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Summary 
In this research a flood risk assessment was conducted for the Upper Mary River catchment. 

The Upper Mary River catchment is a relatively small non-coastal catchment area being 985 

km2 in size. The only usable stream gauge is the Bellbird Creek gauge as others were affected 

by a dam. In total 78 suitable yearly discharge peaks were derived and identified. It is expected 

that discharges in this catchment area are affected by various climate variability modes. This 

statement is tested for the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation 

(PDO) and Interdecadal Pacific Oscillation (IPO).  

At first an unconditional (independent of the phases of the climate variability modes) flood 

risk evaluation was conducted using all 78 yearly peaks. The resultant flood frequency curve 

can be compared to the conditional flood frequency curves which were calculated later. For the 

unconditional flood frequency multiple probability distributions were tested in order to find 

the best fitting distribution. It became evident that the Log Pearson type 3 distribution best 

fitted the data, therefore being used throughout the research. The resultant 100 year flood 

event and 1% annual exceedance probability is 3459 m3/s.  

To calculate the conditional flood frequency curves the phases of the different states of the 

IPO, PDO and ENSO were identified. For the IPO three phases were distinguished since 1920, 

two positive phases from 1920 to 1944 and from 1978 to 1998 and one negative phase from 1946 

to 1976. The PDO and ENSO states were identified using climate indices and dividing them 

into positive, neutral and negative years.  

Subsequently the discharge peaks were divided into the years corresponding to the identified 

climate states. Using these discharge series the conditional flood frequency curves were 

determined. It was expected that all three climate variability modes would show an effect, but 

for the IPO no signal was found. The PDO and the ENSO showed similar effects in which the 

negative PDO phase and the La Niña phase had a higher 100 year flood event, respectively 

5008.9 and 5179.2 m3/s opposed to 3010.6 and 3439.5 m3/s for the positive states.  

It is unequivocal that these variabilities lead to uncertainty in flood risk analyses. This 

uncertainty was evaluated by calculating random 100 year floods in a Monte Carlo simulation 

using different data lengths considering only the ENSO variability. When using a data series 

consisting of only 30 years the 95% bandwidth was found to be between 2.0 * 103 and 8.8 * 103 

m3/s. Applying a considerably longer data length of 200 years the remaining uncertainty 

remained large: a 5% chance of the true value of the 100 year flood event being under 2.7 * 103 

m3/s or over 5.3*103 m3/s. 

The calculated 100 year flood events were applied in a built HEC-RAS model in order to 

estimate flood inundations. It was found that little variety in flooded area would occur under 

the different climate variability states. This is caused by the specific bathymetry of the 

researched area. In terms of flood inundation heights larger differences were found, with the 

La Niña 100 year flood event having 2.0 metres additional inundation in comparison to El 

Niño’s 100 year flood event.  

Besides climate variability, future climate change is a potential source of error in flood risk 

analyses. It was found that for the area of interest, Eastern Australia and Southeast Queensland 

in specific, little quantitate predictions of climate change in terms of extreme events have been 

made. Researches with qualitative predictions also vary in their expected future changes. Some 

expect a decreased flood risk, whereas others expect an increased flood risk. The few 

quantitate predictions were applied to the Upper Mary River catchment. However a significant 

change in flood risk could not be determined.   
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1 Introduction 
Australia experiences a large variety of climates throughout; from the arid and semi-arid areas 

in the centre to the tropical climate in the north. This extreme variety of climates can be seen 

in Figure 1-1. A phenomenon with a huge impact on the climate in Australia is known as the El 

Niño-Southern Oscillation (ENSO). The highly seasonal rainfall pattern is influenced by the 

seasonal abnormality of 

the ENSO. El Niño is 

the phenomenon in 

which the sea water 

along the equator in the 

Pacific Ocean strongly 

heats up. This results in 

strong weather changes 

around the entire 

world. Typically El Niño 

increases rainfall totals 

and extremes in parts of 

South East Asia and 

islands in the western 

part of the northern 

Pacific Ocean and 

decreases rainfall totals 

and extremes in eastern Australia and Indonesia. The counter-phenomenon of El Niño is La 

Niña for which the effects are mostly reversed. La Niña is associated with temperature rises 

and increased heavy rainfall extremes in parts of Australia, particularly coastal regions in the 

north and east of the country.  

The ENSO-phenomena is associated with many of Australia’s natural hazards. El Niño events, 

accompanied by hot and dry weather conditions, can cause periods of drought lasting several 

months. La Niña typically produces heavier rainfall events, possibly causing periods of flooding 

in regions of Australia. Most memorable in recent history are the floods in Queensland during 

2010-2011 (Van den Honert & McAneney, 2011).  

Furthermore decadal and multi-decadal climate variability exists which affects the frequency 

and magnitude of ENSO-events. This phenomenon has two varieties: known as the Pacific 

Decadal Oscillation (PDO) and the Interdecadal Pacific Oscillation (IPO). Changes in climate 

due to IPO and PDO are related to sea surface temperature, just like ENSO. However the IPO 

events tend to last much longer: 20 to 30 years. Being strongly related with ENSO, IPO has 

heavy (multi-decadal) effects on flood risks in Australia.  

Apart from climate variability, possible anthropogenic (human induced) climate change during 

the 21st century can potentially change the frequency and magnitude of flood events. Both 

climate variability and change strongly affect weather in Australia, leading to large-scale floods 

as have happened in Queensland during 2010-2011. Those floods have caused tremendous 

direct financial damage, estimated to be over 16 billion dollars.  The total costs were estimated 

Figure 1-1: Map of Australia with climate classification (CSIRO, 2001) 
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to be 30 billion dollars, including a 1% decrease of the Australian Gross domain product 

(Easdown, 2011). A research on flood risks associated to climate variability events like ENSO 

and IPO/PDO can be a helpful tool for the goals of control, constrain and prevention.  

Since the effects of La Niña on flood events are the heaviest in the eastern parts of Australia, 

the research focuses on this region. By choosing this study area the research relates directly to 

the Queensland floods of 2010 and 2011. The specific states to be looked at are Queensland and 

New South Wales; both being prone by many flood events.  

1.1  Aim of the project 

The aim of this project is the evaluation of flood risks taking into account the uncertainties of 

climate variability modes. To accomplish this goal, different climate conditions are 

investigated, varying with climate states of the Interdecadal Pacific Oscillation/Pacific Decadal 

Oscillation and El Niño Southern Oscillation. It is expected that this project highlights 

uncertainties in common flood risk estimation. 

1.2 Research questions 

The full research question is as follows: 

What is the impact of climate variability and change on the frequency and extent of 

floods in eastern Australia?  

The research can be divided into the following sub topics: 

Firstly a reference flood event is needed in order to be able to determine the deviations of 

other flood events. For that reason the 1 in 100 year flood event is calculated independent of 

any climate variability. This leads to the following sub question: 

1. What is the value of the 1 in 100 year flood independent of climate states for a selected 

catchment area in Eastern Australia?  

As this research focuses on the uncertainty due to climate variability the flood frequencies are 

to be calculated under different states of these climate variability modes. The flood frequencies 

are calculated with the data corresponding to either positive or negative phases (for instance El 

Niño and La Niña. This leads to the following sub questions: 

2. What are the conditional flood frequencies under different climate states? 
5.1 What are the conditional flood frequencies under IPO states? 

5.2 What are the conditional flood frequencies under PDO states? 

5.3 What are the conditional flood frequencies under ENSO states? 

Subsequently the influence of the climate variability modes on each other is investigated. It 

can be expected that flood frequencies will be altered if they are combined. To determine the 

quantitate effects the following question is answered: 

3. Does a combination of ENSO phases with IPO and PDO phases alter flood frequencies? 

With the created flood frequency curves the long-term uncertainty in flood frequencies can be 

estimated. Due to the variability of ENSO and IPO, with different flood frequencies deviate 
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over a period of time. The goal is to estimate the uncertainty due to these climate variability 

modes:  

4. How does uncertainty in flood frequency estimates vary due to ENSO and IPO? 

A further interest is how these different flood frequencies translate into flood inundation. 

Firstly  

5. What is the extent of flood inundation under different climate states? 

An additional question is the bandwidth of flood inundation extents for the uncertainty 

bounds calculated in sub question 4: 

5.1 What are the uncertainty bounds of the extent of flood inundation under climate 

variability 

To be able to generalize the previously found results in the conditional flood frequency 

analyses to a broader scale, the Australian East coast, the spatial variance of the flood 

frequencies is investigated: 

6. Does spatial variance exist in the conditional flood frequencies? 

Finally the effect of possible anthropogenic climate change on flood frequencies and 

inundation is researched: 

7. To what extent could anthropogenic climate change influence flood frequencies and 

magnitudes? 
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2 Theory 

2.1 El Niño – Southern Oscillation (ENSO) 

The El Niño-Southern Oscillation (ENSO) phenomenon has a big influence on the Australian 

climate. The phenomenon has two variations: El Niño and La Niña, whereas all in between is 

referred to as a neutral phase. El Niño is the state in which the sea water along the equator in 

the Pacific Ocean strongly heats up. This results in strong weather changes around the entire 

world (Royal Dutch Meteorological Insitute, n.d.). During La Niña events the effects are mostly 

reversed. The effects on Australia however have more impact (Bureau of Meteorology; 

Australian Government, 2014). In the eastern part the event is associated with heavier rainfall. 

This possibly results in floods across the entire east coast of Australia (Erik K. Veland, 2011). 

The most considerable flood event, presumably caused by a La Niña being one of the strongest 

ever recorded ENSO-events, occurred during 2010 and 2011 (Van den Honert & McAneney, 

2011). The floods reached out across large parts of Queensland with an inundation area 

equivalent to the extension of France plus Germany. In 2011 the milder floods in Victoria and 

New South Wales intensified. Those events happened separately which provides an evidence of 

an underlying phenomenon: La Niña. Furthermore Wenju and Van Rensch (2012) have 

discovered a positive correlation between the strength of La Niña events (in terms of SOI; 

explained below) and South East Queensland (SEQ) rainfall, expectantly to increase flood 

risks. No correlation was found between El Niño strength and SEQ rainfall, suggesting El Niño 

events do not affect discharges and flood risks in this area.  

An important feature of ENSO is the highly variable frequency and magnitude of the events. 

This variability is related to multi-decadal climate variability. To measure ENSO-phenomena a 

few indices and methods are available. The Southern Oscillation Index (SOI), the most basic 

index, measures the difference in sea-level atmospheric pressures between Tahiti and Darwin, 

Australia. (Kiem & Franks, 2001). Many indices, such as NINO3 and NINO4 are based on sea 

surface temperature (SST) data across the Pacific Ocean. Finally a Multivariate ENSO Index 

(MEI) can be used to indicate ENSO-events. It has been shown generally the MEI best reflects 

ENSO-events (Kiem & Franks, 2001) (Wolter & Timlin, 1998).  

2.2 (Multi-) Decadal Pacific Oscillation IPO and PDO 
The Interdecadal Pacific Oscillation is a multi-decadal variability in climate, both over the 

North and South Pacific. The frequency of phase changes is 15-30 years. Just like ENSO, IPO 

affects the sea surface temperatures and sea-level pressures at the Pacific Ocean. Those are 

mainly caused by shifts in circulation within the Pacific Ocean. The exact cause of IPO is still 

unknown, but it is confirmed to 

be related to the ENSO cycles; 

whether IPO exerts an effect on 

the ENSO cycle or ENSO 

variability changes the IPO is 

unclear though (Verdon & 

Franks, 2006). IPO has two 

phases: a negative and a positive 

phase. Three clear phases have 

been identified since 1920: two Figure 2-1: IPO Index (Ministry for the Environment New 
Zealand, n.d.) 
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positive phases (1920-1944 and 1978-1998) and a negative phase (1946-1976). These phases can 

be seen in Figure 2-1, which displays the IPO index.  

The Pacific Decadal Oscillation (PDO) is strongly related to the IPO (Power, Casey, Folland, 

Colman, & Mehta, 1999) (Zhang & Church, 2012). The correlation of the two is said to be 0.96. 

The variation of the PDO in the north Pacific cause multi-decadal variability for the entire 

Pacific Ocean (IPCC, 2007). The effect though has high spatial variance; the PDO has a more 

significant influence on the Northern Hemisphere (Mantua N. , 2002), whereas the IPO has an 

effect on the whole Pacific Basin (Parker, et al., 2007) (Salinger, Renwick, & Mullan, 2001).  

It has been proven that IPO may affect both the frequency and the magnitude of ENSO. (Kiem, 

Franks, & Kuczera, 2003). IPO negative phases are associated with an increased number of La 

Niña-events, therefore elevating flood risk.  

2.3 Climate change 

In recent decades there is a strong belief anthropogenic climate change exists. Just like 

anywhere in the world, Australia has to face the consequences of ‘global warming’. Specifically 

for Australia the average temperature has risen by 0.9 °C in the last 100 years (CSIRO and 

Bureau of Meteorology, 2014), with the highest increase from 1970 onwards. Whereas annual 

total rainfall has increased nationally, it has decreased in South-eastern Australia though 

(Bureau of Meteorology; Australian Government, n.d.). Furthermore precipitation has become 

extremer globally, but it has decreased in the Eastern part of Australia since 1970 (Bureau of 

Meteorology; Australian Government, n.d.). If this trend of decreasing rainfall totals and peak 

intensities will persist, the flood risk will decrease. Another big threat to Australia is the global 

sea-level rising. Since 1880 the sea levels in the oceans have increased by approximately 225 

mm. The sea-level rise in Eastern Australia is comparable to the global averages (CSIRO and 

Bureau of Meteorology, 2014).  

Predictions for future climate changes are rarer for Australia compared to the high number of 

predictions for the Northern Hemisphere. This is mainly due to a lack of long-term datasets 

and thus trend-detection (Hughes, 2003). The predictions concerning the changes in (extreme) 

rainfall events have a high spatial variance. It is possible that the Eastern part of Australia will 

become drier with decreasing extreme events. In 1993, Whetton, et al. predicted the reduced 

rainfall extremes for Eastern Australia, which until now is the continuous trend (Bureau of 

Meteorology; Australian Government, n.d.). Murphy & Timbal (2008) argue that the trend of 

decreasing rainfall is due to regional climate changes, although these changes are a likely result 

of global climate change. 

Many researches speak of a (or possible) El Niño-like global climate (Trenberth & Hoar, 1997) 

(Meehl & Washington, 1996) (Collins M. , 2005) (Timmermann, Oberhuber, Bacher, Esch, Latif 

, & Roeckner, 1999), expected to have a lower flood risk in Australia (2.1). It must be stated 

though a few of these researches are out-dated as the IPO was detected in 1999 (Power, et al.). 

Parker, et al. (2007) says that a full understanding of climate variability modes is needed to 

increase the accuracy of climate models used to study climate change. Philip (2009) has 

researched many climate models and concludes some are accurate enough to model climate 

change.  
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Contradictory to most studies mentioned before, Milly, et al. (2002) and Hughes (2003) 

conclude an increased flood risk for Eastern Australia due to extremer precipitation events. 

Remarkably CSIRO (2014), in addition to its report (CSIRO and Bureau of Meteorology, 2014), 

claims that natural variability is the main source of extreme rainfall magnitudes, with 

potentially a contribution by global warming. This contradicts to BOM data trends, which 

shows a decreasing trend in extreme rainfall events as mentioned before. CSIRO also states 

further research is needed to understand the effects of global warming on Australian rainfall. 

The influence of the climate change on climate variability is still unclear. Collins, et al. (2010) 

speaks of the inability to assess the effect of climate change on ENSO activity, both in 

magnitude and frequency. On the other hand Philip (2009) says that the ENSO phenomena 

will remain unchanged in a climate with drastic changes in the mean state.   

Unequivocally is the increased flood risk in the coastal areas due to sea-level rise (Department 

of the Environment; Australian Government, n.d.). The sea-level rise in Eastern Australia 

(CSIRO and Bureau of Meteorology, 2014), threatens the highly populated coastal areas with 

flooding.  

2.4 Flood risks 

Flood risk is a term which describes the probability of any flooding event occurring. The 

traditional and easiest concept for flood frequency estimation is the widely used exceedance 

chance method. This method is based on Annual Exceedance Probability (AEP) flooding. The 

percentage chosen for this is often 1%, which means a water height or discharge in a waterway 

or a rainfall quantity per time period which has the probability of occurring only once in every 

100 years.  The estimation of the 1% AEP flood is based on interpolation or extrapolation of a 

series of maximum values of different time periods. In Australia this concept is mainly used for 

quantitate analyses of flood risk.  

When considering flood chances on top of exceedance chances, failure of water defence 

structures is also taken into account. Failure in this case means not only overflowing, but also 

other failure mechanisms such as erosion, piping and slip. The flood chance will obviously 

always be higher in comparison to the exceedance chance.  

Flood risk is the most complex form of (probabilistic) flood risk assessment. It combines 

chances with the effect of the flood. The effect can be considered as only the flooded area, but 

can become more complex by introducing other risk aspects as damage (material/social) or 

exposure (number of inhabitants/buildings) and vulnerability (level of knowledge/strength of 

structures). 

However in principle all methods are based on exceedance chance. An important assumption 

when calculating exceedance chances is a stationary situation over the entire period over 

which the calculation is applied. As stated multi-decadal climate variability exists, influencing 

rainfall patterns and totals. Therefore, for a certain moment in time the exceedance chance 

may differ from the long-term static mean value. This means that with varying periods of IPO 

and ENSO states, the flood risk can be over- or underestimated. Furthermore, possible 

(anthropogenic) climate change is also in contradiction with the assumption of a stationary 

situation.  
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3 Data 
The study area for this research is the Upper Mary River Catchment in southern Queensland, 

Australia. The map of the catchment area is shown in Figure 3-1. Its size is approximately 985 

km2. The downstream end of the 

catchment is at Moy Pocket, where it 

flows into the main Mary River. The 

catchment is located in the coastal 

region of the Sunshine Coast. The 

catchment is characterized by its many 

creeks contributing to the flow of the 

river. The largest of these is the Obi 

Obi Creek, in which upstream a dam is 

situated; the Baroon Pocket dam, 

constructed in 1989. Kenilworth, the 

largest town in the floodplains of the 

river with its population of 300, lies at 

the confluence of the Obi Obi Creek 

and the Bellbird Creek, which is 

another name for the first segment of 

the Mary River.  

Stream heights in the Upper Mary 

River catchment have been recorded 

since 1920 near Kenilworth, with 

gauges at other locations since 1959, all operated by DERM (Department of Environment and 

Resource Management, Queensland). The catchment has the following major stream gauges of 

which the locations are shown in Figure 3-1: 

Table 3-1: Stream gauges in the Upper Mary River catchment 

Location Length of data recording 

Kenilworth 1926-1973 
Obi Obi Creek 1920-1964 
Bellbird Creek 1959-2011 
Moy Pocket 1963-2011 
 

With the finished construction of the Baroon Pocket dam in the Obi Obi Creek in 1989, the 

flood characteristics of the creek and all other downstream flows have changed. These include 

the streams at the locations of the gauges of both Kenilworth and Moy Pocket, making all pre-

dam records for these three gauges inappropriate for a flood frequency analysis. The Bellbird 

Creek gauge thus has the longest appropriate time series of flow data. Because of the close 

distance of the Kenilworth and the Bellbird Creek gauges and the concurrent operation of 

those gauges, the data series of the Bellbird Creek can be extended back to 1926 (Smythe, 

2014). This data extension is shown and explained in Appendix A: Discharge data extension 

Bellbird Creek using Kenilworth gauge data.  

Figure 3-2 shows the bar-plot of all annual peak discharges including the extended series. The 

discharge peaks of 1932, 1939, 1940, 1942-1944 and 1957 are missing as there was found to be 

Figure 3-1: Map of Upper Mary river catchment (Smythe, 2014) 
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insufficient discharge data for the Kenilworth gauge for these years. This leaves a total number 

of 78 suitable discharge peaks. 

 

Figure 3-2: Discharges at Bellbird Creek 

The flood inundation estimation is executed for an area in the Bellbird Creek, before the 

confluence of the Bellbird Creek with the Obi Obi Creek at Kenilworth. This rectangular area is 

marked in Figure 3-1. Figure 3-3 displays an aerial picture of the area. The elevation of the 

terrain around the gauge is available in a digital elevation map (DEM), displayed in Figure 3-4.  

 
Figure 3-3: Aerial picture Bellbird Creek (Google, 2014) 

 
Figure 3-4: Digital elevation model 

 

As can be seen in the two figures the main channel remains approximately the same width 

along this river segment with the stream direction from left to right. Upstream (facing 

downstream) the right floodplain is wider, with a high elevation area directly at the left bank of 

the channel. In the southern turn the right floodplain is narrowed down, whereas the left 

floodplain widens. At the most downstream end of the study area both floodplains widen, with 

presumably limited flow in the cove in the left floodplain.   
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4 Methods 

4.1 Flood frequency analyses 

A main focus of this research is the execution of flood frequency analyses. A distinction is 

made between unconditional and conditional flood frequency analyses. The unconditional 

flood frequency analysis is used as a reference for the remainder of the research. The 

unconditional analysis indicates the type of analysis in which all data is used, independent of 

the phases of the climate variability modes. This means the unconditional flood frequency 

curve is based on all 78 discharge peaks (see Chapter 3 for data). The conditional flood 

frequency is defined as the flood frequency that is valid for a single climate phase, for example 

during an El Niño year. To calculate the conditional flood frequencies the discharge peaks are 

selected which correspond to years of a certain climate variability phase, for example discharge 

peaks which occurred in years that are classified as El Niño are separated. The classification 

methods are described in 4.2. The global structure of the built Matlab-model, used to derive all 

flood frequency curves is described in Appendix C: Flowchart of Matlab-model. 

4.1.1 Estimation of a flood frequency curve 

Two methods exist through which flood frequencies can be estimated; either statistically with 

a record of gauged stream data or by developing a rainfall-runoff model. Normally the 

statistical method is the preferred method since it is the closest related to actual stream flows 

(NOAA Fishery Service, 2011). The basic idea behind the statistical method is that it relates 

annual peak discharges to recurrence interval (or exceedance chances). The result of the 

analysis is a flood frequency curve. For determining the curve many distribution models can be 

used to represent the relationship between the annual peaks and recurrence interval. Which 

model suits best is possibly different for every catchment area.  

To create the frequency curve the first thing to do is to rank all annual peak discharges. The 

exceedance chance or recurrence interval of every ranked value is determined using the 

Weibull-equation (T = n+1/rank). All values can then be plotted.  

At first, four different distribution models are tested for the full data range to find the best 

suiting distribution model for the catchment. Those four models are: Generalized Extreme 

Value (GEV), Gumbel (or Extreme value type 1), Log-Normal and Log-Pearson type III. After 

determining the best fitting model for this estimation only this model is used throughout the 

research. 

The Lognormal, Gumbel and GEV distributions are fitted using the built-in functions of Matlab 

(lognfit and gevfit respectively). The Log Pearson type 3 requires more proceedings. The 

process of fitting this model is described in Appendix B: Log-Pearson type 3 fitting. 

4.1.2 Determining the best fitting model 

The best fitting model is determined by calculating Pearson’s Coefficient of correlation (R2), 

the Root Mean Square Error (RMSE) and the Index of Agreement (D) for each model, with the 

distribution having the highest values being the best fitting model. The ‘Goodness of Fit’-

parameters are calculated as follows (Biondi, et al., 2012):  
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Discharge   = Observed discharge data 

         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   = Mean of observed discharge data 
y   = Model fit discharges 
 ̅   = Mean model fit discharges 
  

4.1.3 Indicators of the presence of a climate variability mode 

The first indicator of climate variability (IPO, PDO and/or ENSO) having an effect on the flood 

frequencies is the separation of the flood frequency curves of the positive and the negative 

phases. The separation is made visible by plotting the two curves.   

The separation of the flood frequency curves can also be expressed numerically by testing the 

independency of the curves through a student’s t-test. This two-sampled test calculates the 

significance of the independency. The t-test is based on the following equation: 

   
 ̅   ̅

√
(   )  

  (   )  
 

     

 

 ̅ &  ̅ = Sample means 
sx & sy  = Sample standard deviations 
n & m  = Sample sizes 
 
The p-value, the probability the means of the samples are equal, of the samples can be 

determined using the t-value and the degrees of freedom (n+m-2). A low p-value indicates 

more significant differences between the samples.  

Another evident indication of a climate variability signal is the strength of the signal, expressed 

by the 100 year flood event (a flood event with a return time of 100 years or an annual 

exceedance probability of 1%) of the negative phase divided by the 100 year flood event of the 

positive phase (e.g. La Niña/El Niño). The 100 year flood events can be derived directly from 

the corresponding flood frequency curves. 

4.2 Identification of climate variability phases 

As mentioned in 4.1 the full discharge data set is divided into sets which correspond to the 

climate phases. To select the peaks that have occurred during a certain climate variability 

phase, the phases must first be identified. The classification method for the IPO is described in 

4.2.1, in 4.2.2 for the PDO and in 4.2.3 for the ENSO.  
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4.2.1 Interdecadal Pacific Oscillation (IPO) 

The following IPO states have been distinguished since 1920 (see Chapter 2.2): 

 IPO positive (1)  1920 – 1944 

 IPO negative   1946 – 1976 

 IPO positive (2) 1978 – 1998  

The current phase of the IPO is a topic of debate. Due to its very low frequency signs of an IPO 

state change will be evident after a long amount of time. The smoothing of Sea Surface 

temperature data, through which the IPO index is derived, is done with time durations of up to 

30 years, making it hard to say what the current state is. It can be stated though that the La 

Niña events of 2010 and 2011 occurred in an IPO negative phase. The first reason is the strong 

negative values of the PDO index derived by Mantua (2014), confirmed by the US National 

Climatic Data Center (NCDC; n.d.). Due to its strong correlation to the IPO (see 2.2), 2010 and 

2011 values can be used for the IPO negative phase. Wenju & Van Rensch (2012) have detected 

three further signs of an IPO state change for the 2011 event: large rainfall anomalies and SOI 

values, a significant ENSO-rainfall relationship and a global circulation state, all unique for or 

similar to previous IPO negative phases. 

For the uncertainty analysis, which is described in 4.3 a longer record of IPO phases is 

required. To classify IPO phases prior to 1920 the IPO reconstruction of Verdon & Franks 

(2006) is used. They have bundled several IPO reconstructions into one composite IPO index. 

This composite index shows clear phase switches over the past 400 years.  

4.2.2 Pacific Decadal Oscillation (PDO) 

To determine the phases of the PDO the monthly data series of Mantua (2014) is used. As 

becomes evident from this data, the phases of the PDO are less distinct than the IPO’s, as the 

variation in the values is not filtered by smoothing the raw data. For this reason a neutral 

phase is added besides the positive and negative phases.  

The yearly value of the PDO index is determined by a 12 month running average. It has been 

chosen to use the hydrological year, similar to the hydrological year for which the discharge 

peaks have been derived (see Chapter 3), running from October to September. Any year for 

which the 12 month average value of the PDO index exceeds the threshold of 0.5 standard 

deviation is classified as a PDO positive year and an average below 0.5 standard deviation as a 

PDO negative year. Any year for which the average lies between 0.5 and -0.5 standard 

deviation is considered a neutral year.  

4.2.3 El Niño – Southern Oscillation (ENSO) 

Many methods exist by which ENSO events can be identified. As stated before (2.1), multiple 

indices exist that describe the strength of an ENSO event. Kiem & Franks (2001) state that the 

MEI is the most robust index out of the three types (SOI and SST-based are the other indices). 

They state this holds for other catchments in Eastern Australia, although local variability may 

exist. For this research a quick analysis is done using different methods and indices. The 

following indices are tested: 

1. Multivariate ENSO index (MEI) (Wolter K. , 2011) 
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2. NINO 3.4 index, Hadley Centre Sea Ice and Sea Surface Temperature (2014) for raw   

data & US NCAR’s Climate Analysis Section (2008) for normalized data 

3. Southern Oscillation Index (SOI) (Australia's BOM Climate Analysis Section, 2014) 

The following methods are tested for every index: 

 Three month average, November - January 

 Six month average, October - March 

 Twelve month average, April – March 

El Niño (La Niña) events are defined as any year in which the average index value is above 0.5 

(below -0.5) for the MEI and NINO 3.4 and below -5 (above 5) for the SOI (Kiem & Franks, 

2001). A condition for this is a normalized table of values (with average 0 and standard 

deviation 1 (10 for SOI). In any other case El Niño is defined by the average anomaly exceeding 

0.5 standard deviation.  

The ENSO reconstruction is obtained via Mann (Mann, Bradley, & Hughes, 2000). This 

reconstruction is used for the uncertainty analysis (see 4.3). Mann has reconstructed the ENSO 

activity back to 1649. The thresholds to define the positive (El Niño), neutral and negative (La 

Niña) events are similar to the ones used in this research: 0.5 and -0.5 standard deviation.  

4.3 Analysis of the uncertainty due to climate variability 

The general method is to estimate the 100 year flood and its uncertainty as a function of 

different data lengths. The leading methodology is Franks (2014).  From the ENSO and IPO 

reconstructions (see 4.2.1 and 4.2.3) a random time period is chosen starting with a length of 20 

years. Using the associated flood frequency curve for a specific state of the climate variability 

mode (e.g. the El Niño flood frequency curve) a random flood event can be generated per year. 

If done for the entire time period of 20 years a flood distribution is created. This distribution is 

fitted to a Log-Pearson type 3 distribution. Using that fit the 100 year flood event can be 

calculated. Repeating these calculations in a Monte Carlo simulation a series of 100 year flood 

events is created. The variety in this series represents the uncertainty of the 100 year flood 

estimation. The 95% confidence interval is constructed by a basic bootstrap method of creating 

the lines in which the sorted values from 2.5% to 97.5% lie in between.  

Subsequently, a longer data length can be used, from which another distribution of 100 year 

flood events is obtained. By performing similar simulations for multiple data lengths the 

uncertainty in 100 year flood estimations can be assessed by comparing the 95% confidence 

intervals of the distributions.  

This method is summarized in Figure 4-1, when only taking into account the uncertainties of 

ENSO events. For IPO the same method holds, but the neutral events are left out.  
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Figure 4-1: Flowchart of uncertainty estimation 

4.4 Flood inundation modelling 

To estimate the extents of flood inundation a flood plain mapping analysis is executed using 

HEC-RAS. HEC-RAS is a one-dimension modelling software package, with a few possibilities to 

extend to a basic two-dimensional analysis. When modelling in one dimension, one is only 

considering the direction of the stream. This implies a uniform stream velocity pattern along 

the cross-section of the flow, which in reality could never exist. Especially when (wide) flood 

plains are involved a one-dimensional model can be in great error.  

The main input for HEC-RAS is the geography of the area. The geography of the Upper Mary 

River is available in an ArcGIS-compatible GRID-format. To import the geography to HEC-RAS 

the geographic data must be transformed into river geometry using an ArcGIS-extension called 

HEC-GeoRAS. The description of how the river bathymetry was created can be found in 

Appendix D: Description of ArcGIS-model. 

After importing the bathymetry in HEC-RAS the Manning’s n coefficient for roughness must 

be assigned for the flood plains and the channel. It is assumed that the coefficient is constant 

for every cross-section. Assuming this simplifies the model, but introduces a source of error. 

The first estimation of the n coefficient is made using the aerial photo of the terrain, previously 

shown in Figure 3-3.  Using the Manning’s n table (Arcement Jr. & Schneider, 1984), the 
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following values have been chosen for the n coefficient: 0.04 for the river channel, indicating a 

clean but uneven terrain and 0.06 and 0.1 for the left and right bank indicating light and dense 

vegetation respectively.  

Next, the steady flow details must be defined through boundary conditions. Steady flow 

analysis was chose over unsteady flow analysis because the only available data is static 

discharges. The initial conditions of the steady flow analysis are the discharge values 

corresponding to the 1 in 100 year conditional flood magnitudes. Secondly the external 

boundary condition is set as a normal depth value, for which the water slope is a good 

estimation (Brunner & Gee, 2005). The boundary condition is initially set to 0.001 normal 

depth at the downstream cross-section. (Merwade, 2012).  

HEC-RAS simulates the water height in a steady flow analysis using the geographical data and 

the steady flow conditions. It is assumed the entire flow occurs in a subcritical flow regime. 

Subsequently the model must be calibrated using rating curves (Discharge – water height 

relationship), which is available through BOM (Bureau of Meteorology, Australia) and DERM 

(Department of Environment and Resource Management, Queensland) data (Smythe, 2014). 

The model is calibrated using the previously defined normal depth boundary condition.  

4.5 Climate Change 

It has become apparent from the literature study that no consensus exists on what the effects 

of climate change are on the frequency and magnitude of heavy rainfall events (2.3). Therefore 

no precise quantitate predictions can be made for the flood frequency and inundation events 

in the Upper Mary River catchment. The variety of future changes according to multiple 

researches can be tested though, expected to show a range of possible effects on the catchment 

area. Below the researches are listed of which the predictions are tested. These researches were 

chosen as they had a quantitative future prediction.  

-  The Queensland government proposed to incorporate a 5 per cent increase of extreme 

rainfall intensity per degree of global warming. Considering the projected 2°C increase by 

2050 a total increase of 10 per cent in intensity is realistic. (State of Queensland, 2010). For 

the purpose of this research a similar increase in extreme flood discharges is assumed, 

which itself is a false assumption but it can show a possible degree of increased flood risk.  

- Walsh, et al. (2001) modelled extreme rainfall events on the basis of the IPCC’s 

(Intergovernmental Panel on Climate Change) Third Assessment Report (Climate Change, 

2001). More recent interpretations of IPCC’s reports are not available. Walsh, et al. has 

scaled the global IPCC report down to South-East Queensland, reducing the uncertainty of 

the conclusions drawn from the global report. They predicted a decrease of the 40 year 

return time daily extreme rainfall event to an 18 year return time event by 2050. Assumed is 

a strong correlation between daily extreme rainfall return times and flood event return 

times. 

- Milly, Wetherald , Dunne, & Delworth (2002) modelled a decrease of the return time of the 

100 year flood magnitude to a 30 to 40 year flood event by 2050 for a large catchment area 

in Eastern Australia (Northern New South Wales and Southern Queensland). Although 

dated this is the only of the selected research that expresses the climate change directly in 

terms of flood events.  
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5 Results 

5.1 Flood frequency analyses 

5.1.1 Best fitting distribution model 

Four probability distribution models are fitted to all (unconditional) discharge data: 

Generalized Extreme Value (GEV), Gumbel, Lognormal and Log-Pearson type 3 (LP3) (see 

4.1.1). The model fits are shown in Figure 5-1.  

 

Figure 5-1: Distribution model fits 

Both the Gumbel (Extreme value type 1) and the Log-Pearson type 3 distribution models have 

good graphical fits. This also becomes apparent from the ‘goodness of fit’-parameters Pearson’s 

Coefficient of Determination, Root Mean Square Error and the Index of Agreement (see 4.1.2). 

The values of these parameters are shown in Table 5-1. 

Table 5-1: Goodness of fit parameters 

 Coefficient of 
Determination R2 

Root mean square error 
(RMSE) 

Index of 
agreement (D) 

Lognormal 0.847 1088 0.797 
LP3 0.983 109.1 0.995 
GEV 0.953 225.6 0.981 
Gumbel (EV1) 0.967 135.0 0.991 
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According to U.S. Water Advisory Committee on Water Data (1982) Log-Pearson type 3 is the 

recommended flood frequency analysis method and considering the LP3 having the best fit for 

this data set, this distribution model is used for the flood frequency analyses.  

5.1.2 Unconditional flood frequency analysis 

Figure 5-2 shows the LP3 fit including its 95% confidence interval. The corresponding values 

can be found in Table 5-2.  

 

Figure 5-2: Log-Pearson type 3 fit and 95% confidence interval 

Table 5-2: Flood frequency table 

Return time 
[years] 

Expected 
discharge [m3/s] 

Lower 95% confidence 
limit [m3/s] 

Upper 95% confidence 
limit [m3/s] 

2 546 391 764 
5 1405 1143 1727 
10 2008 1560 2583 
20 2536 1713 3755 
50 3112 1718 5637 
100 3459 1659 7215 

 
The uncertainty in the modelled flood frequency curve is relatively small for return times up to 

ten years. For higher return times the uncertainty grows rapidly due to a lower amount of data 

points in this range. Despite of the high uncertainty, the fitted model seems valid as there are 

no major outliers which affect the model fit. The expected 100 year flood event of 3459 m3/s 

can therefore be used as a reference to the conditional flood events of the climate variability 

modes. For every conclusion from this flood frequency curve the uncertainty and the 

assumption the model fit is correct must be kept in mind though.   



   

Bachelor thesis - Matthijs Gensen  29-08-2014 
17 

5.1.3 Conditional flood frequency analyses 

The following subparagraphs provide the results of the conditional flood frequency analyses. 

Subparagraph 5.1.3.1 shows the IPO flood frequencies, 5.1.3.2 the PDO flood frequencies and 

5.1.3.3 shows the ENSO flood frequencies. Finally 0 provides an overview of the 100 year floods 

under the different climate variability modes and states.  

The years and their identified climate states according to the classification methods (4.2) for 

all climate variability modes can be found in Appendix E: List of years and corresponding 

climate states. The plots of the observed discharge data for the classified years are displayed in 

Appendix F: Stratified observed discharge data according to identified climate states. Finally 

Appendix G (Tabulated values of unconditional and conditional flood frequency curves) provides 

the values corresponding to the fitted flood frequency curves and their 95% confidence 

intervals.  

5.1.3.1 IPO flood frequencies 

The full discharge data set, consisting of 78 discharge peaks (see 3 and 4.1.1), is divided into two 

sets of peaks that have occurred in positive or negative IPO years. The classification of the IPO 

years is described in 4.2.1 and the IPO positive and negative years have been listed in Appendix 

D. The divided peaks are plotted using the Weibull method (see 4.1.1). These plotted sets can 

be seen in Appendix F and are also visible in Figure 5-3 (observed data). Figure 5-3 also displays 

the fitted conditional flood frequency curves for the positive and the negative state of the IPO 

and its 95% confidence intervals. The values corresponding to the plotted lines are tabulated in 

Appendix G: Tabulated values of unconditional and conditional flood frequency curves, along 

with the values of the unconditional flood frequency curve (5.1.2)  

 

Figure 5-3: IPO positive and negative model fits 

Whereas it can be expected the negative IPO phase yielding a higher or equal flood frequency 

curve (2.2), a higher positive IPO phase flood event (for a return time of 100 years) is 
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unexpected. Furthermore the 100 year flood for the IPO negative phase is lower than the 

unconditional 100 year flood event and the IPO positive phase’s is higher than the 

unconditional 100 year event. A reversed effect was expected as the negative IPO state is 

associated with heavier rainfall events and an increased number of La Niña events as stated in 

2.2.  

For a return time up to ten years the results seem more logical, with the negative IPO phase 

returning a higher flood event at the same return time compared to the positive IPO phase. 

Also the 95% confidence interval bounds are higher for the negative IPO phase, also indicating 

a higher chance of a flood event with a higher discharge occurring in an IPO negative phase 

opposed to the positive phase. For flood events with a return time of over eight years the 

uncertainty bounds of the negative IPO phase widens stronger than the positive IPO’s. This 

strong widening of the uncertainty bounds indicates a higher variance in the observed extreme 

flood events, whereby the estimation of the flood frequency curve becomes more uncertain. 

The expected 100 year flood event in IPO negative phases is therefore highly uncertain.  

Furthermore the positive IPO phase fit suffers from two high outliers as can be seen in Figure 

5-3. There is no reason to rule these two out on the lack of independency, since they occurred 

in 1989 and 1998; the assumption of independency being required for a flood frequency (2.4). 

The 1998 peak though is the last year of the positive IPO phase (2.2), which inclines that this 

peak may have occurred in a changing climate. Ruling out this single peak changes the 

resulting 100 year floods, but does not result in a reversed IPO strength (negative being higher 

than positive, see 4.1.3), with 100 year floods of 3585.5 and 2674.6 m3/s for the positive and the 

negative phase respectively. The plots of the flood frequency curves in which the peak was 

ruled out can be seen in Appendix H (IPO flood frequency curves without 1998 peak).  

A further proof of the weak IPO signal is the P-value of the data (4.1.3), being 0.475, suggesting 

a reasonable chance the means of the data sets are equal. Because the P-value is independent 

of the model fit, this indicates a weak IPO signal in the data itself. If the 1998 peak is removed 

from the data the P-value decreases to 0.27, but it still does not show a strong IPO signal.  

5.1.3.2 PDO flood frequencies 

Just like for the IPO, the data has been split into the negative and positive phases, but this time 

adding a neutral phase (4.2.2). Figure 5-4 on the next page displays the fitted Log-Pearson 3 

distributions for the positive and the negative state.  

Whereas the IPO does not have a clear signal, the PDO does as becomes apparent from the 

indicators (4.1.3). Firstly a clear graphical distinction can be seen in Figure 5-4 between the two 

model fits and its confidence intervals. Secondly the 100 year flood events for the positive and 

negative state are 3010.6 and 5008.9 m3/s respectively, which results in a PDO strength of 1.66 

for a 100 year flood (negative divided by positive PDO). The p-value of 0.0068 gives further 

evidence of the distinct results of the two phases. These results are noteworthy, considering 

the weak IPO signal concluded in the previous paragraph. Whereas the IPO and the PDO 

normally have a strong correlation (see Chapter 2.2), this correlation is not evident for the 

Upper Mary river catchment area. Furthermore it could be expected the PDO would have the 

weaker signal in oppose to the IPO, as the PDO strength weakens further south (again see 

Chapter 2.2).  
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Figure 5-4: PDO positive and negative model fits and confidence intervals 

5.1.3.3 ENSO flood frequencies 

As explained in 4.2.3 many methods and indices exist by which ENSO events can be identified. 

Through these methods and indices nine different lists of ENSO events (three methods 

combined with three indices) have been identified. An analysis of these events has led to the 

values in Table 5-3. The observed discharge data corresponding to the distinguished ENSO 

years for the three indices (with a six month average) can be found in Appendix F: Stratified 

observed discharge data according to identified climate states.  

Table 5-3: ENSO index and method analysis 

 NINO 3.4 MEI SOI 

X month average: 3 6 12 3 6 12 3 6 12 

El Niño 100y flood  3278.2 3938.1 3358.9 3165.8 3439.5 4438.2 3576.6 4518.6 3197.9 

La Niña 100y flood 4612.8 4811.9 4775.5 5101.8 5179.2 4322.5 3779.9 3813.2 5029 

ENSO strength  
(La Niña/El Niño) 

1.41 1.22 1.42 1.61 1.51 0.97 1.06 0.84 1.57 

P – value 0.0015 0.0009 0.0021 0.0023 0.0018 0.0038 0.0027 0.0018 0.0021 

 
The table shows the NINO3.4 index wields the lowest p-values, marking a more significant 

difference in means of the El Niño and La Niña phases’ discharges. Whereas using the MEI lead 

to the lowest p-values in Kiem’s and Franks’ research on the identification of ENSO states 

(2001), the MEI results in slightly higher p-values for the Upper Mary River catchment area. 

This indicates the MEI indeed is not always the better identification index as stated by Kiem 

and Franks. Contradictory, using the MEI wields a higher ENSO strength (100 year event of La 

Niña divided by El Niño’s 100 year event) for the method of a three or six month running 

average. In this research the focus lies on extreme flood events and for that reason the MEI is 
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chosen to be the identification index as the ENSO strength is the highest. As the six month 

running average wields the lowest p-value and a reasonably high ENSO strength, this method 

is most preferred to define ENSO events.   

By fitting the (positive) El Niño and (negative) La Niña to a Log-Pearson type 3 distribution 

Figure 5-5 is created. 

 

Figure 5-5: ENSO positive (El Niño) and negative (La Niña) model fits 

It can be seen that El Niño events do not change the flood frequencies of this catchment 

significantly, confirming the low correlation between South East Queensland rainfall and El 

Niño events found by Wenju and Van Rensch (2012; see 2.1). But because of the higher flood 

frequencies associated with La Niña events a signal is visible in the fitted data. The 100 year 

flood events for the El Niño and La Niña events are 3439.5 and 5179.2 m3/s respectively, 

wielding an ENSO strength of 1.51. This, along with the low p-value of 0.0018, gives evidence of 

the Upper Mary River catchment being sensible to both short-term variability from ENSO 

(three to seven years) and longer term variability (PDO). As can be seen in Appendix D, many 

years of the data set do not have similar PDO and ENSO states at the same time, suggesting an 

independency of the results for the two phases, giving further prove of the strong signals as the 

divided observed data (into the positive and negative phases) for the two climate variability 

states are different.  

  



   

Bachelor thesis - Matthijs Gensen  29-08-2014 
21 

5.1.3.4 Overview conditional flood magnitudes 

Table 5-4 gives an overview of the different flood magnitudes corresponding to the 1% Annual 

Exceedance Probability (100 year flood). Tabulated values for events with other return times 

can be found in Appendix G: Tabulated values of unconditional and conditional flood frequency 

curves. The values of the upper and lower confidence limits are also tabulated in this appendix. 

Table 5-4: Overview 100 year floods 

 100 year flood 
[m3/s] 

Percentage of deviation  compared to  
unconditional flood frequencies 

Unconditional 3459.3  
IPO positive 4068.0 +17.6 % 
IPO negative 2674.6 - 22.7 % 
PDO positive 3010.6 - 13.0 % 
PDO negative 5008.9 +44.8 % 
ENSO positive (El Niño) 3439.5 -0.6 % 
ENSO negative (La Niña) 5179.2 +49.7 % 
 

5.1.4 Flood frequencies for combinations of PDO and IPO with ENSO 

One possible characteristic of the IPO and the PDO is changing the frequency of ENSO events 

(2.2). In Table 5-5 the frequencies of occurrences of combined events are given. The years in 

which these combined events have occurred can be found in Appendix E: List of years and 

corresponding climate states. 

Table 5-5: Frequencies of combined climate variability modes 

 Positive IPO Negative IPO Positive PDO Neutral PDO Negative PDO 

El Niño  12 9 13 10 2 
Neutral 17 10 9 16 5 
La Niña 5 14 2 6 15 

Total 34 33 24 32 22 
 

As becomes evident from the table the negative IPO state increases the frequency of La Niña 

events and decreases the number of El Niño and neutral events, proven to be one of the 

characteristics of the IPO (see 2.2 for references). Judging from the frequencies only it could be 

expected that the negative IPO phase strongly increases the flood risk as the number of La 

Niña events increases, but this did not become evident in the IPO conditional flood frequency 

analysis (Paragraph 5.1.3.1).  

The phase of the PDO also has a correlation with the ENSO events. As can be seen in Table 5-5 

the combined events with the same state (PDO+/El Niño, ENSO and PDO neutral and PDO-

/La Niña) have the highest frequencies.  

Another characteristic of the IPO and PDO is increasing the ENSO strength during the 

negative phases (2.2). To analyse this feature for the Upper Mary River the following division is 

made:  

- La Niña years in a negative IPO phase 

- La Niña years in a positive or unknown IPO phase (1999-2009) 
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Only La Niña is considered to be relevant, as El Niño does not have a big influence on flood 

frequencies (see 5.1.3.3). Figure 5-6 shows the fitted distributions for the discharges that have 

been divided into the categories. Subsequently Figure 5-7 shows the fitted models for the same 

categories but with the PDO instead of the IPO. 

 

Figure 5-6: Combined IPO and ENSO flood frequencies 

 

Figure 5-7: Combined PDO and ENSO flood frequencies 
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Both the combinations of IPO and the PDO states with La Niña events (Figure 5-6 and Figure 

5-7) show a certain degree of separation. Typically La Niña events occurring in negative IPO or 

PDO phases have an increased flood frequency. It can be seen that the IPO compared to the 

PDO has a stronger effect on La Niña flood frequencies, although this is not expressed through 

the 100 year floods which are almost equal. The 100 year floods are not representative though, 

since there are few data points to correctly model the flood frequency curve for higher return 

times.  

The p-values provide a numerical significance for the separations of the flood frequency 

curves. The p-value of the division on the base of the IPO phases is 0.013 and 0.299 for the 

PDO. This gives significant proof for the increased La Niña impact on discharge peaks during a 

negative IPO phase.  

Concluding from Table 5-5 it can be said that the PDO and the IPO both change the 

frequencies of the ENSO events and via Figure 5-6  it becomes evident the negative IPO phase 

increases the flood magnitudes of La Niña events.  

5.2 Uncertainty in flood frequency estimates 
To assess the uncertainty due to climate variability this uncertainty was executed. The 

methods are explained in Chapter 4.3. Figure 5-8 displays the results of this uncertainty 

analysis: the average 100 year flood event and its 95 and 80 % confidence intervals for data 

lengths in the range of 20 to 200 years. The considered variable climate state is the ENSO since 

it has a stronger signal in the Upper Mary River catchment compared to the IPO (see results in 

5.1.3). The used ENSO reconstruction is described in 4.2.3.  

 

Figure 5-8: Uncertainty in 100 year flood event under ENSO climate variability 
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As can be seen the confidence intervals are particularly wide at short time lengths. At a data 

length of only 30 years there is a 5% chance of the true value being either below 2.0 *103 or 

above 8.9 *103 m3/s. An increased data length does decrease the bandwidth of the confidence 

limits as can be expected. But even at a data length of 200 years the remaining uncertainty 

remains large, having a 5% chance of the true value being below 2.7 *103 or above 5.3 *103 m3/s. 

5.3 Flood inundation model  

A HEC-RAS model is built to estimate the flood inundation area under the different climate 

states. The general method is explained in Chapter 4.4. The model calibration is described in 

Appendix I: HEC-RAS model calibration. It must be stated that uncertainty exists due to the 

variety of available rating curves (discharge – height relation) as also explained in Appendix I. 

Conclusions drawn from this analysis are prone to this uncertainty.  

Figure 5-9 (El Niño and La Niña inundations at upstream boundary cross-section), Figure 5-10 

(Flood inundation map 100 year La Niña and El Niño flood) and Table 5-6 (Flood inundation 

areas for all conditional 100 year flood events and inundation depths for channel at upstream 

boundary cross-section) present the main results gained from the steady flow analysis using the 

calibrated HEC-RAS model. Cross-section plots and 3-D plots for other events can be found in 

Appendix J: Plots of flood inundation model outcomes. 

Table 5-6: 1% AEP flood inundation extent 

100 year Flood event Discharge 
[m3/s] 

Area of 
inundation [*103 
m2] 

Water 
depth  [m] 

Unconditional 3459.3 849 11.9 
El Niño 3439.5 849 11.9 
La Niña 5179.2 940 13.9 

PDO positive 3010.6 824 11.2 
PDO negative 5008.9 940 13.7 
Long term flood risk lower 95% 
confidence limit 

2700 776 10.7 

Long term flood risk upper 
95% confidence limit 

5300 940 14.0 

 

 
Figure 5-9: El Niño and La Niña inundations at upstream boundary cross-section 
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Figure 5-10: Flood inundation map 100 year La Niña and El Niño flood 

As becomes evident from Table 5-6 and Figure 5-10 the flood inundation area does not show a 

high variance under the different climate scenarios (variability modes). The main reason is the 

terrain of the study area. Both floodplains are delimited by high elevation areas which are 

preceded by steep slopes (see Figure 3-4 in Chapter 3 for elevation map), whereby the area 

does not increase significantly once the inundation has exceeded the main channel. However 

the inundation depths do reflect the effects of increased discharge under different climate 

scenarios. For the El Niño and La Niña events the difference in flood inundation depth is 2.0 

meter as can be seen in the cross-section plot in Figure 5-9. Considering the El Niño and La 

Niña flood areas both exceed the main channel, the floodplains are also greatly affected.  

5.4 Spatial variance of climate variability effects on flood frequencies 
The spatial variance in conditional flood frequencies is tested using flow data from several 

catchment areas in the Eastern Australia. The New South Wales Government’s website 

WaterInfo provides flow data for nearly every catchment area in New South Wales. A variety of 

data series from different catchment area types are tested.  Table 5-7 gives the characteristics 

of the tested catchment areas for which the locations can be seen in Figure 5-11.  

Table 5-7: Catchment characteristics 

River name Gauge Catchment area [km2] Data range 

Clarence River Nymboida 1660 1909-2012 
Macintyre River Mungindi 44070 1891-2013 
Richmond River Casino 1790 1943-2013 
Namoi River Gunnedah 17100 1891-2013 
Bellinger River Thora 433 1955-2013 
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Table 5-8  and Table 5-9 present the results for the catchment areas in New South Wales for 

100 year flood events. The climate variability signals are identified by using the climate 

variability strength (see 4.1.3). 

Table 5-8: New South Wales climate variability strengths for 100 year floods 

Catchment Area Unconditional 100 year 
flood  

IPO 
strength 

PDO 
strength 

ENSO 
strength  

Upper Mary River 3459 m3/s 0.66 1.66 1.51 
Clarence River 5809 m3/s 2.55 2.08 1.74 
Bellinger River 1845 m3/s 1.38 1.20 1.91 
Richmond River 2293 m3/s 1.46 1.34 1.11 
Namoi River 5781 m3/s 3.29 4.12 3.44 
Macintyre River 1171 m3/s 2.47 2.08 1.21 
 

Table 5-9: New South Wales combined climate variability strengths for 100 year floods 

Catchment Area Combination IPO/ENSO 
strength 

Combination PDO/ENSO 
strength 

Upper Mary River 0.93 1.11 
Clarence River 4.36 4.47 
Bellinger River 1.67 Insufficient data 
Richmond River 0.92 0.86 
Namoi River 6.85 8.40 
Macintyre River 2.61 2.11 

 
Apparent from Table 5-8 and Table 5-9 is a high spatial variance in climate variability 

strengths. The Clarence River, Bellinger River and Richmond River for example are all coastal 

catchment areas in north eastern New South Wales, but still have a certain degree of variance 

amongst them. Furthermore, using the values in the tables it can be concluded that the PDO 

Figure 5-11: Map gauges New South Wales 
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and the IPO have a reasonable similarity in strengths amongst the New South Wales 

catchment; catchments with a weak IPO signal also show a weak PDO signal and reversed. 

Both in terms of the single climate variability modes as the combination between IPO/PDO 

and ENSO, the catchments wield very comparable strengths. This contradicts to the Upper 

Mary River catchment in which the IPO and the PDO did not agree in values.  

For the Clarence River Catchment area, the results are presented and discussed in more detail 

in Appendix K: Data analysis for Clarence River Catchment. The most important findings for 

this catchment area are: 

- A strong IPO signal is identified as the 95% confidence bounds of the flood frequency 

curves of the positive and the negative IPO phases barely overlap showing a significant 

difference between the flood frequencies in the two phases. Further proof of the strong 

signal is a very low p-value (0.000). 

- The effects of the PDO and the IPO show a high degree of coherence as the flood 

frequency curves of the two climate variability modes are rather similar. This coherence is 

expected (2.2), but contradicts to the outcomes of the Upper Mary River as this catchment 

had a weak IPO signal and a strong PDO signal.  

- The long-term uncertainty due to IPO variability is shown to be very large as the 95% 

confidence bounds are +50% and -50% of the average 100 year flood event.  

5.5 Influence climate change 

The following future climate scenarios for the climate change effects by 2050 (see 4.5 for 

descriptions) are assessed in the context of the flood frequency analyses (Chapter 5.1): 

1. The return time of the 100 year flood event magnitude is reduced to 30-40 years (Milly, 

Wetherald , Dunne, & Delworth, 2002) 

2. A 10 per cent increase of the 100 year flood event (State of Queensland, 2010) 

3. The return time of the 40 year flood event magnitude is reduced to 18 years (Walsh, et 

al., 2001) 

The flood frequencies are based on the deviation from the unconditional flood frequency 

curves. For scenario 1 and 3 the unconditional flood frequency curve is multiplied by the factor 

corresponding to the change in return times. Figure 5-12 shows the flood frequencies for these 

climate scenarios along with the unconditional flood frequency curve and its confidence 

intervals (5.1.2) and the conditional La Niña flood frequency curve (5.1.3.3).  
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Figure 5-12: Climate change impacts 

Judging Figure 5-12 it becomes evident that the climate change effects seem limited in this 

catchment area. The three scenarios, which are not necessarily representative as it is a 

selection from a variety of researches which all have different (non-quantitate) predictions, all 

remain within the 95% confidence bounds of the unconditional model fit, meaning that no 

significant change (5% significance level) can be proven. Furthermore the flood frequencies 

under climate change do not exceed the conditional flood frequencies of La Niña events. This 

would mean that during coming La Niña events the flood risk is higher than in non-La Niña 

years around 2050. It must be stated though that the uncertainty remains very large, especially 

because only three quantitative scenarios could be derived (see 2.3 and 4.5). At last it must be 

stated that using only these results it cannot be proven that climate change does not have a 

large influence on the flood risks. As this catchment is fairly small the effects are always less 

evident compared to larger catchments. Therefore to be able to draw a more certain 

conclusion a larger catchment must also be researched.  
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6 Discussion and conclusions 
In addition to numerous previous studies, this study has again shown the existence and the 

effect of climate variability, both decadal and multi-decadal.  

Firstly an unconditional flood frequency analysis was performed to set the reference situation 

for further flood analyses. This unconditional flood frequency analysis showed why the Log-

Pearson type 3 distribution was the preferred model distribution for this research. Being the 

best fitting model on visual inspection and model fit parameters, it was chosen to be the 

leading model distribution throughout the rest of the research. This decision was supported by 

other data sets also having a good (graphical) fit, judging the results in Chapter 5.1 and 

Appendix I. Throughout the research the Log-Pearson type 3 distribution was also a steady 

performing model distribution. However the sensibility to both low and high outliers can 

become troublesome. An example of this is the model fit for the conditional IPO states. Nearly 

all values for the ranked negative IPO discharges are higher than the corresponding ranked 

positive IPO discharges, but due to two high outliers and an increasing trend in low discharge 

values in the positive series the positive IPO phase ends up with a higher 100 year flood event. 

This limitation must be kept in mind in for any conclusions drawn from this research. 

Furthermore it must be said that the uncertainty bounds of the model fits become particularly 

wide for high return times if there is a limited number of data points (applies to all conditional 

flood frequency analyses).  

As stated just before the conditional IPO model fits did not seem to represent the true 

situation in the Upper Mary River catchment. The raw observed data (to be seen in 5.1.3.1 and 

Appendix F) suggest, as expected (2.2) the negative phase having a slightly higher flood 

frequency.  The weak IPO signal for the south east Queensland Upper Mary River catchment is 

still remarkable since it lies in an area with catchments having the strongest IPO signals of the 

eastern Australian coast (Micevski, Franks, & Kuczera, 2006).  

The analyses of the catchments in New South Wales (in 5.4) shed a light on the differences in 

climate variability signals. Whereas the Upper Mary River catchment had a very weak IPO 

signal some of the NSW catchments had a very strong signal. This shows the high spatial 

variance of the IPO as was also concluded in previous researches (Kuczera & Franks, 2002) 

(Micevski, Franks, & Kuczera, 2006). Therefore for any flood analysis in Eastern Australia the 

presence IPO signal must be determined. This is particularly important for any catchment with 

a limited discharge data length, because the uncertainty for short length data sets is shown to 

be very large if the catchment is affected by climate variability (see 5.2 and 5.4). But also if a 

200-year data set is available the uncertainty remains large. In the Upper Mary River this 

uncertainty was expressed in a water level difference of 2.0 meters. For more populated areas 

in Queensland and New South Wales uncertainties in flood risk estimation are potentially 

catastrophic as flood risks can be drastically underestimated. For future flood risk analyses this 

uncertainty should therefore be assessed as the analyses can be in great error.  

On top of the uncertainty of current climate variability is the uncertainty due to future climate 

changes. For Eastern Australia the effects of climate change on flood risks are unclear (2.3). 

Whereas past trends of 1970 onwards showed a decreasing frequency and magnitude of 

extreme events, many researchers predict higher flood risks across Eastern Australia. Due to 
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the low number of quantitative predictions the possible changes to the mean state of the 

climate could only be partially evaluated for the Upper Mary River catchment. The few 

scenarios that were evaluated did not show significant changes to the average flood 

frequencies. To assess if climate change will have an effect on the average flood frequencies 

further research is required, whereby more recent climate change scenarios should be applied.  

In the light of the high uncertainty in flood frequency analyses due to climate variability, 

future researches need to assess the contribution of climate change to this uncertainty. As the 

El Niño Southern Oscillation has a major effect on the flood risk in Eastern Australia possible 

future changes in the frequency and magnitude of El Niño and La Niña events have a strong 

effect on the flood risks. The changes in global climate can potentially alter the climate 

mechanisms which cause climate oscillations. The effect of climate change on the frequency 

and magnitude of climate variability modes is an ongoing topic of research and the outcomes 

of these researches are of great importance to predict future flood risks.  
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Appendix A. Discharge data extension Bellbird Creek using 

Kenilworth gauge data 
As mentioned in the main document the data series of the Bellbird Creek can be extended 

back to 1926. To extend the discharge data set of the Bellbird creek the data of the Kenilworth 

gauge is used. The two gauges have operated concurrently from 1959 until 1973. The peaks of 

1961 are not included as there was no continuous discharge data set available for this year at 

the Kenilworth gauge. The yearly discharge peaks that have occurred at the two gauges in this 

period are given in Table A-1. These peaks have been derived under the assumption of a 

hydrological year from October-September. 

Table A-1: Peak (log-) discharges Bellbird Creek and Kenilworth 

Year Peak discharge Bellbird Creek [m3/s] Peak discharge Kenilworth [m3/s] 

1959 1211.6 1162.7 
1960 86.7 101.4 
1961 97.2 No data 
1962 72.3 144.8 
1963 1889.4 1343.1 
1964 417.7 821.1 
1965 504.9 692.8 
1966 119.0 23.4 
1967 1081.5 1089.8 
1968 2142.7 1563.2 
1969 40.7 64.5 
1970 222.1 566.5 
1971 1262.4 1078.3 
1972 1624.8 1672.1 
1973 1817.9 1546.7 

 
 The discharge peaks and the fitted log-log relationship (bases 10) are shown in Figure A-1. 

 

Figure A-1: Log-Log relationship for Bellbird Creek and Kenilworth including outlier 
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As becomes evident from the plot and the tabulated values one outlier exists, 1966’s peaks do 

not match. The outlier has been marked red in the plot and the table. As the gauge in 

Kenilworth is downstream of the gauge in the Bellbird Creek and after the confluence of the 

Bellbird Creek with the Obi Obi Creek (see Figure 3-1), it is highly unlikely the discharge can 

be significantly lower at Kenilworth. Reasons for the observed differences can be: 

 Extraction of water 

 High deviations in the rating curve for very low discharges (23.4 m3/s at Kenilworth) 

 Absence of a continuous measurement at the time of the Bellbird Creek peak in 1966 

For the reasons of unlikelihood and the 1966 peak being an extreme dry event for the 

Kenilworth gauge, 1966 is considered as an outlying event and ruled out of the relation. The 

removal of this data point leads to the relation as displayed in Figure A-2. The Coefficient of 

correlation (R2) is improved, having a value of 0.808 before the removal which increases to 

0.938 after the removal.  

 

Figure A-2: Log-Relationship Kenilworth-Bellbird Creek 

Figure A-2 proves a strong correlation between the discharges in the Bellbird Creek and the 

Mary River at Kenilworth. This correlation was expected as the gauge in Kenilworth is located 

directly downstream of the Bellbird Creek gauge (see Figure 3-1). This log-log relationship is 

used to extend the data series to 1926, the year in which the Kenilworth gauge started 

operation.  
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Appendix B. Log-Pearson type 3 fitting 
The method described below is based on the Australian Rainfall and Runoff guidelines (Franks 

S. , n.d.). 

The general formula that describes the Log-Pearson 3 distribution is as follows: 

      
       

Q  =  Model discharge 
μ =  Mean of logarithmic values (base 10) of observed data 
σ =  Standard deviation of logarithmic values of observed data 

IIIKP  = 
 {[

 

 
(   

 

 
)  ]

 
  }

 
 

KP         =  Standard normal deviate with probability P (normal distribution 
with μ = 0 and σ = 1) 

  η =  Skew of logarithmic values of observed data 
 

The values of IIIKP are tabulated or can be calculated (continuously) using the given formula 

when the skew is between -1 and 1. In this research the continuous function is used as long as 

the skew does not exceed the limits.  

To determine the confidence limits the following general formula is used: 

                ( )    
   ( ) 

     

√  

Q  =  Model discharge 
σ =  Standard deviation of logarithmic values of observed data 
N = Number of values in the data series 
F           = Normal Frequency factor for desired confidence limit (1.645 represents 95% 

confidence limit) 
δ = Tabulated parameter which determines error for LP3 distributions 
 
Since the value of δ is tabulated for a limited amount of return times the confidence limit is 
determined for the tabulated values only (13 values, AEP 0.995-0.005). The table includes 
values for skew values between -1.5 and 1.5 with intervals of 0.1. All other skew values between 
the limits are to be interpolated.  
 
 
 
 

 

 



 

 

A.5 

Appendix C. Flowchart of Matlab-model  
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C.1   Model functions 

M.1 – Dataprocessing Dataprocessing creates the full discharge data set out of the two 

separate Kenilworth and Bellbird Creek data set; see Chapter 3 

and Appendix A. For other catchment areas this function is 

logically not used. Figure 3-2 in the main report is the visual 

outcome of the results of this function.  

M.2 – Distributions Distributions fits a set of discharges to four distributions models: 

Lognormal, Gumbel, GEV and Log-Pearson 3. The output of this 

function are the fitted discharge data sets (Figure 5-1) and the 

unconditional flood frequency curve (Figure 5-2). It follows the 

methodology described in 4.1.1. 

M.3 – Logpearsonfit Logpearsonfit is a separate function that fits any discharge data 

series to a Log Pearson type 3 distribution. It is used for every 

conditional flood frequency analysis. See Appendix A for the 

description of how the Log Pearson type 3 fitting is executed.  

M.4 – Goodnessfit Goodnessfit calculates and displays the following goodness of fit 

parameters: Coefficient of Determination (R2), Root Mean Square 

Error (RMSE) and Index of Agreement (D). See 5.1.1 for methods 

and formulas and Table 5-1 for the outcomes of this function for 

the Upper Mary River catchment area. 

M.5 – IPOffa IPOffa performs a flood frequency analysis for the conditional 

phases of the IPO by calculating and displaying the conditional 

positive and negative IPO flood frequency curves. It separates the 

discharges into the defined IPO phases (see 4.2.1) and uses the 

Logpearsonfit function to calculate the curves. The resultant 

curves for the Upper Mary River can be found in Figure 5-3. 

M.6 – PDOffa  PDOffa performs a flood frequency analysis for the PDO phases. 

Firstly it identifies the PDO phases using the input of the PDO 

index (see 4.2.2 for method). Subsequently it fits the discharges 

corresponding to the positive and the negative phases using 

Logpearsonfit (see Figure 5-4 for results of Upper Mary River).  

M.7 – ENSOffa  ENSOffa performs a flood frequency analysis for the ENSO 

phases. It follows the same steps as PDOffa (see 4.2.3 for ENSO 

identification and Figure 5-5 for results) 

M.8 – CombiIPOffa CombiIPOffa first splits the La Niña events’ discharges according 

to the IPO phases, creating two discharge data sets. These 

discharges are fitted to Log Pearson 3 distributions to create the 

flood frequency curve for La Niña years in IPO negative phases 

and the curve for La Niña years in IPO positive phases (results in 

Figure 5-6).  
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M.9 – CombiPDOffa CombiPDOffa follows the same pattern as CombiIPOffa but 

yielding the PDO phases instead of the IPO phases; see Figure 

5-7 for results.  

M.10 – UncertaintyENSO UncertaintyENSO executes a Monte-Carlo simulation to calculate 

the uncertainty of flood estimations as a function of different 

data lengths. The structure of the function follows the flow chart 

presented in Figure 4-1. The resultant uncertainty envelopes are 

found in Figure 5-8. 

M.11 – UncertaintyIPO UncertaintyIPO has the same structure as UncertaintyENSO, but 

logically using the IPO reconstruction instead of the ENSO 

reconstruction. The uncertainty due to IPO variability was not 

estimated for the Upper Mary River. However an uncertainty 

envelope for IPO variability is created for the Clarence River 

catchment, to be seen in Figure K-9 of 0. 
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Appendix D. Description of ArcGIS-model  
In general the guidelines are followed as suggested by Merwade (2012) and Yuan & Qaiser 

(2011). Listed below are the steps taken to create the input for HEC-RAS using the ArcGIS-

extension HEC-GeoRAS. The ArcGIS-output is shown in Figure D-1. 

1. River centreline (Dark blue): the river-centreline is drawn empirically along the deepest 

points of the river cross-sections.  

2. River bank lines (Red): the bank lines mark the switch from the river channel to the 

river banks or floodplains. These are necessary to have HEC-RAS assign a different 

manning n roughness coefficient to the river banks. The bank lines are drawn at the 

point where the slope of the terrain (in the cross-sectional direction) is lower, marking 

a flatter terrain. The bank points, created at the intersections of the bank lines and the 

cross-section lines, can be altered in HEC-RAS when necessary.  

3. Flow lines (Cyan): the flow lines are used by HEC-RAS to calculate the reach lengths. 

HEC-RAS requires three flow lines: channel flow line and the bank flow lines. The 

channel flow line is copied from the river centreline. The bank lines are drawn at an 

estimated 1/3 of the flood plain width (Merwade, 2012). The downstream reach lengths 

evaluate the effects of a meandering river.  

4. Cross-section lines/XS-Cutlines (Green): the lines marking the cross-sections of the 

river are drawn empirically perpendicular to the (imaginary) flood direction. The 

converted three-dimensional XS-cutlines must go up to a sufficient height, since the 

water level may not exceed the cross-section terrain.  

5. Levees (Pink): levee lines are drawn in order to mark a barrier in a cross-section of the 

river. One limitation of HEC-RAS is the inability to distinguish low-elevation flood 

plains from the 

main channel. If the 

water level would 

exceed the flood 

plain elevation, it 

would consider it 

flooded, 

independent of it 

being connected to 

the channel or not. 

A levee is used to 

avoid areas being 

considered flooded, 

when it is 

geographically 

impossible. They are 

positioned at the 

highest point of the 

terrain in between 

the low-elevation 

part of the flood 

Figure D-1: ArcGIS model output 
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plain and the main channel. It must be taken into account though that water may be 

able to flow into the floodplains upstream, a levee for the same secondary channel may 

thus never exceed the upstream levee height.  

6. Ineffective flow areas (Green diagonal lines in an area): Ineffective flow areas are 

defined as areas in which very little flow is possible. The coves on the left floodplain of 

the river have been set as and ineffective flow area.  
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Appendix E. List of years and corresponding climate states 

Year ENSO PDO IPO Year ENSO PDO IPO 

1926 0 0 + 1972 + 0 - 
1927 0 0 + 1973 - - - 
1928 0 0 + 1974 - - - 
1929 + 0 + 1975 - - - 
1930 + + + 1976 + + - 
1931 0 0 + 1977 + 0 - 
1933 - + + 1978 0 0 + 
1934 0 + + 1979 + + + 
1935 0 + + 1980 0 + + 
1936 0 + + 1981 0 0 + 
1937 0 0 + 1982 + + + 
1938 - 0 + 1983 0 + + 
1941 + + + 1984 - + + 
1945 0 - - 1985 0 + + 
1946 0 0 - 1986 + + + 
1947 0 0 - 1987 + + + 
1948 0 - - 1988 - 0 + 
1949 - - - 1989 0 0 + 
1950 - - - 1990 0 - + 
1951 + - - 1991 + + + 
1952 0 0 - 1992 + + + 
1953 0 0 - 1993 + + + 
1954 - - - 1994 + 0 + 
1955 - - - 1995 0 + + 
1956 - 0 - 1996 0 + + 
1958 + 0 - 1997 + + + 
1959 0 0 - 1998 - - + 
1960 0 0 - 1999 - - ? 
1961 - - - 2000 - 0 ? 
1962 0 - - 2001 0 0 ? 
1963 + - - 2002 + + ? 
1964 - 0 - 2003 0 + ? 
1965 + 0 - 2004 + + ? 
1966 0 - - 2005 0 0 ? 
1967 - 0 - 2006 + 0 ? 
1968 + 0 - 2007 - - ? 
1969 + 0 - 2008 - - ? 
1970 - - - 2009 + 0 ? 
1971 - - - 2010 - - - 
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Appendix F. Stratified observed discharge data according to 
identified climate states 

Interdecadal Pacific Oscillation positive and negative phases

 

Figure F-1: Observed split data for IPO positive and negative phase(s) 

Pacific Decadal Oscillation positive, neutral and negative phases 

 

Figure F-2: Observed split data for PDO positive, neutral and negative phase(s) 
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El Niño Southern Oscillation positive, neutral and negative phases 

Southern Oscillation Index (SOI), 6 month average: 

 
Figure F-3: Observed split data for ENSO positive, neutral and 

negative phase(s) using the SOI 

NINO 3.4 index, 6 month average: 

 
Figure F-4: Observed split data for ENSO positive, neutral and 

negative phase(s) using the NINO 3.4 index 

 

Multivariate ENSO Index (MEI), 6 month average: 

 

Figure F-5: Observed split data for ENSO positive, neutral and negative phase(s) using the MEI 
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El Niño years in positive IPO years and La Niña years in negative IPO years 

 

Figure F-6: Observed split data for IPO&ENSO positive and IPO&ENSO negative years  

El Niño years in positive PDO years and La Niña years in negative PDO years 

 

Figure F-7: Observed split data for PDO&ENSO positive and PDO&ENSO negative years 

  



   
  

Bachelor Thesis – Matthijs Gensen                                        Appendices   29-08-2013 
A.14 

Appendix G. Tabulated values of unconditional and conditional 

flood frequency curves 

G.1 Tabulated values of expected flood frequency curves 

Expected flood events [m3/s] Return Time [years]  

 2 5 10 20 50 100 200 

Unconditional 546.2 1404.8 2007.6 2536.0 3111.7 3459.3 3739.9 
IPO positive 497.4 1277.1 1871.8 2439.0 3123.8 3585.5 3997.0 
IPO negative 802.5 1688.1 2117.3 2392.1 2596.4 2674.6 2713.5 
PDO positive 343.3 853.7 1296.1 1777.9 2463.3 3010.6 3576.5 
PDO negative 804.6 1840.8 2621.0 3380.0 4333.5 5008.9 5641.1 
El Niño 244.1 812.5 1354.9 1955.4 2795.0 3439.5 4076.0 
La Niña 814.0 1725.4 2460.1 3236.1 4320.0 5179.2 6067.7 

 

G.2 Tabulated values of lower 95% confidence interval boundary lines 

Lower 95% confidence  
limit [m3/s] 

Return Time [years]  

 2 5 10 20 50 100 200 

Unconditional 390.8 1142.6 1560.3 1712.8 1717.6 1658.7 1580.6 
IPO positive 313.2 918.9 1312.6 1472.3 1459.9 1376.7 1271.6 
IPO negative 476.4 1294.3 1374.6 1189.8 945.1 804.2 701.4 
PDO positive 220.2 573.9 850.9 1065.4 1225.8 1271.6 171.4 
PDO negative 507.0 1279.6 1792.9 2053.3 2095.0 2006.9 1872.8 
El Niño 129.6 495.5 807.8 897.5 1028.6 977.1 894.6 
La Niña 567.0 1229.3 1705.0 2083.7 2408.8 2542.1 2600.8 

 

G.3 Tabulated values of upper 95% confidence interval boundary lines 

Upper 95% confidence  
limit [m3/s] 

Return Time [years]  

 2 5 10 20 50 100 200 

Unconditional 763.5 1727.2 2583.0 3755.0 5637.1 7214.6 8848.7 
IPO positive 789.9 1775.0 2669.3 4040.1 6684.2 9337.7 12564.0 
IPO negative 1351.7 2201.7 3261.2 4809.3 7132.8 8884.6 10497.0 
PDO positive 535.3 1269.9 1974.1 2966.8 4950.3 7127.8 10061.0 
PDO negative 1276.8 258.1 3831.6 5564.2 8963.6 12502.0 16992.0 
El Niño 459.8 1332.5 2272.5 3872.2 7594.9 12107.0 18572.0 
La Niña 1168.5 2421.8 3549.7 5025.8 7747.8 10552.0 13156.0 
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Appendix H. IPO flood frequency curves without 1998 peak 

 

Figure H-1: IPO positive and negative flood frequency curves without 1998 IPO positive year discharge 
peak 
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Appendix I. HEC-RAS model calibration 
As mentioned in the methodology (Chapter 4.4) the model is calibrated using rating curves. 

Figure I-1 shows the rating curves of the HEC-RAS steady flow analysis prior to and after model 

calibration. Also shown in Figure I-1 are the rating curves of DERM (Department of 

Environment and Resource Management, Queensland), BOM (Bureau of Meteorology, 

Australia) and the rating curve of the HEC-RAS model created by the Sunshine Coast Regional 

Council.  

 
Figure I-1: Calibrated and non-calibrated model rating curves and DERM, BOM and SCC rating curves  

 
The only change to the original model (bathymetry, roughness coefficients and steady flow 

conditions, see 4.4) was the external boundary condition, which was increased from a normal 

depth of 0.001 to 0.0015. This increase originates from the estimation of the water surface slope 

along the river reach in a run of the original model (0.0015 meter/meter river length) and as 

was stated in Chapter 4.4 the water surface slope is a good estimation for the normal depth 

boundary condition.  

The reason to not calibrate towards one of the given rating curves (Figure I-1) is the great 

disagreement between the different organizations. Due to the differences between the rating 

curves a high uncertainty exists in what the true discharge-water height relation is for this 

river reach segment. Therefore the preferred model rating curve is somewhere in between. 

When conclusions are drawn from the inundation model it must be kept in mind that a great 

uncertainty exists in the rating curve.   
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Appendix J. Plots of flood inundation model outcomes 

J.1   Cross-section plots of upstream boundary cross-section for 100 year 

flood events 

 

  

Figure J-2: Cross-section plot inundation due to La Niña and El Niño 100 year flood events 

Figure J-I-1: Cross-section plot inundation due to  unconditional 100 year flood event 
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J.2  95% uncertainty levels due to climate variability: 3-D plots 
The discharges corresponding to the 95% uncertainty limits at a data length of 200 years are 

2.7 * 103  and 5.3 * 103 m3/s, see Chapter 5.2. 

 

Figure J-4: Lower 95% confidence limit 100 year flood 3-D plot of inundation  

Figure J-3: Cross-section plot inundation due to PDO positive and negative 100 year flood events 
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Figure J-5: Upper 95% confidence limit 100 year flood 3-D plot of inundation 
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Appendix K. Data analysis for Clarence River Catchment 
The Clarence River catchment area shows the strongest IPO signal of the selected catchments 

(Chapter 5.4). This appendix shows the (visual) results of the flood frequency analysis for this 

gauge in New South Wales. The graphs and tables in this appendix are listed below: 

Table K-1: P- values of climate state discharges 

 Table K-2: 100 year flood magnitudes Clarence River 

 Figure K-1: Distribution model fits 

 Figure K-2: Unconditional Log-Pearson type 3 fit 

 Figure K-3: IPO positive and negative stratification 

 Figure K-4: Plots IPO positive phases 

 Figure K-5: PDO plots 

 Figure K-6: ENSO plots 

 Figure K-7: IPO&ENSO positive and IPO&ENSO negative 

 Figure K-8: PDO&ENSO positive and IPO&ENSO negative 

 Figure K-9:  Uncertainty in 100 year flood estimation due to IPO variability 

 Figure K-10:  Uncertainty in 100 year flood estimation due to ENSO variability 

K.1 Discussion of results Clarence River catchment 

The Clarence River catchment clearly has very strong climate variability signals. Firstly the IPO 

strength is 2.55 (100 year floods). The individual phases have rather similar deviations from the 

mean unconditional situation, the negative and positive phases respectively wielding a 100 year 

flood 1.49 and 0.59 times the unconditional 100 year flood. A further proof of the good 

distinction between the phases is the calculated p-values. A comparison between the positive 

and the negative phase results in a p-value of 0,000(5), indicating a very significant chance the 

means of the series are different. Furthermore in a comparison of the two positive phases 

(1920-1944 and 1978-1998) a p-value of 0.792 is calculated. Along with the graphical plot in 

Figure K-4 this indicates a very similar flood frequency curve. Altogether it can be said all 

parameters indicate a very clear IPO signal and the characteristics of the IPO are visible.  

Secondly the PDO also has a strong signal in the Clarence River catchment. By again stratifying 

the data in three phases with a threshold for the positive and negative phase of 0.5 and -0.5 

times the standard deviation, a strong signal is visible in the graphical plot as well as the p-

value. The PDO strength for 100 year floods is 2.08. The PDO’s positive and negative phases 

have rather similar deviations and the neutral phase wields nearly the same 100 year flood 

event as the unconditional flood event. Just like for the IPO this means the PDO has a clear 

distinction and expected characteristics. The p-value for the positive and the negative phase is 

0.003, again indicating a significant difference in means.  

Of further interest is the similarity between the IPO and the PDO, which has been described in 

Chapter 2.2 and investigated for the Upper Mary River catchment in the results section. 

Contradictory to the Upper Mary River catchment, the Clarence River catchment does have a 

strong agreement between the effects of the IPO and the PDO.  Firstly the values of the 100 

year floods are fairly similar: 8674.2 and 8329.4 m3/s for the negative states and 3405.3 and 

3999.7 m3/s for the positive states. Furthermore the form of the model fits and the uncertainty 

bounds are comparable.  
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Besides the (multi-)decadal variability the ENSO also has a fairly strong signal in this 

catchment, with an ENSO strength of 1.74 for 100 year floods. Whereas in the Upper Mary 

River catchment El Niño events do not alter the flood frequency significantly, the effects of El 

Niño are visible in the Clarence River catchment, lowering the 100 year flood event to 75 % of 

the unconditional event. A further notable result is the Nino3.4 index wielding both the 

highest ENSO strength (1.74 versus 1.42) and the lowest p-values (0.052 versus 0.104). This 

again proves the MEI is not always the best identifier for ENSO events (see results of Question 

2 in Chapter 5).  

Combining the climate variability modes does alter the flood frequency curves significantly in 

contrast to the Upper Mary River catchment, both for the combination of IPO as PDO with the 

ENSO. The P-values are very low and the strengths of those combined events wield the lowest 

and highest 100 year floods. Again the IPO and the PDO have rather similar effects.  

Finally the uncertainty analysis using a Monte Carlo simulation shows comparable results for 

the Clarence River as for the Upper Mary River. Besides analysing the uncertainty due to ENSO 

the IPO variability can be considered, since the IPO has a strong signal in this catchment. For 

the Clarence River the uncertainties due to both the IPO and the ENSO individually are 

particularly high for short data lengths and remain fairly large for longer data lengths.  

Table K-1: P- values of climate state discharges 

 P-value 

IPO positives and negative 0.000 
IPO positives 1920-1944 & 1978-1998 0.792 
PDO positive and negative 0.003 
El Niño and La Niña 0.052 
ENSO&IPO positive and ENSO&IPO negative 0.001 
ENSO&PDO positive and ENSO&PDO negative 0.002 

 
Table K-2: 100 year flood magnitudes Clarence River 

 100 year flood 
[m3/s] 

Percentage of unconditional 
flood frequency [%] 

Unconditional 5805.5 100 
IPO positive 3405.3 59 
IPO negative 8674.2 149 
PDO positive 3999.7 69 
PDO neutral 5863.6 101 
PDO negative 8329.4 143 
ENSO positive (El Niño) 4334.8 75 
ENSO neutral 6386.4 110 
ENSO negative (La Niña) 7526.4 130 
IPO positive/ENSO positive 2078.9 36 
IPO negative/ENSO negative 9064.0 156 
PDO positive/ENSO positive 2119.3 37 
PDO negative/ENSO negative 9467.0 163 
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Figure K-1: Distribution model fits 

 
Figure K-2: Unconditional Log-Pearson type 3 fit 

 

 
Figure K-3: IPO positive and negative stratification 

 
Figure K-4: Plots IPO positive phases 

 

 
Figure K-5: PDO plots 

 
Figure K-6: ENSO plots  
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Figure K-7: IPO&ENSO positive and IPO&ENSO negative  

 
Figure K-8: PDO&ENSO positive and IPO&ENSO negative  

 

 
Figure K-9:  Uncertainty in 100 year flood estimation due to 
IPO variability 

 
Figure K-10:  Uncertainty in 100 year flood estimation due 
to ENSO variability 
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