
University of Twente

Master Thesis

An Environmental Audio–Based Context
Recognition System Using Smartphones

Author:

Gebremedhin T. Abreha

Supervisor:

Dr. Nirvana Meratnia

Committee:

Prof. Paul Havinga

Ir. Bert Molenkamp

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science in Embedded Systems

Pervasive Systems Chair

Faculty of Electrical Engineering, Mathematics and Computer Science

August 2014

University of Twente

Faculty of Electrical Engineering, Mathematics and Computer Science

Master of Science in Embedded Systems

An Environmental Audio–Based Context Recognition System Using

Smartphones

by Gebremedhin T. Abreha

Abstract

Environmental sound/audio is a rich source of information that can be used to infer

a person’s context in daily life. Almost every activity produces some sound patterns,

e.g., speaking, walking, washing, or typing on computer. Most locations have usually

a specific sound pattern too, e.g., restaurants, offices or streets. This thesis addresses

the design and development of an application for real-time detection and recognition

of user activities using audio signals on mobile phones. The audio recognition applica-

tion increases the capability, intelligence and feature of the mobile phones and, thus,

increases the convenience of the users. For example, a smartphone can automatically

go into a silent mode while entering a meeting or provide information customized to

the location of the user. However, mobile phones have limited power and capabilities

in terms of CPU, memory and energy supply. As a result, it is important that the de-

sign of audio recognition application meets the limited resources of the mobile phones.

In this thesis we compare performance of different audio classifiers (k-NN, SVM and

GMM) and audio feature extraction techniques based on their recognition accuracy and

computational speed in order to select the optimal ones. We evaluate the performance

of the audio event recognition techniques on a set of 6 daily life sound classes (coffee

machine brewing, water tape (hand washing), walking, elevator, door opening/closing,

and silence). Test results show that the k-NN classifier (when used with mel-frequency

cepstral coefficients (MFCCs), spectral entropy (SE) and spectral centroid (SC) audio

features) outperforms other audio classifiers in terms of recognition accuracy and execu-

tion time. The audio features are selected based on simulation results and proved to be

optimal features. An online audio event recognition application is then implemented as

iii

an Android app (on mobile phones) using the k-NN classifier and the selected optimal

audio features. The application continuously classifies audio events (user activities) by

analyzing environmental sounds sampled from smartphone’s microphone. It provides a

user with real-time display of the recognized context (activity). The impact of other

parameters such as analysis window and overlapping size on the performance of audio

recognition is also analyzed. The test result shows that varying the parameters does not

have significant impact on the performance of the audio recognition technique. More-

over, we also compared online audio recognition results of the same classifier set (i.e.,

k-NN) with that of the off-line classification results.

Acknowledgements

First of all, I would like to thank Almighty God, who has blessed and guided me so that

I am able to accomplish this thesis.

In this very special occasion, I would like to express my deepest gratitude and appreci-

ation to my Supervisor, Dr. Nirvana Meratnia, who gave her valuable time, guidance,

advice, criticism and corrections to the thesis from the beginning till the end. She was

always available for my questions and she was positive and gave generously her time

and vast knowledge. I also want to thank all of the lecturers and professors of the Fac-

ulty who have thought and guided me during the years of my study at the University.

In addition, I would like to thank the University of Twente Scholarship for providing

me with financial help and funding, without which it would not have been possible to

successfully finish my study.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 General Challenges of Environmental Audio Classification and Recognition 3

1.2 Smartphone Specific Challenges . 4

1.3 Thesis Objectives . 6

1.4 Methodology . 7

2 Background and Principles Used 11

2.1 Digital Audio Analysis . 11

2.1.1 Short-Time Fourier Transform . 12

2.1.2 Commonly Used Windows . 13

2.1.3 Selection of windowing parameters 15

3 Audio Features 19

3.1 Requirements for Audio Features Selection 19

3.2 Audio Physical Features . 21

3.2.1 Temporal Features . 21

3.2.2 Audio Spectral Features . 24

4 Audio Classifiers 29

4.1 Requirements for Audio Classifier Selection 30

4.2 Popular classifiers . 31

4.2.1 The k-Nearest Neighbor Classifier (k-NN) 31

4.2.2 Gaussian Mixture Model (GMM) 33

4.2.3 Support Vector Machine (SVM) 36

v

Contents vi

5 Audio Classification and Event Detection Design Procedures 39

5.1 Audio Capturing . 39

5.2 Pre-processing . 41

5.2.1 Normalization . 41

5.2.2 Pre-emphasis . 41

5.2.3 Framing . 41

5.2.4 Windowing . 42

5.3 Feature Extraction . 44

5.3.1 Feature Normalization . 44

5.3.2 Composition of Feature Vectors . 45

5.3.3 Short-Term and Mid-Term Processing 45

5.4 Audio Classification and Detection . 47

5.5 Post-processing . 48

5.6 Audio Features Dimension Reduction . 48

5.6.1 Sequential Forward Search (SFS) 50

6 Off-line Audio Classification and Event Detection 53

6.1 Simulation Setup . 54

6.1.1 Datasets . 54

6.2 Performance Evaluation Metrics and Methods of Audio Classifiers 55

6.2.1 Performance Measures . 56

6.2.2 Validation Methods . 57

6.3 Performance Evaluation Results . 59

6.3.1 Performance of k-NN Classifier . 59

6.3.2 Performance of SVM Classifier . 61

6.3.3 Performance of GMM Classifier . 64

6.3.4 Comparison of Classifiers’ Performance 68

6.4 Parameter Selection . 69

6.5 Feature Selection and Dimensionality reduction 70

6.6 Summary: on k-NN Performance . 72

7 On-line Audio Classification and Recognition 73

7.1 The On-line Audio Recognition Application 74

7.2 Performance of On-line Audio Recognition 76

7.2.1 Computational speed . 76

7.2.2 Recognition accuracy . 79

7.2.3 Memory usage . 82

8 Conclusion and Future Works 85

Bibliography 87

List of Figures

1.1 Project Overview Components . 7

2.1 Rectangular Window . 15

2.2 Hamming Window . 15

3.1 MFCC Process . 27

4.1 k-NN Classification . 33

4.2 Gaussian Mixture Models . 35

4.3 SVM Classification . 36

4.4 SVM Mapping . 37

5.1 Pre-Processing and Feature Extraction 40

5.2 Signal before Pre-Emphasis . 42

5.3 Signal after Pre-Emphasis . 42

5.4 Framing Process . 43

5.5 Windowing Process with Hamming Window 43

5.6 Classifier Implementation . 47

5.7 Post-process Class label Merging Class Sequences 49

6.1 k-NN Performance vs k . 59

6.2 SVM Performance for Different Kernel Functions 62

6.3 Low GMM Performance for Small Datasets 66

6.4 GMM Performance for Different Number of GMM Components, k 67

6.5 Individual Feature Performance . 72

7.1 The Classification Process of On-line Audio Recognition 75

7.2 GUI of Android App . 76

7.3 On-line phase, Execution Time . 79

7.4 Continuous Sound Event Recognition . 81

7.5 On-line:- Heap Memory Usage . 83

7.6 On-line:- Overall Memory Usage . 84

vii

List of Tables

6.1 Small Dataset . 55

6.2 Big Dataset . 55

6.3 k-NN: Confusion Matrix for Small Dataset 60

6.4 k-NN: Confusion Matrix for Big Dataset 60

6.5 SVM performance Confusion Matrix (for Small Dataset) 63

6.6 SVM performance Confusion Matrix (for Big Dataset) 63

6.7 Low GMM Performance Confusion Matrix (LOO) 66

6.8 GMM-Confusion Matrix for Big Dataset 67

6.9 Summary of Classifiers’ Comparison . 69

6.10 Parameter Selection . 70

ix

Dedicated to my Parents.

xi

Chapter 1

Introduction

As modern science and information technology advances, device sizes are becoming

smaller and more operations are now feasible on smaller devices. For instance, mobile

devices, such as smart-phone, not only do they work as a telephone, but also their role

now have expanded to taking pictures, texting/receiving messages, playing music/videos,

keeping appointments, etc. Nevertheless, people still want to access or obtain more

intelligent and intuitive knowledge anytime and anywhere using their mobile devices.

The rapid increase in speed and capacity of smart mobiles or embedded devices equipped

with sensors and powerful processors (CPUs) is expected to allow the inclusion of more

applications that can increase the capability, intelligence and feature of mobile devices.

One of the key anticipated future capabilities of smart devices is Context Awareness

(CA). CA enables mobile devices to sense and recognize user’s contextual information

such as user activities, surrounding environment, and provide context relevant informa-

tion for user’s current needs. Many sources such as microphone, camera, gyroscope,

accelerometer, luminance, Global Positioning System (GPS), and etc., are available for

sensing and capturing various types of contextual information. In audio based context

awareness systems, environmental sounds are used to obtain contextual information such

as the type of environment (location context), activities (what a user is doing) and what

activities/evets are going on in a specific location [1–6].

Audio based CA applications provide mobile device (phone) with the ability to auto-

matically know the context of a given environment and use its knowledge to respond to

the mobile user in the most appropraite way. In other words, the CA system enables

1

Chapter 1. Introduction 2

a cellphone to change automatically the notification or operation mode based on the

knowledge of the user’s surrounding. For example, a mobile phone can dynamically

switch from a ringing mode to a vibration or silence mode when a user enters into a

meeting room or holds a presentation, and in contrast, it may ring louder when the user

is in a noisy place, e.g. a street. Similarly, if a user receives a call while she or he is

in a meeting, the mobile phone can automatically send a message to the caller saying

that she or he is in a meeting. Audio based CA systems has been also used in robot

navigation [7, 8], audio based surveillance systems [9], audio based forensics [10], hearing

aid [11], home-monitoring environment for assisting elderly people living alone in their

own home [12, 13] or for a smart home [14].

Auditory signals are chosen for a number of reasons. Firstly, among the human senses,

hearing is second only to vision in recognizing social and conceptual settings; this is

due partly to the richness in information of audio signals. Secondly, cheap but practical

microphones can be embedded in almost all types of places or mobile devices, including

PDAs and mobile phones. Thirdly, auditory-based context recognition consumes signif-

icantly fewer computing resources than camera-based context recognition. In addition,

unlike visual sources of information such as camera and video, audio information cannot

be obscured by solid objects and it is multidirectional, i.e., it can be received from any

direction. Additionally, audio data is less sensitive to the location and orientation of the

phone as compared with other common sensors such as cameras and accelerometers.

Humans can easily segregate and recognize one sound source from an acoustic mixture,

such as certain voice from a busy (noisy) background including other people talking

and music. The study of sound analysis, which aims to separate and recognize mixture

of sound sources present in an auditory scene, is broadly known in the literature as

Computational Auditory Scene Analysis (CASA) [15]. CASA aims to enable computers

hear and understand audio content much as humans do. Due to its broad nature, the

study of CASA is usually dealt with by dividing into three main research topic areas [15]:

1) Context awareness (recognition of audio context) - dealing with recognition of context

such as location or activity happening in a given environment. (answers “where” e.g.

restaurant, inside a car) based on the audio information/events, 2) Sound event detection

and recognition – dealing with categorization of individual sound events present in the

auditory scene (answer “who and what”, e.g., recognition of sound sources), 3) General

Chapter 1. Introduction 3

audio classification – dealing with classification and recognition of the contents of audio

signals, e.g., for audio content retrieval, indexing, and audio based searching.

This thesis deals with sound event detection and recognition also referred as environ-

mental sound/audio recognition (ESR). The detected sound events can then be used for

the purpose of context recognition. For example, the sound event of keyboard typing

helps to know that the user is in his/her office, which is, in this case, location context.

1.1 General Challenges of Environmental Audio Classifi-

cation and Recognition

In this section, main challenges that are faced in ESR and classification are pointed out.

Unlike speech or music signals, environmental acoustic signals are difficult to model

due to its high unpredictable nature. Speech or music can be categorized to structured

sounds due to their formantic or harmonic structure characteristic whereas environmen-

tal sounds, on the other side, are typically unstructured, which have a broad noise-like

flat spectrum and diverse variety of signal composition and are difficult to build models.

Analysis of real-world audio that consists of a rich mix of naturally occurring sounds

such as the environmental sound is complex. As a result, classification and processing

of environmental sound is generally more cumbersome compared with that of speech or

music. The following are the general challenges that are faced during the design and

implementation of ESR technique:

• Overlap in time and/or frequency content - Different sound events can hap-

pen at the same time which makes recognition of the type of sound event difficult.

This leads to two challenging tasks: detection of individual sound events within

the audio scene (segmentation) and classification. A system involved in the first

task has as a goal to cluster mixed sound events from different sources into their

corresponding source type, or try to segment the audio into pieces that represent

a single occurrence of a specific event class by estimating the start and end time of

each event and if necessary separating it from other overlapping events. The aim of

the second task is to characterize and identify the type of sound event (e.g., label

the environment in which the audio was recorded). Thus, the overlapping sound

Chapter 1. Introduction 4

events that constitute a natural auditory scene (environmental sound) create an

acoustic mixture signal that is more difficult to handle.

• Dynamic nature of environment – Apart from containing a wide variety of

sound classes, environmental sound has a dynamic nature, i.e., new sound types

(classes) can appear and existing sound classes can disappear randomly at any

time. Similarly, mobile devices can move from one environment to another envi-

ronment and may encounter new types of sound. Therefore, the ESR technique

has to deal with and adapt to the dynamic nature of an environmental sound.

• Selection of feature set - Audio features have a significant impact on the recog-

nition accuracy. Thus, the definition and extraction of the right type of feature sets

is a very important step in ESR. However, it is challenging step too. What feature

types we define and how we use them depends on the type of application. For

example, audio features used for audio classification in indoors might not perform

well when used for the classification of types of sounds in outdoor areas.

1.2 Smartphone Specific Challenges

In addition to the above mentioned general challenges, there are also special challenges

that have to be dealt with in order to implement audio based CA technique on mo-

bile devices/smartphones. While smartphones continue to provide more computation,

memory, storage, sensing, and communication bandwidth, the phone is still a resource-

limited device if complex signal processing and inference are required. Signal processing

and machine learning algorithms can stress the resources of the phones in different ways:

some require the CPU to process large volumes of sensor data (e.g., interpreting audio

data), some need frequent sampling of energy expensive sensors (e.g., GPS), while oth-

ers require real-time inference. Different applications place different requirements on the

execution of these algorithms. For example, for applications that are user initiated the

latency of the operation is important. Applications (e.g., healthcare) that require con-

tinuous sensing will often require real-time processing and classification of the incoming

stream of sensor data. We believe continuous sensing can enable a new class of real-time

applications in the future, but these applications may be more resource demanding.

Chapter 1. Introduction 5

Early deployments of phone sensing systems tended to trade off accuracy for lower

resource usage by implementing algorithms that require less computation or a reduced

amount of sensor data. Limited power supply and real time requirement are the most

common issues that have to be addressed while implementing online (real-time) context

awareness system on smartphones.

• Limited power supply- Mobile devices have limited power supply and hardware

capabilities. Most of the previous researches on audio based CA techniques mainly

focus on improving the accuracy of ESR and do not address the complexity of the

algorithms used. It implies that a number of algorithms which are often used and

proposed in many of the literature for the implementation of ESR may not be suit-

able to directly implement them on mobile devices. For continuous sensing to be

viable there need to be breakthroughs in low-energy algorithms while maintaining

the necessary application fidelity. Thus, it is always a challenging problem to find

algorithms with less complexity, which consumes less power, without degrading

classification accuracy. Hence, performance and energy consumption trade-offs

must be sought.

One strategy for reducing energy consumption is to trade off accuracy for lower

resource usage by implementing algorithms that require less computation or a

reduced amount of sensor data. Another strategy to reduce resource usage is to

leverage cloud infrastructure where different sensor data processing stages are off-

loaded to back-end servers when possible. Typically, raw data collected by the

phone is not sent over the air due to the energy cost of transmission, but rather

compressed summaries (i.e., extracted features from the raw sensor data) are sent.

The drawback to these approaches is that they are seldom sufficiently energy-

efficient to be applied to continuous sensing scenarios. Other techniques rely on

adopting a variety of duty cycling techniques that manage the sleep cycle of sensing

components on the phone in order to trade off the amount of battery consumed

against sensing fidelity and latency. However, this technique is not feasible for

applications that require continuous (real-time) sensing with high sampling rate

(e.g., 16 kHz) such as in our case.

• Real-time requirement- the computational complexity of an audio feature ex-

traction and classification algorithms are a critical factor especially in real-time

Chapter 1. Introduction 6

applications. While feature extraction on standard PCs is often possible in real-

time, applications on mobile devices, such as PDAs and mobile phones, due to

limited available resources, pose novel challenges to meet the real-time require-

ment.

1.3 Thesis Objectives

The main objective of the thesis is to design and develop an application in order to cor-

rectly detect and recognize environmental context using audio signals on mobile phones.

Humans can easily tell the types of activities (contexts) such as human walking, talk-

ing, laughing, coffee machine brewing, printing, door opening/closing, etc. based on

the sound produced by each of the activities. This thesis aims to develop methods that

enable a computer/machine to do the same.

The realization of the CA technique on mobile devices has to cope with special challenges

such as limited processing speed, power (energy) supply constraints and memory of

the mobile phones. It is usually possible to obtain highest recognition accuracy using

sophisticated and advanced feature extraction and classification techniques. However,

such techniques are computationally intensive. In this thesis we need to use algorithms

with low complexity without deteriorating the recognition accuracy. Thus, it is the

objective of the thesis to optimize the sound recognition technique with respect to the

accuracy (recognition rate) versus computational speed trade-off.

The recognition technique takes into account parameters such as device operating param-

eters (sampling rate and duration), number and types of features and classifier choices.

The selection of audio features and classifiers affects both the recognition accuracy and

computational speed. It is assumed that the computational speed (execution time) is

directly proportional to the energy (power) consumption of the mobile device. We eval-

uate the impact of these parameters (audio feature and classifier) on the recognition

accuracy as well as the computational speed.

Chapter 1. Introduction 7

1.4 Methodology

Like many other pattern classification tasks, audio classification is made up of three

fundamental components: (1) Sensing component - for measuring the sound event or

signal;(2) audio processing component - for extracting the characteristic features of the

measured sound signal; and (3) classification component - for recognition of the context

of the sound event.

In audio based CA applications, the sensing (measurement) is normally done using

microphones. The audio signal processing part mainly deals with the extraction of

features from the recorded audio signal. The various methods of time-frequency analysis

developed for processing audio signals, in many cases originally developed for speech

processing, are used. That is feature extraction quantizes the audio signal and transforms

it into various characteristic features. This results in n dimensional feature vector often

representing each audio frame. A classifier then takes this feature vector and determines

what it represents - that is, it determines context of the audio event.

Figure 1.1 shows the general architecture of the audio classification system. In the figure,

input represents the raw audio data whereas output represents the activity (context)

information.

Figure 1.1: General architecture of environmental sound recognition technique

Chapter 1. Introduction 8

The ESR technique has two phases: training phase and recognition phase. During

the training phase the system receives its inputs from pre-recorded audio data training

sets and generates representative models for each of the audio event/scene. On the

other hand, during the recognition phase, the system receives its audio inputs directly

from the smartphone’s microphone. The recognition phase uses the models generated

during the training phase for matching and determining the type of audio received by

the microphone. The recognition phase processes the audio data online and in-time

without delay in order to deliver continuous and real-time recognition output for the

user. Detailed discussion about the process and steps of the ESR technique is provided

in chapter 5 (design procedures).

The following are the main procedures that have been followed during the design of the

ESR/CA technique.

1. First, thorough literature study of (state-of-the-art) audio feature extraction tech-

niques and classification algorithms is conducted. The main goal of the preliminary

literature study is to pre-select the best set of audio feature and classification al-

gorithm combinations that can provide the highest possible recognition accuracy

with less computational complexities. This step is performed during the research

topic study (literature study)1

2. Offline test/simulation is performed in order to compare the performance of each

of the pre-selected techniques and then select the best one. Unlike speech and

music recognition, the research on environmental sound recognition (ESR) is not

yet well matured. It is still at its infant stage which makes it difficult to obtain

standard procedures and well organized information to determine the best audio

feature extraction techniques and classification algorithms, based solely on the

literature study. As a result, it is imperative to make further experimental test

and simulations in order to be able to determine the best techniques. All the

experimental simulations and comparison are performed first offline using Matlab

codes. The simulation results compare the performances of audio features and

classification algorithms based on their recognition accuracy and computational

speed (complexity). The offline simulation result is discussed in chapter 6 in detail.

1title ‘Audio based context awareness system using smartphones’

Chapter 1. Introduction 9

3. Mobile application is developed using the best audio feature extraction and classi-

fication techniques chosen based on the Matlab (offline) simulation result, during

the Matlab experiment(step 3). The mobile application processes the audio data

online and provides real-time classification results. The developed mobile applica-

tion is discussed in chapter 7.

The rest of the thesis is organized as follows: In chapter 2, we present a background

information in order to understand the basics and principles of digital audio signal pro-

cessing. Chapter 3 and chapter 4, respectively, introduce audio features and classification

methods which are used in the thesis. In chapter 5, we discuss the design procedures and

steps of the thesis project in detail. The chapter discusses each steps and components of

the ESR technique. Then chapter 6 provides the simulation results and analysis of the

results. In this chapter, the performance of the different classifiers are first presented

and compared in order to choose the best classifier. Then the performance of different

audio features is computed and compared in order to reduce feature dimension and to

choose the best feature set. Chapter 7 discuss the development of Android application

and realization of the ESR technique on smartphone. Finally, in chapter 8, we provide

our conclusions and directions for future research.

Chapter 2

Background and Principles Used

This chapter provides a brief background information and basic principles and techniques

used in digital audio signal processing and analysis.

2.1 Digital Audio Analysis

The classical method of signal analysis, at spectral level, is based on classical Fourier

analysis to the whole signal. However, an exact definition of Fourier transform cannot be

directly applied in audio signal analysis because audio signals are time-varying signals

(non-stationary) in the real world and, indeed, all their meaning is related to such time

variability. Therefore, it is important to develop sound analysis techniques that allow

to grasp at least some of the distinguished features of time-varying sounds, in order to

ease the tasks of audio analysis such as feature extractions.

To solve these problems, audio signal is first split into a sequence of short segments,

called frames, in such a way that each one is short enough to be considered pseudo-

stationary. This process of dividing audio signal into frames is known as Framing. The

length of each frame ranges between 10 and 50ms (in such a short time period it is

assumed that the audio signal will not able to significantly change). Audio processing

(e.g., Fourier transform, feature extraction, etc...) is done frame by frame basis. Usually,

we multiply the frames with a smoothening functions such as Hamming window function

in order to eliminate sharp corners and discontinuities before we apply Fourier transform

operations on the frames. This process is called Windowing.

11

Chapter 2. Background: Principles of Digital Audio Analysis 12

The process of frame by frame analysis is known as short-time signal analysis. In the

literature there are variety of short-time analysis techniques such as Short-Time Fourier

Transform (STFT), Discrete Wavelet Transform (DWT) and Wigner distribution (WD)

[16]. STFT is the most popular short time analysis technique due to its computational

simplicity. In this section, we present short-time Fourier transform (STFT). Special

attention is reserved on criteria for choosing the analysis parameters, such as window

length and type.

2.1.1 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is nothing more than Fourier analysis per-

formed on slices of the time-domain signal. It performs Fast Fourier Transform (FFT)

analysis on short windows in time. This is also called “sliding-window” FFT. The re-

sults of the FFT represent the contents of the audio signal in terms of time-frequency

information. We analyze sound using STFT primarily because:

• It is simpler for time varying (non-stationary) signal processing and analysis.

• Enables us to represent the spectra of signals with spectral profiles that change

over time.

• It allows adaptive and other non-linear signal modifications.

• Time-Frequency (T-F), i.e, STFT analysis is what the human brain does.

• It allows processing and signal modification directly in the Time-Frequency domain

In STFT the signal to be analyzed or transformed is broken up into a series of chunks

called frames, which usually overlap with each other, to reduce artifacts at the boundary.

The overlapping is also useful when the sample size of the training data is relatively

small. A set of training data produces more instances with a higher percentage of

overlapping than the same training data with a lower percentage of overlapping. Then

Fourier transform operation is then applied to successive frames. In other words, we

can think of STFT as multiplying audio signal x
(

n
)

by a short-time window that is

centered around the time frame n. The segment of the signal contained in the window

is analyzed using the Discrete Fourier Transform (DFT), which implies the evaluation

Chapter 2. Background: Principles of Digital Audio Analysis 13

of the Time-Frequency representation at a set of discrete frequencies. Equation 2.1

provides the mathematical definition of STFT.

Xm

(

k
)

=

∞
∑

n=−∞

x
(

n
)

.w
(

m− n
)

.e−j2πnk/N (2.1)

where

x
(

n
)

= input signal at time n

w
(

n
)

= length m window function (e.g., Hamming)

Xm

(

k
)

= DTFT of windowed data (frame) centered about time n.

In practice, we need to compute the STFT on a finite set of N points. In what follows

we assume that the window is m ≤ N samples long and N size input audio signal, so

that we can use the DFT on N points, thus obtaining a sampling of the frequency axis

between 0 and 2π in multiples of 2π/N . The kth point in the transform domain (said

the kth bin of the DFT) is given by

Xm

(

k
)

=

N−1
∑

n=0

x
(

n
)

.w
(

m− n
)

.e−j2πnk/N (2.2)

If we assume P to be the overlap size (in terms of number of samples) between successive

frames, then we can compute the number of frames as follows:

Number offrames = b
((

N −m
)

/P
)

c+ 1 (2.3)

where b c is a symbol for rounding down a fraction value to the nearest integer value,

known as flooring.

2.1.2 Commonly Used Windows

We have already seen that audio analysis methods (such as the STFT) first divide the

input audio signal into smaller time segments, or frames. Audio classification algorithms

are then applied separately to each frame. The classification result of each frame is then

combined to give an activity profile along the entire signal.

Chapter 2. Background: Principles of Digital Audio Analysis 14

In the literature, three different framing techniques have been used for audio analysis:

sliding windows, event-defined windows and activity-defined windows [17]. With the

sliding window method, the signal is divided into windows of fixed length with no inter-

window gaps. A range of window sizes have been used in previous studies from 0.25 s [18]

to 6.7 s [19], with some studies including a degree of overlap between adjacent windows

[19, 20]. The sliding window approach does not require pre-processing of the sensor signal

and is therefore ideally suited to real-time applications. Due to its implementational

simplicity, most audio analysis and classification studies have employed this approach.

Thus, we use sliding window in our implementation for dividing or splitting the input

audio signal into smaller time segments, or frames. Then the frame is multiplied (filtered)

with window functions such as Hanning or Hamming functions in order to eliminate

boundary discontinuities.

The two commonly used windows are rectangular window and Hamming window:

• The rectangular window- Rectangular window is the simplest analysis win-

dow. In fact, the framing process using a rectangular sliding window results in

already rectangularly windowed signal. Therefore, further windowing process is

not required in the case of windowing audio signal using rectangular window. The

rectangular window is mathematically defined as

wR

(

n
)

=











1 n = 1, ...,m− 1

0 elsewhere

(2.4)

where m is the window size (in terms of number of samples)

Figure 2.1 provides the shape of the rectangular window.

• Hamming window - Widowing using Hamming window is performed by simply

multiplying the framed signals with the Hamming window. Usually, the framed

signal and the Hamming window used has equal size. The Hamming window is

mathematically defined as

wH

(

n
)

=
(

0.54− 0.46cos
(2π

(

n− 1
)

m− 1

))

, 1 ≤ n ≤ m (2.5)

Figure 2.2 shows the shape of the Hamming window.

Chapter 2. Background: Principles of Digital Audio Analysis 15

Figure 2.1: Rectangular window function

Figure 2.2: Hamming window function

2.1.3 Selection of windowing parameters

There are three main windowing parameters that can affect the result of the STFT:

window type (shape), window size and ovelapping size (hop size). Next, we examine the

effect of each of the parameters on the STFT.

• Window type- The rectangular window (i.e., no windowing) can cause prob-

lems when we do Fourier analysis; it abruptly cuts of the signal at its boundaries

thus potentially inducing erroneous estimations of frequency components. A good

Chapter 2. Background: Principles of Digital Audio Analysis 16

window function has a narrow main lobe and low side lobe levels in their trans-

fer functions, which shrinks the values of the signal toward zero at the window

boundaries, avoiding discontinuities. As a result, Hamming window is preferably

used for windowing purposes over rectangular window.

• Window size- We have discussed different motivations for splitting audio into

segments for processing. However, we did not consider how big those segments,

frames, or analysis windows should be. There are two main important factors that

has to be considered for determining the window size; i.e, signal stationarity and

time-frequency resolution.

Signal stationarity- Fast Fourier transform (FFT) operation assumes that the fre-

quency components of the signal are unchanging (i.e, stationary– in fact, pseudo-

stationary) across the analysis window of interest. Any deviation from this as-

sumption would result in inaccurate determination of the frequency components.

This point reveals that the importance of ensuring that the analysis window lead-

ing to FFT is sized so that the signal is stationary across the period of analysis.

In practice, many audio signals do not tend to remain stationary for so long, and

thus smaller analysis window are necessary to capture the rapidly changing details.

Many literature assume audio signal to be stationary (pseudo-stationary) over a

period of about 20 – 50 ms.

Time-frequency resolution- Moving back to FFT, the output frequency vector,

from an N -sample FFT of audio signal sampled at Fs Hz, contains
N

2
+1 positive

frequency bins. Each bin collects the energy from a small range of frequencies

in the original signal. The bin width is related to both the sampling rate and

to the number of signals being analysed,
Fs

N
. Put another way, this bin width is

equal to the reciprocal of the time span encompassed by the analysis window. It,

therefore, makes sense that in order to achieve a higher frequency resolution, we

need to collect a longer duration of samples. However, for rapidly changing signals,

collecting more of them means we might end up missing some time domain features

as we have discussed above.

So the window length (size) is chosen according to the trade-off between higher

frequency/spectral resolution (more samples) and time/temporal resolution (less

samples) governed by the uncertainty principle. Smaller window width results in

better time resolution and poor frequency resolution and vice versa. The STFT

Chapter 2. Background: Principles of Digital Audio Analysis 17

analysis is based on the assumption that, within one frame, the signal is stationary.

The shorter the window, the more true the assumption is. However, short windows

result in low spectral/frequency resolution. Thus, the choice of analysis window

size depends on the requirement of the problem. (Discrete) Wavelet Transform

(DWT) and Wigner distribution (WD) [16] are used as alternatives to STFT in

order to satisfy the demand of both high frequency and time resolutions. However,

these methods are more computationally intensive compared to STFT. The main

limitation of STFT is that it has a fixed time-frequency resolution due to the fixed

window size used.

• Window overlapping size

Overlapping ensures that audio features occurring at a discontinuity are at least

considered whole in the subsequent overlapped frame. The degree of overlap (usu-

ally expressed as percentage) describes the amount of previous frame that is re-

peated in the following frame. Overlap of 25% and 50% are common. Similar to

the window size, the determination of the overlap size depends very much on the

purposes of the analysis or application. In general, more overlap will give more

analysis points and therefore smoother results across time which can possibly lead

to better recognition accuracy, but the computational expense is proportionately

greater.

Chapter 3

Audio Features

Audio features can be broadly classified based on their semantic interpretation as percep-

tual and physical features. Perceptual features approximate properties that are perceived

by human listeners such as pitch, loudness, rhythm, and timbre. In contrast, physical

features describe audio signals in terms of mathematical, statistical, and physical prop-

erties. Based on the domain of representation, physical features are further divided as

temporal features and spectral features. In this chapter, we introduce various physical

features that are used during the implementation of this project. These audio features

have been selected as the most appropriate features for ESR applications based on the

literature survey that has been performed during the research topic study 1. However,

before we present the audio features, it is important to, first, look into the criteria we

used in order to select the audio features.

3.1 Requirements for Audio Features Selection

In the literature, there are a number of audio feature extraction techniques. The recogni-

tion accuracy and performance of the ESR is highly affected by the type of audio feature

extraction techniques that are used. As a result, a wise selection of audio features and

classifiers is important in order to obtain a good (acceptable) performance and recog-

nition accuracy. The type of audio feature one selects depends mainly on the type and

purpose of the application one wants to use. The assumption is that the audio based CA

1title ‘Audio based context awareness system using smartphones’

19

Chapter 3. Audio Features 20

technique (ESR) will be implemented on a resource constrained devices such as smart

mobile phones. The requirements for implementation of such applications include low

computational complexity and power consumption. However, these requirements often

affect the recognition accuracy of the ESR as well. Therefore, the selection of the audio

features should be done with the main goal of developing a CA technique which has low

computational complexity, energy consumption, memory requirement, and yet provides

acceptable recognition accuracy. The following are some of the parameters that have

been used, whenever possible, to select the audio features.

• Small feature size- Large feature size leads to high computational cost and

curse of dimensionality . Thus, it is important to reduce the number of features,

for example, by avoiding redundancies in the feature space. On the other hand,

using smaller feature size may result in reduced classification accuracy. Thus, it is

important to select an audio feature with optimum feature size that can provide

an acceptable level of accuracy and performance as well as reduced computational

cost.

• Low computational complexity- The computational complexity of an audio

feature refers to the amount of computation time required to produce the audio

feature. Audio features that require lower computation time are preferred to audio

features that require higher computation time.

• High inter-class variability-Achieving increased discrimination among different

classes of audio patterns is crucial for increased recognition accuracy. Inter-class

variability refers to discrimination power of audio feature across different classes.

Therefore, good audio features should show high inter-class variability.

• High intra-class similarity- Decreased discrimination among similar classes or

sound events belonging to same class is crucial for increased recognition accuracy.

Consequently, audio features extracted from sound events or environmental sounds

belonging to a similar class should have similar behavior or should not show sig-

nificant deviation among each other.

• Low sensitivity- An indicator for the robustness of a feature is the sensitivity to

minor changes in the underlying signal. Usually, low sensitivity is desired in order

to remain robust against noise and other sources of irritation.

Chapter 3. Audio Features 21

3.2 Audio Physical Features

Unlike the perceptual features which can only perceived by human being, physical fea-

tures refers to physical quantities that can be measured or computed using mathematical

formulations. In some literatures, physical features are further divide into three groups

as temporal, spectral and cepstral features. However, most of the literatures categorize

physical audio features into temporal and spectral features. In the later case, there is

no distiniction between the cepstral domain features and the spectral domain features.

They are considered as the same domain with common group name, spectral domain

features. We adopt the later grouping method for simplicity purposes (temporal and

spectral features).

3.2.1 Temporal Features

The temporal domain is the native representation domain for audio signals. All tem-

poral features are extracted directly from the raw audio signal, without any preceding

transformation. Consequently, the computational complexity of temporal features tends

to be low compared with that of the spectral features.

Temporal features of audio signal includes:

• Zero crossing rate (ZCR)- ZCR is the most common type of zero crossing based

audio features [21]. It is defined as the number of time-domain zero crossings within

a processing frame. It indicates the frequency of signal amplitude sign change.

ZCR allow for a rough estimation of dominant frequency and spectral centroid

[22]. We used the following equation to compute the average zero-crossing rate.

ZCR =
1

2N

(

N
∑

n=1

|sgn
(

x
(

n
))

− sgn
(

x
(

n− 1
))

|
)

(3.1)

where x is the time-domain signal, sgn is the signum function, and N is the size

of processing frame. The signum function implementation can be defined as

sgn
(

x
)

=











1 x ≥ 0

−1 x < 0

(3.2)

Chapter 3. Audio Features 22

One of the most attractive properties of the ZCR is that it is very fast to calculate.

As being a time-domain feature, there is no need to calculate the spectra. Fur-

thermore, a system which uses only the ZCR-based features would not even need

digital-to-analog conversion, but only the information whenever the sign of the

signal changes. However, ZCR can be sensitive to noise. Though using a threshold

value (level) near to zero can significantly reduce the sensitivity to noise, deter-

mining appropriate threshold level is not easy.

• Short-time energy (STE) – The short-time energy [23] is one of energy based

audio features. Li [24] and Zhang [25] used it to classify audio signals. It is easy to

calculate and provides a convenient representation of the amplitude variation over

time. It indicates the loudness of an audio signal. STE is a reliable indicator for

silence detection. It is defined to be the sum of a squared time domain sequences

of audio data, as shown in equation 3.3.

STE =
1

N

N
∑

n=1

(

x
(

n
))2

(3.3)

where x
(

n
)

is the value of the sample (in time domain) and N is the total number

of samples in the processing window (frame size). The STE of audio signal may

be affected by the gain value of the recording devices. Usually we normalize the

value of STE to reduce the effect.

ZCR and STE are widely used in speech and music recognition applications [26]. Speech,

for example, has a high variance in ZCR and STE values, while in music these values are

normally much more constant. ZCR and STE have been also used in ESR applications

[27] due to their simplicity and low computational complexity.

• Temporal centroid (TC) -TC is the time average over the envelope of a signal

in seconds [28]. It is the point in time where most of the energy of the signal is

located in average.

TC =

∑N
n=1

n.|x
(

n
)

|2
∑N

n=1
|x
(

n
)

|2
(3.4)

Note that the computation of temporal centroid is equivalent to that of spectral

centroid (see subsection 3.2.2) in the frequency domain.

Chapter 3. Audio Features 23

• Energy entropy (EE)- The short-term entropy of energy can be interpreted as

a measure of abrupt changes in the energy level of an audio signal. In order to

compute it, we first divide each short-term frame in K sub-frames of fixed duration.

Then for each sub-frame, j, we compute its energy as in Eq. (3.3). and divide it by

the total energy, EshortFramei , of the short-term frame. The following equations

presents the procedure to compute the energy entropy of a frame (short-term

frame).

ej =
EsubFramej

EshortFramei

(3.5)

where

EshortFramei =
K
∑

k=1

EsubFramek . (3.6)

At a final step, the entropy, H(i), of the sequence ej is computed according to the

equation:

H(i) = −

K
∑

j=1

ej .log2(ej). (3.7)

• Autocorrelation (AC)-The autocorrelation domain represents the correlation

of a signal with a time-shifted version of the same signal for different time lags

[21]. It reveals repeating patterns and their periodicities in a signal and can be

employed, for example, for the estimation of the fundamental frequency of a signal.

This allows distinguishing between sounds that have harmonic spectrum and non-

harmonic spectrum, e.g., between musical sounds and noise. Autocorrelation of a

signal is calculated as follows:

AC = fxx[τ] = x[τ] ∗ x[−τ] =

N−1
∑

n=0

x
(

n
)

.x
(

n+ τ
)

(3.8)

where τ is the lag (discrete delay index), fxx[τ] is the corresponding autocorrelation

value, N is the length of the frame n the sample index, and when τ = 0, fxx[τ]

becomes the signal’s power. Similar to the way RMS is computed, autocorrelation

also steps through windowed portions of a signal where each windowed frame’s

samples are multiplied with each other and then summed according to the above

equation. This is repeated where one frame is kept constant while the other x
(

n+

τ
)

is updated by shifting the input x
(

n
)

via τ.

Chapter 3. Audio Features 24

• Root mean square (RMS)- As STE, the RMS value is a measurment of energy

in a signal. The RMS value is however defined to be the square root of the avaerage

of a squared signal, as seen in equation 3.9.

RMS =

√

√

√

√

1

N

N
∑

n=1

(

x
(

n
))2

(3.9)

3.2.2 Audio Spectral Features

The group of frequency domain features is the largest group of audio features. The

frequency domain reveals the spectral distribution of a signal. For each frequency (or

frequency band/bin) the domain provides the corresponding magnitude and phase. Since

phase variation has little effect on the sound we hear, features that evaluate the phase

information are usually ignored. Consequently, we focus on features that capture basic

properties of the spectral properties of audio signal: subband energy ratio, spectral

flux, spectral centroid, spectral entropy, spectral roll-off, and Mel-frequency cepstral

coefficients (MFCCs).

Popular transformations from time to frequency domain are Discrete Fourier Transform

(DFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT).

Another widely-used way to transform a signal from temporal to frequency domain is

the application of banks of band-pass filters with e.g. Mel and Bark-scaled filters to the

time domain signal. However, discrete Fourier transform is widely used for its simpler

computational complexities. Next we introduce spectral audio features that are used in

our environmental audio based context recognition application.

• Spectral centroid(SC)- Spectral centroid [21] represents the “balancing point”,

or the midpoint of the spectral power distribution of a signal. It is related to

the brightness of a sound. The higher the centroid, the brighter (high frequency)

the sound is. A spectral centroid provides a noise-robust estimate of how the

dominant frequency of a signal changes over time. As such, spectral centroids

are an increasingly popular tool in several signal processing applications, such

as speech processing. Spectral centroid is obtained by evaluating the “center of

gravity” using the Fourier transform’s frequency and magnitude information. The

individual centroid of a spectral frame is defined as the average frequency weighted

Chapter 3. Audio Features 25

by amplitudes, divided by the sum of the amplitudes. The following equation shows

how to compute the spectral centroid, SCi, of the ith audio frame.

SCi =

∑K−1

k=0
k.|Xi

(

k
)

|2
∑K−1

k=0
|Xi

(

k
)

|2
(3.10)

Here, Xi(k) is the amplitude corresponding to bin k (in DFT spectrum of the

signal) of the ith audio frame and K is the size of the frame. The result of the

spectral centroid is a bin index within the range 0 < SC < K − 1. It can be

converted either to Hz (using equation 3.11) or to a parameter range between

zero and one by dividing it by the frame size, K. The frequency of bin index k can

be computed from the block (frame) length K and sample rate fs by:

f
(

k
)

=
(fs
K

)

k (3.11)

Low results indicate significant low frequency components and insignificant high

frequency components (low brightness) and vice versa.

• Spectral spread (SS)- The spectral spread is the second cental moment of the

spectrum. It is a measure that signifies if the power spectrum is concentrated

around the centroid or spread out over the spectrum. In order to compute it, one

has to take the deviation of the spectrum from the spectral centroid, according to

the following equation:

SCi =

√

√

√

√

∑K−1

k=0
(k − SCi)2.|Xi

(

k
)

|2
∑K−1

k=0
|Xi

(

k
)

|2
(3.12)

• Spectral rolloff point (SRP) - The spectral rolloff point is the N% percentile of

the power spectral distribution, where N is usually 85% or 95% [29]. The spectral

rolloff point is the frequency below which N% of the magnitude distribution is

concentrated. It increases with the bandwidth of a signal. Spectral rolloff is ex-

tensively used in music information retrieval [30] and speech/music segmentation.

The spectral rolloff point is calculated as follows:

SRP = f
(

N
)

where f
(

N
)

=
(fs
K

)

N (3.13)

Chapter 3. Audio Features 26

where N is the largest bin that fulfills equation 3.14.

N
∑

k=0

|X(k)|2 ≤ TH.
K−1
∑

k=0

|X(k)|2 (3.14)

where X(k) are the magnitude components, k frequency index and f(K) (the fre-

quency) spectral roll-off point with
(

100 ∗ TH
)

% of the energy. TH is a threshold

between 0 and 1. A commonly used value for the threshold is 0.85 and 0.95

[29, 31]. This measure is useful in distinguishing voiced speech from unvoiced:

unvoiced speech has a high proportion of energy contained in the high-frequency

range of the spectrum, whereas most of the energy for voiced speech and music is

contained in lower bands [32].

• Spectral flux (SF)- The SF is a 2-norm of the frame-to-frame spectral amplitude

difference vector. It defines the amount of frame-to-frame fluctuation in time. i.e.,

it measures the change in the shape of the power spectrum. It is computed via

the energy difference between consecutive frames as follows:

SFf =
K−1
∑

k=0

||Xf

(

k
)

| − |Xf−1

(

k
)

|| (3.15)

where f is the index of the frame and K is the frame length. Spectral flux is

an efficient feature for speech/music discrimination, since in speech the frame-to

frame spectra fluctuate more than in music, particularly in unvoiced speech [33].

• Spectral entropy (SE)- Spectral entropy [34] is computed in a similar manner

to the entropy of energy, although, this time, the computation takes place in the

frequency domain. More specifically, we first divide the spectrum of the short-term

frame into L sub-bands (bins). The energy Ef of the f th sub-band, f = 0, ..., L−1,

is then normalized by the total spectral energy, thst is, nf =
Ef

∑L−1

f=0
Ef

, f =

0, ..., L− 1. The entropy of the normalized spectral energy nf is finally computed

according to the equation:

H = −

L−1
∑

f=0

nf .log2(nf) (3.16)

• Mel-frequency cepstral coefficients (MFCCs)- MFCC originate from auto-

matic speech recognition but evolved into one of the standard techniques in most

Chapter 3. Audio Features 27

domains of audio recognition applications such environmental sound classifications

[27, 51, 52]. They represent timbral information (spectral envelop) of a signal.

Computation of MFCC includes conversion of the Fourier coefficients to Mel-scale.

After conversion, the obtained vectors are logarthmized, and decorrelated by dis-

crete cosine transform (DCT) in order to remove redundant information. Figure

3.1 shows the process of MFCC feature extraction.

Figure 3.1: MFCC extraction process

In figure 3.1, the first step, preprocessing, consists of pre-emphasizing, frame block-

ing and windowing of the signal. The aim of this step is to model small (typically,

20ms) sections of the signal (frame) that are statistically stationary. The window

function, typically a Hamming window, removes edge effects. The next step takes

the Discrete Fourier transform (DFT) of each frame. We retain only the logarithm

of the amplitude spectrum. We discard phase information because perceptual

studies have shown that the amplitude of the spectrum is much more important

than the phase. We take the logarithm of the amplitude because the perceived

loudness of a signal has been found to be approximately logarithmic. After a

discrete Fourier transform, the power spectrum is transformed to Mel-frequency

scale. This step smooths the spectrum and emphasizes perceptually meaningful

frequencies. Mel- frequency scale is based on mapping between actual frequency

and perceived pitch by human auditory system. The mapping is approximately

linear below 1 KHz and logarithmic above. This is done by using a filter bank con-

sisting of triangular filters, spaced uniformly on the Mel-scale. An approximate

Chapter 3. Audio Features 28

conversion between a frequency value in Hertz (f) and in mel is given by:

mel
(

f
)

= 2595 log10
(

1 +
f

700

)

(3.17)

Finally, the cepstral coefficients are calculated from the mel-spectrum by taking

the discrete cosine transform (DCT) of the logarithm of the mel-spectrum. This

calculation is given in by:

ci =
K−1
∑

k=0

(logSk).cos
(iπ

K

(

k −
1

2

))

(3.18)

where ci is the ith MFCC, Sk is the output of kth filter bank channel (i.e. the

weighted sum of the power spectrum bins on that channel) and K is the number

of coefficients (number of Mel-filter banks). The value of K used is mostly between

20 to 40. In this project we used the value of K to be equal to 23.

The components of MFCCs are the first few DCT coefficients that describe the

coarse spectral shape. The first DCT coefficient represents the average power

(energy) in the spectrum. The second coefficient approximates the broad shape of

the spectrum and is related to the spectral centroid. The higher order coefficients

represent finer spectral details (e.g., pitch). In practice, the first 8-13 MFCC

coefficients are used to represent the shape of the spectrum. The higher order

coefficients are ignored since they provide more redundant information. However,

some applications require more higher-order coefficients to capture pitch and tone

information.

Chapter 4

Audio Classifiers

Based on their learning behavior, classifiers can be divided into two groups: classi-

fiers that use supervised learning (supervised classification) and unsupervised learning

(unsupervised classification). In supervised classification, we provide examples of the

correct classification (a feature vector along with its correct class) to teach the classi-

fier. Based on these examples, which are commonly termed as training samples, the

classifier then learns how to assign an unseen feature vector to a correct class. Exam-

ples of supervised classifications include Hidden Markov Model (HMM)[35], Gaussian

Mixture Models (GMM)[36], K- Nearest Neighbor (k-NN)[35], Support Vector Machine

(SVM)[37], Artificial Neural Networks (ANN), Bayesian Network (BN)[35], and Dy-

namic Time Wrapping (DTW)[38]. In unsupervised classification or clustering, there is

neither explicit teacher nor training samples. The classification of the feature vectors

must be based on similarity between them based on which they are divided into natural

groupings. Whether any two feature vectors are similar depends on the application.

Obviously, unsupervised classification is a more difficult problem than supervised clas-

sification and supervised classification is the preferable option if it is possible. In some

cases, however, it is necessary to use unsupervised learning. For example, this is the

case if the feature vector describing an object can be expected to change with time. Ex-

amples of unsupervised classifications include k-means clustering, Self-Organizing Maps

(SOM), and Linear vector Quantization (LVQ).

Classifiers can also be grouped based on reasoning process as probabilistic and deter-

ministic classifiers. Deterministic reasoning classifiers classify sensed data into distinct

29

Chapter 4 Audio Classifiers 30

states and produce a distinct output that cannot be uncertain or disputable. Proba-

bilistic reasoning, on the other hand, considers sensed data to be uncertain input and

thus outputs multiple contextual states with associated degrees of truthfulness or prob-

abilities. Decision of the class type to which the feature belongs is made based on the

highest probability.

4.1 Requirements for Audio Classifier Selection

The two main criteria that can be used to select classification techniques are computa-

tional complexity and recognition accuracy. Moreover, robustness to noise can be used

as a criteria in some applications; especially, in a noise prone application.

• Computational complexity- The computational complexity of a classifier can

be measured by the amount of computational time it requires to produce the

classification result. Computational complexity of an algorithm can also provide

insight about its power consumption. It is preferred to use classifiers with low

computational complexity, which can provide classification result faster and as a

result consume less power.

• Recognition accuracy- The recognition accuracy of a classifier can be affected

by a number of factors. Selection of audio feature is the most important factor that

affects the recognition accuracy. In addition, selection of a good type of classifier

improves the recognition accuracy.

• Robustness to noise- Any good classifier should be able to ignore any feature

variations caused by disturbances such as noise, bandwidth or the amplitude scal-

ing of an audio signal.

Similar to the case of audio feature selection, the selection process of audio classifiers

usually requires a trade-off between computational complexity and recognition accuracy.

In the literature, there are many different audio classifiers. However, there is no suffi-

cient previous work that compares the performance of the audio classifiers based on the

above requirements. Thus, we select some classifiers based on their popularity and then

compare their performance so that we can determine the best one. k-NN, SVM and

Chapter 4 Audio Classifiers 31

GMM are chosen due to their common use in a number of ESR applications/problems

for discussion (in this chapter) and further performance comparison (in chapter 5).

4.2 Popular classifiers

We start description of selected classifiers with the famous k-nearest neighbor classifier

(k-NN classifier) and proceed with the gaussian mixture model (GMM) and the more

sophisticated support vector machines (SVMs). Obviously, this is just a very small

subset of the classifiers that have been proposed and studied in the literature but serve

well our purpose to focus on selected methods which are both popular and representative

of the wealth of techniques that are available. Lengthy theoretical descriptions of the

classifiers have been avoided and instead an attempt to highlight the key ideas behind

the algorithms being studied is made. These set of classifiers have been selected for

experimental and simulation test in our implementation due to their popular use in the

literature. We look into their applicability for mobile devices (smartphones) in chapter

6 taking into account the limited resources (like energy, cpu, memory) of the mobile

device. Chapter 6 provides the performance comparison of the classifiers based on their

classification accuracy and computational speed.

4.2.1 The k-Nearest Neighbor Classifier (k-NN)

Despite its simplicity, the k-NN classifier is well tailored for both binary and multi-class

problems. Its outstanding characteristics is that it does not require a training stage in

the strict sense. The training samples are rather used directly by the classifier during

the classification stage. The key idea behind this classifier is that, if we are given a set

of patterns (unknown feature vector), X, we first detect its k-nearest neighbors in the

training set and count how many of those belong to each class. In the end the feature

vector is assigned to the class which has the highest number of neighbors. Therefore,

for the k-NN algorithm to operate the following ingredients are required:

1. A data set of labeled samples, that is a training set of feature vectors and respective

class labels.

2. An integer k ≥ 1.

Chapter 4 Audio Classifiers 32

3. A distance (dissimilarity) measure.

Let us now go through the k-NN algorithm in more detail. In the first step, the algorithm

computes the distance, d
(

X,Vi

)

, between X and each vector Vi, i = 1, ...,M, of the

training set, where M is the total number of training samples. The most common choice

of distance measure is the Euclidian sistance, which is computed as:

d
(

X,Vi

)

=

√

√

√

√

D
∑

j=1

(

X
(

j
)

− Vi

(

j
)

)2 (4.1)

where D is the dimentionality of the feature space. Another popular choice of distance

measure is known as the Mahalanobis distance [39]. After d
(

X,Vi

)

has been computed

for each Vi, the resulting distance values are sorted in ascending order. As a result, the

k first values correspond to the k closest neighbors of the unknown feature vector. Now,

let ki be the number of the training vectors among the k neighbors of X that belong

to the ith class, i = 1, ..., Nc. The unknown vector is then classified to the class which

corresponds to the maximum ki. In the example in Figure 4.1 , we have three classes

and the goal is to find a class label for the unknown example X . The Euclidean distance

is used and k=5. Of the 5 closest neighbors, 4 belong to W1 and 1 belongs to W3 , so

X is assigned to W1, the predominant class.

It is important to note that the k-NN classifier can operate directely in a multi-class

environment. This is because its algorithmic steps are not restricted by the number of

classes that are involved.

The performance of the k-NN has been extensively studied in the literature. An inter-

esting theoretical finding is that if k → ∞, M → ∞, and
k

M
→ 0, then the classification

error approaches the Bayesian error [39]. In other words, if both k and M approach

infinity and k is infinitely smaller than M, then the k-NN classifier tends to behave like

the optimal (Bayesian) classifier eith respect to the classification error.

The larger the dataset, the more satisfactory of the performance of the k-NN algorithm.

Concerning parameter k (the number of neighbors), it can be stated that the value of k

is tuned after experimentation with the dataset at hand . In general, small values are

prefered by also taking into account the size of the dataset (so that
k

M
remains as small

as possible).

Chapter 4 Audio Classifiers 33

Figure 4.1: k-NN Classification Example

Another important issue is the computational complexity of the k-NN classifier which

can be prohibitively high when the volume of the dataset is really large (mainly due to

the number of Euclidian distances that need to be computed). Over the years, several

remedies to this computational issue have been proposed in the literature, e.g. [40, 41].

4.2.2 Gaussian Mixture Model (GMM)

The Gaussian Mixture Model (GMM) [42] is used in classifying different audio classes.

It is an example of a parametric classifier. It is an intuitive approach when the model

consists of several Gaussian components, which can be seen to model acoustic features.

In classification, each class is represented by a GMM and refers to its model. Once the

GMM is trained, it can be used to predict which class a new sample probably belongs

to [43].

The probability distribution of feature vectors is modeled by parametric or non-parametric

methods. Models which assume the shape of probability density function are termed

parametric. In non-parametric modeling, minimal or no assumptions are made regard-

ing the probability distribution of feature vectors. The potential of Gaussian mixture

models to represent an underlying set of acoustic classes by individual Gaussian com-

ponents, in which the spectral shape of the acoustic class is parameterized by the mean

Chapter 4 Audio Classifiers 34

vector and the covariance matrix, is significant, especially if the dataset (feature data

points) is large.

Moreover, these models have the ability to form a smooth approximation to the arbitrarily-

shaped observation densities in the absence of other information [44] . With Gaussian

mixture models, each sound is modeled as a mixture of several Gaussian clusters in the

feature space. The basis for using GMM is that the distribution of feature vectors ex-

tracted from a class can be modeled by a mixture of Gaussian densities as shown in Fig.

4.2. For example, the figure shows that the dataset is modeled as a linear combinations

of three different Gaussian distributions.

Mathematically, the GMM is given as a weighted sum of K component Gaussian densi-

ties, as in the following equation:

p(x|λ) =

K
∑

i=0

wig(x|µi, ξi), (4.2)

where x is a D-dimensional feature vector, wi, i = 0, ...,K, are the mixture weights, and

g(x|µi, ξi), i = 0, ...,K, are the component Gaussian densities. Each component density

is a D-variate Gaussian function of the form,

g(x|µi, ξi) =
1

(2π)D/2|ξi|1/2
exp

{

−
1

2
(x− µi)ξ

−1(x− µi)
}

(4.3)

with mean vector µi and covariance matrix ξi. The mixture weights satisfy the constraint

that
∑K

i=1
wi = 1.

The complete Gaussian mixture model is parameterized by the mean vectors, covariance

matrices and mixture weights from all components densities. These parameters are

collectively represented by the notation,

λ =
{

wi, µi, ξi
}

i = 1, ...,K. (4.4)

Chapter 4 Audio Classifiers 35

Figure 4.2: Gaussian Mixture Models

The goal of the training is to calculate the parameters of GMM from previously estimated

model using training feature vectors. Various methods can be applied for estimation but

the most popular and robust method is maximum likelihood (ML) estimation [45]. Aim

of the ML is to find the best model parameters of the GMM that refine the previously

calculated GMM likelihood

The motivation for using Gaussian densities as the representation of audio features is

the potential of GMMs to represent an underlying set of acoustic classes by individual

Gaussian components in which the spectral shape of the acoustic class is parameterized

by the mean vector and the covariance matrix. Also, GMMs have the ability to form a

smooth approximation to the arbitrarily shaped observation densities in the absence of

other information. With GMMs, each sound is modeled as a mixture of several Gaussian

clusters in the feature space.

GMMs model the distribution of feature vectors. For each class, assume the existence

of a probability density function expressible as a mixture of a number of multidimen-

sional Gaussian distributions. The iterative Expectation Maximization (EM) algorithm

is usually used to estimate the parameters for each Gaussian component and the mixture

weights.

A variety of approaches to the problem of mixture decomposition have been proposed,

many of which focus on maximum likelihood methods such as Expectation Maximization

(EM) or Maximum A Posterior Estimation (MAP). Generally these methods consider

separately the question of parameter estimation and system identification, that is to say

a distinction is made between the determination of the number and functional form of

components within a mixture and the estimation of the corresponding parameter values.

Chapter 4 Audio Classifiers 36

4.2.3 Support Vector Machine (SVM)

Support Vector Machines (SVM) are classifiers that have been successfully employed in

numerous machine learning fields. It is very effective method for general purpose pattern

recognition.

Given a set of points which belong to either of two classes, a SVM finds a hyperplane

leaving the largest possible fraction of points of the same class on the same side, while

maximizing the distance of either class from the hyper plane. SVMs perform pattern

recognition between two classes by finding a decision surface that has maximum distance

to the closest points in the training set which are termed support vectors, see figure 4.3.

Figure 4.3: SVM Classification

Principle of SVM is, where there are many possible linear classifiers that can separate the

data, there is only one that maximizes the difference between them. SVMs are particular

classifiers that are based on the margin-maximization principle [46]. It performs an

implicit mapping of data into a higher (maybe infinite) dimensional feature space and

then finds a linear separating hyper plane with the maximal margin to separate data in

this higher dimensional space [47]. This property makes SVM to be a powerful machine

learning technique for data classification.

Chapter 4 Audio Classifiers 38

• One-vs-All (OVA) - According to this method (also known as one-vs-rest–OVR),

one SVM classifier is employed per class. The goal is to train the individual

classifiers to discriminate between the samples of the respective classes (positives

examples) and the samples of all the other classes (negative examples). In our

work, we used OVA due to its simplicity and proved significant discriminative

capablity in various multi-class problems [50]

• One-vs-One (OVO)- This is another type of classifier binarization, also know as

pairwise or round robin classification [51]. It is based on transforming the initial

multi-class task into a number of binary classification problems, where each binary

problem involves two classes. The total number of classifier is therefore equal to the

number of all possible class pairs. A simple way to combine the individual binary

classification decisions to a global decision is via a voting scheme. Specifically,

the decision of each pairwise classifier increases by one point the score of the class

that won. In the end, the global decision is made based on the class that has

accumulated the highest score.

In order to keep the computational load reasonable, the mappings used by SVM schemes

are designed to ensure that dot products may be computed easily in terms of the variables

in the original space, by defining them in terms of a kernel function selected to suit the

problem. The kernel function may be any of the symmetric functions that satisfy the

Mercer’s conditions [52]. There are several SVM kernel functions. The most common

SVM kernel functions are linear, polynomial, Quadratic, radial basis function (rbf)and

multilayer perceptron kernel (mlp). Inquisitive readers can refer to [53] for more details

on SVM classifier.

Chapter 5

Audio Classification and Event

Detection Design Procedures

We have already briefly highlighted, in section 1.4, that the audio based CA technique

is composed of three main components: audio/sound sensing/capturing, audio feature

extraction and audio classification and detection. In this chapter, we explore the design

procedures of each of these components in a more detail. In practice, the captured audio

signal has to go through a pre-processing stage before the feature extraction process

could be performed. Similarly, the output of the classifier are post-processed in order to

cancel out isolated errors or merge successive segment that have yielded identical class

labels. Thus, we will also look into the pre-processing and post-processing methods that

have been employed during the design procedures of the ESR system. Figure 5.1 shows

the block diagram of the pre-processing and feature extraction stages.

5.1 Audio Capturing

The audio signal is captured using the built-in mobile’s microphone (which is, in fact, not

high quality compared to high-end stand-alone audio recording devices). The first step

in processing audio signal is to convert the analog representation (first air pressure,and

then analog electric signals in a microphone) into a digital signal x(n), where n is an

index over time. Analysis of the audio spectrum shows that nearly all energy resides in

39

Chapter 5. Design Procedures 41

5.2 Pre-processing

The pre-processing stage is comprised of audio input normalization, pre-emphasis, fram-

ing and windowing steps.

5.2.1 Normalization

The extracted pulse code modulated (PCM) values of amplitude is normalized, to avoid

amplitude variation during capturing. This normalization step makes the technique to

be robust to loudness variations. Equation 5.5 is used for normalizing the raw input

audio signal.

5.2.2 Pre-emphasis

Usually sound signal is pre-emphasized before any further processing. In most cases,

if we look at the spectrum of audio segment signals, there is more energy at lower

frequencies than the higher frequencies. However, the human hearing system is more

sensitive above the 1-kHz region of the spectrum [54]. The pre-emphasis filter amplifies

this area of the spectrum. Boosting the high frequency energy makes information from

these higher frequency components more available to the acoustic modeling algorithm

and improves sound detection. The pre-emphasis filter is a first-order high-pass filter.

In the time domain, with input x(n) and 0.9 ≤ α ≤ 1.0, the filter equation is given by:

y(n) = x(n)− α.x(n− 1) (5.1)

We used α = 0.95. Figure 5.2 and Figure 5.3 show a sample audio signal before and

after pre-emphasis, respectively.

5.2.3 Framing

We have already seen, in chapter 2, that audio signal is a non-stationary signal, meaning

that its statistical properties are not constant across time. Thus, we need to extract

audio features from a small window of audio signal (frame)for which we can make the

(rough) assumption that the signal is stationary. The process of splitting audio signal

Chapter 5. Design Procedures 42

Figure 5.2: Signal before Pre-Emphasis

Figure 5.3: Signal after Pre-Emphasis

into a sequence frames is called framing. In this thesis, we used frame block size of 50

ms with 50% overlapping i.e., 800 samples per frame.

Figure 5.4 shows framing process using fixed sliding window with overlapping.

5.2.4 Windowing

Frames should be windowed before Fourier transform operations are applied. The win-

dowing step is used to avoid the discontinuities caused by the sharp corners of the frames.

In this thesis we used Hamming window function for windowing.

The windowing of audio frame takes place by multiplying the value of the frame signal

at time n, Sframe[n], with the value of the window at time n, Sw[n]:

Y [n] = Sframe[n]× Sw[n] (5.2)

Chapter 5. Design Procedures 44

5.3 Feature Extraction

Feature extraction is an important audio analysis stage. It is used to extract a set

of features that can provide a representative characteristics of the frame. The goal

is to form feature vector for each frame that can serve as an input to the classifier.

Feature extraction can also be viewed as data rate reduction procedure because we want

our analysis algorithm to be based on relatively small number of features, i.e., feature

vectors. The audio features that have been used in our implementation are introduced

in chapter 3.

Two types of features are extracted in the feature extraction stage: Temporal features

and spectral features. As shown in Figure 5.1, the temporal features are computed

after the windowing process while extraction of spectral features requires further step,

Discrete Fourier transform (DFT) operation. We used Fast Fourier Transform or in

short FFT algorithm for computing the DFT. The extracted temporal features include

zero-crossing rate (ZCR), short-time energy (STE), energy entropy (EE), root-mean

square (RMS) and auto-correlation (AC) and the spectral features are spectral rolloff

point (SRP), spectral Spread (SS), spectral flux (SF), spectral entropy (SE), spectral

centroid (SC) and mel-frequencty cepstrum coefficients (MFCCs).

5.3.1 Feature Normalization

Features with large values may have a larger influence in the cost function than features

with small values (e.g. Euclidean distance). The feature normalization applied so that all

feature types can contribute equally and avoid bias during the classification. Especially,

the normalization step is important if the classifier uses Euclidean distance metric which

is true in the case of the k-NN. Therefore, it is important to normalize the audio features

before feeding to the classifiers.

Equation 5.5 has been used to normalize a features. For N available data points of the

dth feature (d = 1, 2, ..., D);

Chapter 5. Design Procedures 45

Mean: md =
1

N

N
∑

n=1

xnd (5.3)

Variance: σd =
1

N − 1

N
∑

n=1

(xnd −md)
2 (5.4)

Normalized Feature: xnd =
xnd −md

σd
(5.5)

5.3.2 Composition of Feature Vectors

A total of 24 feature coefficients are computed for each frame: ZCR(1), STE(1), EE(1),

RMS(1), AC(2), SRP(1), SS(1), SF(1), SE(1), SC(1) and MFCCs(13) (Note that the

integer numbers inside the brackets indicate the number of coefficients for each feature

type). That is, each frame is processed separately which results in one feature vector per

frame. We call such features intra-frame features because they operate on independent

frames.

We compute a single (average) value per frame for ZCR, RMS, STE, TC, SRP, SE,SC

and SS where as the computation of AC produces two values per frame: fundamental

period and maximum auto-correlation value. We used 23 Mel-scaled triangular filters for

computing MFCCs. The first 13 MFCCs are selected because the higher order MFCCs

carry less discriminative information and , therefore, are often ignored. Moreover, the

very first MFCC coefficient is the sum of all the log-energies computed at the previous

step - so it is an overall measure of signal loudness and is not very informative as to the

actual spectral content of the signal. Thus, it is often discarded for audio recognition

applications where the system has to be robust to loudness variations.

5.3.3 Short-Term and Mid-Term Processing

Short-term Feature extraction

As explained above, The audio signal is first divided into short-term frames and audio

features are extracted from each of the frames. This process of extracting set of features

from each frame can be called short-term feature extraction. i.e., the short-term feature

Chapter 5. Design Procedures 46

extraction generates a sequence, F, of feature vectors per audio frame. The dimension-

ality of the feature vector depends on the nature of the adopted features. In our case,

the dimension of the (short-term) feature vector is 24. The extracted sequence of feature

vectors can then be used for subsequent processing/analysis of the audio data, e.g., in

mid-term feature extraction as we will see next.

Mid-Term Feature Extraction

Another common technique is the processing of the feature sequences on a mid-term

basis. According to this type of processing, the sequence of feature vectors which have

been extracted during the short-term processing are combined and used for computing

mid-term features using statistics such as mean, standard deviation (std), maximum,

minimum, etc. In other words, the function that computes mid-term features takes as

input short-term feature sequences, computes the feature statistics (in our case, mean

and standard deviation) and then returns a feature vector that contains the resulting

feature statistics. For example, considering the 24 feature sequences that have been

already computed based on a short-term basis and the two mid-term statistics that have

been calculated per frame (i.e., mean value and standard deviation), the output of the

mid-term extraction process is a 48-dimensional mid-term feature vector. The structure

of the resulting mid-term feature vector is the following: elements 1 and 25 correspond

to the mean and standard deviation of the first short-term feature sequence, elements 2

and 26 correspond to the mean and standard deviation of the second audio short-term

sequence, and so on.

During mid-term processing, we assumed that the mid-term segment exhibits homoge-

neous behavior with respect to audio type and , therefore, it makes sense to proceed with

the extraction of statistics on the mid-term basis. In practice, the duration of mid-term

windows 1 typically lies in the range 1-10 s, depending on the application domain [39].

For this thesis, we used mid-term window (analysis window) duration of 2 secs with 50%

overlapping.

1In the literature, mid term windows/segments are sometimes refered to as “texture” or “analysis”
windows

Chapter 5. Design Procedures 47

5.4 Audio Classification and Detection

Initially, we implemented a simulation for three of the classification algorithms (k-NN,

GMM, SVM) using MatLab and compared their performance in terms of recognition ac-

curacy and computational speed. The purpose of this initial simulation is to compare the

performance of different audio features and classifiers in order to select the best method.

The MatLab simulation and comparison results are provided in chapter 6. Mobile app

is then developed using feature extraction techniques and classifier algorithm with the

best performance algorithms and parameters/techniques. The implementation of the

mobile app is provided in chapter 7 . Figure 5.6 provides the classifier’s implementation

block diagram.

Figure 5.6: Classifier Implementation

During the training phase, feature vectors that have been extracted from the training

data set are used for training the classifier and generating class models. The generated

class models are stored in a memory and they are retrieved during the testing (classifi-

cation) phase for matching with test feature vector. During the testing phase, feature

vectors that have been extracted from the test data set are matched with class models

and their audio type (class type) is determined.

Chapter 5. Design Procedures 48

5.5 Post-processing

As it was explained before, the audio classification process first splits the input audio

stream into a fixed-sized segments and classify each segment separately to a predefined

set of audio classes. The post-processing step is used merge successive segments of the

same audio type and remove some classification errors. In the literature, there are two

techniques of merging the individual classification results.

• Naive merging- the key idea is that if successive segments share the the same

class label, then they can be merged together to form a single segment. Figure

5.7 demonstrates how the post-processing using naive merging is performed. The

example given in the figure uses three class labels (i.e., three sound types): W, D

and P which stand for sounds of “Walking”, “Door opening/closing” and “Printer

printing”, respectively. Each subsequence whose element exhibit the same class

label merge together forming a single class label.

• Probability smoothing techniques- if the adopted classification technique has a soft

output, i.e., estimate of the classification probability instead of hard classification,

then it is possible to apply more sophisticated smoothing techniques on the se-

quence that has been generated during the classification stage. Viterbi algorithm

[55] is the most common probability smoothing technique. However, this technique

can not be straightforwardly used with classification methods that produce hard

classification (deterministic) outputs such as k-NN and SVM.

5.6 Audio Features Dimension Reduction

Before we conclude this chapter, it is important to introduce one important step that

has been employed to select the optimal audio feature sets (types) from the original

audio feature sets. The feature dimensionaliy reduction was used to further improve

the classification accuracy and reduce the computational time of the k-NN classifier as

further discussed in section 6.5.

In many real-world applications, numerous features are used in an attempt to ensure

accurate classification. If all those features are used to build up classifiers, then they

Chapter 5. Design Procedures 49

Figure 5.7: Post-Processing- Merging similar class labels

operate in high dimensions, and the learning process becomes computationally and ana-

lytically complicated, resulting often in the drastic rise of classification error. There are

two main reasons why feature selection and dimension reductions might be an impor-

tant step to be undertaken before a certain machine learning technique. The first issue

is related to the so-called “curse of dimensionality” and the necessity for dimensional-

ity reduction. The second issue is related to the potentially poor representation of the

problem in terms of some irrelevant or indirectly relevant features and the corresponding

necessity to improve the representation [56].

Hence, there is a need to reduce the dimensionality of the feature space before clas-

sification. According to the adopted strategy dimensionality reduction techniques are

divided into feature selection and feature transformation (also called feature discovery).

The key difference between feature selection and feature transformation is that during

the first process a subset of original features only is selected while the second approach

is based on the generation of completely new features [57]. Examples of feature transfor-

mation includes principal component analysis (PCA) and Linear discriminant analysis

Chapter 5. Design Procedures 50

(LDA). Compared to feature selection, feature transformation are more computationally

complex. Therefore, many researchers used the feature selection techniques.

For example, Parkka, et al. [58] used simple visual and statistical analysis to assess the

distribution of a given feature for different activities. Features which changed markedly

between activities and showed little overlap were selected for subsequent analysis. In

their study of six daily activities, Maurer, et al. [59] used correlation-based feature

selection. With this approach optimal features are defined as those which exhibit high

within-class but low between-class correlations. Another method for feature selection is

a forward–backward search in which features are sequentially added and removed from

a larger set. Optimal features are identified depending on the resulting classification

accuracies for each feature subset. This approach was used by Pirttikangas et al. [60]

to identify the best sensors/features for the classification of 17 different activities.

In our experiment, we used the sequential forward search feature selection method to

obtain optimal feature sets due to its simplicity.

5.6.1 Sequential Forward Search (SFS)

The SFS feature selection method is particularly suitable for finding a few “golden”

features. The following steps are used to find the optimal number and types of audio

features:

1. Compute criterion value (the classification accuracy, in our case) for all individ-

ual feature types (i.e., ZCR, STE,RMS, TC,...). Then select the audio feature

that produced the best value (the feature that provided the highest recognition

accuracy)’

2. Form all possible two-dimensional feature vectors that contain the winner from

the previous step. Calculate the criterion (recognition accuracy) for each feature

vector and select the best one (with the highest accuracy).

3. Continue adding features one at time, taking always the one that results in the

largest value of the criterion (i.e., highest recognition accuracy).

Chapter 5. Design Procedures 51

4. Stop when the desired feature vector dimension M is reached or other stopping

criteria is reached (e.g., if the recognition accuracy is not increasing anymore or

starts to decrease)

However, SFS is a suboptimal search procedure, since nobody can guarantee that the

optimal r–1 dimensional vector has to originate from the optimal r dimensional one. In

addition, the search can be computationally expensive if the feature dimension is very

large.

Chapter 6

Off-line Audio Classification and

Event Detection

Unlike speech and music recognition, the research on environmental sound recognition

(ESR) is not yet well matured. It is still at its infant stage which makes it difficult

to obtain standard procedures and well organized information to determine the best

audio feature extraction techniques and classification algorithms, based solely on the

literature study. As a result, it is imperative to make further experimental test and

simulations in order to be able to determine the best techniques. Off-line test/simulation

is performed using MatLab in order to compare and evaluate the performance of different

audio feature extraction and audio classification techniques and then select the best one.

The performance comparison of the techniques is performed based on their recognition

accuracy and computational complexity (speed).

This chapter provides analysis and MatLab simulation results of the performance of

various audio classifiers and features. The first section introduces the dataset used in

the simulations. In the subsequent sections, the performance of each of the three popular

classifiers, k-NN, SVM and GMM, is evaluated and compared (in terms of recognition

accuracy and computation time), based upon which the best classification algorithm is

selected. The selected classification algorithm is then tested with different combinations

of set of audio features and parameters in order to further improve its performance.

53

Chapter 6. Offline Audio Classification and Event Detection 54

6.1 Simulation Setup

Even though there are numerous studies for speech and music recognition, very limited

numbers of studies have been done on environmental sound domain till now. Due to this

reason, there is no well know standard datasets like TIMIT [61] , which is a standardized

utterance dataset for speech recognition performance experiments. Each researcher who

studies on environmental domain sound recognition uses a different dataset which have

different structures, sound type and quality. As a result, for our experiment we collected

and recorded environmental sounds of our own to be used as a dataset.

6.1.1 Datasets

The sound recording was conducted in the University of Twente office corridors during

normal working hours (with some possiblity of background noises). Unlike in other pre-

vious works which uses high quality stand alone microphones, we used the Smartphone’s

(Samsung Galaxy S-III) internal microphone for recording the sounds with a sampling

rate of 16000 Hz,mono-channel, 16-bit per sample.

In order to investigate the effect of dataset size on classification performance, we used

two types of datasets in our simulations. The first dataset contains a small total number

of data samples (144 data samples), referred to as Small Dataset, whereas the second

dataset contains large total number of data samples (317 data samples), referred to as

Big Dataset. Both datasets contain 6 types of audio context (class) or sound activities:

walking, elevator, coffee machine, water tape, door opening/clossing and silence. All the

sound files (6 sound files corresponding to each of the 6 sound classes) were collected as

uncompressed wav file with varying time durations. Using analysis window (mid-term

window) of 2 secs with 50% overlap, the number of mid-term segments, which represent

the number of data samples, is computed using equation 2.3.

The Small Dataset and Big Dataset are provided in Table 6.1 and Table 6.2, respectively.

Chapter 6. Offline Audio Classification and Event Detection 55

Audio Clases No. of mid-term Descriptions
segments (samples)

coffeeMachine 28 Sound produced by
coffee machine brewing

doorOpen/Close 26 Produced by door
opening or closing

elevator 14 Sound of elevator

silence 21 No activities

walking 36 Sound produced when some
one is walking

waterTape 19 Sound of water tape
(pipe) recorded while a person/user
is washing hands

textbfTotal 144

Table 6.1: Small Dataset

Audio Clases No. of mid-term Descriptions
segments (samples)

coffeeMachine 59 Sound produced by
coffee machine brewing

doorOpen/Close 53 Produced by door
opening or closing

elevator 40 Sound of elevator

silence 61 No activities

walking 51 Sound produced when some
one is walking

waterTape 53 Sound of water tape
(pipe) recorded while a person
is washing hands

Total 317

Table 6.2: Big Dataset

6.2 Performance Evaluation Metrics and Methods of Au-

dio Classifiers

A number of criteria can be used for evaluating and comparing the performance and ef-

ficiency of the classifiers. In this thesis, we compare them based on recognition accuracy

and computational complexity (or computational speed). Before we present the perfor-

mance results, we first describe measures that we used to quantify the performance of

the classifiers.

Chapter 6. Offline Audio Classification and Event Detection 56

6.2.1 Performance Measures

• Overall accuracy, (Acc) - Overall accuracy of a classifier is defined as the fraction

of samples of the dataset that have been correctly classified. The overall accuracy

(Acc) can be computed by dividing the number of correctly classified samples by

the total number of samples in the dataset.

Acc =
TcorrectClassification

Tdataset
(6.1)

where TcorrectClassification is total number of correctly classified datasets and Tdataset

is total number of datasets. Obviously, the quantity 1−Acc is the overall classifi-

cation error.

• Recall, (Re(i)) - Apart from the overall accuracy, which characterizes the classifier

as a whole, there also exist two class-specific measures that describe how well the

classification algorithm performs on each class. One of these measures is theclass

recall (Re(i)), which is defined as the proportion of data with true class label i

that were correctly assigned to class i.

Re(i) =
icorrectClassification

idataset
(6.2)

where icorrectClassification is the number of datasets that have been correctly classi-

fied to class label i and idataset is the number of dataset that belong to class label

i.

• Precision, (Pr(i)) - The second class specific performance measure is called class

precision (Pr(i)), which is defined as the fraction of samples that were correctly

classified to class i if we take into account the total number of samples that were

classified to that class.

Pr(i) =
icorrectClassification

itotalClassification
(6.3)

where icorrectClassification is the number of datasets that have been correctly classi-

fied to class label i and itotalClassification is the total number of datasets that have

been classified to class label i.

• Harmonic mean of Recall and Precision (F1(i)) - Finally, a widely used class spe-

cific performance measure that combines the values of precision and recall is the

Chapter 6. Offline Audio Classification and Event Detection 57

Harmonic mean of Recall and Precision, also known as F1 −measure. It is com-

puted as harmonic mean of the precision and recall values:

F1(i) =
2Re(i)Pr(i)

Pr(i) +Re(i)
(6.4)

6.2.2 Validation Methods

The crucial stage in the life cycle of any classifier is the validation stage, during which

the correctness of the classification results should be determined. The choice of the

training and testing dataset is the most important factor in the validation stage. Our

dataset consists of feature vectors and respective class labels. Therefore, an important

question addressed during the validation stage is how our dataset should be partitioned

to training and testing datasets. Once this decision is made, it is then possible to train

the classifier on the training set and measure its performance on the testing dataset

using any of the performance measures.

For the validation of results and to decide how to split the datasets, several cross-

validation techniques have been proposed in the literature, including:

• Hold-out validation (HO)- Hold-out method partitions the dataset into two non-

overlapping subsets: one for training and the other for testing. Commonly, one-

third of the samples are used for testing and the rest for training. However, this

method is sensitive to the choice of datasets. For example, important (representa-

tive) samples can be left out of the training set, leading to a less accurate classifier.

On the other hand, if the number of testing samples is significantly reduced in or-

der to increase the size of the training set, then our confidence in the derived

performance measures is also likely to decease.

• Repeated random sub-sampling validation (Repeated-hold-out)(RHO)- A remedy

for the weakness of the standard hold-out method is to repeat the method a num-

ber of k times. At each iteration, the dataset is randomly split into two subset

(random sub-sampling): training dataset and testing dataset. The classification

performance is obtained by averaging the result of each hold-out iterations. Due

to the random nature of the splitting process, it is still possible that some samples

Chapter 6. Offline Audio Classification and Event Detection 58

may never be participate in the training (or testing) dataset, however, compared

to the standard hold-out method the risk of over-fitting is reduced.

• Leave-one-out (LOO) - In the leave one out method all the samples, apart from

one, are used for training the classifier. The remaining (one) sample is then used in

the testing stage. This process is iterated a number of times (until all the dataset

are covered) each time by reserving a sample for testing. The classifier performance

is computed by averaging the results obtained from each of the iterations. LOO is

used usually when there are small number of data samples available.

In our simulations, we tested both the repeated random sub-sampling validation (RHO)

and leave-one-out cross validation (LOO) methods. In the case of RHO validation

method, one-third of the total dataset is randomly selected and used for testing and the

rest are used for training at every iteration. The maximum number of iterations is set to

20. Therefore, the overall recognition performance is computed by averaging the results

obtained from each iterations (20 iterations). However, after repeated simulations, we

observed that the result of each repeated (RHO based) simulation is not consistent and

slightly varies from one simulation result to another. This slight variation happens due

to random selection of the training data and testing data. On the other hand, the

simulation result obtained using the LOO validation method is more stable (consistent)

for each simulation test (trial) and, thus, more reliable. Consequently, we use the LOO

based simulation results for comparison and evaluation purposes.

The recognition accuracy of each of the classifiers is presented in a Confusion Matrix.

The rows and columns of the Confusion Matrices refer to the true (ground truth) and

predicted class labels of the dataset, respectively.

Matlab profiler is used in order to measure the computational speed of the classifiers.

We used a machine (laptop) with Intel Core i3 CPU and processor speed of 2.27 GHz

for testing the performance of the algorithms.

Chapter 6. Offline Audio Classification and Event Detection 59

6.3 Performance Evaluation Results

6.3.1 Performance of k-NN Classifier

Recognition Accuracy

The k-NN classifier has only one parameter to be adjusted, i.e., k value. In order to

asses the effect of dataset size on the classification performance, the k-NN classifier is

applied on both datasets (i.e., Small Dataset and Big Dataset). We used LOO for cross-

validation and analysis widow of 2 secs (with 50% overlap). In the simulation, the entire

feature set, which has been composed in section 5.3.2, has been used as our feature

vector.

Figure 6.1 presents the overall classification accuracy for different values of k. The

maximum overall accuracy is obtained for value of k equal to 2 in both datasets.

Table 6.3 and Table 6.4, respectively, present the confusion matrices of the k-NN classi-

fier on the Small Dataset and Big Dataset using LOO validation method. The confusion

matrices have been computed using the best value of k (in our case, k=2), for which

the overall accuracy is maximum. Each element of the confusion matrices represents the

recall values for each class.

Figure 6.1: k-NN Performance vs k values

Chapter 6. Offline Audio Classification and Event Detection 60

Confusion Matrix

Predicted

True ⇓ co
ff
ee

d
o
or

el
ev
at
or

si
le
n
ce

w
al
k

w
at
er
T
ap

e

coffee 92.9 7.1 0.0 0.0 0.0 0.0
door 0.0 100.0 0.0 0.0 0.0 0.0

elevator 0.0 0.0 100.0 0.0 0.0 0.0
silence 0.0 0.0 0.0 100.0 0.0 0.0
walk 0.0 0.0 0.0 0.0 100.0 0.0

waterTape 0.0 0.0 0.0 0.0 0.0 100.0

Performance Measures (per class)

Precision: 100.0 93.3 100.0 100.0 100.0 100.0
Recall: 92.9 100.0 100.0 100.0 100.0 100.0
F1: 96.3 96.6 100.0 100.0 100.0 100.0

Table 6.3: Confusion Matrix for Small Dataset.
Overall accuracy: 98.8, Average Precision: 98.9, Average Recall: 98.8, Average F1

measure: 98.8

Confusion Matrix

Predicted

True ⇓ co
ff
ee

d
o
or

el
ev
at
or

si
le
n
ce

w
al
k

w
at
er
T
ap

e

coffee 96.6 3.4 0.0 0.0 0.0 0.0
door 0.0 94.3 0.0 0.0 5.7 0.0

elevator 0.0 0.0 100.0 0.0 0.0 0.0
silence 0.0 0.0 0.0 100.0 0.0 0.0
walk 0.0 0.0 0.0 0.0 100.0 0.0

waterTape 0.0 0.0 1.9 0.0 1.9 96.2

Performance Measures (per class)

Precision: 100.0 96.5 98.1 100.0 93.0 100.0
Recall: 96.6 94.3 100.0 100.0 100.0 96.2
F1: 98.3 95.4 99.1 100.0 96.4 98.1

Table 6.4: k-NN: Confusion Matrix for Large Dataset
Overall accuracy: 97.9, Average Precision: 97.9, Average Recall: 97.9, Average F1

measure: 97.9

Chapter 6. Offline Audio Classification and Event Detection 61

The classification accuracy of k-NN on the 6-audio classes is pretty high. The overall

recognition accuracy is equal to 98.8% and 97.9% for the Small Dataset and Big Dataset,

respectively. The simulation result indicates that the overall accuracy for the Small

Dataset is slightly higher than that of the Big Dataset. In the case of Small Dataset,

coffee brewing machine scored the least class recall (92.9%). 7.1% of the coffee machine

dataset are misclassified as door opening/clossing.

Based on the simulation results we can conclude that increasing the dataset reduces

(or do not improve) the recognition accuracy of the k-NN classifier. The k-NN classi-

fier is vulnerable to noise. Using large dataset can introduce unnecessary redundancy

(irrelevant features) and noise leading to reduced overall accuracy.

Computational Speed

The k-NN classifier is the simplest, yet quite powerfull classification algorithm. In

addition, it does not have training stage, which makes it unique to the other classification

algorithms.

The total execution time of the k-NN classifier is profiled with MatLab profiler. It

is found out that the classifier requires, in average, 0.52 seconds to classify the Small

Dataset and 1.47 seconds for the Big Dataset.

We conclude that using large dataset reduces the recognition accuracy and increases the

computation time. Moreover, The Big Dataset requires more memory for storing the

dataset.

6.3.2 Performance of SVM Classifier

The SVM is a sophisticated classification algorithm which has been employed in many

applications. Next, we present the recognition accuracy and computational speed of the

SVM classifier.

Recognition Accuracy

We used both datasets (i.e., Small Dataset and Big Dataset) for training and testing

the SVM classifier, which uses One-Vs-All (OVA) strategy for multi-class classification.

Chapter 6. Offline Audio Classification and Event Detection 62

Similar to the evaluation of k-NN classifier, LOO (Leave-One-Out) cross validation

method has been used to compute the recognition performance with analysis widow of

2 secs and 50% overlap. In the simulation, we used the entire feature set that has been

composed in section 5.3.2 as our feature vector.

In the case of SVM classifier, there are a number of parameters that need to be first

set by the user: type of kernel (e.g., linear, polynomial, radial basis function (rbf),

quadratic, Multilayer Perceptron kernel (mlp) and quadratic), kernel properties (pa-

rameters or values)(e.g.,in the case of polynomial kernel, the order of the polynomial

must be specified by the user) and constraint parameter, C. We investigated differ-

ent types of kernel functions (linear, polynomial, radial basis function, quadratic and

mlp) in this work and found out that the linear kernel function to perform the best

as shown in figure 6.2. Tables 6.5 and 6.6, respectively, present the confusion matrices

of the SVM classification accuracy for the Small Dataset and Big Dataset using LOO

cross-validation method. The results presented in the confusion matrices represents the

class recall values and are obtained using the linear kernel function, which has the best

performance score.

Figure 6.2: SVM Performance for different kernel functions

Chapter 6. Offline Audio Classification and Event Detection 63

Leave-one-out, best kernel function==’linear’

Predicted

True ⇓ co
ff
ee
M
ac
h
in
e

d
o
or
O
p
en

/C
lo
se

el
ev
at
or

si
le
n
ce

w
al
k
in
g

w
at
er
T
ap

e

coffeeMachine 100.0 0.0 0.0 0.0 0.0 0.0
doorOpen/Close 0.0 100.0 0.0 0.0 0.0 0.0

elevator 0.0 0.0 100.0 0.0 0.0 0.0
silence 0.0 0.0 0.0 100.0 0.0 0.0
walking 0.0 0.0 0.0 0.0 100.0 0.0

waterTape 0.0 0.0 0.0 0.0 0.0 100.0

Performance Measures (per class)

Precision: 100.0 100.0 100.0 100.0 100.0 100.0
Recall: 100.0 100.0 100.0 100.0 100.0 100.0
F1: 100.0 100.0 100.0 100.0 100.0 100.0

Table 6.5: SVM performance Confusion Matrix (for Small Dataset).
Overall accuracy: 100.0, Average Precision: 100.0, Average Recall: 100.0, Average F1

measure: 100.0

Leave-one-out, best kernel function==“linear”

Predicted

True ⇓ co
ff
ee

d
o
o
r

el
ev
at
or

si
le
n
ce

w
a
lk

w
a
te
rT

ap
e

coffee 100.0 0.0 0.0 0.0 0.0 0.0
door 0.0 94.3 0.0 0.0 1.9 3.8

elevator 0.0 0.0 100.0 0.0 0.0 0.0
silence 0.0 0.0 0.0 100.0 0.0 0.0
walk 0.0 0.0 0.0 0.0 100.0 0.0

waterTape 0.0 3.8 0.0 0.0 0.0 96.2

Performance Measures (per class)

Precision: 100.0 96.2 100.0 100.0 98.1 96.2
Recall: 100.0 94.3 100.0 100.0 100.0 96.2
F1: 100.0 95.2 100.0 100.0 99.1 96.2

Table 6.6: SVM performance Confusion Matrix (for Big Dataset)
Overall accuracy: 98.4, Average Precision: 98.4, Average Recall: 98.4, Average F1

measure: 98.4

Chapter 6. Offline Audio Classification and Event Detection 64

The simulation result indicates that the overall recognition accuracy of the SVM classifier

is slightly higher (100%) when applied on the Small Dataset than when applied on the

Big Dataset (98.4%). This slight reduction is caused due to over-fitting.

Computational Speed

The computational time (speed) of the SVM classifier is measured using the MatLab

profiler. The time required to train and then classify the Small Dataset and Big Dataset

is, respectively, equal to 16.13 and 89.9 seconds, which is very high compared to that of

the k-NN classifier. Though the SVM classifier provides the highest recognition accuracy,

the required computation time is too expensive to be used in applications with real-time

requirements. The high execution time also indicates that SVM classifier consumes

more energy which makes it unsuitable to be used in energy constrained devices such as

smartphones.

6.3.3 Performance of GMM Classifier

Unlike the k-NN and SVM which are deterministic classifiers, GMM classifier is a statis-

tics (probability) based classifier. The common characteristics of probability based clas-

sifiers is that they provide better classification results when used in classification appli-

cations that has large size of dataset. However, the down side of these classifiers is that

the high computational time required, in addition to the requirement of large dataset.

Next, we look into the classification performance of the GMM classifier.

Recognition Accuracy

In the case of Gaussian mixture model (GMM), there is one parameter that need to be set

by the user, i.e., the number of GMM components that give the best recognition accuracy

has to be determined in advance by the user. In order to find the number of GMM

components that give maximum recognition accuracy, we have performed a simulation by

varying the number of GMM components. Figure 6.4 presents the recognition accuracy

for different number of mixture components (k). Based on our simulation, the best

number of mixture components is found to be equal to 1 (i.e., k=1) using the LOO cross

validation method.

Chapter 6. Offline Audio Classification and Event Detection 65

The GMM classifier is investigated using both types of datasets (the Small Dataset

and the Big Dataset). It is first tested using the Small Dataset, presented in Table

6.1. However, GMM is found to perform quite poor with the Small Dataset as shown in

Figure 6.3. The confusion matrix for the best number of mixture components, which is 1

in this case, is presented in Table 6.7. We can see all audio events are simply classified as

coffee machine (to the first class) and the maximum overall accuracy is quite low which

is only equal to 16.7%. In fact, classifying all the test data as belonging to only one

class (the first class) shows that the classifier completely failed to model and recognize

the test data. The 16.7% recognition accuracy is produced since the 16.7% of the test

data originally belong to the first class. Therefore, the recognition accuracy in this case

is actually zero.

On the other hand, when we increased the size of the dataset, we observed that the

performance of the GMM classifier improving. Using the Big Dataset (of size 317 data

samples), we obtained a comparable recognition performance to that of k-NN and SVM

classifiers. The obtained maximum overall accuracy using the Big Dataset is equal to

90.0%. The corresponding confusion matrix is presented in Table 6.8, computed using

LOO cross-validation methods.

Chapter 6. Offline Audio Classification and Event Detection 66

1 2 3 4 5 6 7 8 9 10
−1

0

1

2
Results − repeated hold−out validation

Num of Components(k)

P
e
rf

o
rm

a
n
c
e

Overall Accuracy

F1 measure

1 2 3 4 5 6 7 8 9 10
−1

0

1

2
Results − leave−one−out validation

Num of Components (k)

P
e

rf
o
rm

a
n
c
e

Overall Accuracy

F1 measure

Figure 6.3: GMM Performance for different number of gmm components, k (Low
GMM performance for small datasets)

Leave-one-out (best value of gmm component, k=1)

Predicted

True ⇓ co
ff
ee

d
o
o
r

el
ev
a
to
r

si
le
n
ce

w
al
k

w
at
er
T
ap

e

coffee 100.0 0.0 0.0 0.0 0.0 0.0
door 100.0 0.0 0.0 0.0 0.0 0.0

elevator 100.0 0.0 0.0 0.0 0.0 0.0
silence 100.0 0.0 0.0 0.0 0.0 0.0
walk 100.0 0.0 0.0 0.0 0.0 0.0

waterTape 100.0 0.0 0.0 0.0 0.0 0.0

Performance Measures (per class)

Precision: 16.7 NaN NaN NaN NaN NaN
Recall: 100.0 0.0 0.0 0.0 0.0 0.0
F1: 28.6 NaN NaN NaN NaN NaN

Table 6.7: Low GMM performance confusion matrix (LOO).
Overall accuracy: 16.7, Average Precision: NaN, Average Recall: 16.7, Average F1

measure: NaN

Chapter 6. Offline Audio Classification and Event Detection 67

Figure 6.4: GMM Performance for different number of gmm components, k (High
performance for large dataset)

Confusion Matrix

Predicted

True ⇓ co
ff
ee

d
o
or

el
ev
at
or

si
le
n
ce

w
al
k

w
at
er
T
ap

e

coffee 94.9 5.1 0.0 0.0 0.0 0.0
door 0.0 100.0 0.0 0.0 0.0 0.0

elevator 22.5 7.5 70.0 0.0 0.0 0.0
silence 0.0 0.0 0.0 100.0 0.0 0.0
walk 3.9 13.7 0.0 0.0 82.4 0.0

waterTape 7.5 0.0 0.0 0.0 0.0 92.5

Performance Measures (per class)

Precision: 73.6 79.2 100.0 100.0 100.0 100.0
Recall: 94.9 100.0 70.0 100.0 82.4 92.5
F1: 82.9 88.4 82.4 100.0 90.3 96.1

Table 6.8: GMM-Confusion Matrix for Big Dataset
Overall accuracy: 90.0, Average Precision: 92.1, Average Recall: 90.0, Average F1

measure: 90.0

Computational Speed

We have already seen that the GMM classifier completely failed when used for classi-

fication of small size dataset (i.e., the Small Dataset). Therefore, it is not useful to

discuss about the required computation time when the GMM is used with the Small

Dataset. However, it makes sense to measure and compare the required computation

Chapter 6. Offline Audio Classification and Event Detection 68

time of GMM when the larger size dataset (i.e., Big Dataset) is used (as the recognition

accuracy is acceptable). The measured computation time for training the GMM and

then classifying the Big Dataset is equal to 12 seconds, which is prohibitably high.

Based on the simulation results, we conclude that the GMM classifier has completely

failed to model correctly the Small Dataset. Comparative performance was obtained

only when the Big Dataset is used, which in turn result in a very expensive computation

time. GMM is, thus, not preferable both because of its poor classification accuracy (es-

pecially with small dataset) and prohibitably very high computational time and memory

requirement (especially with large dataset).

6.3.4 Comparison of Classifiers’ Performance

In this section, we compare the performance of the three classifiers based on their recog-

nition accuracy and computational speed (simplicity).

Table 6.9 summarizes the overall performances of the classifiers. Based on the table,

GMM is not totally acceptable to be used in classification problems with small dataset (

such as in our case). It can only be used when there is large dataset available. However,

the required computation time is so high that it is not suitable to be used in devices

with limited computational and memory resources. Though SVM has very high (100%)

recognition accuracy, the required execution time is high too. As a result, it is not

preferred for real-time and energy contained implementations. The k-NN classifier pro-

vides high classification performance (98.8%, almost equal to that of the SVM) with less

execution time. Therefore, the k-NN classifier is the best algorithm that can be used

for implementations of classification applications in devices with limited resources (i.e.,

limited energy and memory) such as smartphones. One common property of k-NN and

SVM is that both classifiers perform well with the smaller dataset (Small Dataset).

Chapter 6. Offline Audio Classification and Event Detection 69

Classifier Dataset Overall Recognition Execution time
Accuracy (in secs)

k-NN Small Dataset 98.8% 0.52
Big Dataset 97.9% 1.47

SVM Small Dataset 100% 16.13
Big Dataset 98.4% 89.9

GMM Small Dataset 16.7% –
Big Dataset 90.0% 12.8

Table 6.9: Summary of Classifiers’ Comparison: Small Dataset referes to the dataset
in table 6.1 and Large Dataset to the dataset in table 6.2

So far we have been computing and comparing the recognition accuracy of the classifiers

without looking the effects of other parameters such as audio features, class types,

analysis window and overlap sizes. In fact, the classification (recognition) accuracy does

not only depend on the type of classifier used. There are a number of other parameters

that affect the recognition accuracy and the computation time as well. The major ones

include type of audio feature, number and types of classes, number and size of feature

vectors, and analysis window and overlap size. In the next sections, we investigate the

effect of these parameters on the recognition accuracy of the k-NN classifier. The goal

is to find the optimal parameters to further improve the recognition accuracy of k-NN

before finally implementing on smartphone.

6.4 Parameter Selection

We conducted a series of additional simulations to examine the effect of parameters set-

tings on the performance of the k-NN classifier. Only minor changes in performance were

detected using different parameter settings, for example, varying the analysis window

length and window overlap. The simulation result (confusion matrix) of the classification

performance of k-NN using analysis window of 1 secs with 50% (0.5 secs) is provided in

Table 6.10.

The confusion matrix in Table 6.10 presents the classification performance of k-NN

when used to classify the Small Dataset. The simulation result shows that the overall

accuracy of the k-NN is not affected by changing the size of analysis window and overlap.

However, the computation time has now increased (to 1.2 secs) by a factor of 2 (twice)

compared with that of 2 secs analysis window (with 50% or 1 secs overlap). Note that

Chapter 6. Offline Audio Classification and Event Detection 70

reducing the analysis window (from 2secs to 1 secs) results in increased size of dataset

which can lead to increased computation time.

leave-one-out (bestK=2)

Predicted

True ⇓ co
ff
ee

d
o
or

el
ev
at
or

si
le
n
ce

w
al
k

w
at
er
T
ap

e

coffee 96.4 3.6 0.0 0.0 0.0 0.0
door 0.0 96.2 0.0 1.9 1.9 0.0

elevator 0.0 0.0 100.0 0.0 0.0 0.0
silence 0.0 0.0 0.0 100.0 0.0 0.0
walk 0.0 0.0 0.0 0.0 100.0 0.0

waterTape 0.0 0.0 0.0 0.0 0.0 100.0

Performance Measures (per class)

Precision: 100.0 96.4 100.0 98.1 98.1 100.0
Recall: 96.4 96.2 100.0 100.0 100.0 100.0
F1: 98.2 96.3 100.0 99.0 99.0 100.0

Table 6.10: Overall accuracy: 98.8, Average Precision: 98.8, Average Recall: 98.8,
Average F1 measure: 98.8

6.5 Feature Selection and Dimensionality reduction

We have seen in section 5.6 that the type of audio features used for the classification

has a major impact on the classification performance and why care should be taken

when selecting them. A good feature set should show little variation between sample

features (subjects) of the same class but should vary considerably between samples

belonging to different classes. Furthermore, it is important to minimize any redundancy

between features as this can result in unnecessarily increased computational demands

and, also, reduced accuracy with some classification methods. Therefore, the goal of

feature selection is to select a subset of M features from D originally available feature

set so that we reduce the dimensionality of the feature vector (M < D), which in turn

reduces the computational time and improves the classification accuracy at the same

time.

A number of different techniques, of varying complexity, have been used to select ap-

propriate features for classification applications. In our work, we used the sequential

Chapter 6. Offline Audio Classification and Event Detection 71

forward search (see section 5.6) feature selection method to obtain optimal feature sets.

Initially, the recognition accuracy of each audio feature type was computed (using the

k-NN classifier) in order to choose the best audio feature with highest accuracy. In the

initial test, MFCC (mfcc) feature was found to perform the best with overall accuracy

of 98.2%. This performance result was obtained using the first 13 mfcc coefficients.

However, it is still important to find the optimal number of mfcc coefficients as well.

To this end, the overall accuracy is improved (to 98.8%) when the number of first mfcc

coefficients are reduced to 8.

Figure 6.5 presents the overall recognition accuarcy of the audio features when used to

classify the audio dataset in table 6.1 separately (individually). The result shows that

the mfcc feature type (with the first 8 coeffs used) performs the best with an overall

accuracy of 98.8% (which is quite high) whereas the energy entropy (ee) performs the

least with an overall accuracy of 55.5%. Thus, the mfcc feature is the most important

audio feature and we test it again by combining it with the other features. We repeat

this until we get the optimal feature combinations following the sequential forward search

procedures.

Thus, in the second iteration, it is found a feature set with combination of MFCCs and

spectral entropy (SE) to produce the highest overall accuracy (99.4%). Finally, after the

third iteration, a feature set which is composed of three feature types (MFCC+SE+SC)

has resulted in overall accuracy of 100%, which is the highest. Therefore, the optimal

feature set is determined and consists of MFCCs (with first 8 coeffs.), spectral entropy

(SE) spectral centroid (SC). That is, our feature vector dimension is now reduced from

24 to 10 (8+1+1). This optimal feature set not only provide better overall recognition

accuracy, but also provides reduced computational time when used with k-NN classifier.

Chapter 6. Offline Audio Classification and Event Detection 72

Figure 6.5: Individual feature performance: MFCC performs the best, overall accu-
racy 98.8% (the first 8 mfcc coefficients are used)

6.6 Summary: on k-NN Performance

After conducting a series of experiments (such as feature selection), it is finally possible

to improve the overall accuracy of k-NN classifier to 100% (using reduced set of features)

from 98.8% (original overall accuracy (see subsection 6.3.1)).

Generally, the best choice of k depends upon the data; generally, larger values of k

reduce the effect of noise on the classification, but make boundaries between classes less

distinct. A good k can be selected by various heuristic techniques.

The accuracy of the k-NN algorithm can be severely degraded by the presence of noisy

or irrelevant features, or if the feature scales are not consistent with their importance. In

binary (two class) classification problems, it is helpful to choose k to be an odd number

as this avoids tied votes. In the case of multi class problem, other techniques can be

used such as increasing or decreasing the value of k until the tie is resolved.

Chapter 7

On-line Audio Classification and

Recognition

Off-line audio processing can be used for applications where on-line audio recognition

is not necessary. For instance, if we are interested in following the daily routine of

human activities, the audio recorder can collect the data during a day; and it can then

be uploaded to a server at the end of the day to be processed off-line for classification

purposes. However, if one is interested in knowing the current context (user’s current

location or activities), on-line audio recognition technique becomes important. Unlike

the Off-line recognition, the on-line audio (context) recognition provides a real-time

information such as what a user is currently doing or where his current location is.

This chapter discuss Android (mobile) application development process which is used

for on-line audio recognition.

Since k-NN provided the best performance in the off-line recognition tests described in

Chapter 6 , it is selected as audio classifier for the development of online audio recognition

application. In addition, to develop the Android application, we used the following:

• The Small Dataset, presented in Table 6.1, – used as a training dataset.

• Analysis window of 2 secs.

• Sampling rate of 16 kHz, 16-bit per sample.

• The Optimal Feature Set, determined in Chapter 6 (Section 6.5), – used as feature

vector.

73

Chapter 7. On-line Audio Classification & Recognition 74

Samsung Galaxy SII (with 1.2 GHz dual-core system on a chip (SoC) processor) has

been used for developing and testing our application.

7.1 The On-line Audio Recognition Application

The online audio recognition technique has two components/phases (Fig. 7.1): off-line

(training phase) and on-line (testing phase). Both the off-line training and on-line testing

phases are performed on the smartphone.

• Off-line - The on-line audio recognition technique is first trained offline with

previously collected data (i.e., the Small Dataset in our case). Data for off-line

training must be labeled, i.e. we need to know which audio type (class) each

analysis window belongs to.

In this step, audio features (optimal audio features) from the training dataset are

extracted and then stored on the smartphone’s SD card memory for later retrieval

during the on-line testing phase.

• On-line - In the online phase of the process, the Android app uses the audio fea-

tures already extracted and stored in the previous step to match and detect new

(unknown) audio events recorded in real-time from the microphone of the smart-

phone. The on-line process involves recording unknown audio signal, extracting

audio features for the unknown audio signals, matching the extracted audio fea-

tures with the audio features of the training dataset and finally displaying the

recognition result to the user.

Chapter 7. On-line Audio Classification & Recognition 75

Figure 7.1: The classification process of on-line audio recognition application.

The phone records stream of raw audio data continuously (at 16 kHz sampling rate)

and stores it into buffer. The contents of the buffer are read at a fixed time interval (2

secs) for processing (feature extraction and classification). The stream is segmented into

short-term windows (of duration 0.05 secs with 50% overlap). Audio features are first

computed for each short-term window and then averaged over the mid-term window (of

duration 2 secs). For this work, we compute the three audio feature types, MFCCs (first

8 coeffs), SE and SC, which have been already tested to be the optimal feature set when

used with k-NN classifier.

The graphical user interface (GUI) of the audio recognition application is illustrated in

Figure 7.2. The main application user interface contains two buttons: Start Listening to

Audio and Start Generating Model buttons. The Start Generating Model button (when

clicked) is used to extract audio features from the training dataset and to store them.

The Start Listening to Audio is used to record unknown audio events and to display the

recognition results in real-time to the user. In other words, the Start Generating Model

is used during the off-line training phase whereas the Start Listening to Audio is used

Chapter 7. On-line Audio Classification & Recognition 76

during the on-line audio recognition phase.

Figure 7.2: The GUI of Android App

7.2 Performance of On-line Audio Recognition

7.2.1 Computational speed

In order to measure the computational speed of the application, we used Android SDK

tool, called Traceview [62]. Traceview is a Dalvik profiler which measures how much

time the application spends calling methods. The tool provides the execution time

Chapter 7. On-line Audio Classification & Recognition 77

measurement in terms of both CPU time 1 and response (real) time 2, also called wall

clock time. It can also show each threads execution and calls in chronological order.

During the off-line training (when the Start Generating Model button is pressed), the

main activity (application) runs a thread that reads the training dataset and extracts

the audio features. Finally, it stores the audio features in a file on the SD card memory.

Based on the profiling results, the off-line training (i.e., reading and feature extraction

of the training dataset) in average takes about 4 secs (real time or response time).

On the other hand, the recognition time of the on-line audio recognition technique is,

in average, equal to 2 secs (response time). We define the recognition time as the time

the on-line audio recognition technique needs to process and determine the audio type

for one audio segment whose duration is equal to the analysis window (i.e., 2 secs). In

short, the recognition time is the time required for activity recognition of one analysis

window.

The feature extraction step takes 57.7% of the recognition time of which 55.2% is taken

by the MFCCs feature extraction step. One interesting result is that even though the

actual classification step uses only 1.5% of the recognition time, it takes 20.1% of the

recognition time in order to read and load the audio features of the training data from the

SD card during the classification stage. The recording and preprocessing stage account

for a small percentage of the recognition time.

The result of the Traceview proves that the application can continuously recognize audio

events (every 2 secs) in real-time. Fig. 7.3 shows the profiling result of the Traceview for

the on-line audio recognition phase. The figure shows the profiling result for a duration

of 2 secs.

As shown in the figure, the execution time log is displayed in two panels:

• Time line panel - describes when each thread and method starts and stops. In

the time line panel, each thread’s execution is shown in its own row, with time

increasing to the right. The width of the bars corresponds to the CPU time a

function/thread takes. Each method is shown in another color (colors are reused

1CPU time is the actual time the process uses the CPU (For example, this would not include waiting
on input/output operations).

2Response time is the total time spent from the start of a process to the end of process. It includes
waiting time for other process to execute; for example, time spent doing input/output operations

Chapter 7. On-line Audio Classification & Recognition 78

in a round-robin fashion starting with the methods that have the most inclusive

time).

• Profile panel - provides a summary of what happens inside a method, i.e., a

summary of entire period spent by a method. The profile panel shows both the

inclusive and exclusive times as well as the percentage of the total time (in terms

of both CPU time and real/response time). Exclusive time is the time spent in

the method. Inclusive time is the time spent in the method plus the time spent in

any called functions.

Chapter 7. On-line Audio Classification & Recognition 80

all audio types (i.e., walking, silence, elevator, door and coffee machine). This pre-

recorded continuous audio file is played while at the same time smartphone’s on-line

audio recognition application is running. The recognition result is displayed in Fig. 7.4.

The figure provides comparison of the on-line and off-line test results with that of the

ground truth (real audio types) which has been labeled manually. The numbers in the

figure indicate the time of (in secs) start and end of audio segment after merging similar

consecutive audio types (events). It is assumed that the minimum duration of a single

audio event is 2 secs (equal to the duration of the analysis window).

In 82 secs audio signal, we have in total 41 audio recognition events (mid-term frames).

The on-line audio recognition technique misclassified 10 out of the 41 audio recogni-

tion events (mid-term frames). Thus, the recognition performance of the on-line audio

recognition application is 75.6%.

Chapter 7. On-line Audio Classification & Recognition 82

of sound event to the next type. At the transition boundaries, there is higher

chance of audio overlapping. This means that the analysis window is more likely

to have mixture (combination) of more than one audio event type, which results

in misclassification.

• Another reason for the lower recognition performance of the online audio recog-

nition is noise interference. The on-line audio recognition is more susceptible to

noise interference during testing (on-line testing). That is, during testing the mi-

crophone can pick up unwanted nearby audio events leading to noise interference

which in turn impacts the classification performance.

• During the off-line audio recognition, we first collect audio data and apply classifi-

cation algorithms (offline) on the collected data, using a large part of the collected

data for training 3. It is clear that the larger the amount of overlap between the

training data and the testing data, the better recognition results will be achieved.

Off-line processing exploits this advantage resulting in better recognition accuracy.

However, it is problematic to use overlapping between successive analysis windows

in the case of on-line audio recognition technique.

• Moreover, on-line audio recognition uses the naive merging while the off-line uses

the probability smoothing post-processing technique. During off-line recognition,

it is easier to use more advanced post-processing techniques such as probability

smoothing techniques (section 5.5). Unlike the naive merging technique which

simply merges similar successive classification results, the probability smoothing

technique is so powerful that it can also filter out classification errors.

7.2.3 Memory usage

Random-access memory (RAM) is a valuable resource in any software development

environment, but it is even more valuable on a mobile operating system where physical

memory is often constrained.

Android’s Dalvik virtual machine performs routine garbage collection in order to reclaim

memory from unused objects of the app. The default maximum heap size allowed per

3We consider supervised learning methods thus the models require labeled training data to learn the
model parameters

Chapter 7. On-line Audio Classification & Recognition 83

application, in Samsung Galaxy SII, is 64 MB. An application that requires a heap size

larger than the maximum heap size allowed throws OutOfMemmoryError. In order to fit

everything it needs in RAM, Android tries to share RAM pages across processes/apps.

Due to the extensive use of shared memory, determining how much memory an app is

using requires care.

There are different techniques for analyzing the memory usage of an Android app. The

Heap View (in Eclipse) shows some basic statistics about an app’s heap memory usage.

The measurements show that the on-line audio recognition (tested during on-line test-

ing) a memory heap size of 10 MB (in average) is allocated. The total number of objects

(alive) is approximately 51,699 out of which about 20,000 have a size of 32 bytes each.

Fig. 7.5 provides the result of the Heap View. As we can see from the figure, most of

the objects have small size which is good in terms of memory usage. Larger objects lead

to a larger heap size which cause for the Garbage Collector to run more often resulting

in larger pause and longer execution time.

Figure 7.5: On-line:- Heap Memory Usage

Chapter 7. On-line Audio Classification & Recognition 84

We use the adb shell dumpsys meminfo command in order to view the overall memory

allocation of the on-line audio recognition application. The output of the command is

presented in Fig. 7.6 and lists all of the app’s memory allocations, measured in kilobytes.

Figure 7.6: On-line:- Overall Memory Usage

In the figure above Pss stands for Proportional Set Size. It refers to the measurement

of the app’s RAM use that takes into account sharing pages across processes. Private

(Clean and Dirty) RAM, on the other hand, refers to the memory that is being used by

only the app’s process. This is the bulk of the RAM that the system can reclaim when

the app’s process is destroyed. Generally, the most important portion of this is “private

dirty” RAM, which is the most expensive because it is used only by the app’s process

and its contents exist only in RAM so cannot be paged to storage (because Android

does not use swap).

The overall memory used by the app is, thus, approximately, equal to 7395 KB out of

which 6636 KB is private dirty, which is not shared with other processes.

Note that the above outputs may vary across different platforms. In our test we used

the Samsung Galaxy SII smartphone.

Chapter 8

Conclusion and Future Works

Environmental sounds/audios can provide many valuable cues for context-aware com-

puting applications. From the audio signals we can infer type of activity and its context

(e.g., its environment or location). This thesis provides the design and development of

an application for correctly detecting and recognizing user activities and environmental

context using audio signals on mobile phones. We compared performance of different

audio classifiers (k-NN, SVM and GMM) and audio features based on their recognition

accuracy and computational speed in order to choose a suitable (optimal) technique for

implementing the application on mobile phones. We found out that the k-NN classifier

provides high recognition accuracy with much less execution time. Moreover, we evalu-

ated the performance of different types of audio features (both temporal and spectral)

in order to select optimal feature set (optimal feature vector) for the audio classifier.

As a result, feature set composed of Mel-frequency cepstral coefficients (MFCCs), spec-

tral entropy (SE) and spectral centroid (SC) proved to provide the highest performance

(when used with k-NN classifier) and , thus, chosen as optimal feature set. The test is

performed off-line using MatLab simulations.

The on-line audio recognition application, which is implemented as an Android app,

uses k-NN as audio classifier and the selected optimal feature set as audio feature vector.

The application provides continuous real time classification results (every 2 seconds) by

analyzing environmental sounds sampled from smartphone’s microphone.

This work has investigated and proved the implementation feasibility of environmental

audio based context recognition applications on mobile phones. However, there are still

85

Chapter 8. Discussions and Future Works 86

a number of challenges that need to be addressed in the future. The performance and

capabilities of the audio event recognition application can further be improved, in the

future, by introducing a number of additional features and capabilities listed below:

• Adding audio segmentation and noise reduction component is important in order

to further increase the recognition accuracy. Currently, the application performs

poorly when there is audio overlapping (more than one sound event occur simul-

taneously) and background noise. Thus, introducing noise reduction and audio

segmentation techniques at the pre-processing stage can improve the recognition

accuracy (though at a cost of some computational time and complexities).

• Using on-line training technique in order to adapt to the dynamic nature of the

environment and changing audio types. Our application uses off-line training (pre-

recorded training dataset) which limits its ability to adapt to dynamic environment

and new sound types. This limitation can be mitigated using on-line training

techniques.

• It is evident that as the number of audio classes that the audio recognition ap-

plication has to recognize increases, the efficiency and accuracy of the application

decreases. This is because the more audio classes the application needs to recog-

nize, the longer time it takes to train and classify. Also, as more similar audio

classes are trained in the application, the difference between these audio classes

will be too fine to allow a distinction, meaning that accuracy will decrease. In

order to combat this decrease in efficiency as the number of audio class types in-

crease, an environmental sound taxonomy, which classifies sounds on several levels

before recognition, can be developed. The advantage of this approach is that each

classification level contains a smaller set of audio classes, increasing the accuracy

and efficiency of the audio classification.

Bibliography

[1] Woo-Hyun Choi, Seung-Il Kim, Min-Seok Keum, David K Han, and Hanseok Ko.

Acoustic and visual signal based context awareness system for mobile application.

Consumer Electronics, IEEE Transactions on, 57(2):738–746, 2011.

[2] Dan Smith, Ling Ma, and Nick Ryan. Acoustic environment as an indicator of

social and physical context. Personal and Ubiquitous Computing, 10(4):241–254,

2006.

[3] Waltenegus Dargie. Adaptive audio-based context recognition. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 39(4):715–725,

2009.

[4] Antti J Eronen, Vesa T Peltonen, Juha T Tuomi, Anssi P Klapuri, Seppo Fagerlund,

Timo Sorsa, Gaëtan Lorho, and Jyri Huopaniemi. Audio-based context recognition.

Audio, Speech, and Language Processing, IEEE Transactions on, 14(1):321–329,

2006.

[5] Ling Ma, Ben Milner, and Dan Smith. Acoustic environment classification. ACM

Transactions on Speech and Language Processing (TSLP), 3(2):1–22, 2006.

[6] Waltenegus Dargie and Tobias Tersch. of complex settings by aggregating atomic

scenes. 2008.

[7] Selina Chu, Shrikanth Narayanan, C-CJ Kuo, and Maja J Mataric. Where am i?

scene recognition for mobile robots using audio features. In Multimedia and Expo,

2006 IEEE International Conference on, pages 885–888. IEEE, 2006.

[8] Jie Huang. Spatial auditory processing for a hearing robot. InMultimedia and Expo,

2002. ICME’02. Proceedings. 2002 IEEE International Conference on, volume 2,

pages 253–256. IEEE, 2002.

87

Bibliography 88

[9] Chloé Clavel, Thibaut Ehrette, and Gaël Richard. Events detection for an audio-

based surveillance system. In Multimedia and Expo, 2005. ICME 2005. IEEE In-

ternational Conference on, pages 1306–1309. IEEE, 2005.

[10] Joaqúın Gonzalez-Rodriguez, Julian Fiérrez-Aguilar, and Javier Ortega-Garcia.

Forensic identification reporting using automatic speaker recognition systems. In

Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). 2003

IEEE International Conference on, volume 2, pages II–93. IEEE, 2003.

[11] Rong Dong, David Hermann, Etienne Cornu, and Edward Chau. Low-power imple-

mentation of an hmm-based sound environment classification algorithm for hearing

aid application. In Proc. EUSIPCO, 2007.

[12] Jianfeng Chen, Alvin Harvey Kam, Jianmin Zhang, Ning Liu, and Louis Shue.

Bathroom activity monitoring based on sound. In Pervasive Computing, pages

47–61. Springer, 2005.

[13] Michel Vacher, François Portet, Anthony Fleury, and Norbert Noury. Challenges in

the processing of audio channels for ambient assisted living. In e-Health Networking

Applications and Services (Healthcom), 2010 12th IEEE International Conference

on, pages 330–337. IEEE, 2010.

[14] Jia-Ching Wang, Hsiao-Ping Lee, Jhing-Fa Wang, and Cai-Bei Lin. Robust envi-

ronmental sound recognition for home automation. Automation Science and Engi-

neering, IEEE Transactions on, 5(1):25–31, 2008.

[15] Tampere University of Technology Audio Research Team. Audio research. 2014.

URL http://arg.cs.tut.fi/research/environmental-audio.

[16] Douglas Preis and Voula Chris Georgopoulos. Wigner distribution representation

and analysis of audio signals: An illustrated tutorial review. Journal of the Audio

Engineering Society, 47(12):1043–1053, 1999.

[17] Stephen J Preece, John Y Goulermas, Laurence PJ Kenney, Dave Howard, Ken-

neth Meijer, and Robin Crompton. Activity identification using body-mounted

sensors—a review of classification techniques. Physiological measurement, 30(4):

R1, 2009.

Bibliography 89

[18] Tâm Huynh and Bernt Schiele. Analyzing features for activity recognition. In

Proceedings of the 2005 joint conference on Smart objects and ambient intelligence:

innovative context-aware services: usages and technologies, pages 159–163. ACM,

2005.

[19] Ling Bao and Stephen S Intille. Activity recognition from user-annotated acceler-

ation data. In Pervasive computing, pages 1–17. Springer, 2004.

[20] Stephen J Preece, John Yannis Goulermas, Laurence PJ Kenney, and David

Howard. A comparison of feature extraction methods for the classification of dy-

namic activities from accelerometer data. Biomedical Engineering, IEEE Transac-

tions on, 56(3):871–879, 2009.

[21] Tae Hong Park. Introduction to digital signal processing: Computer musically speak-

ing. World Scientific, 2010.

[22] Khaled El-Maleh, Mark Klein, Grace Petrucci, and Peter Kabal. Speech/music

discrimination for multimedia applications. In Acoustics, Speech, and Signal Pro-

cessing, 2000. ICASSP’00. Proceedings. 2000 IEEE International Conference on,

volume 6, pages 2445–2448. IEEE, 2000.

[23] Tong Zhang and C-CJ Kuo. Audio content analysis for online audiovisual data

segmentation and classification. Speech and Audio Processing, IEEE Transactions

on, 9(4):441–457, 2001.

[24] Dongge Li, Ishwar K Sethi, Nevenka Dimitrova, and Tom McGee. Classification

of general audio data for content-based retrieval. Pattern recognition letters, 22(5):

533–544, 2001.

[25] Lie Lu, Hong-Jiang Zhang, and Hao Jiang. Content analysis for audio classification

and segmentation. Speech and Audio Processing, IEEE Transactions on, 10(7):

504–516, 2002.

[26] Costas Panagiotakis and Georgios Tziritas. A speech/music discriminator based on

rms and zero-crossings. Multimedia, IEEE Transactions on, 7(1):155–166, 2005.

[27] Hong Lu, Wei Pan, Nicholas D Lane, Tanzeem Choudhury, and Andrew T Camp-

bell. Soundsense: scalable sound sensing for people-centric applications on mobile

Bibliography 90

phones. In Proceedings of the 7th international conference on Mobile systems, ap-

plications, and services, pages 165–178. ACM, 2009.

[28] José M Mart́ınez, Rob Koenen, and Fernando Pereira. Mpeg-7: the generic multi-

media content description standard, part 1. MultiMedia, IEEE, 9(2):78–87, 2002.

[29] William A Sethares, Robin D Morris, and James C Sethares. Beat tracking of

musical performances using low-level audio features. Speech and Audio Processing,

IEEE Transactions on, 13(2):275–285, 2005.

[30] André Gustavo Adami and Dante Augusto Couto Barone. A speaker identifica-

tion system using a model of artificial neural networks for an elevator application.

Information Sciences, 138(1):1–5, 2001.

[31] Tobias Andersson. Audio classification and content description. Lulea University

of Technology, Multimedia Technology, Ericsson Research, Corporate unit, Lulea,

Sweden, 2004.

[32] Spectral roll off. 2014. URL http://sovarr.c4dm.eecs.qmul.ac.uk/wiki/

Spectral_Rolloff.

[33] Vesa Peltonen, Juha Tuomi, Anssi Klapuri, Jyri Huopaniemi, and Timo Sorsa. Com-

putational auditory scene recognition. In Acoustics, Speech, and Signal Processing

(ICASSP), 2002 IEEE International Conference on, volume 2, pages II–1941. IEEE,

2002.

[34] Hemant Misra, Shajith Ikbal, Hervé Bourlard, and Hynek Hermansky. Spectral

entropy based feature for robust asr. In Acoustics, Speech, and Signal Process-

ing, 2004. Proceedings.(ICASSP’04). IEEE International Conference on, volume 1,

pages I–193. IEEE, 2004.

[35] Christopher M Bishop et al. Pattern recognition and machine learning, volume 1.

springer New York, 2006.

[36] A. Moore. Statistical data mining tutorial on gaussian mixture models. 2014. URL

http://www.autonlab.org/tutorials/gmm.html.

[37] Christopher JC Burges. A tutorial on support vector machines for pattern recog-

nition. Data mining and knowledge discovery, 2(2):121–167, 1998.

Bibliography 91

[38] Algorithms dynamic time warping. 2014. URL http://www.psb.ugent.be/cbd/

papers/gentxwarper/DTWalgorithm.htm.

[39] Sergios Theodoridis, Aggelos Pikrakis, Konstantinos Koutroumbas, and Dionisis

Cavouras. Introduction to Pattern Recognition: A Matlab Approach: A Matlab

Approach. Academic Press, 2010.

[40] Kazuo Hattori and Masahito Takahashi. A new edited k-nearest neighbor rule in

the pattern classification problem. Pattern Recognition, 33(3):521–528, 2000.

[41] Hanan Samet. K-nearest neighbor finding using maxnearestdist. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 30(2):243–252, 2008.

[42] Aslı Apaydın. GMM Based Environmental Sound Recognition Using MFCC and

MPEG-7 Audio Low-Level Descriptions. PhD thesis, Eastern Mediterranean Uni-

versity, 2010.

[43] Ling Xing, Min Zhu, and Jinjun Hu. A multi-semantic audio classification method

based on tensor space. Journal of Information and Com-putational Science, 9(4):

969–975, 2012.

[44] S SELVA NIDHYANANTHAN and R SHANTHA SELVA KUMARI. Language and

text-independent speaker identification system using gmm. Wseas Trans. Signal

Process, 4:185–194, 2013.

[45] DA Reynolds. Gaussian mixture models. encyclopedia of biometric recognition,

2008.

[46] Marcelo N Kapp, Robert Sabourin, and Patrick Maupin. A dynamic model selection

strategy for support vector machine classifiers. Applied Soft Computing, 12(8):2550–

2565, 2012.

[47] Himani Bhavsar and Mahesh H Panchal. A review on support vector machine

for data classification. International Journal of Advanced Research in Computer

Engineering & Technology, 1(10), 2012.

[48] C Lim and J-H Chang. Enhancing support vector machine-based speech/music clas-

sification using conditional maximum a posteriori criterion. IET signal processing,

6(4):335–340, 2012.

Bibliography 92

[49] Johannes Fürnkranz. Round robin classification. The Journal of Machine Learning

Research, 2:721–747, 2002.

[50] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. The

Journal of Machine Learning Research, 5:101–141, 2004.

[51] Johannes Fürnkranz. Round robin classification. The Journal of Machine Learning

Research, 2:721–747, 2002.

[52] Miin-Shen Yang, Chien-Yo Lai, and Chih-Ying Lin. A robust em clustering algo-

rithm for gaussian mixture models. Pattern Recognition, 45(11):3950–3961, 2012.

[53] Thiruvengatanadhan Ramalingam and P Dhanalakshmi. Speech/music classifica-

tion using wavelet based feature extraction techniques. Journal of Computer Sci-

ence, 10(1):34, 2013.

[54] Manish P Kesarkar. Feature extraction for speech recognition. In Tech. Credit

Seminar Report, Electronic Systems Group, EE. Dept, IIT Bombay, 2003.

[55] Mark Briers, Arnaud Doucet, and Simon Maskell. Smoothing algorithms for state–

space models. Annals of the Institute of Statistical Mathematics, 62(1):61–89, 2010.

[56] Mykola Pechenizkiy. The impact of feature extraction on the performance of a

classifier: knn, näıve bayes and c4. 5. In Advances in Artificial Intelligence, pages

268–279. Springer, 2005.

[57] Huan Liu and Hiroshi Motoda. Feature extraction, construction and selection: A

data mining perspective. Springer, 1998.

[58] MN Nyan, Francis EH Tay, AWY Tan, and KHW Seah. Distinguishing fall activ-

ities from normal activities by angular rate characteristics and high-speed camera

characterization. Medical engineering & physics, 28(8):842–849, 2006.

[59] Uwe Maurer, Anthony Rowe, Asim Smailagic, and Daniel Siewiorek. Location

and activity recognition using ewatch: A wearable sensor platform. In Ambient

Intelligence in Everyday Life, pages 86–102. Springer, 2006.

[60] Susanna Pirttikangas, Kaori Fujinami, and Tatsuo Nakajima. Feature selection

and activity recognition from wearable sensors. In Ubiquitous Computing Systems,

pages 516–527. Springer, 2006.

Bibliography 93

[61] William M Fisher, George R Doddington, and Kathleen M Goudie-Marshall. The

darpa speech recognition research database: specifications and status. In Proc.

DARPA Workshop on speech recognition, pages 93–99, 1986.

[62] Android Developers. Profiling with traceview and dmtracedump. 2014. URL http:

//developer.android.com/tools/debugging/debugging-tracing.html.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 General Challenges of Environmental Audio Classification and Recognition
	1.2 Smartphone Specific Challenges
	1.3 Thesis Objectives
	1.4 Methodology

	2 Background and Principles Used
	2.1 Digital Audio Analysis
	2.1.1 Short-Time Fourier Transform
	2.1.2 Commonly Used Windows
	2.1.3 Selection of windowing parameters

	3 Audio Features
	3.1 Requirements for Audio Features Selection
	3.2 Audio Physical Features
	3.2.1 Temporal Features
	3.2.2 Audio Spectral Features

	4 Audio Classifiers
	4.1 Requirements for Audio Classifier Selection
	4.2 Popular classifiers
	4.2.1 The k-Nearest Neighbor Classifier (k-NN)
	4.2.2 Gaussian Mixture Model (GMM)
	4.2.3 Support Vector Machine (SVM)

	5 Audio Classification and Event Detection Design Procedures
	5.1 Audio Capturing
	5.2 Pre-processing
	5.2.1 Normalization
	5.2.2 Pre-emphasis
	5.2.3 Framing
	5.2.4 Windowing

	5.3 Feature Extraction
	5.3.1 Feature Normalization
	5.3.2 Composition of Feature Vectors
	5.3.3 Short-Term and Mid-Term Processing

	5.4 Audio Classification and Detection
	5.5 Post-processing
	5.6 Audio Features Dimension Reduction
	5.6.1 Sequential Forward Search (SFS)

	6 Off-line Audio Classification and Event Detection
	6.1 Simulation Setup
	6.1.1 Datasets

	6.2 Performance Evaluation Metrics and Methods of Audio Classifiers
	6.2.1 Performance Measures
	6.2.2 Validation Methods

	6.3 Performance Evaluation Results
	6.3.1 Performance of k-NN Classifier
	6.3.2 Performance of SVM Classifier
	6.3.3 Performance of GMM Classifier
	6.3.4 Comparison of Classifiers' Performance

	6.4 Parameter Selection
	6.5 Feature Selection and Dimensionality reduction
	6.6 Summary: on k-NN Performance

	7 On-line Audio Classification and Recognition
	7.1 The On-line Audio Recognition Application
	7.2 Performance of On-line Audio Recognition
	7.2.1 Computational speed
	7.2.2 Recognition accuracy
	7.2.3 Memory usage

	8 Conclusion and Future Works
	Bibliography

