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Visual Tracking of Magnetic Microrobots
in Biomedical Research Applications

Boudewijn van den Berg, Alonso Sanchez and Sarthak Misra

Abstract— Magnetic microrobots provide new opportunities
in the fields of biological micromanipulation and minimally
invasive surgery (e.g., micromanipulation of cells [2], oph-
thalmic microsurgery [3] and development of new drugs [4]).
A major requirement for implementation of these microrobotic
applications is precise control of the microrobots. To enable
precise control, an accurate and robust position estimation is
essential. Therefore, position estimation of microrobots using
microscopy and ultrasound equipment is outlined in this
work and implemented into a C++ object-oriented platform-
independent library. Using the developed system, tracking
of multiple types of microrobots using optical microscopy
images is demonstrated, i.e., Janus particles are tracked with
a precision of ±3.1 µm, microparticles with a precision of
±14.6 µm and microjets with a precision of ±90.4 µm.
Furthermore, microrobot tracking using B-mode ultrasound
images is demonstrated, i.e., microparticles with a precision of
±121.0 µm and microjets with a precision of ±242.4 µm. The
algorithm is made to enable simultaneous tracking of multiple
microrobots in a clutter environment (with other microrobots or
debris). Finally, by combining the 2D tracking algorithm with
an object matching algorithm 3D tracking of microparticles in a
microscope is demonstrated and by combining the 2D tracking
algorithm with a scanning algorithm 3D tracking of microparti-
cles in ultrasound images is demonstrated (ultrasound tracking
precision: ±176.3 µm, microscope tracking precision: ±21.6
µm). This new tracking system could be used for accurate
position feedback in the control of magnetic microrobots in
biomedical research applications (e.g. micromanipulation of
cells [2]).

I. INTRODUCTION

A. State of the art

Recent developments in the design and control of mi-
crorobots have led to promising applications: Magnetic mi-
crojets have been used to assemble multiple micro-objects
[1], transport cells [2], a five-degree-of-freedom magnetic
microrobot was able to puncture vasculature in the rabbit’s
eye, and potential drug delivery applications are being stud-
ied [3]. In addition to these recent applications, possible
uses of microrobotics in biomedicine include brachytherapy,
biopsy, micromanipulation of cells, in vitro diagnostics and
pharmacological development of new drugs [4]. However,
challenges in control, localization, communication and de-
sign have to be tackled in order to make progression towards
final deployment of this technology [5].
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A major requirement for controlling microrobots is visual
servoing. Using visual feedback from a microscope, it is
possible to servo individual magnetic microparticles in 2D
with a positioning error of 27 µm/s up to an average
velocity of 283 µm/s using PI control [9]. With magnetic

Fig. 1. Multiple types of magnetic microrobots. A: Microjet [6] in an
ultrasound image (other microrobots that have been measured on ultra-
sound, microparticles and magnetosperm, have a similar appearance). B:
MagnetoSperm [7] in a microscope. C: Microjet [6] in a microscope. The
microjet itself is in the tip of the bubble trail. D: Sperm-in-a-Tube [8].
This microrobot consists of the same type of tube as is used for microjets.
However, this tube is propelled by a spermcell which is trapped inside.
E: Microparticle. F: Microparticle cluster. These clusters are formed by
microparticles under the influence of a magnetic field.



Fig. 2. Flow chart of the autosearch and tracking algorithm. All steps can be specifically tuned to optimize tracking of a specific type of microrobot.
Microrobots can be identified by user input or by the autosreach. After the object identification tracking is initialized, after which object position is
estimated for every frame using a particle filter. Both the autosearch as well as the tracker use features extraction to estimate object positions based on the
measurement. In this features extraction the frame is filtered by a Laplacian of Gaussian (LoG) filter, thresholded and labelled. Subsequently, the automatic
search selects objects based on size and shape and the tracker selects objects based on temporal consistency, after which the position of an object can be
estimated. The tracker uses this position estimation and a position estimation based on optical flow to weight particles of the particle filter. After weighting
the particles are used again for position estimation in the next frame. To do this the particles are resampled based on their weights and translated based
on the measured object velocity after which new weights can be assigned.

microjets, a type of magnetic microrobots that requires
very little magnetic field due to its self-propelling force
(average velocity: 115 µm/s), a controller positioning error
of 356 µm is reached using sliding-mode control in 2D
[10]. Also, using visual feedback, it is possible to control
multiple microrobots with different geometries along indi-
vidual paths [11]. However, in a lot of applications of mi-
crorobots (i.e. targeted drug delivery and minimally invasive
surgical interventions), it is not feasible to obtain visual
measurements using a microscope. Therefore, other visual
feedback methods are used for the control of microrobots
in these applications. Two major imaging modalities which
offer the opportunity to localize individual microrobots inside
opaque objects are ultrasound and magnetic resonance (MR)
imaging. Using MR based measurements, it is possible to
control magnetic microparticles inside capillary-sized flow
channels [12]. However, the delay in MR based systems
might lead to control instabillity and a limited bandwidth of
real-time controller implementation. Also the implementation
costs of an MR based localization of microrobots is a
major disadvantage of this modality [13]. Therefore ultra-
sound (US) has recently been implemented to provide visual
feedback for the control of microrobots. Using ultrasound
position measurements, Khalil et al. succeeded in controlling
magnetic microparticles along an S-curve with a positioning
error of 22.0 µm/s [13]. Later on, Sanchez et al. used a
similar control method to steer microjets in an eight shape
with a positioning error of 183.2 µm with an average velocity
of 207 µm/s [14].

The positioning error in previous control systems is mainly
due to the inaccuracy of the visual feedback [14]. The
visual feedback is provided by a tracking algorithm, and
uncertainties in the position and speed estimations of this
algorithm lead to this inaccuracy. For all types of visual
feedback, the tracker might suffer from inaccurate position
measurements due to a lack of robustness. In ultrasound-
based visual feedback, the lack of resolution also is a major
factor affecting the inaccuracy. This results in a less accurate
measurement of position and it also induces a delay in the
registration of changes in direction and speed. Furthermore
imaging artifacts, other objects in the workspace and an
image background with many features make it harder to
recognize and estimate the real position of a microrobot
while travelling through a sample. All these factors represent
a real challenge for visual servoing inside human tissue.

The tracking methods used by Khalil et al. and Sanchez et
al. both use low-level image processing algorithms, similar
to an algorithm used in 2004 by Yesin et al. [15] to track
intraocular microrobots. In these algorithms, the frames are
first equalized and thresholded and then eroded and dilated,
which leads to localization of the microjets in low-noise
frames of a clean environment with microrobots [14,15].
However these algorithms are not robust in the presence of
background intensity variatons and imaging artefacts leading
to estimation errors. Consequently, frequent human input
during tracking is necessary to adjust the estimated position.

Other tracking algorithms have been developed for the
tracking of other types of microrobots and to track the
migration of cells. For tracking of a microrobot on MRI



Felfoul et al. [16] used correlation in the frequency domain
with a mask representing the microrobot shape to estimate
the position of the microrobot with a standard deviation
(STD) of 542 µm. Buerkle et al. [17] used another corre-
lation technique using pairwise geometric histograms (PGH)
to track microrobots under a microscope. However, these
techniques are restricted to tracking invariant shapes due to
the use of correlation. To track migrating cells Jiang et all.
[18] used scale invariant feature transforms (SIFT) to register
the movement of features on the cells. This technique is
less sensitive to changes in shape, however it required some
individual features based on which objects could be tracked.
Chatterjee et al. [19] used bipartite graphs to track cells.
For this method the objects should also contain properties
based on which they can be distinguished from other objects.
Another approach which is used for tracking of cells is
the use of sequential methods, in particular particle filters.
Xiuzhuang et al. [20] used a particle filter based on the
mean shift of the object in the image, which was determined
by the shift of pixel intensities, to track sperm cells. Smal
et al. [21] used a particle filter algorithm that integrated
dynamical properties in its position estimation to robustly
track large groups of fluorescent proteins on microtubules.
This latter method can also be tuned to use other properties
in its estimation of the trajectory of the object and integrate
multi-sensor input, which makes this method really flexible
in its application.

B. Contributions

To cope with the aforementioned tracking and estimation
problems and reduce the controller positioning error of
magnetic microrobotic control systems a general algorithm
for tracking of microrobots is studied and developed in this
paper. Because this algorithm should be able to track a
variety of microrobots, it should robustly track inconsis-
tent shapes (e.g. microrobots in ultrasound images, bubble
tails of microjets or swimming sperm on a microscope).
Furthermore, it should be robust to the proximity of other
microrobots. Therefore a particle filter1 is used as a main
component in this algorithm to track the microrobots. To
enable tracking of multiple microrobots neglecting other
objects, an automatic microrobot search function is included
in the system, which selects objects with a high likelihood to
be microrobots by using a connectivity algorithm to identify
objects and exclude objects from the algorithm based on size
and shape. To increase robustness, the particle filter uses a
more elaborate estimation of the object position compared to
Smal et al. and Zhou et al. by combining information from
the filtered measurement with optical flow feature tracking
(fig. 7) and statistical analysis of the position and speed of
the microrobot.

In the next section, the design of the tracking algorithm
will be outlined. Subsequently, the tracking algorithm is eval-
uated based on its performance using real-time microscope

1For a comprehensive explanation on particle filters, please read ”A tuto-
rial on particle filters for online nonlinear/non-Gaussian Bayesian tracking”
by Arulampalam et al. [22].

Algorithm 1: Connectivity Labelling
- The function zeros() returns an array of zeros.
- The function Max() returns the maximum of the array.
- CSize is the size of the connectivity region, defined as
the distance from the midpoint to the border.
- MaxCR is the maximum value within an extracted
region of the size CSize.
- ObjectNumber is the number assigned to an identified
object.

Initialize binary frame:
BinaryFrame = zeros(framesize)
Initialize maximum object number: MaxObjects = B
Initialize connectivity region size: CSize = C
for i = CSize to Height− Csize do

for j = CSize to Width− Csize do
if BinaryFrame(i, j) = 1 then

MaxCR =Max(BinaryFrame(
i− Csize to i+ Csize, j − Csize to j +
Csize))
if MaxCR > 1 then

ObjectNumber =MaxCR
end
if MaxCR == 1 then

ObjectNumber =MaxObjects− 1
end
for k = i− CSize to i+ CSize do

for l = j − CSize to j + CSize do
if BinaryFrame(k, l) = 1 then

ObjectFrame(k, l) =
ObjectNumber

end
end

end
end

end
end

and ultrasound input of samples containing microparticles,
microjets and Janus particles.

II. TRACKING ALGORITHM

Although different types of microrobots each have indi-
vidual constraints on a tracking algorithm, a general tracking
strategy that can be implemented on all types of microrobots
is defined in this work (fig. 2). Within this general tracking
strategy, individual steps can be adapted to create a robust
tracking algorithm for a specific type of microrobot.

In this work steps have been adapted for multiple types of
microrobots, including:

- Microjets
- Microparticles
- Janus particles

For this selection, a single configuration is used for
microparticles and Janus particles on ultrasound since no



TABLE I
THE CONFIGURABLE PARAMETERS OF THE ALGORITHM AND THE VALUES USED FOR TRACKING OF SPECIFIC MICROROBOTS.

distinction can be made between the different types of micro-
robots on ultrasound because of their similar appearance. The
algorithm can be adapted to other specific types of micro-
robots by changing the parameters in table 1. The tracking
of microjets on ultrasound and on microscope includes a
special head-tracking function to differentiate the robot from
its bubble trail.

A. Automatic Search

Before tracking can be executed, potential microrobots
must be identified. Even though user input identifying a
single microrobot might be sufficient information to initialize
individual tracking, a more general selection strategy needs
to be defined to provide a reliable search algorithm for multi-
object tracking scenarios, given that all microrobots in the
frame need to be selected for tracking.

An important first step of both the automatic search and
the tracking is the pre-processing of the image. The purpose
of this pre-processing is to make the algorithm less sensitive
to artifacts and noise, including shadows, reflections and
features outside the focus of the microscope, and to make
the algorithm more sensitive to the features of the microrobot
itself. Therefore the frames should be filtered with a filter that
is only sensitive to spatial intensity fluctuations of the size of
the microrobotic features. To realize this spatial sensitivity
the frames are filtered with a Laplacian of Gaussian (LoG)
filter, in which the Laplacian aspect makes the filter sensitive
to intensity variations and the Gaussian aspect determines the
size of the intensity variations to which the filter is sensitive.
A specific filter for every type of microrobot can be designed
based the approximate size of the microrobot in the frame
(in pixels), by choosing a corresponding STD of the LoG
filter kernel. Next, the filter kernel can be generated using
equation 1, in which LoG(0, 0) is the midpoint of the kernel.

LoG(x, y) = 1
πσ4 (1− x2+y2

2σ2 )e−
x2+y2

2σ2 (1)

To enable labelling of the objects, the frame is converted
to a binary frame. A consistent method to do this, which is
insensitive to inter frame intensity fluctuations and sensitive

to the size of the objects, is converting the image using an
adaptive threshold.

T (x, y) = Threshold(x, y) (2)

BinaryFrame(x, y) =

{
0 if Frame(x, y) < T (x, y)
1 if Frame(x, y) > T (x, y)

(3)

This threshold is set for every pixel by calculating a
Gaussian weighted average of the pixel values in an area
around the pixel Frame(x, y) of which the size is de-
termined by a configurable parameter ThresholdSize and
adding or subtracting a constant value from this average. By
adjusting the constant value, this method can be enhanced for
individual types of microrobots. Hereafter, because objects
can consist of multiple blobs, inter-blob connectivity within
the frame is analyzed to identify and label the objects. This is
done by algorithm 1, in which the connectivity region size is
set to the maximum distance between two blobs of the same
object.

When the objects are identified and labelled, a selection
can be made of the objects which are most likely to be the

Fig. 3. A visualization of the LoG kernel. Due to its shape, it is sensitive
to features of a specific size.



Fig. 4. A visualization of the shape analysis algorithm applied to an
ultrasound blob of a microjet. The algorithm measures the distances between
the points, determines the variance in those distances and divides this
variance by the amount of pixels belonging to the object. Characteristic
for moving microjets in ultrasound images is the side blob, which appears
if the jet has a long trail of bubbles.

specified type of microrobots. Given that the microscopic and
ultrasound appearance of most microrobots is respectively a
silhouette and a reflection, this selection is based on their size
and shape. The size is determined by counting the pixels
of the object, and is only dependent on the real size of
the objects and the scale of the frame. To select the right
shapes, a simple but effective algorithm was designed for this
purpose (algorithm 2). The algorithm determines the amount
of white pixels and the coordinates of the highest, lowest and
side points of every object. The variance in the length of the
lines between these points, as drawn in figure 4, indicates a
shape. Complementary to this, the pixel count indicates to
which extend this shape is filled. Subsequently a measure for
the shape of the object follows from the ratio between the
variance and the pixel count (fig. 4 and fig. 5).

Since the objects have labelled coordinates in the frame,
the blobs that do not match the given shape, or are bigger
or smaller than respectively a given maximum or minimum
size, can be removed from the binary image. The remaining
objects can be relabeled and for tracking the coordinates
of their centroids, determined by the average of the pixel
coordinates of the object, can be stored in a vector which
will be used to extract a region of interest (ROI) around
every object being tracked.

B. Tracker

Now that the coordinates of the objects are known, the
algorithm starts tracking these objects. To reduce computa-
tional complexity and, hence, achieve high tracking framer-
ates, a ROI is chosen around each tracked object in which the
analysis of the measurement can be implemented. The size of
this ROI is determined by multiplying the size of the object
with a factor dependent on the type of microrobot. The factor
is chosen to make the ROI fully enclose the microrobot and

Algorithm 2: Size and Shape Selection
- The function EuclideanDist() returns the euclidean
distance between two points.
- CSize is the size of the connectivity region, defined as
the distance from the midpoint to the border.
- Xmax, Xmin, Y max and Y min are the positions of
the minimum and maximum coordinates of the object.
- count is the number of pixels of the object.
- Ratio is a ratio indicating the shape of the object.

for k = 0 to MaxObjects do
Initialize count = 0; Initialize Xmax.x = 0;
Initialize Y max.y = 0; Initialize
Xmin.x = framewidth; Initialize
Y min.x = frameheight;
for i = CSize to Height− CSize do

for j = CSize to Width− CSize do
if ObjectFrame(i, j) = k then

count = count+ 1;
if j > Xmax.x then

Xmax.x = j; Xmax.y = i;
end
if j < Xmin.x then

Xmin.x = j; Xmin.y = i;
end
if i < Y max.y then

Y max.x = j; Y max.y = i;
end
if i < Y min.y then

Y min.x = j; Y min.y = i;
end

end
end

end
L1 = EuclideanDist(Xmin to Y min);
L2 = EuclideanDist(Y min to Y max);
L3 = EuclideanDist(Xmax to Y max);
L4 = EuclideanDist(Y max to Xmin);
L5 = EuclideanDist(Y max to Y min);
L6 = EuclideanDist(Xmax to Xmin);
LV ar = V ariance(L1, L2, L3, L4);
Ratio = LV ar/count;
if count > MaxSize
or count < MinSize
or Ratio > MaxRatio
or Ratio < MinRatio then

for i = CSize to Height− CSize do
for j = CSize to Width− CSize do

if ObjectFrame(i, j) = k then
ObjectFrame(i, j) = 0;

end
end

end
end

end



Fig. 5. The shape analysis algorithm applied to multiple types of blobs. The shape ratio is indicated by ”R” and the number of pixels of the object by
”count”. The algorithm clearly distinguishes round shapes (microparticle) from irregular shapes (dust) and irregular shapes from long shapes (microjet,
sperm-in-a-tube, scratch). Upper row: Binary blobs of objects that might interfere with the tracking. Bottom row: Binary blobs of multiple microrobots.
Every blob is drawn on the same scale (one picture is approximately 200µm by 200µm except the picture of the microrobot in an ultrasound image).

Fig. 6. Illustration of time consistency based object selection. In the first
picture an overlay of the new binary ROI and the old binary ROI (in which
other objects already have been filtered out by the selection) has been shown.
- White pixels from the old ROI are gray.
- White pixels from the new ROI are white.
- Overlapping white pixels are green.
As the middle object is the object with the most overlapping pixels, it is
selected (second picture).

exclude as much of the rest of the frame as possible. In this
way, the ROI includes all features necessary for the analysis
and is as small as possible.

When the ROI has been selected the corresponding region
is extracted from the filtered frame. The shape and size
analysis steps from the autosearch are excluded to prevent
unwanted loss of the object due to changes in shape. Instead,
the binary frame is used to select the object that is temporally
most consistent. This is done by segmenting the binary ROI
using algorithm 2 and counting overlapping pixels between
the filtered binary ROI from last iteration and binary ROI in
the current iteration. This is illustrated in figure 6.

From the remaining object inside the ROI, the object

Fig. 7. Simplistic visualization of optical flow feature tracking. The most
likely translation of a pixel is calculated by searching the least square fit of
the color intensities of the 9 surrounding pixels in the area.

position is measured. For most microrobots, the measured
position is most effectively defined as the centroid of the
object, as this is the point which is dynamically most stable.
However, for microjets an algorithm for headtracking is used,
as these robots are at the tip of a trail of bubbles. This
algorithm uses the measured speed of the jet and, if it is
available, the control input to determine the first pixel of
the object in the direction of movement, which provides an
indication of the robot position.

Although this object analysis can already provide a good
estimation of the position of some types of microrobots in
case of high contrast frames (i.e. magnetic microparticles on
a microscope, figure 1E), the tracker should also be robust in
less reliable measurements. When a microrobot temporarily
disappears from the frame, as is often the case with ultra-
sound measurements of microjets, the tracker should still
make a reliable estimation of the position as this position
is important for accurate control of the robot. Also, when



Algorithm 3: Head Tracking
- ControlSetpoint is the setpoint that is used for posi-
tion control, if the is controlinput.
- Searchpoint is a point in front of the microrobot .
- speed.x and speed.y are the velocity of the object in
respectively the X direction and Y direction.
- EuclideanDist() is a function returning the Euclidean
distance between two points.
- Head is the position of the front pixel of the micro-
robot.

if ControlInput = true then
Searchpoint = ControlSetpoint

else
Searchpoint.x = C ∗ speed.x
in which C ∗Xspeed >> speed.x
Searchpoint.y = C ∗ speed.y
in which C ∗ Y speed >> speed.y

end
for i = 0 to ROIsize do

for j = 0 to ROIsize do
if BinaryROI(i, j) = 1 then

Dist =
EuclideanDist(Point(i, j) to SearchPoint)
if Dist < MinDist then

MinDist = Dist
Head.x = j
Head.y = i

end
end

end
end

the measurement has a low resolution, the estimation of the
position should still be as accurate as possible. Because the
tracking algorithm is designed for usage in biomedical ap-
plications, the tracker should also be robust to features from
surrounding tissue and other objects. To do this robust and
accurate tracking a sequential importance sampling particle
filter is implemented.

In the first cycle the particles of the particlefilter are seeded
with a Gaussian distribution, based on the approximate speed
of the type of microrobot, around the centroid. This is
done with independent distributions in x- and y-direction,
because the direction is not known yet. The distributions are
generated by taking the Box-Muller transform of random
uniformly distributed numbers U1 and U2, to obtain the
standard normal distribution, and adjusting the mean and
STD:

Particle set: N =

(
Npos

Nweights

)
(4)

Npos =

[
Xcentroid +

√
−2 ln(U1) cos(2πU2)σspeed

Ycentroid +
√
−2 ln(U1) sin(2πU2)σspeed

]
(5)

Nweights = 1 (6)

Algorithm 4: Importance Resampling
- nparticles is the number of particles.
- nsplit is the number of particles that are resampled from
the selected particle.
- Totalweight is the sum of all particle weights.
- MeanWeight is the average of all particle weights.
- Npos is the vector with particle positions.
- Nweights is the vector with particle weights.

Totalweight =
∑

Nweights

MeanWeight = Totalweight
nparticles

Sort particle set from high to low values based on
particle weights:
Sort(N,Nweights)

Split particles into new particles and sample untill
length(N) = nparticles :
for i = 0 to nparticles do

nsplit = Nweights(i)/MeanWeight
count = count+ nsplit
if count <= nparticles then

for j = count− nsplit to count do
Npos,new(j) = Npos(i)
Nweights,new(j) = 1

end
else if count− nsplit <= nparticles then

nsplit = nparticles − (count− nsplit)
for j = count− nsplit to nparticles do

Npos,new(j) = Npos(i)
Nweights,new(j) = 1

end
end

end

The positions of these particles are given by sub-resolution
coordinates, which enables the particle filter to make a
sub-resolution estimation of the particles position later on.
Hereafter, these particles are updated every frame based
on the average centroid or head speed, optical flow, and
the centroid or head in the current frame. This is done by
implementing the following steps sequentially:

1) Importance Resampling: At the importance resampling
step, the weighted particles are split into particles of equal
weight. Because the number of particles is kept equal,
particles with low weights are excluded and particles with
high weights result in a stack of multiple particles. The
resampling method is outlined in algorithm 5.

2) Particle Translation: The position of these particles
is updated based on a probability distribution of the speed.
Because the speed of most microrobots is highly influenced
by both external (i.e. temperature, air flux) and internal
(i.e. individual robot behavior, field fluctuations) factors a
real-time measurement is used to obtain a more accurate



Algorithm 5: Particle Translation
- σspeed is the measured STD of the speed.
- U is a uniform distributed random number.
- n is a normal distributed random number.
- ρ is the measured correlation coefficient between the
velocities in x and y direction.

for i = 0 to nparticles do
U1 = rand()
U2 = rand()

Box-Muller transform:
n1 =

√
−2 ln(U1) cos(2πU2)

n2uncorr. =
√

−2 ln(U1) sin(2πU2)
Correlation:
n2 = ρn1 +

√
1− ρ2n2uncorr.

Determining contribution of controlinput:
if controlinput == true then

Cspeed.x = (setpoint.x−Pos.x)C
|Pos.x−setpoint.x|+|Pos.y−setpoint.y|

Cspeed.y = (setpoint.y−Pos.y)C
|Pos.x−setpoint.x|+|Pos.y−setpoint.y|

else
controlspeed.x = 0 and controlspeed.y = 0

end

Npos =[
Npos,new.x+ speed.x+ Cspeed.x+ n1σspeed.x
Npos,new.y + speed.y + Cspeed.y + n2σspeed.y

]
end

distribution. At the initialization of the filter a probability
density of the speed of the specific type of microrobot is
used, with its maximum at the center because the direction is
still unknown. When a control algorithm is active, the control
input can be taken into account to reshape the distribution.
The algorithm keeps track of the speed and enables more
accurate tracking by assuming consistency in speed and
translating the particles with a covariant distribution. The
translation of particles is outlined in algorithm 6.

3) Weighting: To obtain weights for the particles, two
methods are used to estimate the object position. This
increases the accuracy and improves the robustness. If at
one step one method fails to correctly estimate the particle
position, the other method can make up for this. In the
first iteration the weighting is solely based on the measured
centroid of the object. In the other iterations the weighting
is based on the optical flow and either the centroid or the
head of the object.

The centroid is again estimated by calculating the average
pixel coordinates of the binary object and the head is
estimated by the head tracking algorithm and for both values
a Gaussian probability density function, based on the mean
and STD of the measured values, is generated for weighting
of the particles. The optical flow estimation is done using the
Lucas-Kanade method [23]. In this method, it is assumed that
neighboring pixels have similar motion. Therefore the optical

Algorithm 6: Weighting
- Pof is the estimated position based on the optical flow.
- Pc is the position of the centroid or the head.
- σof is the STD of the optical flow position estimation.
- σc is the STD of the object based position estimation
(head or centroid).
- Nweights is the vector with particle weights.
- Npos is the vector with particle positions.

for i = 0 to nparticles do

fof (i) =

1
σof
√
2π
e
− 1

2

((
Npos.x(i)−Pof .x

σof

)2

+

(
Npos.y(i)−Pof .y

σof

)2)
fc(i) =

1
σc
√
2π
e
− 1

2

((
Npos.x(i)−Pc.x

σc

)2

+

(
Npos.y(i)−Pc.y

σc

)2)
Nweights(i) = fof (i)fc(i)

end

Algorithm 7: Speed Estimation
- EuclideanDist() is a function returning the euclidean
distance between two points.
- MaxSpeed is the maximum velocity that is set for the
speed sampling consensus.

for every iteration do
if EuclideanDist(Pos(i) to Pos(i− 1)) <
MaxSpeed then

TempSpeed.x.push(Pos(i).x− Pos(i− 1).x)
TempSpeed.y.push(Pos(i).y − Pos(i− 1).y)

end

if length(TempSpeed) > SampleNumber then
TempSpeed.erase(begin)

end

speed.x =Mean(Tempspeed.x)
speed.y =Mean(Tempspeed.y)

end

flow can be determined by estimating the displacement of
these pixels. This is done by applying a least square fit
method on partial derivatives of the image intensity.

Based on the optical flow resulting from this equation, the
position of the tracked object in the next frame is estimated,
generating another Gaussian probability density function.

To update the estimated position the weighted average of
the coordinates of the particles is computed. This estimated
position is used in the next iteration to update the ROI, and
can be used as input for a control algorithm. Every iteration
the estimated speed is updated by taking the average over
the most recent frames while rejecting outliers:



Fig. 8. Image sequence of showing the fast and accurate convergence of the particle filter, in this case applied to microjets. Converged particles provide
a more accurate estimation of the position. The framerate is approximately 30 frames per second.

Algorithm 8: 3D Object Matching
- Objects are matched by the vector BlobMatch.
- Variables with subscript 1 are derived from input 1.
- Variables with subscript 2 are derived from input 2.

for i = 0 to ObjectNumber1 do
TempXdistance = 0
for j = 0 to ObjectNumber2 do

TempXdistance =
abs(Pos1(i).x− Pos2(j).x)
if TempXdistance < Xdistance(i) then

Xdistance(i) = TempXdistance
BlobMatch(i, 1) = i
BlobMatch(i, 2) = j

end
end

end
if ObjectNumber1 > 4 and ObjectNumber2 > 4 and
SingleObjectTracking = false then

ThresholdMax =
Mean(Xdistance) + 2 ∗ STD(Xdistance)
ThresholdMin =
Mean(Xdistance)− 2 ∗ STD(Xdistance)

else
ThresholdMax =MaxError
ThresholdMin = 0

end
for i = 0 to ObjectNumber1 do

if Xdistance < ThresholdMin or
Xdistance(i) > ThresholdMax then

Xdistance(i) = −1
BlobMatch(i, 1) = −1
BlobMatch(i, 2) = −1

end
end

III. 3D TRACKING

A. Microscopic Tracking Using Orthogonal Viewpoints

For microscopic tracking of microrobots in 3D the 2D
tracker is used on input from two microscopes. To achieve
3D tracking these microscopes are positioned perpendicular
to each other (fig. 9). In this way two 2D trackers, when run
synchronized, can track both the x and y and the x and z
coordinates. The output of these two trackers is combined to

a 3D estimation of the position by assuming that the cameras
are aligned in the x-direction. Based on this assumption,
the tracker can recognize an object in two different frames
by searching for objects in both frames with the smallest
difference in x-coordinates.

To exclude objects that are not visible in both frames,
and therefore cannot be tracked in 2D, matched objects that
are not likely to be the same object are not matched and
therefore excluded from 3D tracking. In multi-object tracking
(when ObjectNumber1 > 4 and ObjectNumber2 > 4)
this is done by comparing the difference in x-coordinates
of an object to the mean difference in x-coordinates of all
objects, as all objects should approximately have the same
alignment error. In single object tracking, or tracking of less
than 4 objects, the difference in x-coordinates is compared
to a threshold, MaxError, which should be set based on
the cameras and the set-up (more specific: spatial resolution,
camera distance, camera alignment method). When there are
multiple objects in one frame with an acceptable difference
with one object in the other frame, the coordinates of that
object are used to track both objects from the other frame,
since the tracker does not have enough information to distinct
the objects.

B. Ultrasound Plane Scanning

For ultrasound tracking in 3D a scanning algorithm is
implemented to determine the height of the object and
send frames of correct height to the 2D tracker. Due to
limitations of the set-up to the maximum amplitude of the
probe scanning, it is only possible to track one object. To
initialize ultrasound tracking in 3D, the object should first
be selected manually by scanning the probe over the sample
and selecting an object in the 2D tracker. When the object
is selected, the tracking and scanning algorithms take over.

The scanning algorithm tracks the height of the object
based on the assumption that the object is at its brightest
within the ROI when it is optimally positioned within the
ultrasound plane. Therefore, when scanning the object with
a small amplitude (e.g. in case of microparticles 3mm), the
object height can be determined by registering the height
of the ultrasound plane at the moment that the object has
maximum intensity in the ultrasound frame. To increase
the robustness of this algorithm, the ultrasound frames are,
similar to the 2D tracking algorithm, filtered with a LoG
kernel and thresholded with an adaptive threshold. Because



Fig. 10. Flow graph of the ultrasound plane scanning algorithm. During one scanning cycles every frame is saved and a binary ROI of every frame is
saved for analysis. When distance between the probe height and the object height exceeds the scanning amplitude, the direction is changed and the ROI’s
are analyzed. The ROI with most white pixels is considered as the frame at the height of the object. Therefore the height of the object is detemined from
this analysis by searching for the binary ROI with most white pixels and the probeheight at the moment the frame was made.

Fig. 9. The positioning of the imaging modalities in the experimental
setup and their outputs. The ultrasound output often has artifacts close to
the probe and reflections from the edges of the basin.

the x and y positions are approximately the same during
one entire scanning cycle, the time-consistency based object
filtering (fig. 6) is used again to filter additional objects in
the ROI. In the resulting ROI, the number of white pixels
of the object is used as a measure for object brightness, as
the thresholding renders the binary image based on pixel
brightness.

During scanning, the algorithm saves the original frames
of every scanning cycle and registers their height. After
the height of the object has been determined, the algorithm
chooses the corresponding frame from the stack and sends
it to the 2D tracker for further tracking of the position.

IV. TRACKER EVALUATION

In this section, the robustness and accuracy of the tracker
are evaluated. As for multi-object tracking the same tracking
algorithm is implemented on multiple objects at the same
time, this tracker will show the same behavior for these
objects as for a single object of the same type. Therefore,
multi-object tracking is not specifically evaluated. However,
in the videos attached to this report multi-object tracking is
shown.

A. 2D Tracking

To evaluate 2D tracker performance, the tracker is im-
plemented to track microparticles and microjets on micro-
scope and ultrasound videos. Additionally, the tracker is
implemented to track Janus particles (5µm diameter) on
microscope videos. However, since it was not possible to
track functional Janus particles on ultrasound with the current
setup, these were not analyzed.

To analyze 2D tracker accuracy and robustness, videos
of controlled microrobots inside the basin are used. To
determine the accuracy in these videos, both the real position,
which is selected manually, and the tracker position are
registered during each frame that the tracker is active. The
real positions of the microrobots are calculated from the pixel



coordinates using (7), in which Xposition and Yposition are
the coordinates of the real position, Xpixel and Ypixel are the
coordinates of the position in pixels, FOVx is the field of
view in x direction, FOVy is the field of view in y direction
and widthframe and heightframe are the width and height
of the frame in pixels.

xposition = xpixel
FOVx

widthframe
(7)

yposition = ypixel
FOVy

heightframe
(8)

Based on these positions the tracking STD, defined as the
standard deviation of the set of errors of position estimation

Fig. 11. Trajectory of the microjet in video 3, in which the jet was tracked
with a tracking STD of 90.5 µm. At some points in the trajectory there is
a tracking offset. This happens because the tracker does not correctly track
the tip of the microjets due to variations in speed. In the video it can be
seen that there was flow leading to these variations.

Fig. 12. (Trajectory of the microjet in video 4, which was measured with
ultrasound. The jet was tracked with a tracking STD of 242.4 µm. The
tracking in this measurement is less accurate due to the low resolution of
ultrasound. At the end of the video the headtracking algorithm catches the
wrong blob, leading to a high position estimation error.

in each frame [24], and average velocity are determined
which are summarized and illustrated in table 2. Since no
manual position corrections during tracking were needed in
these videos to maintain tracking, these are not shown in the
results.

Figure 11 shows the trajectory of the microjet in video 3.

TABLE II
TO DETERMINE THE 2D TRACKING ACCURACY BOTH THE REAL

POSITION, WHICH IS SELECTED MANUALLY, AND THE TRACKER

POSITION WERE REGISTERED DURING EACH FRAME THAT THE TRACKER

WAS ACTIVE. BASED ON THESE POSITIONS THE TRACKING STD,
DEFINED AS THE STANDARD DEVIATION OF THE SET OF ERRORS OF THE

POSITION ESTIMATION IN EACH FRAME, AND AVERAGE VELOCITY WERE

DETERMINED. THE TRACKING STD IN VIDEO 3 IS RELATIVELY HIGH

DUE TO THE LARGE BUBBLE TRAIL. IF THE MICROJET HAS A SMALLER

BUBBLE TRAIL THE TRACKING IS MORE ACCURATE. HOWEVER, IN THAT

CASE THE MICROJET WILL ALSO BE SLOWER. IN VIDEO 5 THE

TRACKING STD IS MAINLY DUE TO THE BUBBLES APPEARING FROM

THE JANUS PARTICLE. HOWEVER, THE TRACKING STD IN THIS VIDEO

IS MUCH SMALLER THAN THE TRACKING STD OF VIDEO 1 BECAUSE

THE SCALE IS MUCH SMALLER. IN VIDEOS 2 AND 4 THE TRACKING STD
IS HIGH COMPARED TO THE OTHER VIDEOS DUE TO THE LOW

RESOLUTION OF THE ULTRASOUND OF APPROXIMATELY 50 µm.
MEASUREMENTS WITH THE MICROPARTICLES WERE MADE IN WATER

AND MEASUREMENTS WITH THE MICROJETS AND JANUS PARTICLES

WERE MADE IN HYDROGEN PEROXIDE (JANUS PARTICLES 30% AND

MICROJETS 5%). ULTRASOUND MEASUREMENTS WERE MADE WITH THE

SIEMENS ACUSON S2000 SYSTEM USING THE 14L6 PROBE AT 14 MHZ.



Fig. 13. The standard deviation of the position estimation over a period of 20 frames during video 3. Initially, the tracker does not localize the head of
the microjet yet because it first has to determine the movement direction of the jet. Therefore, the tracker deviation intitially increases as the tracker first
converges to the centroid. A decrease of the STD is visible when the tracker localizes the head and converges to its position. However, the tracking STD
shows another peak when the jet has made a turn, causing the tracker to track the wrong side of the jet with its trail untill the correct speed of the jet is
determined again. Later on, an other peak is visible when another object comes close to the jet. The reason for this tracking deviation is further explained
in ”Tracker Robustness”.

TABLE III
TRACKING STD AND AVERAGE VELOCITY DURING 3D TRACKING IN VIDEOS 7 AND 8. BECAUSE BOTH MEASUREMENTS WERE MADE AT THE SAME

TIME, ULTRASOUND TRACKING IN 3D CAN BE COMPARED DIRECTLY TO MICROSCOPIC TRACKING IN 3D. BECAUSE IN ULTRASOUND TRACKING THE

STD IN SCANNING DIRECTION (z) IS SIGNIFICANTLY DEVIATING FROM THE STD IN THE OTHER DIRECTIONS (x AND y) IT IS LISTED SEPERATELY.
THIS IS DUE TO THE USAGE OF A DIFFERENT TRACKING METHOD AND ALGORITHM IN THAT DIRECTION.

At some points in the trajectory there is a tracking offset.
This happens because the tracker does not correctly track
the tip of the microjets due to variations in speed. In the
video it can be seen that there was flow leading to these
variations. Because the real position of the microrobots is
determined manually offline by clicking on the position, also
the determination of this position might have inaccuracies.

Fig. 14. The manually measured trajectory of the particle is compared to the
trajectory tracked by 3D tracking with microscope and the trajectory tracked
by 3D tracking with ultrasound. It can be observed that the ultrasound plane
scanning algorithm loses track when the particle makes a quick movement
downwards.

However, no other objective realistic scenario and more
accurate method of position estimation was available on
this setup. In figure 12 the trajectory of the microjet in
video 4, which is measured with ultrasound, is shown. In
this measurement, the manually estimated position is clearly
more accurate than the tracked position as could be expected
based on the inaccuracy of ultrasound.

Figure 13 shows the STD of the tracking measured over a
period of 20 frames in video 3. Initially, the tracker does not
localize the head of the microjet yet because it first has to
determine the movement direction of the jet. Therefore, the
tracker initially has a high STD. A steep slope is visible when
the tracker localizes the head and converges to its position.
After this convergence the tracking STD has become much
smaller. However, the STD shows another peak when the jet
has made a turn, causing the tracker to track the wrong side
of the jet with its trail untill the correct speed of the jet is
determined again. Later on, an other peak is visible when
another object comes close to the jet. The reason for this
tracking deviation is further explained in the next section.

B. Tracking Robustness

To test the tracker’s robustness to encounters with other
objects or background, the tracker is implemented to track
objects in proximity of other objects. Noticeable encounters
in the videos of these measurements have been studied to
identify the tracker’s weak spots and are shown in video 6.
Inside these videos the tracker proves robust to encounters
with other objects at a distance further than the size of the



connectivity region. Tracking microjets it can be observed
that the tracker loses track of the correct jet in case of an
occlusion with another jet or an encounter closer than 5
pixels (fig. 15D). This is caused by the algorithm failing
to distinguish the jets as separate objects. Despite this
drawback, the connectivity region of 5 pixels still holds
as the optimal connectivity region size for microjets, as a
smaller connectivity region results in segmentation within
jets, causing inacurrate tracking or loss of the microjet itself.
As the connectivity region for microparticles is smaller,
because most microparticles only consist of a single blob
on the binary image, tracking of microparticles is more
robust. However, in situations where particle blobs might
be connected to other blobs in the thresholding step due
to proximity the tracker still loses track in the current
implementation of the algorithm, as is the case in figure 15D.

C. 3D Tracking

To evaluate performance of 3D tracking with microscopes,
the algorithm is implemented to track individual microparti-
cles on microscopes in 3D. To assess tracker performance in
this mode the position estimation of the tracker is compared
with the manually measured position on the camera frames
to analyze tracker accuracy. To evaluate performance of
3D tracking with ultrasound, the ultrasound scanning and
2D tracking algorithms are implemented to track the same
microparticle at the same time as the perpendicular camera
tracking. To assess tracker performance in this mode 2D
tracking STD and scanning error were measured separately
by comparison of the ultrasound-based tracker position esti-
mation with the position manually measured on the camera
frames. In this way a comparison between 3D tracking with
ultrasound and 3D tracking with microscopes can be made.
Results of these measurements are displayed in table 3.

In figure 14 the manually measured trajectory of the
particle is compared to the trajectory tracked by 3D tracking
with microscope and the trajectory tracked by 3D tracking
with ultrasound.

The 3D tracking on ultrasound clearly has a high tracking
STD in the z-direction. Also, making this measurement, it
was hard to let the 3D ultrasound scanning algorithm catch
on to the microparticle. In figure 14 and in video 7 and 8
it also is visible that the scanning loses track of the correct
height of the object as soon as it makes a quick movement
downwards. The problems of the scanning algorithm to catch
on to an object and to robustly track this object are due to
both the scanning velocity as well as the way in which the
object intensity is determined. Because of the low scanning
velocity, which is necessary to prevent unwanted movement
of the basin and the particle, the tracker only determines
the position approximately every second. Due to this delay,
the tracker loses track of objects translating more than the
scanning amplitude (which was 0.7 mm at the measurement)
within one second. Because the object intensity is determined
based on the amount of pixels in the binary image, and this
image is sensitive to fluctuations in background intensity and

Fig. 15. Examples of encounters with other objects in which the tracker
does not lose the tracked object (A and B) and events in the videos that
cause the tracker to lose track (C and D). A: Two jets heading in opposite
direction and passing close to each other. B: A group of bubbles in which
the tracker is able to keep track of a single bubble. C: A group of bubbles
where the tracker loses track of the correct bubble and moves to other
bubbles. This happens because the bubbles are connected by the adaptive
thresholding. D: A sequence of frames showing how the tracker loses track
of a microjet passing too close to bubbles.



contrast, this leads to frequent errors in the determination of
the height of the object.

V. DISCUSSION

A. Conclusion

In this work robust microscopic tracking of multiple types
of microrobots in 2D is demonstrated. The tracker was
able to accurately track microrobots with incosistent shapes
(e.g. microjets). Tracking showed robustness during close
encounters with other objects. Although the tracker proves
robust in these situations, it is observed that the tracker
loses the object in situations of occlusion or encounters
within the distance of the connectivity region. Based on
these observations the 2D tracker is considered robust and
accurate for microrobot tracking inside multi-object frames
as long as no occlusions occur. Therefore the tracker is
suitable for several biomedical research applications (e.g.
micromanipulation of cells, IVF).

In 3D, the tracker was able to accurately track a micropar-
ticle in a microscope and therefore the tracker can be used
for tracking of microparticles in biomedical research appli-
cations in 3D. Additionally, 3D tracking of the microparticle
in ultrasound images was demonstrated. Although it proved
feasible to track a microparticle in ultrasound images in 3D,
the scanning algorithm necessary to do this 3D tracking was
not robust and was only suitable for tracking of the particle
along short distances. Therefore, future research is needed to
enable biomedical application of ultrasound tracking in 3D.

B. Future Research

Since the tracker loses track when the object approaches
another object at a distance closer than the connectivity
region, future implementation of the tracking algorithm could
have an enhanced performance by providing a more size and
shape consistency based position estimation of the particle
filter (e.g. by using the Hough transform [25]). Another
issue to be solved with these occlusions is assignment of
identities to the objects without errors due to the occlusion.
Development of a decision framework for these events might
prevent this type of mix-ups. However, a major challenge in
including these measures is to leave insensitivity to size and
shape variations of the microrobot itself.

Additionally, it was observed that the tracker is not robust
for tracking objects in ultrasound images in 3D, due to
inaccuracy in the determination of object intensity in the
ultrasound frame and slowness of the scanning. Therefore
the performance of 3D tracking in ultrasound images could
be enhanced by development of an accurate method to
assess the relative object intensity in an ultrasound image
that effectively neglects artefacts and other objects in its
estimation. To decrease the tracking delay that is caused by
the scanning alogirithm, the duration of one scanning cycle
should be decreased. This can be done by either providing
a better fixation of the basin inside the setup and increasing
the scanning velocity, or effectively restricting the scanning
amplitude based on statistical analysis of the object speed
(e.g. with a particle filter).

Despite these tracking errors, the tracker provides robust
position estimation of one or multiple objects of multiple
types of magnetic agents in other experimental situations.
Therefore future applications of the tracker include multi-
object and multi-agent control. This might enable microrobot
collaboration leading to execution of complex tasks by
groups of microrobots, on which innovative work already
has been performed by Pawashe et al. [26].

In this work, sub-resolution position estimation and track-
ing of microjets, microparticles and Janus particles on ul-
trasound is demonstrated. Although the microparticles are
visible on the ultrasound measurements, it is observed that
microjets and janus particles are not. For now, tracking of
microjets and janus particles has solely been done based
on the ultrasound signal that was reflected by the bubbles
emitted from jets and janus particles. As the radius of the
bubbles of jets can reach up to half of the length of the jets
(approximately 20 microns) inside the basin in which the
measurements are made and the water-air boundary has a
high reflection coefficient (99%), the bubbles of the jets are
clearly visible on ultrasound measurements.

Multiple reasons can be hypothesized why the jets and the
Janus particles themselves are not visible on ultrasound. One
reason for the invisibility of small microrobots on ultrasound
could be their size. As the radius of janus particles and
the width of microjets are far below the wavelength on the
maximum frequency of the used imaging system (Siemens
Acuson S2000, with a maximum frequency of 18MHz with
the 18L6 probe), most of the reflection might scatter, causing
no measurable reflection. Another reason of the invisibility
of the jets and janus particles might be their materials. As the
outer material of jets is titanium and the reflection coefficient
of the water-titanium interface is only 8%, their reflection
intensity will be less than one tenth of the intensity of a
bubble with the same shape and size. The outer material
of janus particles, platinum, results in a better reflection
coefficient of the interface of approximately 50%. However,
the janus particles are even smaller than microjets, which
also contributes to the loss of signal.

Therefore, to enhance the future prospects of usage
of ultrasound-controlled microrobots (i.e. in medical treat-
ments), a major challenge for future research is to provide
means for imaging of these microrobots, as this might
enable application of these robots in vivo. High-frequency
ultrasound might provide means to do this because of the
short wavelength. However, attenuation of the ultrasound
is severely increased because of the increase in frequency,
which might prevent this technique from being used in a
medical environment. Magneto-motive ultrasound [27] might
provide another method to enhance visibility of microrobots
on ultrasound, by enhancing the ultrasound signal with
oscillations of the microrobots.

For now, the algorithms and methods presented in this
work enable effective position measurement for real-time
control of most microrobots. This accurate postion estimation
is suitable for use in 2D as well as 3D microrobot applica-
tions such as manipulation of cells and local drug delivery. In



line with this development, these applications can be further
examined.

Besides development of the tracking algorithm, other
efforts have been made in this work to enable both micro-
scopic and ultrasound tracking of microrobots. To provide
for optical and ultrasound measurements of the microrobots
the MARS 2 setup has been used, which is the new version
of the MARS 1 setup and specifically adapted for 3D track-
ing of microrobots on ultrasound. Additionally the tracking
algorithm has been implemented in an object-oriented library
and a user-friendly interface has been designed for the user
to interact with the program and implement the tracker. All
of this will be outlined in the next section.

VI. APPENDIX

A. MARS 2 Setup

The original setup, which was named MARS 1, had to
be adapted to enable ultrasound tracking of microrobots
in 3D and to improve the setup. These improvements are
highlighted in this appendix. For the completeness, also the
most important features of the original setup are explained.

1) Probe: The setup is configured for usage of the
Siemens 14L5 Transducer. This probe is chosen for its
compact design and high frequency range (5-14 Hz). The
probe is moved over the sample by the probe holder system
based on the plane scanning algorithm. For more information
on the probe holder system, please refer to the section ”Probe
Holder System” in this appendix. For more information on
the ultrasound plane scanning algorithm, please refer to the
section ”Ultrasound Plane Scanning” in the report.

2) Basin: The basin in this design is designed to facilitate
ultrasound imaging of the microrobots. This is achieved
by providing more movement space for the microrobots to
enable clearly visible microrobot movement within the basin.
To enable accurate microscopic measurement as well as good
transmission of ultrasound into the sample the basin is made
of multiple materials. The sides and bottom of the basin
are made of acrylic for a clear microscopic view inside the
basin. The front is made of PVA that, due to its acoustic
impedance which is similar to that of water, enables efficient
transmission of the ultrasound waves.

3) Microscope: An optical system with an adjustable
zoom with a minimum of 2.4X and a maximum of 24.0X
is mounted on a linear stage to enable precise focusing of
the system. For recording a CCD sensor is used with a pixel
width and pixel height of 5.50 µm, providing a theoretical
maximum resolution of approximately 0.50 µm.

4) Coils: The coil configuration of the MARS 1 setup
is maintained in this design to ensure consistency in field
homogeneity and field strength. The coils each have 1680
windings of copper wire up to a coil diameter of 40 mm with
a core diameter of 10 mm. The coil currents are hardware-
limited to a maximum current of 2 Ampere. Together, the

coils can generate a homogeneous magnetic field of up to 65
mT at the center of the system where the basin is located.

5) Sample Insertion System: The sample insertion system
serves to fix the sample, a basin filled with microrobots in a
liquid, in the correct position. The sample insertion system
is adapted to fit the new shape and new requirements of the
design. The tubes of the system exactly fit the helmets and
the coils, for a robust attachment to the system. Compared
to the old setup the inside size of the tubes is increased to
provide space for a larger basin. For insertion and removal
of the basin, a removable basin holder is designed which can
be clamped inside the insertion tube of the system. The basin
is clamped into this holder, which provides robustness of the
basin to the movements of the ultrasound probe.

6) Helmets: The helmets serve to fix all the compo-
nents of the system at the right distances from each other.
Compared to the old setup, the helmets were adapted to
provide entrance of the probe to the basin. Because it is most
convenient for the user to attach the probe at the front side,
this required translocation of the entrance for the basinholder

Fig. 18. The tubes of the sample insertion system. Surfaces of the coils
and cores have been cut out to enable an optimal coil configuration. The
basin holder exactly fits inside this system.

Fig. 19. Removable Basin Holder. The basin is fixed inside the holder by
clamping edges.



Fig. 16. Left: General overview of the MARS 2 setup. Right: Configuration of the coils, the microscopes and the ultrasound probe around the microrobot
basin.

Fig. 17. Inside view of the MARS 2 setup.

to the other side. However, it has been placed slightly to the
right to make it more accessible. To ensure that the basin and
basinholder are properly placed into the setup and to check
the contact of the probe with the basin, a looking hole has
been made to the side of the probe entrance.

7) Support System: The support system is designed to
carry the rest of the system and keep it perfectly aligned to

the microscopes and the ultrasound probe. In the old setup
the upper ring was deformed causing the system to misalign,
resulting in failure of the control of microrobots. To prevent
this in the new setup, the new version of the upper ring is
twice as thick as its old version.

8) Probe Holder System: The probe is scanned over the
sample by a linear stage. The probe holder system, which



is attached to this linear stage, serves to exactly position
the probe at the right initial height and to put the probe
with a pressure of approximately 2N against the sample to
obtain consistent ultrasound measurements. To enable this
exact positioning, the probe holder system is adjustable in
three degrees of freedom. The height can be adjusted by
adjusting the height of the linear stage, which is mounted on
a vertical optical rail. Also the height can be adjusted via the
linear stage, although there should remain enough movement
space within the range of the linear stage for scanning. To
move the probe closer or further away from the linear stage
rail 1 can be used and to move the probe towards the sample
rail 2 can be used. Both of these rails are made to clamp and
can be fixed at one position by bolts to prevent unwanted
movement of the probe.

The probe itself is clamped by the probe holder which
is 3D printed to exactly fit the surface of the probe and a
rubber layer is added on the inside of the probe holder for
robust attachment of the probe. To put a constant pressure
on the basin the probe and probeholder are mounted onto
a low friction carrier and rail via the carrier plate. This
carrier only has a few millimeters movement space and is
constantly pressed by a spring, which maintains the force of
approximately 2N. When the probe is not in position at the
sample, this carrier is stopped at the end of the rail by a
beam in front. To make consistent ultrasound measurements,
the probe should be exactly positioned at the basin to press
the probe backward against the spring which will ensure a
constant pressure on the probe during scanning. This exact
positioning is done by precise attachment of rail 2.

B. Setup Recommendations

As is decribed in last section, many improvements have
been made to the setup in this work. However, new posibil-
lities for improvements came up after first implementation
of the new setup.

One important drawback of the setup is the magnetic
field strength. During experiments with microparticles in
3D it was not possible to lift big clusters of particles (¿10
particles). Additionally, it was not possible to control Janus

Fig. 20. Photograph of the new setup, which was realized by 3D printing
parts from CAD drawings, adding a layer of paint and attaching parts
together with bolts.

Fig. 21. The probe holder system. The optical rail enables adjustment
of the height. Rail 1 and rail 2 enable adjustment in two other degreed
of freedom for precise positioning of the initial position of the probe. The
three holes on the basis serve to fix springs that can be inserted between
the basis and the carrier plate.

Fig. 22. Top view of the lower helmet. The hole in the bottom and the
hole on top are for the illumination modules, the square hole in the front
is for the probe, the hole to the left is for insertion of the sample and the
remaining hole is for the horizontal microscope.



Fig. 23. The graphical user interface. The left screen shows input from either the ultrasound or the first camera and the right screen shows input from
the second camera if microscopic 3D tracking is implemented. In the lower right corner the controls are displayed. Video can be recorded or read-out on
paths specified by the user.

particle in an environment with flow. Although these particles
aligned to the magnetic field, the did not translate in setpoint
direction at maximum magnetic field strength. Therefore, the
setup could be enhance by using larger coils. However, larger
coils also require redesign of the rest of the setup, including
an increased radius of the helmets, an increased radius of the
support system and adaption of the sample insertion system.

Besides the coil size, it is also recommended to adapt
other coil parameters in a new design. It was observed that
after using the coils for control the cores remain magnetized.
Some of this magnetization seems due to self-induction of
the coils. This problem could be solved by increasing the
diameter of the copper wire. There is also some permanent
magnetization remaining, which is due to magnetization of
the core material. Therefore it is recommended to adapt the
coil material to prevent this magnetization.

Making the measurements, a major problem was getting
microrobots inside the field of view of the cameras. This
was due to the small field of view of the cameras as well as
the impossibillity to transate the basin or the cameras. This
severely increased the effort and time necessary for making
measurements of microrobots and therefore translation of
the microscopes or the basin is considered as an essential
improvement for next version of the setup. Additionally, it
will be easier to localize a microrobot when the basin is
smaller. Therefore, it is recommended that the basin size is
adapted to approximately the size of the field of view of the
cameras. In that case, a microrobot will always be inside
the field of view of the camera. However, it should be taken

into account that the field of view of the cameras in this
case should be big enough to include multiple microrobots
with enough movements space to enable movement above
the resolution of the ultrasound.

C. Tracker Interface

The communication between the tracker program and the
user is provided by its graphical user interface. This user in-
terface has been designed for efficient and intuitive usage, to
enhance the usability of the tracker for inexperienced users.
To enable this efficient and intuitive usage, an important goal
in the design was to keep the basic usage of the tracker
program as simple as possible.

To keep it simple for the user to start using the tracker,
parameters to track the microrobots are pre-set for multiple
types of microrobots, including:

- Microjets
- Microparticles
- Janus particles

For these microrobots, separate parameters have been set
for microscopic tracking and for tracking on ultrasound,
which are automatically selected by selecting the imaging
modality. For the microjets, these ultrasound settings are
specific due to their bubble trails. For the other types of
microrobots this is not the case.

To give the user the opportunity of adjusting the sensitivity
of the tracker, the threshold, which is of main influence to the
sensitivity, is made adjustable in the interface. Therefore only
an initial threshold is fixed in the settings, which in general



Fig. 24. Architecture of the tracker program, showing the order in which parameters are set and calculated. The autosearch and tracker are implemented
object-oriented to enable transition between multiple types of agents during tracking.

is close to the optimal threshold for tracking. Adjustment
of the threshold is interfaced by a slider bar, which enables
efficient adjustment of the threshold during tracking.

Because the kernel as well as the adaptive threshold are
sensitive to object size, either the kernel and threshold size
or the scale of the image should be adjustable. Because the
kernel has a limit on its STD compared to its size due to loss
of function energy, which leads to black-out of the image, the
image scale is used in the interface to adjust the relative size
of objects. This is done by either increasing or decreasing
the amount of pixels in the image by interpolation.

Besides the scale, also the region of the image can be
adjusted. The top, bottom, left and right side can be cropped
individually to specifically select a region in the image in
which the objects of interest appear. Because the size of the
image cannot be varied by an unrestricted amount of pixels
per frame during tracking, the both the cropping and scale

Fig. 25. Multi-agent tracking applied to bubbles using the microparticle
tracker settings and a microjet using the microjet tracker settings.

adjustment are realized by pressing keys, which will change
the image change size by a fixed amount of pixels for each
iteration.

Both the adjustable and the pre-set parameters are set
for one instance of the tracker. In the tracker program,
it is possible to open multiple instances of the tracker
using specific tracker settings. In this way, multiple types of
microrobots can be searched and tracked with specific tracker
settings for each type at the same time, while the algorithm
distinguishes between the types of microrobots and tracks
the position of each individual microrobot of each selected
type.

The tracker program can be initialized in three
different modes of tracking by choosing the corresponding
combination of buttons:

- Microscopic or ultrasound tracking in 2D
- Microscopic tracking in 3D
- Ultrasound tracking in 3D

The initial setting of the tracker program is the 2D tracking
mode. This mode enables robust tracking of magnetic agents
in either microscope or ultrasound input in 2D and uses only
one screen of the interface since there is only one input.

For microscopic tracking in 3D both screens are used: one
for each microscope. To select an object for tracking only
on one of the screens, no matter which one, an object has
to be selected. The algorithm automatically searches for the
corresponding object on the other screen. Both this mode as
well as the 2D tracking mode are implementable for multiple
agents.

The mode for ultrasound tracking in 3D is more limited
than the other two. Due to the scanning limitations of the
setup only one object can be tracked. Therefore, in this mode,
both multi-object and multi-agent tracking are not possible.



Tracker Initialization
1. Select magnetic agent from the dropdown menu.
2. Select the type of tracker (”2D” or ”3D”) and the imaging
modality (”Microscope” or ”Ultrasound”).
3. In case of video input, select the ”Video(s)” button in the
input menu and enter the paths to the video file/files in the
”Video” text box/boxes.
4. To record a video under a specific filename when pressing
’r’, enter the video file names in the text boxes in the
recording menu.
5. When ready, press the ”Initialize Tracker” button.

Tracker Evaluation
1. Do steps 1 to 3 of the tracker initialization. The evaluation
only works for videos, due to the need of user input. Videos
of 3D microscopic tracking should be analyzed separately
in 2D mode.
2. Select the ”Tracker Evaluation” button.
3. Initialize the tracker program by clicking the ”Initialize
Tracker” button.
4. Scale and adapt the threshold if necessary, as is described
in steps 2 and 3 of ”Search, Selection and Tracking”.
5. Select microrobots to track, as described in step 5 of
”Search, Selection and Tracking”. For the evaluation it is
only possible to track a single microrobot of a single agent.
6. For every frame of the evaluation video: - Press ’p’ if
the tracker has correctly tracked the point the right point on
the object (head or centroid).
- If the tracker did not find the point correctly, click with
the right mouse button on the correct position.
7. Exit the program. The data folder will contain a list with
tracker positions and correct positions.

Like the 2D tracking mode, only one input is available and
displayed. When implementing this mode, the user can first
choose the initial ultrasound plane by scanning over the
sample. After activation the scanning algorithm takes over
and automatically updates the frames of the 2D tracker. In
this mode the framerate is much lower than in the other
modes due to the implementation of the scanning algorithm,
which first has to search for the correct frame before 2D
analysis.

For the control of magnetic agents, a position-based PID
controller has been integrated inside the tracker to control
a tracked microrobot. To use this function of the program,
the electromagnetic system should be connected. To turn the
system on or off the ’x’ key can be pressed. After turning
on the system, the magnetic agent is automatically servoed
to a position that can be indicated by left-clicking on the
tracker output screen. The system starts controlling the agent
as soon as this position is indicated. The user can choose if
the controlinput is used for tracking or not by using the ’c’
key to turn this type of tracking on or off.

Search, Selection and Tracking
1. If there are unnecessary regions on the borders of the
image (i.e. edges of a basin) crop the image borders using
’w’,’a’,’d’ and’s’.
2. Set the right scale for the image. This can be done by
looking at the shape drawn in the left corner of the tracker
output. The magnetic agents should have approximately the
same size and shape of that shape.
3. If the autosearch does not seem to find the magnetic
agents correctly, adjust the threshold untill it does.
4. For ultrasound tracking in 3D, scan the probe over the
sample, using ’f’ to go up and ’v’ to go down, to search
for objects.
5. The tracker program automatically starts searching for
the selected type of magnetic agent. The following can be
done to select objects to track:
- Press ”e” to track all objects found by the autosearch.
- Click with the right mousebutton on a found object to
track the object.
- Click with the left mousebutton on a position in the image
to start tracking at that position.
6. The program will now start tracking the selected agents.

Multi-agent Tracking
After doing the steps in ”Search, Selection and Tracking”:
1. Select the ”Multi-agent Tracking” menu.
2. To select a second agent, select ”Agent 2” and the type
of magnetic agent to be tracked.
3. To initialize the second agent, click on the ”Initialize
Agent 2” button.
4. Scale and adapt the threshold if necessary, as is described
in steps 2 and 3 of ”Search, Selection and Tracking”.
5. Select microrobots to track, as described in step 5 of
”Search, Selection and Tracking”.
6. The program will now start tracking a second agent.
7. To track a third agent, do steps 1 to 6 again for this agent.

*Settings for each agent can be adapted by changing the
setting while the corresponding agent is selected.

Also, the program has been designed to be easily extend-
able by other control algorithms. In the program structure,
information of individual microrobots is registered within
the Microrobot class. This enables development of more
elaborate control algorithms within the program structure
that can take into account the registered properties of the
microrobot: size, shape, position and speed.

Manuals for several features of the program are shown in
the text boxes.
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