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ABSTRACT

Business Process Management Systems are used to keep track of business processes and the par-
ticipation of (among others) employees in them. At the same time, smartphones are more prevalent in
our daily lives than ever, bringing with them lots of knowledge about their context.

This available contextual information can be used to automatically change business processes to
suit the context of their users better. To achieve this, ad-hoc changes to a business process can be
defined in terms of change primitives and adaptation patterns. These changes are enacted through
decisions made by a complex event processor, based on the contextual information sent by the em-
ployee’s devices.

We design a software architecture that allows for these ad-hoc changes to be applied to the process
instances in a Business Process Management System. We then use this architecture to develop a
proof of concept implementation, and wevalidate this proof of concept through the application of typical
examples of ad-hoc changes.

We conclude that our proposed architecture is suitable for the design of a BPMS that supports the
application of ad-hoc changes based on contextual information. This information may be delivered for
various sources and mobile devices of end users are a suitable source of information. However, more
research is needed for validation on a full scale.
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To improve is to change;
to be perfect is to change often.

WINSTON LEONARD
SPENCER-CHURCHILL
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PREFACE

As early as I can remember I always liked to solve puzzles. When I was young it would be jigsaw
puzzles or building with LEGO, but as I grew older more complex puzzles took my interests, such as
chess, illusions and computer games (although some knowledge of these might have been lost to time
and/or beer). This combined with the fact that I was good at the exact sciences in school lead to me
choosing, unsurprisingly, to study Computer Science at the University of Twente. During my bachelor I
grew an interest in solving larger and more abstract puzzles, getting involved into software architecture.
This in turn lead to the, again unsurprising, choice to do a masters in software engineering.

This thesis is the result of eight months of work at the University of Twente and Capgemini. After
looking for a research topic for a while it dawned on me that I had no real pressing issues that I wanted
to research myself. With the help of the folks at Capgemini I stumbled onto the idea of making busi-
ness processes less rigid. I had worked with business processes and business process management
systems before at my part time jobs, and noticed that improvements could be made. Using contextual
information in mobile devices was not my first idea, but when I heard the idea it made sense to me, and
I started my research. Eight months later, the result is this thesis.

I would like to thank my supervisors for their support in my research. Luı́s, who’s office door I could
always barge in, announced beforehand of course, for helping me at the start, putting me on the right
path. For always making me think and answer the questions that I had asked him myself only moments
before, and for his fast replies in reviewing sections of my thesis, again with lots of ”Think about what
you really want to say here” -type comments written in the margins, which were always helpful.

I would also like to thank Arjan, for keeping me on track and reminding me that research can also
have a value for the industry, not just academics. Discussions with him, specifically in the latter stages
when I moved to Utrecht, were always of value and made me look at problems from different angles. I
would also like to thank Eduardo, who may have only be involved in the later stages of the game, but
provided invaluable feedback from even more different angles.

Besides my daily supervision there are other people that made this thesis possible. My girlfriend
Nienke, whom I could always trust to kick my ass whenever I wasn’t working when I should have been.
My father Nico, who may not be a computer scientist but is a doctor, for his trove of knowledge of
academia in general, and academic English specifically. I could always call and ask for his advice.
Christoph Bockisch, for being my track mentor during my masters and helping me with the formalities
of writing a masters thesis. And last but not least Paul Sijbers, who was my first point of contact at
Capgemini in the early days, for putting his faith in me (multiple times) when standardized tests and
unexpected planning issues failed me.

As I have said more than once to multiple persons: I am not an academic researcher at heart. But
I think that may have made this whole experience even more valuable. I hope you enjoy reading this
thesis as much as I have had writing it.
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Chapter 1

Introduction

In this chapter we introduce the concepts of Context in Mobile Devices and Business Process Manage-

ment, and we show the possibilities for synergy between them. We then define our research goal with

accompanying research question and objectives. Finally a structure for the remainder of the report is

given.

1.1 Context in Mobile Devices

In today’s world more and more people have a smartphone. Smartphone penetration is expected to

reach 1.75 billion in 2014, rising to 2.5 billion as soon as 2017 [1]. How we use our smartphones

has been the subject of research for some time. It has been shown that the time we spend using our

smartphones already exceeds the time we spend online on our desktop computers [2]. We use our

smartphones when we are at work, to read and reply to email, to make calls, to take notes and to keep

our schedule close and up-to-date. As a result, our smartphones have access to a lot of information,

which can be used for lots of different applications.

When a device has knowledge about itself and its surroundings it can use this information to react to

a situation, as well as adapt to it if necessary. This type of systems are normally called Context-Aware

Systems (CAS). A CAS can have knowledge of this type of information about their users, the devices

they run on, as well as their surroundings [3]. They can make decisions and take actions based on

that information. Some examples of CAS’ are: an automatic sliding door (a very simple context-aware

system) and a car with Lane-Assist technology that warns the driver when he is leaving a lane.

A CAS can make decisions in a number of ways. A simple construct consisting of if-then-else rules

can govern how a system reacts to its context, while on the other end of the spectrum some form of
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artificial intelligence may be utilized for the decision making. However, most often CAS react and adapt

to their environment because of a change in that environment. When multiple changes occur in the

environment simultaneously, one might infer that something larger is happening. For example, if the

level of light detected is dropping, we would not directly be able to determine its cause, but combining

this with the information that there is no more GPS signal could lead us to infer the possible cause,

namely that we walked in-doors. A technology that can assist in these situations is called Complex

Event Processing (CEP), namely by combining multiple sources of information about a changing context

to reach decisions [4].

1.2 Business Process Management

Business Processes capture the way a company does its business, often as a combination of tasks and

transitions between tasks. Data may also be exchanged as a part of these transitions. The tasks in a

business process then require only a transition to be chosen to reach the next task(s) [5]. To accurately

keep track of these business processes they are defined in a Business Process Model. This exact defi-

nition of a business process, together with a record of its executions, allows for analysis and comparison.

Companies are constantly trying to optimize their business processes with respect to various factors.

In Business Process Management (BPM), the business processes that a company uses can be main-

tained in a Business Process Management System (BPMS) [6]. A BPMS keeps track of the business

processes and all the relevant factors, such as progression through the process and documents asso-

ciated to a business process, throughout time. A BPMS also supports analytical methods that use this

information to allow iterative improvement of business processes in the Business Process Management

Life Cycle.

1.3 Synergies

The fact that we use our smartphones increasingly often in our daily lives opens up increasing possibili-

ties to make use of this contextual information they have access to. Combining contextual information in

mobile devices with complex event processing allows one to infer situations and take decisions based

on the context captured by these devices.

We can use this contextual information to help support business processes. A business process is

subject to change through the business process management life-cycle. The information that causes

these changes is based on the analysis of recorded instances of the business process. Some changes
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that are temporary, or some that might be needed directly, can thus be realized without having to go

through the iterative process. These changes can be done in an ad-hoc manner to allow the BPMS to

change processes instances directly based on current contextual information.

1.4 Goal

The goal of this research is: To identify and demonstrate the benefits of combining Context-Awareness

in Mobile Devices with Business Process Management, and design an architecture that can use these

benefits to apply ad-hoc changes to Business Processes.

1.4.1 Research Question and Objectives

To help achieve the goal of this research we have set out a research question and two research objec-

tives:

RQ: What is the state of the art in the fields of Context-Awareness in mobile devices and

Business Process Management, and how can they be combined?

RO1: Design a software architecture for a BPMS that can use these benefits to apply ad-hoc

changes.

RO2: Implement a Proof of Concept and validate the developed architecture.

To answer the research question we have performed a literature study of the relevant fields leading

to a conclusion how they can be combined. The first objective asks for the design of a software archi-

tecture, the answer to the research question will allow us to develop this architecture. For the second

objective, we used the designed architecture to implement a proof of concept, with which we can vali-

date the architecture.

The primary goal of this research is then achieved through the design and evaluation of an archi-

tecture for a BPMS that supports the application of ad-hoc changes driven by contextual information

from user mobile devices. To show the viability of such an architecture we have built a simple proof-of-

concept.

1.5 Report Structure

The remainder of this thesis is structured as follows: Chapter 2 discusses the background on context-

awareness, context information in mobile devices, complex event processing and business process

management. Chapter 3 presents the principles developed to support ad-hoc changes, outlines an
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architecture for a system that is capable of coping with context-driven ad-hoc changes and discusses

a few examples where the technology may be applied. Chapter 4 concentrates on the design choices

and implementation of the proof of concept, and uses it to validate the proposed architecture. Chapter

6 discusses the results and our conclusions, and identifies opportunities for further work.
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Chapter 2

Background Information

This chapter gives the necessary background information for our research. We discuss the concept of

context-awareness, contextual information in mobile devices, complex event processing and business

process management. We conclude this chapter with a discussion on how these areas of research

have been combined, and can be combined in the future.

2.1 Context-Awareness

When using the term Context-Aware Systems (CAS), the meaning of the word Context should be de-

fined. This section investigates how most authors define Context, which kinds of context exist in Infor-

mation and Communication Technology (ICT) and how such contextual information can be represented

in a computer system. We then discuss our definition of the term Context-Awareness and how context-

aware systems make use of sensors to build a representation of their context.

2.1.1 What is Context?

In ICT, context plays an important role in case devices are designed to make autonomous decisions,

because such autonomous decisions are often based on the context of the device. Several definitions

of context exist. Schilit [3] defines context as: location, nearby people, hosts and devices, and changes

to those things over time. Thus, context is all about the information that is relevant to the application.

However we can extend this definition, since not only external factors come into play when making a

decision. The internal state of a device might be relevant to the autonomous decision making process

as well [7]. Ryan [6] categorizes context as: locations, states of sensors and computers, imaginary

companions and temporal events.
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Because context is can be complex, real world context is always transformed into a digital repre-

sentation. This representation might be only accurate to a specified degree, and such partial accuracy

might even result in the representation of the context being fundamentally different from the actual con-

text [8]. When talking about context we thus always have to take into account that the device is dealing

with a constructed representation or model of the context and not the actual context. Furthermore, this

representation is tailored to the application it is used for, and other contextual information irrelevant to

the application is normally not considered.

2.1.2 Context Types

The concept of Context may be taken in a very broad sense. While the location of a device is relevant for

many applications in terms of contextual information, some other forms of context might not be as easy

to recognize. The categories given by Schilit and Ryan as listed in the last section can be extended.

Dey et al. [9] divide context into 4 different categories: location, identity, activity, and time. These

categories loosely correlate with other categorizations reported in similar research, such as physical,

user, computing and time [10]. Below we discuss these four categories defined by Dey et al.

Location Context: The location of device can be important information for decision making. Knowing

where a device is allows us to decide what can be done there. Furthermore, the location allows us to

infer information about the physical things around us. By knowing which room we are in, we can infer

what other items are present, all of which might influence our behavior. A location might be familiar to

us or not, and different locations may elicit different responses.

Identity Context: Who we are, and what is around us can also be a part of context. Knowing that

there are books on the table is often not enough, we might also want to know which books they are and

maybe even who owns them. There are important differences between specific instances of objects. If

we see our own cup of coffee on the table, picking it up and taking a sip is an option, but when it is not

our cup our reaction might be different. We also want to react differently to different actors, and whether

we know someone personally or not will affect our interactions too. Objects thus have an identity and

are not by definition necessarily humans. Furthermore, more than one identity can be associated with

an object, and we assume that each object has at least one identity associated with it.

Activity Context: In a hypothetical static world we could plan all our actions far in advance, but in

reality the environment around us is changing, and we have to take this into consideration when making

decisions. All these things happening around us comprise the activity context. Depending on changes

in this activity context, we have to react differently. For example, a different action can be taken de-
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pending on what some other actor is doing. The difference between speeding up or slowing down while

driving a car towards someone is quite important when trying to decide which action has to be taken in

order to avoid a collision.

Another example can be seen in smartphones, where multiple programs can be run at the same

time. The fact that other programs are running can be important contextual information. For example,

when a call comes in and the music player is running, an action can be taken to pause or mute the

music player and let the call come through.

Temporal Context: Some things happen at predetermined times. A meeting, for example, might be

scheduled from 1:00 pm to 2:30 pm. It is therefore important to know what the current time is if we want

to make decisions based on things relative to time. This is most likely the local time, UTC or some other

coordinated timeframe. A system that records lectures should only be active while a lecture is being

given. This can be derived from the lecture time schedule, and the knowledge of the current timeframe

relative to that schedule. Another example of temporal context being used, is when the automatic doors

to an office only open during working hours.

Primary and Secondary Context

The context types discussed in this section can be mapped, respectively, to the questions Where?,

Who?, What? and When?. We call these types of context information primary context [9]. This contex-

tual information is retrieved through context sources; which are sub-systems that give access to context

information. We can precisely define any context as a combination of these primary contexts. Further-

more, if we have a central system where information is stored, then we can use these primary contexts

as anchor points to retrieve more information, and we can infer secondary context from known primary

context [9]. This secondary context entails other information related to primary context, for example, the

e-mail address and job related to an identity. We can also infer primary contextual information about

other entities. For example, by knowing the location of a device we can infer the other identities of other

entities (people or objects) known to be in the same location.

We can now define context as a two-tiered system of primary and secondary contextual information.

It is also possible that secondary contextual information is inferred from multiple source of primary

contextual information. For example, a weather forecast system requires both the location and the time

of the desired forecast to be known.
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Contextual Representation

Reasoning about context with computers presupposes a digital representation. This representation is

only a model or an approximation of reality for two reasons. In the first place, our sensors have limited

capabilities, such as speed and accuracy. This introduces a difference between the actual context and

its representation. Secondly, it would not be feasible to build a completely accurate representation of

the world, since there is simply too much information. We thus restrict ourselves to the information

that is relevant to the application. This means that any reasoning about a contextual representation by

necessity has to take into account that this information may be both incomplete and inaccurate. Figure

2.1 shows the duality between the real world, and the internal contextual representation.

Figure 2.1: A device with the real observable world and its internal representation

2.1.3 Defining Context-Awareness

Schilit et al. [3] defined Context-Aware Systems as systems that adapt according to their context. A

lot of different definitions of context-awareness have been given by various authors. Dey et.al. discuss

the various definitions of context [9], first defining the difference between using context and adapting

to context. When using context, various inputs are used (human, sensory) to gain information about

the context, and this information is then used as input for the application. In adaptation, the contextual

information is used to perform actions that change the state of the application, such as changing the

graphical interface of a program or opening an automatic door.

Dey et al. define context-awareness as follows:

A system is context-aware if it uses context to provide relevant information and/or services

to the user, where relevancy depends on the users task [9].
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This definition stresses the importance of the duality of using context and adapting to it: when pro-

viding information, a system only utilizes the context, and when providing services, a system performs

actions based on the context. Furthermore, the definition stresses the relevance of the context to the

task at hand. A context-aware system thus reacts and adapts to the context in a way that is useful to

the user, and therefore being aware of context that is irrelevant to the task at hand does not comply with

our definition of context-awareness. The relevance of a piece of contextual information, however, might

change during operation.

Sensor Types

To obtain information about the context a system needs sensors, since sensors allow measurements

of some form to be done about the context. Each type of context maps to one or more different types

of sensors [11]. In this view, sensors are not restricted to hardware devices like microphones, but they

can also be some software or even a service, such as, for example, a database of all postal codes and

geographical locations.

For the location context, the most popular sensor is GPS, which allows location tracking with an ac-

curacy of up to 5 meters [12]. Other techniques augment and improve GPS and increase its accuracy.

Example of this augmentation are WLAN-based location that uses nearby WLAN access points with

known location as references, as well as cell tower based location that uses the cellular network towers.

Most of these techniques are less effective indoors because of physical barriers that block radio signals.

Different techniques can then be used to infer the user’s position, such as an accelerometer to count

steps and an internal compass to determine orientation, as well as specifically placed base stations to

allow triangulation.

To establish the identity context and find the identity of different objects, we can also rely on several

sensors. In most wireless communications, identity is established by each communicating party. This

is true for Bluetooth and WLAN, and to some extent also for RFID. One can also use the camera to

determine object identities indirectly, possibly with the use of QR-codes [12]. Identification via audio,

such as voice recognition, can also be used to determine if a specific person is nearby to some location.

The activity context defines what changes are happening and what is being done at the moment,

both in the world around the device, and on the device itself by the user. We can sense this context, for

example, via a camera to capture moving objects. In addition to physical changes, we can also detect

changes in the software state of a system. For example, we can detect which programs are running or

which services are available.
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The system clock is the basic mechanism concerning the temporal context. Through synchronization

via the cellular network we can know the current time with reasonable accuracy. To know the relative

times of different context changes, offsets to a fixed time, called timestamps, can be used. Timestamps

identify the point in time that a change in context has occurred or will occur. This allows us to reason

about these changes afterwards, and also to anticipate on changes in the future.

2.2 Contextual Information in Mobile Devices

Context-aware computing applications have been in use for a long time. Most of the existing applica-

tions center around the use of ubiquitous sensing, where a large array of devices and sensors work

together to gain information about the context of a situation and whereupon another set of devices and

actuators act accordingly [3][13]. These networks of sensors normally have a fixed location, but might

spread over a larger geographical area, allowing for a context-aware system to cover, for example, an

entire building. An example is an indoor navigation system comprised of stationary displays and user

Radio-Frequency Identification (RFID) cards [14].

Another idea is to use the contextual information that is available on mobile devices to implement

context-aware systems [11]. Although the reach of a distributed sensor network is not attainable with a

single mobile device, other information sources are available. A mobile device can provide a wealth of

contextual information that allows context-aware systems to adapt to the situation. For example, from

the changing location (location context), a music player and a Global Positioning System (GPS) tracker

being active (both activity context), a context-aware system may infer that the user is jogging or running.

This information can then be used to adapt the system, for example by not allowing phone calls to go

through, with perhaps the exception of some predefined phone numbers. This section discusses which

concrete information, that may be acquired by mobile devices, is useful for decision making.

2.2.1 Sources

To consider the kind of information available to a mobile device we first discuss what sources are avail-

able on a mobile device such as a smartphone. We refer to the sensor types from Section 2.1.

Applications

A large source of contextual information can be found in applications. A running application can keep

track of virtually anything related to the user. Information may be acquired from the following types of

applications:
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1. Calendar application Our schedule largely dictates our working life. Where we are, and with whom

we are engaging in activities can provide us information about our availability.

2. Time sheet application When the hours that are spent working are logged in a time sheet applica-

tion, information about spent time and available time can be inferred. This allows decisions to be

made in terms of planning and preventing overtime working.

3. Employee information application When a company has an application that keeps track of all its

employees’ information, then this information can be obtained. Simple things like their place of

residence, but also more complex and secondary contextual information such as qualifications or

temporary certifications can be obtained.

All these applications expose information. Calendar applications provide activity context, temporal

context and maybe even locational context, for example, where a meeting is held. Time sheet and em-

ployee applications provide identity and temporal context, telling us more about the employee himself,

in terms of availability and capabilities.

Because the software on a mobile device can be as diverse as any software, there are endless

possibilities for context information to be accessed by a mobile device, even more so with internet

connectivity. To give a more specific example: any information about the person is contextual identity

information. Theoretically, an application could do an automated web search for this kind of information.

This shows that there are different levels of accessibility when it comes to contextual information, and

care must be taken to specify the relevance of different sources of contextual information.

Locational

1. GPS: The Global Positioning System can provide a position almost anywhere on earth.

2. Wi-Fi: When locations of wireless networks are known a location can be determined based on which

wireless networks are in range.

3. RFID: Using RFID and fixed receiver beacons we can derive a location for the device.

Each of the above methods provides a location for a device, with differing degrees of accuracy and

for different circumstances. What they have in common is the provisioning of updates in intervals. GPS

and Wi-Fi do so on a regular basis, RFID’s will give updates as soon as they are scanned. Locational

data can be used to provide the location of a device, and with such information, nearby objects, persons

and activities can be acquired.
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Other Sensors

Other sensors exist on a mobile device: camera’s, temperature sensors, microphones and more. How-

ever, all these have limited effect on a business process, although examples can be thought of. For

example, a temperature sensor can alter a business process to check for frozen railway switches more

often. But such precisely localized temperature information is seldom required for business processes.

Thus, while such sensors can in fact be used, their effective uses are limited.

2.2.2 Collection

The contextual information that all these sources generate, has to be aggregated to be useful for de-

cision making. A separate piece of software is needed to retrieve all the relevant information, and to

make it available for use.

There are two major ways to structure the retrieval of this information: polling and events, although a

combination is also possible [15]. With polling, sensors are queried periodically for information, time be-

tween information points is fixed, but the value might not change. With events, sensors report changes

when they occur, timing differs, but there is always a change in value reported.

We argue that the simplest way is also the most effective: every change in value of some contextual

information source should correspond to an event-notification. Because a small change might be of no

informational value in continuous sensors, for example, the changing of the GPS position by 1 meter, we

can define limits within which sensor values can fluctuate without triggering a change notification event.

Simpler and discrete sensors, such as a calendar application, already have their own discrete events

and those can therefore be collected. These streams of events can then be used in context-aware

applications.

2.3 Complex Event Processing

In Event Processing (EP), information is regarded as a stream of events. An event is a representation

of a change in context. In Complex Event Processing (CEP), we consider multiple event streams simul-

taneously and combine the information from these streams to try to understand some specific situation.

(C)EP can thus be used to do several things, for example: reporting these streams of events as an ag-

gregated information source, creating understandable visualizations or making autonomous decisions

[4]. As with context, what is actually obtained is a stream of representations, and we have to deal with

the fact that these representations are only an approximation of the changes in the real world, with all
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the pitfalls associated with an approximation.

This section discusses how the information in event streams can be queried via Event Processing

Languages (EPLs), and what their properties are. It further discusses how a stream processor uses

event streams and queries in an EPL to automatically reach a decision about those event streams.

2.3.1 Event Processing Language

To understand and manipulate event streams, an Event Processing Language (EPL) is often used [16].

Such a language defines how events are described, and how they should be processed. Several of

such languages exist, and examples are the SASE language that is specifically designed to analyze

real-time streams of RFID readings [16] as well as the EP-SPARQL that combines on-the-fly analysis

of streams with background knowledge and reasoning [17].

EPLs define rules according to the Event-Condition-Action (ECA) paradigm: ”on Event when Con-

dition do Action” [18]. These rules describe on which events and under what conditions an action has

to be taken. This type of rule can be extended with extra attributes, such as the time, a post condition

or some complex term that can be evaluated or executed at a later time. In Listing 2.1 an ECA rule is

given in the syntax of Paschke et. al. that describes that every 10 seconds a check is done to determine

whether a service is requested by a customer. If this request is detected, then a server is searched, and

if the server is found, the service is loaded. No particular post condition is given, and the notification op-

eration here is enacted if the server cannot be found, in which case a message is sent to the customer

[18].

eca (

every10Sec ( ) , % t ime

detec t ( request ( Customer , Serv ice ) ,T ) , % event

f i n d ( Server ) , % co n d i t i o n

load ( Server , Serv ice ) , % ac t i on

! , % pos t cond i t i on

n o t i f y ( Customer , ” Serv ice request t empo ra r i l y r e j ec ted ” ) . % complex term

} .

Listing 2.1: an ECA-type rule showing a service availability check

When considering ECA rules with respect to real-time stream analysis, we can conclude that the time

attribute is not necessary, as rules are triggered directly upon incoming events. However, the general

Event-Condition-Action constructs are still applicable to real-time stream analysis. In both EP-SPARQL
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and SASE a form of query language is used to match events, albeit with some differences [16][17].

EP-SPARQL and SASE both use selectors to retrieve certain information from a matched event,

event clauses to describe which events are to be matched, and condition clauses to filter events based

on certain conditions. The event clauses enable the matching of sequential events, conjunction, disjunc-

tion or absence of events, and concepts such as nonoccurrence of events between two other events.

SASE also has an explicit construct to filter for time ranges.

In Listing 2.2 a simple example of a SASE rule definition is given that checks if the patient ’John’ has

taken an overdose of antibiotics in the last four hours, by matching two MEDICINE-TAKEN events in se-

quence and applying filters to check if the situation has occurred [16]. SASE was specifically designed

to match events on real-time event streams. The action is therefore not defined in the SASE language

itself but is left as an external construct [16].

EVENT SEQ(MEDICINE−TAKEN x , MEDICINE−TAKEN y )

WHERE [ name= ’ John ’ ] ∧ [ medicine = ’ A n t i b i o t i c s ’ ] ∧

( x . amount + y . amount ) > 1000

WITHIN 4 hours

Listing 2.2: a SASE rule checking for a medicine overdose of a certain patient

2.3.2 Stream Processors

A Stream Processor is a component that processes event streams. It takes event streams as input,

together with rule definitions in an EPL, and then enacts the rules defined on the input streams. De-

pending on the EPL, the decisions can be defined in the rules themselves or can be given in another

format to allow separation of event matching and decision making. [16][17].

A simple Stream Processor takes an event stream as input, together with some form of decision

mechanism to reason about the event stream. A Complex Stream Processor has multiple event streams

as input, as well as an EPL definition on how to analyze them. Figure 2.2 shows how a Complex Stream

Processor connects multiple input streams and uses an EPL specification to take actions. Generally

these event streams are generated by sensors, but this is not strictly necessary, since stream proces-

sors can be used to analyze different kinds of streams, both on-the-fly and on data sets generated from,

for example, logging.
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Figure 2.2: Interactions of a Stream Processor

2.4 Business Process Management

Many companies try to improve their business processes by using Information Technology. Business

Process Management (BPM) is an area that studies a company’s internal business processes. These

are identified and represented in process descriptions, and subsequently managed and optimized in

a continuous monitoring and reviewing cycle [6]. Business Process Management states that business

processes are characterized by a number of activities that are performed by computing systems, hu-

mans, or their collaboration [19].

In this section we discuss how these business processes are continuously improved through the

BPM life-cycle as well as show ways of representing and managing business process models.

2.4.1 Business Process Management Life-cycle

The BPM life-cycle is used to govern the process of designing, enacting, managing and analyzing of

operational business processes. The phases of the BPM life-cycle might overlap, but are sequential,

and the whole process is iterative [20]. The four BPM life-cycle phases are:

1. Process Design In this phase a model of either a current process or a desired process is produced.

To be able to model all aspects of a process, this model can have several different perspectives,

such as control-flow, data-flow, organizational and operational perspectives. In this part of the

life-cycle, the model is changed according to knowledge about how the process works in practice.

2. System Configuration In this phase, the created process model is used to configure a system that
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can keep track of the execution of that model. Models are often constructed in an editor, as a

result they can often be used as input to automatically create such a system configuration.

3. Process Enactment During this phase, the created system is actually used to manage the instances

of the process model. Users can connect and interact with the system to complete tasks from the

process model and advance it. Information about the executed process instances is stored in the

system for later use.

4. Diagnosis The information gained during the enactment phase is analyzed in this phase. Here it

may be decided whether the process model needs to be changed, based on the information about

the executed process instances stored in the system. This phase therefore leads to a new Process

Design phase, and the cycle starts over again.

Through the Business Process Management life-cycle business processes can be continuously im-

proved. The iterative nature of this life-cycle can be seen in Figure 2.3.

Figure 2.3: The BPM Lifecycle by van der Aalst [20]

2.4.2 Business Process Modeling Notation

To store and handle business process models we need a way to represent them. Business Process

Modeling Notation (BPMN) was developed by the Business Process Management Initiative to provide

a notation that is readily understandable by all business users [21]. In BPMN, a Business Process

Diagram (BPD) is defined based on so called flowcharts that can represent a process as a series of

nodes and connecting arrows. A business process diagram is thus a graphical representation of the

process with activities (nodes) and flow controls (arrows). BPMN provides several language constructs

that facilitate the construction of process models for various purposes, from the creation of first drafts

Page 18



of business process models, up to technical designs for developers who implement the business pro-

cesses.

A BPD consists of several elements, connections and constructs [21]. The BPMN elements are

discussed below.

Flow Objects There are three types of flow objects in BPMN:

1. Event An event is represented by a circle and means that something happens. They usually

have a cause (trigger) or an impact (result). Events are split into three types: start events,

intermediate events and end events.

2. Activity There are two types of activities: task and sub-process. Activities represent the work

performed by a company and is shown as a rounded rectangle. A task is a single atomic

activity and a sub-process can contain multiple activities, events and gateways connected

through flow objects.

3. Gateway A gateway is shown as a diamond and can control the sequence flow through deci-

sions, forking, merging and joining of paths.

Connecting Objects The three types of flow objects are connected via three possible connecting ob-

jects:

1. Sequence Flow A sequence flow shows which activity is to be performed next, it thus defines

the order in which activities occur in a process. It is represented as a solid line with a solid

arrowhead.

2. Message Flow The flow of a message between two participants is shown as a dashed line

with an open arrowhead. Participants are separate business entities or business roles, and

are represented by two separate pools (Swim lanes).

3. Association An association is shown as a dotted line with an open arrowhead. It is used to

associate data, text and other artifacts with flow objects.

Swim lanes With swim lanes we can visualize activities together as a region. BPMN has two types of

swim lanes:

1. Pool A pool represents a participant in a process. Multiple pools can partition the activities

according to multiple participants to the process. A pool is represented as a rectangle with a

name.
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2. Lane A pool can be subdivided in lanes. Lanes are used to categorize and organize activities.

Lanes have their own names.

Artifacts Besides the functional elements, BPMN has a few artifacts that offer the option of annotating

the BPD without changing the process it represents. Artifacts can be added to a BPD to pro-

vide extra information about the business process that is modeled. BPMN defines the following

Artifacts:

1. Data Object Data objects are connected to activities via associations. They represent the data

that is required or produced by an activity.

2. Group A group is shown as a rectangle with a dashed border. It can be added for documenta-

tion or analysis purposes, but it does not affect the Sequence Flow.

3. Annotation Annotations allow textual comments to be added to the BPD.

Figure 2.4 shows an example of a BPD in BPMN for the customer request of a new account for

a service. It shows the swimlanes indicating different users, as well as the general processing of the

request through events (circles), actions (squares) and gateways (diamonds). They are connected

through sequence flows (solid arrows), message flows (dashed arrows) and data flows (dotted arrows).

The pool has its own start and end events which are accompanied by message flows with the customer.

Figure 2.4: Example of a Business Process Diagram in BPMN-notation [22]
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2.4.3 Business Process Management System

A Business Process Management System (BPMS) supports the entire BPM life-cycle. A BPMS consists

of several software components that support modeling, configuration, enactment and analysis of Busi-

ness Processes. A BPMS delivers a consistent process management experience, enabling business

managers to monitor, analyze and refine the execution of a company’s business processes [23].

A Business Process Management System typically consists of the following components:

1. Process Modeling Tools The process modeling tools support the creation and modification of BPD’s

that can then be executed by the process engine.

2. Process Engine The process engine allows for the execution of business processes and keeps track

of all the running process instances.

3. Business Analytics The business analytics component gives insight to managers about completed

and running business process instances. It can show problems, trends and opportunities through

reports and dashboards.

4. Content Management The content management system stores electronic documents, images and

files relevant to the business processes.

5. Collaboration Tools The collaboration tools allow employees to communicate and collaborate with

each other.

2.5 Contextual Information in a BPMS

Some research has been done into using contextual information in a BPMS, and several approaches to

the concept have been taken. In this section, we discuss illustrative parts of this research and show the

breadth of possibilities for using contextual information in a BPMS.

In broadly defined business processes, multiple routes can be taken from start event to end event.

Van der Aalst [24] uses contextual information to navigate through such a business process, feeding

the information to a path finding algorithm found in car navigation software as a means to steer the

business process execution. Most of the contextual information used is retrieved from event logs of

previous executions.

One approach uses contextual information as a source of information in a business process [25].

It envisions, for example, a process where the choice made in a gateway in the process hinges on a
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decision. Rather than only using information available in the process, contextual information can be

taken into account as well in that decision. Reseman et. al. [25] give an example of an airline check-in

process. Multiple routes through the process are defined and a decision to take a specific route is based

upon contextual information, such as the availability of an internet connection.

Another approach is to extend the BPMN specification with contextualized elements. These mobility

events are designed to be triggered upon the reaching of a position by a participant, possibly supple-

mented by an additional condition. This allows for business processes to be sensitive to the contextual

location data of its participants [26].

In the research done by Santos et. al. [27] contextual information is gathered during the execution of

a process. This information is recorded together with an instance. Using Non-Functional Requirements

(NFRs) that define quality and constraints, the authors describe the desired goal of a business process.

They then develop a framework where using these NFRs, possible variations in a business process are

computed based on contextual information. These variations are then applied to the process model,

and new instances be started with these variations on the business process model.

The concept discussed in the research by Santos et. al. [27] can be expanded. The mobile devices

of end users of a BPMS have access to contextual information. With this contextual information, we can

change the business processes not just automatically every iteration of the business process manage-

ment life-cycle, but all the time, and ad-hoc. These ad-hoc change have to be defined in advance, but

which actual changes are applied is decided at runtime based on contextual information.

2.6 Conclusion

In this chapter, we discussed what context is, and how it can be viewed as a layered system that can

have digital representation. We discussed how devices are aware of their context through sensors, and

how context can be viewed with regards to mobile devices. We then discussed how we can use multiple

sources of contextual information to make decisions based on patterns.

We described what a Business Process Management System is, and how business processes are

designed and executed. We also discussed several concepts on using contextual information to aug-

ment a BPMS, and concluded that there are opportunities for the non-trivial use of contextual informa-

tion.
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We concluded from the above that contextual information should be gathered from the mobile de-

vices of users, and sent to the BPMS in the form of event streams, where through complex event

processing the changes described in an event processing language can be applied.
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Chapter 3

A BPMS for Ad-hoc changes

Business Process Management Systems have been around since the early 2000’s, and they have

evolved to a point where the basic architecture is generally agreed upon [28]. In this chapter we discuss

a technique to represent and apply ad-hoc changes on process instances. We investigate how the

current BPMS architecture can be adapted to accommodate for a BPMS in which contextual information

can be used to support ad-hoc changes on a process model or a process instance. Finally we present

some examples to show the applicability of a BPMS that supports ad-hoc changes.

3.1 Ad-hoc changes

To design an architecture for a BPMS that supports ad-hoc changes we first have to define what ad-

hoc changes exactly are and how we can structure and use them. We discuss what types of ad-hoc

changes can be applied to a process model and how these changes can be combined and structured.

Because we want to prevent changes that might eventually result in unexpected errors, we look at the

problems that might arise when changing a process model. We discuss the concepts of soundness,

state compliance and dynamic change correctness, and how they can be used to determine which

ad-hoc changes can be applied and which cannot.

3.1.1 Structure

To define ad-hoc changes for business processes we descend to the most elementary level of changing

a process. Reichert and Weber [29] call this the level of Change Primitives. By combining these elemen-

tary changes, larger and reusable Adaptation Patterns can be constructed. Such a pattern describes

which Change Primitives are executed and in what order. We can further combine change primitives

and adaptation patterns to form larger patterns, and an hierarchical system for defining changes to a

business process.
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Change Primitives

We can effectively change a process model by adding or removing any element of this process model:

activities, connections, gateways etc. Because a process model can be viewed as a directed graph, and

each element is either a node or an edge, we restrict ourselves semantically to the following Change

Primitives: add node, remove node, add edge and remove edge.

Adaptation Patterns

Because single Change Primitives carry little semantic meaning we use a method to combine them

into high-level change operations, such as the insertion, deletion or manipulation of an entire process

fragment. We use the term process fragment to describe a connected component of the process graph

with a single input and output. High-level changes are thus effectively structured as a series of Change

Primitives. Figure 3.1 shows the high-level change operation of parallelizing two sequential activities by

adding two gateways. The individual change primitives that were applied to achieve this change are:

Remove Edge Start - Activity A

Remove Edge Activity A - Activity B

Add Node Parallel Gateway (id:par-gate-1)

Add Edge Start - par-gate-1

Add Edge par-gate-1 - Activity A

Add Edge par-gate-1 - Activity B

Remove Edge Activity B - Activity C

Add Node Parallel Gateway (id:par-gate-2)

Add Edge Activity A - par-gate-2

Add Edge Activity B - par-gate-2

Add Edge par-gate-2 - Activity C

High-level changes such as adding a process fragment or removing one can be seen as the building

blocks for ad-hoc changes. These recurring changes that can be described in an abstract way are called

Adaptation Patterns. Table 3.1 lists the thirteen adaptation patterns for modifying a process model that

Reichert and Weber [29] classified, in five categories.

3.1.2 Constraints

When applying an ad-hoc change there are a number of things that need to be taken into consideration

to prevent the occurrence of errors. We discuss the concepts of soundness, state compliance and
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Figure 3.1: The high-level change operation to parallelize Activities A and B.

Pattern Category Pattern
Adding or deleting AP1: Insert Process Fragment
Process Fragments AP2: Delete Process Fragment
Moving or replacing AP3: Move Process Fragment
Process Fragments AP4: Replace Process Fragment

AP5: Swap Process Fragment
AP14: Copy Process Fragment

Adding or removing AP6: Extract Subprocess
Process levels AP7: Inline Subprocess
Adapting control dependencies AP8: Embed Process Fragment in loop

AP9: Parallelize Process Fragments
AP10: Embed Process Fragment in conditional branch
AP11: Add control dependency
AP12: Remove control dependency

Change transition condition AP13: Update condition

Table 3.1: Adaptation Patterns for Changes in Process Models [29].

dynamic change correctness. Together, these ensure that ad-hoc changes have no erroneous side-

effects on the process instance and models. Ad-hoc changes shall only be applied when they preserve

these properties.

Soundness

A sound business process is one that adheres to the syntactic rules of BPMN as defined in the meta-

model [30]. For example: edges have one starting node and one ending node, and all nodes have

exactly one input edge and one output edge, with the exception of gateways that may have more. Fur-

thermore, in a sound business process we can always advance to another node, deadlocks do not

exist, and every node has a trace to a terminating node [29] [31]. The soundness of a business process

resulting from an ad-hoc change is vital if we want to avoid run-time errors.
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State Compliance

The state of a process instance includes which activities have been completed, which are enabled, and

which are running. Together they form the execution trace for a process instance. When applying an

ad-hoc change, we have to make sure that the execution trace of the process instance is compatible

with its model, since the record of how the process was executed cannot be modified. To enforce this

immutability, we use the definition of State Compliance:

State Compliance ”Let I be a process instance with execution trace σI . Further, let T be a process

model. Then, I is state-compliant with T if σI is reproducible on T.” [29]

If we only apply ad-hoc changes that adhere to state compliance, then we can ensure that the his-

tory of process instances is not changed. In Figure 3.2 we can see the process model of a treatment

and its ad-hoc change. It can be seen that in I1 there is no problem as the execution trace can be

executed fine. In I2 we see that the injection of the activity ”Test for Allergies” invalidates the execution

trace. Thus resulting in a process that is not state compliant, and therefore the ad-hoc change cannot

be executed. Instance I3 has no problem recreating the execution trace and is thus state compliant.

However, the insertion of the ”Test for Allergies” activity means that the ”Prepare Patient” activity is no

longer the next activity in line, and thus the collection of enabled activities needs to be changed.

Dynamic Change Correctness

If an ad-hoc change moves activities through a process instance, then we must take care to preserve

the soundness of that process instance. In Figure 3.1, if we assume that Activity A was enabled, then

after the change, Activity A will be enabled but Activity B will not, leading to a deadlock or a Dynamic

Change Bug. Any ad-hoc change can only be applied if the resulting instance is a valid instance of the

changed underlying process model. For example, an ad-hoc change cannot be applied to a process

instance that has progressed too far, where applying the ad-hoc change would introduce a dynamic

change bug. We give below the definition of Dynamic Change Correctness [29]:

Dynamic Change Correctness ”Let I = (S, σI ) be a process instance running on a sound process

model S and having execution trace σI . Assume further that S is transformed into another sound

process model S’ by applying change δ, i.e. S[δ > S′. Then:

• δ can be correctly applied to I if I is state compliant with S’.

• Assume I is state compliant with S’. When applying δ to I, correct activity states of I on S’ can be

obtained by applying σI to S’; i.e., by logically replaying the events captured by σI on S’ in their

original order.”
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Figure 3.2: An image showing how an ad-hoc change is enacted or not because of state compliance
and. [29]

Dynamic Change Correctness thus ensures that an ad-hoc change can only be executed if the result

of that change is a valid state for the underlying changed process model. With these two notions we

can make sure that ad-hoc changes will only take effect when they result in valid process instances,

preventing run-time errors that disturb the operation of the BPMS.

3.2 BPMS Components

To incorporate the functionality of ad-hoc changes into a BPMS, we look at the different elements of

a standard BPMS, and determine if they are affected by this change, and if so, how they are affected.

Figure 3.3 shows the architecture of a standard BPMS. We then look at any additional elements that

may be necessary to incorporate ad-hoc changes.

Process Modeling Tools

Standard Process Modeling Tools provide a way to design process models. For our BPMS with ad-hoc

changes there are no fundamental aspects that need to be adjusted in the Process Modeling Tool, as we

still have to design BPD’s within their normal constraints. Furthermore, the effect that ad-hoc changes

have on a process model or instance always result in a sound process model or instance. Therefore,

Page 29



Figure 3.3: The architecture for a standard BPMS

at every point in the execution of a process instance, the BPD should be sound. What changes can

happen and under which circumstances can be informed separately to the Process Engine.

In Figure 3.4 we see a screenshot of the Eclipse IDE plug-in from the Open-Source JBoss jBPM

BPMS. The simple drag-and-drop interface provides an easy way to construct BPDs. It stores its BPDs

as XML files according to the BPMN meta-model defined by the OMG [30]. The interface and standard-

ized format suit our needs for a Process Modeling Tool. As a result, no changes are required in the

Process Modeling Tool to function with ad-hoc changes.

Figure 3.4: The jBPM Process Modeling Eclipse plug-in [32]
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Process Engine

In a standard BPMS the Process Engine spawns new process instances from defined process models

and keeps track of their execution. Participants can perform activities and the process advances. When

the capability to apply ad-hoc changes on the process instances is added, a few extra requirements

arise:

1. Defining Possible Changes To define possible changes we make use of an Event Processing

Language (EPL) as described in Section 2.3. This allows us to define a change and under what circum-

stances this change needs to be applied. This is done via the Event-Condition-Action pattern. Listing

3.1 shows an example of an ECA definition of a change in pseudo code.

Therefore we need to add an interface to the Process Engine that executes these changes when

called upon. These changes should be stored in a way that facilitates easy comparison and analysis. A

suitable way to do this is to store them as incremental changes to the initial BPD.

2. Applying Ad-hoc Changes: To decide when to apply ad-hoc changes to a process instance, a

Stream Processor is added to the BPMS. This Stream Processor uses information streams and the

change definitions described in the EPL to decide when a change should be applied. It then calls the

Process Engine, which in turn can execute the changes on the relevant process instance(s).

Event :

Calendar event has s t a r t e d

Condi t ion :

Employee A i s present a t the calendar event

Act ion :

Disable the a c t i v i t y ” Meet w i th Employee A”

Listing 3.1: An example ECA rule

Furthermore we have to comply with the principles of soundness, state compliance and dynamic

change correctness introduced in Section 3.1. The responsibility of applying ad-hoc changes only when

these concepts are not violated lies with the process engine, which must reject any ad-hoc changes

that do not comply with these principles.

Business Analytics

We assume that process instances remain sound throughout execution, even if ad-hoc changes are

applied. We therefore have no extra requirements for the Business Analytics, and can use existing
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Business Analytics tooling. Different traces through process instances that have had the exact same

ad-hoc changes applied, and thus have the exact same BPD graph, may still be analyzed as equal

processes.

However, this might lead to problems when a business process is defined with many possible ad-

hoc changes. As we increase the number ad-hoc changes, the total number of possible unique BPDs

resulting from these changes can grow exponentially with the number of ad-hoc changes. Having this

many different unique types of BPDs can render the analytics useless, as even in a large organization

there might not be enough process instances which a specific BPD to perform meaningful analyses.

There are, however, options for meaningful analyses even when two process instances do not have

the same underlying BPD. In Figure 3.5, P1 and P2 are the result of two different ad-hoc changes ap-

plied to P. Since their BPDs are different, instances of P1 are not comparable to instances of P2, and

no analysis can be done. But if we look more closely, then we can see that the first parts of the BPDs

of P1 and P2 are the same. As a result we can still perform some analysis on those parts of process

instances that have BPDs that are equal. This requires that the analytics tooling can infer which parts

of two instances are equal.

Therefore, the analysis methods used by the Analysis Tools in a standard BPMS are viable for our

BPMS with ad-hoc changes. However, more specific methods can be developed to provide even better

analysis for process instances with differently changed BPDs.

Content Management System

The requirements for a Content Management System do not change for a BPMS with ad-hoc changes.

Files and information are still stored for each process model and process instance when required. We

assume that the identity of a process instance does not change, split or merge when executing an ad-

hoc change, therefore, we do not require any extra functionality from the Content Management System.

Collaboration Tools

Similar to the Content Management System, the Collaboration Tools need no adjustment either. Partic-

ipants in process instances can still communicate and collaborate with each other. An ad-hoc change

made to a process instance has no effect on the ongoing collaboration between participants.
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Figure 3.5: A Process P with two possible changed processes P1 and P2.

Stream Processor

A Stream Processor is necessary in a BPMS with the functionality to apply ad-hoc changes. In Section

2.3, we state that the Stream Processor receives streams of events generated by contextual changes.

These streams can be supplied by the BPMS itself, but more useful information can be retrieved from

other sources, such as the mobile devices of the participants. The Stream Processor uses a predefined

EPL description to apply the defined ad-hoc changes to the process engine based on a stream of

events.

Device Application

In a regular BPMS there are many ways for the users that are involved in a process to interact with the

system. Normally, users interact with the BPMS through an application, which may be through a web

interface or in a specially designed mobile application.

In our BPMS we collect contextual information from the mobile devices of the users. The device

application thus needs to be extended to include some information gathering functionality.
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3.3 High-level Architecture

Our ad-hoc BPMS has been designed as an extension of a regular BPMS. Figure 3.6 shows that only

a few extra components are necessary, and a few components have to be modified (in green), and that

the architecture is fully backwards compatible with a regular BPMS (in black).

The Device Application is situated on the user mobile device. Current BPMS might even have such

an application with an integrated user interface. In our ad-hoc BPMS this application also aggregates

and relays the contextual information. The device application can be opened at will to interact with the

system and complete tasks. In the background, information is continuously gathered and sent to the

system. The ad-hoc BPMS further adds a Stream Processor that receives the information streams that

the Device Application sends, and acts according to the given ad-hoc change specification.

The Process Engine is modified to allow for ad-hoc changes of process models and process in-

stances. The Analytics Software is extended to deal with modified process instances. Since both the

Process Engine and Analytics Software only add functionality to their regular counterparts, this archi-

tecture is a proper extension of the regular BPMS.

Figure 3.6: A high-level architecture for an ad-hoc BPMS.

3.4 Examples

In Section 3.2 we discussed how BPDs do not fundamentally change when used in a BPMS that can

apply ad-hoc changes. However, it can be beneficial to develop the BPD and the accompanying ad-hoc

changes in parallel, as this gives much more control over the process. In this section we highlight a few

examples of possible ad-hoc changes supported by contextual information.
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It is not a coincidence that these examples mainly involve the inclusion or exclusion of employees

based on contextual information. Mobile devices are user-centric and thus have quite a lot of information

about their users and their direct environments.

Office Availability

In this example an employee has to get approval for some activity by any one of his three superiors.

When his request is approved, the employee can continue and carry out that activity. In Figure 3.7 we

can see this example where the employee has to get approval from Superior A, B or C. In this case,

there might be an ad-hoc change description that describes the deletion of an activity if the relevant

superior is not available at the moment. In the case of Figure 3.7, Superior B is unavailable, thus his

option is removed from the process instance at runtime.

Figure 3.7: Ad-hoc change for the Office Availability example

Task Assignment

A manager assigns an activity to an employee. The employee can always refuse the activity, prompting

the manager to assign a new employee. However, if the employee is not sufficiently trained, he might
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follow a training, allowing him to complete the activity. Figure 3.8 shows an example where we can see

that the process instance is modified with an activity for the employee to follow training, after which the

process is restored to its original state, and the original activity can be completed.

Figure 3.8: Ad-hoc change for the Task Assignment example

Meeting Location

If a meeting has to take place between two parties to sign a contract, then we could imagine a business

process instructing both parties to meet and sign the contract. In the example of Figure 3.9, locational

data has shown that both parties that are supposed to meet are far away from each other, and even

though the actual signing still has to be done personally, the discussion about the contents of the con-

tract might possibly be done via teleconference.

An ad-hoc change can be defined, that offers another separate option to scheduling a meeting and

signing the contract. Figure 3.9 shows that an extra path is added by which instead of a meeting to

discuss and sign the contract, the discussion is done via teleconferencing. The actual formality of

signing is postponed to a later date as a separate action.

Emergency Response Volunteering

In an emergency response unit, volunteers might be called to the scene of an accident. A business

process can be used to call on the volunteers who should respond to the scene. If too many volunteers
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Figure 3.9: Ad-hoc change for the Meeting Location example

are called, the location may become too crowded to be effective, and if too few are called, insufficient

manpower may be available to support the professional staff. Individual volunteers thus have to be

called to the scene, and this can be done manually by phone or automatically via push messages.

Given a number of volunteers, we can construct a business process that requires them all to be

called to the scene. We can then define an ad-hoc change that removes any ineligible volunteers based

upon contextual information such as location, availability and training. Furthermore we can remove or

add as many volunteers as we need to reach a desired number, possibly using margins to overcome

unknown variables.

Figure 3.10 shows how such a business process would be transformed to reach the desired out-

come. When five volunteers are on record and only 2 are needed, 3 can be eliminated from the process

by any number of reasons. In this example, John might be ill, and Maggie and Mike are just not needed

at the time.

3.5 Conclusion

In this chapter we discussed a predefined structure to hierarchically define ad-hoc changes, both in

its minimal form as Change Primitives as in an abstracted form in terms of Adaptation Patterns. The

principles of state compliance and dynamic change correctness can be used to ensure that any ad-hoc

changes that are executed on a process instance guarantee the soundness and correctness of that

process instance.
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Figure 3.10: Ad-hoc change for the Emergency Response Volunteering example

We further looked at the components of a regular BPMS and assessed how they would change when

the ad-hoc changes functionality is added to the system. We showed that a regular BPMS can be ex-

tended to support ad-hoc changes. Most notably the Process Engine requires an extension to deal with

changing process models and instances. Furthermore, to drive these changes, the device application

gathers contextual information and sends it to an additional component called Stream Processor. This

Stream Processor executes the desired ad-hoc changes on the Process Engine. Finally an extension

to the Analytics Engine can be made to improve the possible analysis of execution traces of changed

process instances.

We finally gave a few examples to show how this new functionality can be used to help adapt busi-

ness processes to changes in the environment. Whilst current business processes might not be directly

ready for ad-hoc changes, they can be rewritten to be receptive to ad-hoc changes. It is also shown that

a wide variety of changes is possible, even in a seemingly straightforward environment as an office with

meetings. Furthermore, even though the examples are centered around contextual information from

mobile devices used by users, the concept of ad-hoc changes can be taken in a broader view, using

other sources of contextual information.

Page 38



Chapter 4

AdHoc BPMS

To validate our approach and high-level architecture, a proof of concept was developed, which we

called the AdHoc BPMS. In this chapter we detail the system requirements of the proof of concept

implementation, show several use cases and present the architecture of the proof of concept. We show

how the individual software components are designed and implemented, and give an example showing

how the final system works. We conclude the chapter by presenting some limitations of the developed

proof of concept, and argue why these limitations do not pose a problem when a full implementation is

considered.

4.1 Scope

Because this proof of concept is developed to validate the concept and architecture of ad-hoc changes

in a BPMS, we limit the scope of this proof of concept to those elements that are influenced by ad-hoc

changes. Figure 4.1 shows the boundaries of this proof of concept in a blue dashed line.

Contained within this proof of concept are the core components necessary to facilitate the applica-

tion of ad-hoc changes to process instances: the mobile application, the process engine and the stream

processor. Each of these are discussed in more detail in this chapter.

Outside of the scope of this proof of concept are the collaboration tool and the content management

tool as they are not coupled to the process engine or mobile application. We do not develop our own

process modeling tool either, since we chose to use the jBoss jBPM process modeling Eclipse IDE

plug-in [32]. This tool can output XML files of the modeled BPD’s that we then use as input for our proof

of concept.
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Finally we leave the analytics engine out of the scope of this proof of concept. However, as the

recorded information on business process instance execution is fundamentally the same as without ad-

hoc changes, any standard business process analysis should be able to do the job. The only caveat

is that the data generated by the process engine is delivered in a format that can be imported by the

analysis tool of choice.

Figure 4.1: The scope of the proof of concept compared to the complete architecture.

4.2 System Requirements

To develop a proof of concept we first specify the system requirements. Because we are building an

extension to a standard BPMS we start by specifying the system requirements for a standard BPMS.

We then specify the extra requirements that are necessary to support the ad-hoc changes capabilities.

4.2.1 BPMS Requirements

Figure 4.1 shows the two existing components that we are going to extend in black, namely the process

engine and the mobile application. We discuss the functionalities that these two components need to

provide and from those we derive the system requirements.

The Process Engine is the central component of a BPMS, it governs the running instances of pre-
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defined business processes. It does this by starting new instances, managing the activities that are

possible at any one time, and allowing users to complete activities on instances. We thus come to the

following system requirements:

R1: The process engine shall be able to import business processes designed by the mod-

eling tool.

R2: The process engine shall provide a way to start new process instances.

R3: The process engine shall provide an interface to expose actions on running process

instances.

R4: The process engine shall provide an interface to receive actions that are to be enacted

on running process instances.

R5: The process engine shall change the state of a process instance according to the re-

ceived actions.

The Mobile Application functions as the end user interface to the system. As such it provides a way

to log in to the system. Furthermore, to interact with the system we must be able to receive all activities

that are relevant to the user that is logged in from the process engine, as well as being able to enact

those activities and send those actions to the process engine. We thus come to the following system

requirements:

R6: The mobile application shall provide a way for a user to log in to the system.

R7: The mobile application shall provide a way to retrieve all possible actions relevant to the

logged in user from the process engine, and present them in a graphical user interface.

R8: The mobile application shall provide a way for a user to take an action, and send it to

the process engine.

4.2.2 Ad-hoc BPMS Requirements

We next add the system requirements that are necessary to support context-driven ad-hoc changes.

Figure 4.1 shows the components that are needed to do so in green. We therefore have to define extra

system requirements for the process engine and the mobile application, and define system require-

ments for the stream processor.

To be able to apply ad-hoc changes, the Process Engine needs to be able to change process

instances.

R9: The process engine shall be able to apply ad-hoc changes on process instances.
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The contextual information used to drive ad-hoc changes is collected in the Mobile Application. It

needs to periodically collect the contextual information and send it to the stream processor. In this proof

of concept we restrict ourselves to calendar and location information.

R10 The mobile application shall be able to aggregate contextual information and send it to

the stream processor.

The Stream Processor receives contextual information from the Mobile Applications of the BPMS

end users. It matches the contextual information to a predefined EPL specification, and sends the

ad-hoc changes defined in the EPL to the process engine.

R11: The stream processor shall be able to import an EPL description.

R12: The stream processor shall be able to match incoming contextual information to ad-

hoc changes described in the EPL description.

R13: The stream processor shall be able to send ad-hoc changes to the process engine.

4.3 Use Cases

We define several use cases to further describe the functionality of the system. We loosely followed the

format described by Fowler [33], namely: give a description for each use case, a number of steps that

dictate the interaction between actors and the system, and a possible list of extension steps. We show

a use case diagram, and relate use cases to the requirements specified in Section 4.2.1.

4.3.1 U1: System Startup

Description: At the startup of the system, BPMN and EPL specifications are supplied to the system. The

system starts up the process engine and the stream processor, and populates them with the BPMN and

EPL specifications, respectively.

Steps:

1. Administrator User locates the BPMN and EPL files that are necessary for the BPMS.

2. Administrator User starts the system and provides the BPMN and EPL files.

4.3.2 U2: Starting a Process Instance

Description: When the system is started, an administrative user can use the back-end interface to start

a process instance for any known business process description.
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Steps:

1. Administrator User opens the interface to the BPMS.

2. Administrator User starts a new instance of the desired process.

4.3.3 U3: Logging In

Description: When an end user starts the Mobile Application, he is prompted for his name, and the

location (IP address and port number) of the BPMS server. After entering the information and sending

it to the server, the user is logged in.

Steps:

1. End User opens the Mobile Application.

2. End User enters his name, and the location of the BPMS Server.

3. End User connects to the Server and is logged in.

4.3.4 U4: Task Completion

Description: A logged in user can ask the process engine to list all available activities. He is first

prompted to select a process for which he wants to complete an activity. After choosing a process,

all available activities for that process are shown. The user can then select an activity and send a

completion request to the process engine. The process engine receives this request and modifies the

corresponding process instance accordingly.

Steps:

1. End User opens the Mobile Application.

2. End User selects the desired process from the list.

3. End User confirms the selected process

4. End User selects the desired action from a list.

5. End User confirms the completion of the selected action.

Extension:

1a. End User logs in to the server.
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4.3.5 U5: Context Information Update

Whenever a context source detects a change in the context of a user device that is running the mo-

bile application, a change notification is sent to the stream processor. This process is automated and

requires no user intervention. Whenever an update is received by the stream processor, it is checked

against the list of predefined changes. If the conditions of the change are met, then the corresponding

change is applied to the process instance in the process engine.

Steps:

1. Context Source detects a context change.

2. Mobile Application sends change event to Stream Processor.

3. Stream Processor tries to match event to the defined EPL specifications.

Extension:

4a. Stream Processor applies an ad-hoc change defined in the EPL specification to the Process

Engine.

4b. Process Engine changes the relevant process instance.

4.3.6 Use Case Diagram

Figure 4.2 shows the Use Case Diagram for the AdHoc BPMS System. The Administrator is linked to

Use Cases 1 and 2 and the End User is linked to Use Cases 3 and 4. The actor for the Context Source

is linked to Use Case 5.

Figure 4.2: Use Case Diagram for the AdHoc BPMS
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4.3.7 Relating Requirements and Use Cases

We can relate the system requirements and the defined use cases. Table 4.1 shows how each use case

corresponds to at least one requirement, and how all requirements correspond to at least one use case.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13
U1 X X
U2 X
U3 X
U4 X X X X X
U5 X X X X

Table 4.1: A relation between the defined requirements and use cases.

4.4 Software Architecture

Our proof of concept implementation consists of a client and a server. The client is an Android appli-

cation, and the server is a Java program. In this section we detail the overall architecture of these two

components. We chose to develop a new mobile application as well as a new BPMS server, there are

a few reasons why we chose to do so. Mainly, existing solutions have full BPMN implementation, and

this would require us to support a full BPMN implementation as well. Furthermore, existing solutions

may also have extra capabilities that are irrelevant to this research, and handling those extra capabilities

would needlessly complicate the proof of concept.

A new mobile application was built, it is a simple Android application that allows interaction with the

server in two ways. First, it provides the regular BPMS functionalities to retrieve and complete activities.

Second, it aggregates contextual information and sends it to the server. Figure 4.3 shows the architec-

ture of the mobile application in a class diagram. There are three parts to the mobile application: The

activities to handle the regular interaction, the context sources that gather contextual information, and

an interface to provide the connection to the server.

The server consists of three components in itself, Figure 4.4 shows the architecture for server in

terms of a class diagram. It shows the outline of the three components: the process engine, the stream

processor, and the interfaces that provide interaction to the server, and how they interact.

Rather than extending an existing process engine, we built our own process engine that supports

ad-hoc changes and a subset of BPMN: tasks, events, gateways and sequence flows.We also built our

own stream processor. This component is new in a BPMS and therefore it was necessary to develop
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Figure 4.3: Detailed class diagram of the AdHoc mobile application.

our own.

4.5 Implementation

In this section we discuss the design and implementation of the individual parts of the proof of concept:

the mobile application, the process engine and the stream processor.

4.5.1 Mobile Application

The Mobile Application serves a twofold purpose. First, it is an app interface to the ad-hoc BPMS. A

user inputs his identity, and with this identity all processes and tasks that are assigned to this identity

can be retrieved by the application. A simple user interface then lets the user complete any of these

tasks, and sends the results to the server. Figure 4.5 shows the process from startup to the completion

of an activity. The initial activity requests the username and server location (IP/port). The other two

activities allow the user to choose a process and an action through drop-down selectors.

Second, the mobile application is an information harvester. It periodically gathers updates about

contextual information and sends these to the server to be processed. This information is then fed
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into the stream processor. For the proof of concept, the Mobile Application harvests two sources of

information: the user location, which makes use of Android’s LocationManager API to retrieve the best

locational fix from GPS, Wi-Fi or Network, and the user availability, where the current status of the user

is taken from the Calendar Context API and sent to the server as either busy or free.

Figure 4.5: The general process flow in the AdHoc mobile application.

To send information to and receive information from the server, the application uses standard Java

sockets. The types of context information sources and the way they provide their information can be fine-

tuned to the requirements of the system, but for this proof of concept we deem location and availability

data as sufficient.

4.5.2 Process Engine

The largest extension necessary for a regular BPMS to support ad-hoc changes is in the Process En-

gine. Whereas a normal Process Engine supports the representation of a business process as a graph,

and the ability to keep track of the execution trace that is taken on this process, in the AdHoc system

we have to deal with changeable business pocesses, and thus with changable graph representations.

We designed a new way to represent business processes to accommodate for these ad-hoc changes.

The primary representation of the BPD of a process instances is therefore not a graph of nodes and

edges, but rather a list of immutable change primitives. The initial BPD is represented by the inti-

tial changes. Subsequent applied ad-hoc changes are then stored together with the list of previous

changes. The execution trace is stored as a list of nodes, and the initial nodes are defined as the start
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events in the BPD.

The benefit we achieve from using this list of immutable change primitives, is the ability to construct

the current BPD graph by applying the list of changes to an empty graph. In addition, we can easily

create a deep copy of the graph where no dependence exists between the original graph and the copy.

Regular BPM execution is achieved by building the representative graph from the list of changes by

applying them in sequence. Initially this consists of only the base BPD definition given in the BPMN

description, but because ad-hoc changes themselves are also modeled as immutable lists of change

primitives and adaptation patterns, throughout execution this list is appended with the applied ad-hoc

changes. This graph together with the execution trace allows us to infer possible next nodes in the busi-

ness process in the same way a regular BPMS would. Completed tasks can be stored in the execution

trace, and a new set of possible next nodes can be inferred.

Ad-hoc changes are applied in a step-by-step fail-fast process to ensure the resulting process in-

stance is sound and adheres to state compliance and dynamic change correctness as discussed in

Section 3.1. This is achieved as follows:

1: A copy of the BPD graph is made and the ad-hoc change is applied to it; if an adaptation pattern is

used the change primitives are inferred here. This reveals any graph integrity erros, such as for

example, removing non-existing nodes and edges, adding duplicate nodes and adding edges to

non-existing nodes.

2: The soundness of the resulting BPD is checked by ensuring that every node has exactly one in-

coming and one outgoing edge (except for gateways), as well as checking complete forward and

backward reachability through a fixed-point iteration.

3: The original trace is applied and checked on the BPD resulting from the ad-hoc change. To achieve

this, the starting point for the new BPD is generated from start events, and the existing trace is

applied node by node. If a node existing in the trace does not appear as a viable choice in the new

BPD, then this can be traced back to a state incompliance. After applying the change, dynamic

change bugs can be identified through the verification of paths between parallel and exclusive

gateways.

4: After ensuring that the process resulting from applying the ad-hoc change on the copy is be sound

and adheres to state compliance and dynamic change correctness, the ad-hoc change is applied

to the actual BPD graph of the desired process instance.
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If an incompliance is encountered anywhere in the process, then the application aborted and the

resulting change is not applied, leaving the original process instance intact.

4.5.3 Stream Processor

New in the AdHoc BPMS with regard to a standard BPMS is the Stream Processor. At startup, the

EPL definitions are fed to the stream processor. These ECA-type changes are then stored, the event

and condition are stored as their respective matching variables, and the action, in this case the ad-hoc

change, is stored as an immutable list of change-primitives and adaptation patterns.

During execution, the stream processor receives context information updates from users. Upon an

incoming update event, the information is stored in the information storage of the stream processor.

The stream processor then tries to apply all the known change definitions to all the known process

instances. Similar to the process engine, this is a step-by-step fail-fast process to ensure speedy exe-

cution. Changes are applied as follows:

1: The name of the process instance is matched against the name of the process in the change defini-

tion.

2: The event is matched against the event in the change definition. This encompasses checking the

type and the originating user.

3: The condition is matched against the information stored in the stream processor. This includes both

availability statuses and distance checks.

4: The ad-hoc change is applied to the process instance in the process engine as described in Section

4.5.2.

The AdHoc Event Processing Language

To describe the Ad-hoc changes to a process, we defined a simple event processing language, which

we called AdHoc. This language can be used to describe Event-Condition-Action changes that can be

executed on the Process Engine. In this section we discuss the EBNF for this language and describe

each of its elements.

Each chane definition file is defined as a <ChangeFile> clause. It defines the name of the process

to which the changes should be applied, as well as the changes themselves. Each change is defined
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in a <ChangeRule> clause, which in turn is represented as <Event>, <Condition> and <Action>

clauses.

〈ChangeFile〉 ::= Process NEWLINE IDENTIFIER NEWLINE ( 〈ChangeRule〉+ )

〈ChangeRule〉 ::= 〈Event〉 〈Condition〉 〈Action〉 NEWLINE

The <Event> clause describes an event. More specifically, it lists which type of event should be

matched, and the source of the event.

〈Event〉 ::= Event NEWLINE 〈EventLine〉

〈EventLine〉 ::= ( Calendar | Location ) IDENTIFIER NEWLINE

The <Condition> clause describes the condition that has to be matched for the change to be ap-

plied. Any number of <ConditionLine> clauses can be used, and the condition will be satisfied when all

of the <ConditionLine> clauses are satisfied. The AdHoc EPL has two types of ConditionLine clauses:

<StatusLine> and <DistanceLine>. A <StatusLine> describes whether a user must be free or busy,

and a <DistanceLine> describes whether two users should be either closer, or further apart than a

specified distance (e.g. in meters).

〈Condition〉 ::= Condition NEWLINE ( 〈ConditionLine〉+ )

〈ConditionLine〉 ::= ( 〈StatusLine〉 | 〈DistanceLine〉 ) NEWLINE

〈StatusLine〉 ::= Status ( Busy | Free ) IDENTIFIER

〈DistanceLine〉 ::= Distance ( LARGER | SMALLER ) INTEGER IDENTIFIER IDENTIFIER

The <Action> clause describes the actual ad-hoc changes that can be applied. It is composed of

any number of <ActionLine> clauses, which will be executed in the order in which they are defined.

Each <ActionLine> is either a <PrimitiveLine> or a <PatternLine>.

〈Action〉 ::= Action (〈ActionLine〉+) NEWLINE

〈ActionLine〉 ::= ( 〈PrimitiveLine〉 | 〈PatternLine〉 ) NEWLINE
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The <PrimitiveLine> clause describes any of the four change primitives. The <RemoveEdge> and

<AddEdge> clauses describe the removal and addition, respectively, of a connection between two

nodes. The <RemoveNode> clause describes the removal of a node. These are all defined by their

internal identifiers.

〈PrimitiveLine〉 ::= 〈RemoveEdge〉 | 〈AddEdge〉 | 〈RemoveNode〉 | 〈AddNode〉

〈RemoveEdge〉 ::= RemoveEdge IDENTIFIER IDENTIFIER

〈AddEdge〉 ::= AddEdge IDENTIFIER IDENTIFIER

〈RemoveNode〉 ::= RemoveNode IDENTIFIER

The <AddNode> clause is the most complex change primitive rule, as it requires extra information

to be present. It describes the internal identifier for the new node, its <NodeType>, a <Description>

and the <Actors> associated with the new node. It is also possible to assign no <Actors> to a node

when all actors should be able to complete it, or when assigning an actor has no semantic value, such

as for example, a gateway node.

〈AddNode〉 ::= AddNode IDENTIFIER 〈NodeType〉 NEWLINE 〈Description〉 NEWLINE 〈Actors〉

〈Description〉 ::= Description IDENTIFIER

〈Actors〉 ::= Actors (IDENTIFIER*)

Adaptation patterns are described in <PatternLine> clause. The AdHoc EPL supports three adap-

tation patterns: <Insert>, <Delete> and <Swap>. The <Delete> and <Swap> clauses use internal

identifiers to define which nodes should be deleted or swapped, respectively. The <Insert> clause

works similarly to the <AddNode> clause, but also defines the two nodes between which the new node

should be inserted.

〈PatternLine〉 ::= 〈Insert〉 | 〈Delete〉 | 〈Swap〉

〈Insert〉 ::= Insert IDENTIFIER IDENTIFIER IDENTIFIER 〈NodeType〉NEWLINE 〈Description〉NEW-

LINE 〈Actors〉

〈Delete〉 ::= Delete IDENTIFIER

〈Swap〉 ::= Swap IDENTIFIER IDENTIFIER
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Lastly, the <Nodetype> clause defines a fixed set of node types that can be used.

〈NodeType〉 ::= Task | ExGateway | ParGateway | Event | StartEvent | EndEvent

4.6 Conclusion

With the architecture from Chapter 3 a proof of concept was designed and implemented. The chosen

scope allowed us to restrict the proof of concept and to focus on the core concepts for ad-hoc change

capabilities. Through requirements and use case analyses we defined the systems behaviour of both a

regular BPMS, and of one that is capable of applying ad-hoc changes.

We described the software architecture and implementation of the server side and the mobile appli-

cation. We also designed a simple EPL to support the description of the ad-hoc changes, and showed

how ad-hoc changes could be defined in this EPL.
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Chapter 5

Validation

To validate our proof of concept, we have defined an example business process and EPL description

and use it to validate the capabilities of the AdHoc system. In this chapter we discuss several possible

ad-hoc changes to this BPD by showing their EPL description, reasoning when they are applied, or not,

and how the BPD changes as a result of their application. We then discuss the liimitations of this proof

of concept, and how they translate to a full scale implementation.

5.1 Example Changes

Figure 5.1 shows the graphical representation of the BPD and it is annotated to show the internal id’s

of the individual elements. To validate the possible changes we have developed an EPL description for

the example process with four possible changes. Below we discuss this EPL description and its effects

in detail. Listing 5.1 shows the first part of the EPL file, describing that this EPL file contains changes

for the example process.

Process

example

Listing 5.1: Start of the EPL description for the example process

5.1.1 Removing a Node

This example describes the removal of the node labeled Task 1 when the (fictional) user ExampleUser1

is busy. The change is triggered when a Calendar event is sent in by ExampleUser1, and the condition

specifies that ExampleUser1 must be busy for the action to be applied. The action itself removes the
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Figure 5.1: Example BPD.

UserTask 1 node and its incoming and outgoing edges, it then connects the nodes StartEvent 1 and

ParallelGateway 3 directly.

Event

Calendar ExampleUser1

Condi t ion

Status Busy ExampleUser1

Act ion

RemoveNode UserTask 1

RemoveEdge StartEvent 1 UserTask 1

RemoveEdge UserTask 1 Paral lelGateway 3

AddEdge StartEvent 1 Paral lelGateway 3

Listing 5.2: EPL description of Example 1: Removing a Node

As a result of this change, the node labeled Task 1 is no longer an option, and the choice of actions

presented to the user are now changed as seen in Figure 5.3.

If UserTask 1 is already in the execution trace, then the application of this change fails, as removing

a node from the execution trace results in a state incompliance. The resulting BPD after the change is

applied correctly can be seen in Figure 5.2.
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Figure 5.2: BPD change for example 1.

Figure 5.3: Application change for example 1.

5.1.2 Adding a Node

This example describes the addition of a node labeled Task 2c (new) to the exclusive gateway already

containing the two traces with the tasks Task 2a and Task 2b. The change is triggered when a Location

event is sent by ExampleUser2, and the condition specifies that the distance between ExampleUser2

and Employee is shorter than 1000 meters. The action itself adds the UserTask 2c node to the system,

with the description Task 2c (new) and the actor Employee that can enact it. It furthermore adds the two

edges connecting the node to the exclusive gateway nodes.

Event

Locat ion ExampleUser2

Condi t ion

Distance < 1000 ExampleUser2 Employee

Act ion

AddNode UserTask 2c Task

Desc r i p t i on Task 2c (new)

Actors Employee

AddEdge ExclusiveGateway 1 UserTask 2c

AddEdge UserTask 2c ExclusiveGateway 2

Listing 5.3: EPL description of example 2: Adding a Node

As a result of this change, the task labeled Task 2c (new) is added to the graph as shown in Figure

5.4. Figure 5.5 shows the change in the possible actions that can be chosen in the mobile application.
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If UserTask 6 or UserTask 9 is already in the execution trace, then this node is still added, as it

does not violate soundness, state compliance or dynamic change correctness. However, it will be to no

effect, as the exclusive trace between ExclusiveGateway 1 and ExclusiveGateway 2 has already been

chosen.

Figure 5.4: BPD change for example 2.

Figure 5.5: Application change for example 2.

5.1.3 Exclusion of two Nodes

This example describes the exclusion of two sequential nodes labeled Task 3b and Task 3c. The change

is triggered when a Calendar event is sent in by ExampleUser3, and the condition specifies that Ex-

ampleUser3 should be free. The change itself does a number of things: first it removes all the edges

between UserTask 2 and ParallelGateway 6, it then adds two gateway nodes, and finally it connects

them all as shown in Figure 5.6.

As a result, Task 3b and Task 3c are now in an exclusive relation, where only one of the two can

be executed. The result of this in the mobile application is shown in Figure 5.7, where they exclude

eachother, and only one can be chosen.

If only Task 3b is in the execution trace, then this change can be applied with no problems. This

change, however, excludes Task 3c from ever being executed, as Task 3b has blocked that option. If
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both Task 3b and Task 3c are in the execution trace, then this change can not be applied. The new

BPD would be state incompliant, as there is no way to run the execution trace on the new BPD with the

exclusive gateway.

Event

Calendar ExampleUser3

Condi t ion

Status Free ExampleUser3

Act ion

RemoveEdge UserTask 2 UserTask 9

RemoveEdge UserTask 4 Paral lelGateway 6

RemoveEdge UserTask 9 UserTask 4

AddNode ExclusiveGateway in ExGateway

Desc r i p t i on ExclusiveGateway in

Actors

AddNode ExclusiveGateway out ExGateway

Desc r i p t i on ExclusiveGateway out

Actors

AddEdge UserTask 2 ExclusiveGateway in

AddEdge ExclusiveGateway in UserTask 9

AddEdge ExclusiveGateway in UserTask 4

AddEdge UserTask 9 ExclusiveGateway out

AddEdge UserTask 4 ExclusiveGateway out

AddEdge ExclusiveGateway out Paral lelGateway 6

Listing 5.4: EPL description of example 3: Exclusion of two Nodes

Figure 5.6: BPD change for example 3.

5.1.4 Adaptation Pattern (Swap)

This example describes the swapping of the two nodes labeled Task 4b1 and Task 4b2. The change is

triggered when a Calendar event is sent in by ExampleUser4, and the condition specifies that Exam-

pleUser4 should be busy. How the change is executed depends on the state of the BPD at the moment

of application.
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Figure 5.7: Application change for example 3.

Event

Calendar ExampleUser4

Condi t ion

Status Busy ExampleUser4

Act ion

Swap UserTask 11 UserTask 12

Listing 5.5: EPL description of example 4: Swapping two Nodes

Adaptation Patterns define semantic changes without explicitly stating which change primitives should

be executed. These change primitives are therefore derived at runtime. For this example, to swap two

nodes, the incoming and outgoing edges are found for each node, and they are swapped.

Listing 5.6 shows the resulting change primitives that are derived in this situation. We can see that

the incoming and outgoing edges for UserTask 11 and UserTask 12 are removed, and that the new

edges are added. It is worth noting is that the edge that connects UserTask 11 and UserTask 12 is

not removed and added twice.

RemoveEdge Paral lelGateway 4 UserTask 11

RemoveEdge UserTask 11 UserTask 12

RemoveEdge UserTask 12 Paral lelGateway 5

AddEdge Paral lelGateway 4 UserTask 12

AddEdge UserTask 12 UserTask 11

AddEdge UserTask 11 Paral lelGateway 5

Listing 5.6: EPL description of example 4: Swapping two Nodes

As a result, the BPD is now changed as shown in Figure 5.8. Figure 5.9 shows how the possible

options in the mobile application change as well.
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In other situations, for example, when a node has been added in between Task 4b1 and Task 4b2, or

when the Task 4b node and the parallel gateways have been removed, another list of change primitives

would have been derived, and subsequently, executed.

Figure 5.8: BPD change for example 4.

Figure 5.9: Application change for example 4.

5.2 Limitations

Since we built a simple proof of concept BPMS, this system has some limitations. We address these

limitations here and argue how they do not pose any unknown problems when considering a full scale

implementation.

Contextual Information

The Mobile Application supplies the server with two types of information: location and calendar status.

This suffices for demonstration purposes as it allows us to make choices based on the contextual infor-

mation sent from one or multiple users and one or multiple sources. In a full scale implementation, more

information can be reported to the server through various sensors. This opens up more opportunities,

as more information allows for more elaborate reasoning about decisions. However, we are confident

that the core concepts of this proof of concept in gathering and processing contexual information are the

same in a full scale implementation as the only real addition is the capacity to understand more context

information types.

Page 61



BPMN

This proof of concept uses a subset of BPMN. The entire BPMN specification consists of over 50 types

of elements, and has numerous ways to connect and group them [30]. In our proof of concept we use

only tasks, exclusive and parallel gateways, and start, end and regular events. We restrict the con-

nection types to sequence flows. The theory behind changing BPMN graphs including more of these

elements is discussed by Reichert et. al. [29]. The concepts of state compliance and dynamic change

correctness defined there apply to our proof of concept implementation as well as a full implementation.

Furthermore, any additional BPMN elements would still be subject to the four change primivites.

Adding BPMN elements poses little extra requirements above adding them to the language and

modifying the process engine to recognize them. Some extra checks have to be implemented in the

checking of soundness, state compliance and dynamic change correctness, but extra BPMN elements

comply with these concepts. We therefore argue that a full scale implementation does not require more

extensions in this area.

Adaptation Patterns

We implemented three adaptation patterns in our proof of concept: adding a process fragment. re-

moving a process fragment and swapping two process fragments. However, adaptation patterns are

just a sequence of change primitives derived from a process instance and variables. The derivation of

these primitives is not always trivial, but is disconnected from the use of contextual information to enact

changes.

Because our proof of concept supports all four change primitives, it is in fact a full implementation

in this regard. Adaptation patterns are merely defined by the change primitives they generate, and can

be arbitrarily defined. The set given by Reichert et. al. is an excellent minimum starting set, but by no

means prevents anyone from constructing their own adaptation patterns [29].

Security

Our proof of concept implementation has no real security measures to prevent abuse. Implementation

of a proper authentication system as well as secure connections would be desirable for a full scale

implementation. However, these and other security measures do not interact with the application of

ad-hoc changes, and therefore they do not pose a problem when implementing on full scale.
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5.3 Conclusion

We validated our proof of concept through an example containing four different types of ad-hoc changes.

This example demonstrated the capabilities of the proof of concept and validated the application of

our proof of concept as a (small) BPMS that uses contextual information to drive ad-hoc changes.

Furthermore we discussed the limitations of our proof of concept and how these would restrict a full

scale implementation, and can concluded that these do not pose any fundamental problems.
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Chapter 6

Conclusions

In this chapter, we answer the research questions posed in Chapter 1 one by one. We then use these

answers to discuss the research objective. Finally we identify opportunities for further research based

on this research.

6.1 Results

RQ: What is the state of the art in the fields of Context-Awareness in mobile devices and

Business Process Management, and how can they be combined?

In Chapter 2 we gave an overview of context-awareness, specifically for mobile devices. We dis-

cussed complex event processing, a technique that is used to base decisions on streams of informa-

tion, and we discussed business process management as a way to guide the business processes of a

company. We concluded that contextual information can be used to supplement business process man-

agement in various way, by using context for simple variable inputs, by gathering contextual information

to use in better analysis and by enabling changes to be made to the business process on-the-spot, or

ad-hoc.

RO1: Design a software architecture for a BPMS that can use these benefits to apply ad-hoc

changes.

In Chapter 3 we designed a software architecture for a BPMS that can apply ad-hoc changes. We

showed that this architecture can be defined as an extension of current BPMS and it is therefore fully

backwards compatible. We further showed how ad-hoc changes should be structured in terms of

change primitives and adaptation patterns, and how we can preserve soundness, state compliance

and dynamic change correctness. We then showed how the capability to apply ad-hoc changes affects
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each of the components, and discussed a few examples to illustrate how the concept of ad-hoc changes

can be used to steer business processes.

We thus conclude that the designed architecture is a proper architecture for a BPMS that uses the

benefits of context-awareness to apply ad-hoc changes to business processes.

RO2: Implement a Proof of Concept and validate the developed architecture.

In Chapter 4 we developed a proof of concept to validate the architecture designed in Chapter 3.

Through the development of requirements and use cases we designed a detailed software architecture

for the newly developed components: the process engine and the stream processor. Furthermore a

small device application was developed to accompany the process engine and stream processor. We

furthermore developed a small language to describe ad-hoc changes in, that is used as input for the

stream processor.

In Chapter 5 we validated the developed proof of concept through an example on the completed

system and argued that the limitations of this proof of concept do not hamper the development of a full

scale implementation.

The goal of this research was:

To identify the benefits of combining Context-Awareness in mobile devices with Business

Process Management, and design an architecture that can use these benefits to apply

ad-hoc changes to Business Processes.

We conclude that we achieved the goal of this research by designing an architecture for a BPMS that

can use contextual information to apply ad-hoc changes, and then validating that architecture through

the implementation of a proof of concept.

6.2 Future Work

In the course of this research, extra research opportunities have arisen that either transcended the

scope of this research, or required to much time to be worked out and could not be explored within

the time frame of this project. In this section we identify those research opportunities and discuss their

possibilities.
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Full BPMN Implementation

In our proof of concept we opted to implement only a subset of BPMN for the sake of brevity and clarity.

We argued that a ad-hoc changes work with a full implementation as well, as they operate at the level

of nodes and edges in a graph. Additional research could use the developed architecture, requirements

and use cases to develop a full BPMN implementation to further validate the claims this research makes.

Extensive Adaptation Patterns

In our research we restricted ourselves to three simple adaptation patterns. We argued that adaptation

patterns are descriptions of a high-level operation by which a sequence of change primitives is gen-

erated and executed. Further research can investigate more elaborate adaptation patterns, as well as

efficient ways to describe adaptation patterns, and explore different options to generate change primi-

tives from adaptation patterns.

Intelligent Decision Making

In our proof of concept we used an EPL designed according to the Event-Condition-Action paradigm.

This simple form of change definitions allows us to make decisions based on the information and events.

A more complex and elegant system can be developed to support decision making. This can even apply

neural networks and artificial intelligence to use multiple sources of contextual information to reach a

decision.

Another aspect could be to automatically derive possible changes based on previous executions and

contextual information, instead of predefining them.

Advanced Business Analytics

As discussed in Section 3.2, even more detailed analyses are possible with process instances that

started out the same but were differentiated through different applications of ad-hoc changes. The re-

alization of such an analysis method would require some theory to compare graphs (BPDs) and find

identical graph segments.

The Maximum Common Subgraph problem has been investigated, and algorithms have been de-

fined to detect if a certain graph has a subgraph that is similar or isomorphic to another graph [34].

This type of research would need to be extended to allow shared subgraphs between two graphs to be

found, with these shared graphs an analysis can be performed on the common subgraph of two or more

BPDs.
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