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1 Introduction

Energy efficient bipedal locomotion is one of the research areas of the Robotics and Mechatronics
(RAM) group at the University of Twente. This MSc project continues that research with the
optimization of bipedal walking gaits and the application of that optimization to a bipedal walker
with constant knee stiffness.
Previous students investigated bipedal walking gaits with the spring loaded inverted pendulum (SLIP)
model. A swing leg was added to the model [1] and the swing leg trajectories were chosen by an
educated guess. The hip and swing leg trajectories of the segmented-SLIP (S-SLIP) model were
used as references for the control of a bipedal robotic walker [2] [3]. Simulations showed that the
gait cycle behaviour of the SLIP and S-SLIP model was not similar to that of the robotic walker.
Therefore, using SLIP or S-SLIP trajectories as references for the control of a robotic walker did not
seems like a viable idea. One of the recommendations in [3] indicated the need for higher quality
reference trajectories.

The paper, presented in section 2, proposes a novel optimization method for the bipedal walker
gaits with constant knee stiffness. Power of the used optimization method is that it optimizes over
the state variables and inputs for the complete gait at once [4]. The bipedal walker has two legs,
both with an upper and lower leg. There is a torsion spring on the knee. The parameters of the
spring, the spring constant and the equilibrium position, are constant during walking. However, the
spring parameters are part of the optimization.
The walker is optimized in three steps, the distinction between the three is how the knee spring is
used in the optimization. First, the knee spring constant is set to zero. Second, the knee spring
constant is part of the optimization. Third, the knee spring constant and equilibrium position are
part of the optimization.
The optimizations show that the torque that is needed for a walking gait is reduced by adding
the knee springs to the bipedal walker. Remarkable is that it also reduces the input torques to
the hip joint that has no spring. The optimizations also show that the shape of the swing foot
trajectories change with increasing gait velocities. So, imposing trajectories that have the same
shape for different velocities, as was done before, will thus not result in optimal gaits with regard to
energy efficiency.

Section 3 presents details of the optimization that are needed for the implementation of the
optimization. The conclusions of the MSc project are in section 4. Final recommendations are
reported in section 5.
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2 Paper: Optimizing Bipedal Walking Gaits with Constant Knee
Stiffness

Abstract – The paper focuses on bipedal locomotion and proposes an optimization method that
simultaneously optimizes the state variables and the inputs and applies the optimization to a bipedal
walker with constant knee springs. The optimization method is a direct local collocation method.
The bipedal walking gait is optimized in three steps. First, the bipedal walker is optimized with the
spring stiffness set to zero to get nominal gaits. Secondly, the walker gaits and the knee stiffness
are optimized. Thirdly, the gaits are optimized together with the knee stiffness and its equilibrium
position. The results are twofold. The shape of the swing foot trajectory changes when the velocity
increases. So using the same shape of foot trajectories for all gait velocities does not create energy
efficient walking gaits. The knee spring also reduces the amount of torque supplied to the walker
by at most 91%. Remarkable is that adding knee springs to the bipedal walker also decreases the
input torque to the hip joint.
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Optimizing Bipedal Walking Gaits with Constant Knee Stiffness

Klaas J. Russcher∗, Georg Still∗∗, and Raffaella Carloni∗

Abstract— The paper focuses on bipedal locomotion and
proposes an optimization method that simultaneously optimizes
the state variables and the inputs and applies the optimization to
a bipedal walker with constant knee springs. The optimization
method is a direct local collocation method. The bipedal
walking gait is optimized in three steps. First, the bipedal
walker is optimized with the spring stiffness set to zero to
get nominal gaits. Secondly, the walker gaits and the knee
stiffness are optimized. Thirdly, the gaits are optimized together
with the knee stiffness and its equilibrium position. The results
are twofold. The shape of the swing foot trajectory changes
when the velocity increases. So using the same shape of foot
trajectories for all gait velocities does not create energy efficient
walking gaits. The knee spring also reduces the amount of
torque supplied to the walker by at most 91%. Remarkable is
that adding knee springs to the bipedal walker also decreases
the input torque to the hip joint.

I. INTRODUCTION

The research of bipedal locomotion is inspired by human
walking. Human walking is both energy efficient and robust.
Most bipedal walking robots are either energy efficient or
have stable walks. One approach of creating stable, energy
efficient gaits is to control bipedal robotic walkers to energy
efficient trajectories. However, it is a challenge to find energy
efficient walker gaits.

The essentials of bipedal walking are captured by the
spring-loaded inverted pendulum model (SLIP) [1]. The
legs are modelled as springs. It walks on a limit cycle
when the initial conditions are correctly chosen and the
gait do not require an input torque. The hip trajectory and
ground reaction forces resemble those of human walking.
The limit cycles of the SLIP model are found with direct
shooting optimization method. This method optimizes the
initial conditions by simulation one gait step and checking
if the gait step is on a cycle.

[2] extended the SLIP-model with a swing leg that has
a knee. The way the foot is retracted was chosen by an
educated guess about the optimal way to do it. The resulting
trajectories of that model were later implemented on a real
robotic walker [3] [4]. The dynamics of bipedal robotic
walker are different from the SLIP model with swing leg.
So forcing SLIP trajectories on the bipedal robotic walker is
not energy efficient. Also the swing leg is not moved in a
energy efficient way. This is the reason [4] indicated the need

∗K.J. Russcher and R. Carloni are with the Robotics
and Mechatronics Laboratory, University of Twente, The
Netherlands k.j.russcher@student.utwente.nl,
r.carloni@utwente.nl

∗∗G. Still is with the Department of Applied Mathematics, University
of Twente, The Netherlands g.still@utwente.nl

for higher quality reference trajectories to make the model
more energy efficient.

This paper proposes a way to optimize gaits of bipedal
walkers with the direct local collocation method [5]. This
optimization does not require simulations, it updates the
input and the state variables simultaneously. The bipedal
walker gaits are optimized with respect to the input torques
to the walker. The bipedal walker is modelled such that
it makes continuous simulation possible. Optimizing that
model makes the contact dynamics part of the optimization.
The optimization is only constraint by the velocity of the
walker. The optimization is applied to the walker to see if
springs on the knees with fixed parameters can reduce the
torque that is required for a certain gait velocity. Strength
of the optimization method proposed in this paper is that it
simultaneously optimizes the state variables as well as the
inputs for the whole gait cycle.

The rest of this paper is as follows. Section II describes
the model of the bipedal walker. The gait optimization is
explained in section III. The results of the gait optimization
are shown in section IV. The paper is concluded in section V.

II. BIPEDAL WALKER

This section describes the bipedal walker and its mathe-
matical model. The bipedal walker is in the sagittal plane
(Fig. 1). The walker consist of two legs, both with an upper
and a lower leg. The configuration of the walker is described
by six generalized coordinates q and six corresponding
momenta p. There is a point mass mhip at the hip, a point
mass mul at the middle of the upper leg, and a point mass mll

at the middle of the lower leg. This set-up is preferred over
one with a point mass at the hip and at the feet, to avoid that
the mass matrix, expressed in generalized coordinates, has
dependent rows in some configurations. That makes the mass
matrix not invertible and causes problems during simulation.
The torsion springs on the knees are identical and have a
fixed spring constant K and fixed equilibrium position qeq .
Inputs u1, u2 and u3 are torques on respectively the hip joint
and the knee joints. When the feet are in contact with the
ground, a reaction force will prevent them from penetrating
the ground.

The walker is modelled as a Hamiltonian system with non-
linear complementarity constraints. The Hamiltonian system
describes the dynamics of the system, and the nonlinear
complementarity constraints the contact with the ground.
The model is a continuous simulation model, the events
are caught by the complementarity constraints. Having a
model suited for continuous simulation is important because
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Fig. 1. The bipedal walker. Its pose is described by the coordinates q1 to
q6. The inputs u1, u2, and u3 are input torques. g1 and g2 are the end
positions of the legs. The knee springs are zero-length rotational springs.

the optimization presented in this paper only works with
continuous simulation models.

A. Mathematical Model

The Hamiltonian system is described by the energy func-
tion of the system, the Hamiltonian (H), and the external
forces on the system. The Hamiltonian is the sum of the
kinetic energy T and the potential energy V :

H(q,p) = T (q,p) + V (q) (1)

The kinetic energy is given by the equation:

T (q,p) =
1

2
p>M(q)−1p

where M(q) is the mass matrix expressed in generalized
coordinates. S(q) is the mapping of the generalized coor-
dinates q to the x- and y-positions of the masses. Ṡ(q) is
the velocity of the masses in x- and y-direction. The kinetic
co-energy is:

Tco(q, q̇) =
1

2
Ṡ(q)>M0Ṡ(q) (2)

Time derivative Ṡ(q) is the Jacobian of S(q) times the
velocities of the generalized coordinates:

Ṡ(q) =
∂S(q)

∂q
q̇ = JS(q)q̇ (3)

Equation (2) and (3) combined give the expression for
M(q):

Tco(q, q̇) =
1

2
q̇>JS(q)

>M0JS(q)q̇ =
1

2
q̇>M(q)q̇

The potential energy of bipedal walker is the gravitational
energy of the masses plus the energy stored in the knee
springs:

V (q) = q2mhipg + yul1mulg + yll1mllg + yul2mulg + . . .

yll2mllg +
1
2K(q4 − qeq)2 + 1

2K(q6 − qeq)2

The derivatives of the Hamiltonian (1) to q and p are the
dynamics of the system without external forces. The external

forces are the torque inputs on the hip and knees (u), and the
ground reaction forces (GRF’s) on the feet (λ). The GRF’s
act on the body via the transpose of the Jacobian of the feet
positions g1 and g2.

[
q̇
ṗ

]
=

[
0 I
−I 0

][∂H
∂q
∂H
∂p

]
+

[
0
B

]
u . . .

+

[
0

Jg1(q)
>

] [
λ+1x − λ

−
1x

λ1y

]
. . .

+

[
0

Jg2(q)
>

] [
λ+2x − λ

−
2x

λ2y

]
,

u =



u1
u2
u3


 , B =



0 0 1 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 1



>

(4)

The constraints to the Hamiltonian system are the non-
linear complementarity constraints (5), which represent the
contact of the feet with the ground [6]. A complementarity
constraint connects two related non-negative variables whose
product is equal to zero, which means that at least one of
the two variables is zero. There is a set of complementarity
constraints for each foot (j = 1, 2). The variable µ in (5b)
is the friction constant.

0 ≤ gjy ⊥ λjy ≥ 0 (5a)

0 ≤ µλjy − λ+jx − λ
−
jx
⊥ γj ≥ 0 (5b)

0 ≤ γj + Jgjx
(q)q̇ ⊥ λ+jx ≥ 0 (5c)

0 ≤ γj − Jgjx
(q)q̇ ⊥ λ−jx ≥ 0 (5d)

These four equations together describe the contact of the foot
with the ground. The complementarity constraints describe
three kinds of behaviour. The foot can be off the ground,
fixed to the ground, and slide over the ground. How that is
represented by the complementarity constraints is explained
next.
• The foot is off the ground. The normal force λjy is then

zero (5a) and the friction forces λ+jx and λ−jx are also
zero (5b). The foot has a velocity and so the left-hand
side (LHS) either (5c) or (5d) is non-negative, the slack-
variable γj makes the other LHS also non-negative.

• The foot is fixed to the ground. gjy is zero and the
normal force λjy prevents the foot from penetrating the
ground (5a). The LHS of (5b) is non-zero because the
friction forces λ+jx and λ−jx are inside the friction cone
and so the slack variable γj is zero. The velocity of
the foot is zero because with γj = 0 the LHS’s of (5c)
and (5d) can only be non-negative when the velocity
of the foot is zero. The friction forces λ+jx and λ−jx can
have any non-negative value, as long as they keep the
velocity in x-direction zero and are inside the friction
cone.

• The foot is sliding over the ground. The foot is in
contact with the ground and there is a normal force
on the foot (5a). The friction force λ+jx or λ−jx is on
the boundary of the friction cone, so the LHS of (5b) is
zero. The slack-variable γj makes the LHS of either (5c)



or (5d) zero, this ensures that there is only a friction
force in the direction opposite to the sliding direction.

The bipedal walker, represented by the Hamiltonian
system with complementarity constraints, is completely
described by a total of 23 variables.

III. GAIT OPTIMIZATION

The bipedal walking gaits are optimized with respect to
the input torques applied to the walker. A walking gait is
a continuous repetition of gait cycles, the time between
two consecutive foot impacts of the same leg. Therefore,
optimizing one gait cycle optimizes the complete walking
gait. Optimal solution is a zero-input gait cycle, a gait which
does not require input torques when it is on the gait cycle.

The gait cycle is, for the optimization, divided into N
equal time steps. The optimization minimizes the objective
function, which is a function of the inputs to the system over
all N steps. The minimization is subject to the constraint that
the walking gait obeys the Hamilton system dynamics. The
Hamilton system is in turn subject to the contact complemen-
tarity constraints. So a mathematical program with comple-
mentarity constraints (MPCC) is obtained [7]. However, there
are not many solvers that can handle MPCC’s. Therefore,
this paper proposes to approximate the complementarity con-
straints by standard equality constraints. When the standard
equality constraints are met they have the properties of
complementarity constraints.
All the constraints are now equality constraints and the bi-
level program is formulated as a mathematical program with
equilibrium constraints (MPEC). The state and input vari-
ables are simultaneously optimized by solving the MPEC.
This optimization is categorized as a direct local collocation
method [8].

As said, the gait cycle the divided into N time steps.
Therefore, the total number of variables to optimize is N
times the number of variables in the subjected system. This
problem can be solved because the constraints at time step
i only depend on the variables of the step i − 1 and i. The
Jacobian of the constraints is a sparse matrix and this makes
it a sparse problem, which makes the problem solvable.

A. Objective Function

The goal of the gait optimization is to minimize the input
torques u1, u2, and u3 that are applied to the joints of the
bipedal walker. This is represented by an objective function
that squares the input torques and sums them over the N
steps of the gait cycle.

F (u) =
N∑

i=1

1
2

(
u21i + u22i + u23i

)

B. Dynamic Constraints

The dynamic constraints are represented by the implicit
backward Euler integration method because that is more sta-
ble than explicit integration methods. The Euler integration
is rewritten as equal to zero constraints. The time-derivatives

of the state variables q and q are given by the Hamiltonian
model in (4). The dynamic constraints connect each step to
the previous step. This creates the cycle behaviour of the
gait. The first step is connected to the last step by setting
i− 1 = N for i = 1.

[
qi

pi

]
−
[
qi−1
pi−1

]
− hi

[
q̇i

ṗi

]
= 0

C. Complementarity Constraints

The complementarity constraints are rewritten with the
help of the Fischer-Burmeister complementarity function.

φFB(a, b) =
√

(caa)2 + (cbb)2 − (caa+ cbb) = 0 (6)

The complementarity properties are satisfied when this func-
tion is zero, so when at least one of a or b is zero. The
constants ca > 0 and cb > 0 scale the variables a and
b to make them the same order of magnitude. Each of
the complementarity constraints in (5) has its own scaling
constant.

Problem for the optimization is that the derivative of this
function is not defined at (a, b) = (0, 0). This causes prob-
lems when the variables want to cross this point during opti-
mization. Suggestion for creating a smooth complementarity
function is to square the Fischer-Burmeister complementarity
function [9].

ϕFB(a, b) =
1
2φFB(a, b)

2 = 0

This makes the function smooth around the origin, while
keeping the complementarity properties.

The choice of ca and cb in (6) is important for the
numerical stability of the minimization method. After many
simulations it turned out that the best results were obtained
by using the next scaling constants.

ca =
c1

max( a1, . . . , aN )

cb =
c2

max( b1, . . . , bN )

(7)

c1 and c2 are parameters that are determined by tests. They
only depend on the walker’s parameters and not on the
velocity of the walker or the forces applied to the walker.
The scaling constants ca and cb are updated in each iteration
of the optimization.

IV. RESULTS

The gait optimization (section III) is used for optimizing
the gaits of the bipedal walker (section II). The optimization
is implemented in MATLAB R2014a. MATLAB solves the
optimization with the large-scale non-linear optimization
package IPOPT [10]. IPOPT uses the linear solver MA57-
solver, which is a solver for sparse symmetric systems of
linear equations [11].
The first and the second half of the gait cycle are identical
when the variables of leg 1 q3 and q4 are relabelled to the
variables of leg 2 q5 and q6, and vice versa. This means that
when the relabelling is done, it is sufficient to optimize half
a gait cycle. This effectively cuts the number of optimizing



points in half. N = 200 is used for the optimization. The
results are shown for one gait cycle.

The total mass of the walker is 75 kg. The weight is
distributed over the hip, upper leg , and lower leg and they
account for respectively 60%, 15%, and 5% of the walkers
weight, as in a average human [12]. The length of the legs
is 1m, 0.50m for both leg segments.
Boundaries are imposed on the configuration of the bipedal
walker to prevent unnatural walking gaits. The upper legs
cannot go above hip height, so the angles q3 and q5 are
bounded by − 1

2π and 1
2π. The lower legs cannot rotate

through the upper leg and are prohibited to overstretch,
so q4 and q6 are bounded by 0 and π. These boundaries
are constraints in the optimization and are not physically
enforced by end-stops on the walker. The momentum p1 is
bounded from below by 0 because backward walking gaits
are not of interest. Additional constraint is that the step size
of the foot is bound from below by the size that gives the
required velocity. If the step size is not constraint from below,
the input torques would be minimized by letting the walker
stand still.

First, the walking gaits are optimized with the torsion
spring stiffness K set to zero. The hip and knee torques
needed for walking come solely from the input torques u1,
u2, and u3. The resulting gaits are nominal gaits. They are
for analysis of the walking gaits and to verify if a torsion
spring on the knee can improve the energy-efficiency of the
bipedal walker gaits (section IV-A).
Second, the walking gaits are optimized together with the
torsion spring K on the knee. This is done for two situations,
one where equilibrium position of the spring is the stretched
leg position qeq = π, and one where the equilibrium position
of the spring qeq is also part of the optimization (section IV-
B).

The bipedal walker gaits are optimized for different gait
velocities. Small experiments show that the step-length of
walking increases with increasing velocity. The slowest gait
has a step-length of 0.20m with a step-time of 0.85 s. The
fastest gait has a step-length of 0.50m with a step-time of
0.46 s. Seven gaits were created by distributing the step-
length and the step-time evenly. These seven gaits have a
velocity from 0.84 to 3.92 km/h.

A. Nominal Gaits

Fig. 2 shows the angles of the hip and knee for nominal
gait cycles of the seven gait velocities. The trajectories of
the swing foot with respect to the stance foot [0 0] are in
figure 3. The stance foot is completely stretched, so the hip
makes a circle movement with a radius of 1 (length of leg)
around [0 0] that travels half the distance of the swing foot.

The results show that the angular rotation of the hip and
knee increase with increasing velocity. The knee angle at
lower gait velocities has two dents in the swing phase. The
second dent increases with increasing velocity and the two
dents ‘melt’ together at a certain undetermined gait velocity
and form one large dent. This changes the trajectory of the
swing foot from a pendulum swing motion at lower gait
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Fig. 2. Angles of one leg for a complete gait cycle for 7 velocities from
0.84 to 3.92 km/h. The lighter the colour, the higher the gait velocity.
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Fig. 3. Trajectories of the swing foot with respect to the stance foot for 7
velocities from 0.84 to 3.92 km/h. The lighter the colour, the higher the
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velocities to a parabolic motion at higher velocities.

B. Walking Gaits with Knee Springs

The results of optimization the walker gait with the torsion
spring stiffness K and equilibrium position qeq are shown in
table I. Important value is F% which is the percentage ratio
of the objective function of the optimized gait with spring
to objective function of the nominal gait. Adding a spring
with qeq = π only decreases the input torques for lower gait
velocities. Adding an optimized spring with an optimized
equilibrium position decreases the objective function for
all gait velocities. That optimizing the equilibrium position
results in reduced input torques for all velocities is caused
by the fact that the function of the knee springs changes with
increasing velocity. At lower gait velocities the spring helps



TABLE I
SIMULATION RESULTS

Velocity K optimized K, qeq optimized

(kmh ) K(Nm
rad ) F 1

% K(Nm
rad ) qeq(rad) F 1

%

0.84 7.98 93 8.00 3.09 64
1.15 16.21 74 12.40 3.11 52
1.50 23.46 66 19.14 3.12 40
1.92 23.82 38 40.50 3.12 17
2.44 0.21 93 7.65 3.03 53
3.09 0.01 111 4.19 3.04 79
3.92 0.00 100 0.73 0.00 9
1 F% = 100 ·F/Fnom. F is the objective function value of
the optimized gait cycle, Fnom is the objective function
value of the nominal trajectory for that gait velocity.

to stretch the leg, but at the higher gait velocities it helps to
retract the leg.
Note that for the gait velocity of 3.09 km/h the nominal
trajectory is more efficient than the one with the optimized
torsion spring K. This is due to the fact that IPOPT had
problem to converge to the optimal solution. If adding a
spring does not help, the ratio should obviously be reduced
to 100 with a torsion spring constant of K = 0.

Fig. 4 and 5 show the hip and knee angles and torques
for a gait velocity of 1.15 km/h. The results of the other
gait velocities show similar behaviour. Using a spring with
a not-optimized equilibrium position alters the hip and knee
angles significantly. The angles of the nominal walking gaits
are approached by also optimizing the equilibrium position.
Remarkable is that adding a knee spring also decreases
the maximum torques supplied to the hip. Note that by
optimizing the equilibrium position qeq of the spring, the
input torques during the stance phase are higher.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method for optimizing bipedal
walker gaits and used it on a bipedal walker with knee
torsion springs. Nominal walking gaits showed that the angle
trajectories changes with the gait velocity. Optimizing the
only the knee spring constant decreased the input torques for
lower gait velocities, but not for the higher gait velocities.
Optimizing the knee spring constant as well as the equi-
librium position of the torsion spring reduced the required
input torques for all gait velocities. Remarkable result is that
not only the torques on the knees decreased, but also the
maximum torque supplied to the hip.
The resulting trajectories were noisy for approximately half
of the simulations. This is because the IPOPT solver is
not well suited for this problem. Suggestion is to use other
(commercial) solvers like SNOPT [13].
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[10] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[11] Hsl (2013). a collection of fortran codes for large scale scientific
computation. http://www.hsl.rl.ac.uk.

[12] P. De Leva, “Adjustments to zatsiorsky-seluyanov’s segment inertia
parameters,” Journal of biomechanics, vol. 29, no. 9, pp. 1223–1230,
1996.

[13] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM journal on optimiza-
tion, vol. 12, no. 4, pp. 979–1006, 2002.



H
ip

to
rq
u
e
(N

m
)

-0.5

0.0

0.5

% of gait cycle

K
n
ee

to
rq
u
e
(N

m
)

0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

Fig. 5. Input torques on the hip and knee for the nominal gait (–),
optimization of only the knee torque (- -), and optimization of the knee
spring and the equilibrium position (–). The gait velocity is 1.15 km/h.



3 Implementation of Optimization

This section explains details of the paper ‘Optimizing Bipedal Walking Gaits with Constant Knee
Springs’. For a proper understanding it is advised to first read the paper thoroughly. This section
can then be used to implement the theory of the paper.

3.1 Implementation in MATLAB

Most solver require that the objective function, the constraints, and their first derivatives are supplied
to the solver. The size of the equations is large, especially from the Jacobian of the constraints.
Putting them by hand in MATLAB will certainly cause problems. Luckily these functions are con-
structed from a few matrices; the mass-matrix, the positions of the foot, and the potential energy.
We also need the first and second order derivatives of these matrices.
Therefore, MuPAD is used to make it simpler. MuPAD is the symbolic engine build into MATLAB.
The matrices are put into MuPAD. Advantage of MuPAD is that it can calculate the first and second
derivatives of these matrices and it can export them to MATLAB. But before exporting the files to
MATLAB, it first optimizes them so calculations are not done twice.

3.2 Iterior Point Optimizer (IPOPT)

The interior point optimizer (IPOPT) is a is a software package for large scale non-linear optimization.
It is released as open source code under the Eclipse Public License (EPL). For more details about
IPOPT and how to install it we refer to [5].

IPOPT uses the interior point method to solve the problem. The constraints in the interior
point method are posed as barriers. There are a three options, that relate to how these barriers are
treated, that are crucial for enabling IPOPT to solve the optimization. These three options force
IPOPT not to be satisfied with the first local minimum that it finds. Further details are in the
IPOPT documentation [6].

mu_strategy = ’adaptive ’;

adaptive_mu_globalization = ’kkt -error ’;

mu_oracle = ’probing ’;

3.3 Mathematical Details

The goal is to optimize a walking gait with respect to the input torques. This is represented by
minimizing an objective function that is a function of those input torques. The constraints to
the problem follow from the Hamiltonian system dynamics. First part of the constraints are the
rewritten implicit backward Euler method for solving differential equations. Second part are the
complementarity constraints related to the dynamics. 0 ≤ a⊥b ≥ 0 means a ≥ 0, b ≥ 0 and
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a · b = 0. What these complementarity constraints exactly represent is explained in the paper.

min
{q1,..,qN ,p1,..,pN ,u1,..uN ,λ1,..,λN ,K,qeq}

N∑

i=1

1

2

(
u21i + u22i + u23i

)

s.t.∀ i ∈ {1, .., N},
[
qi
pi

]
−
[
qi−1
pi−1

]
− hi




[
∂H
∂p

−∂H
∂q

]
+

[
0
Bu

]

u1
u2
u3


+

[
0 0

∂g1
∂q

> ∂g2
∂q

>

]



λ+1x − λ
−
1x

λ1y
λ+2x − λ

−
2x

λ2y







i

= 0,

∀i : j ∈ {1, 2}

0 ≤ gj⊥ ⊥ λj⊥ ≥ 0,
0 ≤ µλj⊥ − λ+j> − λ

−
j> ⊥ γj ≥ 0,

0 ≤ γj +
∂gjx
∂q

>
q̇ ⊥ λ+jx ≥ 0,

0 ≤ γj − ∂gjx
∂q

>
q̇ ⊥ λ−jx ≥ 0

(1)

The model has 23×N + 2 optimization variables in total. 6 q, 6 p, 3 u, 6 λ, and 2 γ variables
for each time step. The torsion spring constant K and its equilibrium position qeq are constant for
the whole gait.
All lower-case letters that are not bold represent a single variable. Bold lower-case letters represent
a vector. There are two types of bold lower-case letters, q and q1.

q =
[
q1 q2 q3 q4 q5 q6

]>

q1 =
[
q11 , . . . , q1N

]>
(2)

Upper-case letters are matrices, except of course N which is the number of time steps.
The vector derivatives of a scalar have the following form.

∂H

∂q
=
[
∂H
∂q1

∂H
∂q2

∂H
∂q3

∂H
∂q4

∂H
∂q5

∂H
∂q6

]>
(3)

Complementarity Constraints The complementarity constraints can be written as two inequality
constraints and 1 equality constraint (4). These three constraints can be put into the optimization
software, but this requires an optimization package that can handle complementarity constraints.
Most of the packages do not offer that function and do therefore not know that the three constraints
are related to each other. This makes the optimization process hard.

0 ≤ a ⊥ b ≥ 0

a ≤ 0, b ≤ 0, a · b = 0
(4)

Therefore, the complementarity constraints are rewritten with the help of complementarity functions.
These functions pack the two inequality constraints and the equality constraint into one equality
constraint. The complementarity function is the squared Fischer-Burmeister complementarity func-
tion [7]. Squaring the Fischer-Burmeister function makes is smooth around [0 0].

ϕ(a, b) = 1
2φFB(a, b)

2 = 1
2

(√
(ca · a)2 + (cb · b)2 − (ca · a+ cb · b)

)2
= 0

3.3.1 Jacobian of the Constraints

In total there are 20·N+1 constraints; 12·N dynamic constraints, 8·N complementarity constraints,
and 1 constraint on the distance of the foot. The total number of variables is 23 · N + 2. So the
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Jacobian of the constraints has the dimension (20 ·N +1)× (23 ·N +2). This is a large, but sparse
matrix. Sparse because the constraints at i are mainly a function of the variables that belong to
step i. Only the dynamic constraints are also a function of the p and q variables of step i− 1 and
of the knee spring parameters K and qeq. So one constraint depends at most on 23 + 12 + 2 = 38
of the 23 ·N variables. The structure of the Jacobian is shown in fig. 1.

q1 q2 q3 q4 q5 q6 p1 p2 p3 p4 p5 p6 λ+1 λ−1 λ1 γ1 λ+2 λ−2 λ2 γ2 u1 u2 u3

dcq1

dcq2

dcq3

dcq4

dcq5

dcq6

dcp1

dcp2

dcp3

dcp4

dcp5

dcp6

ϕ11

ϕ12

ϕ21

ϕ22

ϕ31

ϕ41

ϕ32

ϕ42

Figure 1: Structure of the Jacobian of the constraints. The spaces between the ticks are discretized
from 1 to N . dc are the dynamics constraints and ϕ are the complementarity functions. The
constraint on the distance travelled by the foot is below ϕ42 . The spring constant K and the
equilibrium position of the spring are next to u3.

3.3.2 Dynamic Constraints Jacobian

[
qi
pi

]
−
[
qi−1
pi−1

]
− hi




[
∂H
∂p

−∂H
∂q

]
+

[
0
Bu

]

u1
u2
u3


+

[
0 0

∂g1
∂q

> ∂g2
∂q

>

]



λ+1x − λ
−
1x

λ1y
λ+2x − λ

−
2x

λ2y







i

= 0, (5)

The dynamic constraints (5) are 12 equilibrium constraints for each time step. The derivatives of
the first two state vectors are clear. The derivative of the first vector is a vector of ones and of the
second a vector of minus ones.
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The Jacobian of the part that is multiplied by hi is more complex. The derivatives to u and λ are
just one or minus one times the corresponding input matrix value. The derivatives to q and p are
what make the derivatives complex. They consist of the second order derivatives of the Hamiltonian
H and of the second order derivatives of the foot positions gi.

The first order derivatives of the Hamiltonian H to q and p are shown next. i and j in (6) to
(14) have the values 1− 6 and stand for the generalized coordinates and momenta.

H =
1

2
p>M(q)−1p+ V (q,K, qeq) (6)

∂H
∂p

=M−1p (7)

−∂H
∂qi

=
1

2
p>M−1

∂M

∂qi
M−1p− ∂V (q,K, qeq)

∂qi
(8)

The second order derivatives of the Hamiltonian H are needed for the Jacobian of the constraints.
Be aware that (10) seems to be identical to (11), this is not true. (10) is the transpose of (11).
The next four equation still have to be multiplied by −h for the Jacobian.

∂2H
∂pi∂pj

=
(
M−1

)
[i,j]

(9)

∂2H
∂pi∂qj

=

(
−M−1∂M

∂qj
M−1p

)

[i]

(10)

− ∂2H
∂qi∂pj

=

(
M−1

∂M

∂qi
M−1p

)

[j]

(11)

− ∂2H
∂qi∂qj

=
1

2
p>M−1

(
−∂M
∂qj

M−1
∂M

∂qi
+

∂2M

∂qi∂qj
− ∂M

∂qi
M−1

∂M

∂qj

)
M−1p− ∂2V (q,K, qeq)

∂qi∂qj
(12)

Below are the derivatives of −hj · ∂gi∂q · λ.

− hj ·
∂2g1y
∂qi∂qj

· λ1y −hj ·
∂2g1x
∂qi∂qj

·
(
λ+1x − λ

−
1x

)
(13)

− hj ·
∂2g2y
∂qi∂qj

· λ2y −hj ·
∂2g2x
∂qi∂qj

·
(
λ+2x − λ

−
2x

)
(14)

3.3.3 Complementarity Constraints Jacobian

0 ≤ giy ⊥ λiy ≥ 0,
0 ≤ µλiy − λ+ix − λ

−
ix
⊥ γi ≥ 0,

0 ≤ γi +
∂gix
∂q

>
q̇ ⊥ λ+ix ≥ 0,

0 ≤ γi − ∂gix
∂q

>
q̇ ⊥ λ−ix ≥ 0

(15)

The complementarity constraints have all the same general form as shown in 16. Each step has 8
of these equality constraints. Note (17) needs still to be multiplied by the derivative of a or b.

ϕ(a, b) =1
2

(√
(ca · a)2 + (cb · b)2 − (ca · a+ cb · b)

)2
= 1

2φFB(a, b)
2 = 0 (16)

∂ϕ(a, b)

∂a
=φFB(a, b) ·

(
c2a · a√

(ca · a)2 + (cb · b)2
− ca

)
(17)
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Most of the derivatives of the complementarity constraint variables are pretty straight forward. Only

functions that are a little more complex are giy and
∂gix
∂q

>
q̇. The derivatives of giy are already

calculated for ∂gi
∂q , which is used in de dynamic constraints. The derivatives of

∂gix
∂q

>
q̇ to q and p

are shown below.

∂

∂qi

(
∂g1x
∂q

>
M−1p

)
=
∂2g1x
∂q∂qi

M−1p− ∂g1x
∂q

>
M−1

∂M

∂qi
M−1p (18)

=

(
∂2g1x
∂q∂qi

− ∂g1x
∂q

>
M−1

∂M

∂qi

)
M−1p (19)

∂

∂pi

(
∂g1x
∂q

>
M−1p

)
=
∂g1x
∂q

> (
M−1

)
[:,i]

(20)
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4 Conclusion

The results of this MSc project are twofold. An optimization method is presented that optimizes
trajectories with contacts. In this project the optimization method was used to minimize the input
torques of a bipedal walking gait. But optimization method is not restricted to that. It can optimize
any trajectory with contacts. So it can also be used to optimize for instance the grasping of an
object with a robot hand.

The gait optimization has two conclusions. The shape of trajectory of the swing foot changes
with increasing gait velocity. So [3] was right that using the same shape of swing foot trajectories
for all gait velocities is not optimal.
Adding a knee spring reduces the amount of torque needed for a walking gait. The higher the gait
velocity, the more the knee spring reduces the required input torques. Remarkable result is a spring
on the knees also reduces the input torque to the hip joint.
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5 Recommendations

Improving the Optimization of Bipedal Walking Gaits

• Use a different solver package. The IPOPT solver poses the problem as a primal-dual problem
in order to solve it. Simulations showed that IPOPT is not good at solving the problems posed
in this paper. IPOPT starts with converging to an optimal solution. But when it is close to
the solution, the dual error becomes dominant and the solution divererges from the optimal
solution in an attempt to reduce the dual error. So the problem is the approach that IPOPT
uses to solve the problem. [4] used the sparse non-linear solver (SNOPT) to solve this kind
of problems and they reported good results. Reason IPOPT was used in this MSc project is
that it is one of the few large scale solvers with MALTAB interface that are available under
an academic license.

• Make the time step h a optimization parameter. The time step h was kept constant in this
MSc project for simplicity. The largest constraint violations occur around the impact positions
and these errors will at least slow down the convergence of the solver to the optimal solution.
A variable time step increases the resolution at the impact points and that will help reducing
the errors. It is recommended to optimize h over all N time steps independently.

• Use higher quality initial gaits. The initial gaits used in this MSc project were constructed by
imposing trajectories of the foot and hip. These trajectories were divided into N steps and
inverse kinematics was used to find the knee and hip angles. This resulted in a very low quality
initial gait. Using higher quality gaits will decrease the number of iterations that are needed
for finding an optimal solution.

Future Research

• Replace the fixed knee springs with VSA’s. The torsion spring on the knees with fixed parame-
ters reduces the torques required for walking. However, the spring stiffness and equilibrium are
different for each gait velocity. So for implementation on a robotic walker, a variable stiffness
actuator (VSA) is required to control stiffness and equilibrium position to the optimal values.
The VSA can also be used to change the spring parameters during a gait. This can decrease
the torques required for walking even more. Note that changing the stiffness and equilibrium
position of the spring does also cost energy.

• Investigate the stability of the gait trajectories. Important for implementation on a robotic
walker is how well disturbances to the optimal trajectories can be rejected. The optimization
presented in this MSc project does not say anything about the stability of the optimized
trajectories. It would be interesting to see if disturbances are rejected more energy efficient by
torque control or by control of the knee spring parameters.

• Investigate the use of the optimization for designing a model predictive controller (MPC’s). If
using another solver makes the optimized gaits converge to a stable solution it is possible to
use the resulting input torques for feed forward control. These controllers are called receding
horizon controllers or model predictive controllers [8]. MPC’s calculate an optimal control
sequence for each point of the state space to the optimal trajectory. This control law can be
calculated off line or online.
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