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Abstract 
Robird is a robot bird which mimics flapping motion by two con rod mechanisms per wing which 
transform motor rotational motion into flapping, i.e. plunging and pitching. The latter caused by 
introducing a phase shift 𝑝ℎ𝑠 between the motion of the two con rod mechanisms. 

To gain understanding in the (aero) dynamics of (Ro) birds, a wind tunnel test setup is designed 
to among others measure aerodynamic loads. In the design, the desired phase shift 𝑝ℎ𝑠, typically 
between 6° and 7°, is fixed actively with a desired accuracy of 𝑒𝑚𝑎𝑥 = ±0.1°. This is done through the 
use of two motors (2-DOF). This task is interpreted as a set-point error problem for position control 
with flapping frequencies  𝑓 up to 7 [Hz].  

A nonlinear model of the 2-DOF setup mechanism is developed in Spacar using a finite element 
formulation. Wing stiffness is modeled as a torsional spring. The model is validated through state space 
system identification and parameter estimation of the actual setup. Based on an identified simplified 
linearized model, capturing only low frequency behavior, an optimal PID controller is designed by 
locating its maximum phase-lead at the desired cross-over frequency dependent on the performance 
specifications. 

However, due to limitations of the applied ELMO controllers cascaded position-velocity (PIP) 
control is applied instead. The results show that for frequencies up to 𝑓 =  4 [Hz] the desired phase 
shift (up to 7°) is obtained with the desired accuracy of ±0.1°.  

Finally, initial reaction force measurements with the setup show good agreement with 
simulations for frequencies up to 1[Hz]. For higher frequencies, the measured forces exceed the 
simulations. This is as expected because the developed model only captures inertia forces and stress 
resultants whereas the measurements in addition also capture aerodynamic loads. In this way, for 
wind tunnel experiments to follow, aerodynamic loads can be distinguished by subtracting the 
measurements with the simulations. 
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Summary 
Robird is a flying robot bird, currently manufactured in both a peregrine falcon version and a bald eagle 
version (both birds of prey), which accomplishes flight through a specific flapping wing mechanism. 
Due to good imitation of its real life counterpart, it can be used in both espionage applications and to 
scare away birds from places they are undesired at, such as airports and farms. 

For a single 2D wing section, bird flapping flight can be described through combined plunging 
and pitching motion. In Robird, this motion is mimicked by two con rod mechanisms per wing that 
transform the motor rotational motion into wing flapping, i.e. plunging and pitching. The pitching is 
caused by introducing a phase shift 𝑝ℎ𝑠 between the motions of the two con rod mechanisms. 
Although Robird has already achieved flight through flapping, its underlying aerodynamics are far from 
fully understood. To gain understanding in the (aero) dynamics of (Ro) birds, a wind tunnel test setup 
must be built. This has been the focus of this graduation project.  

The setup to be designed should meet a number of requirements: (i) for freedom in 
experiments it must allow for an adjustable phase shift 𝑝ℎ𝑠, typically between 6° and 7° with an 
accuracy of 𝑒𝑚𝑎𝑥 = 0.1° for flapping frequencies up to 𝑓 =  7 [Hz], (ii) with it, it must be possible to 
measure reaction forces and torques in all directions, (iii) for interpretable measurements it must 
represent a symmetric half of the actual mechanism, (iv) due to wind tunnel dimensions it must be 
mounted under a quarter turn and (v) to reduce flow disturbances it must be provided with an 
aerodynamic shield. 

For the first requirement, a control and mechanical solution have been combined. In the 
mechanical solution, the desired phase shift is fixed passively/mechanically through a frictional disc 
connection. In the control solution on the other hand, the desired phase shift 𝑝ℎ𝑠 is fixed actively 
through the use of two motors, each predominantly driving a single con rod mechanism. In this way 
the plant is extended from SISO to TITO. This task is interpreted as a set-point error problem for 
position control. The position references for both motors are ramp signals with gradients 
corresponding to 𝑓 =  7 [Hz]. However there is a delay between them, corresponding to the required 
phase shift 𝑝ℎ𝑠 typically between 6° and 7°. Because both references are controlled individually, the 

allowed set-point error is set to 
1

2
∙ 𝑒𝑚𝑎𝑥 = 0.05°. The chosen control strategy is classic SISO control 

design combined with decoupling. Regarding the second requirement, a 6-DOF sensor is mounted at 
the base of the setup and remaining requirements are incorporated into the design straightforwardly. 

To tackle this position control problem, first a model of the setup mechanism is developed 
using a finite element formulation using computer software Spacar. The setup mechanism is 
constructed from elements that are connected through joint nodal and/or deformation coordinates. 
Hereby the wing stiffness is modeled as a simple torsional spring element. The system coordinates are 
partitioned in order to describe the system in terms of the degrees of freedom through geometric 
transfer functions. The system position, velocity and acceleration are described by means of the 
zeroth, first and first and second order geometric transfer functions respectively. Unlike the velocity 
and acceleration, the system position cannot be solved analytically due to the highly nonlinear first 
order geometric transfer function. The position is solved numerically using the Newton-Raphson 
method and taking into account only the first and second order terms. System dynamics are described 
by equations of motion which are derived by means of the principle of virtual work and d’Alembert’s 
principle.  

Next a PID controller is designed using an analytical one parameter method. The procedure 
followed here is classic SISO design combined with decoupling. As performance is a low frequency 
issue, first a simple, low frequency, linear model of the system is developed. This simple model is 
deduced from the low frequency region of the linearized system of the more elaborate nonlinear 
model developed in Spacar. Based on this simplified model, a PID controller is designed. Proportional 
control is applied to set the cross-over frequency such that desired system responsiveness is obtained. 
Integral control is applied to reduce or even remove the steady state error. Derivative control is applied 
to improve system stability by applying phase margin at the cross-over frequency. The controller is 
optimized by making optimal use of the maximum phase-lead. This is done by locating the frequency 
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at which this maximum phase-lead appears at the desired cross-over frequency. In such a way, the 
control parameters are expressed in terms of the desired cross-over frequency. The cross-over 
frequency on its turn is determined from the maximum allowed set-point error and the chosen 
reference through the sensitivity function. Also considered is the possible application of plant 
decoupling prior to SISO control application. The designed controller is tested on the nonlinear model. 
Hereby rough first estimations (order of magnitude) of the aerodynamic loads are introduced as plant 
input disturbances. Simulation results showed that the designed controller has been able to deal with 
these disturbances while still also achieving its target performance. I.e. for a flapping frequency of 𝑓 =
 7 [Hz] a phase shift of 𝑝ℎ𝑠 =  7[°] is obtained with an accuracy of 𝑒𝑚𝑎𝑥 = ±0.1° 

After controller design, mechanical design of the setup is conducted. In addition, a mechanical 
(passive) solution of the desired phase shift is introduced as an alternative. This is done by means of 
an optional disc frictional connection established by preload provided through a bolt. Further, the 
setup is supplied with the needed gears and bearings which have been chosen based on their 
mechanical sufficiency, i.e. durability against gear tooth side damage and acceptable bearing lifetime 
respectively. The setup represents a symmetric half of the Robird mechanism, as this was necessary to 
obtain interpretable aerodynamic loads to be measured. This symmetric half is rotated a quarter turn 
in order to utilize the wind tunnel dimension optimally with regard to flow disturbances near the walls. 
Finally, the setup mechanism is provided with an aerodynamic shield to eliminate its flow disturbances 
as far as possible. This shield is fabricated out of plastic through a vacuum forming process with a 
designed mold. 

Next, setup equipment is selected based on them meeting specific requirements.  Maxon 
motors are chosen based on meeting power, torque, current and electric requirements. Maxon 
gearboxes are chosen based on meeting transmission and torque requirements. Maxon position 
encoders are chosen based on meeting resolution requirements. ELMO controllers are chosen based 
on meeting voltage and current requirements. And a 6-DOF force sensor is chosen based on range and 
resolution requirements. 

After ordering and assembling the parts and equipment, first system identification and 
parameter estimation is conducted on the plant to gain confidence on the developed model and the 
controller designed based on it. The stable open-loop (upside-down) plant is sufficiently excited by an 
appropriate input signal (motor input current). There is chosen for a chirp signal (a sinusoidal signal 
with increasing frequency) in order to utilize a range of frequencies in one signal. The frequency range 
is chosen to cover all significant resonances. The signal amplitude is chosen such that the system is 
excited sufficiently. The sample frequency is restricted by the Nyquist frequency and the highest 
relevant resonance frequency. System output is measured, and together with the input, first the model 
order is estimated and next the state space is estimated. The results proved that the developed model 
fits the experiment. The estimated order (four) was as expected and is in agreement with the theory 
(model) and the frequency responses showed that the resonances existent in the model are also 
reflected by the experiment. From the cross-correlation it was found that the model estimation was 
correct, as this was within the confidence bounds. One obvious difference between the identified plant 
and the model has been the existence of damping in the actual system and the absence thereof in the 
model. Hence, damping estimation is conducted and the model is improved with the estimated 
damping.  

Due to the good agreement between model and identification, it has not been necessary to 
redesign the PID controller. However, due to limitations of the applied ELMO controllers, application 
of PID controller seemed not straightforward: instead cascaded position (P) velocity (PI) control is 
applied. To prevent the wing from breaking, a flapping frequency of 𝑓 =  4 [Hz] is applied in the tests. 
After tweaking and implementation of the PIP controller, the results show that the desired phase shift 
𝑝ℎ𝑠 is obtained within ± 0.1 [°]. The performance target of  ± 0.1 [°] is met. Also, from comparison 
with simulations, using a PIP controller with the same parameters as in the implementation, it follows 
that the current profiles do agree well qualitatively. However, in the simulation a much higher accuracy 
is obtained. This raises the suspicion of higher loads and disturbances in the actual setup, possibly 
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caused by e.g. backlash, frictional losses, wrongfully estimated aerodynamic loads or incompleteness 
of the developed model.  

Finally, aerodynamic loads are determined through the measurement of reaction forces with a 6-
DOF force sensor. The sensor platform is connected to six 1DOF load cells through six wire flexures 
(each rigid in only the longitudinal direction) in an exactly constraint fashion, enabling it to measure 
forces and torques in all directions. The six load cell voltage measurements are converted to six forces 
through the load cell sensitivity matrix. Subsequently these forces are, through a conversion matrix, 
transposed to the reaction forces in the sensor origin. Through a second conversion matrix these forces 
are transposed to an arbitrary point on the setup. Measurements are compared to simulation results 
followed by the distinction of aerodynamic loads. The loads are then transposed to the center of the 
body and alternatively to the center of the wing. Initial reaction force measurements have indicated 
good agreement with reaction force simulations for low frequencies, i.e. frequencies up to 1[Hz]. For 
higher frequencies, i.e. above 1[Hz], the measured forces exceed the simulated ones. This is as 
expected, because the developed model only captures inertia forces and stress resultants whereas the 
measurements in addition also capture aerodynamic loads. In this way, for wind tunnel experiments 
to follow, aerodynamic loads can be distinguished by subtracting the measurements from the 
developed setup with the simulations from the developed model. 

Besides studying (aero) dynamics of (Ro) birds, the setup (representing a symmetric half of Robird) 
can be used for a number of other purposes. It can be used to validate further models developed for 
(Ro) birds, through system identification. For the purpose of self lift off by Robird, alternative wings 
(including more DOFs) and variable phase shift during flight can be studied with the test setup. To keep 
Robird in the air longer, energy saving through adding spring elements (to store and recover energy at 
appropriate moments) can be investigated using the setup.  Finally, an interesting, but quite different, 
utilization of the setup would be energy generation exploration.
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1 Introduction 
 
Robird and its application 
Robird is a flying robot bird, manufactured by Clear Flight Solutions (CFS) currently in both a peregrine 
falcon version and a bald eagle version (both birds of prey), which accomplishes flight through a 
specific flapping wing mechanism.  

This robot bird is indistinguishable from its real life counterpart in both looks and motion to 
both humans and animals. This is exactly why Robird is such an appealing robot. Due to good imitation 
of its real life counterpart, Robird can be used in both espionage applications and to scare away birds 
from places they are undesired at, such as airports and farms. 
 
Bird flapping flight 
Taking a single two dimensional (2D) wing section, the flapping wing kinematics of a bird are described 
by two motions occurring simultaneously, namely  plunging and pitching, see Appendix 3.1 and for 
more detail see [1]. This combined motion is determinative for the wing angle of attack which is crucial 
for achieving flight.  

Due to the complex physics behind flapping wing flight in comparison to fixed wing flight, it is 
far from fully understood and thus leaves room enough for investigation. 
 
Robird’s flapping flight 
The Robird flapping wing mechanism is provided with two con rod mechanisms per wing which 
transform the motor rotational motion into the wing flapping, i.e. plunging and pitching, motion. The 
latter is obtained by mechanically introducing a phase shift 𝑝ℎ𝑠 into the motion of these two con rod 
mechanisms. 

In such, the flapping wing mechanism on which the flight of Robird is based, requires wing 
flexibility and causes deformation of the wings, apart from deformation caused by inertial and 
aerodynamic forces during flapping, and presumably has influences on its flight performance.  
 
Goal 
This project is concerned with designing a wind tunnel test setup for the peregrine falcon Robird.  
 
Purpose of the test setup 
The designed test setup is intended to provide insight in and understanding of the (aero) dynamics of 
Robird: 
 

 Body dynamics: Data retrieved from system identification and parameter estimation, using the 
designed test setup, should serve to improve and validate developed models, e.g. for control 
design purposes and energy efficiency studies. 

 Flapping wing aerodynamics: Data retrieved from wind tunnel experiments, using the 
designed test setup, should serve as empirical data and validation data for numerical and 
analytical studies on flapping flight, see e.g. [1]. 
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Setup requirements 
With regard to the purpose of the test setup the following requirements should be met: 
 

1. Adjustable phase shift phs: For freedom in experiments, the test setup should allow for an 
adjustable phase shift 𝑝ℎ𝑠, typically between 6° and 7°, with an accuracy of 𝑒𝑚𝑎𝑥 = 0.1° for 
flapping frequencies up to 𝑓 =  7 [Hz]. 

2. Measurement: With the test setup it should be possible to measure reaction forces and 
torques in all directions. 

3. Symmetric half: The setup should represent a symmetric half of the actual mechanism in order 
to obtain interpretable aerodynamic force measurements. 

4. Vertical Orientation: Due to the dimensions of the wind tunnel the setup should be mounted 
vertically, i.e. under a quarter turn w.r.t. actual mechanism. 

5. Aerodynamic Shield: The setup should be provided with an aerodynamic shield to reduce flow 
disturbances. 

 
Early design choices 

 For the first requirement two solutions are considered and combined: 
 

o Control solution: Hereby, in contrast to the actual Robird mechanism, there is aimed at 
establishing the desired phase shift 𝑝ℎ𝑠 actively through the use of two (servo) motors, 
each predominantly driving a single con rod mechanism. In this way the plant is extended 
from SISO to TITO. 

This task is interpreted as a set-point error problem for position control. The position 
references for both motors are ramp signals with gradients corresponding to 𝑓 =  7 [Hz]. 
However there is a delay in-between them, corresponding to the required phase shift 𝑝ℎ𝑠 
typically between 6° and 7°. Because both references are controlled individually, the 

allowed set-point error is set to 
1

2
∙ 𝑒𝑚𝑎𝑥 = 0.05°. The chosen control strategy is classic 

SISO control design combined with decoupling. 
o Mechanical solution: Hereby, optionally the desired phase shift 𝑝ℎ𝑠 is fixed 

passively/mechanically through a frictional disc connection and consequently both con 
rods are driven by a single motor. 

 

 With regard to requirement two, a straightforward solution is followed, i.e. a 6-DOF (degrees 
of freedom) force sensor is mounted at the base of the setup, enabling measurement of 
reaction forces and torques in all directions. 

 The remaining requirements are incorporated in the mechanical design quite 
straightforwardly. 

 
Approach 
For the purpose of controller design, in section 2 first a model of the proposed TITO setup has been 
developed in Spacar using a finite element formulation. Additionally, with the aim at applying position 
control design, the model is linearized and simplified. Next, in section 0 controller and mechanical 
design are conducted and appropriate equipment is selected. For control design a one parameter 
approach is followed using classic SISO control techniques combined with plant decoupling and for the 
mechanical solution, a frictional disc connection is designed for obtaining the desired phase shift 𝑝ℎ𝑠. 
After ordering and assembly of the setup, first system identification and parameter estimation are 
conducted in section 4. Thereafter, using the identified plant, in section 5 the developed model is 
validated and the controller is redesigned. This is followed by controller implementation and tweaking 
in section 6. In section 7 force measurements experiments have been conducted and finally 
conclusions and recommendations are given. This process has been executed according to the 
schedule included in Appendix 10. 



3 
 

2 Model development  
First, a model of the proposed TITO setup has been developed in Spacar using a finite element 

formulation. With the aim at applying position control design, using classic SISO control techniques 

combined with plant decoupling, the model is linearized and simplified. Referring to the latter, aiming 

at performance, only the low frequency region is captured for control design. 

2.1 Elaborate model development 
In this section an elaborate non-linear model, also accounting for the coupling of the (servo) motors 

through the wing stiffness, is developed in Spacar. The developed model contains 2 DOFs accounting 

for the rotation applied by the motors (see Figure 1). 

2.1.1 Kinematic analysis 
First all nodal and deformation coordinates of the system are identified. The nodal coordinates 𝑥 are 

partitioned into support coordinates 𝑥(o), independent nodal coordinates 𝑥(𝑚) and calculable nodal 

coordinates 𝑥(𝑐), i.e.:  
 

1 𝑥 =  [

[𝑥(o)]

[𝑥(𝑐)]

[𝑥(𝑚)]

]  

 

The deformation coordinates are in turn partitioned into zero deformation coordinates𝜀(o) = 𝐷(𝑥)(o), 

independent deformation coordinates 𝜀(𝑚) = 𝐷(𝑥)(𝑚) and redundant deformation coordinates 

𝜀(𝑐) = 𝐷(𝑥)(𝑐), i.e.: 
 

2 𝜀 = [

[𝜀(o)]

[𝜀(𝑚)]

[𝜀(𝑐)]

] = [

[𝐷(𝑥)(o)]

[𝐷(𝑥)(𝑚)]

[𝐷(𝑥)(𝑐)]

]  

 
Then there is checked whether the system is kinematically determinate, simply by evaluating if the 

number of unknown variables (number of 𝑥(𝑐)) equals the number of useful equations (number 

of 𝐷(𝑥)(o) and 𝐷(𝑥)(𝑚)).  
The number of degrees of freedom within the system equals the number of 𝑥 minus the 

number of 𝑥(o) minus the number 𝜀(o). For exact restriction, this should be equal to the number of 

𝑥(𝑚) and 𝜀(𝑚).  
 
Next, the configuration and deformation state and their derivatives of the mechanism are described 
in terms of the degrees of freedom which are grouped as follows: 
 

3 𝑞 =  [
[𝑥(𝑚)]

[𝜀(𝑚)]
]  

 
The nodal and deformation coordinates are then described in terms of 𝑞 as follows: 
 
4 𝑥 = 𝐹(𝑞)  
 
5 𝜀 = 𝐸(𝑞) ⟺  

𝐷(𝑥) = 𝐸(𝑞) ⟺  

𝐸(𝑞) = 𝐷(𝐹(𝑞))  
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These equations, i.e. the zeroth order geometric transfer functions 𝐹(𝑞) and 𝐸(𝑞), are highly 
nonlinear and the position of the mechanism is solved numerically by use of a Newton-Raphson 
iteration method. Although the position may not be solved analytically, the velocity and acceleration 
may be: 
 
After time derivation of Eq.4 and Eq.5, the following applies for the velocities: 
 
6 �̇� = 𝐹,𝑞�̇�  

𝜀̇ = 𝐸,𝑞�̇�  

 
After time derivation of Eq.6, the following applies for the accelerations:  
 

7 �̈� = 𝐹,𝑞�̈� + (𝐹,𝑞𝑞�̇�)�̇�  

𝜀̇ = 𝐸,𝑞�̈� + (𝐸,𝑞𝑞�̇�)�̇�  

 
Hereby 𝐹,𝑞  and 𝐸,𝑞 are the first order geometric transfer functions and 𝐹,𝑞𝑞  and 𝐸,𝑞𝑞 are de second 

order geometric transfer functions. In contrast to the zeroth order geometric transfer 
functions 𝐹(𝑞) and 𝐸(𝑞), these can be solved analytically as will be illustrated in the following. 
 
Differentiating Eq. 5 with respect to 𝑞 yields: 
 
8 𝐸,𝑞 = 𝐷,𝑥𝐹,𝑞  

 
Rewriting this equation by using the partitioning as introduced in equations1,2 and 3 yields: 
 

9 

[
 
 
 𝐸,𝑞

(𝑜)

𝐸,𝑞
(𝑚)

𝐸,𝑞
(𝑐)

]
 
 
 

=

[
 
 
 
 𝐷,𝑥(𝑜)

(𝑜)
𝐷

,𝑥(𝑐)

(𝑜)
𝐷

,𝑥(𝑚)

(𝑜)

𝐷
,𝑥(𝑜)

(𝑚)
𝐷

,𝑥(𝑐)

(𝑚)
𝐷

,𝑥(𝑚)

(𝑚)

𝐷
,𝑥(𝑜)

(𝑐)
𝐷

,𝑥(𝑐)

(𝑐)
𝐷

,𝑥(𝑚)

(𝑐)
]
 
 
 
 

[
 
 
 𝐹,𝑞

(𝑜)

𝐹,𝑞
(𝑐)

𝐹,𝑞
(𝑚)

]
 
 
 

  

 
Then for the first order geometric transfer function applies: 
 

10 𝐹,𝑞
(𝑜)

= [𝛿𝑥(𝑜)

𝛿𝑥(𝑚)

𝛿𝑥(𝑜)

𝛿𝜀(𝑚)
]  

𝐹,𝑞
(𝑚)

= [𝛿𝑥(𝑚)

𝛿𝑥(𝑚)

𝛿𝑥(𝑚)

𝛿𝜀(𝑚)
]  

𝐸,𝑞
(𝑜)

= [ 𝛿𝜀(𝑜)

𝛿𝑥(𝑚)

𝛿𝜀(𝑜)

𝛿𝜀(𝑚)
]  

𝐸,𝑞
(𝑚)

= [𝛿𝜀(𝑚)

𝛿𝑥(𝑚)

𝛿𝜀(𝑚)

𝛿𝜀(𝑚)
]  

𝐹,𝑞
(𝑐) = (D(𝑐))

−1
([

𝐸,𝑞
(𝑜)

𝐸,𝑞
(𝑚)

] − [
𝐷

,𝑥(𝑚)

(𝑜)

𝐷
,𝑥(𝑚)

(𝑚)
] 𝐹,𝑞

(𝑚)
)  

𝐸,𝑞
(𝑐) = 𝐷

,𝑥(𝑐)

(𝑐) 𝐹,𝑞
(𝑐) + 𝐷

,𝑥(𝑚)

(𝑐) 𝐹,𝑞
(𝑚)

  

 
With: 

D(𝑐) = [
𝐷

,𝑥(𝑐)

(𝑜)

𝐷
,𝑥(𝑐)

(𝑚)
]  
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Differentiating Eq. 8 with respect to 𝑞 yields: 
 
11 𝐸,𝑞𝑞 = (𝐷,𝑥𝑥𝐹,𝑞)𝐹,𝑞 + 𝐷,𝑥𝐹,𝑞𝑞   

 
Rewriting this equation by using the partitioning as introduced in equations1,2 and 3 yields: 
 

12 

[
 
 
 𝐸,𝑞𝑞

(𝑜)

𝐸,𝑞𝑞
(𝑚)

𝐸,𝑞𝑞
(𝑐)

]
 
 
 

=

[
 
 
 
 (𝐷,𝑥𝑥

(𝑜)
𝐹,𝑞)𝐹,𝑞

(𝐷,𝑥𝑥
(𝑚)

𝐹,𝑞)𝐹,𝑞

(𝐷,𝑥𝑥
(𝑐)𝐹,𝑞)𝐹,𝑞 ]

 
 
 
 

+

[
 
 
 
 𝐷,𝑥(𝑜)

(𝑜)
𝐷

,𝑥(𝑐)

(𝑜)
𝐷

,𝑥(𝑚)

(𝑜)

𝐷
,𝑥(𝑜)

(𝑚)
𝐷

,𝑥(𝑐)

(𝑚)
𝐷

,𝑥(𝑚)

(𝑚)

𝐷
,𝑥(𝑜)

(𝑐)
𝐷

,𝑥(𝑐)

(𝑐)
𝐷

,𝑥(𝑚)

(𝑐)
]
 
 
 
 

[
 
 
 𝐹,𝑞𝑞

(𝑜)

𝐹,𝑞𝑞
(𝑐)

𝐹,𝑞𝑞
(𝑚)

]
 
 
 

  

 
Then for the second order geometric transfer function applies: 
 

13 𝐹,𝑞𝑞
(𝑜)

= [𝛿𝐹,𝑞
(𝑜)

𝛿𝑥(𝑚)

𝛿𝐹,𝑞
(𝑜)

𝛿𝜀(𝑚)
]  

𝐹,𝑞𝑞
(𝑚)

= [𝛿𝐹,𝑞
(𝑚)

𝛿𝑥(𝑚)

𝛿𝐹,𝑞
(𝑚)

𝛿𝜀(𝑚)
]  

𝐸,𝑞𝑞
(𝑜)

= [𝛿𝐸,𝑞
(𝑜)

𝛿𝑥(𝑚)

𝛿𝐸,𝑞
(𝑜)

𝛿𝜀(𝑚)
]  

𝐸,𝑞𝑞
(𝑚)

= [𝛿𝐸,𝑞
(𝑚)

𝛿𝑥(𝑚)

𝛿𝐸,𝑞
(𝑚)

𝛿𝜀(𝑚)
]  

𝐹,𝑞𝑞
(𝑐) = −(D(𝑐))

−1
[
(𝐷,𝑥𝑥

(𝑜)
𝐹,𝑞)𝐹,𝑞

(𝐷,𝑥𝑥
(𝑚)

𝐹,𝑞)𝐹,𝑞
]  

𝐸,𝑞𝑞
(𝑐) = (𝐷,𝑥𝑥

(𝑐)𝐹,𝑞)𝐹,𝑞 + 𝐷
,𝑥(𝑚)

(𝑐) 𝐹,𝑞𝑞
(𝑐)  

 
Now that the first and second order transfer functions are known, the position can be solved 
numerically by means of the Newton-Raphson method, hereby taking into account the first and second 
order terms of the Taylor series expansion of equation 4 and 5: 
 

14 𝑥(1) = 𝑥0 + (𝐹,𝑞)0
Δ𝑞 +

1

2
((𝐹,𝑞𝑞)0

Δ𝑞)  Δ𝑞  

𝜀(1) = 𝜀0 + (𝐸,𝑞)0
Δ𝑞 +

1

2
((𝐸,𝑞𝑞)0

Δ𝑞)  Δ𝑞  

 
For more detail on this see [2] and [3]. 
 

2.1.2 Dynamic analysis 
The dynamics of the system is described by a relatively elaborate equation of motion, which can be 
derived by means of the principle of virtual work and d’Alembert’s principle (again, for more detail see 
[2] and [3]): 
 

15 �̅��̈� = 𝐹,𝑞
𝑇[𝑓 − ℎ − 𝑀(𝐹,𝑞𝑞�̇�)�̇�] − 𝐸,𝑞

𝑇𝜎 

 
Where: �̅� = 𝐹,𝑞

𝑇𝑀𝐹,𝑞  = Reduced mass matrix 

𝑀 = Mass matrix 
𝑓 = Nodal forces 
ℎ = Convective term of the inertia property which is a function of the position coordinates and 
quadratic in the velocities 
𝜎 = Stress resultants calculated from the linear constitutive Kelvin-Voigt equations: 𝜎 = 𝑆𝜀 + 𝑆𝑑𝜀̇  
𝑆 = Stiffness matrix 
𝑆𝑑  = Damping matrix 
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2.1.3 External forces and reaction forces 
Prior to calculating the stress resultants and reaction forces, the motion of the multi-body system must 
be known already. The external forces (including the reaction forces) can be determined as follows 
(this is explained very well in [2] and [3]): 
 
16 𝑓 = 𝐷,𝑥

𝑇𝜎 + ℎ + 𝑀�̈�  

 
In Appendix 1.1 an example of the kinematic and dynamic analysis as conducted by Spacar is illustrated 
for a simplified 2D version of the setup mechanism. 
 

2.1.4 Kinematic determinability and exact restriction for the model of the setup mechanism 
In the following, kinematic determinability and exact restriction of the developed model for the setup 
mechanism (see Figure 1) are illustrated.  
 
As discussed in section 2.1.1, the nodal coordinates 𝑥 are partitioned into support/ absolute constraint 

coordinates 𝑥(o), independent nodal coordinates 𝑥(𝑚) and calculable nodal coordinates 𝑥(𝑐). With 
their respective numbers 𝑁𝑥(𝑜), 𝑁𝑥(𝑚) and 𝑁𝑥(𝑐)  and their sum 𝑁𝑥. The deformation coordinates are 

partitioned into zero deformation/ relative constraint coordinates 𝜀(o) = 𝐷(𝑥)(o), independent 

deformation coordinates 𝜀(𝑚) = 𝐷(𝑥)(𝑚) and redundant deformation coordinates 𝜀(𝑐) = 𝐷(𝑥)(𝑐). 
With their respective numbers 𝑁𝜀(𝑜), 𝑁𝑥(𝑚)  and 𝑁𝜀(𝑐) , and their sum 𝑁𝜀 . 

 
Kinematic determinability applies if the number of unknown variables matches the number of useful 
equations, i.e.: 
 
17 𝑁𝑥(𝑐) =  𝑁𝜀(𝑜) + 𝑁𝜀(𝑚)  

 
Exact restriction applies when the number of user defined DOFs, 𝑁𝑢𝑑𝐷𝑂𝐹, equals the number of 
resulting DOFs, 𝑁𝐷𝑂𝐹, i.e.:  
 
18 𝑁𝑥(𝑚) + 𝑁𝜀(𝑚) = 𝑁𝑥 −  𝑁𝑥(𝑜) −  𝑁𝜀(𝑜)   

 
With: 
 
 𝑁𝑥(𝑚) + 𝑁𝜀(𝑚) = 𝑁𝑢𝑑𝐷𝑂𝐹  

𝑁𝑥 −  𝑁𝑥(𝑜) −  𝑁𝜀(𝑜) = 𝑁𝐷𝑂𝐹  

 
The following values apply for the numbers of the partitioned coordinates of this system: 
 
𝑁𝑥 = 120, determined from the sum of: 
 

 (16 × 3) translational coordinates, represented by the (16) blue circles in Figure 1, each 
representing 3 translational coordinates, 𝑥, 𝑦 and 𝑧 describing a node position 

 (24 × 3) rotational coordinates, represented by the (24) blue dots in Figure 1, each representing 
3 Euler parameters, 𝜆1, 𝜆2  and 𝜆3 describing a node orientation 

 
𝑁𝑥(𝑜) = 12, i.e. 12 absolute constraints, represented by the black arrows in Figure 1. 

 
𝑁𝜀(𝑜) = 106, is determined from the sum of: 
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 (17 × 6), i.e. 17 fully rigid beams, represented by the (17) blue lines in Figure 1, each restricted in 
elongation (1 DOF), torsion(1 DOF) and bending (4 DOFs) 

 (2 × 2), i.e. 2 partially rigid hinges (restricted in orthogonal bending, 2 DOFs; but free in relative 
rotation 1 DOF), represented by the (2) green circles in Figure 1   

 
𝑁𝜀(𝑚) = 2 , i.e. two relative rotations have been chosen as DOFs, see the red arrows in Figure 1. 

𝑁𝑥(𝑚) = 0 , i.e. zero nodal coordinates are chosen as DOFs. 

𝑁𝑥(𝑐) =  108 , i.e. 𝑁𝑥(𝑐) = 𝑁𝑥 − 𝑁𝑥(𝑜) − 𝑁𝑥(𝑚) 

 
Applying the above determined values to equations 17 and 18 proves the system to be kinematically 
determinable as well as exactly constraint. I.e., 108 unknown variables (calculable coordinates 𝑁𝑥(𝑐)) 

are solved by 108 useful equations (𝑁𝜀(𝑜) and 𝑁𝜀(𝑚)) and the 2 user defined DOFs (𝑁𝑢𝑑𝐷𝑂𝐹) 

correspond to the 2 resulting degrees of freedom (𝑁𝐷𝑂𝐹).  
 

 

 
 

Figure 1 More elaborate model development in Spacar: Wing stiffness is modeled through a torsional spring 
(see the red colored element) 

 

2.2 Simplified model illustrating coupling 
In the following, the elaborate model is somewhat simplified in order to explain the coupling present 
in the system. The system is reduced to two inertias 𝐽1 and 𝐽2 (each representing half the mechanism) 
connected to each other by a (rotational) spring 𝑘 and a (rotational) damper 𝑑 (representing the wing) 
(see Figure 2).  
 
Hence the momentum equation reduces to: 
 
19 

𝐽1𝜃1̈    = 𝑇1 − 𝑑(𝜃1̇ − 𝜃2̇) − 𝑘(𝜃1 − 𝜃2)   

𝐽2𝜃2̈    = 𝑇2 + 𝑑(𝜃1̇ − 𝜃2̇) + 𝑘(𝜃1 − 𝜃2)  

 
Taking the Laplace transform, this can be rewritten into the following form: 
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20 

(𝐽1𝑠
2 + 𝑑𝑠 + 𝑘)𝜃1 − (𝑑𝑠 − 𝑘)𝜃2    = 𝑇1  

−(𝑑𝑠 − 𝑘)𝜃2    + (𝐽2𝑠
2 + 𝑑𝑠 + 𝑘)𝜃1    = 𝑇2     

 
In matrix form, this yields: 
 

21 𝐴 [
𝜃1

𝜃2
] = [

𝑇1

𝑇2
]  

 
With: 
 

22 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
]  

 
Whereby the following applies for the entries of A: 
 
23 

𝑎11 = (𝐽1𝑠
2 + 𝑑𝑠 + 𝑘)  

𝑎12 = −(𝑑𝑠 − 𝑘)  
𝑎21 = −(𝑑𝑠 − 𝑘)  
𝑎22 = (𝐽2𝑠

2 + 𝑑𝑠 + 𝑘)   
 

For the transfer function 𝐺 then applies: 
 

24 [
𝜃1

𝜃2
] = 𝐺 [

𝑇1

𝑇2
]  

 
From eqs. 21, 22 and 23 follows for 𝐺: 
 
 

25 𝐺 = [
𝐺11 𝐺12

𝐺21 𝐺22
] = 𝐴−1 = [

𝑎11 𝑎12

𝑎21 𝑎22
]
−1

=
1

det(𝐴)
[
𝑎22 −𝑎12

−𝑎21 𝑎11
] 

=
1

(𝑎11𝑎22−𝑎12𝑎21)
[

𝑎22 −𝑎12

−𝑎21 𝑎11
]   

 

Substituting eq. 23 into eq.25 and using a preferred notation as described in [4], yields the following 
for the transfer functions and allows for obtaining physical interpretations of the occurring resonances: 
 

26 𝐺11 =
𝜃1

𝑇1
=

𝐾(
𝑠2

𝜔𝐴𝑅,1
2 +

2𝜁𝐴𝑅,1𝑠

𝜔𝐴𝑅,1
+1)

𝑠2(
𝑠2

𝜔𝑅
2+

2𝜁𝑅𝑠

𝜔𝑅
+1)

   

 

27 𝐺12 =
𝜃1

𝑇2
=

𝐾(𝜏𝑠+1)

𝑠2(
𝑠2

𝜔𝑅
2+

2𝜁𝑅𝑠

𝜔𝑅
+1)

    

 

28 𝐺21 =
𝜃2

𝑇1
=

𝐾(𝜏𝑠+1)

𝑠2(
𝑠2

𝜔𝑅
2+

2𝜁𝑅𝑠

𝜔𝑅
+1)
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29 𝐺22 =
𝜃2

𝑇2
=

𝐾(
𝑠2

𝜔𝐴𝑅,2
2 +

2𝜁𝐴𝑅,2𝑠

𝜔𝐴𝑅,2
+1)

𝑠2(
𝑠2

𝜔𝑅
2+

2𝜁𝑅𝑠

𝜔𝑅
+1)

    

 
With:  
 

30 𝐾 =
1

𝐽1+𝐽2
  

 

31 𝜏 =
𝑑

𝑘
  

 

32 𝜔𝑅 = √
𝑘(𝐽1+𝐽2)

𝐽1𝐽2
  

 

33 𝜁𝑅 =
𝑑

2√
𝑘𝐽1𝐽2
𝐽1+𝐽2

  

 

34 𝜔𝐴𝑅,1 = √
𝑘

𝐽2
  

 

35 𝜁𝐴𝑅,1 =
𝑑

2√𝑘𝐽2
  

 

36 𝜔𝐴𝑅,2 = √
𝑘

𝐽1
  

 

37 𝜁𝐴𝑅,2 =
𝑑

2√𝑘𝐽1
  

 
Hereby 𝜔𝑅  and 𝜁𝑅  represent the resonance/natural frequency and damping of the complete system. 
𝜔𝐴𝑅,1 and  𝜁𝐴𝑅,1 represent the anti-resonance and damping equivalent to the natural frequency of 
inertia 𝐽2  connected to the fixed world through the compliance 𝑘 and damping 𝑑. The equivalent 
applies for 𝜔𝐴𝑅,2 and 𝜁𝐴𝑅,2. 

 
In this case, due to symmetry of the mechanism, 𝐽1 = 𝐽2. Applying this to eqs.32, 34 and 36 yields: 
 

38 𝜔𝐴𝑅,1 = 𝜔𝐴𝑅,2 =
1

2
√2𝜔𝑅  , for: 𝐽1 = 𝐽2, see Figure 4 and Figure 5 

 
Decoupling 
Provided there is enough knowledge of the system 𝐺 (through either model development or system 
identification), one way of decoupling is illustrated in the following. As the goal of decoupling is to 
obtain a diagonal matrix, the decoupling matrix should bring about the following effect: 
 

39 𝐺𝐷 = [
𝐺11 0
0 𝐺22

] 

 
Hence, this would result in a decoupling matrix defined as follows (also see [5]): 
 

40 𝐷 = 𝐺−1 [
𝐺11 0
0 𝐺22

] 
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Figure 2 Simplified model illustrating mechanical compliant coupling 

 

2.3 Simplified model for controller design 
Previous to controller design a sufficient model should be developed. Because performance analysis is 
a low frequency subject it is acceptable to only model low frequent behavior when analyzing 
performance (and when designing a controller for performance improvement). The following 
assumptions are made for obtaining a sufficient model [6]: 
 

 First only 1 DOF is considered (see Figure 3) 

 (Half) The wing mechanism is assumed to be a simple rigid equivalent mass (𝑚) to be moved 
by the actuator force 

 The stiffness in the actuated direction is considered to correspond to the low frequency 

resonance 𝑘 = 𝑚 ∙ (𝜔𝑅𝑙𝑜𝑤
2 ) =

𝑚∙𝑔

𝐿
; also see Appendix 6 

 The back-emf in the actuator (motor and gearbox) is modeled as damping 𝑑: 
 

41 𝑑 =
(𝑘𝑚∙𝑖∙𝜂𝐺)2

𝑅
  

 
With: 
 
𝑘𝑚  = motor torque constant 
𝑅 = coil resistance 
𝑖  = gear reduction 
𝜂𝐺  = gear efficiency 
𝑔  = gravitational acceleration 
𝐿  = half length of the wing 

 

 The actuator (motor and gearbox) force is modeled as an applied force:  
 

42 𝐹 =
𝑈

𝑅
∙ 𝑘𝑚 ∙ 𝑖 ∙ 𝜂𝐺 = 𝐼 ∙ 𝑘𝑚 ∙ 𝑖 ∙ 𝜂𝐺  

 
With: 
 
𝑈 = supplied voltage  
𝐼 = supplied current 

 
To this end, the following is obtained for the equation of motion: 
 
43 𝑚�̈� = 𝐼 ∙ (𝑘𝑚 ∙ 𝑖 ∙ 𝜂𝐺) − 𝑘𝑥 − 𝑑�̇�  
 
Plant transfer function 
Hence with current control (𝑑 = 0; see [6]) the plant model becomes: 

𝐽1 𝐽2 

𝑇2 , 𝜃1 𝑇2 , 𝜃2 𝑘 

𝑑 
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44 𝐺 =
𝑥(𝑠)

𝐼(𝑠)
=

(𝑘𝑚∙𝑖∙𝜂𝐺)

𝑚

𝑠2+
𝑑

𝑚
𝑠+

𝑘

𝑚

=  

1

𝑚𝑒𝑞

𝑠2+
𝑑

𝑚
𝑠+

𝑘

𝑚

  

 
With:   
 

45 𝑚𝑒𝑞 =
𝑚

𝑘𝑚∙𝑖∙𝜂𝐺
  

 
In principle the two actuation directions of the wing mechanism are coupled through the wing 
stiffness. However at first it is assumed that the system is decoupled, hence it could be easily extended 
to a 2 DOF i.e. two input two output system as follows: 
 

46 [
𝑥1

𝑥2
] =

1

𝑚𝑒𝑞

𝑠2+
𝑑

𝑚
𝑠+

𝑘

𝑚

[
1 0
0 1

] [
𝐼1
𝐼2

]  

 
Model parameters 
It is worth mentioning that in coming to the values of some of the parameters usage has been made 
of the more elaborate model developed in which is subject of section 2.1. The values applying to the 
parameters are given in Table 1. 
 
Bode plot 
Supplying all parameters to equation 44 yields the bode plot for 1 DOF of the system as depicted in  
Figure 5. 
 
 

Parameter Symbol Value Dimension Reference  

Mass (for 1 DOF) 𝑚  0.0441  [kg]    

Appendix 1.2 
Equivalent mass 𝑚𝑒𝑞  0.0026  [s

2

rad2⁄ ]    

Wing stiffness 
Torsional stiffness 𝑘𝑡  3.35   [Nm

rad⁄ ]  
Appendix 1.3 

Longitudinal stiffness 𝑘  1.6   [N m⁄ ]  

Motor parameters 
Torque constant 𝑘𝑚   0.0205   [Nm

A⁄ ]  

Chapter 3.4 
Coil resistance 𝑅  1.39  [Ω]  

Gearbox parameters 
Gear reduction 𝑖  18  [ ]  

Gear efficiency 𝜂𝐺   0.75  [ ]  

 
Table 1 Model parameters 

 

 

 
Figure 3 General nominal model of motion system used for performance analyses/synthesis [6] 
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Figure 4 Bode plot for coupled model of Robird 

 

 
 

Figure 5 Green: Bode plot for 1 DOF of the simplified model of Robird; Blue: Bode plot for 1 DOF of the coupled 
model of Robird  
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3 Controller and mechanical design 
 

3.1 Control Solution 
In this section the control solution is considered whereby the aim is establishing the desired phase shift 
𝑝ℎ𝑠 through the use of two (servo) motors. This will require sufficient controller design. The strategy 
that is followed here is decoupling combined with the application of classic SISO design techniques. 
The controller is designed based on a simplified model of the system and then tested on the more 
elaborate model after decoupling. Tests are done first on a linearized model and finally on the non-
linear model. 
 

3.1.1 (PID) Controller design 
Now, a conceptual PID controller is designed based on the following [6]: 
 

 Proportional control: to set the required cross-over frequency (or bandwidth) 

 Integral control: to obtain a small steady state error; i.e. to keep the mass in position when 
positioning (compensating for the spring force) 

 Derivative control: to provide enough phase-margin at cross-over frequency 
 
PID controller 
To this end the following conceptual PID controller is obtained [6]: 
 

47 𝐾 =
𝑘𝑝(𝑠𝜏𝑧+1)(𝑠𝜏𝑖+1)

𝑠𝜏𝑖(𝑠𝜏𝑝+1)
 

 
Its corresponding frequency plot is shown in Figure 6. As the plot also illustrates the following is 
indicated by the parameters [6]: 
 

 𝑘𝑝 = Proportional gain 

 
1

𝜏𝑧
= Corner frequency where derivative action is started 

 
1

𝜏𝑝
= Corner frequency where derivative action stops 

 
1

𝜏𝑖
= Corner frequency where integral action stops 

 
Requirements [6] 
 

 The Phase-lag of the integral action should not interfere with phase-lead of the derivative 

action; i.e. 𝜏𝑖
−1 should be lower than 𝜏𝑧

−1 
 

 The phase lead of the PID should be used as efficient as possible; i.e. the PID controller 
parameters are chosen in such a way that the desired cross-over frequency equals the 
frequency where maximum phase-lead occurs. 

 
PID controller parameters 
To this end the PID controller parameters could be expressed in the cross-over frequency [6]: 
 
48  

𝜏𝑧 =
√

1

𝛼

𝜔𝑐
  

𝜏𝑖 = 𝛽𝜏𝑧  
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𝜏𝑝 =
1

𝜔𝑐√
1

𝛼

  

𝑘𝑝 =
𝑚𝑒𝑞𝜔𝑐

2

√
1

𝛼

  

 
𝛼  (the amount of phase-lead) is between 0.1 and 0.3 and 𝛽 > 1.  In this case the following is chosen: 

 
49  

𝛼 = 0.2  
𝛽 = 2  

 
Performance specifications (desired cross-over frequency) 
In the previous section the PID controller parameters have been expressed in terms of 𝜔𝑐. It is the 
focus of the following to determine 𝜔𝑐. The value of 𝜔𝑐  is chosen in such a way that the set-point error 

(for the constant-velocity part of the reference; this will be explained later) is below 𝑒 =  
1

2
∙ 𝑒𝑚𝑎𝑥 =

0.05° = 8.7 ∙ 10−4[rad]. As 𝑒 =  𝑆 ∙ 𝑟, the sensitivity function 𝑆 of the system will play an important 
role. Also the nature of the reference signal 𝑟 is of great importance. 

 
Bode plot of the PID controller and Block diagram 

 
Figure 6 - Bode plot of the conceptual PID controller [6] 

 
The system with feedback has the following configuration: 
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Figure 7 Block diagram of system [6]

 
Sensitivity function 
From the block diagram the following is obtained for the sensitivity function: 
 

50 𝑆 =
𝑒

𝑟
= (𝐼 + 𝐺𝐾)−1 

 
Low frequent sensitivity function 
Applying Eqs. 44, 47 and 48 to Eq. 50 and only considering relevant low frequent behavior (i.e. 
admissibly disregarding some high order terms; see [6]), the following sensitivity function is obtained 
[6]: 
 

51 𝑆 =
𝑠3+ (

𝑑

𝑚
)𝑠2+ (𝜔𝑛

2)𝑠

(
𝛼

𝛽
)(𝜔𝑐

3)
 

 
Desired cross-over and servo-error function 
From 𝑆 (see eq.50 and eq.51) it follows that the desired 𝜔𝑐  is dependent on the reference velocity, 
acceleration and jerk; as is the servo error:  
 

52 𝜔𝑐 = (
 𝑅𝛽𝑘�̇� + 𝑏(𝑘𝑚∙𝑖∙𝜂𝐺)2�̈�+𝑅𝛽𝑚𝑟

𝑅𝛼𝑒𝑚
)

1

3
 

 
 

53 𝑒 =
𝛽(

𝑘�̇�

𝑚
 +

(𝑘𝑚∙𝑖∙𝜂𝐺)
2
�̈�

𝑅𝑚
+𝑟 ⃛)

𝛼𝜔𝑐
3  

 
Equation for reference 
The following combination of a 3rd order polynomial and linear function, shaping a ramp signal, is taken 
as the reference signal: 
 
Eq. 54: 
 

𝑟 =
16ℎ𝑚𝑡3

3𝑡𝑚
3 , 0 ≤ 𝑡 ≤ (

𝑡𝑚

4
)  

 

𝑟 =  −
32ℎ𝑚(

𝑡3

6
−

𝑡2𝑡𝑚
4

+
𝑡𝑡𝑚

2

16
−

𝑡𝑚
3

192
)

𝑡𝑚
3 , (

𝑡𝑚

4
) < 𝑡 ≤ (

𝑡𝑚

2
)  

 

𝑟 = (
2ℎ𝑚

𝑡𝑚
) 𝑡 + (−

ℎ𝑚

2
) , (

𝑡𝑚

2
) < 𝑡 ≤ (

𝑡𝑚

2
+ ∆𝑡)  

 

Reference signal parameters 

𝑡𝑚 =  0.1[s]  

ℎ𝑚 =
ω0𝑡𝑚

2
  

With 𝜔0 = 44 [
rad

s
] 

 

Plots  
Reference signal 
From top to bottom: position, velocity, acceleration and jerk: 
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Figure 8 Reference signal 

 
Servo-error 
Servo error:  

 
Figure 9: Servo error 
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The goal set here, is to obtain the performance target as soon as the reference signal reaches the 
constant velocity part. Hence, the region of interest is the section before the signal changes into the 

constant velocity part: (
𝑡𝑚

4
) < 𝑡 ≤ (

𝑡𝑚

2
), i.e.: 0.025[s] < 𝑡 ≤ 0.050 [s]. Hence, the second line of 

equation Eq. 54 is substituted into eqs. 52 to obtain the desired cross-over frequency:  
 
𝜔𝑐  =  126[Hz] = 793[rad/s]  
 

3.1.2 Controller application 
In determining the required cross-over frequency, the PID controller has in fact been designed as all 
its parameters were expressed in 𝜔𝑐  (see equations 47 and 48). In the design of the PID controller, 
usage has been made of the series form: 
 

47 𝐾 =
𝑘𝑝(𝑠𝜏𝑧+1)(𝑠𝜏𝑖+1)

𝑠𝜏𝑖(𝑠𝜏𝑝+1)
 

 
This can be rewritten as follows: 
 

55 𝐾 =
𝐾1𝑠

2+𝐾2𝑠+𝐾3

𝑠(𝜏𝑠+1)
 

 
With: 
 
𝐾1 = 𝑘𝑝𝜏𝑧  

𝐾2 =
𝑘𝑝(𝜏𝑧+𝜏𝑖)

𝜏𝑖
  

𝐾3 =
𝑘𝑝

𝜏𝑖
  

𝜏 = 𝜏𝑝  

 
Then the series form can be converted to the more usual parallel form of an industrial PID controller 
(as discusses in [7]) as follows: 
 

56 𝐾 = 𝐾𝑝 +
𝐾𝑖

𝑠
+

𝐾𝑑𝑠

𝑠𝜏+1
 

 
With: 
 
𝐾𝑝 = 𝐾2 − 𝐾3𝜏  

𝐾𝑖 = 𝐾3  
𝐾𝑑 = 𝐾1 − 𝐾2𝜏 + 𝐾3𝜏

2  
 
With the chosen motor and gearbox the following is obtained for the PID controller parameters: 
 
𝐾𝑝 = 1461   

𝐾𝑖 = 2.1559 ∙ 105  
𝐾𝑑 = 1.8192  
 

Prior to applying the PID controller to the system, the system is first linearized, decoupled and 

decoupling matrices are formulated. The PID controller is adjusted with these matrices and thereafter 

it is applied to the system. 

Linearization 
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The system is linearized around the working point where both motors have an angular velocity 𝜔0 =

7 [Hz] = 44 [
rad

s
] with a desired phase shift 𝑝ℎ𝑠 = 7° =   0.1222[rad] in-between. In Figure 10, the 

linearized and simplified plant are exhibited. 

Decoupling 
Due to the wing stiffness, there is quite some coupling in the system. Because applying a PID controller 
is a SISO control approach, the system first needs to be decoupled (diagonalized). The diagonal PID 
controller is assisted with input and output matrices such that it experiences the plant as a decoupled 
one. This is done by the Owens method (see [8]). In applying the Owens method interaction between 
the modes is removed for a specified frequency regime. Here the chosen regime has been: 0 ≤  𝜔 ≥
 2𝜔𝑐 . This has been done using the wadyadicd.m script and the decoupling has been successful (see 
Figure 11).The PID controller is adjusted with the decoupling matrices and has a bode plot as illustrated 
in Figure 12.  

 

Figure 10 Comparison elaborate and simplified model 
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Figure 11 Decoupling by means of the Owens method 
 

 
 

Figure 12 Adjusted PID controller
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Control on non-linear plant  
In Appendix 2 the designed controller is tested on the linearized plant and in the following it is tested 

on the non-linear model developed in Spacar (see the block named Robird in the block diagram; Figure 

13). Hereby approximations of the aerodynamic forces (see Appendix 3) have been added to the model 

as plant input disturbances (see Figure 13 ). From these results (especially Figure 16) it is clear that for 

the controlled non-linear system, the phase shift of 𝑝ℎ𝑠 = 7° =  0.1222[rad] is reached with an 

accuracy of 𝑒𝑚𝑎𝑥 = ±0.1° = ±0.0017[rad] for a flapping frequency of 𝑓 =  7 [Hz].  
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Figure 13 Block diagram nonlinear system 
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The controlled non-linear system gives the following results: 
 
System output: 

  
Figure 14 System output of controlled non-linear system 

 
 

Servo error: 
 

 
Figure 15 Servo error of controlled non-linear system 

 
 
 
  

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

30

40

50

t[s]

r[
ra

d
]

 

 

Reference1

Reference2

Output1

Output2

0.37 0.371 0.372

15.156

15.158

15.16

15.162

15.164

15.166

15.168

t[s]
r[

ra
d
]

 

 

Reference1

Reference2

Output1

Output2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

t[s]

e
[r

a
d
]

 

 

Servo error



23 
 

Phase shift: 

 
Figure 16 Phase shift of controlled non-linear system 

 

3.2 Mechanical Solution 
The main idea here is to mechanically fix the phase shift 𝑝ℎ𝑠 through friction, in particular by using a 
disc frictional connection. The frictional connection between the discs is established by preload 
provided by a connection through a bolt. The frictional disc connection ensures that the phase shift is 
adjustable with an accuracy as high as the measuring equipment allows (see Figure 18) 
 
From the calculations (see Appendix 4) it followed that with a frictional (aluminum) disc connection 
with a disc radius 𝑟 =  0.015 [m], whereby sufficient preload can be applied by means of a 𝑟𝑏 =
4[mm] radius aluminum bolt (i.e. a M8 – 1.25 bolt), the phase shift can be fixed well to an accuracy as 
high as the measuring equipment allows. Appendix 4 also illustrates that a spur gear with modulus 1, 
36 teeth and a width of 10 [mm] and a radial ball bearing of type 6705 2RS are mechanically sufficient. 
 
Remaining requirements 
As Figure 17 illustrates, the setup is oriented vertically, which was required due to the restriction 
imposed by the wind-tunnel dimensions. The wind tunnel cross-section has a width of 0.9 [m] and a 
height of 0.7 [m]. Considering the wing with length 0.5 [m] and a flapping angle between 0.6 [rad] and 
-0.65 [rad] a vertical orientation is more desirable in order to reduce flow disturbance near the walls. 
As figure 18 illustrates, the setup represents a symmetric half of the actual mechanism in order to 
obtain interpretable measurements. As is evident in Figure 17 the setup is provided with an 
aerodynamic shield to reduce flow disturbances. This shield abides by the symmetric requirement. For 
details on the fabrication of the shield see Appendix 4.4. 
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3.3 Comparison and choice 
Control Solution 
From Figure 16 it followed that for the control solution the phase shift of 𝑝ℎ𝑠 = 7° =  0.1222[rad] is 
reached with the desired accuracy of𝑒𝑚𝑎𝑥 = ±0.1° = ±0.0017[rad]. The drawback of the control 
solution is that it is less reliable than the mechanical solution. 
 
Mechanical Solution 
From the calculations (Appendix 4) it followed that with a frictional (aluminum) disc connection with a 
disc radius 𝑟 =  0.015 [m], whereby sufficient preload can be applied by means of aM8 – 1.25 bolt 
aluminum bolt, the phase shift can be fixed well to an accuracy as high as the measuring equipment 
allows. Although the mechanical solution is more reliable than the control solution, it restricts freedom 
for experiments significantly. Viz. during operation the phase shift cannot be changed. 
 
Choice  
Taking the pros and cons of both solutions in consideration, there is concluded that the most desirable 
solution is a combination of them both (see Figure 17 and Figure 18). In this way the control solution 
may be used when more flexibility in doing experiments is required and the mechanical solution may 
be applied when only a constant phase shift is required or when the control solution fails. 
 

3.4 Equipment selection 
The test setup is equipped with two (servo) motors and a 6-DOF force sensor. The placement of this 
equipment in the Spacar model is indicated in Figure 19 by means of arrows. The two motors are 
connected in the nodes as indicated by the green arrows and the placement of the force sensor is 
indicated by the red arrow. 
 
In Figure 20, a complete schematic overview is given for the chosen gearbox, motor, encoder and 
control unit and the achieved requirements. The selection of these equipment is discussed in Appendix 
5 in more detail. In Appendix 5.2.1 and 5.2.2 the selection of an appropriate 6-DOF force sensor and 
the selection of an appropriate power tool are discussed respectively. In Appendix 8 a brief discussion 
is given on the working principles of the chosen 6-DOF sensor.  
 
In Figure 22 a schematic overview is given of the applied hardware and software of the complete setup 
(see Figure 21). Motor Control: Using Elmo controllers with the Composer software, position control is 
applied on the Maxon motors which are provided with encoders to measure the position. 
Communication between the Elmo controllers and the Composer software is established through a 
dual RS232 serial connection using a USB-COM232-PLUS2. Both motors are controlled simultaneously 
through programs written in the Elmo Studio (see Appendix 7.2). Force measurement: Voltages 
supplied by the load cells during measurements are first amplified and then, through an NI DAQ 
platform, are sent and saved to an NI PCI-6221 card on an xPC target computer. With a host computer 
a DAQ application is developed in Matlab/Simulink and build/downloaded to the target computer via 
Ethernet connection enabling saving measured data. The measured data is processed and compared 
to results from the non-linear model developed in Spacar and run in Simulink. 
 
For an overview of all parts and their costs, see Appendix 9. 
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Figure 17 Chosen design concept: A combination of the control and mechanical solution 
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Figure 18 Exploded front view of the setup (without force sensor, wing and aerodynamic shield) 
 
 

 

Figure 19 Spacar model 
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Figure 20 Complete overview of the chosen equipment and the achieved requirement for the control solution
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1

2
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∆𝑛

∆𝑀
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V
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Figure 21 Robird wind tunnel test setup 

 
  

 

Figure 22 Schematic overview of the applied hardware and software.  
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4 System identification and parameter estimation 

4.1 Identification plan 
Actual open loop (upside down configuration) identification 
In this section open loop identification is conducted on the stable upside down configuration (see 
Appendix 6). The system is excited with an input current and the output angle is measured. 
Subsequently, state space identification is conducted in Matlab ident. The following current input 
signal is chosen for system excitation (see the plot of u1 in Figure 23; also see Appendix 6): 
 

 Signal type: In order to capture a number of frequencies in one signal a chirp signal is used for 
current input. 

 Frequency range: Considering the developed model as sufficient guidance (relevant 
resonances at 𝜔𝑅low

= 0.95 [Hz], 𝜔𝐴𝑅,1 = 𝜔𝐴𝑅,2 = 6.8 [Hz] and 𝜔𝑅 = 9.6 [Hz]) (see Figure 

5), a frequency range of 0 [Hz] to 10 [Hz] is chosen. 

 Signal amplitude: In order to excite the system sufficient enough while keeping the flapping 
angle small to neglect aerodynamic forces, an amplitude of 0.2 [A] is chosen. 

 Sample frequency: The sample time is restricted by the Nyquist frequency (𝜔𝑁 =
𝜔𝑠

2
=

1

2𝑡𝑠
) and 

the highest relevant frequency (𝜔𝑅), also see Appendix 6: 
 

57 𝜔𝑁 > 5 ∙ 𝜔𝑅  
 
For the sample frequency then applies: 
 

58 𝑡𝑠 <
1

10∙𝜔𝑅
   

 
Hence, with 𝜔𝑅 = 9.6 [Hz] a chosen sample time of 𝑡𝑠 = 0.0072 [s] is sufficient. 

 

 
Figure 23 system output (position before gearbox; y1 in [counts]) and input u1 (motor current in [A]). Left: 

Working data and right: Validation data 

 

4.2 Identification results 
Order estimation: In ident (Matlab identification tool) a state space model is estimated. From the 
singular values, first the system order is estimated to be four as expected (see the left side of Figure 
24). Frequency response: Next the state space of the system is estimated and the frequency response 
is plotted. Model residuals: In order to discuss the accuracy of the estimated model the residuals are 
plotted (see the left plot in Figure 25). 
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The fourth order (see Figure 24) estimated system exhibits all three 
resonances, 𝜔𝑅low

, 𝜔𝐴𝑅,1 = 𝜔𝐴𝑅,2 and 𝜔𝑅. This is evident in the frequency plot (see Figure 24) and 

can also be seen when closely observing the zoomed in working data (see the right part of Figure 25). 
As the left part of Figure 25 illustrates, i.e. the cross correlation of the input and output data is within 
the confidence bounds, the estimated model is accurate. 
 
 
 

 
 

Figure 24 Left: State space order estimation in ident; Right: state space estimated system 

 

 
Figure 25 Left: model residuals; Right: zoomed in working data 
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5 Model validation and controller redesign 
Model validation: Comparison frequency response 
Previous to comparing the frequency responses, system damping is measured and added to the Spacar 
model (see Appendix 6.2). Comparing the frequency response of the estimated system and the 
modeled system shows that the model fits the measured plant relatively well (see Figure 26). To a 
great extent, the various resonances agree with each other.  
 

 
Figure 26 Frequency response of the modeled and estimated system 

 
Controller redesign 
Considering the model matches the identified plant well, the controller redesign is considered 
redundant. I.e. the simplified model based on which the controller has been designed (see equation44) 
matches the low frequency behavior of the model well. 

However, due to limitations of the applied ELMO controllers, application of PID controller did not 
seem straightforward, instead cascaded position (P) velocity (PI) control is applied. This PIP controller 
is tweaked using tuning rules as described in Appendix 7. 
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6 Controller implementation and tweaking 
Due to mechanical limitations of the wing, the controlled system is tested for a flapping frequency up 
to 4 [Hz], rather than 7 [Hz] that is achieved in-flight. As mentioned previously, due to limitations of 
the ELMO controllers a tuned PIP controller is implemented instead of the designed PID controller. 

From the results (especially Figure 29) it is clear that for the controlled non-linear system, at a 
flapping frequency of 4 [Hz], the phase shift of 𝑝ℎ𝑠 = 7° =  0.1222[rad] is reached with an accuracy 
of 𝑒𝑚𝑎𝑥 = ±0.1° = ±0.0017[rad]. I.e. the target performance of 𝑒𝑚𝑎𝑥 = ±0.1° = ±0.0017[rad] is 
reached.  
 
System output: 
 

  
Figure 27 System output of controlled system (Right: Zoomed in) 

 
 

Servo error: 
 

 
 

Figure 28 Servo error of controlled system 
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Phase shift: 

 
Figure 29 Phase shift of controlled system 

 

 

Figure 30 Required motor current 

 
 
Comparison to simulation 
In the following a comparison is conducted between the simulations and experiments of the PIP 
controlled system. From the error plot of Figure 31 it is clear that, given the same control parameters, 
even though the measured and simulated current agree rather well in shape (see Figure 32), the 
measured error is significantly larger than the simulated one.  This may be caused by possible occurring 
loads that are not accounted for in the model.  
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Figure 31 Comparing servo error of the PIP controlled system between simulation and measurements 

 

 
Figure 32 Comparing required motor current (after detrending) between simulation and measurements 

 
Variable phase shift online 
The following figures illustrate that online modification of the desired phase shift is possible very well. 
However these results do not illustrate complete settling of the response due to limited measurement 
points provided by the used Composer software, i.e. run time is taken small. In Figure 33 to Figure 36 
a varying phase shift 𝑝ℎ𝑠 from 0 [°] to 10 [°] in steps of 2.5 [°] is given for references corresponding to 
1 to 4 [Hz] respectively. 
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Figure 33 Online phase shift modification: Left: Reference (1 [Hz]); Right: Phase shift 

 

 
Figure 34 Online phase shift modification: Left: Reference (2 [Hz]); Right: Phase shift 

 

 
Figure 35 Online phase shift modification: Left: Reference (3 [Hz]); Right: Phase shift 

 

 
Figure 36 Online phase shift modification: Left: Reference (4 [Hz]); Right: Phase shift 
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7 Measurement aerodynamic loads 
As one of the purposes of the developed and designed test setup is to gain understanding in the 
aerodynamics of Robird and ultimately of actual birds, there is aimed at measuring aerodynamic loads 
on Robird (and its wings) for gathering empirical and validation data for analytical and numerical 
studies on (Ro) bird aerodynamics. 
 In order to measure these forces, the setup is mounted on a 6 – DOF force sensor which 

measures reaction forces and torques in all directions. The measured reaction loads 𝑓𝑚𝑒𝑎𝑠
(𝑜)

 result from 

the contribution of inertial forces 𝑀(𝑜)�̈�, stress resultants 𝐷
,𝑥(𝑜)
𝑇 𝜎, velocity dependent inertia ℎ(𝑜) and 

aerodynamic loads 𝑓𝑎𝑒𝑟𝑜
(𝑜)

 , see equation59.  
 

59 𝑓𝑚𝑒𝑎𝑠
(𝑜)

 = 𝐷
,𝑥(𝑜)
𝑇 𝜎 + ℎ(𝑜) + 𝑀(𝑜)�̈� + 𝑓𝑎𝑒𝑟𝑜

(𝑜) (𝑥, �̇�, �̈�)   

 

In order to distinguish 𝑓𝑎𝑒𝑟𝑜
(𝑜)

 from 𝑓𝑚𝑒𝑎𝑠
(𝑜)

, 𝐷
,𝑥(𝑜)
𝑇 𝜎, ℎ(𝑜) & 𝑀(𝑜)�̈� need to be known and subtracted. This 

is feasible, as the three latter terms are known from simulation with the developed model (with zero 
aerodynamic load), i.e.: 
 

60 𝑓𝑠𝑖𝑚
(𝑜)

 = 𝐷
,𝑥(𝑜)
𝑇 𝜎 + ℎ(𝑜) + 𝑀(𝑜)�̈� 

 
With regard to this, the following applies for the contribution of aerodynamic loads to the reaction 

forces 𝑓𝑎𝑒𝑟𝑜
(𝑜)

: 
 

61 𝑓𝑎𝑒𝑟𝑜
(𝑜)

= 𝑓𝑚𝑒𝑎𝑠
(𝑜)

− 𝑓𝑠𝑖𝑚
(𝑜)

   

 

Subsequently, using a transformation matrix 𝐵, the aerodynamic loads transformed on the body 𝑓𝑎𝑒𝑟𝑜
(𝑏)

 
can be determined: 
 

62 𝑓𝑎𝑒𝑟𝑜
(𝑏)

= 𝐵−1𝑓𝑎𝑒𝑟𝑜
(𝑜)

 
 
With: 
 

𝐵 =  

[
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −𝑧 𝑦 1 0 0
𝑧 0 −𝑥 0 1 0

−𝑦 𝑥 0 0 0 1]
 
 
 
 
 

  

 
(𝑥, 𝑦, 𝑧)  = coordinate body center 

 
Alternatively, the aerodynamic loads transformed on the Robird wing can be determined: 
 

63 𝑓𝑎𝑒𝑟𝑜
(𝑏)

= 𝐵−1𝑓𝑎𝑒𝑟𝑜
(𝑜)

 
 
With, in this case: 
 

(𝑥, 𝑦, 𝑧) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))   = time/movement dependent wing center coordinate, 

distractible from simulation.  
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Determination of aerodynamic loads from measured reaction forces 
In the following, aerodynamic loads are determined through the measurement of reaction forces in 
the origin of the 6-DOF force sensor. These are compared to simulation results followed by the 
distinction of aerodynamic loads. The loads are then transposed to the center of the body and 
alternatively to the center of the wing. In the following, this is described in more detail: 
 

1. Measurement of reaction forces: Reaction forces are measured for various frequencies. And 
for each frequency, the phase shift 𝑝ℎ𝑠 is varied online: 

 

 Free stream velocity: 𝑈∞ = 0 [
m

s
] 

 Frequencies: 𝑓 = 1,2,3 & 4 [Hz] for 25 [s] per constant 𝑓   

 Phase shift:  𝑝ℎ𝑠 =  0, 2.5, 5, 7.5 & 10 [°] for 5 [s] per constant 𝑝ℎ𝑠 
 

2. Processing measurements: The measured reaction forces are processed according to the 
following procedure: 

 

 Calibration: The initial load (weight of the setup) is measured and subtracted from 
subsequent measurements. 

 Data processing: After calibration, the measured data is filtered, sectioned and averaged: 
 
o Filtering:  the raw data is filtered for a frequency range 𝑓𝑟  of:  0.1𝑓 ≤ 𝑓𝑟 ≤ 8𝑓 
o Sectioning: 1 [s] sections are taken of the 5 [s] measurements 
o Averaging: the first and last sections are discarded and middle sections are 

averaged 
 

3. Calculation of aerodynamic loads: Aerodynamic loads are separated from the measurements 

as follows: 𝑓𝑎𝑒𝑟𝑜
(𝑜)

= 𝑓𝑚𝑒𝑎𝑠
(𝑜)

− 𝑓𝑠𝑖𝑚
(𝑜)

 (see equation61).   

 
4. Transposing loads to center of body: The loads are transposed to the center of the body as 

follows: 𝑓𝑎𝑒𝑟𝑜;𝑏𝑜𝑑𝑦
(𝑜)

= 𝐵−1𝑓𝑎𝑒𝑟𝑜
(𝑜)

 with 𝑥 = 0[m], 𝑦 = 0[m] & 𝑧 = 0.13[m] (see equation62). 

 
5. Transposing loads to center of wing: The loads are transposed to the center of the wing as 

follows:  𝑓𝑎𝑒𝑟𝑜;𝑤𝑖𝑛𝑔
(𝑜)

= 𝐵−1𝑓𝑎𝑒𝑟𝑜
(𝑜)

 with 𝑥 = 0[m], 𝑦 = 0.2 sin(𝜃) + 0.025 [m] & 𝑧 =

 0.2 sin(𝜃) + 0.13[m] +  0.012[m] (see equation63).  
 
Results 
In Appendix 8.2, the above procedure is illustrated for 𝑓 =  1[Hz] and 𝑝ℎ𝑠 =  7.5[°]. In Figure 37 to 
Figure 40 only the averaged 1[s] sections of the measured and simulated reaction forces are plotted 
for 𝑓 =  1[Hz] to 𝑓 =  4[Hz] respectively.  

These plots indicate good agreement between measurements and simulations for low 
frequencies, i.e. frequencies up to 1[Hz]. For higher frequencies, i.e. above 1[Hz], the measured forces 
exceed the simulated ones. This is as expected, because the developed model only captures inertia 
forces and stress resultants whereas the measurements in addition also capture aerodynamic loads.  
  
Dependency on phase shift 𝑝ℎ𝑠 and frequency f  
Results of the averaged aerodynamic loads (see Figure 41) illustrate clear dependency on the 
frequency f, but not yet on the phase shift 𝑝ℎ𝑠. The frequency dependency is obvious for𝐹𝑥, 𝐹𝑦 and 
𝑀𝑧 which correspond well to thrust, lift and moment aerodynamic loads. 
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Figure 37 Averaged reaction forces in origin; 𝑓 =  1[Hz] and 𝑝ℎ𝑠 =  7.5[°] 
 

 

Figure 38 Averaged reaction forces in origin; 𝑓 =  2[Hz] and 𝑝ℎ𝑠 =  7.5[°] 
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Figure 39 Averaged reaction forces in origin; 𝑓 =  3[Hz] and 𝑝ℎ𝑠 =  7.5[°] 

 

 

Figure 40 Averaged reaction forces in origin; 𝑓 =  1[Hz] and 𝑝ℎ𝑠 =  7.5[°] 
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Figure 41 Averaged aerodynamic loads on wing center; 𝑓 = [1  4][Hz] and 𝑝ℎ𝑠 = [0  10][°] 
 

Wind tunnel experiments 
The measurements as described in the section above have been conducted in the wind tunnel (see 
Figure 42) for a number of frequencies 𝑓 = [0 –  4] [Hz]. Per frequency 𝑓, the experiments have been 
conducted for various free stream velocities 𝑈∞  = [0 –  12] [m/s]. And per free stream velocity 𝑈∞, 
experiments have been conducted for a number of phase shifts 𝑝ℎ𝑠 = [0 –  15] [°] (varied online). 
This whole procedure has been repeated for various pitch angles 𝑝𝑖𝑡𝑐ℎ = [0 –  10] [°]. For purposes 
of illustration, in Figure 43 the results are depicted for 𝑓 =  3 [Hz] & 𝑝𝑖𝑡𝑐ℎ =  0 [°] and in Figure 44 
the results for 𝑓 =  3 [Hz] & 𝑝𝑖𝑡𝑐ℎ =  5 [°] are depicted. Only 𝐹𝑥, 𝐹𝑦 and 𝑀𝑧 which correspond well 
to thrust, lift and moment aerodynamic loads are plotted. Due to symmetry of the setup other loads, 
i.e. 𝐹𝑧 𝑀𝑥 and 𝑀𝑦 cancel out in the actual Robird. 
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Figure 42 Wind tunnel measurements 
 
 

 

Figure 43 Averaged aerodynamic loads transported on wing center: 𝑓 =  3 [Hz] & 𝑝𝑖𝑡𝑐ℎ =  0 [°] 
 

 

Figure 44 Averaged aerodynamic loads transported on wing center: 𝑓 =  3 [Hz] & 𝑝𝑖𝑡𝑐ℎ =  5 [°] 
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Conclusions  
The goal of this project has been to design a wind tunnel test setup for the peregrine falcon Robird. 
Robird mimics flapping motion by two con rod mechanisms per wing which transform the motor 
rotational motion into flapping, i.e. plunging and pitching. The latter caused by introducing a phase 
shift 𝑝ℎ𝑠 between the motion of the two con rod mechanisms. 

For freedom in experiments the setup was required to allow for an adjustable phase shift 𝑝ℎ𝑠 
typically between 6° and 7° with an accuracy of 𝑒𝑚𝑎𝑥 = 0.1° for flapping frequencies up to 𝑓 =
 7 [Hz]. For this requirement, a control and a mechanical solution have been combined. In the 
mechanical solution, the desired phase shift is fixed passively/mechanically through a frictional disc 
connection. In the control solution the desired phase shift 𝑝ℎ𝑠 is fixed actively through the use of two 
motors. For this solution an optimal PID controller is designed based on a one parameter approach. 
Simulations with a nonlinear model of the setup mechanism developed in Spacar (including rough 
estimates of aerodynamic loads introduced as disturbance) have shown that with the designed PID 
controller a phase shift of 𝑝ℎ𝑠 =   7 ° is obtained with a deviation of below 𝑒𝑚𝑎𝑥 = 0.1° for a flapping 
frequency of 𝑓 =  7 [Hz]. 

After the realization of the actual setup, state space system identification and parameter 
estimation is conducted using ident (Matlab). From the singular value plot, the model order was 
estimated to be four which is in good agreement with the developed model. All main resonances were 
captured well by the estimated plant. The estimation was proven correct as the model residuals were 
located within the confidence bounds. The results indicate that the developed model, which is a 
symmetric half of the Robird mechanism, forms a good basis for identifying the body dynamics of 
Robird. 

Due to limitations of the applied ELMO controllers on the actual setup, cascaded position (P) 
velocity (PI) control is applied instead of PID control. To prevent the wing from breaking, a flapping 
frequency of 4 [Hz] is applied during the tests. After tweaking and implementation of the PIP controller, 
the results show that the desired phase shift 𝑝ℎ𝑠 is obtained within ±0.1°. From comparison with 
simulations, using a PIP controller with the same parameters as in the implementation, it follows that 
the current profiles do agree well qualitatively. However, in the simulation a much higher accuracy is 
obtained. This rises the suspicion of higher loads and disturbances in the actual setup, possibly caused 
by e.g. frictional losses and/or higher aerodynamic loads than estimated. 

The setup was required to allow for measurement of reaction forces and torques in all directions 
in order to measure aerodynamic loads. To this end a 6-DOF sensor is mounted at the base of the 
setup. Initial reaction force measurements have indicated good agreement with reaction force 
simulations for low frequencies, i.e. frequencies up to 1[Hz]. For higher frequencies, i.e. above 1[Hz], 
the measured forces exceed the simulated ones. This is as expected, because the developed model 
only captures inertia forces and stress resultants whereas the measurements in addition also capture 
aerodynamic loads. In this way, for wind tunnel experiments to be followed, aerodynamic loads can 
be distinguished by subtracting the measurements with the simulations.   
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Recommendations 
 

1. Identify causes of discrepancies between results and expectations 
a. Measure aerodynamic forces: As is discussed already, based on the applied PIP 

controller, the simulated error is significantly smaller than the measured one. This 
suggests higher loads than expected. Because through identification confidence is 
gained in the model and thus the modeled loads (due to inertia, stiffness, damping 
and gravity), there is suspected that the aerodynamic loads are more probable to be 
higher than estimated. Measuring these loads would clarify this. 

b. Identify backlash and frictional losses: Other possible causes for higher loads than 
expected which are entitled of investigation are backlash and frictional losses. 

c. Use more appropriate software (e.g. 20-sim or xPC) to apply the designed controller 
directly and for synchronization of all measurements: Another possible cause for not 
meeting the performance target is application of a PIP controller instead of the 
designed PID controller. Also, in order to prevent synchronization problems it is useful 
to use one software platform for all measurements, e.g. either xPC target (Matlab) or 
20-sim 4C (20-sim). 

 
2. Conduct further research with the designed setup 

a. Understanding aerodynamics: The test setup has been designed with the general 
purpose to provide understanding in the dynamics of Robird, especially the 
aerodynamics behind its far from fully understood flapping flight. A starting point is 
studying the influence of flapping frequency and the angle of attack on the flight of 
Robird. 

b. Further model development: As was one of the objectives of the design, the setup 
represents a symmetric half of the flapping wing mechanism of Robird. Identification 
data retrieved from this setup can then be used as validation data for dynamic models 
describing the complete flapping wing mechanism of Robird. The developed model 
can then be used for various purposes such as providing understanding in the 
dynamics of Robird and for controller design. 

c. Lift off: The current version of Robird cannot establish lift off on its own. Typically it is 
thrown into the air while already flapping in cruising mode. A lift off mode is absent. 
This will most likely require more advanced wing kinematics, i.e. presumably at least 
one more degree of freedom in the wing is required. This can be tested using the 
designed setup. 

d. Energy saving: Currently Robird is assisted with a battery providing it with power to fly 
only as long as up to ten minutes. Keeping Robird in the air longer is a challenge. 
Possibilities to save energy such as adding spring elements to store and recover energy 
can be studied using the designed setup. 

e. Variable phase shift during flight: Up till now the flight of Robird has been carried out 
with only a fixed phase shift 𝑝ℎ𝑠. The influence of varying the phase shift 𝑝ℎ𝑠 during 
flight can be studied using the test setup, as it does allow this degree of freedom. 

a. Energy generation: The setup may be used for energy generation exploration. One way 
of studying this is by imposing fluid flow (air flow/wind or water flow) onto the 
unactuated wing and convert wing flapping, i.e. plunging and pitching, into rotary 
motion/force through the unique dual con rod mechanism (rocker – connecting rod – 
crank) to possibly generate electric power through an electricity generator. 
Additionally, in a more advanced stadium, for optimal operation, intelligent control 
could be applied to enable the system to automatically adjust to different conditions, 
e.g. flow velocity and direction. 
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Appendix 1 Model Development 

 

1.1 Kinematic and dynamic analysis for a simplified 2D mechanism of the setup 
For illustration of the theory discussed in section 2.1, in the following, a simple 2D model of the wing 
mechanism is developed considering the wing to be rigid.  
 
Simplified mechanism with rigid wing 
As Figure 45 illustrates, the actual mechanism is represented by three rigid beams (1, 2 and 3) and the 

wing is also represented by a rigid beam (4). The mechanism is supported in nodes 1⃑  and 4⃑  in both the 
x- and y-direction. The mechanism is actuated through the rotational node 𝜙1 of beam 1.  The beams 
are connected to each other in the translational coordinates (𝑥 and 𝑦) but not in the rotational 
coordinates (𝜙) except for beam 3 and beam 4 (wing) which share the same rotational coordinate 𝜙6 

in node 4⃑ . 

 

 
Figure 45 simplified mechanism with rigid wing 

 

  

1⃑ : 𝑥1, 𝑦1, 𝜙1  

2⃑ : 𝜙2, 𝑥2, 𝑦2 , 𝜙3  

3⃑ : 𝜙4, 𝑥3, 𝑦3, 𝜙5  

 4⃑ : 𝜙6, 𝑥4, 𝑦4  

 

5⃑ : 𝜙7, 𝑥5, 𝑦5  

1 

 2 

3 

4 

𝑥 

𝑦 

𝜙  
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From this configuration the following applies: 
For the nodal coordinates applies: 
 
64  
 

𝑥 = [[𝑥(𝑜)]
𝑇

[𝑥(𝑐)]
𝑇

[𝑥(𝑚)]
𝑇
] =

[[𝑥1 𝑦1 𝑥4 𝑦4]𝑇 [𝑥2 𝑦2 𝜙2 𝜙3 𝑥3 𝑦3 𝜙4 𝜙5 𝜙6 𝑥5 𝑦5 𝜙7]
𝑇 [𝜙1]

𝑇]  
 
For the deformation coordinates applies: 
 

65 𝜀 = [

[𝜀(o)]

[𝜀(𝑚)]

[𝜀(𝑐)]

] = [

[𝐷(𝑥)(o)]

[𝐷(𝑥)(𝑚)]

[𝐷(𝑥)(𝑐)]

] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝜀1𝑒

𝜀1𝑏1

𝜀1𝑏2

𝜀2𝑒

𝜀2𝑏1

𝜀2𝑏2

𝜀3𝑒

𝜀3𝑏1

𝜀3𝑏2

𝜀4𝑒

𝜀4𝑏1

𝜀4𝑏2]
 
 
 
 
 
 
 
 
 
 
 

[∅]
[∅] ]

 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 √((𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2) − 𝑙𝑜1

(𝑠𝑖𝑛(𝜙1))(𝑥2 − 𝑥1) − (𝑐𝑜𝑠(𝜙1))(𝑦2 − 𝑦1)

−(𝑠𝑖𝑛(𝜙2))(𝑥2 − 𝑥1) + (𝑐𝑜𝑠(𝜙2))(𝑦2 − 𝑦1)

√((𝑥3 − 𝑥2)
2 + (𝑦3 − 𝑦2)

2) − 𝑙𝑜2

(𝑠𝑖𝑛(𝜙3))(𝑥3 − 𝑥2) − (𝑐𝑜𝑠(𝜙3))(𝑦3 − 𝑦2)

−(𝑠𝑖𝑛(𝜙4))(𝑥3 − 𝑥2) + (𝑐𝑜𝑠(𝜙4))(𝑦3 − 𝑦2)

√((𝑥4 − 𝑥3)
2 + (𝑦4 − 𝑦3)

2) − 𝑙𝑜3

(𝑠𝑖𝑛(𝜙5))(𝑥4 − 𝑥3) − (𝑐𝑜𝑠(𝜙5))(𝑦4 − 𝑦3)

−(𝑠𝑖𝑛(𝜙6))(𝑥4 − 𝑥3) + (𝑐𝑜𝑠(𝜙6))(𝑦4 − 𝑦3)

√((𝑥5 − 𝑥4)2 + (𝑦5 − 𝑦4)2) − 𝑙𝑜4

(𝑠𝑖𝑛(𝜙6))(𝑥5 − 𝑥4) − (𝑐𝑜𝑠(𝜙6))(𝑦5 − 𝑦4)

−(𝑠𝑖𝑛(𝜙7))(𝑥5 − 𝑥4) + (𝑐𝑜𝑠(𝜙7))(𝑦5 − 𝑦4)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[∅]

[∅] ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
With 𝑙𝑜1, 𝑙𝑜2, 𝑙𝑜3 and 𝑙𝑜4 the lengths of beam 1, 2, 3 and 4 respectively. 
 
By applying eq. 17 it follows that there are 12 unknowns and 12 equations, hence the system is 
kinematically determinate. The system has one degree of freedom, namely 𝜙1. 
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Then, from eq. 10 the first order geometric transfer functions are derived: 
 

66 𝐹,𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0

𝑦1  −  𝑦2

𝑥2 − 𝑥1

1

1 −
𝑥1𝑦3 − 𝑥3𝑦1 − 𝑥1𝑦4 + 𝑥4𝑦1 + 𝑥3𝑦4 − 𝑥4𝑦3

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

−
(𝑦3 − 𝑦4)(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2)

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

(𝑥3 − 𝑥4)(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2)

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

1 −
𝑥1𝑦3 − 𝑥3𝑦1 − 𝑥1𝑦4 + 𝑥4𝑦1 + 𝑥3𝑦4 − 𝑥4𝑦3

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

(𝑦4 − 𝑦5)(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2)

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

−
(𝑥4 − 𝑥5)(𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2)

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

𝑥1𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2

𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦4 + 𝑥4𝑦2 + 𝑥3𝑦4 − 𝑥4𝑦3

1 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
67 𝐸,𝑞 = [0 0 0 0 0 0 0 0 0 0 0 0]𝑇  

 
From eq. 13 the second order geometric transfer functions are derived: 
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68 𝐹,𝑞𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0

−𝑑𝑥1

−𝑑𝑦1

0
𝑑𝑥1𝑑𝑥3+𝑑𝑦1𝑑𝑦3

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
+

𝑙𝑜3
2(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
+

(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

−𝑑𝑦3(𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2)

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
−

𝑙𝑜3
2𝑑𝑦2(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
−

𝑙𝑜2
2𝑑𝑦3(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

𝑑𝑦3(𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2)

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
+

𝑙𝑜3
2𝑑𝑦2(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
+

𝑙𝑜2
2𝑑𝑦3(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

𝑑𝑥1𝑑𝑥3+𝑑𝑦1𝑑𝑦3

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
+

𝑙𝑜3
2(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
+

(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

−
𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
−

𝑙𝑜2
2(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
−

(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)
2(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

−
𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
−

𝑙𝑜2
2(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
−

(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)
2(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

−𝑙𝑜4
2𝑑𝑥3(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)2(𝑑𝑥3𝑑𝑥4+𝑑𝑦3𝑑𝑦4)
+

𝑑𝑦4(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
+

𝑙𝑜2𝑑𝑦4(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
+

𝑑𝑦4(𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2)

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
+

𝑑𝑦4(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2(−𝑑𝑥4𝑑𝑦3+𝑑𝑥3𝑑𝑦4)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)2(𝑑𝑥3𝑑𝑥4+𝑑𝑦3𝑑𝑦4)

−
𝑑𝑥4(𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2)

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
−

𝑑𝑥4(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
−

𝑙𝑜2
2𝑑𝑥4(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
−

𝑙𝑜4
2𝑑𝑦3(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)2(𝑑𝑥3𝑑𝑥4+𝑑𝑦3𝑑𝑦4)
−

𝑑𝑥4(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)2(−𝑑𝑥4𝑑𝑦3+𝑑𝑥3𝑑𝑦4)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)2∗(𝑑𝑥3𝑑𝑥4+𝑑𝑦3𝑑𝑦4)

−
𝑑𝑥1𝑑𝑥2+𝑑𝑦1𝑑𝑦2

𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2
−

𝑙𝑜2
2(𝑑𝑥1𝑑𝑦3−𝑑𝑥3𝑑𝑦1)2

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3
−

(𝑑𝑥1𝑑𝑦2−𝑑𝑥2𝑑𝑦1)
2(𝑑𝑥2𝑑𝑥3+𝑑𝑦2𝑑𝑦3)

(𝑑𝑥2𝑑𝑦3−𝑑𝑥3𝑑𝑦2)3

0 ]
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69 𝐸,𝑞𝑞 = [0 0 0 0 0 0 0 0 0 0 0 0]𝑇  

 
Whereby: 
𝑑𝑥1  =  𝑥2 − 𝑥1  
𝑑𝑦1  =  𝑦2 − 𝑦1  
𝑑𝑥2  =  𝑥3 − 𝑥2  
𝑑𝑦2  =  𝑦3 − 𝑦2  
𝑑𝑥3  =  𝑥4 − 𝑥3  
𝑑𝑦3  =  𝑦4 − 𝑦3  
𝑑𝑥4  =  𝑥5 − 𝑥4  
𝑑𝑦4  =  𝑦5 − 𝑦4  
 
Now the velocities and accelerations can be determined through equations 6 and 7 and the position 
can be determined iteratively (see eq.14). Also, either forward or inverse dynamic analysis could be 
applied using the equations of motion (eq.15). 
 
Simplified mechanism with flexible wing  
For the mechanism with flexible wing, the same configuration as presented in Figure 45 applies. Hence 
for the nodal coordinates the same applies: 
 

70  
 

𝑥 = [[𝑥(𝑜)]
𝑇

[𝑥(𝑐)]
𝑇

[𝑥(𝑚)]
𝑇
] =

[[𝑥1 𝑦1 𝑥4 𝑦4]𝑇 [𝑥2 𝑦2 𝜙2 𝜙3 𝑥3 𝑦3 𝜙4 𝜙5 𝜙6 𝑥5 𝑦5 𝜙7]
𝑇 [𝜙1]

𝑇]  
 
 
However, now the deformation of the wing is not negligible. Hence for the deformation coordinates 
now applies: 
 

71 𝜀 = [

[𝜀(o)]

[𝜀(𝑚)]

[𝜀(𝑐)]

] = [

[𝐷(𝑥)(o)]

[𝐷(𝑥)(𝑚)]

[𝐷(𝑥)(𝑐)]

] =

[[𝜀1𝑒 𝜀1𝑏1 𝜀1𝑏2 𝜀2𝑒 𝜀2𝑏1 𝜀2𝑏2 𝜀3𝑒 𝜀3𝑏1 𝜀3𝑏2]𝑇 [𝜀4𝑒 𝜀4𝑏1 𝜀4𝑏2]𝑇 [∅]𝑇]  
 
By applying eq. 17 it follows that there are 12 unknowns and 12 equations, hence the system is 
kinematically determinate. The system has four degrees of freedom, namely 𝜙1, 𝜀4𝑒, 𝜀4𝑏1 and 𝜀4𝑏2. 
With this regard, the equations for the geometric transfer functions are omitted as these would lead 
to too bulky equations. 
 

Extension to 3D configuration 
Here, the model is extended to a 2DOF 3D configuration. The degrees of freedom are indicated in the 
figure by the red arrows. Wing stiffness is modeled through a torsional spring (see the red colored 
element in Figure 46). In contrast to the 2D configuration, in the 3D configuration system/element 
orientation is described by means of Euler parameters instead of angles. For more detail on this see 
[3] and [2].  
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Figure 46 3D configuration of the mechanism 

 

1.2 Mass and equivalent mass calculation 
 
Mass 
The system mass is calculated in Spacar: 
 
Mass of the mechanism: 𝑚𝑚 = 0.0183 [kg] 
Mass of the wing: 𝑚𝑤 = 0.07 [kg] 

Mass experienced by one servo-motor (in decoupled configuration): 𝑚 =
1

2
𝑚𝑚 +

1

2
𝑚𝑤 = 0.0441[kg] 

 
Equivalent mass 
As illustrated in [6], instead of using equation45, the equivalent mass 𝑚𝑒𝑞 can be estimated from the 

high frequency (high order) part of the plant for a closer approximation with the more elaborate Spacar 
model: 
 

72 𝐺𝐻𝐹 =
1

𝑚𝑒𝑞𝑠2  

 
And therefor, from the linearized Spacar model, the following applies for 𝑚𝑒𝑞: 

 

73 𝑚𝑒𝑞 =
1

𝐺𝐻𝐹⋅𝜔2 =  0.0026[
𝑠2

𝑟𝑎𝑑2] 

  

𝑥 

𝑧 

𝑦 
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1.3 Wing stiffness estimation and measurement 
Objective 
For a reliable approximation of the coupling between the two (servo) motors, presumably caused by 
the torsional stiffness between the pins of the wing when in phase shift, the torsional stiffness  𝑘𝑡  
between the pins is estimated (in SolidWorks) and measured. Also, the longitudinal stiffness 𝑘 (used 
for the simplified model) is determined from the low frequency natural frequency 𝜔𝑛  obtained from 
the linearized Spacar model. 
 

1.3.1 Estimation 
Wing stiffness 
The wing material is EPS (Expanded polystyrene) Foam and has the following properties [9]: 
 
Elastic Modulus: 2.21 [MPa] 
Shear Modulus: 3.17 [MPa] 

Mass Density: 21.6 [
kg

m3] 

Tensile Strength: 0.12 [MPa] 
Compressive Strength: 0.1 [MPa]  
Yield Strength: 0.18 [Mpa] 
 
The wing stiffness is estimated in SolidWorks: 

Figure 47Wing stiffness estimation 

 
On each pin an average force 𝐹 =  1 [N] is applied at a distance of 0.07 [m] causing a total torque 
of 𝑇 =  2 ∙ 1[N] ∙ 0.07[m]  =  0.14[Nm]. This load caused a deflection of 𝛼 =  0.06 [rad] = 3.34°. 
This is estimated as follows: 
Pin displacement measured at approximately COM (center of mass: 𝑑𝑥 =  0.2 [m]): 
 
For pin1: 𝑑𝑦1  =  0.002[m] 

For pin2: 𝑑𝑦2  =  0.010[m] 

Between the two pins: 𝑑𝑦  =  𝑑𝑦1 + 𝑑𝑦2 = 0.0120[m] 

 
Pin deflection determined at approximately COM: 
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For pin1: 𝛼1  =  2 ∙ atan (
𝑑𝑦1

2∙𝑑𝑥
) =0.01 [rad]  

For pin2: 𝛼2  =  2 ∙ atan (
𝑑𝑦2

2∙𝑑𝑥
) =0.05[rad]  

Between the two pins: 𝛼 = 𝛼1 + 𝛼2 = 0.06 [rad]  
 
Hence the stiffness between the pins is estimated as follows: 
 
Torsional stiffness: 
 

74 𝑘𝑡 =
𝑇

𝛼
= 2.33[Nm/rad]  

 

1.3.2 Measurement 
Measuring area 
Previous to doing the measurements there is investigated in what range the (torque causing) phase 
shift between the pins varies. With a phase shift of 0.1222[rad] (7°) between the motors, the 
connecting rod mechanism establishes a varying phase shift between the wing pins as illustrated in 
Figure 48 (simulation retrieved from the Spacar model). From this can be deduced that the maximum 
occurring phase shift between the wing pins is 0.0826 [rad] (4.73°). Hence, the measurements are 
focused around this value, i.e. measurements are done between 0° and 7.3°. 
 

 
Figure 48 Phase shift between the pins of the wing 

 
Measurement method 
As the schematic of the test setup illustrates (Figure 49), in order to determine the torsional 
stiffness 𝑘𝑡 , one pin is fixed completely and the other is left free to rotate. The free pin is loaded with 
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a mass 𝑚 which is measured by means of a spring balance and its displacement 𝑥 is measured through 
a dial indicator. In this way, the torsional stiffness is determined as follows: 
 
First the torque 𝑇 and deflection 𝛼 are determined through measurement of 𝑚 and 𝑥 respectively: 
 
75 𝑇 = cos(𝛼) ∙𝑚 ∙ 𝑔 ∙ 𝑟 = 𝑚 ∙ 𝑔 ∙ 𝑟 (Considering cos(𝛼) ≈ 1 𝑓𝑜𝑟 0° ≤  α ≤  7.3°)   

76 𝛼 = atan (
𝑥

𝑙
)  

 
With: 
 

𝑔 = 9.87 [
m

s2
] = Gravitational acceleration 

𝑟 = moment arm (see Figure 49) 
𝑙 = distance where 𝑥 is measured 
 
Finally 𝑘𝑡  is determined as follows: 
 

77 𝑘𝑡 =
𝑇

𝛼
  

 
Figure 49 Schematic of the test setup 

 
Error calculations 
The error transmitted to the calculated torsional stiffness 𝑘𝑡  due to the measurements is calculated as 
presented in the following: 
 
First the transmitted error 𝑑𝑇 to the torque is calculated as follows: 
 

78 𝑑𝑇 = ((
𝛿𝑇

𝛿𝑚
𝑑𝑚)

2

+ (
𝛿𝑇

𝛿𝑟
𝑑𝑟)

2

)

1

2

= ((𝑔 ∙ 𝑟 ∙ 𝑑𝑚)2 + (𝑚 ∙ 𝑔 ∙ 𝑑𝑟)2)
1

2  

 
With: 
 
𝑑𝑚 = the measurement error of 𝑚 
𝑑𝑟 = the measurement error of 𝑟 

Dial indicator 

Spring balance 

Wing 

𝑙 

𝑟 

Mass 
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Next the transmitted error 𝑑𝛼 to the deflection if calculated as follows: 
 

79 𝑑𝛼 = ((
𝛿𝛼

𝛿𝑥
𝑑𝑥)

2

+ (
𝛿𝛼

𝛿𝑙
𝑑𝑙)

2

)

1

2

= ((
1

𝑙(1+(
𝑥

𝑙
)
2
)
𝑑𝑥)

2

+ (
−𝑥

𝑙2(1+(
𝑥

𝑙
)
2
)
𝑑𝑙)

2

)

1

2

 

 
With: 
 
𝑑𝑥 = the measurement error of 𝑥 
𝑑𝑙 = the measurement error of 𝑙  
 
Finally the transmitted error to the torsional stiffness is calculated as follows: 
 

80 𝑑𝑘𝑡 = ((
𝛿𝑘𝑡

𝛿𝑇
𝑑𝑇)

2

+ (
𝛿𝑘𝑡

𝛿𝛼
𝑑𝛼)

2

)

1

2

= ((
1

𝛼
𝑑𝑇)

2

+ (−
𝑇

𝛼2 𝑑𝛼)
2

)

1

2

  

 
Test setup 
The accuracy of the measurements depends on the equipment used in the actual setup, see Figure 50: 
 

 
Figure 50 Actual test setup for measurement of the torsional stiffness 𝑘𝑡 between the wing pins  
 
Equipment 
The following equipment is used: 
 

1. Dial indicator: for measurement of the displacement 𝑥 a dial indicator with a range of 1[mm] 

and a scaling of 0.01 [mm]. The reading accuracy is taken to be half the scaling, i.e. 
1

2
∙

0.01[mm]. For the measurement error in 𝑥 there is taken half of the reading accuracy, i.e.  

𝑑𝑥 =
1

2
∙
1

2
∙ 0.01[mm] =

1

2
∙
1

2
∙ 10−5[m] = 2.5 ∙ 10−6[m].  

2. Spring balance: for measurement of the load mass 𝑚 a spring balance with a range of 10[kg] 

and a scaling of 0.1 [kg]. The reading accuracy is taken to be a quarter of the scaling, i.e. 
1

4
∙

Dial indicator 

Spring balance 

Clamping 

Wing 

Pin2 

Pin1 
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0.1[kg]. Hence for the measurement error in 𝑚 there is taken half of the reading accuracy, i.e.  

𝑑𝑚 =
1

2
∙
1

4
∙ 0.1[kg] = 1.25 ∙ 10−2[kg].  

3.  Caliper: for measurement of the distances 𝑙 and 𝑟 a caliper with a scaling of 0.05 [mm]. The 

reading accuracy is taken to be half the scaling, i.e. 
1

2
∙ 0.05[mm]. Hence for the measurement 

error in 𝑙 and 𝑟 there is taken half of the reading accuracy, i.e.  𝑑𝑙 = 𝑑𝑟 =
1

2
∙
1

2
∙ 0.05[mm] =

1

2
∙
1

2
∙ 5 ∙ 10−5[m] = 1.25 ∙ 10−5[m].  

 
Results 
Various loads 𝑚 are applied on a constant arm 𝑟 = 0.01465 [m] and the respective displacements 𝑥 
are measured at the constant distance 𝑙 = 0.0072[m]. With equations75, 76 and 77 the torque 𝑇, 
deflection 𝛼 and torsional stiffness 𝑘𝑡   are calculated respectively and with equations78, 79 and 80 
their corresponding transmitted errors are calculated respectively using the measurement errors 
mentioned above (see the section on equipment). The results are presented in Figure 51 by plotting 
the torque 𝑇 against the deflection 𝛼 and including their error bars. The average torsional stiffness is 
calculated to be 𝑘𝑡 =  3.11 ± 0.05 [Nm/rad]. However, assuming a linear relation between 𝑇 and 𝛼, 
the torsional stiffness is estimated in excel, through a least square approximation, to be 𝑘𝑡 =
3.35[Nm/rad] (see the equation on the plot). 
 

 
Figure 51 Results: Torque vs deflection including error bars 

 
Comparing the estimated torsional stiffness 𝑘𝑡 =  2.33 [Nm/rad] with the measured one 𝑘𝑡 =
 3.35 [Nm/rad], they differ by 30%. This is most likely caused by glue and reinforcements on the actual 
wing which caused the increase in stiffness. For further calculations the measured torsional stiffness 
of 𝑘𝑡 =  3.35 [Nm/rad] is used. 
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1.3.3 Longitudinal stiffness 𝑘 for simplified model 
 
The longitudinal stiffness used in the simplified model is calculated from the low frequency resonance 
(also see Appendix 6): 
 
81 𝑘 = 𝜔𝑛

2 ∙ 𝑚  
 
With 𝜔𝑛 =  𝜔𝑅low

= 0.95 [Hz] = 6[rad/s] (see Figure 5) and 𝑚 = 0.0441[kg] (see section 1.2) this 

yields the following value for the longitudinal stiffness: 
 
𝑘 =  1.6 [N/m]  
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Appendix 2 PID control on linearized plant 
The PID controlled linearized system gives results depicted below. From these results (especially Figure 
54) it is clear that for the controlled linearized system the phase shift of 𝑝ℎ𝑠 = 7° =  0.1222[rad] is 
reached with an accuracy of 𝑒𝑚𝑎𝑥 = ±0.1° = ±0.0017[rad] for a flapping frequency of 𝑓 =  7 [Hz]. 
 
System output: 

 
 

Figure 52 System output of controlled linearized system; Right: Zoomed in  

 
 Servo error:  

 
 

Figure 53 Servo error of controlled linearized system 
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Figure 54 Phase shift of controlled linearized system; Right: Zoomed in 
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Appendix 3 Approximation of aerodynamic forces on Robird 
 

3.1 Flapping wing kinematics 
Taking a single two dimensional (2D) wing section, the flapping wing kinematics of a bird are described 
by two motions occurring simultaneously, namely plunging and pitching see equations 82 and 83 
respectively (see Figure 55). This combined motion is determinative for the wing angle of attack. 
 
82 ℎ(𝑡) = ℎ0𝑐𝑠𝑖𝑛(𝜔𝑡)  
83 𝜃(𝑡) = 𝜃0 sin(𝜔𝑡 + 𝜑)  
 
Whereby: 
ℎ(𝑡)  = the vertical position at time 𝑡 
ℎ0  = the plunging amplitude non-dimensionalised by the airfoil chord length 𝑐 
𝜃(𝑡) = is the pitching angle with respect to the horizon at time 𝑡 
𝜃0 = the pitching amplitude of the motion 
𝜔 = 2𝜋𝑓  = the radial frequency of the motion 
𝑓 = the flapping frequency 
𝜑 = the phase difference between the plunging and pitching motion. In most cases the pitch is leading 
the plunge with 90°.  
 

 
Figure 55 Left: Flapping wing motion of a bird; Right: 2D pitching and plunging rigid airfoil section [1] 

 

3.2 Flapping propulsion 
Below there is attempted to describe flapping propulsion (relevant for Robird wing aerodynamics) in 
four steps: 
 

 Formation of a reverse von Karman street: When the flapping wing motion brings about a 
large enough Strouhal number there occurs a formation of a reverse von Karman vortex street.  

 Formation of leading edge vortices: This occurs in combination with the formation of leading 
edge vortices (LEV’s) due to dynamic stall. Strong LEV’s contribute to a strong reverse von 
Karman street in the wake of the airfoil. The development and strength of the LEV’s is strongly 
influenced by the maximum effective angle of attack during the motion. 

 Thrust production: The reverse von Karman street in the wake causes thrust-production. 
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 Formation of a jet-like stream wise velocity profile: In the thrust-producing wake, the air is 
accelerated in between the vortices, which yields time-averaged a jet-like stream wise velocity 
profile. The strength of this jet is a measure for the thrust produced. 

 
The influence of the Strouhal number on flapping propulsion 
The Strouhal number is defined as follows: 
 

84 𝑆𝑡 =
𝑓𝐴

𝑈∞
  

 
Whereby: 
 
𝐴 = 2ℎ0𝑐 = wake width  

𝑓 =
𝜔

2𝜋
 = flapping frequency  

𝑈∞  = free stream velocity 
 
With: 
 
𝑐 = cord length 
ℎ0 = plunging amplitude 
𝜔 = radial frequency of the motion 
 
The Strouhal number has the following influence on flapping propulsion: 
 

 an increase in the Strouhal number causes 

 an increase of the maximum effective angle of attack which causes 

 stronger LEV’s and therewith creating a  

 stronger reverse von Karman street in the wake which then produces 

 larger forces and 

 a more pronounced stream wise jet profile behind the airfoil however with 

 a lower thrust producing efficiency 
 
The influence of the pitching angle 
The pitching angle has the following influence on flapping propulsion: 
 

 an increase in the pitching angle causes 

 a decrease in the effective angle of attack causing  

 milder LEV’s which cause 

 higher thrust producing efficiency (peak at 0.1 < 𝑆𝑡 < 0.3 which is close to the optimum 
Strouhal regime found in nature) but a 

 lower cruise velocity 
 
The maximum efficiency occurs every time for an effective angle of attack of around 11 degrees. 
 

3.3 Robird wing aerodynamics 
Robird wing aerodynamics: 
 

 The root of the wing mainly provides lift 

 The tip of the wing mainly provides thrust 

 The mid-wing section creates a balances of thrust and lift production  
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From [1], it follows that the aerodynamic forces, thrust force 𝐹𝑡 , lift force 𝐹𝑙  and moment 𝑀, depend 
on the aerodynamic coefficients, thrust coefficient 𝐶𝑡 , lift coefficient 𝐶𝑙  and moment coefficient 𝐶𝑚  
respectively, and free stream velocity 𝑈∞, free stream density 𝜌∞ , the cord length 𝑐 and the wing span 
𝑏 as follows:  
 

85 𝐹𝑡  =
𝐶𝑡𝑈∞

2 𝑆𝜌∞

2
  

86 𝐹𝑙  =  
𝐶𝑙𝑈∞

2 𝑆𝜌∞

2
  

87 𝑀 =
𝐶𝑚𝑈∞

2 𝑆.𝑐�̅�∞

2
  

 
With: 
 
88 𝑆 = 𝑐̅ ∙ 𝑏 = wing surface area 
 
With: 
 

89 𝑐̅ =
(𝑐𝑟+𝑐𝑚+𝑐𝑡)

3
   

 
Whereby: 
 
𝑐𝑟 = 0.215 [m] = cord length at the root  
𝑐𝑚 = 0.18 [m] = cord length at the mid-section 
𝑐𝑡 = 0.14 [m] = cord length at the tip 
 
The following values are taken for the remaining parameters: 
 

𝜌∞ = 1.25 [
kg

m3]  

𝑈∞ = 10[m/s]   

𝑏 =
1

2
∙ 1.1[m] (Considering only one wing)  

 
With the main focus on capturing the order of magnitude and the periodicity, the aerodynamic 
coefficients are extremely roughly approximated as follows: 
 

90 𝐶𝑡 = 𝐶𝑡̅̅ ̅ + 𝐴𝐶𝑡 ∙ 𝑠𝑖𝑛(𝜔𝑡)   
91 𝐶𝑙 = 𝐶�̅� + 𝐴𝐶𝑙 ∙ 𝑠𝑖𝑛(𝜔𝑡)  
92 𝐶𝑚 = 𝐶𝑚̅̅̅̅̅ + 𝐴𝐶𝑚 ∙ 𝑠𝑖𝑛(𝜔𝑡)   
 
With:  
 

𝜔 = 44 [
rad

s
] the flapping frequency 

 
The following parameters are estimated out of data from [1]: 
  

𝐶𝑡̅̅ ̅ = 0.03 = time-averaged drag for the mid-wing section near 𝑈∞ = 10[m/s]   

𝐶�̅� = 0.725 = time-averaged lift for the mid-wing section near 𝑈∞ = 10[m/s]   
𝐶𝑚̅̅̅̅̅ = 0.0625 = time-averaged moment for the mid-wing section near 𝑈∞ = 10[m/s]   
𝐴𝐶𝑡 = 0.29 = maximum amplitude w.r.t 𝐶𝑡̅̅ ̅ 

𝐴𝐶𝑙 = 0.425 = maximum amplitude w.r.t 𝐶�̅� 
𝐴𝐶𝑚 = 0.2875 = maximum amplitude w.r.t 𝐶𝑚̅̅̅̅̅ 
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Then, after substituting equations90,91 and 92 into85, 86 and 87 respectively, the aerodynamic 

forces are supplied as disturbances with which the controller needs to cope.  
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Appendix 4 Mechanical design  
In this section the mechanical design of the disc connection, gear connection and bearing is done. 

4.1 Disc and bolt sizing 
For the preload 𝑄 between the discs applies [10]: 
 

93 𝑄 =
𝑀

𝑓∙𝑟
  

 
With: 
𝑀 = No slip torque 
𝑓 = friction coefficient 
𝑟 = disc radius 
 
The following design choices are made: 
 

 From the reaction torques (see Figure 64) it is clear that the torque does not exceed 𝑀𝑟𝑒𝑎𝑐𝑡  =
 9 [Nm], hence in order to prevent slipping of the mechanical connection, 𝑀 is taken a factor 
𝑘 =  1.5 larger than 𝑀𝑟𝑒𝑎𝑐𝑡  i.e.:  

 
94 𝑀 =  𝑘 ∙ 𝑀𝑟𝑒𝑎𝑐𝑡    
 
 Hence in this case: 𝑀 =  1.5 ∙ 9 = 13.5[Nm]   
 

 The disc is chosen to be an aluminum disc (𝑓 = 0.15  for worst case; lubricated and greasy 
surfaces; see [11]) with a radius of 𝑟 =  0.015 [m].   

 
Applying this information to Eq 93 results into a required preload 𝑄 = 6000[N] = 6 [kN]. 
 
This preload is brought to by a bolt loaded axially. Then for this bolt applies [10]: 
 

95 𝜎 ≥ 𝑘𝑎
𝑄

𝐴
⇔ 𝐴 ≥ 𝑘𝑎

𝑄

𝜎
⇔ 𝜋𝑟𝑏

2 ≥ 𝑘𝑎
𝑄

𝜎
⇔ 𝑟𝑏 ≥ √

𝑘𝑎𝑄

𝜎𝜋
   

 
With: 
 

𝑘𝑎 =
1

0.75
 = typical safety factor (see [11]) 

𝜎 = allowable yield stress 
𝐴 = bolt cross-sectional area 
𝑟𝑏  = bolt radius 
 
Considering a 6061-T6 aluminum bolt with 𝜎 = 241[Mpa] a bolt radius of at least 𝑟𝑏 = 4[mm] is 
required. Hence, a M8 – 1.25 bolt with diameter 𝑑 =  8[mm] and thread pitch 𝑝 =  1.25 [mm] is 
sufficient.  
 

4.2 Gear sizing 
In order to keep the motors outside the wind tunnel, the mechanism is elevated through extra gears 
(with a gear reduction 𝑖 =  1). The gear design is based on gear tooth side damage as this is 
determinative for the gear dimensions (see [10]). Given a tooth width 𝑏 and a pitch diameter 𝑑, first 
the modulus 𝑚 is determined through a thumb rule and thereafter from that, the number of teeth  𝑧 
is determined. Finally checking calculations are done on the chosen gear.  
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The thumb rule used here is (see [10]): 
 

96 𝑚 =
𝑏

𝜆
   

 
Hereby 𝜆 is a constant which constrains the extra forces which appear as a consequence of change in 
direction of the axis (see [10]). 
 
Subsequently the number of teeth is calculated as follows: 
 

97 𝑧 =
𝑑

𝑚
  

 
Finally checking calculations are executed. First the maximum load per unit of the tooth width 𝑞𝑚𝑎𝑥  is 
calculated (see [10]): 
 
98 𝑞𝑚𝑎𝑥 = 𝐶𝑠𝑞 + 𝑞𝐷 + 𝑞𝑅  
 
With: 
 
𝐶𝑠 = 1 = shock factor (a value of 1 is common for electro motors driving relatively small loads; see 
[10])  

𝑞 =
𝑀

𝑟∙𝑏
 = nominal circumferential force per unit of the tooth width 

𝑞𝐷 =
𝐹𝐷

𝑏
 = dynamic circumferential force per unit of the tooth width  

𝐹𝐷 ≈ 𝐶𝑠𝐹
𝑣

10
  = dynamic circumferential force for 𝑣 ≤ 6 [

m

s
] 

𝑞𝑅 ≈ 3√𝑏 = extra load due to direction errors (misalignment)  
𝑀 = torsional moment 

𝑟 =
𝑑

2
 = pitch radius 

𝐹 =
𝑀

𝑟
 = load 

𝑣 = 𝜔 ∙ 𝑟 = circumferential velocity on pitch circle 
𝜔 = angular velocity 
  
With 𝑏 and 𝑟 in [mm], 𝑀 in [N.mm] and 𝑣 in [m/s] this results in a 𝑞𝑚𝑎𝑥 in [N/mm] defined as: 
 

99 𝑞𝑚𝑎𝑥 = 𝐶𝑠 (
𝑀

𝑟∙𝑏
) (1 +

𝑣

10
) + 3√𝑏  

 

With 𝑚 in [mm] the shear stress in the tooth feet 𝜎𝑖𝑚𝑎𝑥
  in [

N

mm2] is calculated as:  

 

100 𝜎𝑖𝑚𝑎𝑥
= 𝐶𝜖 ∙ 𝜇 ∙

𝑞𝑚𝑎𝑥

𝑚
  

 
With: 
 
𝐶𝜖 ≈ 0.7 (See [10])  
𝜇 ≈ 2.3 (See [10]) 
 
Finally this is compared to the allowable stress 𝜎𝑠. I.e. the following must hold: 
 
101 𝜎𝑠 > 𝜎𝑖𝑚𝑎𝑥
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Disregarding 𝜆  and choosing a gear with 𝑑 =  36 [mm], 𝑚 =  1, 𝑧 =  36  and 𝑏 =  10 [mm], and 
with 𝑀 =  3000 [Nmm] (see Figure 59) and 𝜔 =  44 [rad/s] the following applies for the shear 
stress in a tooth feet 𝜎𝑖𝑚𝑎𝑥

: 

 

𝜎𝑖𝑚𝑎𝑥
= 44.23 [

N

mm2]  

 

Then for unhardened steel with an allowable stress of 160 [
N

mm2] the gear tooth is strong enough 

against shear: 
 

𝜎𝑠 = 160 [
N

mm2]   > 𝜎𝑖𝑚𝑎𝑥
= 44.23 [

N

mm2]  

 

4.3 Bearing sizing 
In choosing a sufficient bearing the setup dimensions have played the dominant role, nevertheless 
attention is also paid to the lifetime of the bearing. The setup required a bearing inner diameter of 
𝑑 =  25 [mm] an outer diameter 𝐷 =  32 [mm] and a bearing width of 𝐵 =  4 [mm]. 𝐷 is chosen as 
small as possible in order to maintain an aerodynamic body. These dimensions led to a bearing of type 
6705 2 RS, with the following properties: 
 
𝐶𝑟 =  110 [kg] = dynamic load rate 
𝐶𝑜𝑟 =  85 [kg] = static load rate 
𝜔𝑚𝑎𝑥 = 10200 [𝑟𝑝𝑚] = Maximum revolutions per minute  
 
The bearing lifetime is calculated as follows [10]: 
 

102 𝐿 = (
𝐶

𝐹
)
𝑃

 = total number of revolutions in millions 

  
Whereby: 
 
𝑃 =  3, for ball bearings 

𝑃 =
10

3
, for roller bearings 

𝐶 = load rating 
 
103 𝐹 = 𝑋 ∙ 𝐹𝑟 + 𝑌 ∙ 𝐹𝑎 = force load 
 
𝐹𝑟  = radial force load 
𝐹𝑎  = axial force load 
𝑋 and 𝑌 depend on the values of 𝐹𝑟 , 𝐹𝑎  and 𝐶, see [10]. 
 
The bearing lifetime expressed in term of hours is determined as follows: 
 

104 𝐿ℎ =
𝐿

(𝑛∙60∙10−6)
   

 
With: 
 
𝑛 = 420 [rpm] = the angular velocity in [rpm] 
  
𝐹𝑟  and 𝐹𝑎  are determined from the reaction forces. For the reaction forces applies (see Figure 63): 
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𝐹𝑥 = 𝐹𝑧1 = ±21.5[N]  
𝐹𝑦 = 𝐹𝑦1 = ±1.6 [N]  

𝐹𝑧 = 𝐹𝑥1 = ±14[N]  
 
First the total radial force load 𝐹𝑅  and the total axial force 𝐹𝐴 are determined as follows: 
 

105 𝐹𝑅 = √𝐹𝑥
2 + 𝐹𝑧

2  
106 𝐹𝐴 = 𝐹𝑦  

 
As the translational reaction forces are transmitted by four bearings, the following applies for the load 
per bearing: 
 

107 𝐹𝑟 =
𝐹𝑅

4
  

108 𝐹𝑎 = 𝐹𝐴  
 
Considering 𝐹𝑟   is much larger than 𝐹𝑎, 𝑋 is taken 1 and 𝑌 is taken 0. Then with 𝐶 =  𝐶𝑟, the chosen 
bearing has a lifetime of 𝐿ℎ =  3.5 ∙ 1012[hours]. 
 

4.4 Procedure for development aerodynamic shield 
In order to reduce flow disturbances, the Robird wind tunnel test setup is provided with an 

aerodynamic shield (see Figure 56). This shield is fabricated through the process of vacuum forming. 

First a CAD (SolidWorks) design is made of the desired form/shape, thereafter a CAD (SolidWorks) 

design of the mold is developed. Next, the mold is fabricated and finally with it, the shield is vacuum 

formed. In the following, these steps are explained in somewhat more detail: 

 

 CAD (SolidWorks) Design (see Figure 56 and Figure 57): 

 
o Form/shape: The shape of the shield is dictated by the mechanism it should cover and 

by a symmetric requirement it needs to abide by in order to obtain interpretable 

aerodynamic measurements with the setup. This desired shape is designed in 

SolidWorks, see Figure 56. 

o Mold: The mold is designed based on the inner dimensions of the desired shield. For 
it, a frame is developed, consisting of various profile plates in order to capture the 
form of the shield, see Figure 57. The mold body is to be fabricated from clay, using 
these profiles as guidance for the shape of the shield.  

 

 Fabrication (see Figure 58): 
 

o Fabrication of the mold: 
 

 Frame: The frame for the mold, consisting of various profiles to describe the 
form of the shield, is manufactured from delrin plates, through laser cutting. 

 Body: The mold body is created by filling the frame with a mixture of two 
components of polyurethane clay. The clay is given time to dry (one day) and 
afterwards it I finished through sanding. 
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 Base: The mold is completed with a wooden base plate manufactured through 
laser cutting and consisting of holes to allow air to escape in the vacuum 
forming process such that the form is captured well. 

 
o Fabrication of the form/shape: 

 
 Basic form/shape: The completed mold is now used for vacuum forming the 

shield out of plastic polystyrene sheet. In an oven, a plastic plate is heated and 
subsequently sucked onto the mold, allowing it to capture the desired shape. 

 Finishing: Finally the shield is finished by cutting out the desired contour and 
holes. 
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Figure 56 Robird wind tunnel test setup 

 

 

Figure 57 Mold for the aerodynamic shield   

Profile plates 

Aerodynamic 

shield 
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Figure 58 Vacuum forming procedure for development of aerodynamic shield 

 
  

Delrin frame: Clay components: 

Un-sanded body: Sanded body: 

Completed mold: Finished shield: 
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Appendix 5 Equipment selection 
5.1 Gearbox, motor, encoder and control unit selection 
After determining the required motor power, first a proper gearbox is chosen then the speed and 
torque conversed to the motor axis are used to select the proper motor type with the proper winding. 
Finally a suitable sensor and controller are chosen based on the required resolution and type of control 
applied respectively. A procedure as discussed in [12] is followed. 
 

5.1.1 Motor power 
There is chosen for a brushless DC motor, i.e. an electronically commutated (block commutation) EC 
motor, over a brushed DC motor because they are applicable at higher speed, leaving more freedom 
for choosing a larger gearbox for reducing the motor input current and they are not only applicable for 
continuous operation, but also for highly dynamic servo drives. 
 
The power balance of the motor is described as follows: 
 
109 𝑃𝑒𝑙 = 𝑃𝑚𝑒𝑐ℎ + 𝑃𝐽  

 
With: 
 
𝑃𝑒𝑙 = 𝑈 ∙ 𝐼 = the electrical power 

𝑃𝑚𝑒𝑐ℎ =
𝜋

30000
∙ 𝑛 ∙ 𝑀 = the mechanical power, with 𝑛 in [rpm] and 𝑀 in [mNm]   

𝑃𝐽 = 𝑅 ∙ 𝐼2 = the power losses of the winding 

𝑈 = voltage 
 𝐼 = current 

1

𝑘𝑛∙𝑘𝑀
=

𝜋

30000
  

𝑘𝑛 = speed constant 
𝑘𝑀 = torque constant 
𝑅 = Resistance 
𝑛 = 𝑘𝑛 ∙ 𝑈𝑖𝑛𝑑 = motor speed 
𝑀 = 𝑘𝑀 ∙ 𝐼 = motor torque 
𝑖 = gear reduction 
𝑈𝑖𝑛𝑑 = 𝐸𝑀𝐹 = voltage induced in the winding 
 
Prior to selecting the motor and gearbox, first the required motor-gearbox output torque 𝑀 (see Figure 
59) and speed 𝑛 (see the slope of Figure 60) are investigated: 
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Figure 59 Required motor torque output 

 

 
Figure 60 Required motor angle position 

 
 
Maximum loaded configuration (𝒏𝒎𝒂𝒙,𝑴𝒎𝒂𝒙) 
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From the motor output angle it follows that the maximum speed is 44 [rad/s] (7 [Hz]), i.e. 𝑛𝑚𝑎𝑥 =
420 [rpm], it further follows that the maximum required torque output (absolute value) is 1.4 [Nm], 
i.e. 𝑀𝑚𝑎𝑥 =  1400 [mNm]. I.e. the operating condition under maximum load is (𝑛𝑚𝑎𝑥  ,𝑀𝑚𝑎𝑥): 
 

  𝑛𝑚𝑎𝑥 = 420 [rpm]  
 𝑀𝑚𝑎𝑥 =  1400 [mNm]  

 
Motor power requirement 
Then the required maximum mechanical power the motor should be able to supply is: 
 

110 𝑃𝑚𝑒𝑐ℎ[W] > (
𝜋

30000
[

W

rpm∙mNm
] ∙ 𝑛[rpm] ∙ 𝑀[mNm] = 

𝜋

30000
∙ 420 ∙ 1400 = 62 [W])  

 
Before a motor, able to deliver this mechanical power, is chosen, first a suitable gearbox is chosen.  

 

5.1.2 Gearbox selection 
The conversion between gear output and motor shaft is described as follows: 
 
111 𝑛𝑚𝑜𝑡 = 𝑖 ∙ 𝑛𝐵   

112 𝑀𝑚𝑜𝑡 =
𝑀𝐵

𝑖∙𝜂𝐺
  

 
Where: 
 
𝑛𝑚𝑜𝑡  = motor speed 
𝑛𝐵  = gear output speed 
𝑀𝑚𝑜𝑡= motor torque 
𝑀𝐵= gear output torque 
𝜂𝐺  = gear efficiency 
 
Gearbox requirements 
For an EC motor with a power delivery close to 80 [W] a typical range for motor nominal speed nmot 
is 9500 [rpm] to 15000 [rpm] (see [12]). Applying this to equation 111 yields the following requirement 
for the gear reduction 𝑖: 
 

113 
9500

𝑛𝐵
≤ 𝑖 ≤

14000

𝑛𝐵
  

 
This means: 
 

(
9500

420
= 23) ≤ 𝑖 ≤ (

14000

𝑛𝐵
= 34)  

 
Further requirements to be met by the gearbox are (see also [12]): 
 
114 𝑀𝐵 < 𝑀𝐻,𝐺    
115 𝑀𝐵 < 2 ∙ 𝑀𝑁.𝐺   
 
With: 
 
𝑀𝐻,𝐺  = intermittently permissible torque at gear output 
𝑀𝑁,𝐺  = gearbox maximum continuous output torque 
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Chosen gearbox 
With: 
 
𝑛𝐵 = 𝑛𝑚𝑎𝑥 = 420[rpm]  
𝑀𝐵 = 𝑀𝑚𝑎𝑥 = 3000[mNm]  
 
A planetary gearhead is chosen over a spur gearhead as the former is more suitable for the transfer of 
relatively high torques. A Maxon Planetary Gearhead GP 32 C ∅ 32 mm, 1.0 – 6.0 Nm is chosen with: 
 

 𝑖 = 23   
 𝜂𝐺 = 0.75  
 𝑀𝑁,𝐺 = 3 [Nm]   

 𝑀𝐻,𝐺 = 3.75 [Nm]  

 
With the chosen gearbox, the above requirements are met: 
 
(𝑀𝐵 = 𝑀𝑚𝑎𝑥 = 1400[mNm]) < (𝑀𝐻,𝐺 = 3750[mNm])  
(𝑀𝐵 = 𝑀𝑚𝑎𝑥 = 1400[mNm]) < (2 ∙ 𝑀𝑁.𝐺 = 2 ∙ 3000[mNm] = 6000[mNm])  

(
9500

420
= 23) ≤ (𝑖 = 23) ≤ (

14000

𝑛𝐵
= 34)  

 

5.1.3 Motor type selection 

New maximum loaded configuration (𝒏𝒎𝒐𝒕,𝒎𝒂𝒙,𝑴𝒎𝒐𝒕,𝒎𝒂𝒙) 

Applying 𝑛𝐵 =  𝑛𝑚𝑎𝑥 = 420 [rpm] and 𝑖 = 23 to equation 111 yields a maximum motor speed 
of 𝑛𝑚𝑜𝑡,𝑚𝑎𝑥 = 9660[rpm]. 

 
Applying 𝑀𝐵 =  𝑀𝑚𝑎𝑥 = 1400 [mNm], 𝑖 = 23 and  𝜂𝐺 = 0.75 to equation 112 yields a maximum 
motor torque of 𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 = 81.2[mNm]. 
 
Hence with the gearbox applied, the new operating condition for the motor under maximum load is 
(𝑛𝑚𝑜𝑡,𝑚𝑎𝑥 ,𝑀𝑚𝑜𝑡,𝑚𝑎𝑥): 
 

  𝑛𝑚𝑜𝑡,𝑚𝑎𝑥 = 9660 [rpm]  

 𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 =  82 [mNm]  

 
Motor torque requirement 
The requirements to be met here are (see also [12]): 
 
116 𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 < 𝑀𝐻   
117 𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 < 2 ∙ 𝑀𝑁  

 
With: 
𝑀𝐻  = stall torque 
𝑀𝑁 = nominal torque (max. continuous torque) 
 
Electric requirement (selecting the winding) 
When selecting the winding, care must be taken that the voltage applied directly to the motor is 
sufficient for attaining the required speed in all operating points. Then, when regulated with a servo 
drive, this means that in work cycles, all operating points must lie beneath the speed-torque line at 
maximum voltage 𝑈𝑚𝑎𝑥. This means that the following requirements need to be met by all operating 
points (𝑛𝑚𝑜𝑡  ,𝑀𝑚𝑜𝑡 ) (see [13]): 
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118 𝑘𝑛 ∙ 𝜂𝑒𝑓𝑓 ∙ 𝑈𝑚𝑎𝑥 = 𝑛0 > 𝑛𝑚𝑜𝑡 +
∆𝑛

∆𝑀
𝑀𝑚𝑜𝑡   

 
With: 
 
∆𝑛

∆𝑀
 = the speed torque gradient 

𝜂𝑒𝑓𝑓 = 0.8 = efficiency for obtaining the effective motor input voltage (𝜂𝑒𝑓𝑓 ∙ 𝑈𝑚𝑎𝑥) after among other 

things voltage drop across the servo (10% to 20% of the source voltage; see [12]). 
𝑈𝑚𝑎𝑥 = nominal voltage 
 
Motor current requirement 
Finally, the current is checked. Analog to the torque, the requirements to be met here are: 
 
119 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 < 𝐼𝐻   

120 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 < 2 ∙ 𝐼𝑁  
 
With: 
𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 = actual peak current for motor input = 6 [A] (see Figure 61) 

𝐼𝐻  = starting current 
𝐼𝑁  = nominal current (max. continuous current) 
 
Motor choice 
The motor which meets the above requirements is the Maxon EC 32 ∅32, brushless, 80 Watt, CE 
approved with: 
 

 𝑘𝑚 =  0.013 [Nm/A]  
 𝑅 = 0.573[Ω]  
 𝑀𝑁 = 41.2[mNm]  
 𝑀𝐻 = 407[mNm]  
 𝐼𝐻 = 31.4[A]  

 
∆𝑛

∆𝑀
= 6.82 [

rpm

mNm
]  

 kn =  737 [
rpm

V
]  

 Umax  =  18 [V]  
 𝐼𝑁 = 3.61[A]  

 
With the chosen motor, these requirements are met as follows: 
 

(𝑃𝑚𝑒𝑐ℎ[W] = 80[W]) > (
𝜋

30000
∙ 𝑛 ∙ 𝑀 =  

𝜋

30000
∙ 420 ∙ 1400 = 62 [W])  

(𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 = 82[mNm] ) < ( 𝑀𝐻 = 1670[mNm])  

(𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 = 82[mNm] ) < (2 ∙ 𝑀𝑁 = 2 ∙ 41.2[mNm] = 82.4[mNm])  

(𝑘𝑛 ∙ 𝜂𝑒𝑓𝑓 ∙ 𝑈𝑚𝑎𝑥 = 737 ∙ 0.8 ∙ 18 = 10613[rpm]) > (𝑛𝑚𝑜𝑡,𝑚𝑎𝑥 +
∆𝑛

∆𝑀
𝑀𝑚𝑜𝑡,𝑚𝑎𝑥 = 9660 + 6.82 ∙ 82 = 10219[rpm])    

( 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 = 6[A]) < (𝐼𝐻 = 31.4[A])  

( 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 = 6[A]) < (2 ∙ 𝐼𝑁 = 2 ∙ 3.61[A] = 7.22[A])   
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Figure 61 motor current input 

 

5.1.4 Sensor selection 
A digital incremental encoder is chosen over both a tachometer and a resolver because it is the most 
suitable for control tasks.  
 
Sensor requirement 
Considering the control target is to obtain an accuracy of 0.1° the resolution 𝑟𝑒𝑠𝑖 requirement is set 
to: 
 

121 𝑟𝑒𝑠𝑖 < (
0.1°

10
= 0.01°)  

 
Chosen sensor 
The chosen encoder is the Encoder HED_5540 with 500 CPT (counts per turn) and 3 channels. Hence 
with four counts made per encoder cycle, i.e. both pulse signals (quadrature signals) are available and 
both rising and falling edges of the pulses are detected, the physical resolution 𝑟𝑒𝑠 in degrees becomes 
(see [13]): 
 

122 𝑟𝑒𝑠 =
360°

4𝑁
=

360°

4∙500
= 0.18°   

 
With the encoder placed before the gearbox, the physical resolution after the gearbox 𝑟𝑒𝑠𝑖 becomes: 
 

123 𝑟𝑒𝑠𝑖 =
360°

4𝑁𝑖
=

360°

4∙500∙23
= 0.0078° 

 
 
Hence according to equation121, a 𝑟𝑒𝑠𝑖 = 0.0078° is considered sufficient.   
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5.1.5 Controller selection 
As the goal here is to obtain a fixed phase shift between two motors operating at the same speed, 
these motors are controlled via position control rather than speed control or current (torque) control.  
  
Controller requirements 
Here, the requirements aimed to be met are: 
 
124 𝑉𝑜𝑢𝑡,𝑚𝑎𝑥 >  0.8 ∙ 𝑉𝑐𝑐: The voltage drop across the servo should be smaller than 20%, as only 

this is accounted for (see equation118). 

125 𝐼𝑐𝑜𝑛𝑡 >
1

2
𝐼𝑚𝑜𝑡,𝑚𝑎𝑥  

126 𝐼max(<1𝑠) > 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥  

 
With: 
 
𝐼𝑐𝑜𝑛𝑡  = continuous output current 
𝐼max(<1𝑠) = maximum output current 

𝑉𝑜𝑢𝑡,𝑚𝑎𝑥  =maximum output voltage 
𝑉𝑐𝑐  = operating voltage 
 
To this end, there is chosen for an ELMO Whistle 5/60 control unit with the following characteristics: 
 

 𝑉𝑐𝑐 =  7.5 –  59 [VDC] 
 𝑉𝑜𝑢𝑡,𝑚𝑎𝑥 =  0.95 ∙ 𝑉𝑐𝑐 

 𝐼max(<1𝑠) =  10 [A] 

 𝐼𝑐𝑜𝑛𝑡 =  5 [A] 
 
With this chosen control unit, the requirements are met as follows: 
 

(𝑉𝑜𝑢𝑡,𝑚𝑎𝑥 = 0.95 ∙ 𝑉𝑐𝑐) > (0.8 ∙ 𝑉𝑐𝑐  )  

(𝐼𝑐𝑜𝑛𝑡 = 5 [A]) > (
1

2
𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 =

1

2
6[A] = 3[A])  

(𝐼max(<1𝑠) = 10[A]) > (𝐼𝑚𝑜𝑡,𝑚𝑎𝑥 = 6[A]) 
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Figure 62 Complete overview of the chosen equipment and the achieved requirements 

Maxon Planetary Gearhead 

GP 32 C ∅ 32 𝑚𝑚 (ceramic 

version): 

23 ≤ (𝑖 = 23) ≤ 34    
𝜂𝐺 = 0.75  

𝑀𝑁,𝐺 = 3 [Nm] >
1

2
∙ 𝑀𝑚𝑎𝑥   

𝑀𝐻,𝐺 = 3.75 [Nm] > 𝑀𝑚𝑎𝑥   

 

Maxon EC 32 ∅32, brushless, 80 

Watt, CE approved: 

𝑀𝑁 = 41.2[mNm] >
1

2
∙ 𝑀𝑚𝑜𝑡,𝑚𝑎𝑥   

𝑀𝐻 = 407[mNm] > 𝑀𝑚𝑜𝑡,𝑚𝑎𝑥  
𝐼𝐻 = 31.4[A] > 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥   
∆𝑛

∆𝑀
= 6.82 [

rpm

mNm
]  

kn =  737 [
rpm

V
]  

Umax  =  18 [V]  

𝐼𝑁 = 3.61[A] >
1

2
∙ 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥   

𝑘𝑀 = 13 [mNm/A]  
𝑅 = 0.573 [Ω]  

ELMO Whistle 5/60 control 

unit: 

𝑉𝑐𝑐 =  7.5 –  59 [VDC]  
𝑉𝑜𝑢𝑡,𝑚𝑎𝑥 =  0.95 ∙ 𝑉𝑐𝑐 > 0.8 ∙ 𝑉𝑐𝑐    
𝐼max(<1𝑠) =  10 [A] > 𝐼𝑚𝑜𝑡,𝑚𝑎𝑥   

𝐼𝑐𝑜𝑛𝑡 =  5 [A] >
1

2
𝐼𝑚𝑜𝑡,𝑚𝑎𝑥  

 

Encoder HED_5540 with 

500 CPT: 
Transformation: 

1

𝑖
 

Reference signal:  

𝑛𝑚𝑜𝑡,𝑚𝑎𝑥 = 420[rpm]  

 

𝑒𝑟𝑟𝑜𝑟  
 

 

Load 
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5.2 Remaining equipment selection 

5.2.1 Force sensor selection 
After including aerodynamic loads, from Spacar the following is obtained for the reaction forces and 
torques: 
 
The reaction forces calculated by Spacar are:  

 
Figure 63 Reaction forces (after including aerodynamic loads) 

 
Spacar calculates the torques 𝑡 dual to the Euler parameters. However, it is not straightforward to 
understand their physical significance, hence a transformation to the more familiar equilibrium 
torques 𝑇 is required. Hereby the principle of virtual work is used as illustrated in [2]: 
 
127 𝑡 = 𝐴𝑇𝑇  
 
With: 
 
128 𝐴 = 𝑑𝑖𝑎𝑔[𝐼, 2Λ]  
 
With: 
 
Λ = Function of the Euler parameters 𝜆0, 𝜆1, 𝜆2 and 𝜆3 
 
Then, with 𝜆0 = 𝜆1 = 𝜆2 = 𝜆3 = 1 (as is the case here), the following applies for the torque: 
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129 𝑇 =
1

2
𝑡  

 
After applying equation129, the following is obtained for the reaction torques: 

 
Figure 64 Actual reaction torques (after including aerodynamic loads) 

 
From the figures applies: 
 
𝐹𝑥 = 𝐹𝑧1 = ±21.5[N]  
𝐹𝑦 = 𝐹𝑦1 = ±1.6 [N]  

𝐹𝑧 = 𝐹𝑥1 = ±14[N]  
𝑇𝑥 = ±0.15 [Nm]  
𝑇𝑦 = ±9 [Nm]  

𝑇𝑧 = ±0.25 [Nm]  
 
Based on these results, a 6-DOF sensor developed at the department of Mechanical Automation of the 
University of Twente could be applied with the following ranges [14]: 
 
Forces in xyz-direction: 
 

 Range: ±50[N] 

 Resolution: ±0.009[N] 

 Error: 0.8% 
 
Torque in xyz-direction: 
 

 Range: ±8[Nm] 

 Resolution: ±0.0015[Nm] 

 Error: 2.5% 
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As discussed in the following section, the placement of the sensor can be optimized by appropriately 

adjusting its distance in z-direction (x1-direction). 

5.2.1.1 Optimal placement force sensor 

In this section a simplified mechanism of the wind tunnel test setup is considered (see Figure 65) in 
order to justify the optimal placement of the force sensor with the aim at utilizing its measurement 
range to the fullest in order to obtain an as small as possible relative error. The force sensor is placed 
in node 6 and thus measures the reaction forces 𝑓𝑥6

, 𝑓𝑦6
 and 𝑓𝜙8

. 

  
 

 
Figure 65 simplified mechanism of the wind tunnel test setup for Robird 

 
From this configuration the following applies: 
 
For the nodal coordinates applies: 
 
130  
 

𝑥 =  [[𝑥(𝑜)]
𝑇

[𝑥(𝑐)]
𝑇

[𝑥(𝑚)]
𝑇
] =

[[𝑥6 𝑦6 𝜙8 𝑥4 𝑦4]
𝑇 [𝑥1 𝑦1 𝑥2 𝑦2 𝜙2 𝜙3 𝑥3 𝑦3 𝜙4 𝜙5 𝜙6 𝑥5 𝑦5 𝜙7]

𝑇 [𝜙1]
𝑇]  

 
For the deformation coordinates applies: 
 

1⃑ : 𝑥1, 𝑦1, 𝜙1  

2⃑ : 𝜙2, 𝑥2, 𝑦2 , 𝜙3  

3⃑ : 𝜙4, 𝑥3, 𝑦3, 𝜙5  

 4⃑ : 𝜙6, 𝑥4, 𝑦4  

 

5⃑ : 𝜙7, 𝑥5, 𝑦5  

1 

 2 

3 

4 𝑥 

𝑦 

𝜙  

6⃑ : 𝑥6, 𝑦6, 𝜙8  

5 

  𝜙1, 𝜙1̇, 𝜙1̈  

𝑓𝑥6
  

𝑓𝑦6
  

𝑓𝜙8
  

𝑓𝑥4
  

𝑓𝑦4
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131 𝜀 =  [

[𝜀(o)]

[𝜀(𝑚)]

[𝜀(𝑐)]

] = [

[𝐷(𝑥)(o)]

[𝐷(𝑥)(𝑚)]

[𝐷(𝑥)(𝑐)]

] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜀5𝑒

𝜀5𝑏

𝜀1𝑒

𝜀1𝑏1

𝜀1𝑏2

𝜀2𝑒

𝜀2𝑏1

𝜀2𝑏2

𝜀3𝑒

𝜀3𝑏1

𝜀3𝑏2

𝜀4𝑒

𝜀4𝑏1

𝜀4𝑏2]
 
 
 
 
 
 
 
 
 
 
 
 
 

[∅]
[∅] ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 √((𝑥1 − 𝑥6)

2 + (𝑦1 − 𝑦6)
2) − 𝑙𝑜5

(𝑠𝑖𝑛(𝜙8))(𝑥1 − 𝑥6) − (𝑐𝑜𝑠(𝜙8))(𝑦1 − 𝑦6)

√((𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2) − 𝑙𝑜1

(𝑠𝑖𝑛(𝜙1))(𝑥2 − 𝑥1) − (𝑐𝑜𝑠(𝜙1))(𝑦2 − 𝑦1)

−(𝑠𝑖𝑛(𝜙2))(𝑥2 − 𝑥1) + (𝑐𝑜𝑠(𝜙2))(𝑦2 − 𝑦1)

√((𝑥3 − 𝑥2)2 + (𝑦3 − 𝑦2)2) − 𝑙𝑜2

(𝑠𝑖𝑛(𝜙3))(𝑥3 − 𝑥2) − (𝑐𝑜𝑠(𝜙3))(𝑦3 − 𝑦2)

−(𝑠𝑖𝑛(𝜙4))(𝑥3 − 𝑥2) + (𝑐𝑜𝑠(𝜙4))(𝑦3 − 𝑦2)

√((𝑥4 − 𝑥3)2 + (𝑦4 − 𝑦3)2) − 𝑙𝑜3

(𝑠𝑖𝑛(𝜙5))(𝑥4 − 𝑥3) − (𝑐𝑜𝑠(𝜙5))(𝑦4 − 𝑦3)

−(𝑠𝑖𝑛(𝜙6))(𝑥4 − 𝑥3) + (𝑐𝑜𝑠(𝜙6))(𝑦4 − 𝑦3)

√((𝑥5 − 𝑥4)
2 + (𝑦5 − 𝑦4)

2) − 𝑙𝑜4

(𝑠𝑖𝑛(𝜙6))(𝑥5 − 𝑥4) − (𝑐𝑜𝑠(𝜙6))(𝑦5 − 𝑦4)

−(𝑠𝑖𝑛(𝜙7))(𝑥5 − 𝑥4) + (𝑐𝑜𝑠(𝜙7))(𝑦5 − 𝑦4)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[∅]
[∅] ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
With 𝑙𝑜1, 𝑙𝑜2, 𝑙𝑜3, 𝑙𝑜4 and 𝑙𝑜5 the lengths of beam 1, 2, 3, 4 and 5 respectively. 
 

From the above it follows that there are 14 unknowns (the number of 𝑥(𝑐)) and 14 equations (the 

number of 𝜀(𝑜)plus the number 𝜀(𝑚) ), hence the system is kinematically determinate. The system has 
one degree of freedom, namely 𝜙1. 
 
After the motion of the multi-body system is known already, the external forces (including the reaction 
forces) can be determined as follows (this is explained very well in [2]): 
 
132 𝑓 = 𝐷,𝑥

𝑇𝜎 + ℎ + 𝑀�̈�  
 
Where:  
 

𝑓 =  [[𝑓(𝑜)]
𝑇

[𝑓(𝑐)]
𝑇

[𝑓(𝑚)]
𝑇
] =

[[𝑓𝑥6
𝑓𝑦6

 𝑓𝜙8
𝑓𝑥4

𝑓𝑦4 ]
𝑇 [𝑓𝑥1

𝑓𝑦1
𝑓𝑥2

𝑓𝑦2
𝑓𝜙2

𝑓𝜙3
𝑓𝑥3

𝑓𝑦3
𝑓𝜙4

𝑓𝜙5
𝑓𝜙6

𝑓𝑥5
𝑓𝑦5

𝑓𝜙7]
𝑇 [𝑓𝜙1

]
𝑇
]  

 
𝑀 = Mass matrix 
ℎ = Convective term of the inertia property which is a function of the position coordinates and 
quadratic in the velocities 
 

𝜎 = [[𝜎(𝑜)][𝜎(𝑚)][𝜎(𝑐)]] =  

[[𝜎5𝑒 𝜎5𝑏 𝜎1𝑏1 𝜎1𝑏2 𝜎1𝑒 𝜎1𝑏1 𝜎2𝑏1 𝜎2𝑒 𝜎3𝑏1 𝜎3𝑏2 𝜎3𝑒 𝜎4𝑏1 𝜎4𝑏2 𝜎4𝑒][∅][∅]]  

= Stress resultants; partially (𝜎(𝑐)) calculated from the linear constitutive Kelvin-Voigt equations (see 
[2]):  
 
133 𝜎 = 𝑆𝜀 + 𝑆𝑑𝜀̇  
 
𝑆 = Stiffness matrix 
𝑆𝑑  = Damping matrix 
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The forces of interest are the reaction forces 𝑓𝑥6
, 𝑓𝑦6

 and 𝑓𝜙8
. As the mass matrix is diagonal, node 6 is 

fixed and beam 5 is rigid, close observation of the system yields that these forces can be calculated as 
follows: 
 
134 
 
𝑓𝑥6

= 𝜎5𝑒   

𝑓𝑦6
= 𝜎5𝑏   

𝑓𝜙8
= 𝜎5𝑏 ∙ 𝑙𝑜5  

 
Hereby 𝜎5𝑒  and 𝜎5𝑏  are the internal forces in beam 5 which depend on the complete motion of the 
system (see [2]). To this end the reaction forces 𝑓𝑥6

 and 𝑓𝑦6
 will always have the same behavior as long 

as the motion of the system is not altered. On the other hand the reaction force 𝑓𝜙8
 also depends on 

the length of beam 5, 𝑙𝑜5, which is independent of the motion of the system. This can be used to the 
advantage of the measurements by choosing 𝑙𝑜5 in such a way to fully utilize the measurement range 
of the force sensor in order to obtain an as small as possible relative error.  
 
The relative error depends on the absolute error ∆𝑋 and the measured quantity 𝑋 as follows: 
 

𝑒𝑟  =  
∆𝑋

𝑋
  

  
A decrease in absolute error (∆𝑋) and thus a decrease in relative error (𝑒𝑟) can be obtained by choosing 
measuring equipment with a higher resolution. However for a chosen force sensor the relative error 
can be reduced even more by ensuring the measured value (𝑋) is as close as possible to the 
measurement range of the sensor. In the case of measuring 𝑓𝜙8

, this can be achieved by adjusting 𝑙𝑜5, 

i.e. by adjusting the placement of the force sensor. 

 

5.2.2 Power tool selection 
In this section a power tool is selected which can provide for sufficient tightening torque in case the 
mechanical solution is applied, i.e. the fixing of the phase shift by means of disc frictional connection 
whereby the discs are held together through preload supplied by a M8 bolt.  
 
Tightening torque 
The required tightening torque 𝑇  required for obtaining the necessary preload 𝑄 = 6000[N] = 6 [kN] 
between the disc with friction coefficient 𝑓 = 0.15 through a bolt with diameter 𝑑 =  8[mm] is 
calculated as follows [11]: 
 
135 𝑇 =  𝑓 ∙ 𝑑 ∙ 𝑄  
 
From this follows a required tightening torque 𝑇 = 7.2[Nm]. This tightening torque can be supplied 
either manually or through the use of the Bosch power tool: GSR Mx2Drive Professional which is able 
to supply a maximum torque of 12 [Nm]. 
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Appendix 6 System identification and parameter estimation 
6.1 Identification plan 
System identification and parameter estimation test plan 
The mechanism/ test setup is mounted in the wind tunnel with the wing arranged vertically and 
directed upward. This causes the un-controlled (or poorly controlled) system to behave unstable 
equivalent to an inverted pendulum. System identification of the open-loop plant thus becomes 
problematic. To solve this problem the following is done: 
 

1. Open-loop identification with upside-down configuration: The first objective of system 
identification is to gather data for model validation. To circumvent an un-stable open-loop 
plant, the test setup is still mounted vertically but upside-down, i.e. with the wing directed 
downwards. In such a way it behaves like a (marginally) stable pendulum rather than an 
unstable inverted pendulum. In this configuration open-loop system identification can be 
conducted and the model can be validated qualitatively and also quantitatively (e.g. the 
coupling behavior can still be captured). 

 
2. Closed-loop identification with relatively weak control (only P-control): The second objective 

of system identification is for control design purposes. For this, the estimation target is the low 
frequency behavior of the unstable open-loop plant. Hence closed loop identification of the 
controlled system is required. Control action is applied to keep the wing in position. The 
applied control is relatively weak to prevent the controller from having a dominant role on the 
frequency content of the plant input signal. Only proportional control is used. Subsequently, 
either direct identification or joint-input-output identification can be applied. 

 
System input and output 
As discussed above, open-loop identification is conducted on the upside-down configuration. As 
current control is to be applied through position feedback, the system input and output are taken the 
current and position respectively. 
 
Frequency range input signal 
In order to capture essential dynamic behavior the system should be excited appropriately. Using the 
elaborate model developed in Spacar as a guideline, the following essential dynamic behavior appear: 
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Figure 66 frequency response of the upside-down test setup 

 
1. Low frequency resonance: The first occurring resonance can be interpreted as the natural 

frequency of the pendulum like motion of the upside down configuration: 
 

136 𝜔𝑅low
≈ √

𝑔

𝐿
  

 
With: 
 

𝑔 = 9.8 [
m

s2] = the gravitational acceleration 

𝐿 = 0.2 [m] = approximately half the wing length (wing center of mass) 
 
When calculated, this yields: 
 

𝜔𝑅low
≈ √

9.8 

0.2
 ≈ 7[

rad

s
]  

 

This agrees to some degree with the value of 6[
rad

s
] which is read from Figure 66. 

 
2. High frequency anti-resonance and resonance: high frequency resonances and anti-

resonances occur due to the mechanical compliant coupling as described in section 2.2 
 

With 𝜔𝐴𝑅,1 = 𝜔𝐴𝑅,2 = 42.8 [
rad

s
] and 𝜔𝑅 = 60.2 [

rad

s
] (see Figure 66), eq. 38 applies very well. 

 
Thus the frequencies of importance are: 
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𝜔𝑅low
= 6 [

rad

s
] = 0.95 [Hz]  

𝜔𝐴𝑅,1 = 𝜔𝐴𝑅,2 = 42.8 [
rad

s
] = 6.8 [Hz]  

𝜔𝑅 = 60.2 [
rad

s
] = 9.6 [Hz]  

 
Signal type and signal band 
A broadband signal of type SINE (sum of harmonic signals) is chosen. Considering the relevant 
frequencies as mentioned above, a signal band of 6 [Hz] to 10 [Hz] is chosen for the input signal. To 
also excite the system at the first resonance frequency, it is given a small initial output (position/angle). 
 
Signal amplitude/ levels 
To be sure the system is able to handle the input signal, the signal amplitude/ level is restricted. It is 
even further restricted to obtain a sufficiently small output (angle/position) such that aerodynamics 
become negligible (sufficiently small flapping angle) ensuring the data becomes more profitable for 
model validation as the model did not account for aerodynamics which were only modeled as 
disturbances. To this end, 0.1 [A] is taken for the amplitude of the input signal.  
 
Sample frequency 
As a rule of thumb (see [15]), the sampling frequency  𝜔𝑠 should be taken such that the Nyquist 

frequency 𝜔𝑁 =
𝜔𝑠

2
 is well above the highest relevant frequency. Choosing a sampling time 𝑡𝑠 =

 10−2[s] a sampling frequency  𝜔𝑠 = 100 [Hz] is obtained. This means a Nyquist frequency 𝜔𝑁 =
50 [Hz] is obtained which is at least 5 times the largest relevant frequency 𝜔𝑅 = 9.6 [Hz] and thus 
considered large enough. 
 
Data processing 
In order to improve the quality of identification, the data can be filtered (pass band: 10 [rad/s] 100 
[rad/s]) after acquisition. 
 
Results 
Using the input signal described above, i.e. a SINE signal covering a signal band of 6 [Hz] to 10 [Hz] and 
an amplitude of 0.1 [A], and a sampling frequency 𝜔𝑠 = 100 [Hz], output data is generated through 
the nonlinear model developed in Spacar. Next system identification is conducted in Ident using prior 
knowledge of the system, i.e. a fourth order TITO (two input two output) system. From the results it 
follows that both estimations (open-loop and closed-loop identification) approach the model well.  
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Figure 67  Upper: Results of open-loop system identification: Gzid_ol: Linearized model of the non-linear Spacar 
model ss1: identification; Lower: Results of closed-loop system identification: Gzid_ol: Linearized model of the 

non-linear Spacar model ss3: identification 
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Motor initialization prior to identification 
 
Prior to system identification, initialization of the motors is conducted using the wizard of the 
composer software ( [16]; also see [17], [18] and [19]): 
 

1. Specifying motor parameters 
2. User interface for absolute feedback 
3. Defining system limits 
4. Tuning the current loop 
5. Configuring commutation 
6. Tuning the velocity loop 
7. Tuning the position loop 
8. Tuning the dual loop 

 

6.2 Damping estimation 
Prior to model validation, first system damping is estimated through measurement. Damping 𝑑 is 
calculated from current 𝐼𝑚  and angular velocity 𝜔𝑚  measurements for quasi-static motion: 
 

137 𝑑 =
𝑇

𝜔
=

2000

2∙𝜋
∙ 𝑖2 ∙

𝑘𝑚∙𝐼𝑚

𝜔𝑚
  

 
Whereby: 
 
𝑑  = damping in [Nms/rad] 
𝑇= torque in [Nm] 
𝜔  = angular velocity in [rad/s] 
𝑖  = gear transmission = 18 
𝑘𝑚  = torque constant 
𝐼𝑚   = measured current in [A] = 0.0205 [Nm/A]  
𝜔𝑚  = measured angular velocity in [counts/turn] 
 

 
Figure 68 Left: measured current; Right: measured angular velocity 

 

Applying this data (Figure 68) to equation 137 yields a mean damping of 𝑑 = 0.04 [
Nms

rad
]. This damping 

is added to the model in Spacar. 
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Appendix 7 Elmo motion control 
7.1 Cascaded position velocity control 
The SimplIQ ELMO Whistle controllers used in the Robird wind-tunnel test setup feature cascaded 
position (P) –velocity (PI) control (PIP-control) instead of the more widely used PID-control. This is 
depicted in Figure 69. Typically the velocity loop consists of integral (𝐾𝑉𝐼) and proportional control 
(𝐾𝑉𝑃) to ensure rapid reaction to changing commands and providing resistance to high-frequency load 
disturbances. The position loop consists of proportional control (𝐾𝑃) to ensure the position is tracked 
well. A somewhat more detailed velocity and position loop as used in the SimplIQ ELMO Whistle 
controllers are presented in Figure 70 and Figure 71 respectively. 
 In order to obtain optimal performance, tuning is required. In [20] a procedure for tuning is 
given for such a cascaded position-velocity control loop. Each of the gain influences a distinct 
frequency region. 𝐾𝑉𝑃 typically covers the high frequency zone, between 10 and 30 [Hz]. 𝐾𝑉𝐼 covers 
the mid frequency region, typically between  10 and 30 [Hz] whereas 𝐾𝑃  covers the low frequency 
region, 0 to 10 [Hz].  

In the following a very brief discussion is given for tuning these control parameters. For a more 
elaborate discussion see [20]. First 𝐾𝑉𝑃 is tuned (𝐾𝑉𝐼 is set to zero) in velocity mode. A step reference 
is given for the velocity, typically around 250 [rpm]. 𝐾𝑉𝑃 is chosen as high as possible while still 
preventing any overshoot. Next 𝐾𝑉𝐼 is increased until 15[%] overshoot is obtained. Switching to 
position mode, finally 𝐾𝑃  is tuned. A trapezoidal reference is chosen and 𝐾𝑃  is chosen as high as 
possible while still preventing overshoot.        
 

 
Figure 69 Block diagram of cascaded position-velocity loops [20] 
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Figure 70 Speed controller block diagram [18] 

 

 

Figure 71 Position controller block diagram [18] 
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7.2 Code (ELMO Studio) 
 

The following code is used for control of both motors simultaneously. Motor 1 starts on line: 
##twomot1 and motor 2 starts on line: ##twomot2. 
 
##twomot 
int Tsaf,t, T, d,phs_0, phs,spd,f,ph_step,x,m,phs_max,w,i,pos,delta 
Tsaf = 20*1e6;//55556*360; //safety time: 20 sec 
if m ==1 
goto ##twomot1 
else 
goto ##twomot2 
end 
 
##twomot1  
m = 1;// motor1 
if Tsaf ==0 
goto ##twomot 
else 
goto ##specs // go and read specs 
end 
 
##twomot2  
m = 2;// motor2 
if Tsaf ==0 
goto ##twomot 
else 
goto ##specs // go and read specs 
end 
 
 
##specs // specs 
// set specs: 
 
// motor specs: 
mo = 0; 
px = 0;// reset position 
um=5;  
ac = 10000000; 
dc = 10000000; 
sf = 50; 
 
x = 0;// counter initial value  
i = 0; 
 
// test specs: 
f = 2;// frequency in[Hz] 
 
ph_step = 2.5*100;// step in phase shift 
phs_0 = 0*100;// initial phs: 100[counts]=1[deg] 
phs_max = 10*100; //maximum phase 
 
d = 5*1e6;// execution time 
w = 0*1e6;// wait time 
t = 0.1*1e6-d-w+Tsaf; 
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phs = phs_0;  
##updatephase 
t = t+d+w; //update start time 
x=x+1; //counter 
phs = phs+(i*ph_step);//update phase 
 
if phs<=phs_max 
sp  = f*36000;//in [counts/sec] 
else 
goto ##finish 
end 
spd = sp; 
 
// add phase shift to motor2 
 if m==1  
 t = t;// wait time motor1  
 goto ##dojob 
 else 
 t = t +((((phs_0 + i*ph_step)*1e6)/spd));// wait time motor2: wait time motor1 + phase shift time  
 goto ##dojob 
 end 
 
##dojob 
T = t+1*d;// final time  
 
mo=1 
  
 // design controller 
 gs[2]=2; 
 kp[2]=150;//200; 
 ki[2]=100; 
 kp[3]=500;//1000; 
 ff[1]=10; 
 ff[2]=1; 
  
 // give position task 
 pa = -d*sp*(1e-6)*x*0.9905; // reference signal 
 pos = pa; 
 bt=t; 
 wait((t-tm)*1e-3); 
  
 i=1; 
 phs_0 = 0; 
 goto##updatephase 
 
 
##finish 
pa = pos; 
bg; 
gs[2]=64; 
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Appendix 8 Force measurement 
8.1 6-DOF Force sensing module (FSM) 
The force sensing module (FSM) to be used (see Appendix 5.2.1) is connected to six 1DOF load cells 
through six wire flexures (each constraining only one DOF, i.e. in longitudinal direction) in an exactly 
constraint fashion, enabling it to measure forces and torques in all directions [14]. The configuration 
is depicted in Figure 72 and Figure 73.  The load cells measure the forces transposed to the flexures, 
hence the following relation exists between the forces acting on the origin 𝑭𝒙  and the forces in the 
flexures 𝑭𝒏: 
 
138 𝑭𝒙 = 𝐴𝑭𝒏  
 

𝑤𝑖𝑡ℎ 𝑭𝒙 =  

[
 
 
 
 
 
𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 
 

, 𝑭𝒏 =

[
 
 
 
 
 
𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6]
 
 
 
 
 

 , 𝐴 =  

[
 
 
 
 
 

0 0 0 −1 −1 0
0 0 0 0 0 −1
1 1 1 0 0 0
0 𝑏 −𝑏 0 0 0

−𝑎 𝑎 𝑎 0 0 0
0 0 0 𝑏 −𝑏 0 ]

 
 
 
 
 

, 𝑎 = 0.09 [m] 𝑎𝑛𝑑 𝑏 = 0.08[m]   

 
For a physical interpretation on 𝑎 and 𝑏, refer to Figure 72. For an external load on the platform (see 

Figure 73), the following applies: 

139 𝑭𝒙 = 𝐵𝑭𝒆𝒙𝒕   
 

𝑤𝑖𝑡ℎ 𝑭𝒙 = 

[
 
 
 
 
 
𝐹𝑥
𝐹𝑦
𝐹𝑧
𝑀𝑥

𝑀𝑦

𝑀𝑧]
 
 
 
 
 

, 𝑭𝒆𝒙𝒕 =

[
 
 
 
 
 
 
𝐹𝑥

′

𝐹𝑦
′

𝐹𝑧
′

𝑀𝑥
′

𝑀𝑦
′

𝑀𝑧
′ ]
 
 
 
 
 
 

 𝑎𝑛𝑑 𝐵 =  

[
 
 
 
 
 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −𝑧 𝑦 1 0 0
𝑧 0 −𝑥 0 1 0

−𝑦 𝑥 0 0 0 1]
 
 
 
 
 

   

 
Between the voltage output of the load cells 𝑽𝒏 and the forces in the flexures 𝑭𝒏, the following relation 
exists for this specific FSM (see [14]): 
 
140 𝑽𝒏 = 𝑆𝑭𝒏  
 

𝑤𝑖𝑡ℎ 𝑽𝒏 =

[
 
 
 
 
 
𝑉1

𝑉2

𝑉3

𝑉4

𝑉5

𝑉6]
 
 
 
 
 

 , 𝑭𝒏 =

[
 
 
 
 
 
𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6]
 
 
 
 
 

  𝑎𝑛𝑑 𝑆 =

 

[
 
 
 
 
 
0.2152 0.0010 −0.0006 −0.0008 −0.0003 0.0004
0.0008 0.2135 0.0009 0.0010 0.0033 −0.0012

−0.0001 −0.0003 0.2162 0.0004 0.0026 0.0007
−0.0018 0.0008 0.0010 0.2035 0.0068 −0.0039
0.0001 0.0003 −0.0036 0.0039 0.2108 −0.0005
0.0015 −0.0005 0.0017 −0.0086 0.0061 0.2067 ]

 
 
 
 
 

   

 
Combining equations138, 139 and140, the following relation applies between an external load 
𝑭𝒆𝒙𝒕  and the voltage output of the load cells 𝑽𝒏: 
 



94 
 

141 𝑭𝒆𝒙𝒕 = 𝐵−1𝐴𝑆−1𝑽𝒏  
 
 

Figure 72 Exactly constrained configuration of the FSM using six wire flexures [14] 
 

 

 

 
Figure 73 Loading configuration showing the external load applied on the top floating plate of the FSM at 

point 𝑃; 𝐹𝑒𝑥𝑡 includes the external forces and moments [14] 
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8.2 Determination of aerodynamic loads from measured reaction 

forces for 𝑓 =  1[Hz] and 𝑝ℎ𝑠 =  7.5[°] 

 
In this appendix, the procedure as discussed in section 7 is illustrated for 𝑓 =  1[Hz] and 𝑝ℎ𝑠 =
 7.5[°] 
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Figure 74 Determination of Aerodynamic loads through measurement and simulation of the reaction forces 
(see figure titles); 𝑓 =  1[Hz] and 𝑝ℎ𝑠 = 7.5[°] 
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Appendix 9 Parts list and Costs 
 

 
 

Table 2 Parts list and costs for the Robird wind tunnel test setup 
 

Parts Amount Price per unit Supplier 
Subtotal 
price 

Standard parts 

Gearbox 

2 € 419,65 
Maxon 
Motor 

€ 839,30 Motor 

Encoder 

Controller 2 € 0,00 UT € 0,00 

Force Sensor 1 € 0,00 UT € 0,00 

Bearing 4 € 16,20 Kuil Nicos € 64,80 

Gears 4 € 19,90 Misumi € 79,60 

Circlip 1 € 0,00 UT € 0,00 

Manufacturing 
parts 

Laser cutting 
(and 
bending) 

Delrin 
Alternative 

base plate 1 

€ 0 UT € 0,00 

disc 1 

plate 1 

shackle A 2 

mount plate A 2 

mount plate B 2 

shackle C 1 

shackle B 2 

wood 
Wooden base 
plate 

1 

Lathing and Milling parts 

key 2 € 65 
RM Precision 

€ 130 

pin 2 € 145 € 290 

flex pin 6 
€ 0 UT € 0 

bolt 1 

Vacuum forming shell 1 € 0 UT € 0 

Parts from Robird 

Driveshaft-Pen 4 

€ 0 CFS € 0 

shim_3x6x0.2 8 

shim_3x6x0.5 4 

Circlip-4mm 2 

Flanger-3mm 8 

Connecting-
Rod 

2 

Wing-Spar-
Connector 

2 

Shoulder-Shaft 1 

Left Wing 1 

Total costs (excluding parts supplied by UT): € 1.403,70 
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Appendix 10 Schedule 

 

Table 3 Schedule 

 

Tasks 

Month March April May June July August September October   

Week 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

2
1 

2
2 

2
3 

2
4 

2
5 

2
6 

2
7 

2
8 

2
9 

3
0 

3
1 

3
2 

3
3 

3
4 

3
5 

3
6 

3
7 

3
8 

3
9 

4
0 

4
1 

4
2 

4
3 

4
4 

4
5 

Problem understanding\ Design 
requirements                                                                           

Conceptual design\ Design 
proposals                                                                           

Actual design                                                                           

Detailed design                                                                           

Ordering parts & Assembly                                                                           

Report on the Design                                                                            

Develop extensive test plan 
including SI&PE                                                                           

Familiarization with sofware 
(Composer software)                                                                           

System identification and model 
validation                                                                           

Controller redesign, 
implementation and tweaking                                                                           

Prepare test setup and develop 
test plans (scripts)                                                                           

Conduct force measurement 
experiments                                                                           

Write final report                                                                           

Prepare presentation                                                                           

Graduate                                                                           


