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Samenvatting

Wanneer overlevenden moeten worden gevonden in een beschadigd gebouw is het veiliger
voor de hulpverleners om van te voren een 3D kaart te hebben van de binnenkant van
het gebouw dat is gemaakt door een robot. Deze kaart kan dan worden gebruikt om
overlevenden op te sporen en ze te redden. Deze thesis stelt een lichtgewicht algoritme
voor dat op een robot kan worden uitgevoerd om een 3D kaart te genereren. Deze
kaart wordt gemaakt door meerdere RGB- en diepte beelden samen te voegen in 1
groot 3D model. Om dit te realiseren wordt de beweging van de drone tussen twee
opeenvolgende frames berekend. Deze beweging wordt berekend door naar de beweging
van herkenningspunten te kijken die voorkomen in twee opeenvolgende RGB-beelden.
Deze beweging wordt vervolgens geoptimaliseerd door het gebruik van de ”point to
projection scan matching” methode. Wanneer de beweging van de drone groot genoeg
is, wordt het nieuwe beeld toegevoegd aan de 3D kaart.

Om het algoritme te kunnen testen is er gebruik gemaakt van een dataset waar de
camera door een hal wordt bewogen. Het algoritme is in staat om een 3D kaart te
maken met een gemidelde van 17 beelden per seconde (op een HP 8570w). Er is echter
wel een oplopende fout in het model. Deze fout zou kunnen worden verkleind door het
gebruik van ”Inertial Measurment Unit” of door het implementeren van ”loop closing”
of graaf-optimalisatie methoden.
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Abstract

When having to find survivors in a heavily damaged building it is saver to send
a drone that generates a 3D map before sending in emergence personnel. The
generated map can then be used to locate the survivors and rescue them. This
thesis proposes a light weight implementation of a 3D mapping algorithm that is
designed to be run onboard of a drone. The map is generated by stitching together
multiple images from a RGBD (RGB and depth image) camera by looking at the
movement of the drone between two consecutive frames. This is accomplished by
calculating an initial transformation by using ORB features and then optimizing this
transformation using the point to projection scan matching method. If the found
transformation indicates that a large enough distance is traveled then the next frame
is added to the feature map. This feature map is used later to generate a 3D model.

To be able to test the implementation a dataset is recorded by moving the cam-
era through a hallway. The implementation is able to stitch together all the images
into a single 3D model with an average frame rate of 17 fps on a HP 8570w. There is
however an ever-increasing error that can be reduced by using an Inertial Measure-
ment Unit (IMU) or by implementing a loop closing algorithm or by using graph
optimization techniques.
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1 Introduction

Due to recent advances in electronics and computer science autonomous, drones are
becoming a more and more viable solution to multiple different problems. Examples
of this are drones that carry life saving equipment like defibrillators or drones that can
follow the user and capture video footage.

This thesis proposes a way of using a drone (hexacopter) for emergency search and
rescue inside of buildings. After a disaster it can be too dangerous for emergency person-
nel to enter heavily damaged buildings to look for survivors. Before sending in emergency
personnel, a drone could be send in that creates a 3D map of the inside of the building.
This map can then be used to locate survivors and organize a rescue operation.

There are multiple challenges that need to be overcome for this to work. The first
of which is that in order to create a map the drone needs to know where it is, but to
be able to know where it is it needs a map. This problem is known as the Simultaneous
Localization and Mapping (SLAM) problem. The solution for this problem is to try
to calculate the movement of the drone between sensor measurements. For example,
lets assume that a camera is used as a sensor. Then the movement is determined by:
capturing an image, moving the drone and capturing a second image. By looking at the
differences between the images it is possible to calculate the movement of the drone.

The second problem that needs to be overcome is the limited amount of available
processing power on board of the drone. SLAM implementations tend to required large
amounts of processing power and memory to be able to generate accurate maps. Because
of this, the algorithms are either performed offline or use a wireless link between the drone
and a base station. Because there is limited processing power and memory onboard of
a drone it will be necessary to create a scaled down version of existing SLAM methods.

The goal of this project is to find a sensor that can be used to generate a 3D map,
scale down the existing SLAM methods so that they can be run onboard of a drone and
to combine the two to generate a 3D map.
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2 Related work

Over the years allot of research has been done towards trying to build robot that can
autonomously create a map of the environment and use this map for navigation. One
of the problems with this being that in order to build a map, first the location needs to
be known, but in order to know the location a map is required. This problem is referred
to as SLAM (Simultaneous Localization And Mapping) and has been solved in different
ways.

One solution to this problem is by using Extended Kalman Filters (EKF) to track
the location and uncertainty of each feature that was extracted from the sensor data
[6, 42]. These systems try to estimate the uncertainty of the features by comparing the
odometry sensors (accelerometer, gyroscope and magnetometer) with the observations
that where made by the sensor. One of the main problems with using an EKF is the
amount of processing that is required when calculating the inverse of the covariance
matrix when there are a large amount of features. In an effort of reducing the compu-
tational complexity the Sparse Extended Information Filter (SEIF) [10] was introduced.
This method tries to optimize the calculations that are required for the EKF by taking
advantage of sparse matrices. The downside of this method is however, that a higher
error is created and a calculation is introduced in the prediction step that requires a
high amount of processing.

A common cause of errors in these kinds of systems is the drift of the odometry sensor.
In an effort to deal with this problem a Rao-Blackwellised particle filter based method
was introduced called FASTSLAM [18]. This method tries do deal with the odometry
uncertainties by adding random offsets to the odometry data for each particle.

The methods mentioned above are commonly used in combination with a lidar. This
is due to its high accuracy and its ease of use. The downsides are however that they are
relatively expensive ($1000+) and that they measure in a 2D plane. A less expensive
option is to use a ring of sonars.

Instead of using lidar or sonar, some implementation are based on using camera
systems. These systems either use a single camera (monocular vision) or a dual camera
(stereo vision) setup. One of the main challenges of using camera systems for SLAM is
accurately determining depth in the image. Monocular vision systems achieve this by
finding features in consecutive images and determine the depth based on the estimated
movement of the camera. Because these systems require a movement estimate, it is
difficult to accurately determine the depth due to errors in the movement calculation.
Stereo vision systems have the advantage of being able to determine the depth from a
single frame. Here the depth is determined by finding corresponding features in the left
and right image. Based on the feature location and the corresponding depth, methods
like iterative closest point (ICP) can be used to find the 6DOF rigid body transformation
that resembles the camera movement between the frames.

A relatively new sensor that is used for solving the SLAM problem is the cheap
RGBD sensor ($180). This sensor output two images, one RGB image and one depth
image. The depth image is created by projecting a pattern of infrared dots onto the
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environment. This pattern is then captured by and infrared camera and the depth is
determined by looking at the distortion of the pattern.

Implementations that use the RGBD sensor for solving the SLAM problem usually
use the same basic method. First, features are found in the RGB image and they are
matched to features in previous images by using feature descriptors. By adding a depth
value to the matched features, a transformation is calculated. Next an Iterative Closest
Point (ICP) method is used to merge together all the images into a single large 3D map.
A property of these implementations is that the frame rate is relatively low on desktop
pc’s, only a few frames per second (< 4 fps).

Another approach is proposed by Yuichi Taguchi et al. [40] where they use planes
in the image instead of feature points. The advantage of using planes is that they are
more robust to noise and there are usually fewer planes in a depth image than there
are features in the RGB image. The downside of this method is that extracting the
planes requires a large amount of processing power, which results in a low frame rate on
desktop pc’s (2 fps).
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3 Sensors and feature extraction

In order for a robot to create a map of the environment and localize itself in it, it has to
be able to determine the distance to certain objects. This is usually achieved by using a
lidar (light radar), RGB camera (mono or stereo), RGB-D camera or sonar. To be able
to efficiently use the sensor data it might be necessary to extract features from it. The
basic operation and the feature extracting methods of each sensor are described in the
following paragraphs.

3.1 Laser range finder (Lidar)

The most commonly used sensor for sensing the environment in 2D indoor SLAM is the
laser range finder. It works by sending a laser pulse towards an object and measuring
the time it takes to reflect from the object and return to the sensor. By repeating this
for multiple different angles it is possible to measure a 2D slice of the environment.
Because of its high accuracy and ease of use this is a very suitable sensor for SLAM. It
is however, relatively expensive ($1000+). In the literature it is usually implemented in
two different ways: by using scan matching or by extracting corners.

3.1.1 Scan matching

The main principle of scan matching is trying to find an optimal rotation and translation
of the new sensor endpoints so that they fit the previously made scans (fig.1). Here the
left image shows the initial orientation of the new scan (blue) and the previously made
reference scan (red). By finding corresponding points between the red and the blue
points it is possible to find a rigid body transformation that minimizes the distance
between the two scans (right image).

In order to reduce the processing time, the scans can be downsampled using gridmaps
as is done in [43]. Gridmaps are discrete representations of the map where the map is
divided into equally sized cells. Each of these cells contains a probability of being
occupied, empty or unexplored. Because the grid map is a discrete representation,
bilinear interpolation can be used to increase the accuracy of the scan matching algorithm
[36].

3.1.2 Corner extraction

Another way of using the laser range finder data is to extract corners and centers of
walls as is done in [13]. Here they make a distinction between two kinds of features:
fixed features and moving features. Fixed features (the filled black circles in fig. 2) are
the corners of walls and can be found by looking for non differentiable local minimum or
maximum (point A and B in fig. 2) or jump discontinuities (point C in fig. 2). Moving
features (open circles) are the centers of walls (point D in fig. 2), which can be found
by looking for local minimums or maximums. Scan matching of the features is used to
merge the new features with the feature map.
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Figure 1: Effect of scan matching [27]. Left: before scan matching. Right: after scan
matching.

The downside of using a lidar for 3D mapping is that it only captures 2D slices of the
environment. A straightforward way of dealing with this is to try to combine multiple
2D slices together by using the onboard odometry sensor. Another way is to generate
3D point clouds with a lidar by mounting it on a pivoting platform as is done in [8].
Here a 3D scan is made by changing the pitch of the lidar and merging multiple scans
together.

3.2 Vision RGB

Instead of using an expensive laser range finder to sense the world, implementations
have been made that use a relatively cheap mono or stereo vision [15, 16, 20] system.
Because the images don’t directly contain any depth information, some form of image
processing is required. The general principle behind determining depth from images is by
finding corresponding features in multiple images and determining the depth by looking
at the change in position. For mono vision implementations, this comes down to using
successive images and using the movement of the robot and the change in position in the
images to determine the depth. Stereo vision methods have the advantage of being able
to determine the depth from a single frame. This is done by looking for corresponding
features in the left and right image and determining the depth by looking at the difference
in location. The advantage of the stereo system is that no relatively noise movement
information is required, which results in a more accurate depth determination.

A way of finding corresponding points in both images is by using the sum of absolute
distances. Sum of absolute distances is a method that tries to find correspondences
between images for each pixel. The general principle is that it takes the sum of a pixel
and its neighbors in one image and it tries to find a pixel in approximately the same
position in the other image that when summed with its neighbors gives the same value.
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Figure 2: Top left shows an environment and the resulting laser scan. Top right shows
the location of the extracted features. The bottom image shows the lidar data and the
extracted features [13].

If the difference between the sums of each pixel is below a threshold, then they are seen
as corresponding pixels. An efficient implementation of this is described in [4]. It is
however difficult to determine if a certain area has been seen before because no features
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are extracted.
Instead of trying to find correspondences for each pixel in every frame methods like

Scale Invariant Feature Transform (SIFT) and saliency operators try to find features in
textured areas of the image. Because a set of features is extracted from the image it is
possible to determine if a certain area has been seen before.

Another method for extracting features from images is by extracting edges [20], which
can be accomplished by using a Canny edge detector. The advantage of using an edge
detector is that it works well in areas where there is very little texture available (empty
hallway).

Cameras have also been used as a way of increasing the accuracy of other sensors. An
example of this is [24], where corners are extracted from the camera image and compared
to lidar data.

3.3 Vision RGBD

Multiple papers have presented ways of using both the depth image and the camera
image for mapping of an environment [22, 34, 39]. The process of merging multiple scans
together is similar to monocular systems. It works by finding features in the new RGB
image and matching these features to features in previous RGB images. The difference
with monocular systems is that these systems don’t need to calculate the depth of the
features because the depth image is all ready available.

This depth image is generated by using the integrated (infrared) IR pattern projector.
Instead of measuring the time it takes for IR light to travel from the camera to an object
and back to the camera again, like a lidar, the RGBD sensor projects a pseudo random
uncorrelated pattern (fig. 3) onto the object. This pattern consists out of multiple IR
dots that are projected by the IR projector. The reflection of the pattern off the objects
is then captured by the IR camera. By comparing clusters of dots to hard coded patterns
the distance is determined.

Besides looking at the relative distance between dots, also an astigmatic lens is used.
This lens distorts the dots and results in an elongation of the dot, which is based on
the direction of the depth variation [31]. By looking at the size and orientation of the
elongated dots it is possible to refine the depth measurement.

Another method [41] proposes to improve the accuracy by also matching planes,instead
of only using features, that are extracted from the point cloud, which are found by ap-
plying RANSAC. The reason for using planes is that they are more robust to noise and
there are fewer planes than features in a frame. If, however, there are fewer than 3
planes (minimal amount to be able to perform 3D matching) present in the new scan,
then the algorithm will use 2 planes and 1 feature point. The points are extracted from
the RGB image using SURF and they are back projected onto the depth image. If there
are less than 2 planes available, then the algorithm will try to perform the registration
in the following order: 1 plane and 2 points or 3 points. After the registration, an inter-
pretation tree is used to prune false correspondences and bundle adjustment is used to
optimize the global map.
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Figure 3: Light coding pattern [31].

3.4 Sonar

A less commonly used sensor for SLAM is sonar [3, 30]. The main principle behind using
sonar for detecting objects is that the sonar sends out a high frequency sound wave in
a three dimensional cone. When this wave hits an object it gets reflected off it and the
reflection is then detected by the sonar. By measuring the time that it takes for the
wave to come back to the sensor it is possible to detect the distance to objects. The
advantage of using sonar over using lidar is that it detects objects in a 3D cone instead
of a 2D plane. It does however, have a large drawback. The sound wave can be reflected
away from the sensor, which either results in the sensor sensing nothing or sensing a
wave that has been reflected by multiple objects. A way of overcoming this problem is
by combining sonar with lidar as is done in [3]. When sonar indicates a distance that
is larger than the distance indicated by the lidar (the sound wave reflected off multiple
objects), the distance indicated by the lidar is used. Another way of dealing with this
problem is by using multiple digital signal processors to remove the echo’s as is done in
[17].
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3.5 Comparison

In order to be able to choose between the sensors a comparison is made. This comparison
will grade each sensor on several aspects (table 1) and discuss the reasoning behind the
grade and the chosen sensor.

Accuracy Computational Price Field of Depth of Output
complexity view view dimensionality

Lidar (Standard) ++ + - - ++ ++ 2D
Lidar (pivoting) ++ +- - - ++ ++ 3D

RGB Camera (Mono) + - ++ + + 3D
RGB Camera (Stereo) + - - ++ + + 3D

RGBD Camera ++ - + + + 3D

Sonar - + ++ - + 2D

Table 1: Comparison of different environment sensors (- - = horrible, - = bad, +/- =
alright, + = good, ++ = excellent)

3.5.1 Lidar

The main advantage of the lidar systems is that they are very accurate and have a high
field of view. The SICK LMS-1xx rangefinder [44] for example, has a resolution of 0.5
cm, a rotational resolution of 1 degree, a field of view of 270 degrees and a depth of view
of 20 meters.

Extracting features as is done in [13] will result in having to find local minimum
and local maximum and sudden jumps in distance in the laser data, which is not very
computational expensive. The scan matching algorithm however, is more computational
expensive with a complexity of On2 [5].

The main disadvantage of the lidar is that it only takes a 2D slice of the environment.
When this is used on a hexacopter then it will be very difficult to generate a map because
almost all the movements will result in losing sight of all the previously seen features.
The only movement that is available is moving in the same plane as the lidar. Other
movements will need to use the odometry sensors to try and predict where the hexacopter
has moved to, which will slowly accumulate errors. Another issue is that it can be difficult
to determine the height of the hexacopter based on the lidar data, especially when flying
in an empty corridor.

A way around this would be to use the pivoting system. The main problem with this
method is that the robot will have to stay stationary while the lidar is pivoting in order
to get a good result, which is very difficult to do on a hexacopter system.

3.5.2 RGB Camera

The advantage of using a camera is that they are relatively cheap and can create a 3D
map. These kinds of systems are however more computationally expensive than the laser
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sensors and have a lower field of view. Another problem with the camera systems is that
the accuracy of determining the depth is based on the used resolution and the distance
of an object to the camera. If an object is close the the camera it will occupy more pixels
in the final image, which results in a better depth determination. When an objects is
further away, it will occupy less pixels in the final image and the depth calculation will
be less accurate. This could be improved by using a higher resolution camera but this
will result in longer processing. The difference in computational complexity, between
monocular and stereo systems, comes from the fact that when using a stereo system,
two images need to be processed where for a monocular system only one image has to
be processed.

3.5.3 RBGD camera

The main advantage that the RGBD camera system has over the normal RGB camera
system is that it has onboard depth image calculation, which will reduce the required
processing per frame. A disadvantage of using a RGB-D camera is that it consumes
more power than a RGB stereo system. The higher power consumption is caused by the
projection of the IR dots and the required processing to generate the depth image.

3.5.4 Sonar

The advantage of using a sonar is that it measures in a 3D cone instead of a 2D slice.
This enables the system to better detect the environment and avoid collisions with for
instance overhangs. The field of view of a single sonar module is relatively small (30
degrees [11]) but this can be overcome by using multiple sonars in a circle.

The downsides of using a sonar is that reflections have a large influence on the
accuracy of a sonar and that it can be difficult to match the new scan to reference scans
just like with the lidar.

3.6 Choice

Based on the discussed sensing methods it seems best to use the RGB-D camera for the
generation of the 3D map. The lidar and sonar methods have the problem of having
to rely to much on the odometry sensors to determine the height of the robot and
that they lose their reference points while moving. Even though the camera systems
are very similar to the RGBD system they are not chosen because of the extra depth
calculations that are required. Especially with the stereo system, because then the
feature extraction methods, which take up most of the processing time, will have to
be run twice (once for each image). This leaves the RGB-D camera of which there
are two ways of implementing it, the feature matching method or the plane matching
method. Due to the high execution time and the lower flexibility (there are few methods
of extracting planes) of the plane matching method, it seems best to use the feature
matching method.
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4 Minimization methods

In order to create a map, multiple consecutive RGB and depth images have to be aligned.
This is achieved by trying to minimize the error between points in an earlier scan (refer-
ence) and the most recent scan (query). Minimizing the error between two scans is done
by trying to find a rigid body transformation that when applied to one of the two scans
results in a minimal distance between the two scans. This transformation will contain a
rotation R and a translation T. The optimal transformation is the transformation that
minimizes e in eq. 1 where N is the number of points, ai is a point in point cloud A
(reference) and bi is a point in point cloud B (query). Here point cloud A and B have
the same amount of points.

e(R, T ) = argmin

N∑
i=1

||(ai −Rbi − T )||2 (1)

4.1 Brute force

There are multiple different methods to find the minimal value of e. The easiest method
is by applying a brute force algorithm. This method will try every possible translation
and rotation within a certain window of possibilities. Even though this method results in
the optimal translation and rotation it is almost never used because of the high amount
of processing to try every possibility. A way of increasing the speed of this method is
by using a coarse to fine grain search method as is done in [25]. Here the search space
is divided in a fixed amount of cells. By iteratively finding the best match and reducing
the area of the search space the optimal solution is found.

4.2 Singular Value Decomposition (SVD)

A more efficient solution is by using Singular Value Decomposition (SVD) [1]. Using
SVD it is possible to rewrite a matrix A to a multiplication of the matrices U, Σ and
V (eq. 2). Here U contains the eigenvectors of AAT , Σ contains the eigenvalues and V
contains the eigenvectors of ATA. By using SVD the translation and the rotation can
be calculated by using eq. 3 and 4, respectively. Here µr and µn represent the mean of
the reference scan and the new scan, respectively.

A = UΣV T (2)

T = µr −RµTn (3)

R = UV T (4)
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4.3 Newton method

Another possible method for finding the minimum of a function is the Newton method.
This method uses the gradient to incrementally minimize a function. The first order
Newton method (eq. 5) uses the gradient of the function to determine the next value of
x.

xn+1 = xn −
f(xn)

f ′(xn)
(5)

The second order Newton method (eq. 6) also uses the second order derivative (the
curviness). This results in making large steps when the function is far away from the
minimum (large gradient, small curviness) and making small steps when the function is
close to the minimum (small gradient, high curviness).

xn+1 = xn −
f ′(xn)

f ′′(xn)
(6)

4.4 RANSAC

False matches can have a large influence on the accuracy of the match. A way to
avoid including these matches for the transformation calculation is by using RANSAC
(RANdom SAmple Consensus). RANSAC works by selecting 3 random features that
all have a match and calculating the transformation that aligns them. Next the found
transformation is applied to all the features in the dataset and the distance between
each feature and its match is calculated. If this distance is less than a threshold then
the feature is counted as an inlier. The number of inliers is then used to calculated the
minimum number of iterations (R) according to eq. 7 where P represents the probability
of getting the optimal solution, W represents the probability of choosing an inlier and
N is the number of features.

R =
log(1− P (success))

log(1−WN )
(7)
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5 Feature extraction

The way multiple RGBD frames are matched is by finding features that occur in both
the query and the reference frames. A way of doing this is by extracting features from
the grayscale images of both the query and reference frames and trying to match them.
This chapter will discuss multiple different feature extractors that are commonly used
in computer vision applications.

5.1 SIFT

SIFT (Scale-Invariant Feature Transform) [9] is a scale and rotation invariant feature
extraction method that locates features based on a Difference of Gaussian(DOG) func-
tion.

In order to make the features scale invariant an image pyramid is used (fig. 4 a). This
pyramid is constructed by first generating S scaled images by calculating the convolution
of a Guassian kernel(G) and the original image(I) (eq. 9). The amount of scaling of each

scaled image is determined by eq. 8 where k = 2
1
S . These scaled images are combined

into the first octave. The next step is to generate the second octave which contains
another S scaled images. These scaled images are calculated by the convolution of a
Guassian kernel and a sub sampled version of the original image. The dimensions of
this sub sampled image are half of the dimensions of the original image. This process is
repeated O times where O represents the number of octaves.

σs = k · σs−1 (8)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (9)

G(x, y, σ) =
1

2 ∗ π ∗ σ2
e(−x

2+y2

2∗σ2 ) (10)

After the image pyramid is constructed the features are located by looking at the
difference between scaled images. For scaled image IS this is done by comparing every
pixel with its 8 neighbors in Is and its 9 neighbors in Is−1 and Is+1 (fig. 4 b). The pixel
is registered as a feature if its pixel value is a the minimum or maximum of all the 26
neighboring pixels.

After the keypoints are located, the exact keypoint position is calculated by setting
the derivative of a Taylor expansion to zero to find the exact minimum or maximum. In
order to make the keypoints less susceptible to noise, the keypoints that are on an edge
or have a low contrast are removed.

To make the found keypoints rotation invariant their orientation (θ) and magnitude
(M) are calculated. This is done by applying eq. 11 and eq. 12 where L is the image
closest in scale to the scale of the keypoint and x and y are the location of the keypoint.

M(x, y) = sqrt((L(x+ 1, y)− L(x− 1))2 + (L(x, y + 1)− L(x, y − 1))2) (11)
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(a) Difference of Guassian operation (b) Feature detection

Figure 4: SIFT DOG and feature detection

θ(x, y) = tan−1(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
) (12)

5.2 SURF

The SURF (Speeded up robust features) [12] feature extractor works by looking for
maximum values of the determinant of the Hessian matrix. First the original image is
converted to an integral image. In an integral image the value of a pixel represents the
sum of the intensities of all the pixels in the rectangle between the current point p and
the origin (eq. 13). Next every pixel is evaluated by calculating the Hessian matrix at
that point (eq. 14). Here L represents the convolution of the second order derivative of a
Gaussian. To make the process more computational efficient the second order Gaussian
matrices are first discretized and cropped. In order to make the feature detector scale
invariant this processed is repeated with different sized second order Gaussians. Octaves
are used to be able to find the features in multiple scales. The SURF feature extractor
uses multiple octaves (3 or 4) each of which contains three images that where processed
at different scales. The features are found by looking at the maximum of the determinant
of the Hessian and this position is refined by using interpolation techniques.

IΣ(x) =
i<x∑
i=0

j<y∑
j=0

I(i, j) (13)

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]
(14)
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5.3 Harris corner detector

The Harris corner detector [2] works based on the pixel intensities inside a window. If
the window is on a flat region (all pixels have the same color) and it is moved, then the
difference between the pixel intensities stays the same. Here the difference between pixel
intensities is determined by eq. 15 where w is the window function, x and y are pixel
coordinates inside the window and u and v are the shifting values in x and y respectively.
An example of a window function is a Guassian, here pixel differences near the center
of the window get a larger weight than pixel differences near the edge of the window.
When the window is over an edge, then movements along the edge will not have an effect
on the difference between pixel intensities but movements perpendicular to the edge will
have an effect. Finally if the window is over a corner then movements in any direction
will have an effect on the difference between the pixel values.

E(u, v) =
∑
x,y

w(x, y)(I(x+ u, y + v)− I(x, y))2 (15)

By applying a Taylor expansion to eq. 15 it is possible to reduce the equation to
eq. 16 where Ix and Iy are the gradients in x and y respectively.

E(u, v) =
[
u v

]
M

[
u
v

]
M =

∑
x,y

w(x, y)

[
I2
x Ixy
Ixy I2

y

]
(16)

By looking at the eigenvalues of eq. 16 it is possible to determine if the point is a
corner. When this is the case both eigenvalues will be large. If one of the two eigenvalues
is large and the other is small, then the window is on an edge and if both eigenvalues are
small, then the window is on a flat region. The shape in the window can be calculated
by eq. 17 where λ1 and λ2 are the two eigenvalues and k is a constant. If R is positive
then it is a corner, if R is negative then it is an edge and if R is small then it is a flat
area.

R = λ1λ2 − k(λ1 + λ2)2 (17)

5.4 FAST

The FAST (Features from Accelerated Segment Test) [14] algorithm is a corner detection
algorithm that determines if a pixel is a corner by looking at its 16 neighboring pixels
(see fig. 5). The neighboring pixels are orientated in a circle and are all assigned an
index (1..16). Next the intensity of each pixel on the circle is compared to the intensity
of the center pixel. If there are k consecutive pixels that all have an intensity higher
than the center pixel or that all have an intensity that is lower than the central pixel,
then the center pixel is considered a corner. In fig. 5 point p is a corner pixel if k ≤
12 because the pixels with indexes 12-7 are all brighter than pixel p. In order to get
better results a threshold t is introduced. With this threshold only pixels that have an
intensity(I) that is higher than I(p)+t or lower than I(p)-t are taken into account.
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Figure 5: FAST sampling pattern

If k≥12 then the processing speed can be increased by first looking at the pixels 1,5,9
and 13. If three of them all have an intensity higher than I(p)+t or all of them have
intensities lower than I(p)-t, then p can be a corner. When this is not the case then
there is no point in processing the other 12 pixels and the algorithm can move on to the
next pixel.

The authors also propose another way of increasing the processing speed of the
algorithm that is based on machine learning. Here a decision tree is generated by using
training data and a specified k and t. This decision tree contains pixel indexes of the
neighboring pixels and based on whether or not the intensity of that pixel is higher or
lower than I(p)+t or I(p)-t respectively a decision is made to either check another pixel
index or to make the decision if p is a corner point or not.

5.5 BRISK

The BRISK (Binary Robust Invariant Scalable Keypoints) [28] feature detector is based
on a combination of an image pyramid and the FAST corner detector. It works by looking
for corners using the FAST corner detector across multiple different scaled images in the
image pyramid. If a corner p is found, then a score s is assigned to it and compared to the
scores of the same point in the next and previous scaled images sn and sp respectively.
Here s is the number of consecutive pixels around the feature that all have a higher or
lower pixel intensity than the feature pixel. When s> both sn and sp, then point p is
considered as a corner. Next the optimal scaling value of the feature is determined by
using interpolation techniques.
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5.6 ORB

The ORB (Oriented FAST and Rotated BRIEF) [29] feature detector is a corner detector
that applies FAST to each scaled image in an image pyramid. Bad corners are then
filtered out by using a Harris measure (eq. 15). Finally an orientation (θ) is calculated
for the remaining corners with eq. 18 where atan2 is the quadrant-aware version of
arctan.

mi,j =
∑
x

∑
y

xiyjI(x, y)θ = atan2(m01,m10). (18)
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6 Binary descriptors

In order to be able to match features from multiple images a descriptor has to be gener-
ated for each feature. Based on the feature descriptions two features can be matched to
each other if the distance between them is below a certain threshold. This distance can
be an Euclidean distance or a Hamming distance when dealing with binary descriptors.
Because a low execution time is required for the final implementation only binary de-
scriptors are investigated. Binary descriptor matching is the fastest option because of the
low execution time of the calculation of the Hamming distance. Calculating the Ham-
ming distance involves applying an XOR between the two descriptors and calculating
the number of binary 1’s in the resulting value.

A common method among the binary descriptors is the use of sampling patterns.
These patterns contain pixel pairs that are located in an area around the feature. The
descriptor is generated by comparing the pixel intensities of the pixel pairs. If the
intensity of the first pixel of the pixel pair (a) is less then the intensity of the second
pixel in the pixel pair (b) then a 1 is added to the descriptor, otherwise a 0 is added
(eq. 19). In order to reduce the influence of noise, the patch around the pixel value
is smoothed by using a Gaussian kernel. The variance of the Gaussian kernel differs
between the implementations.

fnd =
∑

1<i<nd

2i−1τ(p, ai, bi) (19)

τ(p, a, b) =

{
1 if p(a)<p(b)
0 otherwise

Commonly used binary descriptors are BRIEF,BRISK,FREAK and ORB. The main
principle of each of these descriptors is discussed in the following paragraphs.

6.1 BRIEF

The BRIEF (Binary Robust Independent Elementary Features) descriptor [21] uses a
Gaussian based sampling pattern (fig. 6). Here the x component of one of the pixel
points is sampled from a Gaussian distribution that is centered around 0 and has a
variance (σ2) of 1

25S
2. Next the y component is sampled from a Gaussian distribution

that is centered around the x component and has a variance of 1
100S

2. The variances
that are used where experimentally found to perform best.
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Figure 6: BRIEF sampling pattern[21]

6.2 BRISK

The BRISK descriptor [28] uses a sampling pattern that consists out of evenly spaced
circles concentric with the keypoint (fig. 7). Instead of using a fixed variance for the
Guassian (red circles in fig), the BRIEF descriptor uses variances based on the distance
to the keypoint (located in the origin in fig. 7). Based on the sampling points(blue circles
in fig. 7) a set of sampling pairs (A eq. 20) is generated. This set is then split up into
two subsets: the short distance (S eq. 21) and the long distance (L eq. 22) sets.

A = {(pi, pj) ∈ R2 × R2 | i<N ∧ j>i ∧ i, j ∈ N} (20)

S = {(pi, pj) ∈ A | ||pj − pi||<δmax} ⊆ A (21)

L = {(pi, pj) ∈ A | ||pj − pi||>δmin} ⊆ A (22)

Figure 7: BRISK sampling pattern[28]
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The orientation of the keypoint is determined by taking the average of the gradients
of the long distance sample points. This orientation is then used in combination with the
keypoint scale to rotate and scale the sampling points. Next the descriptor is determined
by comparing the pixel intensities of all the short distance sampling points.

6.3 ORB

The ORB descriptor [29] is based on the BRIEF descriptor but also incorporates the
orientation of the keypoint (steered BRIEF). A way of accomplishing this is by rotating
the pixel pairs in BRIEF according to the orientation of the keypoint. In order to evaluate
this method PCA (Principle Component Analysis) was applied to the pixel pairs and the
highest 40 eigenvalues where studied (fig. 8). The optimal feature descriptor has a low
correlation and a high variance. As can be seen, the eigenvalues of steered BRIEF are
lower than the eigenvalues of normal BRIEF. This means that the steered BRIEF pixels
pairs are less correlated than the normal BRIEF pixel pairs, which is preferred. The
figure also shows that the eigenvalues of steered BRIEF decrease more rapidly than the
eigenvalues of normal BRIEF, which means that there is a lower variance in the data.

In order to increase the performance of steered BRIEF the authors propose rBRIEF.
The pixel pairs of rBRIEF are chosen so that the correlation is low and the variance is
high. This was accomplished by trying to find pixels pairs that when applied to multiple
different features that where extracted from multiple different types of images (images
of cars, animals, etc.) result in a low correlation and a high variance. As can be seen
in figure 8 rBRIEF has lower eigenvalues than BRIEF and the eigenvalues decrease less
rapidly than the eigenvalues of BRIEF.

Figure 8: ORB sampling pattern Principle Component Analysis(PCA)[29]
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6.4 FREAK

The FREAK(Fast Retina Keypoint) [32] descriptor uses a sampling pattern (fig. 9) that
is based on the human retina. Because the human eye is more sensitive in the center
of the retina, the sampling points are close together and use a small Gaussian variance
for smoothing. As the sampling points get further away from the center, the density
of sampling points reduces and the variance increases. Because of the large number of
possible sampling pairs, the FREAK descriptor uses a reduction method similar to the
ORB descriptor. Here only the sampling points with a low correlation and high variance
are found.

FREAK also incorporates the orientation of the keypoint. The orientation is calcu-
lated according to eq. 23 where M is the number of pairs that are used in the orientation
calculation and P ri

O is the 2D vector of the spatial coordinates of the center of the recep-
tive field, which is similar to the BRISK descriptor. Instead of using the long distance
samples, FREAK uses pairs with symmetric fields with respect to the center (fig. 9).

In order to increase the execution speed of the matching, the keypoint is processed
in 4 steps, which are sorted from course to fine grain information. If the distance after
a step is above a threshold, then the keypoint is discarded as a match.

O =
1

M

∑
PO∈G

(I(P r1
O )− I(P r2

O ))
P r1
O − P r2

O

||P r1
O − P r2

O ||
(23)

Figure 9: FREAK sampling pattern[32]
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7 Feature matching

In order to efficiently and accurately match the features of multiple scans, the features
have to be matched to each other. This involves comparing the feature descriptors of
previously acquired features (reference features) to the feature descriptors of the newly
acquired features (query features). To be able to compare feature descriptors some
kind of distance measure is required. Because binary features are generated, a suitable
distance measure is the Hamming distance. The Hamming distance between two binary
descriptors is the number of bits that are different, which is calculated by applying an
XOR operation and counting the number of bits that are 1 (eq. 24).

(10110)
XOR (00101)

(10011)
Hammingdistance = 3 (24)

7.1 Brute force

A straight forward way of implementing feature matching is by applying a brute force
algorithm. Here the Hamming distance is calculated between each descriptor in the
query set and each descriptor in the reference set. If the minimum distance is below
a certain threshold, then the descriptors are seen as a match. The problem with using
a brute force matching algorithm is that it has an complexity of O(rq) where r is the
number of reference features and q is the number of query features. This results in
long execution times when there are a large amount of features. A way of reducing the
execution time is by matching multiple features in parallel.

7.2 Hash table

Another way of matching binary descriptors is by interpreting the binary descriptor as
an index for a hash table. Here each entry in the hash table contains an index of the
matching descriptor. For this to work two problems have to be overcome: the hash table
size and the number of Hamming distance permutations.

The first problem comes from the fact that if the entire binary descriptor would be
used as an index in the hash table, then the hash table would need 2b entries where b is
the number of bits in the binary string of the descriptor. Here an entry consists of the
index of the reference descriptor.

The second problem is related to the way of dealing with a maximum distances
(t) > 0. When t=0 then finding the match just involves looking at the table entry that
corresponds to the descriptor. However when t=1 then besides the original binary string
also all permutations of the binary string where 1 bit is flipped have to be processed.
This results in having to process L(b,t) (eq. 25) possibilities as a worst case for a given
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b and t.

L(b, t) =
t∑

k=0

(
b

k

)
(25)

A solution for both problems is to use s disjoint binary sub strings instead of the
entire binary string [35]. Here the entire binary string is divided into m parts, which
results in sub strings with l ( b

m) bits. This results in having to use s hash tables that
each have 2l entries. As a result of splitting the hash table up into multiple smaller ones
each entry can contains more than 1 index of possible matching descriptors.

Another advantage of using sub string is that the number of permutations that are
required to find matches with a distance < t is greatly reduced. This is because in eq. 25
besides the number of bits, the threshold t is also reduced. The reason for this is that
the maximum distance is distributed across the sub strings (eq. 26). For example if there
are 30 sub strings and the maximum distance is 29 then there must be at least 1 sub
string that perfectly matches a sub string of a reference descriptor. This results in only
having to look for sub strings that perfectly match. When t>s it is still necessary to
check every permutation.

tsub = bs
t
c (26)

After finding all possible matching options, the distance between the entire descrip-
tors are calculated to find the best match.
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8 Scan matching

Instead of trying to find a transformation based on the features that are found in the
RGB image, it is also possible to find a transformation based on the depth image. These
methods work based on trying to find a transformation that minimizes the distance
between all the points in 2 point clouds. Usually this is achieved by using either an
Iterative Closest Point (ICP) or a Normal Distribution Transform (NDT) method.

8.1 Iterative Closest Point (ICP)

The ICP method works by first trying to find a matching point in the first point cloud (A)
for each point in the second point cloud (B). Once each point in A has a corresponding
point in B, a transformation can be calculated that minimizes the distance between all
the matching points. For this to work several problems have to be overcome.

8.1.1 Closest point search

The first and most expensive step of the ICP algorithm is trying to find points in the
new scan that correspond to points in the reference scan. A point in the new scan
corresponds to a point in the reference scan when there is no point in the reference scan
that is closer to that point in the new scan.

One way of finding the correspondences is by applying a brute force method. Here
the distance from each point in A is calculated to each point in B. This results in a
complexity of O(N · R) where N are the number of points in A and R are the amount
of points in B.

A more efficient way is by using a kd-tree to find the correspondences between points.
The structure of the tree is that the root represents the entire point cloud and it has
two successor nodes. Each successor node represents a sub point cloud that also have
two successor nodes. The leafs of the tree are buckets that contain the size of the sub
cloud and all the points that fall into the sub cloud.

When the corresponding point of point p needs to be found in the kd tree, first the
tree needs to be traversed until the leaf is found that represents the sub point cloud
in which p falls. Next the distances from point p to all the points in the bucket are
calculated and the shortest distance is selected. If the shortest distance is smaller than
the distance from point p to the edge of the sub point cloud, then the point corresponding
to the shortest distance is chosen as the corresponding point of point p. If the shortest
distance is larger than the distance from point p to the edge of the sub point cloud,
then it is possible that the closets point to point p is in the neighboring sub point cloud.
When this is the case, backtracking is used to go to the neighboring sub point cloud.
This process is called Ball Withing Bounds (BWB) and is illustrated in figure 10.

8.1.2 Distance functions

In order to be able to find corresponding points some kind of distance function is required.
The distance function that was used in the original ICP algorithm is the point to point
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Figure 10: Ball Within Bounds (BWB) [19]

distance [7]. The point to point distance is calculated by determining the Euclidean
distance (eq. 27) between two points. Here R represents the rotation matrix and T
represents the translation matrix.

d(x, y) = ‖(x−Ry − T )‖2 (27)

The downside of using the point to point distance is that it assumes that the cor-
responding points are in exactly the same position in the environment. Because the
RGBD camera takes a discrete sample of the environment this is not necessarily the
case. In order to try and overcome this problem a new distance measure was introduce:
the point to plane distance [7].

This distance is based on the projection of point x on the tangent plane of point y.
Here point x is a point in A and y is a point in B. The point to plane distance between
point x and y is calculated by eq. 28. Here R is the rotation matrix, T is the translation
vector and n is the normal at point p.

d(x, y) = ‖((x−Ry − T )) · n‖2 (28)

The downside of both the point to point and the point to plane distance functions
is that they need matching points. A method that overcomes this problem is the point
to projection distance measure [7]. This method only works when dealing with range
images like the depth image of the RGBD camera. The idea is to project one image onto
the other by using a rotation matrix R and translation matrix T. Finding point u in B
that is a match for point v in A works as follows:

• Point u is transformed to a 3D point

• The transformation using R and T is applied to u
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• The transformed u position is back projected to a 2D xy position

• Point v is located at the found xy position in the depth image of A

The downside of this method is that it is less accurate than using the point to point
or point to plane methods.

8.1.3 Outlier removal

During the closest point search it can happen that wrong matches are generated. This
can be caused by for instance: a wrong initial transformation or measurement noise. If
these wrongly matched points would be used for finding the transformation, then they
will introduce an error. A way of dealing with wrong matches (outliers) is by using
Random Sample Consensus (RANSAC), which is explained in section 4.4.

8.2 Normal Distribution Transform(NDT)

The Normal Distribution Transform (NDT) tries to find a rigid body transformation
that maximizes the probability of the new scan matching the reference scan. This is
done by first dividing the reference point cloud into fixed size voxels. For each voxel k
that has N (N>3) points (p = (x, y, z)T ) in it a mean (µk) and covariance matrix (Σk)
is calculated using eq. 29 and eq. 30 respectively.

µk =
1

N

N∑
v=1

pv (29)

Σk =
1

N

N∑
v=1

(pv − µk)(pv − µk)T (30)

Because of the discretization, the normal distribution voxel map contains disconti-
nuities in the surface at the edges of the voxels, which can cause matching errors. A way
of overcoming this problem is by using multiple overlapping voxels. These overlapping
voxels are generated by defining the start of the successive voxel 1/2 of the voxel size
later instead of starting the next voxel a full voxel size later (fig. 11). Here the green
point falls within the four overlapping rectangles (red, orange, black and blue) that are
shifted by half of the rectangle size. When dealing with a 3D case, 8 overlapping voxels
are used.

The rigid body transformation that matches the new scan with the reference scan is
found my minimizing e in eq. 31. Here pv is point v in the new scan that falls within
voxel k1 until kM (for 2D M=4,for 3D M=8) of the discretized reference scan.

e(p) = −
M∑

kt=1

e
(pv−µk)TΣkt(pv−µk)

2 (31)
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Figure 11: NDT cell overlap

The transformation that minimizes eq. 31 is calculated by applying Newtons method
eq. 32 where t is the previously calculated translation or in the case of the first iteration
the initial transformation, H is the Hessian of e and g is the gradient of e.

tnew = t− g

H
(32)

8.3 Choice

Because an important factor in the implementation is the execution time it seems best
to use the ICP point to projection method. This will insure a fast execution time but it
will also require a good initial transformation.
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9 Implementation

This chapter will cover the choices that where made and the solutions to problems that
where encountered during the implementation. Figure 12 shows a flowchart of the steps
that are taken during the SLAM process.

First a frame of images (RGB and depth) is read from the dataset. Next a grayscale
image is generated from the RGB image, which will be used for the feature extrac-
tion. Because large parts of the SLAM implementation use the open computer vision
(OpenCV) library, first the RGB and depth image from the sensor are converted to
OpenCV matrices. The RGB matrix is then converted to grayscale by using an OpenCV
function. After generating the grayscale image it is passed to the feature extraction and
description functions of openCV. The found features are then matched to the features in
a previously processed frame and a rigid body transformation is calculated based on the
found matches. This transformation is then used as a starting point in the scan match-
ing procedure. The scan matching procedure updates the transformation and passes
the result to the feature map, which acts as a database. If the transformation indicates
that the robot has traveled a large enough distance, then the frame and its features are
added to the feature map to serve as reference frames for later frames. The following
subsections will discuss each part in more detail.
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Figure 12: Flowchart of the implementation
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9.1 Sensor choice

There are two different RGBD sensors available: the Microsoft Kinect and the Asus
Xtion PRO LIVE. The specifications of both sensors are shown in table 2.

Figure 13: Size comparison between the Microsoft Kinect and the Asus Xtion [37]

As can be seen most of the specifications are similar. There are however some
important differences between the two sensors: the height, the weight and the power
consumption. The final goal is to be able to mount the sensor to a hexacopter platform
in order to autonomously map the environment. This results in a sensor that needs
to be as small, light and power efficient as possible. Because of these restraints the
Microsoft Kinect is less suitable due to the significantly higher size, weight and power
consumption.

9.2 Dataset generation

During the testing phase, instead of directly using images from the Xtion, a previously
recorded dataset is used. This has the advantage of not having to move the camera
around for every test and ensures that experiments can be repeated with the same
input image. The first step in generating the dataset is by manually moving the camera
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Point of comparison Microsoft Kinect Asus Xtion

Hardware Compatibility USB 2.0 USB 2.0
USB 3.0 USB 3.0 (using a hotfix)

View Adjustment Has motor that can be controlled No motor, only manual
positioning

remotely by the application
Size 12” x 3” x 2.5” 7” x 2” x 1.5”
Weight 3.0 lb 0.5 lb
Power Supply USB + ACDC power supply USB
Power Consumption 12 watts <2.5 watts
Distance of Use between 800mm and 4000mm between 800mm and 3500mm
Field of View 57 ◦horizontal, 43 ◦vertical 58◦horizontal, 45◦vertical
Vertical tilt range 27◦ Not applicable
Frames per second (FPS) 30 30
Depth Image Size - Resolution 640x480 pixels 640x480 pixels
OS Platform Support Microsoft Windows Microsoft Windows

Linux Linux
MacOS MacOS

Xbox 360
Programming Language C++ C++

C# (Windows) C# (Windows)
Java Java

Libraries OpenNI OpenNI
OpenKinect

Microsoft SDK

Table 2: Microsoft Kinect and Asus Xtion specifications [38]
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through the environment and generating a recording. This recording contains all the
depth and RGB images that are made.

To gain access to the sensor and to generate the recordings, the open source OpenNI
2.0 library is used. This library outputs the RGB image with 24 bits per pixel (8 bits
per color) and the Depth image with 11 bits per pixel. The values of the depth image
represent the distance in mm from the object to the camera plane. Here the maximum
value is around 9000mm and out of range measurement are stored with a distance of
0mm. The precision of the depth values is however not constant. When objects are close
(between 0.5 and 4 meters) then the step size of the depth values will be relatively small
(1-50mm) but when objects are further away (7 meters +) then the step size can grow
to (150mm +) (fig.14).

Figure 14: Depth resolution as a function of distance [33].

Because the depth and the RGB images are captured using two different cameras,
some kind of registration is required. If this step is not performed then a pixel at X,Y in
the RGB image will not correspond with the pixel at the same coordinate in the depth
image. The registration of the image is done by the openNI library, which uses the
calibration values of the sensor that where determined by the manufacturer.

Besides setting the registration mode the resolution is also set. As is described in the
specification (table 2), the maximum resolution is 640x480 but the implementation uses
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a resolution of 320x240 and a frame rate of 30fps. The main reason for this is that this
will reduce the processing time of the feature extraction method. Besides the reduction
in processing time this resolution is also chosen because when both the RGB and depth
image have a resolution of 640x480 the frame rate is very unstable. This is tested using
the example code that is supplied with openNI 2.0 on both a laptop (HP 8570w) and
the Raspberry Pi.

9.3 Reading dataset images

Initial versions of the implementation read the images directly from the recording. These
images would then be converted to openCV matrices by using a memcopy operation and
converted to grayscale so that they can be used by the rest of the implementation.

The problem with this method is that the openNI function that reads the images from
the recording is very unstable. This function would at random moments skip X amount
of frames from the recording where X is roughly between 1 and 20. The problem with
this is that the resulting 3D model shows significant differences when generated based
on the same dataset.

The openNI library also supports a seek function. This function enables the user
to look for a frame with a specific index. The problem with this function is that this
results in a loss of synchronisation between the RGB images and the depth image.
Besides the loss of synchronisation, this function also randomly reads the wrong images.
This problem is overcome by rereading the last correct image and trying the failed image
again.

To overcome the problem of having to reread images, all the images of the dataset
are converted to images that are stored in the hard drive. When an image from the
dataset is required, the image indexes are manually resynced and the correct images are
read from the hard drive.

9.4 Feature extractor and descriptor comparison

Because execution time is of a large importance to the implementation, OpenCV was
used. This has as an advantage that it supports multiple different feature extraction,
description and matching methods that are all highly optimized. In order to find the
optimal feature extractor and descriptor a measurement was performed, which compared
three feature extractors (ORB,BRISK and FAST) and four feature descriptors(ORB,
BRIEF, BRISK and FREAK). The SIFT and SURF methods where not considered
due to their long processing times. Because the extractors take multiple different input
arguments the tests where run multiple times with different input arguments. The
arguments that where altered between runs and their minimum and maximum values
are shown in table 3.

Besides adjusting the arguments the distance between the images was also adjusted.
Here 4 different distances where used: 2cm, 10.7cm, 20.3cm and 26.3cm. Distances much
larger than 25cm where not included into the test because the feature map distance
threshold is set to 25cm. These distances where determined by the mapping algorithm.
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ORB

Argument minimum value step size Maximum value

Scale factor 1.0 0.1 1.9

Number of levels 1 1 10

BRISK

Argument minimum value step size Maximum value

Number of octaves 1 1 10

Threshold 10 10 100

FAST

Argument minimum value step size Maximum value

Threshold 10 10 100

Table 3: Minimum, maximum and step size of the tested arguments for each feature
extraction method

The optimal extractor should be able to find a large amount of correct features
(inliers) in a short amount of time. First a comparison is made between the feature
extractors by looking at the number of inliers they found (fig. 15). Here it can be seen
that the number of inliers of the BRISK and FAST feature extractors are significantly
lower than the number of inliers when using the ORB extractor. For this reason only
the ORB extractor will be considered.

To be able to find the optimal settings for the extractor and descriptor a cost function
was created (eq. 33). This function takes into account the normalized number of inliers
(nin), the normalized number of RANSAC iterations (nit) (section 9.8) and the normal-
ized processing time (pt). Because of the large importance of having a fast algorithm
the processing time is given a higher weight.

c = 2 ∗ pt+ nin + nit (33)

The results showed that the optimal feature descriptor is the ORB descriptor for each
of the distances. There is however a difference in the optimal settings of the parameters.
The scale ranged between 1.1 and 1.2 and the number of levels ranged from 5 to 10.
Through performing multiple experiments the optimal parameters of 1.2 for the scale
factor and 5 for the number of levels where determined.

9.5 Feature extraction and description implementation

The input to the ORB feature extractor is the grayscale image of the current frame. After
processing the image an output is generated, which is a vector of coordinates of where
features are located. Because the features are extracted by just using the grayscale image
it can happen that there is no depth value available (out of range) for that feature. The
features without a depth value are removed because they are not usable in the following
steps.
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Figure 15: Plots showing the number of inliers per feature extractor

The coordinates of the feature are then passed on to the ORB feature descriptor
which generates a 256 bit (32 independently accessible 8 bit values) feature descriptor
for each feature.

9.6 Maximum distance

As can be seen in the specifications (table 2) the maximum recommended distance is
3.5 meters. If there are enough matched features inside the 3.5 meter range then the
algorithm will be able to find a transformation. However, when this is not the case
then the maximum allowed distance is increased so that hopefully there will be more
matches. The downside of this is that the accuracy of the feature locations will decrease,
which will in turn decrease the accuracy of the found transformation. Because of this,
the maximum allowed distance is increased by 1 meter every time the algorithm fails to
find a valid transformation. This way the algorithm starts with accurate features and
slowly adds more inaccurate features as long as the algorithm keeps failing. The chosen
distance is a trade off between accuracy (smaller steps reduce loss in accuracy) and the
number of required iterations (larger steps decrease the number of required iterations).

9.7 Feature matching

The features that are found in the current frame are matched with features that where
found in a reference frame. This reference frame is the frame in the feature map that is
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closest to the current position.
Two different methods where compared for the feature extracting process. Both of

the feature matching methods use the Hamming distance to determine when a feature
is the closest match. The Hamming distance is based on how many bits are different
between two bit streams.

The first matching method is the openCV brute force matcher. This matcher has two
input arguments: the distance measure that should be used (the Hamming distance),
and whether or not to use crossCheck. The principle of crosscheck has however not been
mentioned before.

Lets assume that two sets of features (Black and White) are matched to each other
and this is done by checking each feature in Black to each feature in White. When this
is the case, then feature A is closest to feature C and feature B is also the closest feature
to feature C (fig. 16). When crosscheck is not enabled then both A and B will have C as
their match. However, when crosscheck is enabled then only A and C will be matched
because C is closest to A. The matches that have a distance higher than the minimal
threshold distance are filtered out.

Figure 16: Crosscheck illustration

The second matching method is the hash table matcher. Because this matcher is not
implemented in openCV an own implementation was made. This implementation uses
an array of linked lists to store the hashtable. Here the first X entries represent the first
hash table where X represents the number of entries in a hash table, the next X entries
represent the second hash table and so on. Due to practical reasons every entry in a
hashtable consist out of 8 bytes, which results in 32 hash tables total (256

8 ). When a
minimum distance threshold is used that is less than or equal to 32 then there is only
one entry per hash table that needs to be checked.

The two matching methods are compared by looking at the time it takes to match
X features where X ranges from 1 to 400. By looking at the results (fig. 17) it is clear
that the hashtable matcher is faster than the brute force matcher. For this reason the
brute force matcher was used in the final implementation.
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Figure 17: Execution time as a function of a number of input features for the the brute
force matcher and the hashtable matcher

9.8 Transformation calculation

After the matching is complete, the matched features are transformed to 3D points using
an OpenNI function. This function uses the calibration values to convert a depth value
and an X and Y coordinate to a 3D position. Before the transformation is determined,
first the features need to be checked if they are not all on a line or on a plane. When the
features are on a line, then there are infinite transformations that minimize the distance.
This is because there are an infinite amount of rotations around the line. This could
result in a wrong transformation. The problem with the features oriented in a plane is
that a mirror image of the features is also a solution, which would also results a wrong
result.

To be able to deal with this the principle components of the 3D feature points are
calculated. This results in calculating the covariance matrix and the eigenvalues of the
3D points of the matches. If the largest eigenvalue is greater than λ times the smallest,
then the matched points are in a plane or on a line. When this is the case it is not
possible to find an accurate transformation and the maximum distance is increased. If
the distance between the eigenvalues is small enough, then the transformation can be
found by using RANSAC and the SVD implementation of OpenCV.

As is described in section 4.4, RANSAC works by picking 3 random points from the
matches, calculating a transformation that best minimizes the distance between these
three points and decides if it is a valid solution by looking at the number of inliers
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when the transformation is applied to all the points. Two matched features are seen
as inliers when the Euclidean distance between them after applying the transformation
is below a certain threshold. This threshold will have to be dynamically calculated for
each feature because the resolution of the depth values changes as the depth value gets
higher. Because there are no accuracy measurements available for the Xtion the depth
resolutions of the Microsoft Kinect are used.

After a valid transformation is found the principle components of the inliers is deter-
mined again. This is to prevent that all the matched feature points are not in a plane
or on a line but the inliers are. If the feature points pass the principle components test
then the transformation is success full.

A problem with adding a frame after traveling a certain distance is that the feature
descriptions might change too much to be able to match them successfully. This problem
is solved by updating the descriptions of the reference frame by adding the descriptions
of the found inliers to the reference frame.

9.9 Scan matching

The main downside of using a method based on features is that it wont work very well
when there are not enough good features. In order to try and deal with this a scan
matching algorithm was implemented. The method that was used later turned out to
be the point to projection ICP method (section 8.1.1).

9.9.1 Scan matching method

The main problem with the ICP methods is that finding the matches between two point
clouds takes up a large amount of processing time. By finding a way to reduce the
processing time of the matching process it should be possible to decrease the required
processing time of the scan matching. The main idea is to use the transformation that
was found by the feature matching method described above to directly find correspon-
dences between the two depth images.

This is done by transforming the query depth image to how it would look from the
viewpoint of the reference depth image. If this is successful, then finding matches be-
tween the transformed query depth image and reference depth image is done by looking
at the same X and Y position in both images and transforming both positions to a 3D
point. The transformation that is used to transform the viewpoint is the transformation
that was found by the feature matching process described above. This is because this
transformation results in making the query features match the reference features. Con-
verting a pixel at X,Y in the query depth image to the viewpoint of the reference image
is done as follows:

• Get the depth value (Dq) at X,Y of the query frame

• Calculate the 3D position using X,Y and Dq
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• Apply the initial transformation found by the feature matching process to the 3D
point

• Transform the 3D coordinate back to a 2D depth image coordinate (A,B)

Because of the change of viewpoint it can happen that certain points don’t exist in
both depth images. An example of this is when moving past an open door. When the
camera is far away from the door then it will only see a small sliver of the door, but when
the camera moves closer to the door then more of the door will be visible. This causes a
problem when a part of the door that is only visible in the query image is moved to the
viewpoint if the reference image, then the wall blocking the view of the door is chosen
as a match, which is wrong. This problem is dealt with by thresholding the distance
between two matches. When the distance is too large then those points are filtered out.

The process of the implementation of the scan matching is illustrated in figure 12.
First matching points are found between the reference and the query frame. At the
moment the scan matching algorithm is optimized for matching corridors. Corridors
have the advantage of consisting of 2 walls, a floor and a ceiling, which are all mostly
flat. Because of this, the number of points that are matched can be reduced. The applied
reduction works by taking 2 slices from the images, a horizontal and a vertical slice both
at the center of the hallway. These slices will ensure that each of the 4 surfaces (left wall,
right wall, floor and ceiling) is matched. When dealing with a room with desks,chairs
etc. this method will not work as well because of the large variety in depth values (less
straight surfaces).

Just like the feature based scan matcher, SVD is used to find the transformation that
minimizes the distance between 3D points. A problem occurs when in a slice (horizontal
or vertical) the two segments (two walls or ceiling and floor) don’t have the same amount
of points. When this is the case the SVD has the tendency to rotate towards the segment
with the most amount of points, which generates an error. This is probably because of
the larger amount of points has a larger influence on the resulting transformation. The
way this is dealt with is by clustering the segments and using the start and end of a cluster
as points for the transformation calculation. This doesn’t however solve the problem of
missing the entire left wall for example. When this happens then the transformation will
still rotate towards the right wall. An advantage of using cluster endpoints is that it also
extracts features like door openings. When a door opening is visible in the depth image,
then the cluster will split that wall into two parts. When the endpoints are calculated,
then two of them will indicate the start and endpoint of the door.

9.9.2 Feature Map

Every time the new frame is matched to a reference frame it is passed to the feature
map where it is stored if a large enough distance is traveled. This distance threshold
is implemented in an effort to reduce the accumulation of the error. When a frame is
matched to a reference frame then the found transformation contains a small error that
occurs due to sensor noise or rounding errors. If every frame where to be stored then

44



this error would increase faster than when the distance threshold is used. A maximum
distance threshold of 25 cm was found to give accurate 3D models.

Besides storing new frames the feature map is also used to supply the query frame
with a reference frame, which is the frame that is closest to the predicted location of the
current frame.

9.10 Visualization

In order to be able to visually check the results, a visualization tool was created that runs
offline on a base station. The goal of the tool is to be able to generate a 3D model based
on the recorded depth images, RGB images and the found transformations. Besides
showing the model it also enables the user to freely move through the model. The 3D
model will consist out of voxels, where each voxel represents a pixel of the RGB image
that has a corresponding depth value. Because of the large amount of voxels per image
(320*240= 76800), openGl is used to be able to use the GPU for processing. Besides
the OpenGL library also openGLFW is used. OpenGLFW is used to be able to create
a graphical user interface (GUI) on which the resulting 3D model can be shown and
interacted with.

The camera movement is implemented by a translation and a rotation of the world.
So instead of moving the camera the entire model is moved. This is implemented by
keeping track of the position vector (3 floats) and the view direction vector (3 floats).

The first step in the process is defining a single voxel (cube). This can be done in
multiple different ways: by defining 6 square faces, by defining 12 triangular faces or
by using indexing. The downside of defining faces is that each 3D position (vertex) will
be defined multiple times (a vertex is on the corner of a face). In order to increase
the efficiency indexing is used. Indexing uses two separate lists: one list contains the
vertex locations and the other contains the indices of the vertices that make up the faces,
which results in only having to store each vertex (3 floats) once. Because the processing
of triangles is more efficient than the processing of squares, triangular faces are used.

There are multiple ways of creating a data structure that results in being able to
draw multiple voxels on the screen. One way is by defining an indexed cube for each
voxel. The downside of this is that when dealing with millions of voxels a large amount
of memory is required. In order to optimize this a method called instancing is used.
Instancing works by having one cube and only storing the translational data for each
voxel. This significantly reduces the required amount of memory because now only 3
floats (instead of 18 (6 vertices * 3 floats)) are necessary per voxel.

9.10.1 initialization

When the visualizer is started, first the initialization step is performed. In this step the
openGLFW window is created and all the required data is written to openGL buffers.
This data consists of the translation and color of each voxel that is shown in the final
model.
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Besides filling the buffers also the vertex shader and fragment shader code is loaded.
The vertex shader code, is code that is run to update the position of each vertex based
on input arguments. This process only effects the position of the vertices not the color
of the pixels on the screen. The pixel colors is processed by the fragment shader code.
The advantage of using shaders is that they can be run in parallel on the GPU, which
enables the application to process multiple voxels at the same time.

9.10.2 Main loop

In the main loop there are two things that happen: drawing the voxels and checking for
events.

Drawing the voxels is done by passing 3 matrices to the vertex shader. The first
matrix is the projection matrix. This matrix ensures that vertices that are far away
are put closer to each other, while vertices that are close to the camera are spread far
apart, which is done to give the user the illusion of depth (3D). The second matrix is the
scaling matrix. In this implementation the matrix just makes sure that all the voxels
have the same size.

The final matrix that is passed to the vertex shader is the world to view matrix.
This matrix applies the movement and the orientation of the camera to every voxel.
Based on these 3 matrices and the translations that where entered into the buffer at the
initialization the vertex shader is able to calculate the correct position and orientation
for each vertex in each voxel.

The second part of the main loop is checking for events. These events are the
keyboard presses and the mouse movement that enable the user to move around the
model. If an event was triggered then the camera is updated according to the user
input. Shown below are the calculations that are performed for every movement option.
Here MOVEMENTSPEED is a constant that indicates the movement speed, position
is a vector containing the x,y and z position, viewDirection is a vector representing the
viewing direction in x,y and z and UP is the vector that defines which way is up in x,y
and z.

• Move forward: position += MOVEMENTSPEED*viewDirection

• Move backward: position -= MOVEMENTSPEED*viewDirection

• Move up: position += MOVEMENTSPEED*UP

• Move down: position -= MOVEMENTSPEED*UP;

• Strafe left: position += MOVEMENTSPEED * cross(viewDirection,UP)

• Strafe right: position -= MOVEMENTSPEED * cross(viewDirection,UP)

• Horizontal rotation: viewDirection = rotate(x rotation, UP)*viewDirection

• Vertical rotation: viewDirection = rotate(y rotation, cross(viewDirection,UP))*viewDirection
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The forward, backward, up and down movements are all straight forward. Here the
position is updated by adding the direction in which the movement occurs to the current
position. Strafing works in a similar way but here the direction of movement must first be
calculated. Because the direction of movement is perpendicular to the viewing direction
and the UP vector, the cross product is calculated to find the movement vector.

Updating the viewing direction is done by using rotation matrices. These matrices
are generated by using the glm rotate function. This function uses the angle of rotation
and the vector to rotate around as input arguments and generates the corresponding
rotation matrix. In the case of horizontal rotation, the vector to rotate around is the
UP vector but for vertical rotation this is not the case. Here the rotation vector is the
vector perpendicular to UP and viewDirection just like in the strafing calculations. The
generated rotation matrices are then used to rotate the viewing direction.
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10 Results

The main goal of this project is to develop a light weight 3D SLAM algorithm that can
be run onboard of a hexacopter. This results in creating an implementation that can
run at a high frame rate without using a GPU or a multi-core CPU.

10.1 Execution speed

In order to be able to asses the execution speed of the implementation a timing mea-
surement has been performed. This measurement shows that the average total frame
processing time is 56ms with a standard deviation of 33ms. The majority of the process-
ing time (∼ 48ms) is taken up by the feature based scan matching method. When two
frames are easy to match, then only a few RANSAC iterations and no distance threshold
increases are required. When, however, two frames are difficult to match, 100 (maximum
iteration amount) RANSAC iterations will be performed per distance threshold, which
results in a long processing time (100 ms+). By decreasing the maximum number of
allowed iterations and increasing the distance threshold step size it is possible to re-
duce the maximum processing time. The downside of reducing the maximum number of
iterations is however that it is possible that the optimal solution exists but is not found.

10.2 Model generation

Two 3D models are generated based on two different datasets. The first dataset is a
relatively small dataset where the Xtion is put onto a cart and driven through a hallway
for about 10 meters (S in figure 20), which results in the 3D model shown in figure 18.
In order to be able to compare the result with the reality, the generated model and
an RGB image from the dataset are shown side by side (fig. 19). Because no ground
truth data is available it is not possible to determine the translation and rotation errors
that are made during the model generation. It can however be seen that the model is
horizontally aligned but there is a vertical error accumulation.
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(a) Side view of the model (b) Top view of the model

Figure 18: 3D model of the small dataset

(a) Internal view of the model (b) RGB image

Figure 19: Result comparison
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Figure 20: Floorplan showing the dataset path

The second dataset is of the same hallway but instead of traveling 10 meters on a cart,
100 meters was traveled (L in fig. 20) . This results in a model where the accumulation
of the error is clearly visible (fig. 21). Due to memory problems it is not possible to
show all the frames in the feature map. Because of this, only 160 frames are used for
the model generation, which causes the holes at the start.

Figure 21: 3D model of the large dataset
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11 Conclusion and future work

In this work a basic framework was created for a SLAM system using the Xtion pro live
from Asus. The system is able to determine the location of the sensor and merge new
frames with previous frames with an average frame rate of 17 frames per second, which
was measured on a HP EliteBook 8570W.

To be able to assess the performance of the algorithm when it is run onboard a drone,
two tests can be performed. The first test is to generate a dataset that is recorded from
a drone moving in 3 dimensions. This test will determine the influence that drone has
on the images. An example of this is that the vibrations caused by the motors decrease
the quality of the images.

The second test is to determine the average frame rate on a low power pc like a
Raspberry Pi. A rough estimate of the frame rate results in a frame rate of 3-6 fps,
assuming that the Raspberry Pi is 3-5 times slower than the HP 8570w. This frame
rate would be enough to generate a 3D map. If the test shows however that the frame
rate is too low, then it might be possible to reduce the image resolution. This reduction
will free up processing time, which could be used by a method that can deal with low
resolution images. If the current methods would be applied to lower resolution images,
then the accuracy of the 3D map will be reduced.

During the implementation it became clear that the openNI library is unstable at
times. A possible reason for this could be that the library does not work on a 64bit
windows 8.1 machine. It is recommended to look into this problem in order to reduce
the memory usage that is caused by storing the images on the hard-disk.

The generated map has an accumulation of localization errors, which is a common
problem with SLAM systems. Multiple different methods have been proposed in the
literature to try and reduce or eliminate the error. Examples of this are:

• Use an IMU (inertial measurement unit) combined with a motion model to try and
predict the location and orientation of the robot. This prediction can then be com-
bined with the calculated transformation (observation) using an EKF (Extended
Kalman Filter) for example.

• Improve the graph that is generated in the feature map by using graph optimization
methods like TORO [23] or g2o [26].

• Use weights for the transformation calculation. At the moment all the matched
features that are used in the transformation calculation are weight equally. It
might be possible to improve the accuracy by giving features that are matched
over multiple frames a higher weight than features that are matched once or twice.

• Filter out the depth image noise.

• Match planes around features instead of single coordinates.

The current implementation is build to only add an image to the feature map when
a certain distance is traveled. This results in the drone not being able to go around
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tight corners. A solution to this would be to also add a frame when a certain amount of
degrees is rotated.

Generating a 3D map of the environment is only one part of the final implementation.
The drone also needs to be able to plan a path through the building on its own. There
are multiple different approaches for this:

• Wall following methods.

• Move towards the closest unexplored area.

• Move towards locations that result in the highest map accuracy increase (most
information gain).

Currently the 3D model is made by drawing a voxel for each pixel in the RGB image.
A more efficient way would be to draw a square that always faces the camera, which will
result in having to draw 1 square instead of 6. Another optimization that is required
is to reduce the time it takes to generate the 3D model. A possible solution for this
would be to use the GPU instead of the CPU to convert each pixel in the images to 3D
coordinates.
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