previous sections. There are a number of restrictions that apply to these specializa-

23

tion relations (e.g., a kind may not specialize another kind, a phase must specialize a sortal), and the-

se are included in OntoUML.

Figure 9: A fragment of the representation of UFO substances in OntoUML, as specializations of the UML Class [4]

Figure 10 shows an example domain model described with OntoUML: a family tree. The model con-

tains one kind, person. A person can be either a man or a woman, modeled as subkinds. The age of a

person is partitioned into three phases. Finally, persons can be either alive or deceased. Persons are

related to other persons through conception relators. With respect to these relators, they can play

the role of father, mother, or offspring. Elements of this domain ontology are used as examples

throughout the remainder of this work.

Figure 10: OntoUML model for a family tree

24

4 Simulation of OntoUML models
OntoUML is a conceptual modeling language based on UFO, and it is supported by a toolset that

provides a graphical editor for the specification of domain ontologies. In order to allow the modeler

to validate their models, a transformation to a formal specification language was developed [7].

Conceptual models can be translated to a specification in Alloy [17], which is a modeling language

based on first-order logic. This specification can be simulated using the Alloy Analyzer, which is a tool

that generates example instances that conform to a given Alloy specification.

Using this approach helps the modeler understand or validate the OntoUML conceptual models.

However, by simulating OntoUML domain models in time, the model simulator characterizes

OntoUML as a language capable of expressing time-related aspects of a domain, something

OntoUML was not designed to do. The goal of this work is to supplement OntoUML in precisely this

area. This chapter examines the model simulator, and the capabilities of OntoUML with respect to

expressing dynamic aspects of a domain ontology.

Section 4.1 gives an overview of Alloy and the Alloy analyzer. Section 4.2 describes the structure of

the transformation from an OntoUML model to an Alloy specification. Section 4.3 details the tem-

poral structure defined as part of the Alloy specification. Section 4.4 examines dynamic aspects of

domain ontologies and the expressiveness of OntoUML in this regard. Section 4.5 summarizes our

findings.

4.1 Alloy
Alloy is a specification language based on many-sorted first-order logic, which can be used to create

constraint-based specifications of structures. An Alloy specification is a series of declarations that

define types, relations, predicates and facts, which together constrain a space of admissible instanc-

es.

Specifications can be checked and simulated using the Alloy Analyzer, which generates admissible

instances from a specification. It does this by transforming the specification to a Boolean formula,

and using a SAT-solver to generate a configuration that satisfies the formula. This configuration is

then translated back to an instance model that conforms to the specified constraints.

Satisfiability in many-sorted first-order logic is undecidable. Alloy resolves this by limiting the search

for conformant models to a predetermined ‘scope’, which is an upper bound on the number of each

type of object contained in the model. The validity of assertions is determined by generating coun-

terexamples, and therefore the Alloy Analyzer can only determine the validity with respect to this

limited scope. I.e., it cannot prove that there is no larger scope in which a counterexample does exist.

Furthermore, even in a limited scope, the satisfiability problem is NP-complete, and it is impractical

to simulate complex specifications within large scopes. Alloy works on the principle that most errors

in models can be found with small scopes. It aims to be a practical tool used as an aid for modelers, a

lightweight alternative compared to full-fledged model checkers and theorem provers.

25

Using Alloy to simulate OntoUML conceptual models provides the following benefits:

1. Transforming a conceptual model to an Alloy specification provides an explicit formal seman-

tics, as the Alloy specification is a precise definition of admissible states of affairs in the do-

main. Such a formalization already exists for OntoUML (that’s what the transformation is

based on) but the transformation automates the application to domain ontologies.

2. The Alloy Analyzer can be used for simulation. By generating examples that conform to the

domain model and examining them, a modeler can verify heuristically that the domain model

expresses his intentions.

3. The modeler can explicitly verify intended properties of the domain model by specifying his

intentions in Alloy as assertions and using the Analyzer to find counterexamples.

4.2 Transformation of OntoUML to Alloy
In [7], a transformation from OntoUML domain models to Alloy specifications is defined. This trans-

formation consists of three elements: foundational ontological properties; a temporal structure; and

the translation from OntoUML categories to Alloy formulas.

OntoUML is based on certain fundamental ontological properties, such as rigidity (see Section 3.2.2),

existence, necessity, and essential-ness in part-whole relations. Some of these properties deal with

alethic modality or the notion of what is possible. Rigidity is the prime example. Informally, rigidity

can be described as the possibility of change: Person, a Kind, is a rigid entity, because individual per-

sons cannot stop being persons and continue to exist. Student, a Role, is anti-rigid, because it is pos-

sible for an entity to stop being a Student while continuing to exist. The semantics of these proper-

ties in terms of Alloy formulas are defined in a separate specification, using S5 modal logic.

Because Alloy does not natively support modal logic, a second specification is added that defines a

structure of multiple worlds as a foundation. The modal properties of domain entities can then be

defined in terms of these multiple worlds: necessary properties exist in all worlds, and possible prop-

erties exist in some worlds.

In the Alloy specification, the multiple worlds used by the definition are ordered as a temporal struc-

ture, with multiple worlds representing past, future, and possible worlds. This is not a requirement of

modal logic, but an interpretation of the multiple worlds in a fashion that is intuitively understanda-

ble by users. The details of this structure are discussed Section 4.3.

Lastly, the transformation defines how each of the constructs of a conceptual model should be trans-

lated to declarations in an Alloy specification. Only the domain-specific elements of an OntoUML

conceptual model are translated to the Alloy specification, and there is no explicit mention of On-

toUML’s categories in Alloy (e.g., kinds, modes, relators), beyond a broad separation into objects and

properties, which correspond to OntoUML’s substances and moments, respectively.

26

Figure 11 provides an overview of the transformation infrastructure.

Figure 11: Transformation of an OntoUML model to an Alloy specification

4.3 Temporal structure
In order to allow validation, the simulation of OntoUML models must demonstrate the properties of

its elements. Some of these properties (specifically rigidity) deal with alethic modality, i.e. the no-

tions of possibility and necessity. These cannot be expressed by a simple structural simulation. For

example, possibility can be expressed by showing a world in which the possible structure occurs, and

another in which the structure does not occur.

Conventionally, an instance of a domain model is conceived as a description of the state of a domain

at a single moment in time. For example, UML Class Diagrams are instantiated by UML Object Dia-

grams, which describe the structure of the domain at a specific moment. In order to validate On-

toUML’s modal properties, the instances of OntoUML domain models must be able to contain multi-

ple worlds. Because the generated instances are also intended to be simulations that may be in-

spected by people, a world structure is used that can be interpreted temporally (i.e., the accessibility

relation between worlds is interpreted as one of succession in time). We call an instance of this struc-

ture a history.

The world structure that is used is based on actualism [7]: there is one actual current world. In addi-

tion, there may be a single path of past worlds that occurred previously. From these past worlds

counterfactual worlds may branch, which are worlds that could have possibly occurred, but did not.

The current world may be succeeded by branches of future worlds, which are worlds that may possi-

bly occur after the current world (see Figure 12).

Domain

Ontology

(OntoUML)

Formal

Specification

(Alloy)
transformation

Admissible

Instances

(Alloy

models)

Conforms to

conforms to based on

Ontological

Properties

(Alloy)

Temporal

Structure

(Alloy)

specified by

3 2 1

Transformati
on rules

OntoUML

(e.g. Catego-

ries, Con-

straints)

27

Figure 12: The temporal ordering of worlds [7] (left), with an example instance (right)

Each of these worlds contains individuals conforming to an OntoUML model. The succession of

worlds, with individuals changing over time, provides the demonstration of OntoUML’s modal prop-

erties (see Figure 13).

Figure 13: Example history, demonstrating the antirigidity of phases.

4.4 Dynamic Aspects and OntoUML
The histories generated by the model simulator can be interpreted as the instances of OntoUML do-

main ontologies. A domain ontology can be described as defining a set of admissible world states

(see Section 2.2). Because the Alloy model simulator defines histories instead of states of a single

world, this definition needs to be amended, so that worlds are replaced with histories. OntoUML,

combined with the temporal structure defined by the transformation to Alloy, comprises a founda-

tional ontology that defines a set of admissible histories. Domain ontologies created with OntoUML

constrain this set of histories to those that are admissible according to the domain conceptualization.

However, OntoUML was developed as a language for structural models. This means it has been de-

signed with the purpose of constraining the static aspects of a domain. With respect to our definition

of ontology, this means that OntoUML is aimed at constraining admissible world states.

Complementary to the static aspects of a domain, we consider the existence of dynamic aspects of a

domain, defined as those aspects that can only be expressed in terms of more than a single world.

These dynamic aspects should not only be considered in terms of OntoUML, but in terms of domain

conceptualizations. Many domains contain time-related concepts, and if OntoUML instances have a

time-dimension, it is a matter of interest to see how well OntoUML can express these concepts.

Past world

Current world

Individual 1

(Person, Child)

Individual 1

(Person, Adult)

Counterfactual World

Individual 1

(Person, Child)

Individual 2

(Person, Child)

Individual 2

(Person, Child)

F

N F F

F

F

F

F

C

C

C

P P

C

28

We discern three categories of dynamic aspects: temporal entities, perdurants, and behavior of en-

durants. The following sections discuss each of these categories,their treatment in OntoUML and its

representation in Alloy.

4.4.1 Temporal entities

Fundamental to the notion of dynamic aspect is the structure of time in which these aspects occur. In

order to be able to describe dynamic aspects, a conceptualization of time is required.

There are many possible conceptualizations of time. Time can be expressed in numerical terms, using

timestamps. Time can also be expressed using intervals and the relations between them, describing

situations that overlap, occur consecutively, or are disjoint. Examples are the category of Chronoids

in the ontology GOL [18], and Allen’s interval algebra [19].

The notion of time used by OntoUML/Alloy is described in Section 4.3. Additional constraints exist,

which enforce that “all entities must be continuous in time”. A person cannot exist today, then dis-

appear tomorrow, then exist again next week. OntoUML/Alloy’s definition of histories constrains the

set of admissible histories: a history with two Present Worlds is inadmissible, as are cycles, or a fu-

ture world preceding a past world.

The structure of histories forms the basis of the definition of other dynamic aspects. In On-

toUML/Alloy, these constraints exist at the level of the modeling language, and a modeler of domain

ontologies cannot directly interact with this temporal structure.

4.4.2 Perdurants

Perdurants are discussed in Chapter 3: they are entities that happen in time. They cannot be fully

described by a snapshot of a single moment. Examples of perdurants are events, processes, and ac-

tions.

Foundational Ontologies like UFO-B and GFO classify entities of this kind. OntoUML contains no ex-

plicit account of perdurants, so it is not possible to directly represent these in a domain ontology

with OntoUML. However, OntoUML’s relators can be interpreted as an indirect representation of

perdurants. For example, a relator that connects a student to a university can be interpreted as a

representation of the process of that student’s studies at that university. Alternatively, the creation

of a relator can be interpreted as being caused by an event: an “ownership” relation between a per-

son and a car may be caused by a sale event.

However, such interpretations are imprecise, as they make no distinction between types of per-

durants. More complex perdurants (processes with multiple steps, complex chains of events) cannot

easily be described by relators. Relators are insufficient as a representation of perdurants.

29

4.4.3 Behavior of endurants

Behavior specification defines the constraints on the change in existence/relations between en-

durants in time. Behavior is related to perdurants, in the sense that behavior can be the effect of a

perdurant (e.g., the process of walking changes the location of a person).

Behavior is a broad category and can be modeled in many ways. At the level of foundational ontolo-

gy, ontologies like BWW model behavior in terms of laws. Transformation laws constrain how an

object may change over time. An alternative model is that of UFO-B, which gives a dispositional ac-

count of behavior: endurants have a disposition towards certain events, and events then bring about

situations.

To some extent, it is possible to model behavior with OntoUML, as there are some dynamic aspects

inherent in the categories of OntoUML that constitute behavior. The definition of those categories

constrains admissible changes to individuals that are their instances. For example, consider an ontol-

ogy that defines two Kinds: Chairs and Persons. As kinds are a rigid substantial, an individual can be

of only one Kind in its history.

 A World in which there is an individual X that is a Chair is admissible;

 A World in which there is an individual X that is a Person is admissible;

 A History that contains both these worlds consecutively, so that X is first a Chair and then a

Person, is not admissible.

In a similar vein, Relators cannot have different relata in different worlds, and relation ends marked

as essential are similarly constrained.

There are many other types of behavior, specifically those that do not arise from the category of an

endurant, but those that are related to the specific universal. For example, consider the category of

phases. Phases are grouped into phase partitions, and a single phase from the partition manifests

itself at any given world. When considering a specific universal, such as the kind person, with phase

partition child/adult/elderly, additional behavior exists in the ordering of these phases.

Persons should be in the ‘child’ phase when they begin to exist, and then possibly progress to ‘adult’

and then ‘elderly’. These restrictions cannot be expressed in an OntoUML domain model.

A modeler can make statements about this type of behavior directly in the Alloy representation of a

domain model. This is a manipulation of the set of admissible histories, directly in the formalization.

It does not affect the domain ontology itself, it merely corrects the disparity between the intended

histories and the admissible histories, in a way that is not possible in an OntoUML definition.

4.5 Final Considerations
The simulation of domain models with Alloy provides a powerful tool to aid in the creation of domain

ontologies with OntoUML.

In order to demonstrate the alethic modal properties of OntoUML’s categories, the Alloy-based

model simulator goes beyond a mere structural example of a situation in a domain, and instead uses

histories with multiple worlds as instances of OntoUML domain ontologies. This representation of

30

models in time creates expectations about the capabilities of OntoUML to express time-related as-

pects of a domain, something OntoUML was not designed to do.

To align the expectations created by the temporal structure of model instances with the expressive-

ness of the modeling language requires an extension to OntoUML. Specifically, what is missing is the

expressivity to describe behaviors related to universals of a particular domain, rather than behaviors

that are derived from the categories of domain entities.

31

5 OntoUML Behavior Specification Language
To complement OntoUML, a technique to model the behavior of domain entities is required. This

thesis proposes a modeling language for this purpose, which we call the OntoUML Behavior Specifi-

cation Language (OBSL).

This chapter describes OBSL. Section 5.1 describes the notion of behavior as modeled by OBSL. Sec-

tion 5.2 describes how OBSL models the notion of ‘circumstances’ under which particular behaviors

can occur. Section 5.3 describes the overarching framework of an OBSL specification. Section 5.4

describes the formal semantics of OBSL. Section 5.5 discusses the limitations of OBSL and the

tradeoffs involved in its design.

5.1 Types of behavior
The main goal of OBSL is to be a language for the specification of behavior for OntoUML domain on-

tologies. This means that first and foremost, OBSL should be capable of describing behavior. Specifi-

cally, OBSL should express the domain-specific dynamic aspects at the level of the universals of a

conceptual model (rather than categories, as OntoUML does). For example, a behavior specification

may describe the behavior of persons, students, or ownership, as opposed to kinds, roles or relators.

On the other hand, OBSL does not express behavior specific to individuals, except insofar as their

individuality can be expressed in terms of the universals that classify them. For example, a behavior

specification should not express behavior specifically for a person 'John', but should be able to ex-

press behavior for ‘adult male students’.

A specification of behavior should contain two elements: an identification of the behavior, and a

description of the circumstances under which the behavior occurs. We analyze these elements in the

following sections.

In Section 4.4.3, we argued that behavior can be viewed as a difference in state between worlds over

time. While more complex conceptualizations of behavior are possible, we consider only changes in

state between consecutive worlds. ‘Change in state’, in this context, can be one of three things:

1. An entity does not exist in one world, but does in the next world;

2. An entity exists in one world, but not the next world;

3. An entity (a quality) changes value.

We name these behaviors creation, deletion, and change, respectively.

Not all behaviors are applicable to all universals. We discuss behaviors of universals systematically

below:

Kinds, subkinds, and relators can have creation and deletion behaviors.

Phases are a special case. First, because phases are existentially dependent on their bearers, their

behavior description is only applicable insofar as the bearing entity continues to exist. Second, be-

cause phases occur in partitions, the deletion of a phase must always occur simultaneously with the

creation of another phase from the partition. Therefore, it is more convenient to model the behavior

32

of phases as changes between the different phases of a partition, as opposed to a pair of linked crea-

tion/deletion behaviors.

According to UFO, phases are derived purely from intrinsic qualities of the sortal that bears them

(i.e., the child/adult/elderly phases can be derived from an age quality). If that were the case, behav-

ior of phases should be specified in terms of this derivation, instead of behavioral rules. However, in

practice, it is not always the case that we wish to express the derivation of a phase. For example, the

precise derivation of the alive/deceased phases (in medical terms) is irrelevant for most models deal-

ing with persons, even though the notion of the phases themselves is relevant. For this reason, we

choose not to model the derivation of phases from intrinsic qualities.

The behavior of roles is derived from the relator that mediates them. For example, a ‘father’ role

exists when a ‘person’ participates in at least one ‘conception’ relator as a father. The role of ‘father’

follows from the existence of the relator.

As qualities are existentially dependent on their bearer, creation and deletion need not be modeled.

We do model their admissible transitions (in terms of values).

Characterization and Mediation relations are formed and removed with their respective qualities and

relators. Their behavior does not need to be modeled separately.

Table 1 summarizes the relation between universals and allowed types of behavior.

 Creation Deletion Change Derived

Kind + +

Subkind + +

Role +

Phase Partition +

Relator + +

Quality +

Mediation +

Characterization +

Material +
Table 1: Behaviors allowed for OntoUML’s universals

OBSL’s account of behavior is limited to these universals. We do not consider quantities, collectives,

mixins, part-whole relations, or formal relations.

33

5.2 Circumstances
In order to specify a particular behavior, we may have to describe the circumstances under which the

behavior occurs.

In the general case, circumstances can be interpreted as the entire history in which the behavior is to

occur. Using temporal logic, it would be possible to describe complex conditions under which the

behavioral rule applies. However, our aim is to provide a behavior description language that can be

utilized without requiring the use of (temporal) formal logic. In order to achieve this, we limit our

notion of circumstances to the pair of consecutive worlds in which the behavior occurs. This results in

the circumstances being defined as (a part of) the state of the world before and after the behavior

occurs.

In order to describe the circumstances under which a behavior occurs, and the changes in the world

that result from that behavior, OBSL relies on the notion of a situation. Situations are related to the

concept of state of affairs from philosophy, meaning roughly “a particular configuration of a part of

reality” [7]. Example states of affairs are: "John visits Mary", "John has long hair", "John is a student

at the University of Twente", "Mary is not taking any course."

States of affairs are used to discuss notions of possibility. A state of affairs is said to obtain in a world

if the individuals that are present in the state of affairs are also present in the world. For example,

the state of affairs “John has long hair” obtains in a world if John in fact has long hair in that world.

State of affairs may contain relations, partial descriptions of individuals, may describe the absence of

something, may be composed of other state of affairs, etc.

Unlike state of affairs, OBSL situations do not consist of individuals. Rather, they use the universals

from an OntoUML domain model to describe a pattern that may be matched by a configuration of

individuals that may occur in that domain. A Situation is said to obtain in a world if there are individ-

uals that match the description in the situation. For example, the situation “A person attends a uni-

versity” obtains in a world where Mary attends the University of Twente.

A situation in OBSL describes a pattern that relates individuals. The situation describes these individ-

uals by describing their properties, in terms of the universals they instantiate or the relations that

hold between them. For example, the situation “A person attends a university” relates two individu-

als, demanding that one is an instance of the kind person, the other an instance of the kind universi-

ty, and that the material relation attends holds between them.

The behavior of roles and relations is not explicitly defined by OBSL (see Section 5.1). Roles and rela-

tions can be used in situations, to describe the circumstances in which behavior of another entity

occurs.

34

OBSL is also capable of describing the absence of entities, either as part of the circumstances (a be-

havior can only occur if a certain entity is absent) or as part of the behavior itself (e.g. to express

creation, the entity being created is shown as absent in one world and present the next).

Situations can be composed of other situations. This is used for the purpose of describing complex

conditions for behavior. For example, the situation “A person that has a house but not a car” is de-

scribed in OBSL as “X is a person, Y is a house, X owns Y, but it is not the case that ‘Z is a car, and X

owns Z’”.

To relate individuals in different situations, situations can be parameterized with individuals. For

example, “Someone is a student today, but not tomorrow” is described by two situations, “X is a

student” and “X is not a student”. X is a parameter of both situations, and can be used to relate the

situations by stating: “there is an X such that the situation obtains today and the second situation

obtains tomorrow.”

5.3 Framework
The guiding principle of an OBSL specification is that "Changes in the state of the world are only pos-

sible according to the rules".

OBSL is based on a state-transition paradigm, describing the admissible behaviors for a domain entity

as transitions between a ‘before’ and ‘after’ situation. These situations specify both the conditions

under which the behavior can occur and the admissible changes to the world structure resulting from

the behavior.

The behavior of each domain entity is defined by a set of transition rules. Each of these rules de-

scribes a particular behavior, as a before- and an after-state for the domain entity, and the conditions

under which this behavior may occur, as before- and after situations. Together, such as set of rules

constrains the behavior of instances of the domain entity: with each step to a next world, an entity

must either not change, or else change in accordance with the transition rules that define its behav-

ior.

The constraints specified in the rules of an OBSL specification are defined as an addition to the con-

straints derived from an OntoUML domain ontology. This means that the description of a situation

may rely on rules that are not shown in the situation, but rather are implied by OntoUML (e.g., when

a situation describes a substance individual in a particular phase, it is implied that individual is not in

any other phase of that phase partition).

The before- and after- situations of a transition rule may imply behavior for entities other than the

one whose behavior is specified by the rule. For example, consider a behavior rule that describes the

creation of a person, and the after-situation contains a relator and role for that person (e.g., relating

that person to their parents). That relator cannot exist in the world before the person was created,

because it depends existentially on the roles it mediates, and the person playing the role does not

exist. Therefore, the relator shows behavior: it is created simultaneously with the person. This behav-

ior is not defined by the creation rule for persons. On the contrary, in order for this creation rule to

be applicable, there must be a creation rule defined for the relator.

35

5.3.1 Transition Rules

Using the concept of situations, OBSL defines the behavior of a domain entity using transition rules. A

transition rule contains two situations: a before and after situation. A transition obtains in a pair of

consecutive worlds if the before-situation obtains in the first world, and the after-situation obtains in

the second world. In order to relate both situations, the rule defines the individuals that parameter-

ize them. There are different types of rules for each domain entity.

For example, consider the behavior “Persons can change from children to adults.” This behavior is

implemented as a transition rule containing the before-situation, in which a person is a child, and an

after-situation, in which that person is an adult.

In Section 5.1, the types of behavior exhibited by each category of entity are summarized. A type of

transition rule is defined for each of these behaviors.

For example, the example transition rule above is a phase change rule for the age phase partition. It

necessarily includes an individual X, an instance of one phase in the before-situation and an instance

of another phase in the after-situation, in which both phases are members of the age phase parti-

tion.

5.3.2 Rulesets

The behavior of domain entities of an OntoUML model is described by rulesets, composed of a group

of rules that is applicable to that domain entity. An OBSL specification contains one ruleset for each

Kind, Subkind, Phase partition, Relator, and Quality that is present in an OntoUML model.

A ruleset governs the behavior of their respective entities, by specifying that for each instance of that

entity, one of the transition rules obtains in each pair of consecutive worlds, or no behavior occurs. In

other words, in each world, an individual may exhibit one of the applicable behaviors as defined by

its ruleset, or it may transition into the next world without changing.

For example, consider the age phase partition, comprised of the phases child, adult and elderly. The

ruleset that specifies the behavior contains two rules, one phase change rule that specifies the transi-

tion from child to adult, and from adult to elderly. This means that whenever a person is in the child

phase, they may only transition to the adult phase in the next world, or remain a child. They cannot

transition to elderly.

36

5.4 Formal Semantics
Here, we discuss the semantics of OBSL by describing the language constructs in terms of a formal

logic.

5.4.1 Structure

OBSL utilizes the same conceptualization of world and history as OntoUML’s Alloy-based model simu-

lations (see Section 4.3). A history is formally defined as:

 A set of worlds W;

 A relation Succeeds, defining the succession between the worlds in W. This relation is struc-

tured such that W is a branching-time Kripke structure, as used in the Alloy specification of

OntoUML [7];

 A set of individual entities E.

 A set of universals U.

Predicates are defined to relate the individual entities to universals and worlds:

A predicate Obtains(w ∈ W, e ∈ E) which is satisfied if and only if the individual e exists in world w.

For each universal, a predicate InstanceOf(w ∈ W, e ∈ E, u ∈ U) satisfied if and only if the individual e

is an instance of that universal in world W.

A predicate for each association (mediation, characterization, material association), AssociationOb-

tains(w ∈ W, e1 ∈ E, e2 ∈ E, u∈ U), which is satisfied if and only if the association u holds between e1

and e2 in world W.

5.4.2 Rulesets

A ruleset is formalized as a predicate without parameters. A ruleset is satisfied if for each pair of con-

secutive worlds and each individual in the history, one of the transition rules is satisfied:

Rulesetx()

∀w,w’ ∈ W, w’ succeeds w, ∀e ∈ E :

[Conditions] →

TransitionRuleX1 (w, w’, e) ∨ … ∨ TransitionRuleXn (w, w’, e)
Equation 1: Semantics for rulesets

The conditions under which a ruleset applies depend on the category of the entity being modeled.

These conditions are formalized as an open sentential formula (i.e., a partial expression). The intui-

tion is that a ruleset only applies when the entity changes. Additionally, for dependent entities

(phases, modes, qualities, relators), the behavior governing the bearing entity takes precedence.

For kinds and subkinds, the conditions are formalized as:

Obtains(w,e) xor Obtains(w’,e)
Equation 2: Conditions for kinds and subkinds

37

For phase partitions, the transition rules should only apply when the individual bearing the phases

exists in both worlds, but not in the same phase. The first part of this condition means that transition

rules for the behavior of the bearer of phases take precedence over transition rules for phases itself.

In particular, it is possible to describe the deletion of the bearer of a phase in the ruleset for that

bearer, without also having to specify this possible transition (from a phase to no phase at all) in the

ruleset for the phase partition. Limiting the deletion of entities to only certain phases is done by in-

cluding that phase in the description of the circumstances of deletion of the bearer.

The second part of the conditions for phase partitions (phases must be in different states) means

that it is always possible for an individual to remain in the same phase. The transition rules only gov-

ern changes. Formalized:

With bearer the universal that bears the phase partition, and partition, the set of phase universals

that compreise the partition:

InstanceOf (w, e, bearer)

∧ InstanceOf(w’,e, bearer)

∧ (∄p ∈ Partition| InstanceOf (w, e, p) ∧ InstanceOf (w’,e, p))
Equation 3: Conditions for phases

For intrinsic moments (modes and qualities), the transition rules only apply if the individual bearing

that moment exists in both worlds. Again, this is so that the creation/deletion of the bearer is not

limited by the behavioral rules of its intrinsic moments.

With b the individual that bears the mode or quality:

 ∃ b ∈ E |

(Obtains(w, b) ∧ Obtains(w’, b))

∧ (Obtains(w, e) xor Obtains(w’,e))

∧ (Characterizes(w, e, b) ∨ Characterizes(w’, e, b))
Equation 4: Conditions for modes and qualities

Relators are existentially dependent on their relata. Therefore, it should be possible for a relator to

be deleted whenever one of its relata is deleted. To achieve this, the behavioral rules for relators

only apply when none of its relata are deleted:

 ∄ r1 ∈ E | (Mediates(w, e, r1) ∧ ¬Obtains(w, rn)

∧ …

∧ ∄ rn ∈ E | (Mediates(w, e, r1) ∧ ¬Obtains(w, rn)

∧ (Obtains(w, e) xor Obtains(w’,e))
Equation 5: Conditions for relators

38

5.4.3 Transition rules

A transition is represented by a predicate, parameterized by a pair of worlds w, w’ and an individual

e, which represents the domain entity governed by the transition:

TransitionRulex(w, w’ ∈ W, e ∈ E)

Equation 6: Predicate for transition rules

The transition rule defines the entities shared between both situations, existentially quantified. The

rule is satisfied if there exist entities such that the before-situation (appropriate parameters) obtains

in w, the after-situation obtains in w’.

5.4.4 Situations

Situations are also defined as predicates, parameterized by a world W and individual entities.

Situationx(w ∈ W, p1 ∈ E,…, pn ∈ E)

Equation 7: Predicate for situations

In addition to the parameterized individuals, a situation may contain additional individuals, which

only occur locally. These are existentially quantified.

 ∃ a1 ∈ E,…, am ∈ E :

Equation 8: Quantification for local variables

The individuals bound in a situation are disjunct:

 disjunct(p1,…, pn, a1,…, am)

Equation 9: Disjunct variables

A situation predicate is defined as a conjunction of the contents of the situation:

 Classification of an individual: InstanceOfUniversal(w, ei)

 A relation: AssociationObtains(w, ei, ej)

 A subsituation: Situationy(w, …)with the appropriate individuals passed as parameters.

Some elements of a situation description may be defined in a negative form:

 An individual stated to be absent: ¬Obtains(w,ei)

 An individual not classified by a universal : ¬InstanceOfUniversal(w, ei)

 A subsituation that should not obtain: ¬Situationy(w,e…)

39

40

5.4.5 Example

Consider a domain ontology containing the kind person and the phases child, adult and elderly. For

these entities, we wish to define the behavior: “a person starts as a child”. This is formalized as:

RulesetForPerson: ∀w,w’ ∈W, w’ succeeds w, ∀e∈E :

 Exists(w, e) xor Exists(w’,e) →

PersonCreationRule (w, w’, e)

∨ PersonDeletionRule (w, w’, e)

PersonCreationRule (w, w∈ W’, e∈ E) : SNotPerson(w, e) ∧ SChild(w’,e)

PersonDeletionRule (w, w’∈ W, e∈ E) : SPerson(w, e) ∧ SNotPerson(w’,e)

SPerson(w, e) : InstanceOfPerson(w,e)

SNotPerson(w, e) : not(InstanceOfPerson(w,e))

SChild(w, e) : InstanceOfPerson(w,e) ∧ InstanceOfChild(w,e)

The behaviors “children can become adults” and “adults can become elderly” are behaviors that ap-

ply to the age phase partition. They are formalized as:

RulesetForAge: ∀w,w’ ∈W, w’ succeeds w, ∀e∈E :

InstanceOfPerson(w, e) and InstanceOfPerson (w’,e)

and not (

(InstanceOfChild(w, e) and InstanceOfChild (w’,e))

or(InstanceOfAdult(w, e) and InstanceOfAdult(w’,e))

or(InstanceOfElderly(w, e) and InstanceOfElderly(w’,e))

) →

AgeChangeRule1 (w, w’, e)

∨ AgeChangeRule2 (w, w’, e)

AgeChangeRule1 (w, w∈ W’, e∈ E) : SChild(w, e) ∧ SAdult(w’,e)

AgeChangeRule2 (w, w∈ W’, e∈ E) : SAdult(w, e) ∧ SElderly(w’,e)

SChild(w, e) : InstanceOfChild(w,e)

SAdult(w, e) : InstanceOfAdult(w,e)

SElderly(w, e) : InstanceOfElderly(w,e)

41

5.5 Discussion

5.5.1 Scope limitations

As OBSL is a proof-of-concept language, only a subset of OntoUML’s categories is supported, namely

kinds, subkinds, roles, phases, modes, qualities, relators, mediation relations, characterization rela-

tions, and material relations. Collections, part-whole relations and mixins are not considered.

OBSL’s account of qualities is limited to values in the integer domain, since only these can be simu-

lated with the Alloy analyzer. Furthermore, only single-value qualities are supported.

Formal relations are not represented either, except in a limited fashion, namely the direct compari-

son of integer values of a quality individual in separate situations. This is the bare minimum needed

to be able to represent some behavior for qualities.

5.5.2 Clarity

Many existing languages for specifying behavior use a state-and-transition model. This is because it is

relatively easy to formulate behaviors in terms of states and transitions, and conversely, it is not dif-

ficult to infer the behavior described by a state-transition model. State-transition rules in OBSL are

relatively straightforward. The state-transition language is capable of describing most common be-

haviors as they occur in domains (see Chapter 7).

OBSL’s situations and transitions can be clearly expressed in a graphical notation, which further aids

the clarity of the language.

The organization of a behavior specification, with one rule-set for the behavior associated with each

universal, guides the modeler towards the creation of a complete specification.

5.5.3 Expressivity

In several key places, OBSL has limited expressivity. This is an intentional choice in its design, to keep

it relatively simple yet useful.

Behavior as described by OBSL is limited to changes occurring between consecutive worlds, and

there is no mechanism for describing more involved behaviors such as complex multi-step processes

or workflows. Similarly, OBSL has a limited capacity for expressing the conditions under which behav-

ior can occur, again restricting itself to the pair of worlds in which the described behavior occurs.

OBSL’s notion of composition is also quite limited, both at the level of situations and of the behavior

specification as a whole.

Situations are chiefly composed through conjunction of individuals, with negation being used in some

limited cases. Notably absent is a representation for disjunction, which could be used to describe

alternative conditions under which a behavior may occur. Other logical operators (e.g., implication)

are also omitted. While the inclusion of these operators would not increase the expressivity of situa-

tion descriptions (conjunction and negation can be used to model these other operators), a situation

description that specifies complex conditions can be rather verbose without a richer composition

structure.

42

The rules of an OBSL specification are also composed in a straightforward and limited fashion. Each

domain element is governed by a rule set, which describes individual rules for the possible behaviors

of that element. These rules are composed by disjunction: each occurrence of behavior for that ele-

ment in the model is governed by (at least) one of the transition rules. There is no way to further

group these rules, or to define an order of precedence among them.

The rule sets that govern each domain element are composed by conjunction: each rule set applies,

in addition to the constraints derived from the OntoUML domain model. Again, no mechanism is

provided to modify composition.

There is some precedence of rules defined in OBSL, and these are derived from the categories of the

elements being modeled. Specifically, the rules for dependent entities, such as modes and phases,

only apply in the context of their bearer. Even though there may be no rule that explicitly describes

the deletion of a mode or phase, individual moments or phases may nevertheless be deleted when

their bearer is deleted, if the deletion of the bearer is admissible according to the specification.

There are several reasons OBSL has such a limited capacity for defining composition. First, by limiting

the expressivity in this manner, the language remains simple and therefore easy to understand and

use. Second, a limited set of operators (conjunction and negation) is easily expressed visually, where

a richer notion of composition would require more a complex representation. This issue is discussed

in Chapter 6, which introduces the visual notation we developed for OBSL.

Finally, OBSL is a prototype. If more complex notions of composition prove to be necessary to define

more realistic behavior specifications, these can be developed in later iterations.

5.5.4 Compatibility with OntoUML

OBSL’s semantics is compatible with that of OntoUML as represented in Alloy. OBSL builds on the

world structure for models as defined for OntoUML, and OBSL specifications rely on the constraints

specified in OntoUML domain models to guide behavior. However, the state-transition paradigm for

behavior used by OBSL is not a perfect fit for the semantics of OntoUML as implemented in Alloy,

and this can be observed in several places.

The main issue is that an OntoUML model without an attending OBSL specification permits any kind

of behavior allowed by OntoUML, whereas that same model with an empty OBSL specification (i.e.

transition sets without transitions) permits virtually no behavior. Only by adding transition rules to

the OBSL specification can a modeler allow more behavior. This runs contrary to the view of model-

ing used by OntoUML, where rules constrain the space of admissible histories (see Section 4.4).

For example, adding a relation between two universals in OntoUML constrains the admissible histo-

ries, by forcing that instances of these universals obey the cardinality constraints imposed by this

relation. Conversely, adding a rule to an OBSL diagram permits a certain type of behavior that was

not permitted before (such as the creation of some individual).

To alleviate this issue, an OBSL specification is generated from an OntoUML model with some transi-

tion rules already present, specifically so that the behavior of the newly generated specification is

43

closer to that of the original OntoUML model. There are some exceptions however (phases, quali-

ties), and the modeler should be aware of this.

Because OBSL defines behavior as occurring between a pair of consecutive worlds, a behavior speci-

fication does not constrain the state of the initial world of a history. This may cause the initial world

to contain a situation that is not reachable through applying the behavior specification on an empty

first world. It is difficult to alter OBSL’s or OntoUML’s semantics such that this is prevented. A possi-

ble solution could be to constrain histories such that the initial world must be empty. However, the

consequence is that generated histories will increase in size. The ‘initial state’ required to simulate a

particular behavior can currently be achieved in a single world. If the first world of a history is re-

quired to be empty, it may take several consecutive worlds to arrive at the same initial state. This

increase in complexity of the simulation may negatively impact performance.

5.5.5 Ontological concerns

OBSL’s transition rules are not intended to have any ontological status themselves. They merely con-

strain the behavior of the entities they describe. For example, consider the kind person with phases

alive and deceased. An OBSL phase change rule from alive to dead should not be interpreted as the

specification of a death event. Rather, because alive and dead are phases, they are derived from in-

trinsic qualities of person. If these qualities are to be specified directly, this should be done in On-

toUML. The function of OBSL is to say, in absence of an explicit definition of these qualities, they are

constrained by OBSL such that the resultant behavior from those qualities is compatible with the

behavior described by the OBSL.

It is possible to define behavior in OBSL that is incompatible with the dynamic aspects of categories

as defined by OntoUML. For example, a specification without phase change rules for a phase parti-

tion results in the phases of that partition being effectively rigid, which contradicts OntoUML’s defini-

tion of phases. Fortunately, using explicit visualization of anti-rigidity for OntoUML, it is possible to

detect these incompatibilities.

OBSL can be used to simulate complex behaviors (see Chapter 7). By combining the structural rules of

OntoUML (a disjoint and complete partition of roles) and the creation-deletion rules of OBSL, the

case study models a ‘phase-like’ behavior for a group of roles. The resultant OBSL specification is not

particularly clear, in the sense that noticing the ordering of these roles requires the modeler to exam-

ine three different rule sets. A solution to this problem is to adapt OntoUML to include a more elabo-

rate account of relators, or even incorporate a philosophically grounded account of perdurants. OBSL

could then be adapted to represent these constructs.

44

6 Graphical notation
One of the key characteristics of our approach is clarity of the behavior specification, both while de-

signing it as while reading it. A suitable visual notation is a great aid in this process. This chapter de-

scribes the visual notation developed for OBSL.

Section 6.1 presents a theory for the creation of effective visual notations, which was used as a guide

for developing OBSL. Section 6.2 presents the basic components of OBSL’s visual notation, which are

the symbols used to represent situations. Section 6.3 presents the structures aggregating these sym-

bols into situations, behavioral rules and the complete behavior specification. Section 6.4 presents

the visual notation for different types of negation. Section 6.5 provides a discussion of the properties

of the resulting visual notation.

6.1 Background
In [8] the author defines a theory for the design of effective visual notations. This work is extensively

sourced, and is based on research in a wide variety of fields, including communication, semiotics,

graphic design, visual perception, and cognitive psychology. For a detailed discussion of this theory,

we refer to the paper. The conclusions and recommendations proposed by this theory are helpfully

codified in a set of nine design principles. The following sections summarize these principles.

6.1.1 Semiotic Clarity

An effective visual notation requires a 1-to-1 correspondence between elements of the visualization

and the semantic constructs they represent. This principle is based on the same theoretical frame-

work as OntoUML’s (see section 2.3.1), but applied to visual notations instead of ontologies. The

concepts are equivalent: mismatches between visualization and underlying semantics are classified

as symbol excess, overload, redundancy or deficit, and the resulting issues are similar to those for

ontologies.

The exception is formed by symbol deficit, since in visual notations it is often desirable to limit the

complexity of diagrams. Not all language constructs should be represented in a visualization, espe-

cially when dealing with languages that have a lot of constructs.

6.1.2 Perceptual Discriminability

The symbols of a visual notation should be clearly distinguishable. The ability to discriminate be-

tween symbols depends primarily on the visual distance between them. Visual distance is defined as

the number of visual variables in which two symbols differ. Visual variables are the building blocks of

any graphical notation, summarized in Figure 14.

45

Figure 14: Visual variables [8]

A few factors further influence discriminability. First, the shape of symbols is the prime variable used

to distinguish symbols. Second, by separating symbols along multiple variables (called redundant

coding), they become more easily distinguishable. Third, by giving each symbol a unique value for at

least one visual variable, they can be more readily identified. Finally, text is not a visual variable, and

text is not a suitable method to use distinguish different symbol types. However, text can be used to

distinguish individual symbols of the same type.

6.1.3 Semantic Transparency

By using symbols whose appearance indicates their meaning, they are more easily interpreted cor-

rectly. This can be applied to icons as well as relationships. Again, shape is the primary variable used

to identify symbols.

Icons can use resemblance (a bull’s-eye for ‘Target’), common properties (Venn diagrams to show

overlap), or metaphor (a thrash can for ‘Delete’).

Relationships can be represented using arrows, but also containment, overlapping symbols, or spatial

location. The restrictions imposed by the choice of representation should correspond to those of the

semantics (e.g., containment cannot be used to represent multiple inheritance).

A symbol that is a suitable mnemonic for what it represents (its meaning) is called semantically im-

mediate. A symbol that offers no indication of its meaning, and thus requires memorization, is called

semantically opaque. Finally, a symbol that has a different meaning than its appearance suggests is

called semantically perverse.

6.1.4 Complexity Management

It is difficult to interpret an entire specification displayed in a single diagram. By including mecha-

nisms to deal with the complexity of diagrams, they become more readily understandable.

Two key mechanisms are modularization and the use of hierarchies. Modularization covers the de-

composition of a visual notation into separate, smaller diagrams. The use of hierarchies covers the

organization of these diagrams into a structure. By summarizing diagrams in a higher-level visual

notation, complexity is managed and a system can be understood in a top-down manner.

The management of complexity cannot be accomplished only at the level of syntax, but it requires

that the underlying semantics provide a suitable notion of (de)composition.

46

6.1.5 Cognitive Integration

If a system is represented by multiple diagrams (for the purpose of complexity management), the

user is required to integrate these diagrams in order to understand the whole system. A good visuali-

zation provides the tools to perform this integration. This includes an overview diagram that summa-

rizes the system as a whole, and navigational tools that link the diagrams.

6.1.6 Visual Expressiveness

A visual notation should use the full range of visual variables in its representation. This is similar to

the principle of discriminability, except applied to the diagram as a whole, rather than to individual

symbols.

6.1.7 Dual Coding

Use text to complement graphics. Annotations (similar to comments in code) can aid understanding,

if they are easily distinguished from the representation itself. Hybrid notations (using both text and

graphics) can be useful.

6.1.8 Graphic Economy

The number of different symbols should be manageable. Humans can only easily distinguish between

a limited number of categories (based on a single visual variable), so that interpreting more complex

visual notations can become problematic. There are three ways to deal with this issue:

1. Reduce the complexity of the semantics.

2. Introduce symbol deficit: do not distinguish between certain types of element.

3. Increase visual expressiveness. By using more visual variables to distinguish between sym-

bols, the amount of categories that can be distinguished increases.

6.1.9 Cognitive Fit

The suitability of a visual notation depends on the task it is aimed at, the level of expertise of the

user, and the medium used to display the notation. For this reason, it may be beneficial to develop

multiple representations.

6.1.10 Application

These nine principles are applied to the creation of a graphical notation for OBSL. Several factors

limit the degree to which these principles are adopted:

The implementation of OBSL is a prototype that focuses on core functionality. Support for modulari-

zation through multiple diagrams, and the use of different types of diagrams for different purposes is

not considered.

The technology used to implement an editor for OBSL diagrams has some inherent limitations. A

limited number of shapes and connectors are supported, and it is difficult to create an automatic

layout for diagrams.

The creator of OBSL has no background in graphic design.

47

6.2 Domain Elements
As a starting point for the examination of OBSL’s visual notation, we examine its basic components,

namely the representation of the contents of a situation.

6.2.1 Atomic Symbols

A situation description contains two categories of elements: Individuals corresponding to the Univer-

sals defined in an OntoUML domain ontology, and relationships that link these elements.

The Individuals we consider are instances of kinds, subkinds, phases, roles, qualities, modes, and

relators. They can be related by generalization, characterization, mediation, and material association.

The individual types can be classified according to their category, distinguishing between substances

and moments, considering rigidity, and considering the difference between inherent and mutual

moments. By aligning the visual distance of elements with this hierarchy, the visualization conforms

to the intuition of the modeler.

Category Inherence Rigidity Mutuality Complexity

Kind Substance Rigid Intrinsic

Subkind

Phase Antirigid

Intrinsic

Role Mutual

Relator Moment Rigid Mutual

Mode Antirigid

Intrinsic Simple

Quality Complex
Table 2: OntoUML categories and their properties

Figure 15: OBSL symbols for individuals

We aim at achieving semantic immediacy in that aspects of certain shapes are suggestive of their

properties:

 Solid square shapes for Kinds;

 Phases are represented by a crescent shape, which is intended to relate to lunar phases;

 Color is used to distinguish substances from moments;

Relator Quality Mode

Kind Phase Role Subkind

48

The palette of possible shapes is limited by the need for sufficient internal space to denote the name

of the universal within the symbol, rather than as a label outside the symbol. This helps prevent visu-

al clutter.

Furthermore, the symbols used represent the categories of OntoUML, and not the universals of the

domain ontology being modeled. For example, in a model that includes a car and a person the same

symbol is used to represent each individual, as they are both kinds. Using strongly figurative symbols

for shapes introduces the risk of semantic perversity: a figurative symbol may be more reminiscent

of a universal from the domain than the category it is meant to represent. Since this would reduce

clarity, to avoid this risk OBSL aims at semantic transparency: it is better that the meaning of the

symbols has to be memorized, rather than that they are erroneously interpreted as representing

universals instead of a category of universals.

6.2.2 Instantiation and classifiers

An OBSL situation contains individuals, which are each classified by one or more universals. The uni-

versals classifying an individual must be related through generalization. When representing an indi-

vidual, there are several alternative ways in which its classifiers can be represented. Figure 16 shows

the alternatives.

Figure 16: Representing individuals classified by multiple universals: a) textually; b) containment; c) relationships

Each of these alternatives has consequences with respect to the visualization. Alternative (a) is com-

pact, but is purely textual, and cannot easily distinguish between category types. Alternative (b) re-

quires all categories to be represented with a container that is roughly square-shaped, so that it can

contain multiple categories efficiently, and is cumbersome to represent complex specialization hier-

archies, since deeply layered boxes are visually confusing. Alternative (c), while clearly distinguishing

classifiers, has a weaker representation of the individual: it is less clear that the three symbols repre-

sent properties of a single individual.

We opt for alternative (c).

The generalization relation should strongly connect its relata, visually speaking, as it represents an

identity relation. To this end, we use a solid bold line. We include an arrow to indicate the direction

of the generalization, similar to that of UML, and similar to that found in the OntoUML diagrams re-

Person, Man,

Father

Person

Man

Person

Man
Father

Father

(a) (b) (c)

49

lating the respective universals. As an additional constraint, we strive to keep the arrows that repre-

sent this relationship short, keeping the relata closely together in the diagram.

6.2.3 Qualities and characterization

The characterization relation between modes or qualities and their bearers, is represented by a solid

arrow (Figure 17).

Figure 17: Representing qualities and modes

6.2.4 Mediation between relators and roles

A role represents an individual-as-a-participant in a certain type of material association. For example,

the father role represents an individual that is a father of some child. Where the role represents the

individual in the general sense, the relator represents the participating individuals with respect to

that particular relator, since a relator represents the qua individuals of the participants.

Relators are the bridging element between different individuals in a situation. To represent the dis-

tance of the connection, we use a lighter line thickness, and a dotted line instead of the solid line

used for identity and characterization.

Figure 18: Mediation relations in OBSL

6.3 Situations, Rules, and Rule sets
Situations are a partial description of the state of a world. They consist of individuals and relations

that together form a pattern, which should or should not be met by world states). In OBSL, Situations

are represented by rounded rectangles. A situation is described by means of its domain elements,

which are represented inside the symbol (rounded rectangle) that denotes the situation.

A transition rule consists of two such situations, a before- and after-situation, linked through a transi-

tion. The situations have a textual label. Because the direction of time is generally conceived of as

Car

Damaged Damage

age

age

Car

Rental RentalCar

Person

Customer

50

moving from left to right, the two situations that comprise a transition rule are ordered in this way,

with the before-situation to the left, and the after-situation to the right.

The two situations of a transition rule are linked through elements that occur in both situations. Each

transition rule has one defining individual, the individual that represents the type whose behavior is

being defined. This entity is represented in both worlds, and linked through a broad dashed arrow.

right. This link represents the flow of time from the before-situation to the after-situation.

Other elements that occur in both situations are linked through lighter, less broad dashed lines. To

represent these elements as parameters of the situations they occur in, this parameterization is rep-

resented explicitly by a colored square.

The transition rule itself is displayed as a simple rectangle, with a background color that denotes the

type of transition rule (green for creation, red for deletion, and blue for change).

A rule set is denoted by a grey rectangle, with the label denoting the Universal whose behavior is

being described, and its category.

 Figure 19 shows an example of a representation of a rule set.

Figure 19: A transition rule set in OBSL

51

6.4 Representing absence or negation
There are multiple situations in which the notion of negation needs to be represented in OBSL. These

are modeled as discussed below.

6.4.1 Absence of specialization

A substance individual may be classified by a universal, but not by a particular universal that is a spe-

cialization of that universal. The absence of the specializing individual is represented by using the red

color to denote the specialization relation, the outline and the label of the specializing classifier. Ad-

ditionally, the label is prefixed with ‘not’ (see Figure 20).

Figure 20: Absence of an aspect (phase, role, or subkind)

6.4.2 Future or past absence

An individual may be present in one of the two worlds, but not in the other. This is defined by repre-

senting the individual in one situation, and linking it to a symbol for absence that is shown in the

preceding or following situation (see Figure 21).

Figure 21: An individual that is present in one world, but not the other

6.4.3 Complex conditions

Sometimes we need to represent more complex conditions for behaviors that involve negation. To

represent those conditions, OBSL uses sub-situations. The section of the condition that is negated is

presented as a negated sub-situation, and the parent situation obtains if the sub-situation does not.

We represent the sub-situation as a red-bordered rectangle, labeled ‘not’. Again, we use a dashed

line with an explicit parameter marker on the situation border to represent a relation across situation

borders.

Figure 22 provides an example of such a complex condition. It shows the visual representation of the

situation where “there is a car that is under maintenance, and there is a garage, but it does not hold

that this car is under maintenance in that particular garage.”

Person not Child

52

Figure 22: Example of negation through use of a sub-situation

This representation of negation is rather verbose, as classifiers in the sub-situation are linked to

those in the parent situation through parameters, requiring the duplication of entities (in the exam-

ple, CarUnderMaintenance and Garage). However, this verbosity is intentional. By forcing the model-

er to explicitly and verbosely describe which classifiers obtain and which classifiers are part of the

situation that must not obtain, the meaning of the specification is expect to be clearer.

By moving elements of the specification into the sub-situation, it is possible to make fewer claims

about the nature of the individuals. For example, if we move all roles into the sub-situation, the situ-

ation obtains if “There is a car and there is a building, but it is not the case that the car is under

maintenance in that building”

6.4.4 Negation of relations

Finally, we consider the representation of negation of relations, namely generalization, characteriza-

tion, mediation, and material relations. Our analysis shows that including these options would not be

beneficial for the reasons that we discuss in the sequel.

Classifiers that are represented separately in a single situation are considered to be disjoint (i.e., they

do not classify the same individual), unless explicitly related through (a transitive closure of) generali-

zation relations. Therefore, a classifier is not a generalization of another classifier unless this general-

ization is explicitly shown. There is no need to explicitly represent a negated generalization.

In the case of characterization, it is not possible to describe an intrinsic moment unless its bearer and

the characterization relation are also represented. Since intrinsic moments inhere in a single bearer

by definition, it follows that they do not inhere in any other individual than their bearer, and repre-

senting the negation of the characterization relation is therefore not meaningful.

The precise meaning of specifying a negated mediation relation is not immediately obvious. In order

to represent a mediation relation, its relata must be represented as well. Therefore, using negation

of a mediation relation, we can only specify situations in which a mediation relation is absent but its

53

relata are not. For example, consider Figure 23, which shows a situation in which there are a person,

a car, and a rental seemingly relating these individuals, if not for the negation of one mediation rela-

tion (shown in red).

Figure 23: Possible representation of the negation of a mediation relation.

The situation shown in Figure 23 would obtain under the following conditions: there is a person rent-

ing some car. This is not the car shown in this diagram, but rather some other car, whose existence is

implied by the existence of the Rental relator. The car shown in the situation should exist, and should

also be rented by some other person, as the existence of the RentedCar role implies the existence of

another Rental relator.

As shown, the semantic implications of using negation in this fashion are rather unintuitive, as they

result in the implicit reference to additional entities (the other person and car) in worlds in which this

situation obtains.

Moreover, it is not immediately obvious what the negated mediation relation is intended to express.

We discern some alternative situations surrounding the mediation relation in which negation plays a

part. Using the entities from Figure 24 as an example, we propose suitable representations of these

situations. “A car exists, but is not rented” can be represented by negation of the RentalCar role.

Variations of “A car exists, but is not rented by this particular person” can be represented by the use

of sub-situations. As explained in Section 6.4.3, the use of sub-situations yields a more explicit repre-

sentation of the semantics, making it more likely that the intended interpretation is conveyed.

To summarize, representing negation of mediation relations would be a case of construct excess:

similar expressivity can be achieved through the use of other construct, whose meaning is clearer.

Material relations, finally, could also potentially be negated. However, they suffer from some of the

same problems as representing the negation of mediation relations. Figure 24 shows a material rela-

tion, derived from the Rental relator shown in Figure 23.

Car

Rental RentalCar

Person

Customer

Car

RentedCar

Person

Renter
not PersonRentsCar

54

Figure 24: Possible representation of the negation of a material relation.

The issue with this representation is that material relations are defined between roles, and not the

substances bearing them. Although the material relation is marked as negated, the roles are not. The

result is similar to that of the previous figure: the situation of Figure 24 obtains only when the car is

not rented by the person, but makes the additional requirements on the existence of another person

and car related to those represented in the figure.

Ideally, when specifying the absence of a material relation, the situation should be agnostic towards

the existence of other relations. Because agnosticism in OBSL is represented by the absence of an

element, this would require representing the material relation without representing the roles. This

conflicts with OntoUML’s definition of material relations.

Again, sub-situations should be used to represent this behavior.

6.5 Discussion
The visual notation for OBSL was designed according to a theory for effective visual notations. On the

whole, this has resulted in a notation that is clear enough to translate a conceptualization of behav-

iors into an OBSL specification (and vice versa).

There are a few weak points tough in OBSL’s visualization, which we discuss below.

The use of abstract geometrical figures as shapes for OntoUML’s categories is not ideal. The theory

for visual notation specifically objects to these types of shapes, as they offer no mnemonic aids to

allow a user to remember them more easily. However, as explained in Section 6.2.1, more figurative

symbols run the risk of clashing with the concepts of a domain being modeled.

Another issue is the difficulty of establishing identity when reading a diagram. Individuals are repre-

sented as ‘decomposed’ into their classifiers. As a result, separate symbols in a single situation can

depict aspects of a single individual (e.g., kinds and phases). The visual notation denotes this shared

identity by connecting these separate symbols with an arrow, but it is still a potential source of con-

fusion.

Similarly, two symbols in separate situations may represent the same individual as well, but in sepa-

rate (consecutive) worlds. Again, the arrow-notation indicates shared identity, but similar confusion

may occur.

The visual notation does not distinguish strongly enough between the defining elements and the

constraining elements of a transition rule.

Summarizing, the visual representation is sufficient, although there are some areas in which im-

provements may be possible. Some of these limitations are caused by trade-offs inherent in the lan-

guage being represented, while others are caused by limitations of the tool used for implementation,

or the graphical design skills of the designer.

55

7 Implementation
This chapter describes the tools that we have implemented to support OBSL. This implementation

can be found at http://code.google.com/p/bsl-for-ontouml/.

Section 7.1 provides an overview of the Eclipse Modeling Framework and related technologies, which

were used to implement these tools. Section 7.2 discusses OntoUML’s infrastructure, insofar as OBSL

relies on it. Section 7.3 gives an overview of the architecture of our implementation. Section 7.4 dis-

cusses the OBSL metamodel and the transformation from OntoUML to OBSL. Section 7.5 discusses

the visual model editor. Section 7.6 discusses the transformation process from the OBSL model to a

partial Alloy specification. Section 7.7 provides a discussion of the created work.

7.1 Eclipse Modeling Framework
OBSL tools rely on the Eclipse Modeling Framework [9] (EMF) and related technologies for its imple-

mentation. EMF is a framework to support Model-Driven Engineering (MDE) in Eclipse. Its foundation

is the modeling language ECore, which can be used to create (meta-)models. It is supported by the

automated generation of model editors and model implementations.

EMF includes a number of other technologies based on ECore, among which are languages for mod-

el-to-model transformation languages, constraint-based model validation, specification of graphical

editors. OBSL tools rely on the following EMF-based technologies:

 ECore ;

 Object Constraint Language [20] (OCL);

 Eclipse M2M Operational QVT [21], an implementation of Query/View/Transformation - Op-

erational Mappings, an Object Management Group (OMG) standard for model transfor-

mation languages;

 Sirius [22], a specification language for the creation of graphical model editors in Eclipse;

 Acceleo [23], an implementation of the OMG MOF Model to Text Language standard.

7.2 OntoUML Infrastructure
OBSL tools have been built upon existing tool support for OntoUML, namely the OntoUML infrastruc-

ture [24]. This infrastructure is based on the OntoUML reference metamodel, which is an ECore-

based representation of the OntoUML metamodel. This reference model is based on the ECore-

representation of UML 2.0, and extends it with OntoUML’s constructs by including OCL-based syntac-

tic constraints. This reference metamodel is used as the standard representation of OntoUML by its

EMF-based tools.

Our OBSL tools create behavior specifications for OntoUML models based on this reference meta-

model.

http://code.google.com/p/bsl-for-ontouml/

56

7.3 OBSL Tool Infrastructure
The OBSL tools support the creation of new behavioral specifications based on OntoUML models, the

modification of these behavior specifications using a graphical editor, and the translation of a behav-

ior specification to an Alloy specification. Figure 25 summarizes the process of creating a behavior

specification with OBSL.

Figure 25: Artifacts in the behavior specification process

This process begins with a domain ontology created with OntoUML, and the specification of its se-

mantics in Alloy (see Section 4.2). These can be created with other available OntoUML tools. An OBSL

behavior specification is based on an OntoUML domain ontology, represented as an instance of the

aforementioned OntoUML reference metamodel. A new, empty OBSL specification can be created

based on an OntoUML model. OBSL models are defined according to a metamodel, specified in

ECore. The transformation from an OntoUML model to a new behavior specification is specified in

QVT. Section 7.4 describes the OBSL metamodel and transformation in further detail.

The OBSL graphical editor defines the visual representation for OBSL models, as well as the opera-

tions that can be used to modify the behavior specification. This graphical editor is implemented

using Sirius. Section 7.5 details the editor.

Finally, the behavior specification can be transformed to an Alloy specification, which, combined with

the Alloy specification for the OntoUML model, results in a behavior specification that can be simu-

lated with Alloy. The transformation from an OBSL specification to Alloy is a multistage process in

which the specification is first transformed to an intermediary representation as a model, and then

to a textual Alloy specification. Section 7.6 describes the implementation of these transformations.

OBSL is implemented using principles of model driven engineering (MDE). We define a metamodel

for OBSL, and transformations from OntoUML to OBSL, and from OBSL to Alloy. These transfor-

mations are linked in a transformation chain as shown in Figure 26.

(Partial)
Formal Speci-
fication of
behavior

(Alloy)

based on

Behavior
Specification

(OBSL)

Formal
Specification

(Alloy)

Behavior
Specification

(Alloy)

transformation

transformation

combined as
transformation

Domain

Ontology

(OntoUML)

57

Figure 26: Transformation chain of the OBSL tooling

7.4 OBSL
The OBSL abstract syntax is specified as an ECore metamodel. This abstract syntax is a relatively

straightforward description of the OBSL language as presented in Chapter 5.

One important issue with this metamodel is what is called the deep metamodelling problem. OBSL is

based on an OntoUML domain ontology, and it must refer both to the universals of that ontology, by

specifying behavioral rules for them, and to the instances of those universals, which are used to spec-

ify the behavior, in the form of situations. EMF does not support the explicit representation of instan-

tiation in a model. Therefore this instantiation relation is represented by a plain reference, i.e., Indi-

viduals in an OBSL model refer to Universals in an OntoUML model.

The consequence is that the constraints described by an instantiation relation (instances conform to

universals) are not automatically applied. Instead, OCL has to be used to define these constraints.

For example, consider an OntoUML model with the kind person and the phase adult, and a corre-

sponding OBSL model with a situation in which there is an individual kind and phase. These individu-

als are meant to be instances of the OntoUML universals. An actual instantiation relation would con-

strain these instances so that an instance of the phase adult must refer to an instance of the person

kind.

A new OBSL specification can be generated from an OntoUML model that conforms to the OntoUML

reference metamodel. Such an ‘empty’ specification contains a rule set for each entity in the On-

toUML model whose behavior should be specified (as described in Section 5.1), and a series of ap-

propriate ‘default’ transition rules.

7.5 Editor
The OBSL graphical editor has been implemented using Sirius. This editor contains the visual notation

for OBSL models, in accordance with the notation described in Chapter 6, and a series of commands

that can be used to add elements to a specification.

Domain

Ontology

(OntoUML)

Behavior
Specification

(Alloy)

Intermediary

Representation

Metamodel

(ECore)

Transformation

 (Acceleo)

OBSL Editor

Specification

(Sirius)

OntoUML

Metamodel

(ECore)

OBSL

Metamodel

(ECore)

Transformation

 (QVT)

Transformation

 (QVT)

Behavior

Specification

(OBSL)

Intermediary
Representati
on

58

The commands defined in the graphical editor are such that only valid models can be created. For

example, it is only possible to create a specialization relation between classifiers in a situation if the

corresponding OntoUML universals are related by specialization.

Unfortunately, the Sirius framework defines extensive default behavior for model editors, which is

difficult to disable. Particularly, it is possible to delete elements of a specification, even if this is not

intended and would result in an invalid model.

7.6 Transformation to Alloy
The OBSL metamodel has been designed to match the Sirius specification, which has some differ-

ences from the Alloy specification. The main difference is found in its description of individuals and

classifiers.

Consider, as an example, an individual kind person, who is a man and is alive. In OBSL, this is repre-

sented by three individuals, each classified by their respective universal, and related by generaliza-

tion. This is not the most ontologically accurate representation of individuals, but it is used because it

matches the visual representation used by OBSL. Because we are interested in the behavior derived

from each aspect of an individual, individuals are explicitly shown in this decomposed representation

in OBSL. This makes it easier to discern which aspect is involved in which behavior.

Alloy, conversely, represents this group of entities as a single variable, and three statements of classi-

fication (called binding). In order to make the translation from OBSL to a representation in Alloy,

appropriate variables must be created, and the elements of a situation must be linked to these varia-

bles.

Additionally, variables, universals, etc. must receive appropriate names, compatible with those used

by the Alloy specification for OntoUML models.

The transformation process first transforms the OBSL model to an intermediary representation,

which more closely resembles the Alloy specification. This transformation introduces and names

variables, and links classifiers, variables and parameters. It also removes the explicit references to the

OntoUML model, retaining only the names of OntoUML universals.

A model-to-text transformation then translates this intermediary specification to a textual specifica-

tion in Alloy that closely resembles the formal semantics of OBSL as defined in Section 5.4.

An alternative model-to-text transformation is included, which adds the additional constraint that a

history must include an explicit example of each specified behavior rule. This method is similar to the

explicit visualization of anti-rigidity constraints for OntoUML models [7]. By using this option, a mod-

eler can more easily examine the correctness of his behavior specification, since if no valid history

can be generated, then the modeler can conclude that a conflict exists in one of the behavior rules.

59

7.7 Discussion
OBSL is supported by a set of tools, namely a graphical editor, capabilities to process existing On-

toUML models, and the capabilities to translate an OBSL specification to Alloy.

The transformation to an Alloy-based formalization integrates with the available formalization of

OntoUML models [7], which provides the option to simulate domain models with the defined behav-

ior. This helps modelers create a behavior specification that conforms to their intentions.

Our OBSL tools implementation is a prototype. The focus is on the core functionality and the clarity

of the language and its visualization. Several issues remain unaddressed:

 OBSL’s specifications are based on OntoUML models, and maintain a link to the original On-

toUML specification. OBSL specifications are not resilient to changes to the underlying On-

toUML models.

 Robustness of the implementation has not been a focus of this prototype. The validation of

model correctness through appropriate OCL constraints is an area for further work.

 OBSL’s implementation generates an Alloy specification based on an OBSL specification. The-

se specifications are intended to be used by the Alloy Analyzer to generate example models

that conform to the behavior specification. The generation of example models can be com-

putationally expensive. The performance characteristics of the Alloy specifications created

with OBSL by our tools are not the focus of our work.

60

8 Case Study
This chapter illustrates the use of OBSL to define a behavior specification for a domain model. Sec-

tion 8.1 describes the domain model. Section 8.2 demonstrate the specification of behavior for this

domain model, by proposing intended behavior, showing the specification in OBSL. Section 8.3 shows

the representation of the behavior specification in Alloy. Section 8.4 shows a simulation of the be-

havior specification. Section 8.5 discusses the issues encountered when defining this behavior speci-

fication.

8.1 Domain model
The domain model used in the case study models the renting of cars to people (see Figure 27). It

contains four kinds:

 Persons, who can rent cars;

 Buildings, used for storage or maintenance of cars;

 Companies, who may own cars and buildings;

 Cars, which be damaged or undamaged (a complex quality represented as a mode), and may

be used as a rental car by a company.

Figure 27: OntoUML model of a rental company

61

8.2 Behavior specification in OBSL
The following behavior is modeled for this domain ontology:

 Cars only accrue damage when they are rented;

 Cars can be repaired at a garage. They can only be sent to a garage when they are damaged,

and can only leave when they have been repaired;

 Only undamaged cars may be rented.

 Persons are not created unless they are customers, and not deleted unless they are no long-

er customers.

In order to focus the simulation on these particular behaviors, we have chosen not to define the cre-

ation and deletion of cars, companies, buildings, etc. This means that when one of these entities

exists in the history, they exist in every world of that history.

We describe the behavior specification for each universal in turn.

8.2.1 Persons

As an example of a simple set of behavior specification rules, we use the creation and deletion rules

of the kind person. We specify the following behaviors:

 When persons are created, they must play the role of customer.

 Only persons that are no longer customers can be deleted.

The graphical notation for specifying these behaviors in OBSL is shown in Figure 28.

Figure 28: Behavior for persons

8.2.2 Non-changing individuals

Cars, buildings, and rental companies are defined as unchanging. The relators that relate a rental

company to its cars and buildings are also defined this way. In OBSL, this means that no transition

rules are specified in the rules sets that govern these universals (see Figure 29).

62

Figure 29: Rule sets for Kinds and some relators

8.2.3 Phase Partition

The damage phase partition of car has the following behavior associated with it: a car may change

from damaged to undamaged, or vice versa. This behavior is specified in OBSL as shown in Figure 30.

Figure 30: Behavior for a phase partition

8.2.4 Mode

The constraints on how damage can be accrued and removed are specified in the transition rules for

the creation and deletion of the mode damage. The intended behavior is that damage can only occur

when a car is being rented, and that damage can only be removed when a car is being maintained.

This is specified in OBSL as shown in Figure 31.

Figure 31: Behavior for the mode damage

63

8.2.5 Relators

The relators maintenance, Parking, and RentalContract together specify the more interesting behav-

ior of the domain model.

The behavior for the RentalContract relator is specified as:

 Only undamaged cars may be rented to customers;

 The rental of a car may be terminated at any time.

These behaviors are expressed in OBSL as shown in Figure 32.

Figure 32: Behavior for the rental of a car

The behavior for the Maintenance relator is specified as:

 Only damaged cars may be sent for maintenance;

 Cars may only leave maintenance when undamaged.

These behaviors are expressed in OBSL as shown in Figure 33.

Figure 33: Behavior for the maintenance of cars

The behavior for the Parking relator is specified as:

 Cars may be parked at any time;

 Car may only leave storage when they are rented.

64

These behaviors are expressed in OBSL as shown in Figure 34.

Figure 34: Behavior for the storage of cars

8.3 Representation in Alloy
The OBSL specification can be translated to a textual behavior specification in Alloy. A fragment of

this specification is shown in Listing 1, which depicts the Alloy specification for the behavior of Per-

sons, as specified in Figure 28.

fact PersonRuleset {

 all w, w' :World, p2:Object | (

 (

 (w' in w.next)

 and ((p2 in w.Person) iff (p2 not in w'.Person))

) => (

 ((w.CreatePersonRule_before[p2] and w'.CreatePersonRule_after[p2]))

 or ((w.DeletePersonRule_before[p2] and w'.DeletePersonRule_after[p2]))

)

)

}

pred World.CreatePersonRule_before[p2:Object] {

 (p2 not in this.Person)

}

pred World.CreatePersonRule_after[p2:Object] {

 (p2 in this.Person)

 and (p2 in this.Customer)

}

pred World.DeletePersonRule_before[p2:Object] {

 (p2 in this.Person)

 and (p2 not in this.Customer)

}

pred World.DeletePersonRule_after[p2:Object] {

 (p2 not in this.Person)

}

Listing 1: Alloy specification for the behavior of persons

8.4 Simulation
We translated the OBSL behavior specification to a textual Alloy specification with our tools. We used

the transformation that not only generates constraints that apply the behavior, but also requires

histories to show an example of each behavioral rule that is specified.

65

We append this specification to the Alloy specification generated from the domain model. Using the

Alloy Analyzer, we generate an example history from this specification. The result is shown in Figures

34-36.

Figure 35: Alloy simulation: Past world

Figure 36: Alloy Simulation: Current World

Figure 37: Alloy Simulation: Future World

66

8.5 Discussion
This case study demonstrates the capabilities of OBSL as a tool for behavior specification.

The translation from a concept of behavior to the graphical description of OBSL has proven to be

fairly straightforward in each case.

The grouping of behavior according to rule sets guides the modeler in two ways. First, when trying to

create a behavior specification for each type of entity in a domain, a modeler can simply specify each

rule set in turn. When each rule set has behavior associated with it, the modeler knows he has con-

sidered each type of entity. Second, when a modeler conceives of a particular behavior he wishes to

specify, placing it in a particular rule set makes it easier to retrieve that behavior among the other

behaviors contained in a specification.

In some cases, related behaviors are spread across multiple rule sets, making it difficult to see their

association. In the example specification shown in the case study, three relators (maintenance, rent-

alcontract, and storage) are defined as a partition in the OntoUML model, since a rental car plays one

of these roles at any time. For this reason, the behaviors associated with these relators are related,

i.e., when one relator is deleted, another must be created. This relation between behaviors is similar

to what occurs with phase partitions. The behavior specification of phase partitions takes this into

account through phase change rules. The rules that govern the behavior of these partitioned relators

are not grouped in any way. Without referencing the domain model, a modeler cannot discern that

these behaviors are related.

The generation of examples with the Alloy Analyzer is fast (seconds on a personal computer). Only in

case a behavior specification is invalid and no examples can be generated the Alloy Analyzer takes

longer to report this.

The generation of examples is useful, in that it can show possible configurations of the world that the

modeler did not intend. The example model generated for the case study shows such an issue. In

Figure 35, a car is under maintenance at a garage that is owned by a different rental company than

the one that owns the car. This issue can be corrected by including the rental company in the behav-

ior specification for the maintenance relator.

The generation of explicit examples of each transition rule is useful, in that it gives an overview of the

possible behaviors displayed by the entities of a domain. It also serves to demonstrate that each

behavior can occur.

Not all issues with a behavior specification are easy to detect. In the case study, the behavior related

to the damage mode relies on the behavior related to the damagePhase phase partition. If we were

to remove the behaviors associated with the phases from the specification, the behavior specifica-

tion would still be valid, and an example of each behavior can still be generated. However, we have

introduced a subtle problem: it is not possible to delete a damage mode if that is the last damage

mode present on a car. In order to detect issues of this kind automatically, we would have to write

Alloy rules that verify that whenever the circumstances for a transition rule occur, the behavior can

possibly occur. To describe possibility, branching worlds can be used, but in that case, branches will

67

be created for each possible behavior of each entity at each point in time. The models generated

from such a specification would be very large. It would not be feasible to use Alloy to evaluate such a

specification.

68

9 Conclusions
This chapter discusses the academic contributions of the work presented in this thesis (Section 9.1),

and suggests directions for improvements and further research (Section 9.2).

9.1 Contribution
In summary, this work provides the following contributions:

Chapter 4 analyzes OntoUML/Alloy as an ontology that describes dynamic aspects of a domain. We

conclude that although OntoUML can express certain dynamic aspects through its categories, it lacks

mechanisms to describe the behavior of domain entities that stems from the particular nature of

those entities (i.e. from the domain).

Chapter 5 describes a behavior specification language that can describe the dynamic aspects of do-

main elements that are not expressible in OntoUML. By focusing on a simple language, we examine

the feasibility of writing an adequate behavior specification without necessarily requiring knowledge

of (temporal) formal logic.

Chapter 6 describes a visual notation for this language. By basing the design of this language on a

theory of visual notation focused on cognitive effectiveness, we again focus on allowing the modeler

to specify behavior intuitively, without necessarily having to think in terms of formal semantics.

Chapter 7 describes the prototype implementation in EMF. This tool allows modelers to create a

specification based on an existing OntoUML model, and to convert this specification to a formal de-

scription in Alloy that is compatible with the Alloy-based formalization created for OntoUML. Though

the prototype is integrated with OntoUML and Alloy tools, the OBSL and its tools are not only usable

on existing models, but they also allow specified behaviors to be simulated and automatically verified

for correctness and absence of conflicts.

Chapter 8 demonstrates the use of OBSL by applying it to an example case. This serves as an illustra-

tion of the language, as well as a demonstration of its usability.

9.2 Future Work
We identified three main areas in which future work can be performed by building upon the results

of this thesis: improvements of the tools, integration with other methods for behavior specification,

and the development of a more elaborate account of behavior in OntoUML.

There are many possible additions to the specification language presented in this thesis. Some of

OntoUML’s concepts were omitted. By adding support for mixins, part-whole relations, and (formal)

associations, OBSL could be applied to any OntoUML model, rather than a small subset.

The tool itself is a prototype. The models used by OBSL can be made more robust by adding con-

straints. The graphical editor can be made more robust by defining a more complete set of tools in

Sirius. This would include allowing drag-and-drop between different situations, preventing the dele-

tion of entities that should not be deleted (e.g. rule sets), more accurately limiting the creation of

associations only to valid associations, and defining validation rules that signal issues with the speci-

fication.

69

OBSL aims to describe behavior in simple terms, trading expressivity for ease of use. However, there

are cases in which a modeler would need a more expressive language to describe behavior, e.g.,

when defining formal relations. Such a language for OntoUML, which is based on OCL enriched with

temporal operators from CTL, is currently under development. It may be possible to integrate this

language with OBSL, creating a hybrid approach in which OBSL is used to define the ‘groundwork’ of

simple behaviors, and the more expressive language is used where necessary to define those behav-

iors that cannot be expressed in OBSL.

Finally, as discussed in Section 5.5.5, OntoUML’s relators provide a limited structure for specifying

behavior in a domain. By extending OntoUML’s account of behavior to allow composition or partition

in some way, OBSL could allow the representation of behavior for a group of conceptually related

relators.

70

References

[1] John Mylopoulos, "Conceptual Modeling and Telos," 1992.

[2] Olivé, Conceptual Modeling of Information Systems.: Springer-Verlag, 2007.

[3] R Weber, Conceptual Modeling of Information Systems., 1997.

[4] Giancarlo Guizzardi, Ontological Foundations for Structural Conceptual Models., 2005.

[5] Object Management Group. (2003) UML 2.0 Superstructure Specification. [Online].

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

[6] N. Guarino and C. Welty, "A Formal Ontology of Properties," in Proceedings of the ECAI-2000

workshop on Applications of Ontologies and Problem-Solving Methods., 2000.

[7] A.B. Benevides, G Guizzardi, B.B. Braga, and J.A. Almeida, "Validating Modal Aspects of OntoUML

Conceptual Models Using Automatically Generated Visual World Structures," Journal of

Universal Computer Science, vol. 16, no. 20, pp. 2904-2933, 2010.

[8] D Moody, "The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual

Notations in Software Engineering," IEEE Transactions on Sofware Engineering, vol. 35, no. 6, pp.

756-779, 2009.

[9] Eclipse Foundation. Eclipse. [Online]. http://www.eclipse.com

[10] Giancarlo Guizzardi, "On Ontology, ontologies, Conceptualizations, Modeling Languages, and

(Meta)Models," in Databases and Information Systems IV, 2007, pp. 18-39.

[11] V. de Carvalho, JPA Almeida, and G. Guizzardi, "Using Reference Domain Ontologies to Define

the Real-World Semantics of Domain-Specific Languages," in Advanced Information Systems

Engineering, vol. 8484, Thessaloniki, 2014, pp. 488-502.

[12] J. M. ‘ Spivey, Understanding Z.: Cambridge University Press, 1988.

[13] I. Horrocks, P. Patel-Schneider, and F. van Harmelen, "From SHIQ and RDF to OWL: the making of

a web ontology language," Journal of Web Semantics, vol. 1, no. 1, pp. 7-26, February 2003.

[Online]. http://www.w3.org/TR/owl-ref/

[14] P. Chen, "The entity-relationship model: Towards a unified view of data," ACM Transactions on

Database Systems, vol. 1, no. 1, 1976.

[15] Guizzardi, "Grounding Software Domain Ontologies in the Unified Foundational Ontology (UFO):

The case of the ODE Software Process Ontology," in IDEAS, 2008.

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.eclipse.com/
http://www.w3.org/TR/owl-ref/

71

[16] Armstrong, Universals: An Opinionated Introduction., 1989.

[17] D Jackson, "Alloy: a Lightweight Object Modelling Notation," TOSEM (Transactions on Software

Engineering and Methodology), vol. 2, no. 11, pp. 256-290, 2002.

[18] B. Henderson-Sellers, "Bridging metamodels and ontologies in software engineering," Journal of

Systems and Software, vol. 2, no. 84, pp. 301-313, 2011.

[19] J Allen, "Maintaining knowledge about temporal intervals," Communications of the ACM, vol. 26,

no. 11, pp. 832-843, November 1983.

[20] Object Management Group. Object Constraint Language. [Online]. www.omg.org/spec/OCL/2.2

[21] (2014, October) Eclipse QVTo. [Online]. http://www.eclipse.org/mmt/?project=qvto

[22] (2014, October) Sirius. [Online]. http://www.eclipse.org/sirius/

[23] (2014, October) Acceleo. [Online]. https://www.eclipse.org/acceleo/

[24] (2014, October) OntoUML Infrastructure. [Online]. https://code.google.com/p/rcarraretto/

[25] E.J. Lowe, The Four-Category Ontology: A Metaphysical Foundation for Natural Science. Oxford:

Oxford University Press, 2006.

[26] Giancarlo Guizzardi, Gerd Wagner, Ricardo de Almeida Falbo, Renata S.S. Guizzardi, and João

Paulo A. Almeida, "Towards Ontological Foundations for the Conceptual Modeling of Events," ,

2013.

[27] S. Bechhofer et al. (2004, February) OWL Web Ontology Language Reference. [Online].

http://www.w3.org/TR/owl-ref/

[28] A.L. Opdahl and B. Henderson-Sellers, "Ontological Evaluation of the UM LUsing the Bunge–

Wand–Weber Model," Software and Systems Modeling, vol. I, no. 1, pp. 43-67, 2002.

[29] T. P. Sales, P. P. F. Bardcelos, and G Guizzardi, "Identification of Semantic Anti-Patterns in

Ontology-Driven Conceptual Modeling via Visual Simulation," in 4th International Workshop on

Ontology-Driven Information Systems, 2012.

[30] B Heller and H Herre, "Ontological Categories in GOL," Axiomathes, vol. 14, no. 1, pp. 57-76,

March 2004.

file:///C:/Users/Ruud/Dropbox/afstuderen/Ruud%20Wiegers%20-%20MSc%20Project%20(shared)/www.omg.org/spec/OCL/2.2
http://www.eclipse.org/mmt/?project=qvto
http://www.eclipse.org/sirius/
https://www.eclipse.org/acceleo/
https://code.google.com/p/rcarraretto/
http://www.w3.org/TR/owl-ref/

