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Abstract

Creating low cost networks that satisfy certain connectivity requirements
is one of the main concerns within network design. Examples of this problem
include VLSI design, vehicle routing and communication networks. This
thesis describes two approximation algorithms for creating a low weight k-
edge-connected d-regular subgraph under the assumption that edge weights
satisfy the triangle inequality. These algorithms increase the connectivity of
a d-regular graph until it is a k-edge-connected graph, without changing the
degree of any vertex.
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Chapter 1

Introduction

1.1 Motivation

Creating a low cost network that satisfies some connectivity requirement is
one of the main concerns within network design. Examples of this problem
include VLSI design, vehicle routing and communication networks. These
network design problems can easily be translated to graphs. For instance, in
transportation networks one can make a complete graph where the various
locations of interest are vertices and where weights on edges indicate the
cost of connecting and maintaining a connection between two locations (e.g.
the cost of maintaining certain roads). A common requirement is that the
graph must be connected. However for some networks higher connectivity
requirements need to be met, such that when a few connections break down
the network can still function. An example of such systems is the telephone
system where emergency numbers should be reachable at all times. For
telecommunications networks, an important requirement is the resilience to
link failures [15].

The practice of creating networks that satisfy stricter connectivity re-
quirements is called survivable network design. Survivable network design
is of importance when designing systems for which a lack of connectivity
between parts of the network might be catastrophic. The goal of the sur-
vivable network problem is to find a graph that provides multiple routes
between pairs of vertices. The connectivity between vertices is commonly
defined using either edge-disjoint paths or vertex-disjoint paths. It is also
possible but less common to consider a combination of these (note though
that the number of vertex-disjoint paths is always at least as high as the
number of edge-disjoint-paths). Research indicates that for telephone net-
works 2-connected topologies provide a high amount of survivability in a cost
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effective manner [7].
More formally the survivable network design problem for edge connectiv-

ity can be stated as follows:

Deterministic survivable network design problem (NDP)

Input: An undirected graph G = (V,E), edge costs we, and a |V | × |V |
matrix r defining the edge connectivity requirements.
Output: A minimum cost set of edges E ′ ⊆ E such that for all i, j with
i 6= j, there exist at least rij edge disjoint path between vertices i and
j.

For vertex connectivity the problem is analogously:

Deterministic survivable network design problem (vertex
connectivity case) (NDP)

Input: An undirected graph G = (V,E), edge costs we, and a |V | × |V |
matrix r defining the vertex connectivity requirements.
Output: A minimum cost set of edges E ′ ⊆ E such that for all i, j with
i 6= j, there exist at least rij vertex disjoint path between vertices i and
j.

In some cases it is also useful to add limits on the degree of vertices (the
amount of direct connections to a single node in the network) or even fixing
them. Upper bounds can be useful when vertices can only handle a certain
amount of connections. For example, in applications of network design prob-
lems to multicasting, the degree constraint on a switch corresponds to the
maximum number of multicast copies it can make in the network. Fixing
the degree specification completely can also be useful though. For instance
adding the specific degree specification that all vertices have a degree of 2
leads to the well known traveling salesman problem (TSP).

Traveling salesman problem (TSP)

input: An undirected graph G = (V,E), edge costs we.
Output: A minimum weight Hamiltonian cycle ofG. Note that a Hamil-
tonian cycle is a connected spanning subgraph where every vertex has
a degree of 2.

In the Traveling Salesman Problem the original example application is
that of a traveling salesman wanting to find the shortest possible route that
visits each city he needs to travel too exactly once, while also returning to
the city he started he came from. In this case the set of vertices is a list of
cities and the edge costs are the distances between each pair of cities. The
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Traveling Salesman Problem has many other applications, examples of which
are designing the route a guard should follow and designing the most efficient
ring topology that connects hundreds of computers.

Allowing one specific vertex to have a degree 2m while fixing the rest
at degree two gives the vehicle routing problem with m vehicles, which is a
generalization of TSP.

Vehicle routing problem with m vehicles (m-VRP)

input: An undirected graph G = (V,E), edge costs we, a starting vertex
vd and a number m.
Output: A minimum weight set of m cycles of G. These cycles are
disjoint with the exception that they all include vertex vd, and every
vertex in G is contained in at least one of these m cycles.

The most commonly mentioned application of the vehicle routing problem
is designing a set of m least-cost vehicle routes in such a way that every city
is visited exactly once by exactly one vehicle and all vehicle routes start and
end at a specific vertex (vd). This specific vertex is often called the depot.

1.2 Notation and Definitions

In this section we introduce some notation and definitions that we use through-
out this document.

1.2.1 Graph Theory

A graph is a representation of a set of objects where some pairs of objects are
connected by links. The objects are represented by mathematical abstrac-
tions called vertices, and the links are called edges. A graph is commonly
depicted as a set of dots for the vertices, joined by lines or curves for the
edges. Figure 1.2.1 depicts some example graphs. A simple graph is an undi-
rected graph that does not contain loops (edges connected at both ends to the
same vertex) and for any pair of vertices u and v it does not contain multiple
edges from u to v. A simple graph is commonly defined as an ordered pair
G = (V,E), where V is the set of vertices and E is the set of edges. An edge
is often described as a pair of vertices. Thus if an edge e connects the vertices
u and v it can be written as e := (u, v) (depending on the writer edges may
instead be defined as {u, v} or simply uv). Note that in undirected graphs
for any edge (u, v) ∈ E we will always have that (u, v) = (v, u). A graph is
finite if both the set of vertices and the set of edges are finite. In this case
|V | denotes the number of vertices and |E| denotes the number of edges. A
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Figure 1.1: Example graphs: graph G1 is on the left, while graph G2 is on
the right)

multigraph is a graph that does not contain loops, where it is possible for
pairs of vertices u and v to have multiple edges from u to v. Note though
that some authors also allow multigraphs to have loops, while others use the
term pseudograph to describe multigraphs that are allowed to contain loops.
Throughout this document we assume that all graphs are simple and finite
unless mentioned otherwise.

In graph G1 of figure 1.2.1 edge e6 is a loop as it connects v4 to itself.
Also edges e4 and e5 both connect v2 to v4. Graph G2 on the contrary does
not contain loops and does not contain multiple edges connecting the same
vertices. Therefore G2 is a simple graph, while G1 is not. Both graphs are
finite graphs as both the set of vertices and the set of edges are finite. Any of
the edges can be written as (u, v) with u and v specific vertices. For instance
in graph G1 the edge e1 can be written as (v1, v2) and the edge e6 can be
written as (v6, v6). As long as a graph is simple, no confusion can arise over
which edge is meant. Though as can be seen in the pseudograph G1 (which
as already mentioned is not a simple graph), both edges e4 and e5 can be
written as (v2, v4).

Two edges of a graph are called adjacent if they share a common vertex.
Similarly, two vertices are called adjacent if they share a common edge. When
u is adjacent to v, the vertex u is called a neighbour of v. An edge e is incident
to a vertex v when that edge connects vertex u to some other vertex v. The
degree of a vertex is defined as the number of edges that are incident to that
vertex. We denote the degree of a vertex v in G by d(v;G). Note that we
will drop the argument G when no confusion can arise as to which graph is
referred. If you add the degrees of every vertex of a graph and divide by
2, you will attain the number of edges. Thus |E| =

∑

v∈V d(v)/2. For this
reason the sum of the degrees must always be even. A graph is a regular
graph if all vertices on that graph have the same degree. A graph where all
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Figure 1.2: two edge disjoint paths that are not vertex disjoint)

vertices have a degree of k is called a k-regular graph. For v ∈ V let N(v;G)
be the set of vertices adjacent to v in G.

In graph G1 edge e1 is adjacent to edge e2, as they both have the vertex
v1 in common. The edge e1 is incident to both v1 and v2. Thus vertex v1 is
adjacent to v2. The degree of vertex v1 is 2, as v1 is incident to the two edges
e1 and e2. Thus d(v1) = 2. Similarly d(v2) = 4, d(v3) = 2 and d(v4) = 4.
Graph G2 is a 3-regular graph, as all vertices of G2 have a degree of 3.

A path in a graph is a finite or infinite sequence of edges which connect a
sequence of vertices. A simple path is a path which does not repeat vertices.
For example, two possible (simple) paths from v2 to v3 in G1 are {e3} {e1, e2}.
Two paths are (internally) vertex-disjoint (alternatively, vertex-independent)
if they do not have any internal vertex in common. Similarly, two paths are
edge-disjoint (or edge-independent) if they do not have any edge in common.

Lemma 1.1. Two internally vertex-disjoint paths are edge-disjoint, but the
converse is not necessarily true.

Proof. Let P1 and P2 be internally vertex-disjoint paths in a graph G. As-
sume to the contrary that they are not edge disjoint. Then we must have that
they both contain the same edge (u, v). However this means that both paths
must contain vertices u and v. For P1 and P2 to be internally vertex-disjoint
we must have that u and v are both endpoints of P1 and P2. However as
G is a simple graph (remember that we assume all graphs are simple unless
stated otherwise), it then follows that P1 = P2 and thus that P1 and P2 are
not edge disjoint.

For the converse note that figure 1.2.1 contains a counterexample where
the blue and the red edges are two edge-disjoint paths from v1 to v2, but
they are not internally vertex-disjoint as they both contain the same internal
vertex v4.

A circuit is a list of vertices starting and ending with the same vertex,
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where each two consecutive vertices in the sequence are adjacent to each
other in the graph. A circuit can also be defined as a path that starts and
ends at the same vertex. A cycle is a circuit where no repetitions of vertices
is allowed, other than the necessity of the starting vertex being the same as
the ending vertex. A cycle can also be described by its set of edges, instead
of a sequence of vertices. In graph G1 an example of a cycle is {v1, v2, v3, v1},
or equivalently {e1, e2, e3}.

Two vertices u and v are connected in a graphG, ifG contains a path from
u to v. If u and v are not connected in G they are called disconnected. We
define a graph G to be connected if all vertex pairs within G are connected.
An edge cut C is a group of edges whose removal disconnects the graph.
Thus a set of edges C ⊆ E is an edge cut if the graph G′ = (V,E \ C) is
disconnected. We call C ⊆ E a k-edge cut if C is an edge cut and |C| = k.

For X, Y ⊆ V denote by Cut(X, Y ;G) the set of edges of G with one end-
point in X \Y and one endpoint in Y \X. Let d(X, Y ;G) := |Cut(X, Y ;G)|.
Also, for X ⊆ V define Cut(X;G) := Cut(X, V \ X;G) and d(X;G) :=
|Cut(X;G)|. Note that the definition of the function d(X, Y ;G) here does
not conflict with the degree function d(v;G) defined on vertices, and can be
seen as a generalization of it. This is because d({v};G) = d({v}, V \{v};G) =
|Cut({v}, V \ {v};G)| is the number of edges from v to the all other vertices
in G, which is just the degree of v. Thus we have d({v};G) = d(v;G) and
we can use these notations interchangeably.

The edge connectivity of a graph G, for which we will use the notation
λ(G) ∈ R, is the size of the smallest edge cut in G. We denote by λ(u, v;G)
the local edge-connectivity of two vertices u, v in a graph G, which is the
size of a smallest edge cut disconnecting u from v. Menger’s theorem allows
us to give an alternative interpretation to local edge-connectivity in terms of
edge-independent paths rather than edge cuts: Let x and y be two distinct
vertices. The size of the minimum edge cut disconnecting x and y is equal
to the maximum number of pairwise edge-independent paths from x to y.
Note that local k-edge-connectivity is a relation between vertices. It is in
fact an equivalence relation as we prove in Lemma 1.2. Let k ∈ Z, a graph
G is called k-edge-connected if the edge connectivity of the graph is at least
k, thus if λ(G) ≥ k.

Lemma 1.2. Local k-edge-connectivity an equivalence relation.

Proof. To prove a relationship is an equivalence relation we need to prove it
is reflexive, symmetric and transitive. Note that local edge-connectivity is
reflexive as no edge cut can disconnect a vertex v from itself. As our graph is
undirected, we automatically have that local edge-connectivity is symmetric.
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For transitivity, we need that when λ(u, v) ≥ k and λ(v, w) ≥ k, we will
also have λ(u, w) ≥ k. Take an arbitrary set of k − 1 edges C ( E. As
λ(u, v) ≥ k, u and v are still connected in G−C (by Menger’s theorem there
are at least k edge disjoint paths from u to v (at least one of these paths still
exists after removing the edges in C from the graph G)). The same holds
for v and w. Clearly u and w are then also still connected in G − C. As C
was arbitrary we see there exists no k − 1 edge cut that disconnects u from
w. Thus λ(u, w) ≥ k.

A subgraph G′ = (V ′, E ′) of a graph G = (V,G) is a graph such that
V ′ ⊆ V , E ′ ⊆ E and E ′ contains no edges incident to vertices in V \ V ′. A
subgraph G′ is a spanning subgraph of G if G has the same vertex set as G.
A subgraph G′ of a graph G is said to be an induced subgraph if, for any pair
of vertices u, v ∈ G′, the edge (x, y) is contained in G′ if and only if (x, y)
is contained in G. Thus an induced subgraph of a graph G has exactly the
edges as G over its vertex set, where its vertex set is a subset of G. When
an induced subgraph G′ = (V ′, E ′) of G is k-edge-connected we call G′ a
k-edge-connected component.

Let X ⊆ V be a nonempty set of vertices. We call X(G) ⊆ V a locally
k-edge-connected component of G if for every two vertices u, v ∈ X(G) we
have that λ(u, v;G) ≥ k. Clearly, if X is a k-edge-connected component it
is also a locally k-edge-connected component. Though the reverse does not
hold in general.

The definitions for vertex connectivity are similar to those of edge con-
nectivity, except that they work with vertex cuts rather than edge cuts. A
vertex cut C is a group of vertices whose removal disconnects the graph.
Letting E(C) be the sets of edges incident to the vertices C, we have that a
set of vertices C ⊆ V is an vertex cut if the graph G′ = (V \C,E \E(C)) is
disconnected. Or equivalently a set of vertices C ⊆ V is an vertex cut if the
graph induced by V \ C is disconnected. We call C ⊆ E a k-vertex cut if C
is an vertex cut and |C| = k.

The vertex connectivity of a graph G, for which we will use the notation
κ(G) ∈ R, is the size of the smallest vertex cut in G. We denote by κ(u, v;G)
the local vertex-connectivity of two vertices u, v in a graph G, which is the
size of a smallest vertex cut disconnecting u from v. Let k ∈ Z, a graph
G is called k-vertex-connected if the vertex connectivity of the graph is at
least k, thus if κ(G) ≥ k. A complete graph is a graph such that every
vertex u ∈ G is adjacent to every other vertex v ∈ G. Graph G2 is an
example of a compete graph. Note that a complete graph has no vertex cuts
at all, but by convention its vertex connectivity is defined to be |V | − 1.
When an induced subgraph G′ = (V ′, E ′) of G is k-vertex-connected, we
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call G′ a k-vertex-connected component. Let X ⊆ V be a nonempty set of
vertices. We call X(G) ⊆ V a locally k-vertex-connected component of G if
for every two vertices u, v ∈ X(G) we have that κ(u, v;G) ≥ k. Clearly if
X is a k-vertex-connected component it is also an locally k-vertex-connected
component, although the reverse does not hold in general. There is also a
Menger’s theorem for local vertex connectivity, which states that the size
of the minimum vertex cut disconnecting x and y (the minimum number of
vertices whose removal disconnects x and y) is equal to the maximum number
of pairwise vertex-independent paths from x to y.

A tree is a graph that is connected and contains no cycles. There are
alternative definition of a tree that can be proven to be equivalent. For
instance a tree is a graph that contains no cycles where a cycle is formed if
any edge is added to the graph, or a tree is a connected graph that is not
connected if any single edge is removed from the tree. For finite graphs trees
can also be defined as connected graph with |V |−1 edges, or as a graph that
does not contain cycles and has |V | − 1 edges.

A Hamiltonian cycle is a cycle that visits every vertex exactly once. A
graph is Hamiltonian if it contains a Hamiltonian cycle. GraphG2 is Hamilto-
nian, because it contains (amongst others) the Hamiltonian cycle e1, e2, e6, e5.
An Eulerian circuit is a circuit that contains every edge of the graph exactly
once. An Eulerian graph is a graph that contains a Eulerian circuit

A matching is a set of edges with no common vertices. A perfect matching
is a matching which matches all vertices of the graph. For example in graph
G2 a perfect matching is {e2, e5}.

Let b = (bv : v ∈ V ) be a vector containing positive integers. A b-
matching is a graph such that every vertex v has a degree of at most b(v).
A perfect b-matching is a graph that satisfies the requirements that every
vertex v ∈ V has a degree equal to b(v). Note that if b(v) = 1 for all vertices
v, then a b-matching is a matching, and thus a b-matching can be seen as a
generalization of a matching. For some choices of the vector b there may not
exists a perfect b-matching because the problem is infeasible. However is is
possible to decide whether this is the case by checking a few easy to check
conditions. Lemma 1.3 and its proof state exactly which conditions need to
hold.

Lemma 1.3 (Proof from Takuro Fukunaga and Hiroshi Nagamochi [6]). Let
V be a vertex set with |V | ≥ 2 and b : V → Z+ be a degree specification.
Then there exists a perfect b-matching if and only if

∑

v∈V b(v) is even and
b(v) ≤

∑

u∈(V \{v}) b(u) for each v ∈ V .

Proof. The necessity is trivial. We show the sufficiency by constructing a
perfect b-matching. We let V = {v1, . . . , vn} and B =

∑n

l=1 b(vl)/2. For
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j = 1, . . . , B, we define ij as the minimum integer such that
∑ij

l=1 b(vl) ≥ j,

and i′j as the minimum integer such that
∑i′j

l=1 b(vl) ≥ B + j. Notice that
∑ij−1

l=1 b(vl) < j holds by definition if ij ≥ 2. Then we can see that ij 6= i′j
since otherwise we would have b(vij) =

∑ij
l=1 b(vl)−

∑ij−1
l=1 b(vl) > (B+j)−j =

B if ij ≥ 2 and b(vij) ≥ B + j > B otherwise, which contradicts to the
assumption.

Let M = {ej = vijvi′j |j = 1, . . . , B}. Then M contains no loop by ij 6= i′j.

Moreover GM is a perfect b-matching since |{j|ij = l or i′j = l}| = b(vi), as
required.

In this thesis the problem of finding a minimum cost perfect b-matching
is of importance.

Minimum cost perfect b-matching

Input: An undirected graph G = (V,E), edge costs we, and a vector
b = (bv : v ∈ V ) defining the degree requirements.
Output: A a minimum cost set of edges E ′ ⊆ E such that for all vertices
v, d(v) = b(v)

We call a vertex set X a k-special component in G if X is a locally k-
edge-connected component satisfying d(X) ≤ k − 1. Note that each vertex
with a degree lower than k is trivially a k-special-component.

1.2.2 Metrics

A metric or distance function is a function that defines a distance between
elements of a set. If a metric is defined on a set X it must be a function w
of the form w : X ×X → R. Such a function w(x, y) is a metric on a set X,
if is satisfies the following conditions for all x, y, z ∈ X:

• w(x, y) ≥ 0 (non-negativity, or separation axiom),

• w(x, y) = 0 if and only if x = y (identity of indiscernibles, or coinci-
dence axiom),

• w(x, y) = w(y, x) (symmetry),

• w(x, z) ≤ w(x, y) + d(y, z) (subadditivity / triangle inequality).
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1.3 Approximation Algorithms

For mathematical problems an instance of a problem is a possible input of
that problem. For example, for many graph problems an instance of the
problem is a specific graph. The set of solutions to a problem is the set of all
possible outputs the algorithm may generate. The abstract problem can be
seen as the relation that associates an instance of the problem to the correct
answer.

Many real-world optimization problem are challenging from a computa-
tional standpoint. Large instances of a problem may not be solvable due
to the amount of computation that would be needed to find the optimal
solution.

An approximation algorithm is an algorithm that runs in polynomial
time and finds a solution of provable quality in that its solution is at most a
constant factor m larger than that of the optimal solution. Approximation
algorithms are commonly used for problems that are NP -hard because, un-
less P = NP , it is impossible to find a deterministic algorithm that always
finds the optimal solution of the instance in polynomial running time. They
are also being used for problems where polynomial running time algorithms
that solve the problem optimally are known, but where the running time of
these algorithms is too slow for the problems at hand. The approximation
ratio of such an algorithm is the bound on how much worse the algorithm’s
solution is compared to the optimal solution in the worst case.

An approximation algorithm with an approximation ratio m finds a so-
lution to any instance the problem, such that the cost of the solution is at
most m · w(OPT ), where OPT is the optimal solution of that instance and
w(OPT ) be the cost of this solution.

Such an algorithm is also called an m-approximation algorithm. The
smaller the approximation ratio, the better the algorithm is at guaranteeing
a low cost solution to the problem. For instance when an algorithm has an
approximation ratio of 2, the solution to an instance can be at worst twice
as expensive compared to the optimal, but when the approximation ratio is
1.05 the solution can be at most 1.05 times as large.

1.4 Problem Statement

As already mentioned, there are many real world applications to finding a
low weight subgraph satisfying connectivity requirements and possibly some
degree requirements. The connectivity requirements are commonly stated
in term of edge connectivity or vertex connectivity. Between each pair of
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vertices {u, v}, a prescribed value r(u, v) is then given for the needed edge-
connectivity (or vertex connectivity). The higher the value r(u, v), the more
important it is that vertex u stays connected to vertex v. Rather than spec-
ifying a value r(u, v) for each edge (u, v), it may be sufficient to specify a
value r(u) for each vertex u. In this case r(u) is a measure of how important
it is to have the vertex u stay connected to the rest of the graph, and u
should stay connected to the rest of the graph if less than r(u) edges are
deleted. Some vertices can be considered more important that others and
will thus have a higher value for r(u). For instance in a electricity system
it is more important that a power plant stays connected than that a single
home stays connected to the grid. When every vertex is considered of equal
importance regarding connectivity, these connectivity requirements simplify
to r(u) = k for some integer k. In this case the problem becomes finding an
k-edge-connected or k-vertex-connected graph. Note that the case of hav-
ing connectivity requirements defined on vertices is a special case of the one
where we define connectivity requirements for each edge. To see this, note
that we can write r(u, v) = max(r(u), r(v)) for all vertices u and v.

When assigning degree constraints the most commonly used constraints
either completely fix the degrees of the vertices or bound them from above.
These constraints are most commonly used as they tend to arise in various
real world problems. As already mentioned, upper bounds are useful when
vertices can only handle a certain amount of connections. Fixing the degree
specification completely on the other hand can be useful as it can ensure
creating a network with a specific structure, such as a ring topology for
computer networks.

In recent years, much effort has been put into designing approximation
algorithms for network design problems with additional degree constraints.
Most of these network design problems are generalizations of TSP. TSP is
an NP -hard problem and the problem remains NP -hard even for the case
where the vertices are in a plane with Euclidean distances [18]. Removing
the condition of letting each vertex have a degree of exactly 2 and allowing
higher degrees does not remove the NP-hardness of TSP, as it is easily seen
that in the planar case there is an optimal tour that visits each vertex only
once (should a vertex be visited more than once, we can take a shortcut that
skips a repeated visit without increasing the tour length). Unless P=NP, NP-
hard problems have an execution time that is not limited by a polynomial
in the input size. For this reason, as soon as larger instances of an NP-
hard problem arise it is often impractical to find optimal solutions to these
instances. However there are techniques that tend to give substantially faster
algorithms, usually at the expense of not necessarily finding the optimal
solution or by placing restrictions on the input. These techniques include
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the following:

• Restriction: When restricting the structure of the input (e.g., requiring
distances to be metric), it may be possible to find faster algorithms.

• Parameterization: At times there are fast algorithms when certain pa-
rameters of the input are fixed. Many problems have the following
form: given an object x and an integer k, does x have some property
that depends on k? For instance, when requiring a d-regular k-edge-
connected graph, the parameter can be the either the number d or the
number k. For some applications the parameter k may be small com-
pared to the total input size. For such applications it is useful to have
an algorithm whose computation time is exponential only in k.

• Randomized algorithms: Use randomness to get a faster average run-
ning time. Generally randomization algorithms attempt to give a
good performance in the average case over all possible choices of ran-
dom input. These algorithms are commonly allowed to fail with some
small probability when used on large instances of NP-hard problems to
achieve faster running times.

• Heuristic algorithms: The objective of a heuristic is to find a solution
in a reasonable time frame that works reasonably well in most cases.
For heuristic algorithms there is no proof that the algorithm is both
always fast and always produces a good result.

• Approximation algorithms: Instead of searching for an optimal solu-
tion, search for a solution that is close to optimal. Unlike heuristics,
the solution is required to have a provable solution quality and provable
run-time bounds.

In this thesis we will in particular look at the problem of approximating a
minimum weight k-edge connected d-regular graph and the minimum weight
k-vertex connected d-regular graph.

minimum weight k-edge connected d-regular graph

Input: An undirected complete graph G = (V,E), edge weights w and
numbers d, k ∈ N with d ≥ k.
Output: A minimum weight k-edge-connected d-regular graph R of G.
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minimum weight k-vertex connected d-regular graph

Input: An undirected complete graph G = (V,E), edge weights w and
numbers d, k ∈ N with d ≥ k.
Output: A minimum weight k-vertex-connected d-regular graph R of
G.

Note that TSP can not be approximated at all when edge weights do not
satisfy the triangle inequality [1, 2, 17], and for general TSP it is therefore
impossible to find an approximation algorithm unless P = NP .

Lemma 1.4 (proof from pages 30 and 31 of the book Approximation algo-
rithms [17]). For any polynomial time computable function α(n), TSP cannot
be approximated within a factor of α(n), unless P = NP.

Proof. Assume, for a contradiction, that there is a factor α(n) polynomial
time approximation algorithm, A, for the general TSP problem. We will
show that A can be used for deciding the Hamiltonian cycle problem (which
is NP-hard) in polynomial tine, thus implying P = NP.
The central idea is a reduction from the Hamiltonian cycle problem to the
TSP, that transforms a graph G on n vertices to an edge-weighted complete
graph G′ on n vertices such that

• if G has an Hamiltonian cycle, then the cost of an optimal TSP tour
in G′ is n and

• if G does not have a Hamiltonian cycle, then an optimal TSP tour in
G′ is of cost > α(n) · n

Observe that when run on graph G′, algorithm a must return a solution of
cost ≤ α(n) ·n in the first case, and a solution of cost > α(n) ·n in the second
case. Thus, it can be used for deciding whether G contains a Hamiltonian
cycle.
The reduction is simple. Assign a weight of 1 to edges of G, and a weight of
α(n) · n to nonedges, to obtain G′. Now, if G has a Hamiltonian cycle, then
the corresponding tour in G′ has a cost of n. On the other hand, if G, has
no Hamiltonian cycle, any tour in G′ must use an edge of cost α(n) · n, and
therefore has cost > α(n) · n.

As most network design problems are generalizations of TSP it is natural
to assume edge weights satisfy the triangle inequality when trying to find
approximation algorithms. In this thesis we will also assume that we have
non-negative weights. Non-negative weights tend to arise naturally in many
applications.
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1.5 Related Work

A lot of research has already been done on network design problems and a
lot of approximation algorithms have already been created. Below we review
some related work on this subject.

Note that when the connectivity requirements are removed, the problem
becomes finding a minimum cost perfect b-matching. This problem can be
solved in polynomial time [13, 16]. This is done by extending the graph
using a construction that was first observed by Tutte and is described on
pages 385 and 386 of the book Matching Theory [13]. This will construct a
new graph G′ which contains a perfect matching if and only if the original
graph has a perfect b-matching. Afterwards a minimum weight matching is
computed over G′. Note that a minimal weight matching can be found in
polynomial time [9]. Note that when all vertices are given large degrees some
weak connectivity constraints may become trivially satisfied. For instance,
when every vertex has a degree of at least |V |/2, any perfect b-matching is
automatically connected.

For the case where the degree requirements are removed we get the deter-
ministic survivable network design problem (NDP) as mentioned in the moti-
vation section. There does not exist a polynomial time algorithm for finding
the optimal solution to this problem. However, there do exist approxima-
tion algorithms. Jain designed an algorithm for finding a 2-approximation
for the edge-connectivity version of the problem [8]. The algorithm uses
the ILP corresponding to the problem. The ILP is relaxed to an LP and
is then solved with the ellipsoid algorithm. Then all solutions with value
above 0.5 are rounded up to 1 and then these variables are fixed. Now the
LP is again solved for the remaining variables and this process is continued
until all variables are fixed (the paper proves that there is always at least
one edge with a value over 0.5). This process of finding a solution by round-
ing up some variables and then solve the residual LP iteratively is called
iterative rounding. For the vertex connectivity variant, Kortsarz and Nu-
tov gave approximation algorithms for the special case of k-vertex connected
graphs [10]. For arbitrary costs, they designed a k-approximation algorithm
for undirected graphs and a (k + 1)-approximation algorithm for directed
graphs. For metric costs, they created a (2 + (k − 1)/n)-approximation al-
gorithm for undirected graphs and a (2 + k/n)-approximation algorithm for
directed graphs. When the vertex connectivity requirements can be written
as r(u, v) = max(r(u), r(v)) where r(u) is the connectivity requirement for
vertex u, the best known approximation algorithm has an approximation
ratio of 2(k − 1), where k = maxu∈V (r(u)) [14].

We now summarize some known results where both connectivity and de-
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gree constraints are involved.
Recall that TSP asks for a connected graph where each vertex has degree

2. Such a graph is automatically 2-edge-connected as the conditions placed
on the graph automatically ensure the graph is a cycle. For the case of
TSP where edges satisfy the triangle inequality, Christofides’ approximation
algorithm has an approximation ratio of 3/2 [4]. The algorithm is described
in Algorithm 1

input : undirected complete graph G = (V,E), edge weights w
output: low weight Hamiltonian cycle H (2-edge-connected 2-regular

subgraph) of G
1 Compute a minimum spanning tree T of G.
2 Let VO be the set of vertices with odd degree in T . Compute a
minimum weight perfect matching M in the complete graph over the
vertices from VO.

3 Combine the edges of M and T to form a multigraph H.
4 Form an Eulerian circuit C in H (H is Eulerian because it is
connected, with only even-degree vertices).

5 Obtain a Himiltonian cycle H by skipping repeat visits to vertices of
the circuit C (shortcutting).

Algorithm 1: Christofides algorithm for TSP

Cornelissen et al. [5] designed an approximation algorithm for the problem
of finding a 2-edge-connected d-regular subgraph where edge weights satisfy
the triangle inequality.

minimum weight 2-edge-connected d-regular spanning sub-
graph

Input: An undirected complete graph G = (V,E), edge weights w and
an integer k.
Output: A minimum weight spanning subgraph R of G that is 2-edge-
connected and d-regular.

Their approximation ratio is 3 when d is odd and 2.5 for even d. The
algorithm first computes a minimum cost d-regular graph, which is a special
case of a minimum cost b-matching. Then the graph is transformed into a
2-edge-connected graph without changing the degree of any vertex.

Another way to find an approximation ratio for a problem is to find a
bicriteria solution in which both the violation of some of the constraints
as well as the final weight of the graph are constrained by bounds on how
much worse they can be compared to the optimal solution. Examples in-
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clude algorithns by Lau et al. [11, 12]. For instance, Lau et al. [11] designed
an algorithm for approximating a minimum cost spanning subgraph which
satisfies edge-connectivity requirements r(u, v) between vertices and which
also satisfies degree upper bounds b+(v) on the vertices. Their result is an
(2, 2b+(v) + 3)-approximation algorithm. This means that the cost of the
graph is at most twice that of the optimal solution and the degree of each
vertex v is at most 2b+(v) + 3.

Lau et al. [3] created an algorithm to construct a minimum cost k-edge-
connected spanning subgraph under specific degree constraints.

minimum weight k-edge-connected b-matching

Input: An undirected complete graph G = (V,E), edge weights w and
an integer valued function b defined on V and an integer k.
Output: A minimum weight spanning k-edge-connected subgraph R of
G such that d(v;R) = b(v) for every vertex v.

They proved that any k-edge-connected graph G can be transformed into
a graph with maximum degree k + 1 without increasing its cost. As we
already noted there exists a 2-approximation algorithm for finding a mini-
mum cost k-edge-connected spanning subgraph [8]. This thus translates into
a 2-approximation algorithm for finding a minimum cost k-edge-connected
spanning subgraph where each vertex has a maximum degree of k+1. To re-
duce the maximum degree down to k the cost of a minimum weight matching
needs to be added to the approximation ratio. The cost of such a matching
is proven to be at most 1/k times the cost of the minimum weight k-edge-
connected subgraph. In total this gives a (2+1/k)-approximation algorithm
for finding the minimum weight k-edge-connected k-regular subgraph. Their
results can be generalized to the case of general connectivity requirements.

The deterministic survivable network design problem with
degree constraints

Input: An undirected complete graph G = (V,E), edge weights w and
an integer valued function b defined on V and a |V | × |V | matrix r
defining the edge connectivity requirements.
Output: A minimum cost set of edges E ′ ⊆ E such that for all i, j with
i 6= j, there exist at least rij edge disjoint path between vertices i and
j. Furthermore for every vertex v, exactly b(v) edges are incident to v.

Let rmax := maxu,v r(u, v). Any graph G satisfying the general connec-
tivity requirements can be transformed into a graph with maximum degree
drmaxe while at most doubling its cost. The problem without degree con-
straints was 2-approximable [8]. Thus this results in a 4-approximation
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algorithm when rmax is even. When rmax is odd this leads to a (4,+1)-
approximation algorithm (where the +1 indicates the degree constraints can
be off by one and the 4 is the approximation ratio on the cost function).
Reducing the maximum degree to rmax in the case of odd rmax gives an 4.5-
approximation ratio instead. For the case of vertex connectivity Lau et al. [3]
also find a (2 + k−1

n
+ 1

k
)-approximation algorithm for finding the minimum

k-vertex connected k-regular graph.
One possible alteration to the problem is to allow multigraphs rather

than simple graphs. Fukunaga and Nagamochi [6] give an approximation
algorithm for finding a minimum cost k-edge-connected multigraph under
the constraint that the degree of each vertex v ∈ V is equal to a given value
b(v). As additional condition they require that b(v) ≥ 2 for all vertices v. The
problem admits an approximation algorithm with approximation ratio 2.5 if
k is even and an approximation ratio 2.5 + 1.5/k if k is odd. The algorithm
first creates a minimum cost perfect b-matching. Then if |V | ≤ 3, this b-
matching is the solution. Otherwise a Hamiltonian cycle Gh is computed
using Christodes’ algorithm and this cycle is copied

⌈

k
2

⌉

times. The perfect
b-matching and the

⌈

k
2

⌉

copies of Gh are merged to a single graph. Then
the algorithm uses operations that reduce the number of edges of the perfect
b-matching, while ensuring that each vertex keeps a degree of at least b(v),
and without generating loops. The copies of the Hamiltonian cycle, which are
not being modified yet, automatically ensure the graph is k-edge-connected.
Afterwards the degrees of the vertices are further reduced to b(v) by removing
vertices from some of the copies of the Hamiltonian cycle, in such a way that
no loops are generated. The degree of a vertex is reduced by 2 for each such
cycle it is removed from. The algorithm ensures each cycle keeps at least 2
vertices to prevent loops. The algorithm also ensures k-edge-connectivity is
not violated by carefully choosing which cycle to remove the vertices from.
It is proven that this method successfully reduces the vertex degree of every
vertex v to d(v), thus achieving a graph with the desired properties.
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Chapter 2

First Algorithm for

Approximating d-Regular

k-Edge-Connected Subgraphs

In this chapter we will generalize the algorithm of Cornelissen et al. [5]. The
original algorithm is a 3-approximation algorithm for the problem of finding
a d-regular 2-edge-connected graph. This algorithm start with a minimum
weight d-regular graph. Given this graph G, it creates a tree T (G) as follows:
The tree has a vertex for every maximum 2-edge-connected subgraph (a 2-
edge connected component) of G, and two such vertices are connected in
T (G) if the corresponding 2-edge connected components are connected in G.
It is provable that every 2-edge connected component Li(G) of G contains
an edge ei = (ui, vi) for which both ui and vi are not incident to any vertex
outside Li(G).

Then the algorithm of Cornelissen et al. computes a minimum spanning
tree and shortcuts it too a Hamiltonian cycle H. This cycle is shortcutted
further to create a cycle H ′ that trough the vertices {u1, . . . , uk} where k is
the number of 2-edge connected components. We now assume w.l.o.g. that
H ′ traversed these vertices in the order u1, . . . , uk. Now a d-regular 2-edge-
connected graph is constructed by removing the edges (ui, vi) and adding the
edges (ui, vi+1).

We will generalize this algorithm such that it will work on a i-edge-
connected graph G and will create an (i + 1)-edge-connected graph R for
which every vertex has exactly the same degree as in G. The only constraint
placed on the degrees of the original graph is that the minimum degree of
the graph is at least di+ 1e. Note that this condition is trivial when i+ 1 is
even, because we can not create a (i+ 1)-edge-connected graph if their exist
vertices with a degree lower than i+1. This will allow us to find approxima-
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tion for the minimum weight d-regular k-edge-connected spanning subgraph
by repeatedly using this algorithm, although the approximation ratio does
grow in the size of k.

2.1 Preliminaries

Let us first prove some lemmas on local k-edge-connectivity and on the struc-
ture of locally k-edge-connected components.

Lemma 2.1. Let X ⊆ V be a nonempty set of vertices satisfying d(X) ≤
k − 1. Assume every vertex in X has at least degree k. Then we must have
|X| ≥ k.

Proof. Assume to the contrary that there exists a set of vertices X ⊆ V with
d(X) ≤ k − 1 having |X| ≤ k − 1. Each vertex v ∈ X satisfies d(v) ≥ k and
thus has at least k neighbours. Also note that each vertex v can have at most
|X|−1 neighbours withinX. Thus, it has at least d(v)−(|X|−1) ≥ k+1−|X|
edges to vertices outside of X. Adding over all vertices in X this gives us
d(X) ≥ (k + 1− |X|)|X| = (k + 1)|X| − |X|2 edges to vertices outside of X.
Clearly for |X| = 1 this gives us k+1− 1 = k and for |X| = k this also gives
us (k+1)k−k2 = k edges to vertices outside of X. Noting that this function
is a parabola we know that for |X| ∈ (1, k) we have d(X) > k. We attained
d(X) ≥ k, which is a contradiction to d(X) ≤ k − 1. Thus our assumption
of |X| < k was wrong and we must have |X| ≥ k.

Corollary 2.2. Assume every vertex in X has at least degree k. Then every
k-special-component X satisfies |X| ≥ k.

Lemma 2.3. Let G be a (k − 1)-edge-connected graph. Every vertex set
X ( V either contains a k-special-component or satisfies d(X) ≥ k.

Proof. Assume to the contrary that we can find a set X that does not contain
a k-special-component and satisfies d(X) ≤ k − 1.

Now let us take a minimal set X with this property. As X is minimal,
there is no set of vertices Y ( X that satisfies d(Y ) < k and does not
contain a k-special-component. Clearly for any set of vertices Y ( X we
know Y does not contain a k-special-component as X does not contain such
a component (If Y contains a k-special-component, X would also contain
that k-special-component as Y ( X). Therefore, for each subset Y of X we
must have d(Y ) ≥ k.

As we already have that d(X) < k, we know that if X were locally k-edge-
connected, it would be a k-special-component. However, we also know that
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X does not contain k-special-components and thus X cannot be a k-special-
component. Thus, X is not locally k-edge-connected. As X is not locally
k-edge-connected, we can find vertices u, v ∈ X such that λ(u, v) ≤ k − 1.

As λ(u, v) ≤ k − 1 there exists an edge cut of size at most k − 1 that
disconnects u from v. This cut must split up the graph in two sets U and U
with u ∈ U , v ∈ U , such that d(U) ≤ k − 1.

Figure 2.1 illustrates how the graph is split up by these edge cuts. We
can now see the graph G as being divided into the following four sections:

• C1 = X ∩ U ,

• C2 = X ∩ U ,

• C3 = X ∩ U ,

• C4 = X ∩ U .

We can also count the number of edges between these segments as follows:

• k1 is the number of edges between C1 and C2 (k1 = d(C1, C2)),

• k2 is the number of edges between C3 and C4 (k2 = d(C3, C4)),

• k3 is the number of edges between C1 and C3 (k3 = d(C1, C3)),

• k4 is the number of edges between C2 and C4 (k4 = d(C2, C4)),

• k5 is the number of edges between C1 and C4 (k5 = d(C1, C4)),

• k6 is the number of edges between C2 and C3 (k6 = d(C2, C3)).

In the following we specify constraints that the variables {ki, i ∈ {1, . . . , 6}}
must satisfy. Then we show that it is impossible to satisfy all these con-
straints and thus come to a contradiction. We know that by construction
C1 6= ∅ and C3 6= ∅ (as they contain u and v respectfully). We also know
C2 ∪ C4 6= ∅ as X is a proper subset of V . However we can have that either
C2 or C4 is empty. Let us first assume C2, C4 6= ∅.

Case 1: C2, C4 6= ∅.
First of all we have d(X) < k. This translates into k1+k2+k5+k6 ≤ k−1.

We also have d(U) ≤ k − 1 and thus k3 + k4 + k5 + k6 ≤ k − 1.
Note that we have C1, C3 ( X as by construction we have that v ∈ X∩U

and u ∈ X ∩ U . We can translate this to constraints k1 + k3 + k5 ≥ k and
k2 + k3 + k6 ≥ k respectively.

For our final constraint we need to use the fact that our graph is (k− 1)-
edge-connected. In particular, any edge cut that disconnects C2 and C4
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C1 = X ∩ U C2 = X ∩ U

C3 = X ∩ U C4 = X ∩ U

k1

k3

k5
k4

k6

k2

Figure 2.1: The graph divided by two edge cuts (one horizontal and the other
vertical)

contains at least k − 1 edges. This gives us the following bound on k4:
k4 ≥ k − 1 − min(k1, k2, k3) − k5 − k6. To see this, note that we want to
find the maximum number of edge independent paths from C2 to C4 that
the graph can possibly have. This total number of paths needs to be at least
k − 1. We know that we can have at most one such path for each of the
k4 direct edges and at most min(k1, k2, k3) paths following a detour through
C2, C1, C3, C4. There can then still be paths going trough C2, C3, C4 and
C2, C1, C4, however we can upper bound those by the number of edges k6
and k5 respectfully.

Thus our system of equations becomes:

Find k1, k2, k3, k4, k5, k6 ∈ N (2.1.1)

s.t. k1 + k2 + k5 + k6 ≤ k − 1 (2.1.2)

k3 + k4 + k5 + k6 ≤ k − 1 (2.1.3)

k3 + k1 + k5 ≥ k (2.1.4)

k3 + k2 + k6 ≥ k (2.1.5)

k4 ≥ k − 1−min(k1, k2, k3)− k5 − k6 (2.1.6)

We shall now show that this set of equations does not have a solution.
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First note that the constraint 2.1.6 can be rewritten as the following three
constraints:

• k4 ≥ k − 1− k1 − k5 − k6

• k4 ≥ k − 1− k2 − k5 − k6

• k4 ≥ k − 1− k3 − k5 − k6

We can rewrite constraint 2.1.3 as k4 ≤ k − 1 − k3 − k5 − k6. From this
constraint and the constraint k4 ≥ k − 1− k3 − k5 − k6 we see that we have
k4 = k−1−k3−k5−k6. Filling this in into the equations k4 ≥ k−1−k1−k5−k6
and k4 ≥ k − 1 − k2 − k5 − k6, we get −k3 ≥ −k1 and −k3 ≥ −k2. Thus
k3 ≤ k1 and k3 ≤ k2.

We also have k1 + k3 + k5 ≥ k and k2 + k3 + k6 ≥ k which we add giving
us the constraint k1 + k2 + 2k3 + k5 + k6 ≥ 2k. We know k1 + k2 + k5 + k6 ≤
k − 1 according to constraint 2.1.2, and we multiply this by two giving us
2k1 + 2k2 + 2k5 + 2k6 ≤ 2k − 2. We know that k3 ≤ k1 and k3 ≤ k2, thus we
also have k1+k2+2k3+2k5+2k6 ≤ 2k−2. Finally we note that 0 ≤ k5+k6 as
k5 and k6 can not be negative, and thus we get k1+k2+2k3+k5+k6 ≤ 2k−2.
Clearly k1 + k2 +2k3 + k5 + k6 ≥ 2k and k1 + k2 +2k3 + k5 + k6 ≤ 2k− 2 can
not both be satisfied and thus we have found a contradiction.

Case 2: C2 = ∅. Let us assume C2 = ∅, we get the following equations
(just a simplification of the equations for the general case):

Find k2, k3, k5 ∈ N
s.t. k2 + k5 ≤ k − 1
k3 + k5 ≤ k − 1
k3 + k5 ≥ k
k3 + k2 ≥ k
Clearly we can not have both k3 + k5 ≥ k and k3 + k5 ≤ k − 1 leading to

an immediate contradiction.
Case 3: C4 = ∅. We now get the following equations:
Find k1, k3, k6 ∈ N
s.t. k1 + k6 ≤ k − 1
k3 + k6 ≤ k − 1
k3 + k1 ≥ k
k3 + k6 ≥ k
We find the equations of k3 + k6 ≥ k and k3 + k6 ≤ k − 1, again leading

to a contradiction.
Looking back we initially made the following assumption: Let X be the

minimal set a vertices such that d(X) < k and X does not contain a k-
special-component. Thus we now know that this assumption must have been
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incorrect. As there is no smallest set with this property there exists no set
with this property and thus the result follows.

Lemma 2.4. Let X and Y be locally k-edge-connected components in G. If
there exists no (k− 1)-edge-cut that disconnects X from Y in G, then X ∪Y
is a locally k-edge-connected components in G.

Proof. Take an arbitrary x ∈ X and y ∈ Y and take an arbitrary set of
(k−1) edges C. As there exists no (k−1)-edge-cut that disconnects X from
Y we know that for some wi ∈ X and some wj ∈ Y , wi is still connected
to wj in G − C. As X is a locally k-edge-connected component we know
that in G−C any vertex in X is still connected to every other vertex within
this component (by Menger’s theorem). The same holds for Y . Thus x is
connected to wi and y is connected to wj. Now x is connected to y, as x is
connected to wi, which is connected to wj, which is connected to y. As x, y
and C were arbitrary we have that for every vertex u ∈ X and every vertex
v ∈ Y we have λ(u, v;G) ≥ k. Thus X ∪ Y is a locally k-edge-connected
component of G.

The following two lemmas show that we can find a unique list containing
all k-special-components of a graph by showing that they are maximal locally
k-edge-connected components and they do not overlap with each other.

Lemma 2.5. Let X be a k-special-component of G, then X is a maximal
locally k-edge-connected component of G.

Proof. By definition of k-special-components we know that X is a locally
k-edge-connected component and d(X) < k. As X is nonempty we can find
a vertex v ∈ X. Let u 6∈ X. Every path from u to v requires at least one
of the edges from Cut(X). A set of i edge disjoint paths from u to v will
require at least i of the edges from Cut(X). As d(X) < k there exist at most
k− 1 such edges and thus there exist at most k− 1 edge disjoint paths from
u to v. Thus λ(u, v) ≤ k − 1. As v was arbitrary we see that no vertex
v 6∈ X is locally k-edge-connected to u and thus we can not add v to X while
still keeping X a locally k-edge-connected component. Thus X is a maximal
k-edge-connected component of G.

Corollary 2.6. If U and X are k-special-components of G, then either U =
X or U ∩X = ∅.

Proof. Assume that U∩X 6= ∅ and thus that there exists a vertex u ∈ U∩X.
As U and X are maximal locally k-edge-connected components of G they
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both contain all vertices v for which λ(u, v) ≥ k and no vertex such that
λ(u, v) ≤ k− 1. This follows from the fact that local edge connectivity is an
equivalence relation. Thus, we must have U = {v ∈ V |λ(u, v) ≥ k} = X.

The following lemmas give results on the local connectivity within k-
special-components. For these lemma’s let m :=

⌊

k
2

⌋

+ 1 and m′ :=
⌈

k
2

⌉

+ 1.

Lemma 2.7. Let G be a (k − 1)-edge-connected graph and let X be a k-
special-component of G. Then X is an m-edge-connected component.

Proof. Let us take two arbitrary distinct vertices u, v ∈ X. As X is a k-
special-component, X is a locally k-edge-connected component and d(X) ≤
k − 1. As u is locally k-edge-connected to v in G we can find k edge in-
dependent paths from u to v in G. As u, v ∈ X we know that any of the
paths from u to v that are not fully contained in X use at least two edges
from X to X. As we have at most k − 1 edges going from X to X, at most
⌊

k−1
2

⌋

of the k edge-disjoint paths are not fully contained in X. Thus at least
k −

⌊

k−1
2

⌋

=
⌊

k
2

⌋

+ 1 = m of these paths are fully contained in X.
As u and v were arbitrary, it follows that X is m-edge-connected compo-

nent.

Lemma 2.8. Let G be a (k − 1)-edge-connected graph and let X be a k-
special-component of G. Let k be odd and let every vertex of G have a degree
of at least k + 1. Then X contains an (m+ 1)-edge-connected component Z
with |Z| ≥ k.

Proof. For k = 1 this follows from the fact that X is a finite connected
component of G where every vertex has a degree of at least two. Assume to
the contrary that X does not contain a 2-edge-connected component Z with
|Z| ≥ 1, thus X contains no cycle and therefore X is a tree. Thus looking
at the graph induced by X, we must have |V | = |E| + 1 > |E|. However as
each vertex has a degree of at least two we must have |E| =

∑

v∈V d(v)/2 ≥
∑

v∈V 1 = |V |. This contradicts |V | > |E| and thus X contains an 2-edge-
connected component Z with |Z| ≥ 1.

Now assume k ≥ 2. X is a m-edge-connected component by Lemma
2.7. Let G′ be the graph induced by X. We examine the (m + 1)-special-
components of G′.

By Lemma 2.3 we know that every vertex set Y ( X either contains a
(m + 1)-special-component in G′ or satisfies d(Y ;G′) ≥ m + 1. Thus, if G′

contains no (m+1)-special-components we have that d(Y ;G′) ≥ m+1 for all
Y ( X. From this it follows that X is an (m+1)-edge-connected component.
The result follows from Lemma 2.1, |X| ≥ k.

26



Now assume G′ does contain (m + 1)-special-components. Let Y be one
of these (m+ 1)-special-components. We want to place a bound on d(Y ;G′)
by using the degree of its vertices. Just as in Lemma 2.1, we know that any
vertex in Y can have at most |Y |−1 edges to other vertices in Y . Thus, each
vertex has at least d(v;G′) + 1 − |Y | edges to vertices in X \ Y . We know
that every vertex of G has a degree of at least k + 1 in G. As d(X) = k − 1,
we know that G has at most k − 1 edges incident to vertices of X going to
vertices outside of X. These edges are not present in G′. Thus the total
degree of a set of vertices Y ( X in G′ can be up to k− 1 smaller than their
degree in G. We get

d(Y ;G′) ≥
∑

v∈Y

(d(v;G′) + 1− |Y |) = (1− |Y |)|Y |+
∑

v∈Y

d(v;G′)

≥ (1− |Y |)|Y |+ |Y |(k + 1)− (k − 1) = −|Y |2 + (k + 2)|Y | − (k − 1)

For |Y | = 2, we get d(Y ;G′) ≥ −4 + 2(k + 2)− (k− 1) = k + 1. For |Y | = k
we get d(Y ;G′) ≥ −k2 + k(k + 2) − (k − 1) = k + 1. As our function is a
parabola in |Y |, we know that d(Y ;G′) ≥ k + 1 when |Y | ∈ [2, k].

As Y is an (m + 1)-special-component in G′, we know that d(Y ;G′) ≤
m < k + 1 and thus we must have that |Y | 6∈ [2, k]. If |Y | ≥ k + 1, |Y | is an
(m+ 1)-edge-connected component with |Y | ≥ k and we are done. Thus we
now only need to prove that |Y | 6= 1.

Assume to the contrary that |Y | = 1. As Y is a (m+1)-special-component
in G′, we know d(Y ;G′) ≤ m. We know d(Y ;G′) = d(Y,X \ Y ;G), and thus
d(Y,X \ Y ;G) ≤ m. We know that d(Y ;G) = d(Y, Y ;G) = d(Y,X;G) +
d(Y,X \ Y ;G) and thus d(Y,X;G) ≥ d(Y ;G) − m. We know d(X;G) =
k − 1 as X is a k-special-component of the (k − 1)-edge-connected graph
G. As d(X;G) = d(X,X;G) = d(Y,X;G) + d(X \ Y,X;G), we have d(X \
Y,X;G) = d(X;G)− d(Y,X;G) ≤ k − 1 +m− d(Y ;G).

Finally, we note

d(X \ Y ;G) = d(X \ Y, Y ;G) + d(X \ Y,X;G)

= d(Y,X \ Y ;G) + d(X \ Y,X;G)

≤ m+ (k − 1 +m− d(Y ;G)) = 2m+ k − 1− d(Y ;G)

Now as |Y | = 1 we know d(Y ;G) ≥ k + 1 and we get d(X \ Y ;G) ≤
2m − 2 = 2

⌊

k
2

⌋

. When k is odd this gives d(X \ Y ;G) ≤ k − 1. However
this leads to a contradiction as follows: As Y ( X the vertex v ∈ Y must
be locally k-edge-connected to every other vertex in X. Thus v has at least
k edge-disjoint paths to some other vertex u ∈ X \ Y (as |X| ≥ k we always

27



have some vertex u ∈ X \ Y as k ≥ 2). However each of these paths uses
at least one of the edges from Cut(X \ Y ) of which there are at most k − 1
and thus there cannot be k such edge disjoint paths. Thus we have proven
|Y | 6= 1.

Corollary 2.9. Let G be a (k − 1) edge connected graph and let X be a
k-special-component of G. Let every vertex of G have a degree of at least
2
⌈

k
2

⌉

. Then X contains an m′-edge-connected component Z with |Z| ≥ k.

Lemma 2.10. Assume every vertex in G has at least degree 2
⌈

k
2

⌉

. Let X be
a k-special-component and let Z ⊆ X be an m′-edge-connected component,
with |Z| ≥ k. There exists a vertex u ∈ Z, such that N(u) ⊆ X.

Proof. We know that X is a k-special-component. Thus, d(X) ≤ k − 1. By
Corollary 2.9 the graph induced by X contains a m′-edge-connected compo-
nent Z with |Z| ≥ k. We have k − 1 outgoing edges and Z contains at least
k vertices. Therefore there exists a vertex u ∈ Z that has all its neighbours
within X.

Lemma 2.11. Assume that every vertex in G has at least degree 2
⌈

k
2

⌉

. Let
L1, . . . , Lm be a set of k-special-components. There exist vertices ui, vi ∈ Li

such that ui and vi satisfy the following properties:

1. ui, vi in Li,

2. (ui, vi) ∈ E,

3. (vi, uj) 6∈ E for all vertices ui and vj with i 6= j,

4. There exist m′ edge-disjoint paths from ui to vi in the graph induced by
Li.

Proof. To find these vertices we note that Lemma 2.10 gives us a vertex ui

with N(ui) ⊆ X, for every i ∈ {1, . . . ,m}. We choose vi to be another vertex
within the m′-edge-connected component of Lemma 2.10 such that the edge
(ui, vi) exists. Note that we can always find such an edge (ui, vi) as ui has at
least m′ neighbours within the m′-edge-connected component. Each of these
neighbours is a suitable candidate for vi. Choosing ui and vi this way, all
the above properties hold. Here properties 1 and 2 follow directly from our
choices of ui and vi. Property 3 follows immediately from the fact that all
the neighbours of ui are containing within Li. As k-special-components do
not overlap we know that for any vertex vj ∈ Lj with j 6= i we must have
vj 6∈ Li and thus vj 6∈ N(ui). Property 4 follows from the fact that ui and vi
are contained in a m′-edge-connected component.
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2.2 Algorithm and proof of correctness

Algorithm 2 is our proposed approximation algorithm for increasing a graphs
edge connectivity while keeping the degree of every vertex the same. We can
use this algorithm as a subroutine for creating a minimum weight k-edge-
connected d-regular graph as is done in Algorithm 3. The correctness of
Algorithm 3 is obvious provided that Algorithm 2 works correctly. Thus in
this section we prove Algorithm 2 successfully increases the edge connectivity
of a graph by 1. Afterwards we analyze the approximation ratio of this
algorithm. First, we prove a simple lemma that Algorithm 2 does not change
the degree of any vertex. In this chapter we let Lk

1(G), . . . , Lk
m(G) denote the

k-special-components of a graph G, where m = m(G) denotes the number
of k-special-components of G. Similarly we let uk

i and vki for i = {1, . . . ,m}
denote the vertices with the properties as in Lemma 2.11.

input : undirected complete graph G = (V,E), edge weights w,
d, k ∈ N with d ≥ 2

⌈

k
2

⌉

, a (k − 1)-edge-connected simple
subgraph G′ of G satisfying d(v;G′) ≥ d for all vertices v ∈ V

output: k-edge-connected simple subgraph R of G with
d(v;R) = d(v;G′) for all vertices v ∈ V

1 Find Lk
1(G

′), . . . , Lk
m(G

′)
2 m← m(G′)
3 for i = 1, . . . ,m find vertices up

i and vpi
4 compute MST of G′

5 Duplicate each edge of MST and take shortcuts to obtain a
Hamiltonian cycle H

6 Take shortcuts to obtain from H a Hamiltonian cycle H ′ trough
uk
1, . . . , u

k
m, assume w.l.o.g. that H ′ traverses the vertices in the order

uk
1, u

k
2, . . . , u

k
m, u

k
1

7 Q← {ek1, e
k
2, . . . , e

k
m} with eki = (uk

i , v
k
i )

8 S ← {(uk
i , v

k
i+1)|i ∈ {1, . . . ,m},m+ 1 = 1}

9 R = (G′ \Q) ∪ S

Algorithm 2: Increasing edge connectivity of a graph while preserving
vertex degrees

Lemma 2.12. R as computed by Algorithm 2 is a simple graph with d(v;R) =
d(v;G′) for all vertices v ∈ V

Proof. By our choice of the vertices vi, we do not add any edge to G′ that is
already contained in G. This is because each vi is chosen such that it does not
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input : undirected complete graph G = (V,E), edge weights w,
d, k ∈ N with d ≥ 2

⌈

k
2

⌉

output: k-edge-connected d-factor R of G
1 Compute a minimum-weight d-factor d-F of G
2 Compute a 2 edge connected graph d-factor G′ of G using the
algorithm of [5].

3 for p = 2 . . . k − 1 do

4 Apply algorithm 2 to create a p+ 1 edge connected graph d-factor
G′′ of G′

5 G′ ← G′′

6 end

Algorithm 3: Creating a k-edge-connected d-regular graph with
bounded weight

already have an edge to the vertex ui−1, which is the edge the algorithm adds
in replacement of (ui, vi). As G

′ was a simple graph it did not have duplicate
edges, we also did not add any new ones, and thus R is a simple graph. We
obtain R from G′ by removing one edge incident to each ui and vi, and then
adding one edge incident to each ui and vi. Therefore d(v;R) = d(v;G′) is
satisfied for all vertices v ∈ V . Thus all the degrees of vertices in R are the
same as those of G′.

Lemma 2.13. Let the vertices ui and vi be chosen by Algorithm 2. In G−Q,
there does not exist a set of k − 1 edges that disconnects both ui from vi and
uj from vj when i 6= j.

Proof. Assume that we can find a set of k − 1 edges C disconnecting both
uk
i from vki and uk

j from vkj in G−Q. According to Lemma 2.8 we have that

we can find at least
⌈

k
2

⌉

+ 1 edge disjoint paths from ui to vi within Li in
G. After removing the edge (ui, vi) we still have at least

⌈

k
2

⌉

disjoint paths.
Thus our edge cut contains at least

⌈

k
2

⌉

edges within Li in G′. The exact
same thing can be said of Lj. Thus for an edge cut C to disconnect both ui

from vi and uj from vj we need to have that |C| ≥ 2
⌈

k
2

⌉

≥ k. As C was an
arbitrary cut that disconnects both ui from vi and uj from vj, we know that
any such cut needs to have at least k edges, and thus is not a k− 1 edge cut.

Now we prove that when applying Algorithm 2 to a (k−1)-edge-connected
graph the result is k-edge-connected in order to prove the correctness of
Algorithm 2.
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First of we prove that the graph remains (k − 1)-edge-connected after
removing Q as we do not remove edges between components and we remove
at most one edge per k-edge-connected component of our previous result.
Thus our new graph is (k−1)-edge-connected even without adding the edges
(ui, vi+1).

Lemma 2.14. Let G be a (k−1)-edge-connected k-regular graph graph, G−Q
with Q chosen as in Algorithm 2 is (k − 1)-edge-connected.

Proof. Assume we remove only one edge (ui, vi) in Q from some locally k-
edge-connected-component. In G we have d(X) ≥ k − 1 for every vertex set
X. After removal of the edge (ui, vi), the only sets X for which d(X) changes
are the ones with ui ∈ X and vi ∈ X or vica versa. However as ui is locally
k-edge-connected to vi in G we have d(X) ≥ k for every such X, and thus
now have d(X) ≥ k − 1 as we only removed one edge from Cut(X). Thus
after removing an arbitrary (ui, vi) edge in Q from G, we have d(X) ≥ k− 1
for every vertex set X and thus the graph is still (k − 1)-edge-connected.

Now we just need to prove that removal of other edges (uj, vj) of Q in
components Lj does not destroy the local k-edge-connectedness property of
other components Li. To be more precise we need that ui is locally k-edge-
connected to vi in G−L+(ui, vi) where L ⊆ Q. This is equivalent to showing
that there is no k-edge-cut disconnecting ui from vi in G−L+ (ui, vi). This
follows from Lemma 2.13.

Thus ui is still locally k-edge-connected to vi in G − L + (ui, vi). Thus
we can remove the edge (ui, vi) from G−L+(ui, vi) while keeping the graph
(k − 1) edge connected. We can now iteratively remove edges (ui, vi) from
G while keeping the graph (k − 1)-edge-connected thus eventually attaining
the graph G−Q which is then also proven (k − 1)-edge-connected.

Note that by using Lemma 2.13 to prove Lemma 2.14 we implicitly used
the assumption that d ≥ 2

⌈

k
2

⌉

. It is in fact possible to prove Lemma 2.14
without this assumption using Lemma 2.7. For this we need to prove that
there is no k-edge-cut disconnecting ui from vi in G− L+ (ui, vi).

Lemma 2.15. Let ui, vi, G−Q and L be defined as in Lemma 2.14. There
is no k-edge-cut disconnecting ui from vi in G − L + (ui, vi) even when the
assumption that d ≥ 2

⌈

k
2

⌉

is dropped.

Proof. By Lemma 2.7 we know that for any i, the graph induced by Li is
(
⌊

k
2

⌋

+1)-edge-connected. After removal of an edge (ui, vi) the graph induced
by Li is still be at least

⌊

k
2

⌋

-edge-connected.
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Now assume to the contrary that we can find a k − 1 edge cut C discon-
necting ui from vi in G−L+ (ui, vi). As ui is locally k-edge-connected to vi
in G we can find k edge disjoint paths from ui to vi in G.

According to Lemma 2.7 we have that we can find at least
⌊

k
2

⌋

+ 1 edge
disjoint paths from ui to vi within Li. Thus our edge cut contains at least
⌊

k
2

⌋

+1 edges within Li. As each other component Lj with j 6= i has at least
⌊

k
2

⌋

edge disjoint paths from uj to vj within Lj we need to remove at least
⌊

k
2

⌋

edges within Lj to disconnect uj to vj. However as
⌊

k
2

⌋

+ 1 +
⌊

k
2

⌋

≥ k
we can not find an k − 1 edge cut that disconnects both ui from vi and uj

from vj in G−Q+ (ui, vi). Thus we have that uj and vj must be connected
in G− L+ (ui, vi)− C.

We know ui and vi are locally k-edge-connected in G. Thus our k − 1
edge cut C disconnecting ui from vi in G − L + (ui, vi) does not disconnect
ui from vi in G. Thus ui and vi are connected in G−C and there must be a
path P from ui to vi in G−C. Now if this path uses an edge (uj, vj) we know
that uj and vj must be connected in G−L+(ui, vi)−C and thus we can find
a path from uj to vj in G−Q+ (ui, vi)−C. Thus for each edge (uj, vj) ∈ P
we can remove that edge and add a path from (uj, vj) containing only edges
from G−L+ (ui, vi)−C. As the edges (uj, vj) are the only edges in P that
are contained in G − C but not contained in G − L + (ui, vi) − C, we have
that this procedure creates a path P ′ from ui to vi in G − Q + (ui, vi) − C.
Thus we have found a contradiction, as C is not disconnecting ui from vi in
G− L+ (ui, vi) as we initially assumed.

Lemma 2.16. In R = G+ S −Q as created by Algorithm 2 we have that ui

and vi+1 are locally k-edge-connected.

Proof. In G−Q we have that ui and vi+1 are still (k− 1)-edge-connected by
Lemma 2.14. Thus there are k − 1 edge independent paths from ui to vi+1

in G − Q. In R we have an additional edge (ui, vi+1) that is not contained
in G−Q and is thus a kth edge path from ui to vi+1 that is edge-disjoint to
the other k − 1 paths.

Lemma 2.17. In R = G+ S −Q as created by Algorithm 2 we have that ui

and uj are locally k-edge-connected for all i, j ∈ {1, . . . ,m}.

Proof. Assume to the contrary that there exists a k − 1 edge cut C discon-
necting some vertex ui from some vertex uj in R. As G − Q is still k − 1
edge connected we know none of the k − 1 removed edges are newly intro-
duces edges of S. We want to find a contradiction by using the new paths
P1 = ui+1, ui+2, . . . , uj−2, uj−1 and P2 = ui−1, ui−2, . . . , uj+2, uj+1 to get from
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ui to uj. From Lemma 2.13 we know that if a k − 1 edge cut disconnects uk

from vk then it is impossible for that cut to also disconnects ul from vl for
any l 6= k. Thus there can be at most one pair (uk, vk) that is disconnected
by the k − 1 edge cut. However this means that either path P1 or path P2

connects ui to uj. This follows from the fact that we have edges going from
each ui to each vi+1 and for only a single k we can not find a path from vk
to uk to connect these (ui, vi+1) edges into a path (only one path P1 or P2

requires a path from vk to uk, thus the other path is a valid path contained
in R−C). We have now proven that ui is connected to uj in G−C which is
a contradiction. Thus we can not find a k − 1 edge cut disconnecting some
vertices ui and uj from each other. Thus for all i, j ∈ {1, . . . ,m} we have that
ui and uj are locally k-edge-connected with each other in the new graph.

Lemma 2.18. In R = G+S−Q as created by Algorithm 2 we have that Li

and Lj are locally k-edge-connected for all i, j ∈ {1, . . . ,m}.

Proof. To prove this lemma we want to show that every vertex v ∈ Li is lo-
cally k-edge-connected to every vertex u ∈ Lj for arbitrary i and j. Lemma
2.17 already gives us this result if we choose v = ui and u = uj. We first ex-
tend this by adding the option of choosing vertices vi. We know that for all i,
ui−1 and vi are locally k-edge-connected. We also already know ui−1 is locally
k-edge-connected to any uj. Thus using the fact that k-edge-connectivity is
transitive, we find that all vertices vi are locally k-edge-connected to all ui

and all other vj.
Now take some vertex v ∈ Li with v 6= ui and v 6= vi. We need to prove

that it is locally k-edge-connected to ui. Let us assume to the contrary that
v is not locally k-edge-connected to ui and thus that we can find a k−1 edge
cut C disconnecting v from ui. As G−Q is (k− 1)-edge-connected we know
all k−1 of the edges in C are not contained in S. Thus we can also take this
cut in the original graph G. We know v and ui are locally k-edge-connected
in G. Thus there is still a path from v to ui in G − C. Necessarily it uses
one or more edges (uj, vj) ∈ Q, as they are the only edges contained in R
that are not contained in G − Q (otherwise the path would exist in R − C
and thus C would not be an edge cut disconnecting v from ui). Let us write
the path from v to ui as P1(uj, vj)P2. As we already showed each uj and
vj are locally k-edge-connected in G − Q + S, we know that uj and vj are
still connected in G − Q + S − C. Thus we can find a path P3 contained
in G − Q + S − C, that connects ui and vi. Thus we have a path P1P3P2

going from v to ui. Note that P3 contains no edges (ui, vi) ∈ Q and thus this
new path P1P3P2 has a lower number of edges contained in Q compared to
the old path P1(uj, vj)P2. We can repeat this procedure for any other edge
(uj, vj) ∈ Q occurring in the new path P1P3P2 until the entire path from v to
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ui only uses edges within G+S−Q. Thus contradicting our assumption that
a k − 1 edge cut C disconnecting v from ui exists. Thus we have that that
any vertex v ∈ Li is locally k-edge-connected to ui. We have by transitivity
of k-edge-connectivity that every vertex v ∈ Li is locally k-edge-connected
to every vertex u ∈ Lj for arbitrary i and j.

Theorem 2.19. The graph R = G + S − Q as created by Algorithm 2 is
k-edge-connected.

Proof. Our previous Lemma already gave us the result that Li and Lj are
locally k-edge-connected for all i, j ∈ {1, . . . ,m}.

Thus we are only left to look at the vertices not contained in any com-
ponents Li. Let v be a vertex not contained in one of the components and
assume that we have a k − 1 edge cut C disconnecting it from a part of the
graph. Take the largest set X such that v ∈ X and every vertex in X is con-
nected to v in G−C. We now know d(X;R−C) = 0 as otherwise we would
have taken a larger set X. As |C| ≤ k − 1 we have d(X;R) ≤ k − 1. From
Lemma 2.3 we know that d(X) ≥ k for any set X that does not contain an
k-special-component (as we already know G is k − 1 edge connected). Thus
X has to contain some k-special-component Li. Thus, after the edge cut, v
is still connected to a vertex u within one of the components Li.

As C was arbitrary we find that there exists no k − 1 edge cut such that
v is disconnected from all vertices of

⋃

i Li in G. As to create R from G the
only edges we removed were edges connecting two vertices within

⋃

i Li we
know that this property also holds for the graph R = G+ S −Q.

We have already proven that
⋃

i Li is a locally k-edge-connected compo-
nent. A single vertex is a trivial locally k-edge-connected component. Thus
we can use Lemma 2.4 to find that v is locally k-edge-connected to all vertices
in

⋃

i Li. Finally as local k-edge-connectivity is transitive and v was arbitrary
we find that the entire vertex set X is a locally k-edge-connected component
in R. From this it immaterially follows that R is a k-edge-connected graph.

Lemma 2.20. Assume that the graph R is computed as in Algorithm 2 and
let G be the input graph of Algorithm 2. Let MST be the minimum weight
spanning tree. We have w(R) ≤ w(G) + 2w(MST ).

Proof. Note that by the triangle inequality we have w(ui, vi+1) ≤ w(ui, ui+1)+
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w(ui+1, vi+1). We have

w(R) = w(G+ S −Q) = w(G) +
m
∑

i=1

w(ui, vi+1)−
m
∑

i=1

w(ui+1, vi+1)

≤ w(G) +
m
∑

i=1

w(ui, ui+1) + w(ui+1, vi+1)− w(ui+1, vi+1)

= w(G) + w(H ′) ≤ w(G) + w(H)

Finally recall that H was created using a MST such that w(H) ≤
2w(MST ).

Corollary 2.21. Assume that the graph R is computed as in Algorithm 2
and let G be the input graph of Algorithm 2. If G is a connected graph (that
is, if k ≥ 2), then w(R) ≤ 3w(G).

Proof. LetMST be the minimum weight spanning tree. Note that w(MST ) ≤
w(G) as G is a connected graph and MST is the minimum weight connected
graph (due to having non-negative edge costs, the minimum weight connected
graph must be a tree). The result now easily follows from Lemma 2.20 as
w(R) ≤ w(G) + 2w(MST ) ≤ 3w(G).

Theorem 2.22. Let d ≥ k ≥ 2. Let R be the k-edge-connected d-factor
computed as in Algorithm 3 and let GOPT

k,d be the minimum weight k-edge-
connected d-factor. We have w(R) ≤ (2k − 1)w(GOPT

k,d ).

Proof. Let G−,d be a minimum weight d-factor and let MST be the mini-
mum weight spanning tree. Note that the initial 2-edge-connected d-factor
G2,d satisfies w(G2,d) ≤ w(G−,d) + 2w(MST ) [5]. Note that the algorithm
will have a total of k − 2 iterations, and note that by Lemma 2.20 each it-
erations adds a weight of at most 2w(MST ) to the graph from the previous
iteration. Thus we get w(R) ≤ w(G−,d) + 2w(MST ) + (k − 2)2w(MST ) =
w(G−,d) + (2k − 2)w(MST ). We have that w(MST ) ≤ w(GOPT

k,d ) as GOPT
k,d

is a connected graph and MST is a minimum weight connected graph.
Also GOPT

k,d is a d-factor, while G−,d is a minimum weight d-factor and thus
w(G−,d) ≤ w(GOPT

k,d ). From these facts the result now follows.

2.3 Generalization

Algorithm 3 can easily be generalized to create k-edge-connected graphs that
satisfy somewhat arbitrary degree requirements giving us Algorithm 4. The
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correctness of this algorithm is now trivial as there exist algorithms for cre-
ating a minimum cost perfect b-matching in polynomial time, and we have
already proven that 2 works correctly in increasing the edge connectivity of
a graph without changing the degree of any vertex.

input : undirected complete graph G = (V,E), edge weights w,
k ∈ N , and a vector b = (bv : v ∈ V ) defining the degree
requirements with the restriction that bv ≥ 2

⌈

k
2

⌉

for all v ∈ V
output: k-edge-connected spanning subgraph R of G, satisfying

d(v;R) = bv for all vertices v ∈ V
1 Compute a minimum cost perfect b-matching G′ of G
2 for p = 1 . . . k do

3 Apply algorithm 2 to create a p-edge-connected graph G′′ of G′

satisfying d(v;R) = bv for all vertices v ∈ V
4 G′ ← G′′

5 end

Algorithm 4: Creating a k-edge-connected spanning subgraph, satis-
fying degree constraints, with bounded weight

Theorem 2.23. Let R be the k-edge-connected spanning subgraph, satis-
fying degree constraints, as was created with Algorithm 4 and let GOPT

k,b be
the minimum weight k-edge-connected b-matching. We have w(R) ≤ (2k +
1)w(GOPT

k,b ).

Proof. Let G−,b be a minimum weight b-matching and let MST be the min-
imum weight spanning tree. Note that the algorithm will have a total of k
iterations, and note that by Lemma 2.20 each iterations adds a weight of
at most 2w(MST ) to the graph from the previous iteration. Thus we get
w(R) ≤ w(G−,b)+2kw(MST ). We have that w(MST ) ≤ w(GOPT

k,b ) as GOPT
k,b

is a connected graph and MST is a minimum weight connected graph. Also
GOPT

k,b is a b-matching, while G−,b is a minimum weight b-matching and thus
w(G−,b) ≤ w(GOPT

k,b ). From these facts the result now follows.
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Chapter 3

Second Algorithm for

Approximating d-Regular

k-Edge-Connected Subgraph

Assume we have a k-edge-connected graph Gk,k = (Ek,k, Vk,k) where each
vertex has maximum degree k and a d-regular graph G−,d = (E−,d, V−,d).
We wish to create a k-edge-connected d-regular graph Gk,d. We do so by
starting with G−,d, which is d-regular, and adding edges of Gk,k without
changing the degree of any vertex (by removing other edges) until the new
graph Gk,d is also k-edge-connected. (It is impossible for Gk,d not to become
k-edge-connected in this process, as after adding all edges of Gk,k we would
have that Gk,k is a subgraph of Gk,d thus immaterially implying that Gk,d is
k-edge-connected.) First note that if d = k then Gk,k is d-regular as each
vertex has maximum degree k and for k-edge-connectedness each vertex has
to have at least degree k. Thus we can take Gk,d = Gk,k. Thus we can
assume d > k which implies that for each vertex v ∈ G−,d there is at least
one edge e = (v, u) ∈ G−,d with e 6∈ Gk,k. Also note that as long as Gk,k

is not a subgraph of G−,d (at which point we are surely done) there always
exists some edge e ∈ Gk,k with e 6∈ G−,d.

Algorithm 5 is our approximation algorithm for creating a k-edge-connected
d-regular graph for the case where d ≥ 2k − 1. Each loop we add an edge of
Gk,k to Gk,d. Then to keep Gk,d a d-regular graph we remove two edges in
Gk,d incident to the newly added edge and add the edge connecting the two
endpoints u2 and v2 of these newly added edges. To keep the graph simple
we require that none of the two newly added edges is already contained in
Gk,d. We shall later show that as long as Gk,d is not k-edge-connected and
d ≥ 2k − 1, we can always find edges which satisfy the conditions of this
algorithm.
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input : undirected complete graph G, edge weights w, d, k ∈ N
satisfying d ≥ 2k − 1, k-edge-connected subgraph Gk,k of G
where each vertex has maximum degree k, a d-regular
subgraph G−,d of G

output: k-edge-connected d-factor Gk,d of G
1 Gk,d ← G−,d

2 while Gk,d is not k-edge-connected do

3 Take an edge (u1, v1) ∈ Gk,k with (u1, v1) /∈ Gk,d and add it to Gk,d

4 Remove some edges (v1, u2), (u1, v2) from Gk,d that are not
contained in Gk,k.

5 Add an edge (u2, v2) 6∈ Gk,d to Gk,d and go to step 2

6 end

Algorithm 5: Second algorithm for creating a k-edge-connected d-
regular graph with bounded weight

Lemma 3.1. The graph Gk,d created by algorithm 5 is a d-regular graph.

Proof. First note that at the start of the algorithm Gk,d is d-regular as G−,d

is d-regular. Thus we only need to prove that after every iteration of the
loop the graph remains d-regular. In this algorithm we add edges (u1, v1)
and (u2, v2) and we remove edges (u1, v2) and (u2, v1). Thus for for all four of
these vertices we remove one adjacent edge and add an adjacent edge, leaving
their degree the same. The degree of all other vertices does not change at
all during the loop. At the end of the loop every vertex still has the same
degree as at the beginning of the loop and thus Gk,d is still d-regular.

Lemma 3.2. The graph Gk,d created by by algorithm 5 is a simple graph.

Proof. Initially Gk,d is a simple graph as G−,d is a simple graph. Any edge
we add during the algorithm is an edge that at that time is not already
contained within Gk,d. Thus at any point in the algorithm, Gk,d remains a
simple graph.

Lemma 3.3. The graph Gk,d created by by algorithm 5 is k-edge-connected.

Proof. If the algorithm terminates, this is trivial.

Lemma 3.4. Assume d ≥ 2k−1, if Gk,d is not k-edge-connected we can find
two edges e1 = (u1, v1), e2 = (u2, v2) satisfying the following conditions:

1. e1, e2 /∈ Gk,d
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u1 v1

v2 u2

e1

e3 e4

e2

Figure 3.1: Picture for the proof of Lemma 3.4. The cycle we wish to con-
struct in Lemma 3.4.

2. e1 ∈ Gk,k

3. There exist edges e3 and e4, adjacent to both e1 and e2, satisfying
e3, e4 ∈ Gk,d and e3, e4 /∈ Gk,k (w.l.o.g. we can assume e3 = (u1, v2)
and e4 = (v1, u2)

Proof. If Gk,d is not k-edge-connected than we know there exists a vertex
set X with d(X) ≤ k − 1 in Gk,d. As Gk,k is k-edge-connected we know
d(X) ≥ k in Gk,k. Thus there exists at least one edge e1 = (u1, v1) ∈ Gk,k

with e1 6∈ Gk,d going from X to X.
As Gk,k has maximum degree k we know that u1 and v1 have at most k−1

incident edges that are contained in both Gk,d and Gk,k. As Gk,d is d-regular
we thus have that u1 and v1 have at least d − k + 1 other edges in Gk,d, all
of which are not contained in Gk,k. Thus we have d − k + 1 choices for u2

and v2 such that e3, e4 ∈ Gk,d and e3, e4 /∈ Gk,k. We are done if it is possible
to choose u2 and v2 such that the edge e2 = (u2, v2) is not contained in Gk,d.
As then we have that e1, e2 /∈ Gk,d, e1 ∈ Gk,k and e1 and e2 are incident to
two edges e3 and e4 satisfying e3, e4 ∈ Gk,d and e3, e4 /∈ Gk,k thus satisfying
all conditions of the lemma.

Our result follows after we have proven that we can find such an edge
e2 = (u2, v2).

Thus assume to the contrary that all choices for u2 and v2 lead to either
the existence of an edge (u2, v2) in Gk,d or to u2 = v2. We can find a contra-
diction by proving that d(X) ≥ k. Refer to figure 3 as an illustration of the
following construction.

Let u∗
i with i ∈ {1, . . . , 1 + d − k} be the possible choices for u2 and v∗i

with i ∈ {1, . . . , 1 + d − k} be the possible choices for v2. For any i and j
where u∗

i = v∗j we have the following path from u1 to v1: (u1, u
∗
i = v∗j , v1).

Now remove the vertices for which u∗
i = v∗j for some i and j from our sets
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u1 v1

u′1 u′2 u′k−1

u∗1 = v∗1

u∗2 = v∗2

u∗p = v∗p

u∗p+1

u∗p+2

u∗p+3

u∗d−k+1

v′1 v′2 v′k−1

v∗p+1

v∗p+2

v∗p+3

v∗d−k+1

e1

Figure 3.2: Picture for the proof of Lemma 3.4. Blue edges are a part of Gd,d

and possibly also of Gk,d, the green edge only exists in Gd,d and we prove
that at least one of the red edges does not exist in Gk,d. (There are possibly
more than d− k + 1 vertices connected to ui or vi via black edges, although
we need only look at the depicted vertices.)
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{u∗
i |i ∈ {1, . . . , 1 + d − k}} and {v∗j |j ∈ {1, . . . , 1 + d − k}}. Clearly if

we found p paths (u1, u
∗
i = v∗j , v1) our sets now still have d − k + 1 − p

vertices. Relabel the vertices to {u∗
i |i ∈ {1, . . . , 1 + d− k − p}} and {v∗j |j ∈

{1, . . . , 1 + d − k − p}}. Now for these vertices we have the following path
from u1 to v1: (u1, u

∗
i , v

∗
i , v1) for i = 1, . . . , d− k+1− p in Gk,d. We are sure

these paths exist as e2 = (u2, v2) ∈ Gk,d for all choices for u2 and v2 where
u2 6= v2 and we already eliminated the possibility of u2 = v2.

We have thus created a total of d − k + 1 paths from u1 to v1 in Gk,d.
Note that each path uses a single vertex u∗

i and a single vertex u∗
j (though

possibly u∗
i = v∗j ) and none of these paths have overlapping vertices outside

of u1 and v1. Thus we have created d − k + 1 vertex disjoint paths from u1

to v1. Clearly these paths are also edge disjoint. As d ≥ 2k − 1 we have
d− k + 1 ≥ k and thus u1 and v1 are locally k-edge-connected in Gk,d.

However as u1 and v1 are locally k-edge-connected we must have that any
set Y ⊆ V with u1 ∈ Y and v1 /∈ Y satisfies d(Y ) ≥ k in Gk,d. However this
contradicts our initial choice of e1 as we know the existence of a set X ⊆ V
with u1 ∈ X, v1 /∈ X and d(X) ≤ k − 1 in Gk,d.

Thus there must exists an edge e2 = (u2, v2) /∈ Gk,d with u2 6= v2.

Lemma 3.5. The algorithm terminates in polynomial time.

Proof. The algorithm eventually terminates, because if we we add an edge
from Gk,k to Gk,d, we have increased the number of edges of Gk,k that Gk,d

contains by 1. This is because all the edges we removes from Gk,d are not
edges contained in Gk,k. As Gk,k has a finite amount of edges we can only do
this step a finite number of times (O(kn)). Each time we change Gk,d we may
have to reconsider some of the edges (u, v) ∈ Gk,k that we previously did not
need to add to Gk,d. However as we change Gk,d at most once for each edge
in Gk,k, the number of edges to reconsider is also bounded by the number of
edges in Gk,k. Thus we need to check the same edge at most O(kn) times
and there are at most O(kn) edges we need to check, each check requires us
to check less than 3d other edges, thus we can construct Gk,d in O(3dk2n2)
time. (Though with good book keeping, the algorithm’s worse case running
time can likely be decreased.)

Lemma 3.6. Assume d ≥ 2k − 1 and edge weights satisfying the triangle
inequality. Then there exists a (5 + 2

k
)-approximation algorithm for the min-

imum weight k-edge-connected d-regular graph problem.

Proof. We already showed that the algorithm runs in polynomial time and
that it creates a k-edge-connected d-regular graph in previous lemmas. We
are left with proving the approximation ratio. Now for any loop in the
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algorithm we have a cycle consisting of four edges (e1, e2, e3, e4), where e1 ∈
Gk,k and e3 are added, while e2, e4 ∈ G−,d are removed from Gk,d. By the
triangle inequality we know that w(e3) ≤ w(e4) + w(e1) + w(e2). Thus we
know the weight we added to Gk,d equals w(e1) + w(e3) − w(e2) − w(e4) ≤
2w(e1). As we alterGk,d at most once for every edge e1 ∈ Gk,k and at the start
of the algorithm we have Gk,d = G−,d, we have w(Gk,d) ≤ w(G−,d)+2w(Gk,k).
Let GOPT

k,d be the minimal weight k-edge-connected d-regular graph. For
G−,d we can find the minimum weight d-regular graph. Clearly we have
w(G−,d) ≤ w(GOPT

k,d ) asGOPT
k,d is also a d-regular graph andG−,d has minimum

weight amongst the d-regular graphs. For Gk,k we can find a low weight k-
regular k-edge-connected graph that is at most 2 + 1

k
times as expensive as

the minimum weight k-edge connected graph. Thus as GOPT
k,d is also a k-edge

connected graph we have w(Gk,k) ≤ (2+ 1
k
)w(GOPT

k,d ). Putting it all together

we find that w(Gk,d) ≤ w(G−,d) + 2w(Gk,k) ≤ (5 + 2
k
)w(G)

3.1 Vertex Connectivity Case

Algorithm 5 does in fact also work when we replace edge connectivity with
vertex connectivity resulting in Algorithm 6.

input : undirected complete graph G, edge weights w, d, k ∈ N
satisfying d ≥ 2k − 1, k-vertex-connected subgraph Gk,k of G
where each vertex has maximum degree k, a d-regular
subgraph G−,d of G

output: k-vertex-connected d-factor Gk,d of G
1 Gk,d ← G−,d

2 while Gk,d is not k-vertex-connected do

3 Take an edge (u1, v1) ∈ Gk,k with (u1, v1) /∈ Gk,d and add it to Gk,d

4 Remove some edges (v1, u2), (u1, v2) from Gk,d that are not
contained in Gk,k.

5 Add an edge (u2, v2) 6∈ Gk,d to Gk,d and go to step 2

6 end

Algorithm 6: Algorithm for creating a k-vertex-connected d-regular
graph with bounded weight

This time we assume we have a k-vertex-connected graphGk,k = (Ek,k, Vk,k)
where each vertex has maximum degree k, rather than a k-edge-connected
graph. We still have our d-regular graph G−,d = (E−,d, V−,d) and we now
wish to create a k-vertex-connected d-regular graph Gk,d. Our algorithm is
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exactly the same as before except now checking if Gk,d is k-vertex-connected
rather then checking for edge connectivity:

The only Lemmas that used the fact that Gk,k is k-edge-connected are
Lemma 3.4 and Lemma 3.6.

For Lemma 3.4 we note that we found k vertex disjoint paths rather than
just k edge disjoint paths from u1 to v1. Additionally we now start out with
a ui and a vi that are disconnected by a k − 1 vertex cut rather than by a
k− 1 edge cut. However outside of these details the proof remains the same.
For completeness we have added the proof of Lemma 3.4 for the k-vertex
connected case below.

Lemma 3.7. Assume d ≥ 2k − 1, if Gk,d is not k-vertex-connected we can
find two edges e1 = (u1, v1), e2 = (u2, v2)s satisfying the following conditions:

1. e1, e2 /∈ Gk,d

2. e1 ∈ Gk,k

3. e1 and e2 are incident to two edges e3 and e4 satisfying e3, e4 ∈ Gk,d and
e3, e4 /∈ Gk,k (w.l.o.g. we can assume e3 = (u1, v2) and e3 = (v1, u2)

Proof. As Gk,d is not k-vertex-connected there must be some edges e1 =
(u1, v1) contained in Gk,k that are not contained in Gk,d.

Recall that Gk,d is k-vertex-connected if |V | > k (which should always
be true due to the minimum degree of each vertex) and |N(X)| ≥ k for all
nonempty X ⊆ V with |X| ≤ |V | − k. As Gk,d is not k-vertex-connected we
can thus find a set X ⊆ V with |X| ≤ |V | − k and |N(X)| ≤ k − 1. As Gk,k

is k-vertex-connected we also know |N(X)| ≥ k in Gk,k. Thus there exists
some edge going from X to X contained in Gk,k that is not contained in Gk,d.
Choose one such edge to be e1 = (u1, v1) (Thus we ensured e1 ∈ Gk,k and
e1 /∈ Gk,d.) We can assume w.l.o.g. that u1 ∈ X and v1 /∈ X.

As Gk,k has maximum degree k we know that u1 and v1 have at most
k − 1 incident edges that are contained in both Gk,d and Gk,k. As Gk,d is
d-regular we thus have that u1 and v1 have at least d− k + 1 other edges in
Gk,d, all of which are not contained in Gk,k. Thus we have d− k + 1 choices
for u2 and v2 such that e3, e4 ∈ Gk,d and e3, e4 /∈ Gk,k. We are done if it is
possible to choose u2 and v2 such that the edge e2 = (u2, v2) is not contained
in Gk,d and u2 6= v2 (this latter condition is required as Gk,d must remain a
simple graph). As then we have that e1, e2 /∈ Gk,d, e1 ∈ Gk,k and e1 and e2
are incident to two edges e3 and e4 satisfying e3, e4 ∈ Gk,d and e3, e4 /∈ Gk,k

thus satisfying all conditions of the lemma.
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Our result follows after we have proven that we can find such an edge
e2 = (u2, v2) /∈ Gk,d. Thus assume to the contrary that all choices for u2 and
v2 lead to either the existence of an edge (u2, v2) in Gk,d or to u2 = v2.

Let u∗
i with i ∈ {1, . . . , 1 + d − k} be the possible choices for u2 and v∗i

with i ∈ {1, . . . , 1 + d − k} be the possible choices for v2. For any i and j
where u∗

i = v∗j we have the following path from u1 to v1: (u1, u
∗
i = v∗j , v1).

Now remove the vertices for which u∗
i = v∗j for some i and j from our sets

{u∗
i |i ∈ {1, . . . , 1 + d − k}} and {v∗j |j ∈ {1, . . . , 1 + d − k}}. Clearly if

we found p paths (u1, u
∗
i = v∗j , v1) our sets now still have d − k + 1 − p

vertices. Relabel the vertices to {u∗
i |i ∈ {1, . . . , 1 + d− k − p}} and {v∗j |j ∈

{1, . . . , 1 + d − k − p}}. Now for these vertices we have the following path
from u1 to v1: (u1, u

∗
i , v

∗
i , v1) for i = 1, . . . , d− k+1− p in Gk,d. We are sure

these paths exist as e2 = (u2, v2) ∈ Gk,d for all choices for u2 and v2 where
u2 6= v2 and we already eliminated the possibility of u2 = v2.

We have thus created a total of d−k+1 paths from u1 to v1 in Gk,d. Note
that each path uses a single vertex u∗

i and a single vertex u∗
j (though possibly

u∗
i = v∗j ) and none of these paths have overlapping vertices outside of u1 and

v1. Thus we have created d − k + 1 vertex disjoint paths from u1 to v1. As
d ≥ 2k− 1 we have d− k+1 ≥ k and thus u1 and v1 are k-vertex-connected
in Gk,d.

However as u1 and v1 are k-vertex-connected we must have that any set
Y ⊆ V with |Y | ≤ |V | − k, u1 ∈ Y and v1 /∈ Y satisfies |N(Y )| ≥ k in Gk,d.
However this contradicts our initial choice of e1 as we know X ⊆ V with
|X| ≤ |V | − k, u1 ∈ X, v1 /∈ X and |N(X)| ≤ k − 1.

Thus there must exists an edge e2 = (u2, v2) /∈ Gk,d.

For Lemma 3.6 the only change is that the statement ”For Gk,k we can
find minimum weight k-regular k-edge-connected graph that is at most 2+ 1

k

times as expensive as the minimum k-edge connected graph.” no longer
holds. However we do know that when |V | ≥ 2k there is a (2 + k−1

n
+ 1

k
)-

approximation of the minimum k-vertex connected graph. From our require-
ment that d ≥ 2k − 1, we automatically have that |V | ≥ 2k is satisfied and
thus this we can always use this (2+ k−1

n
+ 1

k
)-approximation of the minimum

k-vertex connected graph. Leaving the rest of the proof the same we thus
end up with a (5 + 2(k−1)

n
+ 2

k
)-approximation algorithm for the minimum

weight k-vertex-connected d-regular graph problem when d ≥ 2k − 1.
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Chapter 4

Summary and future work

4.1 Summary

In this thesis we have described various problems involving the creation of
low cost networks that satisfy certain connectivity requirements, and sum-
marized some of the work that has been done in this area. We then described
two approximation algorithms for creating a low weight k-edge-connected d-
regular subgraph under the assumption that edge weights satisfy the triangle
inequality and proved their correctness.

The first of these algorithms is Algorithm 3, which gives a (2k − 1) ap-
proximation ratio under the condition that d ≥ 2

⌈

k
2

⌉

. This algorithm can
also be generalized to work with arbitrary degree requirements bv, where each
vertex v is to have a degree of bv. This results in Algorithm 4, which has an
approximation ratio of (2k + 1) and requires that bv ≥ 2

⌈

k
2

⌉

for all vertices
v.

The second algorithm is Algorithm 5, which gives a (5+ 2
k
) approximation

ratio, but requires the restriction that d ≥ 2k−1. The same type of algorithm
can also be used for creating a low weight k-vertex-connected d-regular sub-
graph. This results in Algorithm 6 which is an (5+ 2(k−1)

n
+ 2

k
)-approximation

algorithm for the minimum weight k-vertex-connected d-regular graph prob-
lem. This algorithm also requires the restriction that d ≥ 2k − 1.

4.2 Future work

Algorithm 3 and Algorithm 4 require that every vertex needs to have a degree
of at least 2

⌈

k
2

⌉

. This condition only has an effect when k is odd and we
require that some vertices have a degree of exactly k. It might be possible
to extend this algorithm such that it will work without this condition. This
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could for instance be useful in real world problems where one wants to create
a connected graph and some vertices are to have a degree of one. For this
case one can use algorithm Algorithm 4, but there will be some connected
components that do not contain a 2-edge-connected components, which the
current algorithm requires for its proof of correctness. One can still apply the
algorithm on the components that do have 2-edge-connected components, but
after the algorithm ends there will still be some components T1, ..., Tc (which
will be trees) that are not connected to the rest of the graph R. If the original
degree specification bv is feasible, it is possible to connect these trees to the
rest of the graph. One option to do so would be to remove an edge contained
in a cycle of R and an edge contained in some tree Ti and to subsequently
connect the incident vertices of the tree, with those of the cycle. Doing this
for every tree Ti would create a connected graph with the degree specification
bv. It is still uncertain if such an approach can be proven to have a solution
that is at most a constant factor larger than that of the optimal solution.

Additionally it may be possible to improve the approximation ratio of
Algorithm 3 and Algorithm 4 by transforming a i-edge-connected graph im-
mediately into a (i + 2)-edge-connected graph. An indication that this may
be possible is the paper of Cornelissen et al. [5] which uses a similar approach
to transform a 0-edge-connected graph into a 2-edge-connected graph at the
same cost Algorithm 4 requires to transform an i-edge-connected graph into
a (i+ 1)-edge-connected graph.
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