W ROBOTICS

MECHATRONICS

Developing an autopilot for the
peregrine falcon Robird

UNIVERSITY OF TWENTE.

W. (Wessel) Straatman

MSc Report

Committee:

Prof.dr.ir. S. Stramigioli

Ir. G.A. Folkertsma

Prof.dr.ir. H.W.M. Hoeijmakers
N. Nijenhuis, BSc

October 2014

Report nr. 021RAM2014
Robotics and Mechatronics
EE-Math-CS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

MIRA CTIT

BIOMEDICAL TECHNOLOGY
AND TECHNICAL MEDICINE

Developing an autopilot for the peregrine falcon Robird

Wessel Straatman®, Gerrit A. Folkertsma*, Nico NijenhuisT, Stefano Stramigioli*

*

w.straatman@alumnus.utwente.nl,

Robotics and Mechatronics group, CTIT institute, University of Twente
g.a.folkertsmalieee.orgqg,

s.stramigioli@ieee.org

T Clear Flight Solutions, Enschede, The Netherlands
n.nijenhuis@clearflightsolutions.com

Abstract—In this paper, we introduce an autopilot for the
peregrine falcon Robird, a robotic bird of prey. Currently,
piloting the Robird is very difficult and operator intensive. The
effect of flapping-wing flight on measurement data and flight
stability is investigated. A gliding controller, an algorithm that
takes care of transition between flight modes, is also introduced.
The autopilot is implemented in the form of controllers for roll
and pitch. As a result, the operator’s cognitive load is decreased
and the Robird keeps itself stable when no remote control inputs
are given. This is a first step towards completely autonomous
flight of the Robird.

I. INTRODUCTION

Birds can be a nuisance when present in large numbers
in utilitarian areas such as airports, farms and rural areas.
They form a hazard to planes or spread diseases. Present-day
pest control solutions vary from visual deterrents (the old-
fashioned scarecrow) to more violent methods like the use of
chemicals or weapons [1]. However, birds often easily adapt
to static bird control methods like visual deterrents; and pub-
lic opinion considers violent approaches to be unnecessarily
cruel. A possible solution lies in the use of bird-like flying
robots that mimic predators and act as a natural deterrent for
pest birds.

Nature has always been a source of inspiration for re-
search, especially for the field of robotics. Here, the desire
to understand and mimic nature has resulted in an increasing
amount of biologically inspired robots, like the MIT Cheetah
robot [3], the RoboFish from the University of Singapore
[4] and the LittleApe robot [5]. For aerial robotics this
has proven to be rather complicated, since flapping-wing
motion is very difficult to accurately model, understand and
reproduce. Researchers working on insect-based flapping-
wing aerial vehicles, such as the DelFly MAV from Delft
University of Technology [6], Harvard’s RoboBee [7] or the
beetle-inspired MAV [8], focus mostly on indoor applications
and therefore aim to be lightweight, small and capable of
low-speed indoor flight. The lightweight Golden Snitch MAV
[9], inspired by the fictional Golden Snitch from the Harry
Potter novels, has similar characteristics. Larger biologically
inspired aerial vehicles, based on birds, are for example
the SmartBirds from Festo [10]. Whilst Festo has achieved
realistic flapping-wing motion that mimics the kinematics
of actual bird flight, its lightweight structure still makes it

(a) An actual peregrine falcon [2].

(b) The peregrine falcon Robird.

Fig. 1. A comparison between a peregrine falcon (a) and its robotic
counterpart (b).

hard to fly outdoors due to an inability to properly deal with
external disturbances like wind.

The company Clear Flight Solutions, in cooperation with
the Robotics and Mechatronics and Engineering Fluid Dy-
namics research groups at the University of Twente, is
developing so-called “Robirds”: remotely piloted robotic
birds [11]. The Robirds come in two appearances, namely
a bald eagle and a peregrine falcon. Their appearance is
remarkably similar to the actual appearance of those birds
(see Fig. 1), but especially the flight dynamics—the flapping-
wing motion—is so true to nature that the nuisance birds
instinctively act as if they encounter an actual predator. First
results indicate that Robirds are able to effectively herd a
large part of the nuisance birds away from the area, making
the use of Robirds an animal-friendly method of bird control.

Operating a Robird currently is a complex procedure,
requiring a skilled pilot with practice and ‘feel’ for the robot.

This makes wide-scale use of the Robirds for bird control
unfeasible at this moment. In this paper we therefore present
the development of an autopilot for the peregrine falcon
robot. An autopilot will assist the operator in flying the robot,
while for safety reasons never excluding the human’s ability
to switch back to manual control. In autopilot mode, the
robot is expected to stabilize its roll and pitch, while leaving
control of speed, altitude and direction to the operator.
The control algorithm is implemented for two flight modes:
flapping-wing mode and gliding mode. The goal is to make
it easier for a Robird operator to control the bird, and work
towards increasing the autonomy of the Robirds.

II. THE PEREGRINE FALCON ROBIRD

This work focusses on the peregrine falcon Robird model.
Peregrine falcons are bird-eating birds of prey, having a
wingspan of 95 to 115 cm and a body length of 39 to 50
cm [12]. Their weight varies, depending on e.g. sex and
season, from 600 to 1300 g. The peregrine falcon is the
fastest animal known to men: the highest measured speed
a peregrine falcon has reached during a hunting stoop is
over 350 kmh~!. Peregrine falcons hunt over 1500 different
species of birds worldwide, making it one of the most diverse
predators. All this makes for a very suitable bird to mimic
for successful bird control using the Robirds.

A. The Robird

The peregrine falcon Robird model is of comparable size
and weight to an actual peregrine falcon: it has a total mass
of approximately 730 g; its wings, weighing 70 to 75 g each,
provide a wingspan of 112 cm. This results in a model that
is able to realistically mimic an actual peregrine falcon’s
physique and silhouette. The inner mechanism to which the
wings are connected generates a wave-like flapping motion
of the wing, providing both lift and thrust, thus allowing the
Robird to fly in a realistic way: without the need for other
propulsion such as propellors or engines. The Robirds have a
flight control surface on each wing, allowing control of yaw
and roll of the bird; and a servo-driven tail for pitch control.
Fig. 1 shows the peregrine falcon model of the Robird next
to an actual peregrine falcon.

A big challenge in flying the Robird, when compared to
a regular fixed-wing aircraft, is the force that the flapping-
wing motion exerts on the body. It influences stability and
adds a challenge for the operator when controlling the bird in
manual mode, but in terms of an autopilot implementation it
also influences sensor readings of e.g. aircraft attitude. Fig. 2
shows the measured acceleration in vertical direction for a
peregrine falcon Robird flight. For this part of the flight—
where throttle and altitude were kept approximately constant
so as not to apply additional forces in vertical direction—the
flapping-wing frequency is between 5.5 and 6 Hz and, as a
result, the body experiences accelerations of up to 3g due to
the wing motion.

acc (g)
o

| |
171 172 173

t (s)

Fig. 2. Acceleration in vertical direction during flapping-wing flight. The
flapping-wing frequency can clearly be identified from the signal, and the
high-frequency behaviour of the acceleration is dominated by the flapping-
wing forces.

B. The APM platform and ArduPilot codebase

The brain of the Robird consists of the ArduPilot Mega
(APM) 2.6 board. The APM 2.6 features an ATMEGA2560
processor chip and several on-board sensors. The board has
a 3-axis gyroscope plus accelerometer and a barometric
pressure sensor for state estimation. An on-board Dataflash
chip allows for logging of flight data and easy post-flight
analysis of the bird’s performance.

The board is compatible with Arduino [13], making it
easy to program. The firmware is based on the ArduPilot
ArduPlane open-source software base [14]. Several modifi-
cations and additions have been made to port the software
from working on a model airplane towards working on a bird
propelling itself using flapping-wing motion.

Besides the on-board sensors there is also room for adding
an angular encoder to measure wing position (required for
gliding mode), an airspeed sensor and a GPS.

III. FLIGHT MODES

The Robirds have two different flight modes: the first is
the aforementioned flapping-wing mode, where the Robird
beats its wings to control airspeed and gain altitude; the
second is the so-called gliding mode. In gliding mode, a
passive lock holds the wings in a fixed position, allowing
the bird to soar through the air without the use of motor
power. Since the Robird has no means of propulsion during
gliding mode, gliding is especially useful to travel from a
point at higher altitude to a lower altitude point in a smooth
and energy-efficient manner. The wing angle (see Fig. 10)
is measured using an angular encoder, and a smart software
implementation ensures that the bird switches from flapping-
wing to gliding mode at the correct time (see section III-B
“Gliding Mode”).

A. Flapping-wing mode

The flapping-wing motion of the Robird is controlled as if
it were the throttle of a model airplane: an increase in throttle
relates to an increase in flapping-wing frequency, resulting in
a higher thrust and therefore a higher airspeed. The relation
between throttle percentage and flapping-wing frequency is
an interesting one, since this could be used in a possible

signal power

0 5 10 15 20
frequency (Hz)

Fig. 3. Single-sided amplitude spectrum of acceleration measurement taken
during Robird flight. A clear peak in the spectrum is present at the flapping-
wing frequency, with smaller peaks at its higher harmonics.

6,

frequency (Hz)
ot
T

—— Fitted curve ||

e Data points
4t ! | | \ .

60 70 80 90 100
throttle percentage

Fig. 4. Relation between flapping-wing frequency and throttle: measure-
ments obtained from power spectra such as Fig. 3, and a fitted curve. The
data is fit on the basis of a least squares quadratic fit algorithm.

solution for the flapping-wing motion disturbance on the
state estimation. By investigating the power spectrum of
measurement data taken at constant throttle, the flapping-
wing frequency is determined. A typical power spectrum is
given in Fig. 3: the flapping-wing frequency corresponding to
that throttle value can be determined from the clear peak in
the spectrum. Using a least squares fit algorithm, the curve
of Fig. 4 is obtained from a series of spectra obtained at
various throttle values.

With this throttle-frequency relation, a tuned notch filter
could be used to filter out the disturbance signal. However,
the influence of e.g. airspeed on wing frequency is yet
unknown, so a low-pass filter with a cut-off frequency of
2Hz is used instead. Fig. 5 shows a filtered pitch data set
compared to the original data. This filtering was done on
the logged data and has yet to be implemented on the code
running on-board.

For state estimation the filtering seems desirable, since
we are mainly interested in the state evolution across wing
strokes, and not in the high-frequency in-stroke deviations.
However, filtering out the high frequent pitch variation also
disables the ability of the pitch controller to respond to it: this
gets rid of the fast tail motion that counteracts the flapping-
wing motion. Besides adversely influencing flight stability,
high speed videos of bird flight suggest that actual birds also
use their tail to compensate for flapping-wing forces, as can
be seen in Fig. 6—so removing that motion from the Robird
also makes them less true-to-life.

Actual pitch
40 1 —— Low pass filtered ||
30} y
o0
9]
£
o 20|
oh
=
<
10| :
O - |
| | | | | | |
110 120 130 140 150 160 170
t (s)
Fig. 5. Actual unfiltered pitch angles compared to a filtered data set.

Fig. 6.
demonstrating the use of the tail to counteract flapping-wing forces and
remain stable [15].

Two stills from a high speed recording of hummingbird flight,

B. Gliding mode

When the Robird is at a high altitude, the operator can
choose to switch from flapping-wing to gliding mode. In
gliding mode the wings are fixed, thereby essentially chang-
ing the vehicle from a flapping-wing aircraft to a fixed-wing
glider. Gliding is an energy efficient way of moving through
the air, mimicking a real bird of prey’s soaring.

The switch from flapping-wing mode to gliding mode
is performed by the gliding controller. The algorithm is
shown in pseudocode in Fig. 7 and depicted by the finite
state machine of Fig. 8. In short, the Robird switches to
gliding mode whenever the pilot moves the throttle below a
certain threshold, going back to flapping-wing flight when
the throttle clears the threshold again. Fig. 9 illustrates this
by showing requested throttle versus actual supplied throttle:
between t=25s and t=32 s the Robird is in gliding mode and
the pilot has no direct control over the throttle of the Robird.

For the passive lock to engage, the motor must be halted
when the wings are in downstroke in a specific range, as
shown in Fig. 10. The mechanism used for the passive lock is
shown in Fig. 11. If the wings are stopped within the shaded
area, the aerodynamic lift forces push the notch wheel back
into the pawl and ensure that the wings are locked in place.
The wing position is measured using an angular encoder that
is placed on the mechanism drive shaft.

if state = STANDBY then
if throttle < THRESHOLD then
throttle «+ SEARCHING THROTTLE
state < STOPPING
5. end if
else if state = STOPPING then
if MIN ANGLE < wingAngle < MAX ANGLE
then
throttle + 0
state < GLIDING
10: end if
else if state = GLIDING then
if throttle > THRESHOLD then
throttle <+ SURGE THROTTLE
surgeStart <+ time()
15: state + SURGE
end if
else if state = SURGE then
if time() - surgeStart > SURGE TIME then
(throttle control returned to pilot)

20: state < STANDBY
end if
end if
Fig. 7. Pseudocode describing the gliding control algorithm.

time()-surgeStart>SURGE TIME throttle<THRESHOLD

Standby
Surge Stopping
Gliding |
throttle>THRESHOLD MIN ANGLE < wingAngle

< MAX ANGLE

Fig. 8. Finite state machine displaying gliding controller states and
transition conditions. The “surge” state is required to pull the bird out of
gliding mode, by supplying a high throttle for a short time.

Stopping
Standby Gliding Surge Standby
100 ‘ e
)
50
<
= 80
)
2
2 60
=2
S 40 \
S \
|
20 ————Requegted !
—— Supplied I
[I |
15 20 25

t (s)

Fig. 9. Demonstration of the working of the gliding controller. Requested
throttle is the pilot-supplied input to the RC channel; the supplied throttle
is the actual throttle that is sent to the motor. When the gliding controller
is engaged, the software takes over throttle control.

Fig. 10. Tllustration of maximum and minimum wing angles for switching
into gliding mode. The wing has to be in downstroke to switch to gliding
mode, for the passive lock to engage. The angle 6 is defined as the wing
angle.

Fig. 11. Passive lock mechanism used to lock the wings in gliding mode.
The wheel is attached to the driving shaft of the wings. The arrow indicates
rotational direction during flapping-wing motion and the shaded area shows
the minimum and maximum angle to stop, as illustrated in Fig. 10.

IV. CONTROL

The implemented controller works in so-called “Fly-by-
Wire A” (FBWA) mode. In FBWA, the roll and pitch of the
bird are controlled, whilst the operator still has full control
over the throttle. In manual mode, a remote control (RC)
input to the roll and pitch channels directly controls the wing
and tail flaps, respectively. In FBWA mode, however, the
RC input is translated to an angle setpoint and the Robird
stabilises itself—as opposed to manual mode, where active
pilot control is required to stabilize the flight of the Robird.

The goal of the implemented autopilot mode is to make
it easier and less operator-intensive to fly a Robird. Fig. 12
shows that the implemented controller indeed achieves this
goal: operator RC input is shown for both manual and FBWA
flight. The upper plot shows the constant need to compensate
for flapping-wing motion. Conversely, in FBWA mode the
controller takes care of this, relieving the operator of this
task. The pitch in FBWA mode has an offset of 15° because
the Robird must fly with a slightly tilted body. In manual
mode, the pilot has to maintain this tilt manually through a
constant offset in tail deflection.

A. Flapping-wing mode

The FBWA controller is a PD-controller on roll and pitch.
Controller tuning has been done based on pilot perception
and data analysis—with pilot perception being the one of
most importance, since the goal is to simplify Robird pilot-
ing. Fig. 13 shows a plot of demanded roll, a function of the

100 T T T 30

RC-input (%)
(an)
(e}

tail angle (deg)

angle (deg)

—100 ‘ ‘ ‘ -30
60 80 100

t (s)
S 100 : : : 70 %‘“
2 0 15 5
i el
2 2
~ 100 ‘ ‘ ‘ —40 G
120 140 160 3

t (s)

Fig. 12. Comparison of operator commands between manual (above) and
fly by wire (below) mode. The left axis shows operator RC input for the
tail; the right the corresponding tail deflection for manual mode and desired
pitch for fly by wire mode, respectively.

T T I I I
50 |- —— Measured roll ||
—— Demanded roll
¥
£
) 0
)
)
=)
<
—50 1|
\ \ \ \ \ \ \
110 120 130 140 150 160 170
t(s)
Fig. 13. Demanded roll versus actual roll angles for flapping-wing flight.

Demanded roll is a function of the RC input given by the pilot.

input the pilot gives on the RC transmitter, versus measured
roll. Fig. 14 shows the same plot, but for pitch angles.

The PD controller does not achieve perfect setpoint regu-
lation, due to complicated (high-order) flight dynamics and
external disturbances. However, the attitude control of FBWA
is an inner control loop with the pilot in a slower outer loop,
who will compensate for these disturbances. Considering that
the end goal from the pilot’s point of view is not achieving
a certain roll or pitch angle, but instead achieving a turn
towards the left or right, or an increase or decrease in altitude,
this is not considered to be a problem.

B. Gliding mode

The controller was also applied to a gliding flight, with
the same control parameters as for the flapping-wing flight.
In this flight, the bird landed while in gliding mode.

The difference between flight modes is that the measured
signal is a much cleaner signal in gliding mode, due to

40

30 { \ 148 149 \ 150 i

20

L =
—

\
T

Al
of | 1T 00

—— Measured pitch

0 | —— Demanded pitch .
| | | | | | |
110 120 130 140 150 160 170
t (s)

Fig. 14. Demanded pitch versus actual pitch angles (filtered) for flapping-
wing flight. Demanded pitch is a function of the RC input given by the
pilot. Inset: unfiltered pitch angles showing flapping-wing frequency.

acc z (g)
(e}

| | |
993 994 995

t (s)

| |
991 592

Fig. 15. Acceleration in vertical direction during the transition from
flapping-wing to gliding flight. The decrease in flapping-wing frequency
is evident in the signal, and the decreasing magnitude shows that the
experienced accelerations by the body are indeed due to flapping-wing flight.

the absence of flapping-wing influences. Fig. 15 shows an
acceleration measurement at the moment of transitioning into
gliding mode, from which the difference in measurement
signals is clearly noticeable.

Fig. 16 shows the performance of the roll controller in
gliding mode. Again, the delay in controller action due to the
flight dynamics is clearly distinguishable. The performance
of the pitch controller shows that it is more difficult to
control pitch in gliding mode, especially when flying at a
low airspeed, as can be seen in Fig. 17. Due to the bird’s
mass distribution it has a tendency to pitch down, especially
at low airspeed. In order to compensate for this, the Robird
pilot has to constantly demand a pitch up in order to ensure
a smooth, flat landing.

V. CONCLUSION AND OUTLOOK

We have developed an autopilot for the peregrine falcon
Robird, a robotic bird of prey. The autopilot uses PD
controllers for the roll and pitch of the vehicle. This allows
the Robird to keep itself stable and upright when in-flight,
and counteract disturbances caused by external forces such as
wind. It has been shown that the use of the autopilot severely
decreases operator workload, thereby making it easier to pilot
a Robird. Experiments have shown the autopilot to work in

angle (deg)

—— Measured roll
—— Demanded roll

I I
335 336

t (s)

| |
333 334 337

Fig. 16. Demanded roll versus actual roll angles for a landing in gliding
mode. After t=335s the Robird has landed. Demanded roll is a function of
the RC input given by the pilot.

40 .
20 |
g
~ 0 - |
Q
)
g
—20 -
Y Measured pitch |
—— Demanded pitch
| | | |
333 334 335 336 337
t(s)

Fig. 17. Demanded pitch versus actual pitch angles for a landing in gliding
mode. After t=335s the Robird has landed. Demanded pitch is a function
of the RC input given by the pilot.

each of the two Robird flight modes: flapping-wing mode
and gliding mode.

For the Robird to acquire more autonomy, several steps
have to be taken. By adding a GPS sensor, and optionally
also an airspeed sensor, it is possible to also hand over
throttle control to the on-board computer. The next step
in development is therefore that the Robirds are able to
fly to a certain waypoint, or circle around a given location
autonomously, while exploiting its clever flying techniques
by switching between flapping-wing and gliding mode.

Furthermore, in order to improve upon the roll and pitch
controller designs, a dynamic model of the flapping-wing
vehicle is a necessity. Wind tunnel experiments are being
performed, so that several important flight characteristics
and coefficients of the Robird can be determined. With this
dynamic model, controller tuning can move from operator
perception based tuning to actual performance-based optimi-
sation in accurate simulations.

In order to further improve upon flight performance of the
Robird, developments on the hardware are also being made.
Important characteristics for flight behaviour are the total
mass and mass distribution. Currently, at 730 g the Robird
is near its maximum takeoff weight (MTOW). The goal is
to further decrease the mass of the Robird to approximately
700 g, by using a lighter material for the Robird body and
redesigning the inner mechanism. For in-flight stability of
the Robird, the location of the center of mass is of vital
importance. Ideally, the center of mass lies right between the
two attachment points of the wings. Currently, the center of
mass lies more towards the tail. Therefore, when decreasing
the total mass of the Robird, the goal is to remove more
mass from the back of the bird and, if possible, add more
mass in the front.

Finally, now that the Robird is easier to fly, more tests can
be performed on waste management facilities, airports and
farms, to further investigate the effects that the Robirds have
on the behaviour of the nuisance birds.

REFERENCES

[1] A.E.-A. S. S. Desoky, “A review of bird control methods at airports,”
Global Journal of Science Frontier Research, vol. 14, no. 2, 2014.

[2] (2014, Aug.) All about birds. The Cornell Lab of Ornithology.
[Online]. Available: http://www.allaboutbirds.org

[3] S. Seok, A. Wang, M. Y. M. Chuah, D. Otten, J. Lang, and S. Kim,
“Design principles for highly efficient quadrupeds and implementation
on the mit cheetah robot,” in Proc. IEEE International Conference on
Robotics and Automation, Karlsruhe, Germany, 2013, pp. 3307-3312.

[4] A. Chowdhury, B. Prasad, V. Vishwanathan, R. Kumar, and S. Panda,
“Kinematics study and implementation of a biomimetic robotic-fish
underwater vehicle based on lighthill slender body model,” in Au-
tonomous Underwater Vehicles (AUV), 2012 IEEE/OES, Sept 2012,
pp. 1-6.

[5] D. Kuhn, M. Rommermann, N. Sauthoff, F. Grimminger, and F. Kirch-
ner, “Concept evaluation of a new biologically inspired robot littleape,”
in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Inter-
national Conference on, Oct 2009, pp. 589-594.

[6] M. Groen, B. Bruggeman, B. Remes, R. Ruijsink, B. van Oudheusden,
and H. Bijl, “Improving flight performance of the flapping wing
mav delfly ii,” in International Micro Air Vehicle conference and
competitions, 2010.

[7] Z. E. Teoh, S. B. Fuller, P. Chirarattananon, N. O. Perez-Arancibia,
J. D. Greenberg, and R. J. Wood, “A hovering flapping-wing mi-
crorobot with altitude control and passive upright stability,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, Algarve, Portugal, 2012, pp. 3209-3216.

[81 N. S. Ha, Q. T. Truong, H. V. Phan, N. S. Goo, and H. C. Park,
“Structural characteristics of allomyrina dichotoma beetle’s hind wings
for flapping wing micro air vehicle,” Journal of Bionic Enginering,
vol. 11, pp. 226-235, 2014.

[9]1 E-Y. Hsiao, L.-J. Yang, S.-H. Lin, C.-L. Chen, and J.-F. Shen,

“Autopilots for ultra lightweight robotic birds,” IEEE Control Syst.

Mag., pp. 35-48, 2012.

(2014, Aug.) Smartbird - bird flight deciphered. Festo. [Online].

Available: http://www.festo.com/cms/en_corp/11369.htm

(2014, Aug.) Clear Flight Solutions. [Online].

http://www.clearflightsolutions.com

[12] P. Hayman and R. Hume, Alle vogels van Europa (translation from:

Bird : the ultimate illustrated guide to the birds of Britain and Europe).

Baarn, The Netherlands: Tirion Natuur, 2008.

(2014, Sep.) Arduino website. Arduino.

http://arduino.cc/

(2014, Aug.) Multiplatform autopilot. ArduPilotMega.

Available: http://www.ardupilot.com

(2014, Sep.) Slow motion hummingbirds 3. JCMDI Digital Imaging.

[Online]. Available: http://www.youtube.com/watch?v=ssrv89x7Q2U

[10

[11 Available:

[13 Available:

[Online].

[14 [Online].

[15

APPENDIX A: SOFTWARE CHANGES

To port the ArduPlane firmware to a working version of ArduBird, rename ArduPlane.pde to ArduBird.pde,

and add RobirdGlidingController.h, RobirdGlidingController.pde, RobirdParameters.h,

RobirdRC_ThrottleChannel.cpp and RobirdRC_ThrottleChannel.h to the folder. Also, for the simple
reason of storage limits on the APM board, remove the file test .pde. The changes are related to the following:

1) Read the angular encoder for wing position sensing

2) Call the custom throttle channel that uses the gliding controller

3) Make the software work with the multiple aileron setup of the Robird

4) Allow for Robird specific datalogging

5) For storage limits reasons, get rid of unnecessary code

The codebase referenced can be found in the git repository located at https://git.ce.utwente.nl/robird, and
the revision at the moment of writing is tagged MScThesis.

Changes in ArduBird.pde
o [1,2] Include the following header files:

#include "RobirdRC_ThrottleChannel.h"
#include "RobirdGlidingController.h"
#include "RobirdParameters.h"
#include <avr/interrupt.h>

e [1] Add the define:

#define PWM_AS5045 (PINK & 0x01) // connects to pin A8

o [1,2] Declare the following variables:

const int asPin = 8;

uint32_t robird_timer millis;

volatile uint32_t pulse_start_us, pulse_end_us;

volatile uintl6_t pulse_length;

RobirdRC_ThrottleChannel channel_throttle_actual (rcmap.throttle()-1);

o [1] Define the interrupt service routine (ISR), preferably just before the setup() method for clarity:

ISR (PCINT2_vect) {

if (PWM_AS5045) {
// The pin has just changed to HIGH
pulse_start_us = hal.scheduler->micros{();

} else {
// The pin has just changed to LOW
pulse_end_us = hal.scheduler->micros();
pulse_length = (pulse_end_us-pulse_start_us);

}

o [1,2] Set up the angular encoder and gliding controller by adding the following to the setup() method:

// Initialise the pin

hal.gpio->pinMode (hal.gpio—->analogPinToDigitalPin (asPin), HAL_GPIO_INPUT);
// Set up interrupt

uint8_t o0ldSREG = SREG;

cli();
PCMSK2 |= _BV(PCINT16);
PCICR |= _BV(PCIE2);

SREG = 0ldSREG;

gliding_controller_setup (&channel_throttle_actual);

o [4] Enable Robird data logging by adding Log_Write_Bird(); to the method update_logging?2 (void).
« [3] Enable the ability to control the left and right wing ailerons separately:

Replace

nav_roll_cd = channel_roll->norm_input() » roll_limit_cd;

by

intl6_t chroll_above_trim = channel_roll->radio_in - channel_roll->radio_trim;

intl6_t chauxroll_under_trim = RC_Channel_aux::dist_from_ trim();

if (chroll_above_trim > chauxroll under_trim) {

nav_roll_cd = channel_roll->norm_input() = roll_limit_cd;
} else {
nav_roll_cd = RC_Channel_aux::norm_input_ch() * roll_limit_cd;

}

o [4] Add a method to ask for the pulse length, for data logging purposes:

uintl6_t get_pulse_length () {
return pulse_length;

Changes in Log.pde
o [4] To properly log Robird specific data add the following:

struct PACKED log_Bird {
LOG_PACKET_HEADER;
uint32_t timestamp;
uint32_t rotation_log;
float frequency_log;
uint8_t gc_state_log;
uintl6_t angle_log;
uintl6_t curThrottle_log;
int32_t roll_reference;
int32_t pitch_reference;

}i

// Write a Robird Log packet
static void Log _Write_Bird(wvoid)
{

struct log_BRird pkt = {
LOG_PACKET_HEADER_INIT (LOG_BIRD_MSG),

timestamp : hal.scheduler->millis(),
rotation_log : (uint32_t)get_rotationCount (),
frequency_log : get_wingFrequency (),

gc_state_log : get_gc_state(),
angle_log : get_wingAngle(),
curThrottle_log : get_curThrottle(),
roll_reference : nav_roll_cd,
pitch_reference : nav_pitch_cd

}i

DataFlash.WriteBlock (&pkt, sizeof (pkt));

}

o [4] Add the Robird log structure to the 1og_structure PROGMEM:

{LOG_BIRD_MSG, sizeof (log_BRird),
"BIRD", "IIfBHHii", "TimeMS, count, omega, gc_state,angle,throttle, roll_cd,pitch_cd"},

o [4] Add the dummy function for the Robird log method to the list of dummy functions near the end:

static void Log Write_Bird(wvoid) {}

Changes in defines.h
e [4] Add LOG_BIRD_MSG at the end of the enum list of log messages.

Changes in radio.pde

e [2] Make sure the throttle channel is our custom made throttle channel:
Replace

channel_throttle

RC_Channel: :rc_channel (rcmap.throttle()-1);

by

channel_throttle = &channel_throttle_actual;

and replace

channel_throttle->set_range (0,100);

by

channel_throttle->set_range (0,125);

Changes in system.pde
o [5] Remove the following three lines that are calling for methods from test .pde:
— static int8_t test_mode (uint8_t argc, const Menu::arg xargv); //in test.cpp
- " test test mode\n"
- {"test", test_mode},
Changes in test.pde
e [5] Remove test.pde

Changes in the ArduPilot libraries

Please note that it is advised to not change the native libraries, unless absolutely necessary.
e In AP_Rally.cpp, add the following to the APM_BUILD_DIRECTORY conditional definition:

#elif APM_BUILD_TYPE (APM_BUILD_ArduBird)
#define RALLY_LIMIT_KM DEFAULT 5.0

e In AP_Vehicle.h, add the ArduBird vehicle build type define to the common build types:

#define APM BUILD_ArduBird 10

e [2] In RC_Channel.h, all functions and variables should be made virtual, to allow for inheritance in our custom

throttle channel.
e [3] In RC_Channel_aux.h, define the following methods:

// get the norm input for an auxiliary channel
static float norm_input_ch{();

// get the difference between trim and radio_in for an auxiliary channel
static intl6_t dist_from trim();

And implement the methods in RC_Channel_aux.cpp:

float RC_Channel_aux::norm_input_ch ()

{
float
int8 t

for
if

(u

ret=0;
reverse=1;

int8 t i = 0;

(_aux_channels[i]
RC_Channel_aux::Aux_servo_function_t function

== NULL)

1 < RC_AUX_MAX_CHANNELS;
continue;

i+4+) |

(RC_Channel_aux::Aux_servo_function_t)_aux_channels[i]->function.get ();

swit
case
case
case
case

ch (function) {
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux

::k_flap:

::k_flap_auto:
::k_flaperonl:
::k_flaperon2:

case RC_Channel_aux::k_egg_drop:
case RC_Channel_aux::k_aileron:
case RC_Channel_aux::k_aileron_with_input:
if (_aux_channels[i]->get_reverse()) {
reverse = -1;
} else(
reverse = 1;

if (_aux_channels[i]->radio_in < _aux_channels[i]->radio_trim) {

ret = reverse x (float) (_aux_channels[i]->radio_in —...
_aux_channels[i]->radio_trim)/ (float) (_aux_channels[i]->radio_trim —-...
_aux_channels[i]->radio_min);
} else(
ret = reverse x (float) (_aux_channels[i]->radio_in —...
_aux_channels[i]->radio_trim)/ (float) (_aux_channels[i]->radio_max -...
_aux_channels[i]—->radio_trim);
}
break;

case
case
case
case
case
case

RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux

default:

br

return constrain_float (ret,

eak;

::k_elevator:

::k_elevator_with_input:

::k_dspoilerl:
::k_dspoiler2:
::k_rudder:
::k_steering:

-1.0f,

1.0f);

intl6_t RC_Channel aux::dist_from trim()

{

intl6_t ret=0;

for (u

if

int8 t i 0;

(_aux_channels[i]
RC_Channel_aux::Aux_servo_function_t function

NULL)

i < RC_AUX_MAX_CHANNELS;
continue;

i++) |

(RC_Channel_aux::Aux_servo_function_t)_aux_channels[i]->function.get ();

switch (function) {

case
case
case
case
case
case
case

ret

case
case
case
case
case
case

RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux

::k_flap:
::k_flap_auto:
::k_flaperonl:
::k_flaperon2:
::k_egg_drop:
::k_aileron:
::k_aileron_with_input:

= _aux_channels[i]->radio_trim - _aux_channels[i]->radio_in;
break;

RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux
RC_Channel_aux

default:
break;

return

ret;

::k_elevator:
::k_elevator_with_input:
::k_dspoilerl:
::k_dspoiler2:
::k_rudder:
::k_steering:

Updating to the new ArduPlane firmware

Updating to new ArduPlane firmware versions can most easily be done using git. Add the ArduPilot git repository as a
remote using git remote add upstream https://github.com/diydrones/ardupilot.git, and get the
latest using git fetch upstream. Now, using git merge upstream/master, the merge can be initiated. It is
advised to do the merge in a new branch, thoroughly test the updated version, and only if it works exactly the same or

better as the current ArduBird version, merge it into the master branch.

