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A B S T R A C T

Learning to rank is an increasingly important task within the scientific fields of
machine learning and information retrieval, that comprises the use of machine
learning for the ranking task. New learning to rank methods are generally eval-
uated in terms of ranking accuracy on benchmark test collections. However,
comparison of learning to rank methods based on evaluation results is hindered
by non-existence of a standard set of evaluation benchmark collections. Further-
more, little research is done in the field of scalability of the training procedure
of Learning to Rank methods, to prepare us for input data sets that are get-
ting larger and larger. This thesis concerns both the comparison of Learning to
Rank methods using a sparse set of evaluation results on benchmark data sets,
as well as the speed-up that can be achieved by parallelising Learning to Rank
methods using MapReduce.

In the first part of this thesis we propose a way to compare learning to rank
methods based on a sparse set of evaluation results on a set of benchmark data-
sets. Our comparison methodology consists of two components: 1) Normalized
Winning Number, which gives insight in the ranking accuracy of the learning to
rank method, and 2) Ideal Winning Number, which gives insight in the degree
of certainty concerning its ranking accuracy. Evaluation results of 87 learning
to rank methods on 20 well-known benchmark datasets are collected through
a structured literature search. ListNet, SmoothRank, FenchelRank, FSMRank,
LRUF and LARF were found to be the best performing learning to rank meth-
ods in increasing order of Normalized Winning Number and decreasing order
of Ideal Winning Number. Of these ranking algorithms, FenchelRank and FS-
MRank are pairwise ranking algorithms and the others are listwise ranking
algorithms.

In the second part of this thesis we analyse the speed-up of the ListNet train-
ing algorithm when implemented in the MapReduce computing model. We
found that running ListNet on MapReduce comes with a job scheduling over-
head in the range of 150-200 seconds per training iteration. This makes MapRe-
duce very inefficient to process small data sets with ListNet, compared to a
single-machine implementation of the algorithm. The MapReduce implementa-
tion of ListNet was found to be able to offer improvements in processing time
for data sets that are larger than the physical memory of the single machine
otherwise available for computation. In addition we showed that ListNet tends
to converge faster when a normalisation preprocessing procedure is applied to
the input data. The training time of our cluster version of ListNet was found
to grow linearly in terms of data size increase. This shows that the cluster im-
plementation of ListNet can be used to scale the ListNet training procedure
to arbitrarily large data sets, given that enough data nodes are available for
computation.
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1
I N T R O D U C T I O N

1.1 motivation and problem statement

Ranking is a core problem in the field of information retrieval. The ranking task
in information retrieval entails the ranking of candidate documents according
to their relevance for a given query. Ranking has become a vital part of web
search, where commercial search engines help users find their need in the ex-
tremely large document collection of the World Wide Web.

One can find useful applications of ranking in many application domains
outside web search as well. For example, it plays a vital role in automatic doc-
ument summarisation, where it can be used to rank sentences in a document
according to their contribution to a summary of that document [27]. Learning
to Rank also plays a role in the fields of machine translation [104], automatic
drug discovery [6], the prediction of chemical reactions in the field of chemistry
[113], and it is used to determine the ideal order in a sequence of maintenance
operations [181]. In addition, Learning to Rank has been found to be a better
fit as an underlying technique compared to continuous scale regression-based
prediction for applications in recommender systems [4, 141], like those found
in Netflix or Amazon.

In the context of Learning to Rank applied to information retrieval, Luhn
[139] was the first to propose a model that assigned relevance scores to docu-
ments given a query back in 1957. This started a transformation of the Inform-
ation Retrieval field from a focus on the binary classification task of labelling
documents as either relevant or not relevant into a ranked retrieval task that aims
at ranking the documents from most to least relevant. Research in the field
of ranking models has long been based on manually designed ranking func-
tions, such as the well-known BM25 model [180], that simply rank documents
based on the appearance of the query terms in these documents. The increasing
amounts of potential training data have recently made it possible to leverage
machine learning methods to obtain more effective and more accurate ranking
models. Learning to Rank is the relatively new research area that covers the use
of machine learning models for the ranking task.

In recent years several Learning to Rank benchmark data sets have been
proposed that enable comparison of the performance of different Learning to
Rank methods. Well-known benchmark data sets include the Yahoo! Learning to
Rank Challenge data set [44], the Yandex Internet Mathematics competition1, and
the LETOR data sets [168] that are published by Microsoft Research.

1 http://imat-relpred.yandex.ru/en/
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2 introduction

One of the concluding observations of the Yahoo! Learning to Rank Chal-
lenge was that almost all work in the Learning to Rank field focuses on ranking
accuracy. Meanwhile, efficiency and scalability of Learning to Rank algorithms
is still an underexposed research area that is likely to become more important
in the near future as available data sets are rapidly increasing in size [45]. Liu
[135], one of the members of the LETOR team at Microsoft, confirms the obser-
vation that efficiency and scalability of Learning to Rank methods has so far
been an overlooked research area in his influential book on Learning to Rank.

Some research has been done in the area of parallel or distributed machine
learning [53, 42], with the aim to speed-up machine learning computation
or to increase the size of the data sets that can be processed with machine
learning techniques. However, almost none of these parallel or distributed ma-
chine learning studies target the Learning to Rank sub-field of machine learn-
ing. The field of efficient Learning to Rank has received some attention lately
[15, 16, 37, 194, 188], since Liu [135] first stated its growing importance back in
2007. Only a few of these studies [194, 188] have explored the possibilities of
efficient Learning to Rank through the use of parallel programming paradigms.

MapReduce [68] is a parallel computing model that is inspired by the Map
and Reduce functions that are commonly used in the field of functional program-
ming. Since Google developed the MapReduce parallel programming frame-
work back in 2004, it has grown to be the industry standard model for parallel
programming. The release of Hadoop, an open-source version of MapReduce
system that was already in use at Google, contributed greatly to MapReduce
becoming the industry standard way of doing parallel computation.

Lin [129] observed that algorithms that are of iterative nature, which most
Learning to Rank algorithms are, are not amenable to the MapReduce frame-
work. Lin argued that as a solution to the non-amenability of iterative algorithms
to the MapReduce framework, iterative algorithms can often be replaced with
non-iterative alternatives or by iterative alternatives that need fewer iterations,
in such a way that its performance in a MapReduce setting is good enough.
Alternative programming models are argued against by Lin, as they lack the
critical mass as the data processing framework of choice and are as a result not
worth their integration costs.

The appearance of benchmark data sets for Learning to Rank gave insight
in the ranking accuracy of different Learning to Rank methods. As observed
by Liu [135] and the Yahoo! Learning to Rank Challenge team [45], scalability
of these Learning to Rank methods to large chunks of data is still an underex-
posed area of research. Up to now it remains unknown whether the Learning
to Rank methods that perform well in terms of ranking accuracy also perform
well in terms of scalability when they are used in a parallel manner using the
MapReduce framework. This thesis aims to be an exploratory start in this little
researched area of parallel Learning to Rank.
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1.2 research goals

The set of Learning to Rank models described in literature is of such size that
it is infeasible to conduct exhaustive experiments on all Learning to Rank mod-
els. Therefore, we set the scope of our scalability experiment to include those
Learning to Rank algorithms that have shown leading performance on relevant
benchmark data sets.

The existence of multiple benchmark data sets for Learning to Rank makes it
non-trivial to determine the best Learning to Rank methods in terms of ranking
accuracy. Given two ranking methods, there might be non-agreement between
evaluation results on different benchmarks on which ranking method is more
accurate. Furthermore, given two benchmark data sets, the sets of Learning to
Rank methods that are evaluated on these benchmark data sets might not be
identical.

The objective of this thesis is twofold. firstly, we aim to provide insight in
the most accurate ranking methods while taking into account evaluation res-
ults on multiple benchmark data sets. Secondly, we use this insight to scope an
experiment on the speed-up of the most accurate Learning to Rank methods to
explore the speed-up in execution time of Learning to Rank algorithms through
parallelisation using the MapReduce computational model. The first part of the
objective of this thesis brings us to the first research question:

rq1 What are the best performing Learning to Rank algorithms in terms of
ranking accuracy on relevant benchmark data sets?

Ranking accuracy is an ambiguous concept, as several several metrics exist that
can be used to express the accuracy of a ranking. We will explore several met-
rics for ranking accuracy in section 2.2.

After determining the most accurate ranking methods, we perform speed-up
experiment on distributed MapReduce implementations of those algorithms.
We formulate this in the following research question:

rq2 What is the speed-up of those Learning to Rank algorithms when ex-
ecuted using the MapReduce framework?

With multiple existing definitions of speed-up, we will use the speed-up defin-
ition known as relative speed-up [197], which is formulated as follows:

SN =
execution time using one core
execution time using N cores

The single core execution time in this formula is defined as the time that
the fastest known single-machine implementation of the algorithm takes to per-
form the execution.
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1.3 approach

We will describe our research methodology on a per Research Question basis.
Prior to describing the methodologies for answering the Research Questions,
we will describe the characteristics of our search for related work.

1.3.1 Literature Study Methodology

A literature study will be performed to get insight in relevant existing tech-
niques for large scale Learning to Rank. The literature study will be performed
by using the following query:

("learning to rank" OR "learning-to-rank" OR "machine learned ranking") AND
("parallel" OR "distributed")

and the following bibliographic databases:

• Scopus

• Web of Science

• Google Scholar

The query incorporates different ways of writing of Learning to Rank, with
and without hyphens, and the synonymous term machine learned ranking to in-
crease search recall, i.e. to make sure that no relevant studies are missed. For
the same reason the terms parallel and distributed are included in the search
query. Even though parallel and distributed are not always synonymous, we are
interested in both approaches in non-sequential data processing.

A one-level forward and backward reference search is used to find relevant
papers missed so far. To handle the large volume of studies involved in the back-
ward and forward reference search, relevance of the studies will be evaluated
solely on the title of the study.

1.3.2 Methodology for Research Question I

To answer our first research question we will identify the Learning to Rank
benchmark data sets that are used in literature to report the ranking accuracy
of new Learning to Rank methods. These benchmark data sets will be identified
by observing the data sets used in the papers found in the previously described
literature study. Based on the benchmark data sets found, a literature search for
papers will be performed and a cross-benchmark comparison method will be
formulated. This literature search and cross-benchmark comparison procedure
will be described in detail in section 4.4.



1.4 thesis overview 5

1.3.3 Methodology for Research Question II

To find an answer to the second research question, the Learning to Rank meth-
ods determined in the first research question will be implemented in the MapRe-
duce framework and training time will be measured as a factor of the number
of cluster nodes used to perform the computation. The HDInsight cloud-based
MapReduce platform from Microsoft will be used to run the Learning to Rank
algorithms on. HDInsight is based on the popular open source MapReduce im-
plementation Hadoop2.

To research the speed-up’s dependence on the amount of processed data,
the training computations will be performed on data sets of varying sizes. We
use the well-known benchmark collections LETOR 3.0, LETOR 4.0 and MSLR-
WEB30/40K as a starting set of data sets for our experiments. Table 1 shows the
data sizes of these data sets. The data sizes reported are not the total on-disk
sizes of the data sets, but instead the size of the largest training set of all data
folds (for an explanation of the concept of data folds, see 2.4).

Data set Collection Size

OHSUMED LETOR 3.0 4.55 MB

MQ2008 LETOR 4.0 5.93 MB

MQ2007 LETOR 4.0 25.52 MB

MSLR-WEB10K MSLR-WEB10K 938.01 MB

MSLR-WEB30K MSLR-WEB30K 2.62 GB

Table 1: The LETOR 3.0, LETOR 4.0 and MSLR30/40K data sets and their data sizes

MSLR-WEB30K is the largest in data size of the benchmark data sets used in
practice, but 2.62GB is still relatively small for MapReduce data processing. To
test the how the computational performance of Learning to Rank algorithms
both on cluster and on single-node computation scales to large quantities of
data, larger data sets will be created by cloning the MSLR-WEB30K data set
such that the cloned queries will hold new distinct query ID’s.

1.4 thesis overview

chapter 2 : background introduces the basic principles and recent work in
the fields of Learning to Rank and the MapReduce computing model.

chapter 3 : related work concisely describes existing work in the field of
parallel and distributed Learning to Rank.

chapter 4 : benchmark data sets describes the characteristics of the ex-
isting benchmark data sets in the Learning to Rank field.

2 http://hadoop.apache.org/
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chapter 5 : cross-benchmark comparison describes the methodology
of a comparison of ranking accuracy of Learning to Rank methods across
benchmark data sets and describes the results of this comparison.

chapter 6 : selected learning to rank methods describes the algorithms
and details of the Learning to Rank methods selected in Chapter V.

chapter 7 : implementation describes implementation details of the Learn-
ing to Rank algorithms in the Hadoop framework.

chapter 8 : mapreduce experiments presents and discusses speed-up res-
ults for the implemented Learning to Rank methods.

chapter 9 : conclusions summarizes the results and answers our research
questions based on the results. The limitations of our research as well as
future research directions in the field are mentioned here.

chapter 10 : future work describes several directions of research worthy
follow-up research based on our findings.



2
T E C H N I C A L B A C K G R O U N D

This chapter provides an introduction to Learning to Rank and MapReduce.
Knowledge about the models and theories explained in this chapter is required
to understand the subsequent chapters of this thesis.

2.1 a basic introduction to learning to rank

Different definitions of Learning to Rank exist. In general, all ranking meth-
ods that use machine learning technologies to solve the problem of ranking
are called Learning to Rank methods. Figure 1 describes the general process
of machine learning. Input space X consists of input objects x. A hypothesis h
defines a mapping of input objects from X into the output space Y, resulting in
prediction ŷ. The loss of an hypothesis is the difference between the predictions
made by the hypothesis and the correct values mapped from the input space
into the output space, called the ground truth labels. The task of machine learn-
ing is to find the best fitting hypothesis h from the set of all possible hypotheses
H, called the hypothesis space.

Figure 1: Machine learning framework for Learning to Rank, obtained from Liu [135]

Liu [135] proposes a more narrow definition and only considers ranking
methods to be a Learning to Rank method when it is feature based and uses dis-
criminative training, in which the concepts feature-based and discriminative train-
ing are themselves defined as:

feature-based means that all objects under investigation are represented by
feature vectors. In a Learning to Rank for Information Retrieval case, this
means that the feature vectors can be used to predict the relevance of the
documents to the query, or the importance of the document itself.

discriminative training means that the learning process can be well de-
scribed by the four components of discriminative learning. That is, a

7
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Learning to Rank method has its own input space, output space, hypothesis
space, and loss function, like the machine learning process described by Fig-
ure 1. Input space, output space, hypothesis space, and loss function are hereby
defined as follows:

input space contains the objects under investigation. Usually objects
are represented by feature vectors, extracted from the objects them-
selves.

output space contains the learning target with respect to the input ob-
jects.

hypothesis space defines the class of functions mapping the input
space to the output space. The functions operate on the feature vec-
tors of the input object, and make predictions according to the format
of the output space.

loss function in order to learn the optimal hypothesis, a training
set is usually used, which contains a number of objects and their
ground truth labels, sampled from the product of the input and out-
put spaces. A loss function calculates the difference between the pre-
dictions ŷ and the ground truth labels on a given set of data.

Figure 2 shows how the machine learning process as described in Figure 1

typically takes place in a ranking scenario. Let qi with 1 6 i 6 n be a set of
queries of size n. Let xij with 1 6 j 6 m be the sets of documents of size m that
are associated with query i, in which each document is represented by a feature
vector. The queries, the associated documents and the relevance judgements yi
are jointly used to train a model h. Model h can after training be used to predict
a ranking of the documents for a given query, such the difference between the
document rankings predicted by h and the actual optimal rankings based on
yi is minimal in terms of a certain loss function.

Figure 2: A typical Learning to Rank setting, obtained from Liu [135]
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Learning to Rank algorithms can be divided into three groups: the pointwise
approach, the pairwise approach and the listwise approach. The approaches
are explained in more detail in section 2.3. The main difference between the
three approaches is in the way in which they define the input space and the
output space.

pointwise the relevance of each associated document

pairwise the classification of the most relevant document out for each pair of
documents in the set of associated documents

listwise the relevance ranking of the associated documents

2.2 how to evaluate a ranking

Evaluation metrics have long been studied in the field of information retrieval.
First in the form of evaluation of unranked retrieval sets and later, when the in-
formation retrieval field started focussing more on ranked retrieval, in the form
of ranked retrieval evaluation. In this section several frequently used evaluation
metrics for ranked results will be described.

No single evaluation metric that we are going to describe is indisputably
better or worse than any of the other metrics. Different benchmarking settings
have used different evaluation metrics. Metrics introduced in this section will be
used in chapters 4 and 4.4 of this thesis to compare Learning to Rank methods
in terms of ranking accuracy.

2.2.1 Normalized Discounted Cumulative Gain

Cumulative gain and its successors discounted cumulative gain and normal-
ized discounted cumulative gain are arguably the most widely used measures
for effectiveness of ranking methods. Cumulative Gain, without discounting
factor and normalisation step, is defined as

CGk =
∑k
i=1 reli

2.2.1.1 Discounted Cumulative Gain

There are two definitions of Discounted Cumulative Gain (DCG) used in prac- Discounted Cumulative
Gaintice. DCG for a predicted ranking of length p was originally defined by Järvelin

and Kekäläinen [109] as

DCGJK =
∑p
i=1

reli−1
log2(i+1)

with reli the graded relevance of the result at position i. The idea is that
highly relevant documents that appear lower in a search result should be pen-
alized (discounted). This discounting is done by reducing the graded relevance
logarithmically proportional to the position of the result.
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Burges et al. [32] proposed an alternative definition of DCG that puts stronger
emphasis on document relevance

DCGB =
∑p
i=1

2reli−1

log2(i+1)

2.2.1.2 Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) normalizes the DCG metric toNormalized Discounted
Cumulative Gain a value in the [0,1] interval by dividing by the DCG value of the optimal rank.

This optimal rank is obtained by sorting documents on relevance for a given
query. The definition of NDCG can be written down mathematically as

NDCG = DCG
IDCG

Often it is the case that queries in the data set differ in the number of doc-
uments that are associated with them. For queries with a large number of as-
sociated documents it might not always be needed to rank the complete set of
associated documents, since the lower sections of this ranking might never be
examined. Normalized Discounted Cumulative Gain is often used with a fixed
set size for the result set to mitigate this problem. NDCG with a fixed set size is
often called NDCG@k, where k represents the set size.

Table 2 shows an example calculation for NDCG@k with k = 10 for both the
Järvelin and Kekäläinen [109] and Burges et al. [32] version of DCG.

Rank

1 2 3 4 5 6 7 8 9 10 Sum

reli 10 7 6 8 9 5 1 3 2 4

2reli−1

log2(i+1)
512 40.4 16 55.1 99.0 5.7 0.3 1.3 0.6 2.3 732.7

reli
log2(i+1)

10 4.42 3 3.45 3.48 1.78 0.33 0.95 0.6 1.16 29.17

optimal rank 10 9 8 7 6 5 4 3 2 1

2reli−1

log2(i+1)
512 161.5 64 27.6 12.4 5.7 2.7 1.3 0.6 0.2 788.0

reli
log2(i+1)

10 5.68 4 3.01 2.32 1.78 1.33 0.95 0.6 0.29 29.96

NDCGB@10 = 732.7
788.0 = 0.9298

NDCGJK@10 = 29.17
29.96 = 0.9736

Table 2: Example calculation of NDCG@10

2.2.2 Expected Reciprocal Rank

Expected Reciprocal Rank (ERR) [46] was designed based on the observationExpected Reciprocal Rank

that NDCG is based on the false assumption that the usefulness of a document
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at rank i is independent of the usefulness of the documents at rank less than i.
ERR is based on the reasoning that a user examines search results from top to
bottom and at each position has a certain probability of being satisfied in his
information need, at which point he stops examining the remainder of the list.
The ERR metric is defined as the expected reciprocal length of time that the user
will take to find a relevant document. ERR is formally defined as

ERR =
∑n
r=1

1
r

∏r−1
i=1(1− Ri)Rr

where the product sequence part of the formula represents the chance that
the user will stop at position r. Ri in this formula represents the probability of
the user being satisfied in his information need after assessing the document at
position i in the ranking.

The algorithm to compute ERR is shown in Algorithm 1. The algorithm re-
quires relevance grades gi, 1 6 i 6 n and mapping function R that maps
relevance grades to probability of relevance.

1 p← 1,ERR← 0

2 for r← 1 to n do
3 R← R(relr)

4 ERR← ERR+ p ∗ Rr
5 p← p ∗ (1− R)
6 end
7 Output ERR
Algorithm 1: The algorithm for computation of the ERR metric, obtained from
Chapelle et al. [46]

In this algorithm R is a mapping from relevance grades to the probability of
the document satisfying the information need of the user. Chapelle et al. [46]
state that there are different ways to define this mapping, but they describe one
possible mapping that is based on the Burges version [32] of the gain function
for DCG:

R(r) = 2r−1
2max_rel

where max_rel is the maximum relevance value present in the data set.

2.2.3 Mean Average Precision

Average Precision (AP) [257] is an often used binary relevance-judgement-based Average Precision

metric that can be seen as a trade-off between precision and recall that is
defined as

AP(q) =
∑n
k=1 Precision(k)∗relk
number of relevant docs
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Rank Sum

1 2 3 4 5 6 7 8 9 10

ri 1 0 0 0 1 1 0 1 0 0

P@i 1 0.4 0.5 0.5 2.4

# of relevant docs = 7

AP@10 = 0.34

Table 3: Average Precision example calculation.

where n is the number of documents in query q. Since AP is a binary relev-
ance judgement metric, relk is either 1 (relevant) or 0 (not relevant). Table 3

provides an example calculation of average precision where de documents at
positions 1, 5, 6 and 8 in the ranking are relevant. The total number of available
relevant documents in the document set R is assumed to be seven. Mean Aver-
age Precision (MAP) is the average AP for a set of queries.Mean Average Precision

MAP =
∑Q
q=1AP(q)

Q

In this formula Q is the number queries.

2.3 approaches to learning to rank

2.3.1 Pointwise Approach

The pointwise approach can be seen as the most straightforward way of using
machine learning for ranking. Pointwise Learning to Rank methods directly
apply machine learning methods to the ranking problem by observing each
document in isolation. They can be subdivided in the following approaches:

1. regression-based, which estimate the relevance of a considered document
using a regression model.

2. classification-based, which classify the relevance category of the docu-
ment using a classification model.

3. ordinal regression-based, which classify the relevance category of the doc-
ument using a classification model in such a way that the order of relev-
ance categories is taken into account.

Well-known algorithms that belong to the pointwise approach include McRank
[127] and PRank [58].

2.3.2 Pairwise Approach

Pointwise Learning to Rank methods have the drawback that they optimise
real-valued expected relevance, while evaluation metrics like NDCG and ERR

are only impacted by a change in expected relevance when that change impacts
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a pairwise preference. The pairwise approach solves this drawback of the point-
wise approach by regarding ranking as pairwise classification.

Aggregating a set of predicted pairwise preferences into the corresponding
optimal rank is shown to be a NP-Hard problem [79]. An often used solution
to this problem is to upper bound the number of classification mistakes by an
easy to optimise function [19].

Well-known pairwise Learning to Rank algorithms include FRank [210], GBRank
[253], LambdaRank [34], RankBoost [81], RankNet [32], Ranking SVM [100, 110],
and SortNet [178].

2.3.3 Listwise Approach

Listwise ranking optimises the actual evaluation metric. The learner learns to
predict an actual ranking itself without using an intermediate step like in point-
wise or pairwise Learning to Rank. The main challenge in this approach is that
most evaluation metrics are not differentiable. MAP, ERR and NDCG are non-
differentiable, non-convex and discontinuous functions, what makes them very
hard to optimize.

Although the properties of MAP, ERR and NDCG are not ideal for direct op-
timisation, some listwise approaches do focus on direct metric optimisation
[249, 203, 47]. Most listwise approaches work around optimisation of the non-
differentiable, non-convex and discontinuous metrics by optimising surrogate
cost functions that mimic the behaviour of MAP, ERR or NDCG, but have nicer
properties for optimisation.

Well-known algorithms that belong to the listwise approach include AdaRank
[236], BoltzRank [217], ListMLE [235], ListNet [39], RankCosine [173], SmoothRank
[47], SoftRank [203], SVMmap [249].

2.4 cross-validation experiments

A cross-validation experiment [116], sometimes called rotation estimation, is
an experimental set-up for evaluation where the data is split into k chunks of
approximately equal size, called folds. One of the folds is used as validation set,
one of the folds is used as test set, and the rest of the k− 2 folds are used as
training data. This procedure is repeated k times, such that each fold is once
used for validation, once as test set, and k− 2 times as training data. The per-
formance can be measured in any model evaluation metric, and is averaged
over the model performances on each of the folds. The goal of cross-validation
is to define a data set to test the model in the training phase, in order to limit
the problem of overfitting.

Cross-validation is one of the most frequently used model evaluations meth-
ods in the field of Machine Learning, including the Learning to Rank subfield.
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Often, folds in a cross-validation are created in a stratified manner, meaning that
the folds are created in such a way that the distributions of the target variable
are approximately identical between the folds.

2.5 an introduction to the mapreduce programming model

MapReduce [68] is a programming model invented at Google, where users
specify a map function that processes a key/value pair to generate a set of in-
termediate key/value pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. This model draws its inspira-
tion from the field of functional programming, where map and reduce (in some
functional languages called fold) are commonly used functions.

This combination of the map and reduce functions allows for parallel com-
putation. In the map phase parallel computation can be performed by simply
splitting the input data after a certain number of bytes, where each worker
nodes performs the user-specified map-function on its share of the data. Before
the reduce phase these intermediate answers of the different worker nodes are
transformed in such a way that they are grouped by key value, this is called
the shuffle-phase. After the shuffle-phase, the user-defined reduce-function is
applied to each group of key/value pairs in the reduce phase. Since the key/-
value pairs are already grouped by key in the shuffle phase, this reduce-function
can be applied to a group of key/value pairs on any of the worker nodes.
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R E L AT E D W O R K

3.1 literature study characteristics

The literature study described in this section is performed with the aim of get-
ting insight in relevant existing techniques for large scale Learning to Rank. The
literature research is performed by using the bibliographic databases Scopus
and Web of Science with the following search query:

("learning to rank" OR "learning-to-rank" OR "machine learned ranking") AND
("parallel" OR "distributed")

An abstract-based manual filtering step is applied where those results are
filtered that use the terms parallel or distributed in context to learning to rank,
learning-to-rank or machine learned ranking. As a last step we will filter out stud-
ies based on the whole document that only focus on efficient query evaluation
and not on parallel or distributed learning of ranking functions, as those stud-
ies are likely to meet listed search terms.

On Scopus, the defined search query resulted in 65 documents. Only 14 of
those documents used large scale, parallel or distributed terms in context to the
learning to rank, learning-to-rank or machine learned ranking. 10 out of those 14

documents focussed on parallel or distributed learning of ranking functions.

The defined search query resulted in 16 documents on Web of Science. Four
of those documents were part of the 10 relevant documents found using Scopus,
leaving 12 new potentially relevant documents to consider. Four of those 12 doc-
uments used large scale, parallel or distributed terms in context to the learning to
rank, learning-to-rank or machine learned ranking, none of them focused on paral-
lel or distributed learning of ranking functions.

On Google Scholar, the defined search query resulted in 3300 documents. Be-
cause it infeasible to evaluate all 3300 studies we focus on the first 300 search
results as ranked by Google Scholar.

Backward reference search resulted in 10 studies regarded as potentially rel-
evant based on the title, of which four were actually relevant and included in
the literature description. Forward reference search resulted in 10 potentially
relevant titles, of which seven studies turned out to be relevant.

Research in scaling up the training phase of Learning to Rank models can
be categorised according to the approach in scaling up. Figure 3 illustrates the
categories of scalable training approaches in Learning to Rank. The numbers in

15
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Figure 3: Categorisation of research on large scale training of Learning to Rank models

Figure 3 correspond to the sections that describe the related work belonging to
these categories.

3.2 low computational complexity learning to rank

One approach for handling large volumes of training data for Learning to Rank
is through design of low time complexity Learning to Rank methods. Pahikkala
et al. [154] described a pairwise Regularised Least-Squares (RLS) type of rankingRegularised Least-Squares

function, RankRLS, with low time complexity. Airola et al. [8] further improved
the training time complexity of RankRLS to O(tms), where t is the number of
needed iterations, m the number of training documents and s the number of
features. The RankRLS ranking function showed ranking performance similar
to RankSVM [101, 110] on the BioInfer corpus [166], a corpus for information
extraction in the biomedical domain.

Airola et al. [9] and Lee and Lin [125] both described lower time complex-
ity methods to train a linear kernel ranking Support Vector Machine (SVM)Support Vector Machine

[101, 110]. Lee and Lin [125] observed that linear kernel RankSVMs are inferior
in accuracy compared to nonlinear kernel RankSVMs and Gradient Boosted De-
cision Tree (GBDT)s and are mainly useful to quickly produce a baseline model.Gradient Boosted Decision

Tree Details of the lower time complexity version of the linear kernel RankSVM will
not be discussed as it is shown to be an inferior Learning to Rank method in
terms of accuracy.

Learning to Rank methods that are specifically designed for their low com-
putational complexity, like RankRLS and the linear kernel RankSVM methods
described in this section, are generally not among the top achieving models
in terms of accuracy. From results on benchmarks and competitions it can be
observed that the best generalisation accuracy are often more complex ones.
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This makes low time complexity models as a solution for large scale Learning
to Rank less applicable and increases the relevance of the search for efficient
training of more complex Learning to Rank models.

3.3 distributed hyperparameter tuning of learning to rank mod-
els

Hyperparameter optimisation is the task of selecting the combination of hyper-
parameters such that the Learning to Rank model shows optimal generalisation
accuracy. Ganjisaffar et al. [87, 85] observed that long training times are often
a result of hyperparameter optimisation, because it results in training multiple
Learning to Rank models. Grid search is the de facto standard of hyperparameter
optimisation and is simply an exhaustive search through a manually specified
subset of hyperparameter combinations. The authors show how to perform par-
allel grid search on MapReduce clusters, which is easy because grid search is an
embarrassingly parallel method as hyperparameter combinations are mutually
independent. They apply their grid search on MapReduce approach in a Learn-
ing to Rank setting to train a LambdaMART [234] ranking model, which uses
the Gradient Boosting [84] ensemble method combined with regression tree
weak learners. Experiments showed that the solution scales linearly in number
of hyperparameter combinations. However, the risk of overfitting grows as the
number of hyperparameter combinations grow, even when validation sets grow
large.

Burges et al. [35] described their Yahoo! Learning to Rank Challenge submis-
sion that was built by performing an extensive hyperparameter search on a 122-
node Message Passing Interface (MPI) cluster, running Microsoft HPC Server Message Passing Interface

2008. The hyperparameter optimisation was performed on a linear combina-
tion ensemble of eight LambdaMART models, two LambdaRank models and
two MART models using a logistic regression cost. This submission achieved
the highest Expected Reciprocal Rank (ERR) score of all Yahoo! Learning to Rank Expected Reciprocal Rank

Challenge submissions.

Notice that methods described in this section train multiple Learning to Rank
models at the same time to find the optimal set of parameters for a model, but
that the Learning to Rank models itself are still trained sequentially. In the
next sections we will present literature focusing on training Learning to Rank
models in such a way that steps in this training process can be executed simul-
taneously.

3.4 hardware accelerated learning to rank

Hardware accelerators are special purpose processors designed to speed up
compute-intensive tasks. A Field-Programmable Gate Array (FPGA) and a Graph- Field-Programmable Gate

Arrayical Processing Unit (GPU) are two different types of hardware that can achieve
Graphical Processing Unit
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better performance on some tasks though parallel computing. In general, FPGAs
provide better performance while GPUs tend to be easier to program [48]. Some
research has been done in parallelising Learning to Rank methods using hard-
ware accelerators.

3.4.1 FPGA-based parallel Learning to Rank

Yan et al. [242, 243, 244, 245] described the development and incremental im-
provement of a Single Instruction Multiple Data (SIMD) architecture FPGA de-Single Instruction Multiple

Data signed to run, the Neural-Network-based LambdaRank Learning to Rank al-
gorithm. This architecture achieved a 29.3X speed-up compared to the soft-
ware implementation, when evaluated on data from a commercial search en-
gine. The exploration of FPGA for Learning to Rank showed additional benefits
other than the speed-up originally aimed for. In their latest publication [245]
the FPGA-based LambdaRank implementation showed it could achieve up to
19.52X power efficiency and 7.17X price efficiency for query processing com-
pared to Intel Xeon servers currently used at the commercial search engine.

Xu et al. [238, 239] designed an FPGA-based accelerator to reduce the train-
ing time of the RankBoost algorithm [81], a pairwise ranking function based on
Freund and Schapire’s AdaBoost ensemble learning method [82]. Xu et al. [239]
state that RankBoost is a Learning to Rank method that is not widely used in
practice because of its long training time. Experiments on MSN search engine
data showed the implementation on a FPGA with SIMD architecture to be 170.6x
faster than the original software implementation [238]. In a second experiment
in which a much more powerful FPGA accelerator board was used, the speed-
up even increased to 1800x compared to the original software implementation
[239].

3.4.2 GPGPU for parallel Learning to Rank

Wang et al. [221] experimented with a General-Purpose computing on Graph-
ical Processing Units (GPGPU) approach for parallelising RankBoost. NvidiaGeneral-Purpose computing

on Graphical Processing
Units

Computing Unified Device Architecture (CUDA) and ATI Stream are the two

Computing Unified Device
Architecture

main GPGPU computing platform and are released by the two main GPU vendors
Nvidia and AMD. Experiments show a 22.9x speed-up on Nvidia CUDA and a
9.2x speed-up on ATI Stream.

De Sousa et al. [67] proposed a GPGPU approach to improve both training time
and query evaluation through GPU use. An association-rule-based Learning to
Rank approach, proposed by Veloso et al. [215], has been implemented using
the GPU in such a way that the set of rules van be computed simultaneously
for each document. A speed-up of 127X in query processing time is reported
based on evaluation on the LETOR data set. The speed-up achieved at learning
the ranking function was unfortunately not stated.
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3.5 parallel execution of learning to rank algorithm steps

Some research focused on parallelising the steps Learning to Rank algorithms
that can be characterised as strong learners. Tyree et al. [211] described a way of
parallelising GBDT models for Learning to Rank where the boosting step is still
executed sequentially, but instead the construction of the regression trees them-
selves is parallelised. The parallel decision tree building is based on Ben-Haim
and Yom-Tov’s work on parallel construction of decision trees for classifica-
tion [20], which are built layer-by-layer. The calculations needed for building
each new layer in the tree are divided among the nodes, using a master-worker
paradigm. The data is partitioned and the data parts are divided between the
workers, who compress their share into histograms and send these to the mas-
ter. The master uses those histograms to approximate the split and build the
next layer. The master then communicates this new layer to the workers who
can use this new layer to compute new histograms. This process is repeated un-
til the tree depth limit is reached. The tree construction algorithm parallelised
with this master-worker approach is the well-known Classification and Regres-
sion Trees (CART) [28] algorithm. Speed-up experiments on the LETOR and Classification and Regression

Treesthe Yahoo! Learning to Rank challenge data sets were performed. This parallel
CART-tree building approach showed speed-up of up to 42x on shared memory
machines and up to 25x on distributed memory machines.

3.5.1 Parallel ListNet using Spark

Shukla et al. [188] explored the parallelisation of the well-known ListNet Learn-
ing to Rank method using Spark, which is a parallel computing model that
is designed for cyclic data flows which makes it more suitable for iterative
algorithms. Spark is incorporated into Hadoop since Hadoop 2.0. The Spark
implementation of ListNet showed near linear training time reduction.

3.6 parallelisable search heuristics for listwise ranking

Direct minimisation of ranking metrics is a hard problem due to the non-
continuous, non-differentiable and non-convex nature of the Normalized Dis-
counted Cumulative Gain (NDCG), ERR and Mean Average Precision (MAP) eval- Normalized Discounted

Cumulative Gain
Mean Average Precision

uation metrics. This optimisation problem is generally addressed either by re-
placing the ranking metric with a convex surrogate, or by heuristic optimisa-
tion methods such as Simulated Annealing or a Evolutionary Algorithm (EA). Evolutionary Algorithm

One EA heuristic optimisation method that is successfully used in direct rank
evaluation functions optimisation is the Genetic Algorithm (GA) [247]. GAs are Genetic Algorithm

search heuristic functions that mimic the process of natural selection, consist-
ing of mutation and cross-over steps [103]. The following subsection describe
related work that uses search heuristics for parallel/distributed training.
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3.6.1 Immune Programming

Wang et al. [228] proposed a Immune Programming (IP) solution to direct rank-Immune Programming

ing metric optimisation. IP [146] is, like Genetic Programming (GP) [117], aGenetic Programming
paradigm in the field of evolutionary computing, but where GP draws its in-
spiration from the principles of biological evolution, IP draws its inspiration
from the principles of the adaptive immune system. Wang et al. [228] observed
that all EAs, including GP and IP are generally easy to implement in a distrib-
uted manner. However, no statements on the possible speed-up of a distributed
implementation of the IP solution has been made and no speed-up experiments
have been conducted.

3.6.2 CCRank

Wang et al. [225, 227] proposed a parallel evolutionary-algorithm-based on Co-
operative Coevolution (CC) [165], which is, like GP and IP, another paradigmCooperative Coevolution

in the field of evolutionary computing. The CC algorithm is capable of directly
optimizing non-differentiable functions, as NDCG, in contrary to many optim-
ization algorithms. the divide-and-conquer nature of the CC algorithm enables
parallelisation. CCRank showed an increase in both accuracy and efficiency
on the LETOR 4.0 benchmark data set compared to its baselines. However, the
increased efficiency was achieved through speed-up and not scale-up. Two reas-
ons have been identified for not achieving linear scale-up with CCRank: 1) par-
allel execution is suspended after each generation to perform combination in
order to produce the candidate solution, 2) Combination has to wait until all
parallel tasks have finished, which may spend different running time.

3.6.3 NDCG-Annealing

Karimzadeghan et al. [112] proposed a method using Simulated Annealing
along with the Simplex method for its parameter search. This method dir-
ectly optimises the often non-differentiable Learning to Rank evaluation metrics
like NDCG and MAP. The authors successfully parallelised their method in the
MapReduce paradigm using Hadoop. The approach showed to be effective on
both the LETOR 3.0 data set and their own data set with contextual advert-
ising data. Unfortunately their work does not directly report on the speed-up
obtained by parallelising with Hadoop, but it is mentioned that further work
needs to be done to effectively leverage parallel execution.

3.7 paralelly optimisable surrogate loss functions

3.7.1 Alternating Direction Method of Multipliers

Duh et al. [77] proposed the use of Alternating Direction Method of Multipliers
(ADMM) for the Learning to Rank task. ADMM is a general optimization methodAlternating Direction

Method of Multipliers
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that solves problems of the form

minimize f(x) + g(x)

subject to Ax+Bz = c

by updating x and z in an alternating fashion. It holds the nice properties that
it can be executed in parallel and that it allows for incremental model updates
without full retraining. Duh et al. [77] showed how to use ADMM to train a
RankSVM [101, 110] model in parallel. Experiments showed the ADMM imple-
mentation to achieve a 13.1x training time speed-up on 72 workers, compared
to training on a single worker.

Another ADMM-based Learning to Rank approach was proposed by Boyd
et al. [26]. They implemented an ADMM-based Learning to Rank method in
Pregel [140], a parallel computation framework for graph computations. No
experimental results on parallelisation speed-up were reported on this Pregel-
based approach.

3.7.2 Bregman Divergences and Monotone Retargeting

Acharyya et al. [2, 1] proposed a Learning to Rank method that makes use of
an order preserving transformation (monotone retargeting) of the target scores
that is easier for a regressor to fit. This approach is based on the observation
that it is not necessary to fit scores exactly, since the evaluation is dependent on
the order and not on the pointwise predictions themselves.

Bregman divergences are a family of distance-like functions that do not sat-
isfy symmetry nor the triangle inequality. A well-known member of the class of
Bregman divergences is Kullback-Leibler divergence, also known as information
gain.

Acharyya et al. [2, 1] defined a parallel algorithm that optimises a Bregman
divergence function as surrogate of NDCG that is claimed to be well suited for
implementation of a GPGPU. No experiments on speed-up have been performed.

3.7.3 Parallel robust Learning to Rank

Robust learning [106] is defined as the task to lean a model in the presence
of outliers. Yun et al. described a [250] robust Learning to Rank model called
RoBiRank that has the additional advantage that it is executable in parallel.
RoBiRank uses parameter expansion to linearise a surrogate loss function, after
which the elements of the linear combination can be divided over the available
nodes. The Parameter expansion trick was proposed by Gopal and Yang [96],
who originally proposed it for multinomial logistic regression. Unfortunately,
no speed-up experiments were mentioned for the RoBiRank method, since Yun
et al. focussed their research more on robust ranking than on parallel rank-
ing. The only reference to performance of RoBiRank in terms of speed is the
statement that its training time on a computing cluster is comparable to the
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more efficient implementation by Lee and Lin [125] of a linear kernel RankSVM

[101, 110] described in section 3.2.

3.7.4 Distributed Stochastic Gradient Descent

Long et al. [137] described a special case of their pairwise cross-domain factor
Learning to Rank method using distributed optimization of SGD-based on Ha-
doop MapReduce. Parallelisation of the Stochastic Gradient Descent (SGD) op-Stochastic Gradient Descent

timization algorithm was performed using the MapReduce-based method de-
scribed by Zinkevich et al. [258]. Real world data from Yahoo! has been used
to show that the model is effective. Unfortunately the speed-up obtained by
training their model in parallel is not reported.

3.8 ensemble learning for parallel learning to rank

Schapire proved in 1990 that a strong model can be generated by combining
weak models through a procedure called boosting [183]. The invention of the
boosting method resulted in an increasing focus on ensemble methods, which
are methods of combining multiple weak models. Well-known ensemble meth-
ods include gradient boosting [83], bagging [29], AdaBoost [82] and stacked
generalisation (often called stacking) [231].

Ensemble methods can be used to parallelise learning methods by training
the weak models in the ensemble on different nodes. Parallelisation of the train-
ing phase of Learning to Rank models is often achieved through ensemble learn-
ing, mainly boosting, and combined with decision trees, jointly called Gradient
Boosted Decision Tree (GBDT). GBDTs are shown to be able to achieve good ac-Gradient Boosted Decision

Tree curacy in a Learning to Rank setting when used in a pairwise [253] or listwise
[50] setting.

3.8.1 Gradient Boosting

Gradient Boosting [83] is an ensemble learning method in which multiple weak
learners are iteratively added together into one ensemble model in such a way
that new models focus more on those data instances that were misclassified
before.

Kocsis et al. [115] proposed a way to train multiple weak learners in parallel
by extending those models that are likely to yield a good model when com-
bined through boosting. Authors showed through theoretical analysis that the
proposed algorithm asymptotically achieve equal performance to regular gradi-
ent boosting. GBDT models could be trained in parallel using their BoostingTree
algorithm.

Ye et al. [246] described how to implement the stochastic GBDT model in a par-
allel manner using both MPI and Hadoop. Stochastic GBDT differs from regular
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GBDT models by using stochastic gradient boosting instead of regular gradient
boosting. Stochastic gradient boosting is a minor alteration to regular gradient
boosting that, at each iteration of the algorithm, trains a base learner on a sub-
sample of the training set that is drawn at random without replacement [84].
Experiments showed the Hadoop implementation to result in too high com-
munication cost to be useful. Authors believed that these high communication
costs were a result of the communication intensive implementation that was
not well suited for the MapReduce paradigm. The MPI approach proved to be
successful and obtained near linear speed-ups.

Svore and Burges [200, 199] designed two approaches to train the LambdaMART
[234] model in a distributed manner. Their first approach is applicable in case
the whole training set fits in main memory on every node, in that case the tree
split computations of the trees in the LambdaMART tree-ensemble are split
instead of the data. The second approach distributes the training data and cor-
responding training computations and is therefore scalable to high amounts of
training data. Both approaches achieves a six times speed-up over LambdaM-
ART on 32 nodes compared to a single node.

3.8.2 Boosting wrapped in Bagging

Some approaches combine both boosting and bagging. Bagging [29], also called
bootstrap aggregating, is a ensemble learning method in which m training sets
D1..Dm are constructed from the training set D by uniformly sampling data
items from D with replacement. The bagging method is parallelisable by train-
ing each Di with i ∈ {1..m} on a different node.

Yandex researchers Pavlov et al. [159] were the first to propose a boosting-
wrapped-in-bagging approach, which they called BagBoo. The boosting step
itself is not parallelisable, but the authors state that learning a short boosted
sequence on a single node is still a do-able task.

Ganjisaffar et al. [86, 85] proposed a pairwise boosting-wrapped-in-bagging
model called BL-MART, contrasting the pointwise BagBoo model. BL-MART
adds a bagging step to the LambdaMART [234] ranking model, that uses the
Gradient Boosting [84] ensemble method combined with regression tree weak
learners. In contract to BagBoo, BL-MART is limited in the number of trees. An
experiment on the TD2004 data set resulted in 4500 trees using BL-MART while
1.1 million trees were created with the BagBoo model.

3.8.3 Stacked generalisation

A Deep Stacking Network (DSN) is a processing architecture developed from Deep Stacking Network

the field of Deep Learning. DSNs are based on the stacked generalization (also
known as stacking) ensemble learning method [231], which is a multi-layer ap-
proach where multiple learning models are stacked on top of each other in
such a way that the outputs of the models are used as the input features for
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the models in the next layer of the stack. Stacked generalisation models are
easy to compute in parallel, as the models within the same layer can be trained
independently. Deng et al. [69] used a deep architecture of stacked general-
isation (DSN) to make pointwise predictions of relevance labels such that the
Mean Squared Error (MSE) of those predictions compared to the ground truthMean Squared Error

relevance labels are minimised. No speed-up results of parallel computation
are reported, although it is stated repeatedly that the method is scalable and
easy to compute in parallel.

3.8.4 Randomisation

Most ensemble-learning-based Learning to Rank methods are based on boost-
ing. Although boosting has shown to be an effective method in Learning to
Rank, it has the drawback that the models in the ensemble are not completely
mutually independent, which makes the process harder to parallelise. Geurts
and Louppe [94] proposed a tree-based ensemble method in which the trees
are built using random subsets of the available features. The authors called this
method Extremely Randomised Trees (ET) and originally proposed this methodExtremely Randomised Trees

for classification and regression settings instead of ranking settings [93]. The
ET algorithm is similar to the well-known Random Forest algorithm, but with
two differences: 1) in ET each tree is build on the complete data set instead
of random subsets of the data and 2) ET sets the discretisation thresholds that
define the splits in the tree randomly, instead of based on the sample. The
randomisations in the process make the models in the ensemble mutually inde-
pendent, which makes it trivial to parallelise by training each tree on a different
node. In contrary to what one might think, ETs show very good performance
on benchmark data with a 10th place in the Yahoo! Learning to Rank Challenge.

3.9 conclusions

We have seen that a wide range of techniques for parallel and distributed com-
puting are used in the field of parallel or distributed Learning to Rank. Only a
small fraction of related work focusses on the MapReduce programming model,
while MapReduce is the data processing framework of choice in industry [129].
Furthermore we see that most related work that does involve MapReduce fo-
cusses either on distributed hyper-parameter optimisation [87] or on model
optimisation techniques [137, 258], while only one study describes a MapRe-
duce implementation of a Learning to Rank algorithm itself [112]. This thesis
provides an exploration of using MapReduce for parallel computation of Learn-
ing to Rank model training.
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B E N C H M A R K D ATA S E T S

Benchmark data sets enable fair comparisons of ranking models over a fixed
set of documents and queries. The approach of using fixed benchmark data
sets to compare the performance of Information Retrieval systems under equal
circumstances has been the standard evaluation methodology in the Informa-
tion Retrieval field since the release of the Cranfield collection [56] in 1966.

This chapter describes benchmark characteristics, e.g. collection size and fea-
tures, of Learning to Rank benchmark data sets and benchmark collections (sets
consisting of multiple benchmark data sets) and gives an overview of the per-
formance of baseline algorithms on these collections and data sets.

The accuracies of the Learning to Rank methods described in the following
sections can only be compared within the benchmark and not between bench-
marks for the following reasons:

1. Differences in feature sets between data sets detract from fair comparison

2. Although the Normalized Discounted Cumulative Gain (NDCG) definition Normalized Discounted
Cumulative Gainis unambiguous (note: there are two existing versions of NDCG: Järvelin

and Kekäläinen [109] and Burges et al. [32], but both are in itself defined
unambiguously), Busa-Fekete et al. [37] found that NDCG evaluation tools
of different benchmark data sets produced different scores

4.1 yahoo! learning to rank challenge

Yahoo!’s observation that all existing benchmark data sets were too small to
draw reliable conclusions prompted Yahoo! to release two internal data sets
from Yahoo! search. Data sets used at commercial search engines are many
times larger than available benchmark data sets. Yahoo! published a subset of
their own commercial training data and launched a Learning to Rank competi-
tion based on this data. The Yahoo! Learning to Rank Challenge [44] is a public
Learning to Rank competition which took place from March to May 2010, with
the goal to promote the data sets and encourage the research community to
develop new Learning to Rank algorithms.

The Yahoo! Learning to Rank Challenge consists of two tracks that uses the
two data sets respectively: a standard Learning to Rank track and a transfer
learning track where the goal was to learn a specialized ranking function that
can be used for a small country by leveraging a larger training set of another
country. For this experiment, we will only look at the standard Learning to
Rank data set, because transfer learning is a separate research area that is not
included in this thesis.

25
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Train Validation Test

# of queries 19,994 2,994 6,983

# of documents 473,134 71,083 165,660

# of features 519 519 519

Table 4: Yahoo! Learning to Rank Challenge data set characteristics, as described in the
overview paper [44]

Both NDCG and Expected Reciprocal Rank (ERR) are measured as performanceExpected Reciprocal Rank

metrics, but the final standings of the challenge were based on the ERR values.
Model validation on the Learning to Rank methods participating in the chal-
lenge is performed using a train/validation/test-set split following the charac-
teristics shown in Table 4. Competitors could train on the training set and get
immediate feedback on their performance on the validation set. The test set
performance is used to create the final standings and is only measured after
the competition has ended to avoid overfitting on the test set. The large num-
ber of documents, queries and features compared to other benchmark data sets
makes the Yahoo! Learning to Rank Challenge data set interesting. Yahoo! did
not provide detailed feature descriptions to prevent competitors to get detailed
insight in the characteristics of the Yahoo! data collection and features used at
Yahoo!. Instead high level descriptions of feature categories are provided. The
following categories of features are described in the challenge overview paper
[44]:

web graph Quality and popularity metrics of web documents, e.g. PageRank
[152].

document statistics Basic document statistics such as the number of words
and url characteristics.

document classifier Results of various classifiers on the documents. These
classifiers amongst others include: spam, adult, language, main topic, and
quality classifiers.

query Basic query statistics, such as the number of terms, query frequency,
and click-through rate.

text match Textual similarity metrics between query and document. Includes
Term Frequency - Inverse Document Frequency (TF-IDF), BM25 [179] andTerm Frequency - Inverse

Document Frequency other metrics for different sections of the document.

topical matching These features go beyond similarity at word level and
compute similarity on topic level. For example by classifying both the
document and the query in a large topical taxonomy.

click Click-based user feedback.

external references Document meta-information such as Delicious1 tags

1 https://delicious.com/
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Authors ERR

1 Burges et al. (Microsoft Research) 0.46861

2 Gottschalk (Activision Blizzard) &
Vogel (Data Mining Solutions)

0.46786

3 Parakhin (Microsoft) 0.46695

4 Pavlov & Brunk (Yandex Labs) 0.46678

5 Sorokina (Yandex Labs) 0.46616

Table 5: Final standings of the Yahoo! Learning to Rank Challenge, as presented in the
challenge overview paper [44]

time Document age and historical in- and outlink data that might help for
time sensitive queries.

4.1.1 Results

1055 teams send in at least one submission to the Yahoo! Learning to Rank
challenge. The top eight participants of the Yahoo! Learning to Rank challenge
all used decision trees combined with ensemble methods. The mainly used en-
semble method within these top performers is boosting. The combination of
boosting with decision tree learners is often called Gradient Boosted Decision
Tree (GBDT). Figure 5 shows the top five participants in the Yahoo! Learning to Gradient Boosted Decision

TreeRank Challenge in terms of ERR score. Burges [35] created a linear combina-
tion ensemble of eight LambdaMART [33], two LambdaRank and two Logistic
Regression models. Gottschalk and Vogel used a combination of RandomForest
models and GBDT models. Pavlov and Brunk used a regression-based model us-
ing the BagBoo [159] ensemble technique, which combines bagging and boost-
ing. Sorokina used a similar combination of bagging and boosting that is called
Additive Groves [193].

The challenge overview paper [44] states as one of the lessons of the chal-
lenge that the simple baseline GBDT model performed very well with a small
performance gap to the complex ensemble submissions at the top of the table.

Although the winning GBDT models performs very well in terms of NDCG

their high complexity makes them unsuitable to use in production. The win-
ning models take weeks to train and are very slow during query evaluation.
An exception in training time is the BagBoo [159] method used by Pavlov &
Brunk. The bagging component of the BagBoo method enables it to achieve
high scalability through parallelism. Pavlov et al. [159] managed to train half a
million trees on 200 nodes in 2 hours.

4.2 letor

The LETOR benchmark set was first released by Microsoft Research Asia in
April 2007 [136] to solve the absence of a experimental platform for Learning
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to Rank at that time. LETOR has been updated several times since: LETOR 2.0
was released at the end of 2007, LETOR 3.0 [168] in December 2008 and LETOR
4.0 [169] in July 2009.

4.2.1 LETOR 2.0

LETOR 2.0 consists of three data sets: the OHSUMED data set and two data sets
of the on the .gov collection. The OHSUMED collection is a subset of the med-
ical publication database MEDLINE and contains medical publications from
270 journals that were published between 1987 and 1991. The .gov collection is
a web crawl obtained in January 2002, which was used for the Text REtrieval
Conference (TREC) web track in 2003 and 2004.Text REtrieval Conference

Different query sets exists for the .gov corpus. Those query sets are categor-
ized in the following categories [59]:

topic distillation (td) these queries involve finding relevant pages given
a broad query. E.g., the query ’cotton industry’ which is entered with the
aim to find pages that provide information about the cotton industry.

named page finding (np) in these queries the user asks for one specific
page by name. E.g., the user queries for ’ADA Enforcement’ to find the
page http : //www.usdoj.gov/crt/ada/enforce.htm.

home page finding (hp) these queries are similar to NP queries in that
the user is looking for one specific page, but now this specific page is
a homepage. E.g., the user queries for ’Tennessee Valley Authority’ to
find the homepage http : //www.tva.gov.

LETOR 2.0 only uses the topic distillation queries. Baseline Learning to Rank
algorithms evaluated on LETOR 2.0 by the organisation are:

pairwise

• RankSVM [101, 110]

• RankBoost [81]

• Multiple Hyperplane Ranker (MHR) [174]Multiple Hyperplane Ranker

• FRank [210]

listwise

• ListNet [39]

• AdaRank-MAP [236]

• AdaRank-NDCG [236]

4.2.1.1 Results

Table 6 shows the performance of the baseline methods on the data sets in the
LETOR 2.0 collection. ListNet can be regarded as the winner of the comparison
as it outperformed the other methods on two of the three data sets and ranked
third on the third data set. MHR was only evaluated on the OHSUMED data set,
on which it performed second best, after ListNet.
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OHSUMED TD2003 TD2004

RankBoost 0.4356 0.2851 0.4716

RankSVM 0.4411 0.3410 0.4201

FRank 0.4423 0.3357 0.4708

ListNet 0.4489 0.3743 0.4579

AdaRank-MAP 0.4385 0.1940 0.4063

AdaRank-NDCG 0.4369 0.2702 0.3878

MHR 0.4423 - -

Table 6: NDCG@10 results of the baseline methods on LETOR 2.0

4.2.2 LETOR 3.0

The LETOR 3.0 benchmark collection [168] as released in 2007 contained two
data sets: the OHSUMED collection and the .gov collection. Tables 23 and 24 in
Appendix A provide the descriptions of the features of the OHSUMED and the
.gov collections for LETOR 3.0 respectively. Where LETOR 2.0 only used topic
distillation (TD) queries on the .gov corpus, LETOR 3.0 also uses named page
finding (NP) and home page finding (HP) queries. With query sets available
from both the TREC 2003 and 2004 conferences there are six query sets in total:
TD2003, TD2004, NP2003, NP2004, HP2003 and HP2004. It is noteworthy that
the OHSUMED, TD2003 and TD2004 data sets of LETOR 2.0 and LETOR 3.0
are not identical and therefore not comparable due to differences in sampling
method.

The evaluation metrics used are NDCG and Mean Average Precision (MAP). Mean Average Precision

The winning number metric is defined as the number of other algorithms that it
can beat over all of the seven data sets (six .gov sets + OHSUMED). The LETOR
organisation implemented and evaluated several well-known Learning to Rank
algorithms themselves and in addition gathers and publications and results of
new algorithms evaluated on the LETOR benchmark. The baseline Learning to
Rank algorithms evaluated by the LETOR team are:

pointwise

• Linear regression

pairwise

• RankSupport Vector Machine (SVM) [101, 110] Support Vector Machine

• RankBoost [81]

• FRank [210]

listwise

• ListNet [39]

• AdaRank-MAP [236]

• AdaRank-NDCG [236]

• SVMMAP [249]
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4.2.2.1 Results

The LETOR paper [168] describes the performance of the LETOR baseline meth-
ods. Figures 4 and 5 show ListNet to be the best performing baseline in terms
of winning number on both NDCG and MAP. The LETOR website lists2 a few
algorithms that have since been evaluated on the LETOR benchmark collection.

Figure 4: Comparison of ranking accuracy across the seven data sets in LETOR by
NDCG, obtained from Qin et al. [168]

Figure 5: Comparison across the seven data sets in LETOR by MAP, obtained from Qin
et al. [168]

We will describe the performance of the algorithms that were evaluated by
the LETOR team on LETOR 3.0 after publication of the LETOR paper by Qin
et al. [168], as listed on the LETOR website2 by comparing their performance
with the ListNet baseline. We will consider those methods to be better than
ListNet when they beat the ListNet baseline in at least four of the seven data
sets in NDCG value. Note that this does not necessarily imply that these methods
would have scored a higher NDCG winning number than ListNet. Table 7 shows
the ListNet performance on the seven LETOR data sets in terms of NDCG@10

and MAP.

2 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor3baseline.aspx
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NDCG@10 MAP

TD2003 0.348 0.2753

TD2004 0.317 0.2231

NP2003 0.801 0.6895

NP2004 0.812 0.6720

HP2003 0.837 0.7659

HP2004 0.784 0.6899

OHSUMED 0.441 0.4457

Table 7: Performance of ListNet on LETOR 3.0

Since LETOR is arguably the most well-known benchmark collection in the
field, it is conceivable that creators of new Learning to Rank methods evaluate
their new method on the LETOR collection to show how well their new method
works.
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TD2003 0.3297 0.3571 0.3467 0.3367 0.348

TD2004 0.2832 0.2913 0.3090 0.3343 0.317

NP2003 0.8025 0.7894 0.7955 0.7986 0.801

NP2004 0.8040 0.7950 0.7977 0.8075 0.812

HP2003 0.8216 0.8180 0.8162 0.8325 0.837

HP2004 0.7188 0.7720 0.7666 0.8221 0.784

OHSUMED 0.4436 0.4504 0.4523 0.4568 0.441

# winning data sets 2 2 1 3 -

Table 8: NDCG@10 comparison of algorithms recently evaluated on LETOR 3.0 with the
ListNet baselines

4.2.3 LETOR 4.0

The LETOR 4.0 benchmark collection3 consists of the Gov-2 document col-
lection and two query data sets from the Million Query Track at TREC 2007

(MQ2007) and TREC 2008 (MQ2008). LETOR 4.0 consists of a semi-supervised
ranking task, a rank aggregation task and a listwise ranking task next to the
supervised ranking task. Table 9 shows the collection characteristics in number
of queries, documents and features for LETOR 4.0. Evaluation on this collec-
tion is performed using a five-fold cross-validation, where partitioning of the

3 http://http://research.microsoft.com/en-us/um/beijing/projects/letor/
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Data set MQ2007 MQ2008

Queries 1692 784

Documents 69,622 15,211

Features 46 46

Table 9: Characteristics of the LETOR 4.0 collection

Model Data set Mean NDCG NDCG@10

RankSVM-Struct MQ2007 0.4966 0.4439

MQ2008 0.4832 0.2279

ListNet MQ2007 0.4988 0.4440

MQ2008 0.4914 0.2303

AdaRank-NDCG MQ2007 0.4914 0.4369

MQ2008 0.4950 0.2307

AdaRank-MAP MQ2007 0.4891 0.4335

MQ2008 0.4915 0.2288

RankBoost MQ2007 0.5003 0.4464

MQ2008 0.4850 0.2255

Table 10: Comparison of the LETOR 4.0 baseline models

data into folds was performed beforehand by the creators of the MQ2007 and
MQ2008 data sets. Documents in the data set were

4.2.3.1 Results

RankSVM-Struct, ListNet, AdaRank-NDCG, AdaRank-MAP and RankBoost were
used as baseline models on the LETOR 4.0 data set and were implemented and
evaluated by the publishers of LETOR 4.0. Table 10 shows the performance of
those baseline models on the LETOR 4.0 benchmark collection.

BoostedTree model [115] showed an NDCG of 0.5071 on the MQ2007 data set
and thereby beat all baseline models.

4.3 other data sets

LETOR and the Yahoo! Learning to Rank Challenge data sets are the most used
benchmark collections in the field. Several other benchmark collections for the
Learning to Rank task have been proposed.

4.3.1 MSLR-WEB10/30k

MSLR-WEB30k and the smaller subset MSLR WEB10k are two large data sets
with 30,000 and 10,000 queries respectively. The data was obtained from the
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Microsoft Bing4 commercial web search engine. A feature list and feature de-
scriptions are available. The data set only includes features that are commonly
used in the research community, as proprietary features were excluded from the
data set. Microsoft published these data sets as unofficial successor to LETOR in
June 2010, but no baseline evaluations were described by the MSLR-WEB10/30k
team. The Microsoft Research website from which the data set is obtainable5

also offers an evaluation script for NDCG and MAP. The presence of an official
evaluation script enables fair comparison of evaluation results from other re-
searchers comparable.

4.3.2 WCL2R

The WCL2R collection, released by Alcântara et al. [10], contains of two data
sets originating from the Chilean search engine TodoCL6. Both data sets con-
tain approximately 3 million documents. WCL2R is the only benchmark col-
lection known that provides click-through data on user level. The collection
contains 277,095 queries and logs of in total 1,5 million clicks by 16,829 users.
The WCL2R paper provides evaluation results for the well-known RankSVM

[101, 110] and RankBoost [81] algorithms. In addition two ranking methods
developed at the same university of the WCL2R paper were evaluated: LAC
[215] and a ranking algorithm based on Genetic Programming (GP) [66]. Table Genetic Programming

11 shows the performance of those algorithms on the WCL2R collection. No
evaluations of other algorithms on the WCL2R collection are known.

FS NC

Algorithm @1 @3 @10 @1 @3 @10

RankSVM 0.314 0.353 0.395 0.265 0.301 0.339

LAC 0.296 0.360 0.403 0.244 0.266 0.315

GP 0.288 0.344 0.396 0.221 0.262 0.318

RankBoost 0.295 0.328 0.375 0.247 0.264 0.305

Table 11: NDCG results of the baseline methods on the WCL2R collection, obtained from
Alcântara et al. [10]

4.3.3 AOL

Pass et al. [158] describe an America Online Learning to Rank data set which
they published in 2006. This data set is unique in that it is the only large com-
mercial web search data set that contains user session and user behaviour in-
formation. The data set contains 20 million search keywords for over 650,000

users over a three month time period. AOL later realised the publication of
the data set to be a mistake, as personally identifiable information turned out

4 http://www.bing.com/
5 http://research.microsoft.com/en-us/projects/mslr/download.aspx
6 www.todocl.cl
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to be presented in some of the queries7. AOL acknowledged the mistake of
publishing the data and removed the data from its website. The removal of the
data was too late, as the data was already downloadable from several mirror
sites8. This controversial AOL data set is to date still used for Learning to Rank
research. No official baseline evaluation is provided by the AOL team.

4.3.4 Yandex Internet Mathematics contest

Russian commercial web search engine Yandex dedicated their yearly Internet
Mathematics contest to the task of Learning to Rank in the 2009 edition of the
contest. Features (245 in total) are only numbered and their semantics are not
revealed, equivalent to the Yahoo! Learning to Rank Challenge. The set is split
into a 45%-training, 10%-validation, and 45%-test data. The training set contains
9124 queries, with on average around 100 assessed documents per query. Yan-
dex IMC 2009 has an online leaderboard9 showing the best performing teams
in the contest, but it is not traceable which methods each teams used. Pavlov
et al. [159] in their paper claim to have won the Yandex Internet Mathematics
contest 2009 with their BagBoo method.

4.4 conclusions

We have seen in the preceding sections that the evaluation of Learning to Rank
methods is spread over several benchmark data sets. However, as the Learning
to Rank methods evaluated differs between benchmarks, no single benchmark
comparison can be regarded as a conclusive argument on which Learning to
Rank method is most accurate. In the next chapter we will describe a meta-
analysis based on a structured literature research that compares the ranking
accuracy of Learning to Rank methods over multiple benchmark sets.

7 http://select.nytimes.com/gst/abstract.html?res=F10612FC345B0C7A8CDDA10894DE404482

8 http://gregsadetsky.com/aol-data/
9 http://imat2009.yandex.ru/en/results
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C R O S S B E N C H M A R K C O M PA R I S O N

Several studies make a small start in considering Learning to Rank methods per-
formance over multiple benchmark data sets. Gomes et al. [95] analysed rank-
ing accuracy of a set of models on both LETOR 3.0 and LETOR 4.0. Busa-Fekete
et al. [36] compared the accuracy of a small set of models over the LETOR 4.0
data sets, both MSLR data sets, both Yahoo! Learning to Rank Challenge data
sets and the OHSUMED dataset from LETOR 3.0. To our knowledge, no struc-
tured meta-analysis on ranking accuracy has been conducted where evaluation
results on several benchmark collections are taken into account. With a meta-
analysis we will compare the performance of Learning to Rank methods across
the Learning to Rank benchmark data sets described in foregoing sections.

5.1 collecting evaluation results

With a literature review we will collect evaluation results on the data sets / col-
lections. The following list presents an overview of the benchmark collections
taken into account in the meta-analysis:

• LETOR 2.0

• LETOR 3.0

• LETOR 4.0

• Yahoo! Learning to Rank Challenge

• Yandex Internet Mathematics Competition 2009

• MSLR-web10/30k

• WCL2R

• AOL

For the LETOR collections, the evaluation results of the baseline models will
be used from LETOR 2.01, LETOR 3.02 and LETOR 4.03 as listed on the LETOR
website.

LETOR 1.0, LETOR 3.0, Yahoo! Learning to Rank Challenge, WCL2R and
AOL have accompanying papers which were published together with these
benchmark collections. Users of those benchmark collections are encouraged to
cite these papers. Therefore, we collect evaluation measurements of Learning
to Rank methods on these benchmark collections through forward literature
search. Table 12 presents an overview of the results of this forward literature
search. Google Scholar will be used to perform the forward reference search.

1 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor2.0/baseline.aspx
2 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor3baseline.aspx
3 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4baseline.aspx

35
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Benchmark Paper # of forward references

LETOR 1.0 & 2.0 Liu et al. [136] 307

LETOR 3.0 Qin et al. [168] 105

Yahoo! Learning to Rank Challenge Chapelle et al. [44] 102

AOL dataset Pass et al. [158] 339

WCL2R Alcântara et al. [10] 2

Table 12: Forward references of Learning to Rank benchmark papers

The LETOR 4.0, MSLR-web10/30k and Yandex Internet Mathematics Com-
petition 2009 benchmark collections were not accompanied with a describing
study. To collect measurements of Learning to Rank methods evaluated on
these benchmarks, a Google Scholar search is performed on the name of the
benchmark. Table 4 shows the results of this literature search.

Benchmark Google Scholar search results

LETOR 4.0 75 results

MSLR-web10k 16 results

MSLR-web30k 15 results

Yandex Internet Mathematics Competition 1 result

Table 13: Google Scholar search results statistics for Learning to Rank benchmarks

5.2 comparison methodology

The LETOR 3.0 paper [168] states that it may differ between data sets what
the most accurate ranking methods are. To evaluate the overall performance of
Learning to Rank methods over the multiple data sets in the LETOR 3.0 collec-
tions, Qin et al. [168] proposed a measure called winning number as the number
of other algorithms that an algorithm can beat over the set of data sets. Form-
ally the winning number measure is defined as

Winning Numberi(M) =
∑n
j=1

∑m
k=1 I{Mi(j)>Mk(j)}

where j is the index of a dataset, n the number of data sets in the compar-
ison, i and k are indices of an algorithm, Mi(j) is the performance of the i-th
algorithm on the j-th dataset, M is a ranking measure (such as Normalized
Discounted Cumulative Gain (NDCG) or Mean Average Precision (MAP)), andNormalized Discounted

Cumulative Gain
Mean Average Precision

I{Mi(j)>Mk(j)} is an indicator function such that

I{Mi(j)>Mk(j)} =

1 if Mi(j) > Mk(j),

0 otherwise

In contrast to the winning number comparison on LETOR 3.0, there will not
be accuracy measurements for each algorithm on each dataset in our meta-
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analysis. To compare algorithms based on a sparse set of evaluation measure-
ments, a normalised version of the Winning Number metric will be used. This
Normalised Winning Number (NWN) takes only those data sets into account Normalised Winning

Numberthat an algorithm is evaluated on and divides this by the theoretically highest
Winning Number that an algorithm would have had in case it it would have
been the most accurate algorithm on all data sets on which it has been evalu-
ated. We will redefine the indicator function I in order to only take into account
those data sets that an algorithm is evaluated on, as

I{Mi(j)>Mk(j)} =

1 if Mi(j) and Mk(j) are both defined and Mi(j) > Mk(j),

0 otherwise

From now on this adjusted version of Winning Number will be referred to as
NWN. The mathematical definition of NWN is

Normalised Winning Numberi(M) =
Winning Numberi(M)

Ideal Winning Numberi(M)

where Ideal Winning Number (IWN) is defined as Ideal Winning Number

Ideal Winning Numberi(M) =
∑n
j=1

∑m
k=1D{Mi(j),Mk(j)}

where j is the index of a dataset, n the number of data sets in the compar-
ison, i and k are indices of an algorithm, Mi(j) is the performance of the i-th
algorithm on the j-th dataset, M is a ranking measure (such as NDCG or MAP),
and D{Mi(j),Mk(j)} is an evaluation definition function such that

D{Mi(j),Mk(j)} =

1 if Mi(j) and Mk(j) are both defined,

0 otherwise

NDCG@3, NDCG@5, NDCG@10 and MAP are chosen as metrics on which the
meta-analysis will be performed. These metrics seem to be the most frequently
used evaluation metrics in most of the used benchmark data sets. An exception
is the Yahoo! Learning to Rank Challenge data sets on which mainly Expected
Reciprocal Rank (ERR) is used as main evaluation metric. The lack of use of Expected Reciprocal Rank

the ERR-metric in other benchmarks makes it unsuitable for a cross-benchmark
comparison. By making the decision to include NDCG at three cut-off points
and only a single MAP entry, we implicitly attain a higher weight for NDCG

compared to MAP on an analysis that combines all measurements on the four
metrics. This implicit weighting is arbitrary and therefore undesirable, but the
number of algorithm evaluation results gained by this makes it a pragmatic
approach.

We described in section 2.2.1 that there are two definitions of the NDCG-metric
that vary slightly: one defined by Järvelin and Kekäläinen [109] and the other
defined by Burges et al. [32]. The official benchmarks evaluation runs of the
different benchmark sets differ in the NDCG-definition that is used. For ex-
ample, on the official LETOR evaluation runs the definition by Järvelin and
Kekäläinen [109] is used, where the official evaluation runs on WCL2R use the
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definition by Burges et al. [32]. For fair comparison, it is of importance to only
take into account evaluation results that report NDCG scores using the same
NDCG-definition as the official evaluation runs of the benchmark, therefore we
filter out evaluation results that do not fulfil this property. Note that this ap-
proach results in the IWN and NWN calculations taking into account evaluation
results in both definitions of NDCG (although only one definition is used per
data set). This is not a problem, since both definitions of NDCG are highly cor-
related and vary only slightly.

5.3 evaluation results found in literature

Table 14 gives an overview of the Learning to Rank methods for which evalu-
ation results were found for one or more of the benchmark data sets listed in
section 5.1 through the literature review process also described in section 5.1.
Occurrences of L2, L3 and L4 in Table 14 imply that these algorithms are eval-
uated as official LETOR 2.0, LETOR 3.0 and LETOR 4.0 baselines respectively.

Some studies with evaluation results found through in literature review were
not usable for the meta-analysis. The following enumeration lists those prop-
erties that made one or more studies unusable for the meta-analysis. Between
brackets are the studies that these properties apply to.

1. A different evaluation methodology was used in the study compared to
what was used in other studies using the same benchmark [92, 130].

2. The study focussed on a different Learning to Rank task (e.g. rank aggreg-
ation or transfer ranking) [64, 63, 70, 65, 49, 7, 220, 61, 143, 102, 62, 76, 13,
167, 219, 71, 155, 128, 218, 60].

3. The study used an altered version of a benchmark that contained addi-
tional features [24, 73].

4. The study provides no exact data of the evaluation results (e.g. results are
only in graphical form) [230, 223, 241, 118, 126, 235, 254, 232, 256, 112, 201,
156, 149, 55, 195, 162, 5, 43, 172, 3, 184, 105, 11, 196, 98, 21, 89, 51, 240, 187].

5. The study reported evaluation results in a different metric than the met-
rics chosen for this meta-analysis [248, 206, 154, 114, 144].

6. The study reported a higher performance on baseline methods than the
official benchmark results [74, 18, 160, 192, 23, 22, 40, 2, 160, 209, 14]. Such
cases are not necessarily caused by malicious intent, but might be caused
by a mix-up of the two existing versions of the NDCG metric (Järvelin and
Kekäläinen [109] and Burges et al. [32]).

7. The study did not report any results on the baseline methods to compare
to the official benchmark results [41, 224, 31].
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Method Described Evaluated Method Described Evaluated

AdaRank-MAP [236] L2, L3, L4 Linear Regression [57] L3, [222, 216]

AdaRank-NDCG [236] L2, L3, L4, [36, 202] ListMLE [235] [133, 131, 88]

ADMM [77] [77] ListNet [39] L2, L3, L4

ApproxAP [170] [170] ListReg [232] [232]

ApproxNDCG [170] [170] LRUF [208] [208]

BagBoo [159] [86] MCP [123] [123]

Best Single Feature [95] MHR [174] L2

BL-MART [86] [86] MultiStageBoost [111] [111]

BoltzRank-Single [217] [217, 219] NewLoss [161] [161]

BoltzRank-Pair [217] [217, 86, 219] OWPC [212] [212]

BT [255] [255] PERF-MAP [156] [208]

C-CRF [171] [171] PermuRank [237] [237]

CA [142] [36, 202] Q.D.KNN [90] [229]

CCRank [226] [226] RandomForest [95]

CoList [88] [88] Rank-PMBGP [182] [182]

Consistent-RankCosine [175] [202] RankAggNDCG [229] [229]

DCMP [176] [176] RankBoost [81] L2, L3, L4, [36, 10]

DirectRank [202] [202] RankCSA [99] [99]

EnergyNDCG [80] [80] RankDE [25] [182]

FBPCRank [121] [121] RankELM (pairwise) [259] [259]

FenchelRank [119] [119, 120, 123] RankELM (pointwise) [259] [259]

FocusedBoost [150] [150] RankMGP [130] [130]

FocusedNet [150] [150] RankNet [32] [36, 157, 150]

FocusedSVM [150] [150] RankRLS [154] [153]

FP-Rank [191] [191] RankSVM [101, 110] L2, L3, [36, 80, 99, 10]

FRank [210] L2, L3, [222] RankSVM-Primal L3, [121]

FSMRank [122] [122, 123] RankSVM-Struct L3, L4

FSMSVM [122] [122] RCP [78] [78]

GAS-E [91] [122] RE-QR [214] [214]

GP [66] [10] REG-SHF-SDCG [233] [233]

GPRank [190] [207] Ridge Regression [57] L3

GRankRLS [153] [153] RSRank [198] [119]

GroupCE [131] [131] SmoothGrad [124] [202]

GroupMLE [133] [131] SmoothRank [47] L3, [47]

IntervalRank [145] [145, 80] SoftRank [203, 97] [170]

IPRank [228] [228, 207] SortNet [178] [178, 80]

KeepRank [52] [52] SparseRank [120] [120]

Kernel-PCA RankBoost [75] [75, 182] SVD-RankBoost [132] [132]

KL-CRF [216] [216] SVMMAP [249] L3, [222, 237, 150]

LAC-MR-OR [215] [215] SwarmRank [72] [182]

LambdaMART [33] [15, 86] TGRank [119] [119]

LambdaNeuralRank [157] [157] TM [255] [255, 157, 202]

LambdaRank [34] VFLR [38] [38]

LARF [207] [207]

Table 14: An overview of Learning to Rank algorithms and their occurrence in evalu-
ation experiments on benchmark data sets
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5.4 results & discussion

The following subsections provide the performance of Learning to Rank meth-
ods in terms of NWN for NDCG@3, NDCG@5, NDCG@10 and MAP. Performance of
the Learning to Rank methods is plotted with NWN on the vertical axis and the
number of data sets on which the method has been evaluated on the horizontal
axis. The further to the right, the more certain we can be about the performance
of the Learning to Rank method. The methods for which it holds that there is
no other method that has 1) a higher NWN and 2) a higher number data sets
evaluated, are identified as the best performing methods and are labelled with
the name of the method.

5.4.1 NDCG@3

Figure 6 shows the performance of Learning to Rank methods for the NDCG@3

metric. Table 25 in Appendix B provides the raw NWN data for the Learning to
Rank methods for which NDCG@3 evaluation results were available.

Figure 6: NDCG@3 comparison of Learning to Rank methods

LambdaNeuralRank and CoList both acquired a perfect NWN score of 1.0 by
beating all other algorithms on one dataset, with LambdaNeuralRank winning
on the AOL dataset and CoList winning on Yahoo! Set 2. LARF and LRUF
both scored very high scores of near 1.0 on three of the LETOR 3.0 data sets,
which can be said to have a higher degree of certainty on the methods’ perform-
ance because they are validated on three data sets which in addition are more
relevant data sets than AOL and Yahoo! Set 2 because there are more evalu-
ation results available for the LETOR 3.0 data sets (see Table 14). FenchelRank,
OWPC, SmoothRank, DCMP and ListNet are in that order increasingly lower
in NWN, but increasingly higher in number of data sets that they are evaluated
on, resulting in a higher degree of certainty on the accuracy of the algorithms.

LambdaNeuralRank, CoList, LARF, LRUF, OWPC and DCMP evaluation res-
ults are all based on one study, therefore are subjected to the risk of one overly
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optimistic study producing those results. FenchelRank evaluation result are
based combined result from two studies, although those studies have overlap
in authors. SmoothRank and ListNet have the most reliable evaluation result
source, as they were official LETOR baseline runs.

5.4.2 NDCG@5

Figure 7 shows the performance of Learning to Rank methods for the NDCG@5

metric. Table 25 in Appendix B provides the raw Normalised Winning Number
data for the Learning to Rank methods.

Figure 7: NDCG@5 comparison of Learning to Rank methods

LambdaNeuralRank again beat all other methods solely with results on the
AOL dataset scoring a NWN of 1.0. LARF, LRUF, FenchelRank, SmoothRank,
DCMP and ListNet are from left to right evaluated on an increasing number of
data sets, but score decreasingly well in terms of NWN. These results are highly
in agreement with the NDCG@3 comparison. The only modification compared
to the NDCG@3 comparison being that OWPC did show to be a method for
which there were no methods performing better on both axes in the NDCG@5

comparison, but not in the NDCG@3 comparison. Like in the NDCG@3 compar-
ison, SmoothRank and ListNet can be regarded as most reliable results because
the evaluation measurements for these methods are based on LETOR official
baselines.

5.4.3 NDCG@10

Figure 8 shows the performance of Learning to Rank methods for the NDCG@10

metric. Table 26 in Appendix C provides the raw Normalised Winning Number
data for the Learning to Rank methods.
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Figure 8: NDCG@10 comparison of Learning to Rank methods

LambdaMART and LambdaNeuralRank score a NWN of 1.0 on the NDCG@10

comparison. For LambdaNeuralRank these results are again based on AOL
dataset measurements. LambdaMART showed the highest NDCG@10 perform-
ance for the MSLR-WEB10k dataset. The set of algorithms for which there is no
other algorithm with both a higher NWN and number of data sets evaluated on
is partly in agreement with those for the NDCG@3 and NDCG@5 comparisons:
LARF, LRUF, FSMRank, SmoothRank, ListNet, RankSVM. SmoothRank and FS-
MRank were not present in this set for the NDCG@3 and NDCG@5 comparison,
but were close by, as can be seen in Tables 25 in Appendix B. DCMP is not in
the set in contrast with the NDCG@3 and NDCG@5 comparison.

5.4.4 MAP

Figure 9 shows the performance of Learning to Rank methods for the MAP met-
ric. Table 26 in Appendix C provides the raw NWN data for the Learning to
Rank methods.

Figure 9: MAP comparison of Learning to Rank methods

Where comparisons on the NDCG-metric at different cut-off points where
highly in agreement in terms of the best performing algorithms, the compar-
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ison in terms of MAP shows different results. RankDE scores a NWN of 1.0 on
one dataset, like LambdaNeuralRank did on for all NDCG-comparisons. In con-
trast to LambdaNeuralRank, RankDE achieved this highest score on the LETOR
2.0 TD2003, a dataset on which many methods are evaluated.

LARF and LRUF score very high NWN scores, but based on only relatively
few data sets, just as in the NDCG-comparisons. Notable is that SmoothRank
and ListNet, which showed both high accuracy and high certainty on all NDCG-
comparisons, are not within the best performing methods in the MAP-comparison.
A deeper look in the raw data Tables 25 and 26 in Appendices B and C respect-
ively shows that LAC-MR-OR is evaluated on many more data sets for MAP

compared to NDCG, which resulted in LAC-MR-OR obtaining equal certainty to
ListNet with a higher NWN. SmoothRank performed a NWN of around 0.53 over
7 data sets, which is still good in both certainty and accuracy, but not among the
top methods. RE-QR is one of the best performers in the MAP-comparison with
a reasonable amount of benchmark evaluations. No reported NDCG perform-
ance was found in the literature study for RE-QR. There is a lot of certainty on
the accuracy of RankBoost and RankSVM as both models are evaluated on the
majority of data sets included in the comparison for the MAP-metric, but given
their NWN it can said that both methods are not within the top performing
Learning to Rank methods.

5.4.5 Cross-metric

Figure 10 shows the NWN as function of IWN for the methods described in Table
14. Table 27 in Appendix D provide the raw data plotted in Figure 10.

Figure 10: Cross-benchmark comparison of Learning to Rank methods

The cross-metric comparison is based on the NDCG@3, NDCG@5, NDCG@10

and MAP comparisons combined, which justifies analysing the comparison more
thoroughly. Figure 10 labels the algorithms with no other algorithm having a
higher value on both the horizontal axis and vertical axis, but also labels the
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algorithms with exactly one algorithm having a higher value on both axes with
smaller font size. In addition, Linear Regression and the ranking method of
simply sorting on the best single feature are labelled as baselines.

LRUF, FSMRank, FenchelRank, SmoothRank and ListNet showed to be the
methods that have no other method superior to them in both IWN and NWN.
In other words, we can conclude these methods to be pareto-optimal in the
trade-off between certainty and ranking accuracy. LRUF is the only method
that achieved this in all NDCG comparisons, the MAP comparison as well as
the cross-metric comparison. With FenchelRank, FSMRank, SmoothRank and
ListNet being among the top performing methods in all NDCG comparisons as
well as in the cross-metric comparison, it can be concluded that the cross-metric
results are highly defined by the NDCG performance as opposed to the MAP per-
formance. This was to be expected, because the cross-metric comparison input
data of three NDCG entries (@3, @5, and @10) enables it to have up to three
times as many as many weight as the MAP comparison.

LARF, IPRank and DCMP and several variants of RankSupport Vector Ma-
chine (SVM) performed very well on the cross-metric comparison, with all hav-Support Vector Machine

ing only one method in its top right quadrant. LARF also performed among
the top methods on the NDCG and MAP comparisons and DCMP was a top per-
former in a few of the NDCG comparisons.

C-CRF, DirectRank, FP-Rank, RankCSA, LambdaNeuralRank and VFLR all
have near-perfect NWN measures, but have low IWN measures. Further eval-
uation runs of these methods on benchmark data sets that they are not yet
evaluated on are desirable. The DirectRank paper [202] shows that the method
is evaluated on more data sets than the number of data sets that we included
evaluation results for in this meta-analysis. Some of the DirectRank measure-
ments could not be used because measurements on some data sets were only
available in graphical form and not in raw data.

LAC-MR-OR and RE-QR showed very good ranking accuracy in the MAP

comparison on multiple data sets. Because LAC-MR-OR is only evaluated on
two data sets for NDCG@10 and RE-QR is not evaluated for NDCG at all, LAC-
MR-OR and RE-QR are not within the top performing methods in the cross-
metric comparison.

5.5 limitations

In the NWN calculation, the weight of each benchmark on the total score is de-
termined by the number of evaluation measurements on this benchmark. By
calculating it in this way, we implicitly make the assumption that the Learning
to Rank methods are (approximately) distributed uniformly over the bench-
marks, such that the average Learning to Rank method tested are approxim-
ately equally hard for each data set. This assumption goes wrong in the case
that, for a given data set s, the evaluation results are on average obtained from
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significantly better Learning to Rank methods compared to another data sets.
As a result, the IWN of Learning to Rank methods evaluated on s will be un-
dervalued.

A second limitation is that the data sets on which Learning to Rank methods
have been evaluated cannot always be regarded a random choice. It might be
the case that some researchers specifically targeted benchmark data sets that
showed the most positive results for the Learning to Rank method. A result of
this publication bias in the evaluation results will be that the Learning to Rank
method obtains an artificially high NWN. High IWN scores are achieved by hav-
ing evaluation results on multiple data sets, which decreases the possibilities
for a publication bias.

Another limitation is that our comparison methodology relies on the correct-
ness of the evaluation results found in the literature search step. This brings up
a risk of overly optimistic evaluation results affecting our NWN results. Limiting
the meta-analysis to those studies that report comparable results on one of the
baseline methods of a benchmark set reduces this limitation but does not solve
it completely. By taking IWN into account in Figure 10 we further mitigate this
limitation, as IWN is loosely related with the number of studies that reported
evaluation results for an algorithm.

Our comparison regarded evaluation results on NDCG@{3, 5, 10} and MAP. By
making the decision to include NDCG at three cut-off points and only a single
MAP entry, we implicitly attain a higher weight for NDCG compared to MAP on
an analysis that combines all measurements on the four metrics. This implicit
weighting could be regarded as arbitrary, but the number of algorithm evalu-
ation results gained by this makes it a pragmatic approach. Note that another
implicit weighting lies in the paper dimension. Hence, the higher number of
evaluation results specified in a paper, the higher the influence of this paper on
the outcome of the analysis. This implicit weighting is not harmful to the valid-
ity of our comparison, as papers with a large number of evaluation results are
more valuable than papers with a few evaluation results. In addition, papers
with a high number of evaluation results are not expected to be less reliable
than papers with fewer evaluation results.

5.6 conclusions

We proposed a new way of comparing learning to rank methods based on
sparse evaluation results data on a set of benchmark datasets. Our comparison
methodology comprises of two components: 1) NWN, which provides insight in
the ranking accuracy of the learning to rank method, and 2) IWN, which gives
insight in the degree of certainty concerning the performance of the ranking
accuracy.

Based on this this new comparison approach for a set of sparse evaluation
results, we will now look back on the first research question of the thesis.
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rq1 What are the best performing Learning to Rank algorithms in terms of
ranking accuracy on relevant benchmark data sets?

Although no closing arguments can be formulated on which Learning to Rank
methods are most accurate, a lot of insight has been gained with the cross-
benchmark comparison on which methods tend to perform better than others.

Based on our literature search, LRUF, FSMRank, FenchelRank, SmoothRank
and ListNet were found to be the learning to rank algorithms for which it holds
that no other algorithm produced more accurate rankings with a higher degree
of certainty of ranking accuracy (e.g. pareto-optimal in the trade-off between
certainty and ranking accuracy). From left to right, the ranking accuracy of
these methods decreases while the certainty of the ranking accuracy increases.

For more definite conclusions on the relative performance of these five meth-
ods, more evaluation runs on are desirable for the methods on the left side on
the list on benchmark data sets that these methods have not yet been evaluated
on. More evaluation runs are especially needed for the methods on the left side
of Figure 10. Our work contributes to this by identifying promising learning to
rank methods that researchers could focus on in performing additional evalu-
ation runs.

In the following chapters of this thesis, concerning parallel execution of the
Learning to Rank training phase, the scope will be limited to the five meth-
ods that turned out to be superior Learning to Rank methods in terms of
ranking accuracy and certainty about this ranking accuracy: LRUF, FSMRank,
FenchelRank, SmoothRank and ListNet. Although it cannot be concluded that
these methods are inarguably the most accurate Learning to Rank methods, a
strong presumption has been raised that these five Learning to Rank are accur-
ate ranking methods.



6
S E L E C T E D L E A R N I N G T O R A N K M E T H O D S

The learning algorithms of the well-performing Learning to Rank methods se-
lected in Chapter 4.4 are presented and explained in this Chapter. The Learning
to Rank methods will be discussed in order of an increasing degree of certainty
and decreasing ranking accuracy, as concluded in Chapter 4.4.

6.1 listnet

ListNet [39] is a listwise ranking function whose loss function is not directly
related to an information retrieval evaluation metric. ListNet’s loss function is
defined using a probability distribution on permutations. Probability distribu-
tions on permutations have been a research topic within the field of probability
theory which has been extensively researched. ListNet is based on the Plackett-
Luce model [164, 138], which is a permutation probability distribution over per-
mutations that is well-known in the field of econometrics. The Plackett-Luce
model defines a probability over permutations π from the set of all possible
permutations Ω, given all document ranking scores s. The Plackett-Luce model
defines the probability of a permutation π given the list as scores s as shown in
Equation 1.

Ps(π) =

n∏
j=1

φ(sπ(j))∑n
k=jφ(sπ(k))

(1)

where π is a permutation on the n objects, φ is a monotonically increasing and
strictly positive function, and sπ(j) is the score of the object at position j of per-
mutation π.

However, the total number of permutations of a list of n documents is n!,
therefore, calculating the probabilities of all possible permutations quickly be-
comes intractable. To cope with this problem, the authors of ListNet propose
the calculation of a top one probability as an alternative to the actual permutation
probabilities. The top one probability of an object j equals the sum of the per-
mutations probabilities of permutations in which object j is ranked as the top
object. At first sight it seems to be the case that the n! permutation probabilities
still need to be calculated for this, but we can calculate the top one probability
efficiently using Equation 2.

Ps(j) =
φ(sj)∑n
k=1φ(sk)

(2)

ListNet uses Gradient Descent to optimise a neural network such that its
Cross Entropy loss compared to the top one over the training data relevance la-
bels is minimal. For the monotonically increasing and strictly positive function
φ is chosen to be the exponential function. With this choice for the exponential

47
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function, we can rewrite the abstract version top one probability definition of
Equation 2 with the more specific Equation 3.

Ps(j) =
φ(sj)∑n
k=1φ(sk)

=
exp(sj)∑n
k=1 exp(sk)

(3)

Note that some sources, including Liu [135], describe ListNet as using Kullback-
Leibler divergence (KL divergence) as loss function. This difference in definitionKullback-Leibler divergence

is not relevant however, as KL divergence and Cross Entropy are identical up to
an additive constant when comparing distribution q against a fixed reference
distribution p. The listwise Cross Entropy loss function L(y(i), z(i)) is defined
in Equation 4.

L(y(i), z(i)) = −

n∑
j=1

Py(i)(j) log(Pz(i)(j)) (4)

where Ps(j) is the top one probability of object j given relevance score s. This
relevance score s is either the true relevance score y(i) or the predicted relev-
ance score z(i).

Equation 5 describes the gradient descent step to minimise listwise loss func-
tion L(y(i), z(i)(fω)) with respect to the model parameters ω. In this equation,
z(i)(fω) represents the predicted relevance scores of object i when a neural
network f with weight vector ω is used.

∆ω =
∂L(y(i), z(i)(fω))

∂ω
= −

n(i)∑
j=1

Py(i)(x
(i)
j )

∂fω(x
(i)
j )

∂ω

+
1∑n(i)

j=1 exp(fω(x
(i)
j ))

n(i)∑
j=1

exp(fω(x
(i)
j ))

∂f
ω(x

(i)
j )

∂ω
(5)

The ListNet training algorithm is similar to RankNet, with the difference that
ListNet uses a listwise loss function where RankNet uses a pairwise loss func-
tion. Algorithm 2 shows the pseudo-code of the ListNet training algorithm.

Data: training data {(x(1),y(1)), (x(2),y(2)), ..., (x(m),y(m))}
Input: number of iterations T and learning rate η

1 Initialize weight vector ω
2 for t← 1 to T do
3 for i← 1 to m do
4 Input x(i) of query q(i) to Neural Network and, for the current

value of ω, compute score list z(i)(fω).
5 Compute gradient ∆ω using Eq. (5).
6 Update ω = ω− η×∆ω.
7 end
8 end
9 Output Neural Network model ω.
Algorithm 2: The ListNet learning algorithm, obtained from Cao et al. [39]
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6.2 smoothrank

SmoothRank [47] is a listwise ranking method that, in contrast to ListNet, dir-
ectly optimises an information retrieval evaluation measure. SmoothRank en-
ables direct optimisation of the non-convex and discontinuous evaluation meas-
ure by smoothing, that is, approximating the rank position. In this section, we
apply the SmoothRank approximation method to the Normalized Discounted
Cumulative Gain (NDCG) evaluation measure for illustration, but the same pro- Normalized Discounted

Cumulative Gaincedure can be applied to Expected Reciprocal Rank (ERR), Mean Average Preci-
Expected Reciprocal Ranksion (MAP), or any other information retrieval measure. The smoothing function
Mean Average Precisionused in SmoothRank is based on the softmax function [30] that is often used

as an activation function for the neurons in neural networks. The softmax func-
tion as a smoothing framework for ranking evaluation measures in given in
Equation 6.

pi =
ef(i)/σ∑n
j=1 e

f(j)/σ
(6)

where pi is a probability over documents i ∈ {1, ...,n} given the outputs
f1, ..., fn of the ranking function on the documents, with σ being a smoothing
parameter. Chapelle et al. [47] apply this softmax function to the NDCG formula
and hereby introduce a soft version hi,j of the indicator variable 1i,j that rep-
resents a function that outputs the boolean representation of the answer to the
questions: "is document i ranked at the j-th position?". hi,j is calculated through
the formula shown in Equation 7.

hi,j = e
−

(f(xi))−(f(xd(j)))
2

σ

/∑n

k=1
e−

(f(xk))−f(xd(j))
2

σ (7)

where d(j) is a function that returns the index of the document that was
ranked at position j by ranking function f.

It can be shown that the derivative of the smoothed NDCG version shown in
Equation 7 and the smoothed versions of other Information Retrieval (IR) met- Information Retrieval

rics can be calculated in O(n2), which enable fast gradient descent optimisation.
The optimisation step in SmoothRank uses the non-linear conjugate gradient
method with Polak-Ribiere update [186]. This optimisation method is prone to
local optima, which is alleviated by adding a pre-calculated, better than naive,
starting point and by adding a regularisation term.

The starting point in SmoothRank is set to either the solution of a simple lin-
ear regression, or alternatively to the solution of RankSVM. Since this starting
point is expected to already be a good solution, a regulariser term is added to
the SmoothRank objective function to prevent the solution from deviating too
much from the starting point. The regularised smooth objective function is for-
mulated as λ||w−w0||2 where λ is a hyper-parameter tuned on the validation
set, w0 is the starting point solution, and ||x||2 is the `2-norm regularisation

function defined as ||x||2 =
√∑

i x
2
i .



50 selected learning to rank methods

The choice of the smoothing parameter σ in Equation 7 is important, because
a too small value makes the function more non-smooth and therefore harder
to optimise, while a too large value results in a optimisation function with op-
tima that substantially differ from the true optimal rankings. To deal with the
problem of choosing the smoothing parameter, SmoothRank uses an annealing
procedure where optimisation starts with a large σ in the first iteration and
iteratively reduces it by dividing it by two at each iteration.

Algorithm 3 shows the algorithm that summarises all steps of the SmoothRank
method. In this algorithm, Aq(w,σ) is the smoothed version of the NDCG metric,
calculated for ranking function f and using smoothing parameter σ, based on
the smoothed indicator function hi,j as defined in Equation 7. This smoothed
version of the Burges NDCG is defined in Equation 8.

Aq(f,σ) =
∑n

i=1

∑n

j=1

2reli − 1

log2(j+ 1)
hi,j (8)

1 Find an initial solution w0 (by regression or RankSVM).
2 Set w = w0 and σ to a large value.
3 while Stopping condition not satisfied do
4 Starting from w, minimize by non-linear conjugate gradient descent:

λ||w−w0||2 −
∑
qAq(w,σ)

5 σ = σ/2

6 end
Algorithm 3: The SmoothRank learning algorithm, obtained from Chapelle
and Wu [47]

6.3 fenchelrank

FenchelRank [119] is a ranking method that addresses the sparse Learning to
Rank problem, which is the problem of learning a ranking function with only
a few non-zero coefficients with respect to the input features. FenchelRank is
based on the theory of Fenchel Duality [177] and uses a generic algorithm
framework proposed by Shalev-Shwartz and Singer [185]. FenchelRank optim-
ises the objective function shown in Equation 9 which is equivalent to the
standard pairwise loss function with `1-norm regularisation. The `1-norm reg-
ularisation function in this equation is represented by ||x||1 and is defined as
||x||1 =

∑
i |xi|.

min
w
G(w) = min

w
I||w||161(w) +

r2

p

p∑
i=1

max(0,
1

r
− (Kw)i)

2 (9)

where IC(w) is a function that is 0 if condition C is satisfied, and ∞ otherwise.
w is the weight vector with the weights of the features. r is a hyper-parameter
of the model that represents the radius of the `1 ball. m is the dimension of
the data, p is the number of comparable object pairs, K is a matrix in Rp×m

that contains pairwise information. The objective function in Equation 9 is not
differentiable everywhere because of its `1-norm regularisation term. Fenchel’s
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duality theorem [177], defined in Equation 10, provides a way to approximate
the optimal value of this non-differentiable optimisation problem by instead
solving the Fenchel dual of the optimisation problem.

min
x

(f(x) − g(x)) = max
p

(g∗(p) − f
∗(p)) (10)

where f∗ is the convex conjugate of f and g∗ is the concave conjugate of g.

To ease applying Fenchel’s duality theorem (Equation 10) to the `1-regularised
pairwise loss function (Equation 9), Lai et al. define D(w) as D(w) = −G(w).
Equation 11 shows the resulting Fenchel dual of the `1-regularised pairwise
loss function, which is the loss function that is used in FenchelRank.

max
w
D(w) = max

w
I||w||161(w) −

r2

p

p∑
i=1

max(0,
1

r
− (Kw)i)

2 (11)

Algorithm 4 shows the FenchelRank training algorithm to optimise the Fenchel
dual of the pairwise loss function. The ||x||∞ term in this algorithm represents
an `∞-norm regularisation term and is defined as ||x||∞ = maxi |xi|.

Data: pairwise training data matrix K
Input: desired accuracy ε, maximum number of iterations T and the radius

r of the `1 ball.
1 Initialize: w1 = 0m
2 for t← 1 to T do
3 // check if the early stopping criterion is satisfied
4 if ||gt||∞ + 〈dt,−Kwt〉 6 ε then
5 // here dt = ∇f∗(−Kwt) = ∂f∗(−Kw)

∂(Kw) |w = wt,
6 // 〈x,y〉 represents the inner products of vectors x and y, and
7 // gt = dTtK
8 return wt as ranking predictor w
9 end

10 // greedily choose a feature to update
11 Choose jt = arg maxj |(gt)j)|
12 // compute an appropriate step size
13 Let µt = arg max06µt61D((1− µt)wt + µt sign((gt)jt)e

jt)

14 // update the model with the chosen feature and step size
15 Update wt+1 = (1− µt)wt + µt sign((gt)jt)ejt

16 end
17 return wT as ranking predictor for w

Algorithm 4: The FenchelRank learning algorithm, obtained from Lai et al.
[119]

6.4 fsmrank

Lai et al. [122] observed that existing feature selection methods in Learning to
Rank all follow a two-stage paradigm consisting of a first stage of selecting a
subset of features from the original features, followed by a second stage where
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a ranking model learnt based on the selected features. Lai et al. [122] state it as
a limitation of this paradigm that the selected features in the first step are not
necessarily the optimal features for the second stage where the ranking model
is build. FSMRank [122] addresses this limitation by formulating a joint convex
optimisation function that minimises ranking errors while simultaneously se-
lecting a subset of features.

FSMRank uses an extended version of gradient descent optimisation, pro-
posed by Yuri Nesterov, that enables faster convergence for convex problems
[147]. Nesterov’s accelerated gradient descent can guarantee an ε-accurate solu-
tion in at most T iterations where ε = O(1/T2).

Let S = (qk, x(qk),y(qk))
n

k=1 be a training set with queries qk, correspond-
ing retrieval objects x(qk), and corresponding relevance labels y(qk). Let ||x||1
be the l1-norm regularisation function that is defined as ||x||1 =

∑
i |xi|. FS-

MRank defines a normalisation preprocessing step following the formula x ′ =
x−min(x)

max(x)−min(x) to scale the input features to a [0, 1]-range. Let � be the element-

wise division operator. Â is a d× d similarity matrix that contains similarity
scores between features. The convex joint optimisation function in FSMRank is
defined as shown in Equation 12.

min
ŵ

λ1
2
ŵT Âŵ+ λ2||ŵ� ŝ||1 + f(ŵ, (x(qk),y(qk))nk=1) (12)

The first term in Equation 12 applies a penalty on redundancy of large weighted
features by using the Â matrix. The well-known Pearson correlation coefficient
is used to calculate similarity matrix Â, based on the values for the features in
the training data. λ1 is a hyper-parameter of the model and can be used to set
the weight of the similarity penalty term. ŵ is the weight vector of the features.

The second term of Equation 12 contains a `1-norm regularisation term to
select the effective features from the feature set. λ2 is a hyper-parameter of the
model and can be used to set the weight of the regularisation term. The ŝ term
is a vector containing importance scores of the features. It is not defined which
metric is used to calculate these importance scores, but the range of the import-
ance scores is said to be [0,1].

The third and last term of the equation represents the loss function in terms
of ranking errors. Loss function f can in theory be any convex loss function, but
Lai et al. [122] used a squared hinge loss function for their evaluation measure-
ments.

Algorithm 5 shows the steps of the FSMRank training algorithm. As stated,
FSMRank uses an extended version of Nesterov’s accelerated gradient method.
This optimisation method can handle optimisation problems in the form of
minw l(w) + r(w) where l(w) is a convex function with Lipschitz gradient and
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r(w) is convex, but non-smooth. The optimization function of Equation 12 is
reformulated to match this form as presented in Equation 13.

arg min
wt:wt∈R

Q(wt, zt) = λ2
∑2d

i=1

wi
si

+ 〈l ′(zt),wt − zt〉+
L

2
||wt − zt||

2 (13)

where Q(wt, zt) is a combination of the non-smooth part r(wt) and a quad-
ratic approximation of the smooth part l(wt). The l(zt) function is defined as
l(zt) = λ1/2z

T
tAzt + f(zt). λ1, λ2 (both used in function Q) and Lipschitz con-

stant L0 are input parameters of the algorithm and can be optimised through
cross-validation or on a validation set.

Data: training set S = (qk, x(qk),y(qk)
n

k=1

Input: λ1, λ2, T and L0
1 Initialize: w0 = z1 = 0,α1 = 1,γ = 2,L = L0/γ

10

2 for t← 1 to T do
3 Let g = l

′
(zt)

4 while true do
5 // projection step
6 wt = arg minwt:wt∈R2d+

Q(wt, zt)

7 if l(wt) 6 l(zt) + 〈l
′
(zt),wt − zt〉+ L

2 ||wt − zt||
2 then

8 break
9 end

10 L = λL

11 end
12 if |F(wt)−F(wt−1)|

|F(wt−1)|
6 εs then

13 // early stopping criterion
14 break
15 end

16 αt+1 =
1+
√
1+4α2t
2

17 zt+1 = wt +
αt−1
αt+1

(wt −wt−1)

18 end
Algorithm 5: The FSMRank learning algorithm, obtained from Lai et al. [122]

6.5 lruf

LRUF [208] is Learning to Rank method based on the theory of learning auto-
mata. Learning automata are adaptive decision-making units that learn the op-
timal set of actions through repeated interactions with its environment. Variable
structure learning automata can be defined as a triple < β,α,L >, with β being
the set of inputs, α the set of actions. L, the learning algorithm, is a recurrence
relation that modifies the action probability vector of the actions in α.

Three well-known learning algorithms for variable structure learning auto-
mata that can be used as L are linear reward-penalty (LR−P), linear reward-ε-
penalty (LR−εP) and linear reward-inaction (LR−I). LRUF uses the LR−I learning
algorithm, which updates the action probability vector following Equation 14
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at the moment that the selected action ai(k) is performed and rewarded by the
environment.

pj(k+ 1) =

pj(k) + a[1− pj(k)] if j = i

(1− a)pj(k) otherwise
(14)

where i and j are indices of action in α and p(k) is the probability vector over
the action set at rank k. a is the learning rate of the model.

A variable action-set learning automaton is an automaton in which the num-
ber of available actions change over time. It has been shown that a combination
of a variable action-set learning automaton with the LR−I learning algorithm is
absolutely expedient and ε-optimal [204], which means that it is guaranteed to
approximate the optimal solution to some value ε and each update step is guar-
anteed not to decrease performance of the model. A variable-action set learning
automaton has a finite set of r actions α = α1, ...,αr. A is defined as the power
set of α, A = A1, ..,Am with m = 2r − 1. A(k) is the subset of all action that
can be chosen by the learning automaton at each instant k. ψ(k) is a probability
distribution over A such that ψ(k) = p(A(k) = Ai|Ai ∈ A, 1 6 i 6 2r − 1).
p̂i(k) is the probability of choosing action αi given that action subset A(k) has
already been selected and αi ∈ A(k).

LRUF uses an optimisation problem that can be illustrated as a quintuple
< qi,Ai,di,Ri, fi >, where qi is a submitted query, Ai is a variable action-set
learning automaton, di is a set of documents associated with qi, and Ri =

r
j
i|∀d

j
i ∈ di is a ranking function that assigns rank rji to each document. fi is a

feedback set used for the update step described in Equation 14. For each rank
k the learning automaton Ai chooses one of its actions following its probabil-
ity vector, jointly forming Ri. LRUF translates the feedback in fi to an under-
standable value to use it to converge the action probability vector in optimal
configuration. Therefore LRUF defines a gi : fi → R+ to be a mapping from
the feedback set into a positive real number. The LRUF mapping function gi
computes the average relevance score of ranking Ri based on fi and is defined
as shown in Equation 15.

gi =
1

Ni

∑
d
j
i∈fi

a(rji)
−1 (15)

in which Ni refers to the size of feedback set fi, r
j
i is the rank of document dji

in Ri and, again, a denotes the learning rate. Initially, before any feedback, the
action probability factors are initialised with equal probability.

In case the document set of the search engine changes, i.e. new documents
are indexed or old documents are removed, LRUF has an Increase Action-Set
Size (IAS) and a Reduce Action-Set Size (RAS) procedure to adapt to the new
document set without needing a complete retraining of the model. Because this
thesis focusses on model accuracy and scalability the IAS and RAS procedure
of LRUF will not be explained in further detail.
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Torkestani [208] does not provide pseudo-code specifically for the training
phase of the LRUF algorithm. Instead an algorithm including both ranking and
automaton update is presented, and included in Algorithm 6. Initial training of
the algorithm can be performed by using the training data relevance labels in
the feedback set of the algorithm. Ti in this algorithm is a dynamic relevance
threshold initially set to zero. ni is the number of documents to rank using Ri.
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Data: Query qi, Number of results ni
1 Assume: Let Ai be the learning automaton corresponding to query qi with

action-set αi
2 Action αji ∈ αi is associated with document dji ∈ di
3 Let k denote the stage number
4 Let G be the total relevance score
5 Initialise: k← 1, Ti ← 0

6 while k 6 ni do
7 Ai chooses one of its actions (e.g. aki ) at random
8 Document dji corresponding to selected action αji is ranked at Kth

position of Ri
9 Configuration of Ai is updated by disabling action αji

10 k← k+ 1

11 end
12 Ranking Ri is shown to the user
13 Ni ← 0, fi ← ∅,G← 0

14 repeat
15 for every document dji visited by user do
16 fi ← fi + d

j
i

17 G← G+ a ∗ (rji)
−1

18 end
19 Ni ← Ni + 1

20 until query session is expired;
21 gi ← G

Ni

22 Configuration of Ai is updated by re-enabling all disabled actions
23 if gi > Ti then
24 Reward the actions corresponding to all visited documents by Equation

14

25 Ti ← gi

26 end
27 for ∀αji ∈ αi do
28 if pji < Tε then
29 d

j
i is replaced by another document of the searched results

30 end
31 end
32 Output Ri

Algorithm 6: The LRUF algorithm, obtained from Torkestani [208]
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I M P L E M E N TAT I O N

The first section of this chapter will briefly discuss the HDInsight platform, the
Hadoop ecosystem components offered by HDInsight and, in this regard, the
Hadoop components used for implementation of the algorithms described in
Chapter 6. The second section of this chapter describes a Java framework that
handles the joint components needed for MapReduce Learning to Rank com-
putation, independent of the Learning to Rank model. The subsequent sections
report the implementation details of specific Learning to Rank models.

7.1 architecture

Ranking algorithms consist of a sequence of operations on the input data which
are often of iterative nature. Apache Pig [151] is used to implement the se-
quence of operations on the input data. Pig Latin is the data processing lan-
guage that runs on Apache Pig. It was designed based on the observation that
the traditional MapReduce paradigm is too low-level and rigid, and holds the
middle between the declarative style of SQL and the procedural style of MapRe-
duce. The Apache Pig system translates Pig Latin into MapReduce plans that
are executed on Hadoop. The choice to implement the Learning to Rank al-
gorithms in Pig Latin allows for more focus on the data operations and less fo-
cus on low-level implementation details, as compared to native Hadoop MapRe-
duce. Furthermore, it allows us to rely on Apache Pig to create efficient MapRe-
duce plans out of the Pig Latin code and therefore lowers the implementation-
dependent factor of the experiments.

7.1.1 The HDInsight Platform

Azure HDInsight supports the traditional Hadoop Distributed File System (HDFS) Hadoop Distributed File
Systemas described by Shvacko et al. [189], as well as Microsoft’s own storage solution

Windows Azure Storage Blob (WASB). Blob storage decouples the storage from Windows Azure Storage
Blobthe HDInsight Hadoop cluster; it enables safe deletion of a HDInsight cluster

without losing data, as data is not solely stored on the cluster itself, but also
on a separate storage that is not cluster-dependent. Azure WASB storage allows
the user to select one of Microsoft’s data centres for storage. WASB storage in
the West Europe region (located in Amsterdam) is used for storage, as this data
centre is located close to where the experiments are executed.

Microsoft offers a scalable and on-demand Hadoop service with HDInsight,
which enables Hadoop services for those not able to make the required in-
vestments for their own cluster. The latest HDInsight version available at the
time of writing, HDInsight 3.1, runs the Hortonworks distribution of Hadoop

57
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version 2.4. While early versions of Hadoop were merely an open source im-
plementation of MapReduce, newer versions since Hadoop 2.0 offer support
for variety of programming models with the introduction of Hadoop YARN
[213]. HDInsight Hadoop data nodes are regular Large A3 Microsoft Azure vir-
tual machines with four core processors and 7GB RAM. Newly supported pro-
gramming models since Hadoop 2.0 include Dryad [107], Giraph [17], Message
Passing Interface (MPI), REEF [54], Spark [251], and Storm [12]. Even thoughMessage Passing Interface

these programming models are now supported by Hadoop and some of these
programming models have recently increased in popularity, they still lack the
critical mass as the data processing framework of choice that MapReduce has
as Lin argued back in 2012 [129] (see section 1.1). Therefore, even though some
of these programming models might be a better fit for iterative algorithms, we
use Hadoop MapReduce of the programming model to implement the Learn-
ing to Rank algorithms.

HDInsight 3.1 offers multiple ways of submitting Hadoop jobs to a HDIn-
sight cluster, which are described in Table 15. Similar to WASB storage, one of
the Microsoft data centres can be chosen to host the Hadoop cluster when a HD-
Insight cluster is created. To guarantee proximity between storage and cluster,
the West Europe data centre in Amsterdam is used as cluster location.

7.1.2 Framework description

Fold handling in the context of a cross-validation experiment is the process of
loading the correct data folds for training, validation and testing in the mul-
tiple rounds that form the cross-validation experiment. Fold handling is a task
that needs to be taken care of independent of the ranking model that is being
evaluated. Given that most ranking models are of iterative nature, the task of
iteration handling is also a task that need to be performed independent of the
ranking model. Iteration handling and fold handling are procedures in which
the same steps are repeated for each iteration or cross-validation round respect-
ively. Pig Latin, in contrast to more procedural MapReduce-job-generating lan-
guages like Sawzall [163], has no support for loops, which are needed to per-
form iteration handling and fold handling. Since iteration handling and fold
handling are tasks that need to be addressed for each ranking model and that
cannot be solved with Pig, we create a framework that takes care of both itera-
tion and fold handling and generates the Pig Latin code for the current iteration
and fold.

Learning to Rank algorithms are likely to consist of multiple loops over the
input data per iteration of the algorithm, and consequently multiple Pig jobs
will be needed per iteration of the algorithm. An example of this is a Pig imple-
mentation of gradient descent, where a first Pig job might calculate gradients
and writes them to storage, after which the framework assists in reading the
gradients from storage and allows them to be used as input parameters of a
second Pig job that calculates new feature weights based on its gradient para-
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Job submission method Type Description

Powershell Powershell
scripts

The Azure module for Windows
PowerShell enables direct sub-
mission of Hadoop jobs through
PowerShell cmdlets.

C# API C# API A wrapper API is offered to sub-
mit Hadoop MapReduce jobs
directly from C# code.

HiveServer/HiveServer2 REST endpoint Apache Hive [205] is an open-
source data warehousing solu-
tion on top of Hadoop, that
supports processing of a SQL-
like declarative language called
HiveQL. HiveServer and its suc-
cessor HiveServer 2 are REST
endpoints that allow remote
submission of HiveQL queries.

Oozie REST endpoint Apache Oozie [108] is a work-
flow scheduler to manage
Apache Hadoop jobs. Oozie
enables users to specify Direc-
ted Acyclical Graphs of action,
where each action is specified in
either MapReduce or Pig.

WebHCat/Templeton REST endpoint WebHCat, formerly known as
Templeton, is a REST API for
HCatalog, a table and stor-
age management layer for Ha-
doop. WebHCat allows users to
use either Apache Pig, Apache
MapReduce or Apache Hive for
data processing.

Table 15: HDInsight REST endpoints for job submission
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Job submission procedure for
Apache Oozie

Job submission procedure for
WebHCat/Templeton

1. Let the framework build
the Pig job dynamically.

1. Let the framework build
the Pig job dynamically.

2. Encapsulate the Pig job in
an Oozie workflow.

2. Submit the Pig job through
the WebHCat/Templeton
REST API.

3. Upload the Oozie work-
flow to HDFS storage.

4. Execute the Oozie work-
flow through the Oozie REST
API.

Table 16: Comparison of Oozie and WebHCat job submission procedures

meter and a predetermined step size. Handling communication between Pig
jobs within a single iteration of a Learning to Rank algorithm is not trivial. A
Pig Job, after completion, writes its result to WASB storage, while this result is
needed by a subsequent Pig job as parameter. The framework enables reading
the result of a Pig job from WASB storage which can then be used as parameter
within a subsequent Pig job.

The aim of this framework is to let implementations of ranking models focus
solely on implementing the sequential steps of one iteration of the algorithm,
while the framework handles that 1) these sequential steps are performed iter-
atively, 2) these sequential steps are performed on the multiple training folds of
data and 3) data can be passed from one Pig job within the algorithm to another
Pig job. Our framework that handles folding and iterations will be implemen-
ted in Java and will work such that fold- and iteration dependent parts of the
Pig code will be generated dynamically by the Java framework after which the
Pig job will be sent to the cluster.

Oozie and WebHCat/Templeton are the two methods for job submission in
Table 15 that both 1) support Apache Pig jobs, and 2) Can be used from within
Java code. Table 16 shows the necessary procedures for job submission from
Oozie as well as from WebHCat will be sketched. Table 16 shows Oozie job sub-
mission to be more complex for the case of dynamically generated jobs than
WebHCat/Templeton. Oozie is more fitting for static Hadoop jobs that require
a workflow consisting of a sequence of Pig and MapReduce jobs mixed together,
but is a lesser fit for our situation. Templeton will be used for submission of
the Pig jobs, as the HDInsight version that was available at the start of the im-
plementation did not yet support WebHCat.

We create a utility class HDInsightWrapper, which abstracts away connection
setup, authorisation and response parsing from the tasks of submitting jobs
to the cluster and retrieving data from WASB storage. The HDInsightWrapper
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class is parametrised with connection details like the cluster name, cluster user,
cluster password, storage account, storage container and storage key, and has
two methods:

void runpig(string pigcode) Receives a Pig script in String format as in-
put and handles the submission of this script as MapReduce job on the
cluster. Polls the Templeton REST API with progress requests every 50

milliseconds until the MapReduce job has completed. Blocks until the
MapReduce job has completed.

string runpig(string pigcode , string outputdir) Identical to runPig(String
pigCode), but reads the result of the computation from location ’output-
Dir’ after completion of the MapReduce job and outputs the result as
String value.

Setting the degree of parallelisation is crucial to obtain optimal cluster util-
isation. HDInsight cluster machines offer four mapper slots and two reducer
slots per data node. Cluster utilisation is optimal when the computational work
is evenly distributed over exactly the number of available mappers in the map
phase, and evenly distributed over exactly the number of reducers in the reduce
phase. The number of mappers used can be controlled by setting MapReduce
configuration parameters mapreduce.input.fileinputformat.split.maxsize, mapre-
duce.input.fileinputformat.split.minsize, and the Pig configuration parameter
pig.maxCombinedSplitSize to the data size in bytes of the input training data
divided by the number of available mappers. To control the number of used re-
ducers, Pig offers two options: 1) the default_parallel parameters, which can set
a default number of reducers used throughout all MapReduce jobs that the Pig
script consists of, and 2) the "PARALLEL" clause, which sets the number of re-
ducers at operator level (overrides default_parallel if set). The framework uses
listed configuration parameters to control the numbers of mappers used and
uses the "PARALLEL" clause to set the number of used reducers. Pig code to
set the number of mappers and reducers are dynamically set by the framework
such that the optimal number of mappers and reducers are used.

7.2 listnet

The following sections describe the Pig jobs that jointly form the three inde-
pendent parts of the ListNet ranking model: 1) Preprocessing, 2) Training (this
includes evaluation over the validation set) and 3) Testing (evaluation over the
test set).

7.2.1 Preprocessing

The preprocessing phase consists of two separate Pig jobs. The first Pig job
(Algorithm 7) determines the minimum and the maximum values per feature
in the training set. The second Pig job (Algorithm 8) rescales each feature of the
train, validation and test data sets using the following formula for rescaling:

x
′
=

x−min(x)

max(x) −min(x)
(16)
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This rescaling procedure sets the values of all features to be within range [0, 1].

1 REGISTER [path prefix]/lib/*.jar;
2 TRAIN = LOAD ’[path prefix]/input/[data set name]/Fold[fold

number]/train.txt’ USING PigStorage(’ ’);
3 TRAIN_STD = FOREACH TRAIN GENERATE

flatten(udf.util.ToStandardForm(*));
4 TRAIN_STD_BY_QUERY = GROUP TRAIN_STD BY $1 PARALLEL

[available reducers];
5 MIN_MAX = FOREACH TRAIN_STD_BY_QUERY GENERATE

flatten(udf.util.GetMinMax(*));
6 MIN_MAX_GRPD = GROUP MIN_MAX ALL;
7 MIN_MAX_FIN = FOREACH MIN_MAX_GRPD GENERATE

flatten(udf.util.CombineMinMax(*));
8 STORE MIN_MAX_FIN INTO ’minmax[fold number]’;
Algorithm 7: The first Pig job of the normalisation preprocessing procedure

All expressions between square brackets in the code snippet above are dy-
namically set by the framework. The minimum and maximum values per fea-
ture stored in MIN_MAX_FIN are read from storage by the framework after
completion of the MapReduce job. The framework passes these minimum and
maximum values to the second Pig job by passing an array of minimum and
maximum values to the constructor of the udf.util.ScaleFeatures() User Defined
Function (UDF), that performs the rescaling operation of Equation 16.User Defined Function

7.2.2 Training

The Pig jobs that form the ListNet training phase form an implementation of
the theoretical description of ListNet as described in section 6.1. The training
stage, like the preprocessing stage, consists of two separate Pig jobs. The first
Pig job, displayed in Algorithm 9, calculates the Cross Entropy loss on train-
ing data of the current model and calculates the gradients for the next model
update. The second Pig job (Algorithm 10) is an internal validation step that
validates the model on the validation set by calculating Normalized Discounted
Cumulative Gain (NDCG)@k.Normalized Discounted

Cumulative Gain

The actual neural network weights, passed by the framework as constructor
parameter in the script above, are administered in Java code. The per-feature
gradients calculated by the Pig job above are read from storage after completion
and used to update the neural network by, for each feature, adding the feature
gradient multiplied with a step size parameter to the previous feature weight.

The second Pig job of the training stage, shown in Algorithm 10, validates
the performance of the model weights that were trained in the first Pig job on
the validation data set.
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UDF Description

udf.util.ToStandardForm() Transforms the data set into the standard
form of relevance label in first column
followed by feature values. Strips data of
any other columns, if present.

udf.util.GetMinMax() Extracts the minimum and maximum
value per feature, for the documents of
a single query.

udf.util.CombineMinMax() Combines outputs of the
udf.util.GetMinMax() UDF for each
query into globally minimum and
maximum feature values.

Table 17: Description of preprocessing phase User Defined Functions (Pig job 1)

1 REGISTER [path prefix]/lib/*.jar;
2 TRAIN = LOAD ’[path prefix]/input/[data set name]/Fold[fold

number]/train.txt’ USING PigStorage(’ ’);
3 VALIDATE = LOAD ’[path prefix]/input/[data set name]/Fold[fold

number]/vali.txt’ USING PigStorage(’ ’);
4 TEST = LOAD ’[path prefix]/input/[data set name]/Fold[fold

number]/test.txt’ USING PigStorage(’ ’);
5 TRAIN_STD = FOREACH TRAIN GENERATE

flatten(udf.util.ToStandardForm(*));
6 VALIDATE_STD = FOREACH VALIDATE GENERATE

flatten(udf.util.ToStandardForm(*));
7 TEST_STD = FOREACH TEST GENERATE

flatten(udf.util.ToStandardForm(*));
8 DEFINE ScaleFeatures udf.util.ScaleFeatures(’[array with minimum and

maximum feature values]’);
9 TRAIN_SCA = FOREACH TRAIN_STD GENERATE

flatten(ScaleFeatures(*));
10 VALIDATE_SCA = FOREACH VALIDATE_STD GENERATE

flatten(ScaleFeatures(*));
11 TEST_SCA = FOREACH TEST_STD GENERATE flatten(ScaleFeatures(*));
12 STORE TRAIN_SCA INTO ’train_sca[fold number]’ USING BinStorage();
13 STORE VALIDATE_SCA INTO ’validate_sca[fold number]’ USING

BinStorage();
14 STORE TEST_SCA INTO ’test_sca[fold number]’ USING BinStorage();

Algorithm 8: The second Pig job of the normalisation preprocessing procedure
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UDF Description

udf.util.ToStandardForm() See Table 17 for description.

udf.util.ScaleFeatures() Uses the minimum and maximum feature val-
ues with which it is parametrised perform the
following rescaling transformation to the fea-
tures: x

′
=

x−min(x)
max(x)−min(x) .

Table 18: Description of preprocessing phase User Defined Functions (Pig job 2)

1 REGISTER [path prefix]/lib/*.jar;
2 DEFINE QueryLossGradient udf.listnet.QueryLossGradient(’[feature

dimensionality of data set]’);
3 DEFINE ExpRelOurScores udf.listnet.ExpRelOurScores(’[neural network

weights & iteration number]’);
4 [FIRST TRAINING ITERATION:]
5 TRAIN_SCA = LOAD ’train_sca[fold number]/*’ USING BinStorage();
6 TR_BY_QUERY = GROUP TRAIN_SCA BY $1 PARALLEL [number of

avaiable reducers];
7 TR_EXP_REL_SCORES = FOREACH TR_BY_QUERY GENERATE

flatten(ExpRelOurScores(TRAIN_SCA));
8 STORE TR_EXP_REL_SCORES INTO ’tr_exp_rel_scores-f[fold number]’

USING BinStorage();
9 [SUBSEQUENT TRAINING ITERATIONS:]

10 TR_EXP_REL_SCORES = LOAD ’tr_exp_rel_scores-f[fold number]/*’
USING BinStorage();

11 TR_EXP_REL_SCORES = FOREACH TR_EXP_REL_SCORES
GENERATE flatten(ExpRelOurScores(*)) PARALLEL [number of
available reducers];

12 TR_QUERY_LOSS_GRADIENT = FOREACH TR_EXP_REL_SCORES
GENERATE flatten(QueryLossGradient(*)) PARALLEL [number of
available reducers];

13 TR_QUERY_LOSS_GRADIENT_GRPD = GROUP
TR_QUERY_LOSS_GRADIENT ALL;

14 TR_LOSS_GRADIENT = FOREACH
TR_QUERY_LOSS_GRADIENT_GRPD GENERATE
flatten(udf.listnet.MultiSum(*));

15 STORE TR_LOSS_GRADIENT INTO ’tr_loss_gradient-f[fold
number]i[iteration number]’;

Algorithm 9: The first Pig job of the ListNet training procedure
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UDF Description

udf.listnet.QueryLossGradient() Calculates the Cross Entropy loss for a
query and calculates the gradients per
feature based on this query.

udf.listnet.ExpRelOurScores() Calculates the predicted relevance label
of a query based on the current model
weights and transforms this following
the transformation x → ex. In case the
current iteration is the first iteration, the
same transformation is applied to the
ground truth relevance label.

udf.listnet.MultiSum() Calculates aggregated loss and feature
gradients by summing the per-query
losses and per-query feature gradients.

Table 19: Description of training phase User Defined Functions (Pig job 1)

1 REGISTER [path prefix]/lib/*.jar;
2 DEFINE Ndcg udf.util.Ndcg(’[neural network weights & NDCG cut-off

parameter]’);
3 [FIRST TRAINING ITERATION:]
4 VALIDATE_SCA = LOAD ’validate_sca[fold number]/*’ USING

BinStorage();
5 VA_BY_QUERY = GROUP VALIDATE_SCA BY $1 PARALLEL

[number of available reducers];
6 STORE VA_BY_QUERY INTO ’va_by_query-f[fold number]’ USING

BinStorage();
7 [SUBSEQUENT TRAINING ITERATIONS:]
8 VA_BY_QUERY = LOAD ’va_by_query-f[fold number]/*’ USING

BinStorage();
9 NDCG = FOREACH VA_BY_QUERY GENERATE Ndcg(*);

10 NDCG_GRPD = GROUP NDCG ALL;
11 AVG_NDCG = FOREACH NDCG_GRPD GENERATE AVG(NDCG);
12 STORE AVG_NDCG INTO ’avg_ndcg-f[fold number]i[iteration number]’;

Algorithm 10: The second Pig job of the ListNet training procedure

UDF Description

udf.util.Ndcg() Calculates NDCG@k for a query.

Table 20: Description of training phase User Defined Functions (Pig job 2)
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7.2.3 Testing

The testing stage tests the best model found in the training iterations, selected
on validation set NDCG@k (as calculated in the second Pig job of the training
stage), by calculating the NDCG@k of this model on the test set. Algorithm 11

describes the Pig code for model evaluation on the test data set.

1 REGISTER [path prefix]/lib/*.jar;
2 TEST_SCA = LOAD ’test_sca[fold number]/*’ USING BinStorage();
3 TE_BY_QUERY = GROUP TEST_SCA BY $1 PARALLEL [number of

available reducers];
4 DEFINE Ndcg udf.util.Ndcg(’[neural network weights & NDCG cut-off

parameter]’);
5 NDCG = FOREACH TE_BY_QUERY GENERATE Ndcg(*);
6 NDCG_GRPD = GROUP NDCG ALL;
7 AVG_NDCG = FOREACH NDCG_GRPD GENERATE AVG(NDCG);
8 STORE AVG_NDCG INTO ’avg_ndcg’;

Algorithm 11: The Pig job for model evaluation
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M A P R E D U C E E X P E R I M E N T S

This chapter describes and discusses the results of the execution time measure-
ments of the cluster and baseline implementations as described in 7. In addition,
ranking accuracy results are included to validate the correctness of the Learning
to Rank algorithm implementations.

8.1 listnet

8.1.1 Ranking accuracy

To validate our ListNet cluster implementation we run experiments on the
LETOR 3.0 OHSUMED, the LETOR 4.0 datasets MQ2007 and MQ2008 and com-
pare their performance with the RankLib implementation of ListNet and with
the official evaluation results in terms of Normalized Discounted Cumulative
Gain (NDCG)@10. Hadoop job scheduling overhead is relatively large when pro- Normalized Discounted

Cumulative Gaincessing relatively small datasets (as we will explain in more detail in section
8.1.2), therefore NDCG@10 experiments are limited to five training iterations
and are run only on one of the five folds. Because of the stochastic nature of
the ListNet ranking procedure, which is a result of random weight initialisation
prior to the first training iteration, the NDCG@10 performance is not guaranteed
to be identical between multiple runs on the same input data. To account for
this non-determinism in ListNet, we repeat each experiment five times and re-
port the average as well as the standard deviation of the resulting rankings on
the testing fold in terms of NDCG@10.

Table 21 shows the mean and the standard deviation of the ranking accuracy
in NDCG@10 on the first data fold for our own cluster implementation (with and
without the preprocessing step described in section 7.2.1) of ListNet, the Rank-
Lib implementation of ListNet, as well as the official LETOR evaluation results
of ListNet as reported on the LETOR 3.0 1 and LETOR 4.0 2 websites. Note
that the official LETOR evaluation results are structurally higher compared to
the results obtained with RankLib and our cluster implementation, which can
be attributed to the fact that the official evaluation runs use as many ListNet
iterations as needed for convergence on the validation fold, while we limited
our experiment to five iterations. The official evaluation results of the LETOR
benchmarks do not report the standard deviation of their experimental results
and it is not mentioned in the LETOR 3.0 and 4.0 papers [168, 169] how many
times their experiments were repeated. For the ListNet step size hyperpara-
meter we choose a value of 1 ∗ 10−4, which is the default value step size value
in RankLib, for both the cluster and the RankLib runs. It is not clear what step

1 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor3baseline.aspx
2 http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4baseline.aspx
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OHSUMED
(LETOR 3.0)

MQ2008 MQ2007

RankLib 0.1916 ± 0.0634 0.3889 ± 0.0600 0.2918 ± 0.0546

Cluster
(no preprocessing)

0.2212 ± 0.0564 0.3496 ± 0.0788 0.2846 ± 0.0891

Cluster
(preprocessing)

0.3395 ± 0.0952 0.4280 ± 0.0998 0.4554 ± 0.0085

Official evaluation 0.3793 0.4689 0.4767

Table 21: NDCG@10 performance on the test set of the first fold

size was used in the official evaluation runs. We expect, given that LETOR aims
to compare ranking methods in terms of their ranking potential, that the official
LETOR benchmark results optimises the step size hyperparameter on the val-
idation set and reported the performance on the optimal step size found with
this procedure. Using this procedure one is expected to find a higher ranking
accuracy than one would expect to find using a default step size value. Hyper-
parameter optimisation on the validation set would however not be feasible for
our cluster implementation of ListNet given the Hadoop job scheduling over-
head of the cluster.

The ranking accuracy of the ListNet cluster implementation without the nor-
malisation preprocessing step seems very comparable to the ranking accuracy
obtained with the RankLib ListNet implementation, which suggests that the
ListNet ranking method is indeed implemented correctly. Note however that
the standard deviations of the measured ranking accuracies are rather high,
which leaves us unable to conclude that the ranking accuracy of RankLib List-
Net and our cluster implementation are indeed equivalent in achieved ranking
accuracy up to high precision.

A remarkable finding is that the cluster implementation with the normalisa-
tion preprocessing procedure shows better ranking accuracy than the RankLib
version of ListNet after five iterations. It seems to be the case that the norm-
alisation procedure enables ListNet to converge faster. It has been shown in
literature that some neural network training algorithms converge faster on nor-
malised data [148], however, this has not been researched in a Learning to Rank
setting.

Based on our own implementation of the normalisation preprocessing step
that we added to the RankLib code, we further explored the effects of normal-
isation on the convergence rate of ListNet. We conducted experiments on the
LETOR 3.0 datasets HP2003, NP2003 and TD2003 and on the MSLR-WEB10k
data set. The LETOR 3.0 datasets are in published form already normalised
on query-level, meaning that the max(x) and min(x) terms in the normal-
isation formula x

′
=

x−min(x)
max(x)−min(x) are calculated per query instead of on

the whole data set. The MSLR-WEB10k data set is not published in a normal-
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Data set Collection Single fold training size

MINI GENERATED 143.38 KB

OHSUMED LETOR 3.0 4.55 MB

MQ2008 LETOR 4.0 5.93 MB

MQ2007 LETOR 4.0 25.52 MB

MSLR-WEB10K MSLR-WEB10K 938.01 MB

MSLR-WEB30K MSLR-WEB30K 2.62 GB

CUSTOM-2 GENERATED 5.25 GB

CUSTOM-5 GENERATED 13.12 GB

CUSTOM-10 GENERATED 26.24 GB

CUSTOM-20 GENERATED 52.42 GB

CUSTOM-50 GENERATED 131.21 GB

CUSTOM-100 GENERATED 262.41 GB

Table 22: Description of data sets used for running time experiments

ised way. Looking at Figures 11, 12 and 13 that represent the convergence on
HP2003, NP2003 and TD2003 respectively, we see that there is no difference in
convergence properties between ListNet applied on globally normalised and
query-level normalised data. Figure 14 shows that the ListNet convergence in-
creases when normalisation preprocessing is applied to the unnormalised data
set MSLR-WEB10k.

8.1.2 Speedup

Figure 15 (linear data size axis) and Figure 16 (logarithmic data size axis) show
the processing times of a single iteration of the ListNet training algorithm, us-
ing the ListNet implementation included in the RankLib library as well as the
cluster implementation described in chapter 7 with different numbers of data
nodes. The horizontal positions of the measurements are identical between ex-
ecution method, as they are originate from the data sizes of the data sets used.
Measurements were performed on a set of data sets consisting of the LETOR
3.0 OHSUMED data set, LETOR 4.0 data sets and the MSLR-WEB10/30K data
sets are used, supplemented with generated data sets that are duplications of
MSLR-WEB30K (as described in section 1.3.3). Table 22 describes the data sets
used in the experiments and their single training fold data sizes.

Figures 15 and 16 show that the single-machine RankLib implementation of
ListNet is very fast compared to the Hadoop MapReduce cluster implementa-
tion of ListNet for data sets that fit in memory. As soon as the amount of data
processed with RankLib ListNet approaches the physical memory limit of the
machine that is used for computation (16 GB for our single-machine measure-
ments), RankLib ListNet processing time start to increase exponentially. This in-
crease is likely to be a result of the machine needing to use the on-disk sections
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Figure 11: Convergence of ListNet on query-level and globally normalised versions of
HP2003
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Figure 12: Convergence of ListNet on query-level and globally normalised versions of
NP2003
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TD2003



8.1 listnet 73

0.20

0.25

0.30

0.35

0.40

0.45

0 5 10 15 20

# of iterations

N
D

C
G

@
1

0
 o

n
 t

e
s
t 

s
e

t

Execution mode

normalized

unnormalized

Figure 14: Convergence of ListNet on normalised and unnormalised versions of MSLR-
WEB10k



74 mapreduce experiments

of virtual memory and the swapping that takes place as a result thereof. As an
exception to the data sets described in Table 22, the largest data set processed
with RankLib ListNet is CUSTOM-8, which is 20.99 GB in size and thereby
larger than the 16 GB physical memory limit. Experiments with RankLib List-
Net on CUSTOM-10 were attempted, but were stopped after not completing
within 12 hours. In section 1.2 we defined speed-up as Sun and Gustafson rel-
ative speed-up metric [197], which defines speed-up as the number of times that
the execution of the fastest single machine solution is lower than the execu-
tion time with N machines. Note that speed-up, following this definition, is not
computable for larger data sets, as it is not computationally feasible to perform
computation on data sets larger than CUSTOM-8 with a single machine. As an
alternative, Figure 17 visualises the speed-up by plotting the size of the MapRe-
duce cluster against training time.

The measurements of the clusters of 8 data nodes or smaller in Figure 15

have high variance, this can be attributed to the fact that these clusters were
mostly tested on very small datasets, leaving the measurement very depend-
ent on the variance of the job scheduling overhead. When we look at the more
stable measurements, the ones on the clusters of 24 data nodes or more, we see
that the processing time of a ListNet training iteration increases either linearly
of very slightly sub-linearly as a function of the data size.

Figure 17 shows that the speed-up achieved as function of the number of
processing data nodes is sub-linear, from which we can deduct that the train-
ing time converges to a constant unit of time. Based on our measurements
on the small data sets MINI, OHSUMED, MQ2008 and MQ2007, this constant
time seems to be within the range of 150 to 200 seconds. This time is likely to be
caused by Hadoop job scheduling overhead, this presumption is strengthened
by long waiting periods between the separate MapReduce jobs that form a train-
ing iteration.

Amdahl’s law states that the speed-up of a program using parallel comput-
ing is limited by the time needed for the sequential fraction of the program.
A consequence of Amdahl’s Law is that all parallel programs that have a non-
parallelisable part have sub-linear speed-up. Behaviour in accordance with Am-
dahl’s law can be seen in Figure 17, where the speed-up is sub-linear as a result
of the existence a non-parallelisable fraction of the program.

Note however that Hadoop job scheduling overhead is independent of data
set size. Therefore, the non-parallelisable fraction of the program will be smaller
when the to be processed data set is larger, allowing larger speed-up values for
larger data sets. From this observation we can derive that for "large enough" data
sets, the speed-up obtained by parallelising ListNet using Hadoop MapReduce
is large enough for the parallelisation to be beneficial in terms of processing
time compared to the RankLib single-machine version of ListNet, even when
the size of the to be processed data set would not have been memory-bounded
in RankLib ListNet.
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Figure 17: Processing time of a single ListNet training iteration as a function of the
number of data nodes in a cluster

Figure 18 shows the processing speed in bytes per second. Our observation
that RankLib ListNet processes very slow for data sets that do not fit in phys-
ical memory and virtual memory is needed is very notable in this graph. This
graph shows how both an increase in number of data nodes in a cluster and
an increase in input data size result in an increase in processing speed. The
super-linear increase of processing speed as a function of data size that can be
seen in the 2, 4 and 8 data-node-cluster-lines can be explained as a result of the
non-parallelisable Hadoop job scheduling part of the operation. For the lines
originating from the 24, 32 and 64 data node clusters, we see a slowing growth
of the processing speed as a function of data size. Note that the processing
speed of the clusters is bounded by their CPU processing speed and will there-
fore not increase indefinitely as a function of data size.
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C O N C L U S I O N S

Using our experimental results we will now reflect on our research questions
stated in the 1.2 section of this thesis. We formulated the following research
questions:

rq1 What are the best performing Learning to Rank algorithms in terms of
ranking accuracy on relevant benchmark data sets?

To answer this research question we proposed a new way of comparing learn-
ing to rank methods based on sparse evaluation results data on a set of bench-
mark datasets. Our comparison methodology comprises of two components: 1)
Normalised Winning Number (NWN), which provides insight in the ranking Normalised Winning

Numberaccuracy of the learning to rank method, and 2) Ideal Winning Number (IWN),
Ideal Winning Numberwhich gives insight in the degree of certainty concerning the performance of

the ranking accuracy. Based on our literature search for evaluation results on
well-known benchmarks collections, insight has been gained with the cross-
benchmark comparison on which methods tend to perform better than others.
However, no closing arguments can be formulated on which learning to rank
methods are most accurate. LRUF, FSMRank, FenchelRank, SmoothRank and
ListNet were the learning to rank algorithms for which it holds that no other
algorithm produced more accurate rankings with a higher degree of certainty
of ranking accuracy. From left to right, the ranking accuracy of these methods
decreases while the certainty of the ranking accuracy increases. More evalu-
ation runs are needed to increase the certainty of the ranking accuracy of the
methods that were found to have low IWN values. Our work contributes to this
by identifying promising learning to rank methods that researchers could focus
on in performing additional evaluation runs.

rq2 What is the speed-up of those Learning to Rank algorithms when ex-
ecuted using the MapReduce framework?

Where the definition of relative speed-up is used for speed-up [197]:

SN =
execution time using one core
execution time using N cores

To answer this research question, we implemented the ListNet algorithm that
was found to have the highest certainty in ranking accuracy.

We found that running ListNet on a Hadoop cluster using the MapReduce
computing model comes with its own cost in the form of a job scheduling
overhead in the range of 150-200 seconds per training iteration. This makes
Hadoop very inefficient for the processing of small data sets, where the Ha-
doop overhead tends to make up a large share of the total processing time. For
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small data sets where the constant 150-200 seconds job scheduling overhead is a
large fraction of the total processing time, single-machine computation, which
does not have this job scheduling overhead, is found to be faster than Hadoop
MapReduce computation. For large data sets, where 150-200 seconds overhead
per iteration is small compared to the total time that it would take to process
the data, Hadoop MapReduce can provide a speed-up to the training process.
ListNet on a single machine does not scale well to data sizes larger than the
physical memory size. To process large data sets with the ListNet training al-
gorithm, Hadoop MapReduce is a large improvement compared to a single
machine.

Moreover, we found that the addition of a normalisation preprocessing step
to a data set that is not yet normalised can greatly improve the convergence of
the ranking accuracy of the ListNet training procedure. Lin stated in his essay
[129] that MapReduce is often good enough for tasks that are not-amenable
to the MapReduce model. Lin motivates this statement in the context of iterat-
ive algorithms with the observation that these iterative algorithms can often be
optimised in such a way that less iterations are needed for convergence. Our
preprocessing step can improve the convergence rate of the ListNet training
iteration, and therefore fits into Lin’s point of view.

Most importantly, we found the training time of our cluster version of List-
Net to grow linearly in terms of data size increase. This shows that the cluster
implementation of ListNet can be used to scale the ListNet training procedure
to arbitrarily large data sets, given that enough data nodes are available for
computation.

No generalisations can be drawn from these results to the scalability on
MapReduce of other Learning to Rank algorithms. However, we can extend
our findings on job scheduling overhead and scaling benefit on large data sets
to the gradient descent procedure that is used in ListNet as well as in many
other Learning to Rank algorithms and in many learning algorithms in gen-
eral. Other Learning to Rank algorithms using the gradient descent procedure
might not scale well when the MapReduce computing model is used, but any
bad scaling behaviour on MapReduce of Learning to Rank algorithms will not
be caused by bad scaling of the gradient descent procedure.
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F U T U R E W O R K

Follow-up research from this research can be categorised into three categories.
These categories of potential future work are described in the sections below.

10.1 learning to rank algorithms

As an answer to the first research question of this thesis, we found five Learn-
ing to Rank methods for it holds that no other algorithm produced more ac-
curate rankings with a higher degree of certainty of ranking accuracy. These
algorithms were, from highest ranking accuracy / lowest certainty to lowest
ranking accuracy / highest certainty: ListNet, SmoothRank, FenchelRank, FS-
MRank and LRUF. In this thesis we explored the speed-up characteristics of
ListNet on Hadoop MapReduce. The speed-up characteristics of SmoothRank,
FenchelRank, FSMRank and LRUF when implemented using the MapReduce
computing model are still to be explored.

10.2 optimisation algorithms

The gradient descent optimisation procedure can often be replaced with other
optimisation procedures with faster convergence properties, often at the cost
of being more computationally expensive per iteration. Lin [129] hypothesised
that the replacement of gradient descent by optimisation methods with faster
convergence properties can especially be beneficial in a MapReduce setting, as
the MapReduce job scheduling overhead leads to a high constant factor in it-
eration time. An example of an optimisation procedures that fits this higher
convergence rate at the cost of higher per-iteration computational costs is L-
BFGS [134], or any other quasi-Newton optimisation method. Testing the effect
that replacing the optimisation method of Learning to Rank methods has on the
speed-up that can be achieved by parallelising the methods with the MapRe-
duce model is still to be determined. Note however that replacing the optimisa-
tion method in a Learning to Rank algorithm basically turns it into a different,
new, Learning to Rank method, as different optimisation methods might not
be equivalent in how well they are able to find a good set of model parameters.
One should therefore also explore the ranking accuracy characteristics when
an existing Learning to Rank method is evaluated in combination with an op-
timisation algorithm that is not prescribed to be a part of the Learning to Rank
method.

10.3 distributed computing models

We explored the possibilities of Hadoop MapReduce for distributed computa-
tion of Learning to Rank training algorithms. Hadoop, since the introduction

81



82 future work

of Hadoop YARN in Hadoop 2.0, offers integration with other distributed com-
puting models, including but not limited to Dryad [107], Spark [251], Storm [12]
and Message Passing Interface (MPI). Of these distributed programming mod-Message Passing Interface

els, Spark is particularly promising, since Shukla et al. [188] already showed
that it is able to speed-up the ListNet training procedure with much lower job
scheduling overhead than that we found for MapReduce. For the newly suppor-
ted programming models in Hadoop, it holds that they lack the critical mass
as the distributed programming model of choice. This lack of a critical mass
results in higher integration costs and less available support. The integration of
new programming model into the Hadoop YARN framework is a step in the
good direction to alleviate the integration cost of these programming models,
but does not yet completely eliminate the problem. The rise of cloud-based Ha-
doop services like Microsoft HDInsight and Amazon Elastic MapReduce and
their increasing support for programming models other than MapReduce fur-
ther alleviates these integration cost, as it takes away the need for high expenses
on hardware.
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df(qi)
) of title 32

∑
qi∈q∩d log(c(qi,d) + 1) of title +

abstract

10

∑
qi∈q∩d log(

c(qi,d)
|d| ) · |C|

c(qi,C) + 1 of
title

33

∑
qi∈q∩d

c(qi,d)
|d| of title + abstract

11 BM25 of title 34

∑
qi∈q∩d log(

c(qi,d)
|d| + 1) of title +

abstract

12 log(BM25) of title 35

∑
qi∈q∩d log(

|C|

df(qi)
) of title + ab-

stract

13 LMIR.DIR of title 36

∑
qi∈q∩d log(log(

|C|

df(qi)
)) of title +

abstract

14 LMIR.JM of title 37

∑
qi∈q∩d log(

|C|

c(qi,C) + 1) of title +
abstract

15 LMIR.ABS of title 38

∑
qi∈q∩d log(

c(qi,d)
|d| · |C|

df(qi)
+ 1) of

title + abstract

16

∑
qi∈q∩d c(qi,d) of abstract 39

∑
qi∈q∩d c(qi,d) · log(

|C|

df(qi)
) of

title + abstract

17

∑
qi∈q∩d log(c(qi,d) + 1) of abstract 40

∑
qi∈q∩d log(

c(qi,d)
|d| ) · |C|

c(qi,C) + 1

of title + abstract

18

∑
qi∈q∩d

c(qi,d)
|d| of abstract 41 BM25 of title + abstract

19

∑
qi∈q∩d log(

c(qi,d)
|d| + 1) of abstract 42 log(BM25) of title + abstract

20

∑
qi∈q∩d log(

|C|

df(qi)
) of abstract 43 LMIR.DIR of title + abstract

21

∑
qi∈q∩d log(log(

|C|

df(qi)
)) of abstract 44 LMIR.JM of title + abstract

22

∑
qi∈q∩d log(

|C|

c(qi,C) + 1) of abstract 45 LMIR.ABS of title + abstract

23

∑
qi∈q∩d log(

c(qi,d)
|d| ·

|C|

df(qi)
+1) of ab-

stract

Table 23: Features of the LETOR 3.0 OHSUMED data set, obtained from Qin et al [168]
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84 letor feature set

ID Feature Description ID Feature Description

1 TF of body 36 LMIR.JM of body

2 TF of anchor 37 LMIR.JM of anchor

3 TF of title 38 LMIR.JM of title

4 TF of URL 39 LMIR.JM of URL

5 TF of whole document 40 LMIR.JM of whole document

6 IDF of body 41 Sitemap-based term propagation

7 IDF of anchor 42 Sitemap-based score propagation

8 IDF of title 43 Hyperlink-based score propagation: weighted
in-link

9 IDF of URL 44 Hyperlink-based score propagation: weighted
out-link

10 IDF of whole document 45 Hyperlink-based score propagation: uniform
out-link

11 TF-IDF of body 46 Hyperlink-based feature propagation:
weighted in-link

12 TF-IDF of anchor 47 Hyperlink-based feature propagation:
weighted out-link

13 TF-IDF of title 48 Hyperlink-based feature propagation: uniform
out-link

14 TF-IDF of URL 49 HITS authority

15 TF-IDF of whole document 50 HITS hub

16 Document length of body 51 PageRank

17 Document length of anchor 52 HostRank

18 Document length of title 53 Topical PageRank

19 Document length of URL 54 Topical HITS authority

20 Document length of whole document 55 Topical HITS hub

21 BM25 of body 56 In-link number

22 BM25 of anchor 57 Out-link number

23 BM25 of title 58 Number of slashes in URL

24 BM25 of URL 59 Length of URL

25 BM25 of whole document 60 Number of child page

26 LMIR.ABS [252] of body 61 BM25 of extracted title

27 LMIR.ABS of anchor 62 LMIR.ABS of extracted title

28 LMIR.ABS of title 63 LMIR.DIR of extracted title

29 LMIR.ABS of URL 64 LMIR.JM of extracted title

30 LMIR.ABS of whole document

31 LMIR.DIR of body

32 LMIR.DIR of anchor

33 LMIR.DIR of title

34 LMIR.DIR of URL

35 LMIR.DIR of whole document

Table 24: Features of the LETOR 3.0 .gov data set, obtained from Qin et al [168]



B
R AW D ATA F O R C O M PA R I S O N O N N D C G @ 3 A N D N D C G @ 5

Method NWN on
NDCG@3

NWN on
NDCG@5

# of data sets
for NDCG@3

# of data sets
for NDCG@5

AdaRank-MAP 0.34862385 0.3883929 12 12

AdaRank-NDCG 0.30733945 0.3258929 12 12

ApproxNDCG 0.79487179 0.7500000 1 1

BagBoo 0.84782609 0.8400000 2 1

BL-MART 0.95238095 0.7200000 2 1

BoltzRank-Pair 0.83333333 0.8349515 4 4

BoltzRank-Single 0.75490196 0.7184466 4 4

BT 0.72727273 0.7878788 3 3

C-CRF - 0.9500000 0 2

CoList 1.00000000 - 1 0

DCMP 0.54591837 0.5078534 9 9

EnergyNDCG 0.36363636 0.3777778 2 2

FBPCRank 0.41463415 0.5529412 3 3

FenchelRank 0.77419355 0.7500000 5 5

FocusedBoost 0.37500000 0.4545455 2 2

FocusedNet 0.45833333 0.6363636 2 2

FocusedSVM 0.25000000 0.2727273 2 2

FPRank - 0.9000000 0 1

FRank 0.30845771 0.2849462 11 10

FSMRank 0.83333333 0.8775510 4 4

FSMSVM 0.22916667 0.4081633 4 4

GAS-E 0.37500000 0.4693878 4 4

GPRank 0.87096774 0.7252747 3 3

GroupCE 0.73118280 - 3 0

GroupMLE 0.52688172 - 3 0

IntervalRank 0.58974359 0.3750000 1 1

IPRank 0.93548387 0.8131868 3 3

Kernel-PCA RankBoost - 0.2857143 0 3

KL-CRF 0.59459459 0.5789474 2 2

LambdaMART 0.57142857 - 2 0

LambdaNeuralRank 1.00000000 1.0000000 1 1

LambdaRank 0.20000000 0.2000000 1 1
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86 raw data for comparison on ndcg@3 and ndcg@5

LARF 0.98924731 0.9890110 3 3

Linear Regression 0.07142857 0.1099476 9 9

ListMLE 0.00000000 - 1 0

ListNet 0.44954128 0.4910714 12 12

ListReg 0.73118280 0.6923077 3 3

LRUF 0.98230088 0.9816514 4 4

MHR 0.75000000 0.6000000 1 1

NewLoss 0.51612903 0.4285714 3 3

OWPC 0.65000000 - 6 0

PERF-MAP 0.38938053 0.2660550 4 4

Q.D.KNN - 0.3205128 0 3

RankAggNDCG - 0.5000000 0 3

RankBoost 0.32110092 0.2794118 12 10

RankDE - 0.5384615 0 1

RankELM (pairwise) 0.61538462 0.6500000 1 1

RankELM (pointwise) 0.69230769 0.7000000 1 1

RankNet 0.18867925 0.2857143 1 3

Rank-PMBGP - 0.7692308 0 1

RankSVM 0.30097087 0.3612565 12 11

RankSVM-Primal 0.39204545 0.4508671 8 8

RankSVM-Struct 0.35204082 0.4136126 9 9

RCP - 0.5757576 0 3

REG-SHF-SDCG 0.38461538 0.4500000 1 1

Ridge Regression 0.40880503 0.3333333 7 7

RSRank 0.57291667 0.5306122 4 4

SmoothRank 0.60377358 0.6339869 7 7

SoftRank 0.23076923 0.2750000 1 1

SortNet 0.25000000 0.5147059 2 4

SparseRank 0.82242991 0.8173077 4 4

SVD-RankBoost - 0.2727273 0 3

SVMMAP
0.28930818 0.3801170 7 8

SwarmRank - 0.1538462 0 1

TGRank 0.54166667 0.6122449 4 4

TM 0.59090909 0.7575758 3 3

Table 25: Raw Normalised Winning Number data calculated on NDCG@3 and NDCG@5

evaluation results



C
R AW D ATA F O R C O M PA R I S O N O N N D C G @ 1 0 A N D M A P

Method NWN on
NDCG@10

NWN on MAP # of data sets
for NDCG@10

# of data sets
for MAP

AdaRank-MAP 0.36480687 0.320610687 13 12

AdaRank-NDCG 0.31578947 0.286259542 16 12

ADMM 0.44444444 - 1 0

ApproxNDCG 0.86111111 - 1 0

ApproxAP - 0.500000000 0 2

BagBoo - 0.654545455 0 2

Best Single Feature 0.16149068 - 8 0

BL-MART - 0.803571429 0 3

BoltzRank-Pair - 0.580419580 0 5

BoltzRank-Single - 0.433566434 0 5

BT - 0.750000000 0 3

CA 0.65217391 - 4 0

CCRank - 0.615384615 0 2

CoList 0.16666667 - 1 0

Consistent-RankCosine 0.76923077 - 2 0

DCMP 0.58883249 - 9 0

DirectRank 0.92307692 - 2 0

EnergyNDCG 0.41463415 - 2 0

FenchelRank 0.76229508 0.641791045 5 5

FocusedBoost 0.68627451 - 2 0

FocusedNet 0.86274510 - 2 0

FocusedSVM 0.60784314 - 2 0

FRank 0.30288462 0.262295082 11 11

FSMRank 0.86206897 0.578947368 5 7

FSMSVM 0.54255319 0.350000000 4 4

GAS-E 0.45744681 0.410000000 4 4

GP 0.66666667 0.500000000 2 2

GPRank 0.65909091 0.817307692 3 3

GRankRLS 0.28947368 - 2 0

GroupCE 0.72727273 0.721153846 3 3

GroupMLE 0.62500000 0.653846154 3 3

IntervalRank - 0.315789474 0 1
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88 raw data for comparison on ndcg@10 and map

IPRank 0.79545455 0.851351351 3 6

KeepRank - 0.538461538 0 3

LAC-MR-OR 0.66666667 0.764192140 2 12

LambdaMART 1.00000000 0.678571429 1 3

LambdaNeuralRank 1.00000000 - 1 0

LambdaRank 0.57142857 - 2 0

LARF 0.98863636 0.980769231 3 3

Linear Regression 0.08287293 0.065000000 8 8

ListMLE 0.02127660 0.009615385 4 3

ListNet 0.59821429 0.450381679 12 12

ListReg - 0.432692308 0 3

LRUF 0.98181818 0.968000000 4 4

MCP - 0.571428571 0 2

MHR 0.62500000 0.000000000 1 1

MultiStageBoost - 0.136363636 0 2

NewLoss 0.39772727 - 3 0

OWPC - 0.624113475 0 6

PERF-MAP 0.20000000 0.768000000 4 4

PermuRank - 0.409090909 0 3

Q.D.KNN 0.50000000 0.558441558 3 3

RandomForest 0.42236025 0.438888889 8 8

RankAggNDCG 0.87837838 0.792207792 3 3

RankBoost 0.39357430 0.313432836 17 14

RankCSA - 0.916666667 0 2

RankDE 1.000000000 0.18181818 1 1

RankELM (pairwise) 0.69444444 0.514285714 1 2

RankELM (pointwise) 0.80555556 0.542857143 1 2

RankMGP - 0.222222222 0 1

RankNet 0.59154930 - 5 0

Rank-PMBGP 0.27272727 0.875000000 1 1

RankRLS 0.36842105 - 2 0

RankSVM 0.44957983 0.340000000 17 13

RankSVM-Primal 0.45911950 0.351955307 7 7

RankSVM-Struct 0.44670051 0.362385321 9 9

RCP 0.74074074 0.363636364 3 3

REF-SHF-SDCG - 0.657894737 0 1

RE-QR - 0.865921788 0 7

Ridge Regression 0.36477987 0.290502793 7 7

RSRank 0.62765957 0.660000000 4 4



raw data for comparison on ndcg@10 and map 89

SmoothGrad 0.38461538 - 2 0

SmoothRank 0.64150943 0.530726257 7 7

SoftRank 0.61111111 - 1 0

SortNet 0.56666667 0.500000000 4 2

SparseRank 0.79439252 - 4 0

SVD-RankBoost 0.55555556 0.568181818 3 3

SVMMAP
0.35911602 0.349775785 8 10

SwarmRank 0.09090909 0.125000000 1 1

TGRank 0.50000000 0.460000000 4 4

TM - 0.613636364 0 3

VFLR - 0.974358974 0 2

Table 26: Raw Normalised Winning Number data calculated on NDCG@10 and MAP

evaluation results



D
R AW D ATA O N N O R M A L I S E D W I N N I N G N U M B E R F O R
C R O S S - C O M PA R I S O N

Method Winning Number IWN NWN

AdaRank-MAP 332 937 0.35432231

AdaRank-acsNDCG 293 951 0.30809674

ADMM 4 9 0.44444444

ApproxAP 33 66 0.50000000

ApproxNDCG 92 115 0.80000000

BagBoo 96 126 0.76190476

Best Single Feature 26 161 0.16149068

BL-MART 83 102 0.81372549

BoltzRank-Pair 254 348 0.72988506

BoltzRank-Single 213 348 0.61206897

BT 75 99 0.75757576

C-CRF 19 20 0.95000000

CA 15 23 0.65217391

CCRank 24 39 0.61538462

CoList 2 7 0.28571429

Consistent-RankCosine 10 13 0.76923077

DCMP 320 584 0.54794521

DirectRank 12 13 0.92307692

EnergyNDCG 50 130 0.38461538

FBPCRank 81 167 0.48502994

FenchelRank 368 504 0.73015873

FocusedBoost 73 143 0.51048951

FocusedNet 94 143 0.65734266

FocusedSVM 55 143 0.38461538

FP-Rank 18 20 0.90000000

FRank 242 839 0.28843862

FSMRank 365 481 0.75883576

FSMSVM
148 388 0.38144330

GAS-E 166 388 0.42783505

GP 7 12 0.58333333

GPRank 290 376 0.77127660

GRankRLS 11 38 0.28947368

90



raw data on normalised winning number for cross-comparison 91

GroupCE 207 285 0.72631579

GroupMLE 172 285 0.60350877

IntervalRank 50 117 0.42735043

IPRank 357 420 0.85000000

KeepRank 56 104 0.53846154

Kernel-PCA RankBoost 26 91 0.28571429

KL-CRF 44 75 0.58666667

LAC-MR-OR 179 235 0.76170213

LambdaMART 54 81 0.66666667

LambdaNeuralRank 15 15 1.00000000

LambdaRank 10 24 0.41666667

LARF 371 376 0.98670213

Linear Regression 63 761 0.08278581

ListMLE 3 199 0.01507538

ListNet 460 928 0.49568966

ListReg 176 288 0.61111111

LRUF 447 457 0.97811816

MCP 40 70 0.57142857

MHR 17 41 0.41463415

MultiStageBoost 6 44 0.13636364

NewLoss 122 272 0.44852941

OWPC 166 261 0.63601533

PERF-MAP 191 457 0.41794311

PermuRank 18 44 0.40909091

Q.D.KNN 105 229 0.45851528

RandomForest 147 341 0.43108504

Rank-PMBGP 27 40 0.67500000

RankAggNDCG 165 229 0.72052402

RankBoost 309 939 0.32907348

RankCSA 33 36 0.91666667

RankDE 25 40 0.62500000

RankELM (pairwise) 111 185 0.60000000

RankELM (pointwise) 122 185 0.65945946

RankMGP 4 18 0.22222222

RankNet 66 173 0.38150289

RankRLS 14 38 0.36842105

RankSVM 323 885 0.36497175

RankSVM-Primal 283 687 0.41193595

RankSVM-Struct 315 793 0.39276808



92 raw data on normalised winning number for cross-comparison

RCP 55 104 0.52884615

RE-QR 155 179 0.86592179

REG-SHF-SDCG 58 117 0.49572650

Ridge Regression 226 650 0.34769231

RSRank 232 388 0.59793814

SmoothGrad 5 13 0.38461538

SmoothRank 390 650 0.60000000

SoftRank 42 115 0.36521739

SortNet 113 238 0.47478992

SparseRank 258 318 0.81132075

SVD-RankBoost 49 104 0.47115385

SVMMAP
254 734 0.34604905

SwarmRank 5 40 0.12500000

TGRank 205 388 0.52835052

TM 65 99 0.65656566

VFLR 38 39 0.97435897

Table 27: Raw Normalised Winning Number data calculated cross-metric
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