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Abstract 
 

Distributing virtual machine images over the internet via traditional methods wastes 

network resources. A proposed solution to this problem is the Virtual Machine Delivery 

Network (VMDN). A VMDN optimizes the distribution of virtual machine images using 

concepts from content delivery networks combined with knowledge that exists about the 

inner structure of virtual machines and their disk images. In this research this virtual 

machine image’s disk structure has been analyzed which resulted in three different type 

of data structures. For each of these data structures a different strategy has been 

developed for the VMDN prototype implementation. Three different scenarios were 

created to get a set of possible performance factors. The strategies’ performance was 

measured using these performance factors and the applicability of each strategy per 

scenario has been evaluated. The findings of the study are that a VMDN can be much 

more efficient bandwidth efficient than traditional distribution methods, but that the most 

effective strategy differs greatly per given context.  
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1 Introduction 
Virtual machines; a term that you might not be acquainted with, but very important in 

today’s digital world [1], [2]. The virtual machine is an software-abstraction of a real 

computer and is an ideal unit for computing; we will explain you why. Probably you have 

a desktop computer at your work, to perform your job’s activities. The computer 

hardware is bought, software applications were installed and software licenses for it were 

obtained. This computer is 24 hours a day at your desk, but you only work 8 hours a day. 

Meanwhile computer hardware is precious and expensive. So only using the hardware for 

a third of the time makes introduces unnecessary costs. It could be compared to paying 

the whole year round for a holiday home that is only used on the weekends. For the 

holiday home a solution to this problem is possible through the use of time-sharing. The 

user only pays for the time the holiday home is actually being used. When it is not used 

and the holiday home would be idle, it is rented out to another user. By using such a 

scheme, the costs of each user can be greatly reduced by dividing the costs of the home-

ownership over multiple users. 

For computing time-sharing would also be possible, you could choose to rent out your 

computer resources to another party at the time your machine would be idle. But a 

consequence would be, just like with the equipment of the holiday home, that you’d have 

to share the contents of the computer with the other users. Sharing the contents of your 

computer with other users could pose security, legal and many other possible problems. 

 

Virtual machines are a solution to allow the sharing of computing resources without 

having to share computer contents with other users. Virtual machines are possible by 

creating an abstraction layer between the physical computer hardware that provides the 

computing resources and the computer components that are visible to the software [3]. By 

introducing this abstraction, the physical computing resources can be shared while the 

computers and their contents are isolated. It also allows one physical computer to serve 

multiple virtual machines at the same time, dividing its resources. 

 

This abstraction allows a new cost model for computing resources: only having to pay for 

the computing resources that are actually used, instead of paying the high costs associated 
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with the ownership of a fixed amount of computing resources. This payment scheme 

enables parties to greatly reduce their costs if their demand of computing resources varies 

greatly over time. Think e.g. about video-on-demand providers like Netflix [4]. During 

the day there is a low demand for computing power, because people are don’t have any 

free time to watch a movie. But in the evening a lot of customers switch on their 

televisions and want to watch a movie from Netflix. Obviously there are times of the day 

when there is a peak-demand for computing-infrastructure for the video-provider, while 

at other moments demand is low. They greatly benefit from a pay-as-you-go scheme for 

computer resources. 

 

Thus virtual machines are a proper answer to meet the demands for flexible computer 

resources. Their large advantage is that these virtual machines are able to provide the 

exact same functionality of real physical computers. But instead of directly executing the 

software’s hardware instructions on physical components, they are interpreted by a 

virtual machine monitor (also known as a hypervisor) [5].  The hypervisor then executes 

its interpreted instructions from the virtual machine on the real physical computer. 

One of the great advantages of the virtual machines is that they can be created when there 

is demand for their existence and be removed when there is not. Also these virtual 

machines can be moved from one physical machine to another. By optimally combining 

multiple virtual machines on physical machines, matching resources to actual computing 

demand, less physical computing resources are necessary in the end. This makes the 

virtual machine one of the most practical ‘units’ to work with in the world of computing 

where flexibility is key. And we foresee a future where this unit will become more and 

more important throughout time. 

 

In daily live we are already acquainted with the fact that a physical computer has a 

location as one of its properties. The computer has to be placed somewhere, it cannot be 

nowhere. This location can influence the usability and functionality of the computer. E.g. 

if you want to use your laptop computer to process some text of your USB stick in your 

text editor, you need the screen, keyboard and USB-port to be accessible. 

If your laptop would be inaccessible, for example being in another room, the laptop could 

not provide you with the means to fulfill your goal of text-editing. You’d have to move 

the laptop first to your room, before you would be able to use it in a purposeful manner. 

 

The same applies for virtual machines, also for them their location is a property and it can 

influence their functionality. And just like laptop computers, virtual machines can be 

moved. But unlike physical computers, where you are moving the physical components 

from one room toe the other. With virtual machines, you move virtual components. So 

what do these virtual components embody? The components are, as described before, just 

software interpretations done by the hypervisor. But the hypervisor needs a list of which 

components and how they are configured and which data they contain to be able to 

recreate these virtual components. This list of components is stored per virtual machine 

as a virtual machine configuration file. Most of the components of the virtual machine 

barely have any data which (permanently) resides inside them. But one component is the 

exception: the hard disk. The hard disk contains many bytes of data and to let the 

hypervisor recreate the same hard disk all these bytes have to be stored and transferred if 
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the virtual machine is moved. This can be a challenge when a virtual machine with a 

large disk has to be moved, or if a virtual machine has to be moved over a large distance. 

Because this will imply a large amount of network resources would have to be used to 

transfer all these bytes to the target location. 

 

Within this research we will introduce a solution for optimizing the moving of virtual 

machines over computer networks, using as little resources as possible to get virtual 

machines from a source to a target location. 

 

In chapter 2 the motivation for this research will be described. The problem with current 

distribution of virtual machines is explained and the role for the proposed Virtual 

Machine Delivery Network (VMDN) is to solve this problem 

 

In chapter 3 the technical details of current virtual machines and Content Delivery 

Networks (CDNs) are described. This background also shows why regular CDNs are 

currently not sufficient for solving the VM distribution problem. 

 

In chapter 4 three example situations for a virtual machines to be distributed are 

introduced. These three examples will be used as possible scenarios within this research. 

For each of these scenarios performance factors that could be considered relevant for 

their distribution and deployment scenario are highlighted and discussed. 

 

In chapter 5 the state of the art is discussed. In the first subchapters the current virtual 

machine image structure is derived from findings in literature. With this information 

more related work for each type of data-object that is found in the virtual machine’s 

image structure is discussed. 

 

In chapter 6 the proposed VMDN is introduced. The VMDN consists of a prototype using 

three different strategies. These three strategies all have a different technical background, 

design and implementation. Per strategy these aspects will be discussed. A short analysis 

will be performed on the relative performance scores between the strategies. 

 

In chapter 7 the possible future work is discussed. Focus within the future work is 

improvements on the current prototype and on the so-called “YouVM” example. A 

parallel for future virtual machine distribution as YouTube did for video distribution. 

 

In chapter 8 a short summary of the conclusions of the research can be found. 

Also a glossary has been included for the reader, where some of the used tools and non-

generic abbreviations are indexed. 

 

In the appendix A a more detailed analysis is performed. First per strategy the strengths 

and weaknesses are discussed and rated. Using this information these strengths and 

weaknesses are analyzed per applicability on the in chapter 4 introduced scenarios. These 

results are summarized into a scoring-table to show which strategies are viable (or not) 

per scenario. 
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2 Rationale 
As described in the introduction is in the world of information technology (IT) services 

for certain scenarios, like Netflix, a demand for flexibility of computing resources. A new 

business model was an important part of the solution of IT resource providers to offer 

their customers this demanded flexibility: the ‘as-a-Service’ paradigm [6]. 

This new paradigm is popular and has resulted in an enormous growth of the so-called 

‘cloud computing’ industry, which offers their IT services within this as-a-Service 

paradigm [7]. 

But these as-a-Service cloud computing applications did also issue new demands on the 

underlying computing infrastructure. To be able to offer the flexibility that the cloud 

computing services demand, the computing infrastructure itself also had to become more 

flexible. A key element for fulfilling this need of flexibility is ‘hardware virtualization’. 

Hardware virtualization encompasses the possibility to instead of having one computing-

environment on one physical computer, that you can have multiple virtualized 

computing-environments on a single physical computer. These virtualized computer-

environments are also moveable between different physical computers. This allows 

virtualization to be an ideal method for offering the flexibility necessary for cloud 

computing, because it eliminates the need for a physical computer to offer a computing 

environment. Instead, per demand a ‘virtual machine’ can be created that offers the same 

computer-environment experience as a physical one provides. This makes the virtual 

machine a practical unit for offering IT services in cloud computing and it is to be 

expected that its importance will grow even more throughout time. 

 

Since cloud computing providers already use the virtual machines to provide their 

services, it is also a unit that they can offer to their cloud computing customers. This 

virtual machine unit is then also the most basic unit that is offered within the typical 

cloud computing service stack [8]. Offering a cloud computing service to customers 

using these virtual machine units is called Infrastructure-as-a-Service (IaaS). IaaS enables 

the cloud computing providers and their customers to use full machine-like computing 

environments, through the usage of virtual machines. These virtual machines can be 

created at many different locations in the world and expose their services to clients, like 

end-users, via networking interfaces, e.g. via the internet. The virtual machines 

encapsulate applications, services, and data, which are stored in virtual machine images. 

These virtual machine images are often saved as very large files on a physical computer. 

In principle, IaaS clouds give users flexibility in application and service deployment as 

clouds enable dynamic creation, migration, and use of virtual machines over data centers 

at many locations in the world. 

 

  



 

8 

 

2.1 Problem Statement 
In the introduction was described that a computer’s location can influence its 

functionality. Also virtual machines have a location: the physical computer (also known 

as the ‘host’) that executes the hypervisor software that runs the virtual machine (also 

known as the ‘guest’). For various purposes there can be a demand for a virtual machine 

to be available at a certain target location. The physical host that is this target location 

then needs access to the virtual machine’s disk image to be able to execute the virtual 

machine. If this virtual machine disk image is not available at the target location, but only 

available at a remote source location, access to this disk image should be gained 

somehow. The easiest way to gain this access is by just copying the virtual machine’s 

disk image from the source location to the target location via a computer network like the 

internet. But even though virtual machine images can be copied bit by bit between these 

locations, in practice the distributing of such large files over the internet is inefficient and 

wastes network resources. Especially if multiple copies of a virtual machine would have 

to be copied to multiple target locations. The problem addressed in this thesis is how to 

create a Virtual Machine Delivery Network (VMDN) that facilitates the exchange of 

virtual machine images between different locations to be substantially more efficient than 

simply distributing the images via the internet using conventional methods. The problem 

and proposed VMDN are illustrated in Figure 1. 

 

 
Figure 1 Distributing virtual machine images via the internet wastes network resources. A Virtual Machine Delivery 
Network (VMDN) optimizes the distribution of virtual machine images, possibly using concepts from content 
delivery networks and storage networks. The goals of this thesis are to identify methods for efficient image 
distribution, to quantify the efficiency of these methods, and to create a proof of concept demonstrating the 
workings of a virtual machine delivery network. 

The presented problem is similar to distributing media content via the internet. For that 

problem a solution was found with the development of Content Delivery Networks 

(CDN) [9]. CDNs are networks of caches and media servers that are vastly distributed 

over different (geographical) locations all over the internet. CDNs enable more efficient 

delivery and higher performance of multimedia content to consumers. CDNs enable a 

better quality of experience to the consumers and offload the burden of delivering large 

quantities of data from the source providers of the media content. By using CDN 

infrastructure, the total amount of data that in the end has to be transferred over the 

various networks that make up the internet is reduced through the caching mechanisms. 

Source 

Dest1 Dest2 Dest3 

Internet 

Dest1 Dest2 Dest3 

VMDN 

Source 

Efficient Image Distribution 
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Thus also the overall network itself benefits from the use of CDNs, by improving the 

available network capacity. 

 

Unfortunately CDNs are not suitable for virtual machine distribution.  CDNs rely on the 

property that content has to be a static and bitwise identical to be identified by the CDN 

infrastructure as a cacheable object. But unlike many other types of content, virtual 

machines are not static. With every execution their virtual machine image will change. 

Also the virtual machine’s binary representation can greatly differ between virtual 

machine images that actually represent identical virtual machines. And though we know 

many virtual machines can be very alike, like having the same applications and files on 

their disk, their disk image’s binary representation are nothing alike. Such overlap 

between different virtual machine image’s cannot be discovered by current CDNs. This 

makes virtual machine’s images to be really unsuitable objects to be cached in CDNs, 

because no cache-hits are to be expected given these circumstances. This while virtual 

machine images are very large in size and a lot of network resources could be saved if the 

distribution mechanisms would be improved. 

 

Apparently there is a gap between the caching features of CDN that would be useful for 

Virtual Machine distribution and the constraints of current CDN implementations. That is 

why we propose a new concept to fill this gap: the VMDN (Virtual Machine Delivery 

Network). The VMDN should provide the same distribution-optimization features as a 

CDN does, but should be able to mitigate the current limitations of CDNs concerning 

virtual machines as content-type. Thus a VMDN should provide the methods to 

efficiently distribute virtual machine images from a source location to various target 

locations. The VMDN should leverage the knowledge that large virtual machine images 

do have a certain common structure: a structure that in the end represents a virtual 

machine. In this manner VMDNs should be able to use methods that are more advanced 

than those from traditional CDNs. This should enable VMDNs to implement effective 

caching and storage methods, reducing the amount of network resources necessary for 

distributing virtual machine images to the target locations. 

 

Also it is important for the distribution of virtual machines that the concept of a copy has 

to be further questioned in the given context. A comparison could be made to other topics 

to answer the question “what is a copy?” Is a copy of a movie on VHS different from the 

original movie? And is the Blu-Ray version? Since all of these copies they are not a 

pixel-perfect copy of the original production. This is because they all use different 

technology and different lossy compression methods that produce small differences in the 

end-result. But nonetheless all of these copies are considered to be valid functional copies 

for the purpose of watching the movie. 

The same questions could also apply to virtual machines. If copying a virtual machine, 

which factors are important for it to be perceived as a good, functioning copy? Which 

properties should it retain? Should it be (when comparing to movies a pixel-)perfect copy 

of the original? Or is a lossy-copy (that loses some of it details) with same functionality 

also sufficient? 

These questions can also be an important factor for this research. Since making a copy 

that does not have to be completely bitwise identical to the original, but still equal enough 
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in functionality to be considered a copy could allow for more possible approaches in the 

VMDN distribution mechanism. 
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2.2 Research questions 
The main research question for this research is as follows: 

 Can an optimized Virtual Machine Delivery Network be substantially more 

bandwidth efficient for distributing virtual machines than using traditional 

Content Delivery Networks? 

 

Sub-questions 

To answer this question the following sub-questions were formulated: 

1. What are the performance aspects concerning bandwidth efficient virtual machine 

distribution? 

2. What is the bandwidth efficiency of the distribution of completely (bitwise) 

identical copies of virtual machines using traditional content distribution 

methods? 

3. How can completely (bitwise) identical copies of virtual machines be more 

efficiently distributed by using a VMDN? 

4. Are there more bandwidth efficient methods for the distribution of lossy copies 

virtual machines using a VMDN? 
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3 Background 

3.1 Content Delivery Networks 
As we described earlier, the current method for optimizing distribution of large or 

popular files is through the usage of CDNs. CDNs are run by companies that are 

specialized in delivering content for their customers (which is the party that provides the 

content) by mirroring it on various servers that are (geographically) spread out over the 

internet network [9], [10]. The benefits of using a CDN for the original content 

distributing party are a reduced load on the content providing party’s servers, off-load of 

the burden at peak-time loads, increased performance and availability of the content to 

the end-users and a reduction in the amount of network capacity that is necessary and 

network-peering costs. 

 

The business model of the companies running the CDNs relies on the fact that they can 

bundle the deliveries for the content of their customers all together. This allows them to 

reach an economy of scale that allows them to reduce the costs per ‘unit’. A unit can be 

considered in this situation a delivery to an end-user for a piece of content that originally 

originates from one the customers. The economy of scale is also actually necessary to 

allow the service model of CDNs itself to function. They need many deliveries to reach 

the implicit geographical spread. Only by a having a great enough demand per 

geographical area the companies running the CDNs can afford to have servers available 

in all of those different regions to fulfill the content deliveries. 

 

CDNs use statistical effects within the content’s consumption, like Zipf’s law and the 

Pareto principle, in conjunction with caching methods and content consumption 

prediction algorithms [11]–[14]. CDNs allows their customers’ content to be replicated 

into their distribution network. CDNs can then mirror this content at different 

geographical locations and on different peering-level, depending on demand. 

Each location where content is being mirrored has a limited set of storage available, so a 

choice has to be made where which content will be mirrored. The idea is to match the 

content of each cache in such a way that an optimal distribution is achieved. This 

optimum can be achieved if the amount of bytes that has to be transferred in total to 

handle all requests can be kept as low as possible for an affordable price. 

If we combine this optimum with the fact that CDNs have to pay for each location, 

servers, storage and peering and have various options for each of these factors they have 

to make several choices when caching content. So when considering where to cache 

which content, the CDN has to make smart choices. 

For content that is or large or is popular within a (single) distinct (network) region it is 

often smart to cache it as close as possible to the end-user ( e.g. at the Tier 3 level, like 

the ISP’s network) [15]. In that manner the highest amount of bytes that has to be 

transferred on the grand total can be saved. 

Meanwhile, content that is smaller in size or less popular or for which the requests are 

more geographically spread out, can be mirrored at further away from the end-user, e.g. 

via Tier 2 peered locations [16]. Such a location can also typically serve a larger number 

of end-users and therefor can have a different statistical curve on which is decided what 

content is best to be cached.  
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The cache mechanisms used by the CDNs are only having any effect if they can generate 

a cache-hit when handling an end-user’s request. Such a cache-hit is achieved if the cache 

already has the requested content object available because of an earlier retrieval. 

This is only possible if content is requested multiple times through the same host that 

operates the cache. It is also important that these multiple requests for the same content 

come with high enough frequently, so that the content will be still in the cache the next 

time it is requested, instead being pushed out again already by other (popular) content. 

 

When assessing the mechanism on which CDNs rely to optimize the distribution of 

content it is apparent that they can only improve content delivery to end-users if: 

 A cacheable content object that is served to end-users is exactly equal for each 

recurring request 

 a content object is served multiple times within the same network area, 

 the requests for the content object are in high enough frequency within a limited 

time-window to survive in cache, 

 the grand total of bandwidth usage can be reduced, which is the product of a file’s 

size and how often it is served to end-users. 
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3.2 Virtual Machines 
Virtual machines recently revived as a useful and popular concept when Stanford’s 

former professor M. Rosenblum founded the VMWare company [17]. It is used to 

disconnect the physical aspects of a computing unit from the functional aspects of the 

computing unit by creating a new abstractive layer between the real physical computer 

hardware and the logical hardware that executes the computing instructions [18]. It 

allows to create a virtualized computing environment on a physical environment. To 

create this virtual environment a piece of software is necessary that is able to emulate the 

virtual hardware: the hypervisor, sometimes also called the virtual machine monitor 

(VMM). 

 

There are different hypervisor implementations available from different vendors and each 

of those hypervisors has taken several different choices concerning some technical 

aspects during implementation [19]–[21]. Each of those differing aspects can make it 

even harder to find common structures in virtual machines as content; this is something to 

keep in mind when researching this subject. Because in effect there is no single ‘virtual 

machine’ content-type. Virtual machines should be considered more to be a concept, that 

encapsulates many possible implementations and variations, many of which will not even 

be discussed in this research. That’s why sometimes assumptions are necessary or 

relatively arbitrary choices concerning the used technology have to be made when going 

into more detail. 

 

In abstract terms, the following components on the physical host machine, on which the 

virtual machine is executed, are necessary: 

 Hypervisor software 

 Virtual machine disk image(s) 

 Virtual machine configuration 

Using these three components a virtual machine can be executed. The hypervisor reads 

the configuration file, creates a virtual hardware environment that is described in this file. 

The configuration file also points to the disk image, and this disk image file is 

represented as a hard disk drive (a block device) within the virtual hardware environment 

[22]. Within this virtual environment the virtual hardware is turned on and the contents 

on the hard disk are executed as if they would be on a regular (physical) computer. 

 

Of these three components the hypervisor software is ‘static’, meaning that it only has to 

be installed once on the host machine and can be re-used for the executing of multiple 

(different) virtual machines. Meanwhile the virtual machine disk images and 

configuration are unique for each virtual machine. The configuration is just a few lines 

text and therefore not so hard to distribute. But the virtual machine disk image has a size, 

just like real physical disk, in the order of gigabytes. The transfer of such a disk image 

therefor poses the hardest challenge in the distribution of virtual machines between 

different locations and is therefore the logical focus of our research. 

 

The hardest thing about virtual machine disk images, is that they tend to diverge and 

differ from each other: there is similarity but also a very high variance [23]. It could be 
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said that they are unique if considered to be per machine at a given moment in time. The 

cause of this fact is result of the following techniques that are used: 

 Virtual machines use block devices for data storage 

 Virtual machines tend to write continuously to their storage when executed 

 Virtual block devices can be mapped in non-contiguous ways into a file 

The first aspect, that virtual machines use block devices for data storage, is the first cause 

for the uniqueness of an individual virtual machine disk image. When a virtual machine 

stores information, it stores files on a filesystem. The filesystem handles the storage on 

the block device, but the filesystem is free to select in which blocks it puts which files, 

and files don’t even have to be contiguously stored over blocks and can be spread out. 

This is also shown in Figure 2, where the yellow blocks make-up files, and the green 

blocks are the virtual block device: 

The second aspect, that virtual machines tend to write to their storage, also creates the 

effect that the content of the files do change and therefor the content of the green blocks 

on the virtual block device. This makes the virtual block-device unique throughout time. 

Each time the virtual machine is executed, the contents of the virtual block-device 

change. 

The third aspect, that virtual block devices can be mapped in non-contiguous ways into a 

file is influenced by two factors: time and hypervisor technology. Each hypervisor can 

choose a different method for mapping their emulated block device to a file or even a set 

of files [24]. This enables the possibility that different virtual blocks have a different 

location within the virtual disk image file. This is also influenced by time and the 

machine’s history, the order of the data blocks can be randomly influenced by whatever 

location’s blocks are written first to 

This non-contiguous mapping is also visible in Figure 2 as is supplied by the VMware 

blog with the relations between the green and red layer, where the green blocks are 

representing the virtual block device and mapped to different locations on the red disk-

image file [25]. 

 

 
Figure 2 is an image from the VMware blog. It shows the mapping of disk clusters from a physical disk (blue), to a 
virtual disk image file (red), to a virtual disk (green), to a virtual filesystem (yellow). [25] 

Focus on speeding up the process of retrieving a virtual machine disk image has often 

been on pre-fetching or on-demand fetching of the necessary data for execution [26]. But 

these solutions don’t reduce the amount of total bandwidth consumption for the transfer 

of a whole virtual machine, or the distribution of multiple virtual machines. 
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3.3 Analysis of background overlap 
From the preceding technical background about virtual machine disk images, it is 

apparent that there are many possible permutations for data blocks to be spread out over 

the disk image file. Also throughout time, when using the virtual machine, the disk image 

file can change. 

This makes any virtual machine disk image file a unique object in bitwise perspective. 

This hinders the usage of current content distribution optimization techniques. Because 

the virtual disk image is by no means for them a trivially cacheable object. For them all 

virtual disk images appear to be different, they cannot effectively find similarities 

between various virtual machines, rendering their current caching and deduplication 

methods useless. 

It also answers partly the first to sub-research questions. If a virtual machine cannot be 

cached, or deduplicated during distribution, it has to be copied directly from the source to 

the target location. That would mean the bandwidth consumption would be a 

multiplication of the network-distance between source and target with the amount of bits 

that have to be transferred for the virtual disk image file. The amount of bits would 

equalize the whole size of the disk image file, if no other revision of the exact same 

virtual machine is locally available. 
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4 Scenarios 
In this chapter we depict three different scenarios of possible virtual machine usage that 

would desire distribution from one source to multiple target locations. Each scenario 

varies in context: what kind of copy is to be desired? Which content(types) are to be 

expected within the virtual machine? Which distribution factors are considered to be of 

importance? 

The (details of the) scenarios and the list of performance factors per scenario are mostly 

result of a creative, iterative question-driven process. The first scenario is based on 

supervisor Strijker’s work on Executable Scientific Publications and from this scenario a 

first set of performance factors were deducted [27]. Using these performance factors, 

other various scenarios with more varying results in these factors were sought after. The 

WebRTC relay server scenario is e.g. based on real world issues found by a TNO 

networking research group concerning WebRTC relay capacity. From the resulting set of 

scenarios other new impacting performance factors were introduced. 

 

The scenarios and performance factors will be used to analysis the performance and 

applicability of the VMDN in chapter 6.6 in a variety of context. 
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4.1 Introduction of the Performance Factors 
First of all, it is important to notice that even though the performance factors are here 

introduced before the scenarios, they were not fully established before the scenarios and 

VMDN prototype implementation were.  

The performance factor originate partly from current virtual machine performance 

measurements in literature and whitepapers. Such as the time it takes from starting the 

download of a virtual machine to being able to execute it locally at a target location. 

Other performance factors were found after reviewing possible functionality impacting 

aspects for the usage of virtual machines in the VMDN’s different strategies and the 

different scenarios and from the inner virtual machine image disk structure. Of course the 

set of scenarios and strategies were limited in number, which also implies that the list of 

performance factors may not be definite. 

 

The performance factor list is (only for a overview) divided into two different categories: 

Virtual Machine Characteristics and Distribution Factors. The Virtual Machine 

Characteristics are performance factors that tend to be influenced depending on which 

kind of virtual machine and its contents is to be distributed. The Distribution Factors are 

performance factors that are more judged on given constraints within the applicable 

scenarios. 

 

The performance factor’s importance will be decided per scenario. The lowest score is 

‘Low’ which means the given factor might is not considered essential or applicable to the 

scenario. ‘Medium’ is given to those factors that are considered nice to have, because of 

having possible impact, but not deemed to be essential. ‘High’ is given to those factors 

that will have a serious impact in the given scenario and could greatly influence the 

results of a successfully functioning solution for the given scenario. ‘Critical’ is given to 

the performance factors that, if not fulfilled satisfactory, would block the original design 

function in the given scenario. The importance score given to each factor is by reviewing 

the context, but as stated before, an endless amount of scenarios could be created with 

their own set of valued aspects and importance. 

 

Virtual Machine Characteristics 

 Support and scope of VM variations 

This performance factor describes the general support for variation in virtual machine 

image contents. Since virtual machines can contain a multitude of operating systems, 

filesystems and data contents. One of the strong characteristics of virtual machine 

technology is that by virtualizing hardware components, it is in general agnostic of 

the virtual machine’s exact contents. But if you want to optimize performance by 

using tweaks, like hypervisors already do, this agnostic approach does not suffice. 

Hypervisors do use e.g. special disk, display and network devices that differ from the 

regular physical components that they would normally simulate [28]–[30]. By using 

special drivers in the operating system that deviate from regular hardware drivers 

these special tweaked virtual components can be used. E.g. if the virtual machine has 

an operating system for which these special drivers are not available, it won’t be able 

to function at all. This limits the scope and support of virtual machine variations. The 

same restrictions might also apply to the VMDN, which could restrict the type of VM 
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variations that could be handled by the distribution system. This performance factor 

describes if such limitations would be likely to impact the given scenario or not. 

 Deduplication of the Operating System 

This performance factor describes the impact that deduplication methods would have 

in the given scenario for content that is part of the operating system of the virtual 

machine. This content type would be e.g. in Unix-like systems mostly the contents of 

/bin, /lib and /usr and on Windows systems C:\Windows\. 

 Deduplication of the Applications 

This performance factor describes the impact that deduplication methods would have 

in the given scenario for content that makes up the applications of a virtual machine. 

This content type would be e.g. in Unix-like systems in /usr/lib and /usr/bin and on 

Windows systems c:\Program Files\. 

 Deduplication of the ‘User Data’ 

This performance factor describes the impact that deduplication methods would have 

in the given scenario for content that makes up the configuration and data that is 

neither part of the operating system neither any of the static or data that is part of any 

application. In Unix-like systems this would at least include directories like /etc/, 

/home/, /root/ and /var/lib/. On Windows systems this would be at least c:\Users\. 

 Deduplication of Revisions 

This performance factor describes the impact that revision-tracking and -reusing 

methods would have in the given scenario. E.g. if a virtual machine would have each 

day a new revision to be distributed, but between every revision only one single file 

on the virtual machine’s filesystem would be changed could greatly benefit from a 

tracking and reusing method. 

Distribution Factors 

 Speed of importing VM image 

This performance factor describes the time necessary to import a virtual machine disk 

image file into the distribution network. This encompasses all the steps necessary, 

such as reading the original disk image, writing data, computational processing and 

any network activity. 

 Speed of reassembling VM image 

This performance factor describes the time necessary to retrieve a virtual machine 

disk image file from the distribution network and prepare it to be used by a 

hypervisor. This encompasses all the steps necessary, so reading data, any network 

activity, writing data and any computational processing. 

 Minimal size for effective cache 

This performance factor describes the object-frequency curve to indicate the possible 

effectiveness of a cache during distribution. The minimal size of cache can only be 

small only if a small set of objects is retrieved many times  and thus can be served by 

the caching mechanism. If the distribution of object retrieval is more evenly spread 

out over a large set of objects, the minimal size for an effective cache would have to 

be much larger to be of any use. Also the size of the individual objects in the cache 

can (indirectly) influence the minimal size of the cache. 

 Re-usability of data-objects 

This performance factor describes the re-usability of the data-objects when 

reassembling a virtual machine image. If the re-usability is high, it would result in a 
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higher chance of already having a data-object available in a (local) cache. Thus it can 

improve the curve and hit-rate of these caches. 
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4.2 Scenario 1: Academic Research Publication 
Our first scenario is about a virtual machine containing the tools and dataset use for 

academic research and accompanies a scientific paper and is based on the work of 

supervisor Strijker [27]. The idea behind this scenario is that in the academic world is 

important to be able to reproduce the research of an author. This to falsify or confirm any 

findings and to be able to perform any follow-up on the original research. Also it can be 

practical to be able to access any raw data that was used in a study from the past, for 

checking new insights. 

Currently this reproduction can be hard, because of (details of) the original applications 

and datasets getting lost. Or because of incompatibility with newer hardware and 

software. The virtual machine could be a great solution to these problems. If all the 

necessary elements to reproduce the research are to be stored within a virtual machine, a 

study can always be retrieved later by just booting this virtual machine. All the 

applications and data available and directly ready to be used. 

 

In this scenario the expectation is that virtual machines for academic papers will be in the 

future widely distributed as currently papers in the Portable Document Format (PDF) are. 

They will be offered as a download via the academic press to interested parties. 

 

In the distribution scenario of these academic virtual machines there will be three 

stakeholders in the distribution process. The author of the research that created the virtual 

machine, probably a scientist. The publisher, probably an academic press organization 

that will publish the virtual machine. As last the consumer, probably a fellow scientist. 

 

During the distribution process the following context is applicable: 

 The author has plenty of time available for generation of the virtual machine 

 The publisher has to host many scientific articles and their virtual machines. 

 The retrieval rate of a single virtual machine will probably be relatively low. 

 A peak in retrieval can be expected around the time of publication and 

presentation. 

 The consumer will study for a longer time on the data anyhow and probably has 

plenty of time for retrieving the virtual machine. 

 The consumer might have multiple alike virtual machines of related studies. 

 

If we put this in an overview for which performance factors are important on a scale from 

low, medium, high to critical: 

Performance factor Performance Importance 

Virtual Machine Characteristics  

Support and scope of VM variations Medium 

Deduplication of the Operating System High 

Deduplication of the Applications High  

Deduplication of the ‘User Data’ Low 

Deduplication of Revisions High 

Distribution Factors  

Speed of importing VM image Low 
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Speed of reassembling VM image Low 

Minimal size for effective cache High 

Re-usability of data-objects Medium 

 

Support and scope of virtual machine variations 

It is to be expected that the virtual machines used for research purposes will reflect 

common variations as most other virtual machines. The popular hypervisors, operating 

systems and filesystems will dominate, exceptional choices will be rare. 

 

Deduplication of the Operating System 

The publisher hosting the virtual machines will probably have store hundreds of 

thousands of virtual machines, since 1.5 million new academic papers are published 

every year [31]. Since all of those virtual machines have an operating system 

deduplication for storage is essential to the publisher. We can note that the operating 

systems’ versions might be diverse throughout all the virtual machines, because old 

studies will have older versions installed. 

 

Deduplication of the Applications 

The same applies to applications. When storing hundreds of thousands of virtual 

machines deduplicating the applications is important to reduce the amount of storage 

necessary. 

 

Deduplication of the ‘User Data’  

Since the expectation is that between different studies the ‘User Data’ will always vary, 

deduplication is hard and probably in majority of the cases not possible and thus doesn’t 

need any priority. 

 

Deduplication of Revision Information 

Because a study might be revised or spawn multiple articles for different publications, it 

might be useful to deduplicate on basis of revision information. Also for follow-up 

studies this might be useful. 

 

Speed of importing VM image 

The process of authoring an academic paper and the reviewing process is a time-intensive 

task anyhow, publishing the virtual machine for distribution is not time-critical. 

 

Speed of reassembling VM image 

Academic work is retrieved for study. Especially if the data is of interest to the consumer 

of the virtual machine it means they are processing the details. This is time-intensive 

anyhow and thus fast retrieval is not essential. 

 

Minimal size for effective cache 

Many different studies are retrieved each day from the academic press. There is 

meanwhile little chance that even a ‘popular’ paper with their associated virtual machine 

would be requested multiple times within a limited time period. It is because of this 

important that any caching mechanisms would be allowed to cache relatively small sets 
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of data compared to the complete set of all virtual machines for academic papers to be 

hosted. Otherwise the demanded storage for the cache would have to be high. 

  

Re-usability of data-objects 

Since the consumers of the virtual machines are probably working with a multiple of 

studies as their source of reference it might be advantageous to be able to re-use the 

downloaded parts, but it is not a necessity. 
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4.3 Scenario 2: Specialized Database Server 
The second scenario is about a virtual machine that is dedicated for database storage. The 

context is that this virtual machine is distributed to various parties for a specific set of 

high performance database operations that it will execute. It contains an optimized 

installation of an operating system that is heavily stripped of unnecessary parts as 

possible, to keep as many resources as possible available for the database application. 

The filesystem is tuned to best performance for the database application. The data within 

the database is also carefully ordered on the filesystem and disk for best performance. 

The database application itself is compiled to be as fast as possible in the given 

environment. The results from the database operations are uploaded to an external 

database once a while. The virtual machine is replaced during scheduled maintenance 

windows with a newly distributed copy. 

 

If we put this in an overview for which performance factors are important on a scale from 

low, medium, high to critical: 

Performance factor Performance Importance 

Virtual Machine Characteristics  

Support and scope of VM variations High 

Deduplication of the Operating System High 

Deduplication of the Applications High 

Deduplication of the ‘User Data’ Low 

Deduplication of Revisions Low 

Distribution Factors  

Speed of importing VM image Low 

Speed of reassembling VM image Medium 

Minimal size for effective cache Low 

Re-usability of data-objects Low 

 

Support and scope of virtual machine variations 

Since the virtual machines will have tailored filesystems and operating system it is 

important that these customizations won’t block any optimizations for distribution. 

 

Deduplication of the Operating System 

Since the virtual machines are distributed on a regular basis with a new distributed copy 

and these copies mostly consist of the operating system, it is important that deduplication 

can be applied on this part. 

 

Deduplication of the Applications 

The same applies to applications. The application(s) used to run the database will make 

up the majority of the virtual machine that is distributed. 

 

Deduplication of the ‘User Data’  

All ‘user data’ that is distributed with the new virtual machines is at most some structure 

information for the database application. This will be really small and negligible. 
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Deduplication of Revision Information 

The content of the virtual machine instances to be distributed is heavily optimized for 

performance. This implies that there can be large (binary) differences between different 

revisions of files and applications. This makes revision information less useful. Also the 

virtual machine that is distributed is every time a new instance and doesn’t inherit any 

data from the previous instance. 

 

Speed of importing VM image 

The process of creating the virtual machine image has to fit in the time between the 

scheduled maintenance intervals, assuming that on the intervals a new revision has to be 

ready and not an older one can be re-used. This will probably be plenty of time and thus 

of low importance. 

 

Speed of reassembling VM image 

The retrieval of the virtual machine image has to fit within the planned maintenance 

windows. There is a window, but it will have limited span. Retrieval speed is thus of 

medium importance. 

 

Minimal size for effective cache 

Since many same instances of the virtual machines will be distributed at planned intervals 

the retrieval rate will have a universal peak. The parties downloading the virtual machine 

will know about the distribution process and can install local caching mechanisms. 

 

Re-usability of data-objects 

As with the revision information, the virtual machines will be heavily optimized and 

probably have no or severely limited interchangeability of parts between different 

revisions. 
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4.4 Scenario 3: WebRTC TURN Server 
The third scenario is about virtual machines that would be used to facilitate WebRTC 

connections between parties [32]. When parties cannot directly connect with each other 

because of Network Address Translation (NAT) an intermediate party is necessary to set-

up the connection and (in worst case situations) relay data between the parties. Such 

intermediate relay is at best located on a network location that is close to all parties to 

avoid latency issues. 

Since WebRTC TURN servers need to be configured per website and the parties needing 

the connection can come from all over the world, with variable demand. A great solution 

would be to run virtual machines providing the relay functionality at on-demand basis. 

Creating the virtual machine there where there is demand, and only if there is any 

demand. 

These virtual machines could be created from a regular installed virtual machine, with a 

popular operating system using a normal precompiled package from the package 

management software for the WebRTC TURN server’s relay functionality. 

 

If we put this in an overview for which performance factors are important on a scale from 

low, medium, high to critical: 

Performance factor Performance Importance 

Virtual Machine Characteristics  

Support and scope of VM variations Low 

Deduplication of the Operating System High 

Deduplication of the Applications High 

Deduplication of the ‘User Data’ Low 

Deduplication of Revisions Low 

Distribution Factors  

Speed of importing VM image Low 

Speed of reassembling VM image Critical 

Minimal size for effective cache High 

Re-usability of data-objects High 

 

Support and scope of virtual machine variations 

Since the virtual machines will use common operating systems this factor is not of 

importance. 

 

Deduplication of the Operating System 

Since the virtual machines are distributed for a single functionality, it is to be expected 

that the operating system will be a large part of the virtual machine’s content and should 

preferably be deduplicated. 

 

Deduplication of the Applications 

The same applies to applications. The application(s) used to run the WebRTC relay will 

make up the majority of the virtual machine that is distributed. 

 

Deduplication of the ‘User Data’  
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The ‘user data’ that is distributed will mostly be some configuration files, thus small and 

negligible. 

 

Deduplication of Revision Information 

These virtual machines are created to serve just for a short time (the period of demand) 

and afterwards be removed again. There is no expectation that any new revision of a 

virtual machine will be constructed. 

 

Speed of importing VM image 

The process of initially creating the virtual machine image only has to be executed when 

creating the WebRTC functionality on the website. This process is only once and speed is 

not important. 

 

Speed of reassembling VM image 

The retrieval of the virtual machine image has to be fast enough to meet the demand from 

connecting parties. This is probably the most important factor. 

 

Minimal size for effective cache 

Since the virtual machines will probably be retrieved at irregular interval over various 

places in the world, generating cache hits with a small cache is improbable. 

 

Re-usability of data-objects 

Multiple virtual machines for the same purpose are expected to be around. Plus the 

virtual machines are built from standard components. Being able to re-use existing data-

objects should be useful for providing the desired functionality as fast as possible at a 

location. 
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5 State of the Art 
This chapter is divided into three parts: first the related work to the structure of virtual 

machine images is discussed. On basis of this related work a brief analysis of the found 

virtual machine image structure is performed. Using this analysis of the structure, several 

structural layers and corresponding data-type objects are identified. For each of these 

data-type objects deduplication and efficient distribution methods are discussed in the 

third part. 

5.1 Related work to Virtual Machine Image structure 
Virtual machine image structure is apparently not a popular academic topic, since no 

literature directly describing this topic could be found. Partly this is probably because the 

most recent developments are more driven by industry than by academia. Another reason 

is that the image structure is mostly a result of (legacy) implementation of the storage 

stack. As a result this paragraph also relies on white papers and descriptions of current 

implementations. 

 

5.1.1 Clusters 
As provided earlier in the background chapter 3.2, the VMware company’s blog had 

provided a nice diagram to showcase how data is stored using their VMDK virtual 

machine image disk format in Figure 2. Within this figure the storage of content within 

the virtual machine’s image is displayed using blocks of data and lines for mappings 

between the layers.  The location of the data differs per layer in the diagram. But each 

block and its (data) contents are always the same, as long as you follow the line of the 

mapping, no matter in which layer it resides. This is because in all layers this block 

represents a ‘Cluster’. Clusters are a universal unit of storage. They are offered as a unit 

by most storage media, and filesystems use these clusters to organize their contents. 

Emulating the properties legacy storage media was chosen by hypervisors as method of 

providing virtual disks to virtual machines [26]. As a result, all advantages and 

disadvantages are automatically inherited. 

The largest advantage is that the whole current legacy storage stack can be used. No 

special drivers or filesystems are necessary.  

But this also introduces disadvantages. Virtual disks are not physical disks. But block 

device drivers and filesystems were designed with physical disks in mind [33]. This 

results in the effect that those designs that were optimal for physical disks, can actually 

be inefficient for virtual disks and negatively impact transfer speeds and access times 

[34].  

But it can also pose issues when handling empty or by the filesystem unused clusters. 

Because when emulating a disk, also all parts of the disk that may not be actually in use 

(anymore) still have to be modelled by the virtual disk [35]. 

 

In conclusion: disk clusters are the basic element of storage within virtual machine 

images and they are used for storage on the level of the virtual disk image file, the virtual 

disk and the filesystems used within the virtual machine. 
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5.1.2 Files and Functionality 
Within the diagram of VMware in Figure 2 the top layer is grouped into several larger 

sets of blocks. These sets of blocks represent files on a filesystem. It is the filesystem’s 

responsibility to keep track of the clusters on the (virtual) disk to map, group and 

represent them as files to the operating system of the (virtual) machine. 

 

The purpose of these files on the guest machine is in the end to perform certain 

functionality. Since virtual machines are objects that have to be created, it is fairly safe to 

say that they have a certain purpose. This functionality can only be performed by 

multiple files interacting together. Some files are part of the operating system or 

applications, while others are what we call here ‘User Data’; data that is relatively unique 

per virtual machine e.g. describes its configuration, its state and could contain some files 

to be hosted by its webserver, or a relational database or anything else. 

 

Based on these findings two types of storage elements were found: files, which are data 

objects managed by the filesystem; and functionality: which is the purpose for which the 

virtual machine was deployed and is enabled by using the files in an appropriate manner. 
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5.2 Analysis of Virtual Machine Image structure 
The lowest structure of the virtual machine is made up by several layers that were already 

identified in the diagram of Figure 2 in chapter 3.2. All these layers were made up by 

data clusters as unit of storage: a data unit. Using the extra information found about the 

virtual machine image’s structure this diagram can be expanded, which has been done in 

Figure 3. 

 

This extension of the diagram is necessary for our research to look for possible 

distribution optimization methods. Since the old diagram did only have the data cluster as 

data unit. Thus optimizations could only be applied on these data clusters. By identifying 

more new data units, more possible optimizations could arise. 

 

In Figure 3 two new data units are introduced along the data clusters. The files on the 

virtual machine and the functionality of the virtual machine are built on top of the stack 

of data clusters. A single cluster or a set of data clusters within the filesystem layer 

encompass a file. And one or multiple files represent functionality. 

 

Only using this information about the virtual machine image’s structure, the search for 

related work could be performed. The search focused on the three kind of type of data 

units that were found: Clusters, Files and Functionality. 

The related work is discussed per structural layer where it could be applied 
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Figure 3 is a derived and  further extended version of Figure 2 that shows the mapping of disk clusters from a 
physical disk, to a virtual disk image file, to a virtual disk, to a virtual filesystem, to files, to functionality. They 
layers are numbered from bottom to top. The bottom layer (zero) is grayed-out, since that layer will not be 
relevant to our further analysis. 

 

  

Filesystem on

the Virtual Machine

Virtual Disk from 

VM’s perspective

Virtual Disk Image-file 

on the Physical Host

Allocation on the Disk

of the Physical Host

Files on the

Virtual Machine

Functionality on

the Virtual Machine
Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0



 

32 

 

5.3 Related Work to Virtual Machine Image distribution 
The related work to our research are studies in a widespread set of research areas. 

Because this study touches multiple research fields that all play a role in the structure and 

distribution of virtual machine images: filesystems, file transfers, disk storage, 

deduplication, infrastructure-as-code and content distribution techniques. 

 

The structure of the virtual machine is made up by several layers that were identified. The 

related work is discussed in order from the bottom to the top layer. For each layer we will 

try to identify the related work that is relevant to our research. First the related work to a 

file-based representation and distribution of the virtual disk image will be discussed. 

Then we will look into the related work to the cluster-based structure of the virtual disk. 

As third the relevant work for filesystem structure will be researched. As fourth we will 

look again into the file structure and as fifth into the functional properties. 

 

5.3.1 Copying Virtual Disk Image Files 
If considering the ‘outside’ virtual machine disk image no knowledge of the inner 

working of the image is assumed. The data that is being handled is a file that consists of 

bits that are in a certain order. To move a virtual machine disk image around in such a 

situation all bits have to be moved in exact order from a source to a target location. 

For file transfers from a source to target location there are classical point-to-point transfer 

methods that copy bit for bit without any optimizations, such as Secure Copy (SCP) or 

File Transfer Protocol (FTP) [36], [37]. One of the bottlenecks for virtual disk image files 

transfers via such protocols is that sparse files (empty space within a file) are not 

supported and also the empty space has to be copied bit-by-bit making such transfers 

possibly inefficient [38]. 

Optimized transfers are possible using rsync, if the target location has an older revision of 

a virtual machine disk image [39]. Rsync compares with a sliding window the data at the 

source location with that at the target location. Differences are detected, compressed and 

transferred. Unfortunately also rsync also doesn’t support sparse files if used with the 

compare-feature. Thus again all empty space within a file has to be transferred, though 

the compression filter is efficient with handling the long array zeroes. The largest 

disadvantage is that storage space will be wasted at the target location. 

Virtsync is a fork (a deviation from the original rsync project by a new developer) off 

rsync [40]. This fork allows to combine the normally incompatible rsync command-line 

parameter “--inplace" for comparing both the source and target location with the “--

sparse" parameter. Virtsync is therefore the currently most efficient method for copying a 

complete identical virtual machine disk image from a source to a target location.  

 

5.3.2 Deduplicating Virtual Disk Image Files 
For distribution scenarios data deduplication is often important. Within distribution 

scenarios, the default type of content object to be distributed are files. The most typical 

approach is to apply deduplication of content at the file-level. There are a couple of 

methods to apply on the deduplication strategies within files. The most basic approach is 

Whole File Detection (WFD), which hashes the whole file [41]. The hash is used for 
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searching duplicates in the storage. This is a simple and straightforward approach that is 

suitable for deduplication of static content. But more dynamic content, like webpages 

with randomized advertising, would have different hashes. To handle those cases specific 

cases for webpages Edge Side Includes (ESI) were developed [42]. But also more generic 

approaches like Fixed-sized partition (FSP) detection technology, content-defined 

chunking (CDC) detection technology and sliding block technology are available to 

deduplicate overlapping content over multiple files [43], [44]. But a problem with all of 

these technologies for deduplication is that it is necessary to download and store these 

content files completely before the deduplication mechanisms can actually be applied 

[41]. 

These traditional file-deduplication techniques can be applied on virtual disk image files, 

but as described in the problem statement and background, such deduplication is 

normally not effective on virtual machine disk image files. 

 

Deduplication of is also used in shared-storage scenarios. Examples of such scenarios are 

the usage of Networked Attach Storage (NAS) solutions and distributed filesystems [45]. 

When using those technologies the filesystem on the storage device is shared via 

protocols at a file-level access manner. The client nodes can access these files as if they 

were on a local filesystem but don’t see the underlying block-device storage [46]. The 

factual block-device handling is actually done within the storage node. This storage node 

can apply under-water deduplication techniques on a file-level or chunk-level basis. 

These storage methods are popular for two scenarios: a first scenario is with many 

different client nodes that rely on a common pool of files, to be accessed read-only. 

Examples are shared online disks with application executables or pre-populated data for 

users. 

The second scenario is with multiple client nodes, which have to be able to read and write 

to a common dataset where each of the nodes has to be able to read what the other ones 

have committed.  

 

Another approach to deduplicating content during distribution is to match hashes of 

chunks with local caches which can save up to 7% in overall transferred volume [47]. 

Data that is transferred between different hosts contains often redundant parts. When the 

data is transferred it is split up in different chunks, before sending the chunk from the 

source to the target, it first sends a hash of the chunk. If the target already has a chunk 

corresponding with the hash in its local cache, the chunk is retrieved from the local cache 

and not send by the source. Only if the target doesn’t have the chunk yet, it is send. 

5.3.3 Block deduplication 
Block deduplication is also a possibility for deduplicating content. There are two basic 

scenarios for deduplication at the block level. One method is to leverage the current 

usage of clustered storage in Storage Area Networks (SANs). SANs differ from NAS that 

storage is made available not on a filesystem level, but at the block level [48]. In normal 

operation such SAN storage is inefficient for the deduplication of file-based content, 

since each client will claim their own disks for storage and no files or can be actively 

shared between the different clients and their operating system. But by not using any file-

system level techniques but to detect just identical blocks within the storage cluster, 
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deduplication can be applied. The advantage is that this approach works agnostic of the 

filesystem(s) used, but the disadvantage is that a lot of metadata has to be stored and 

discarded blocks have to be garbage collected. But especially for the storage of (many 

alike) virtual machines that use the same storage cluster this can have positive impact in 

terms of performance (since identical blocks can be more easily buffered in memory) and 

in reducing the amount of storage needed [49], [50]. 

There is also an application from a research paper called Parallax that takes such 

clustered storage to a virtualized level [51]. It virtualizes the SAN nodes and puts the 

clustered storage within virtual machines. This allows the researchers to spawn storage 

clusters at the same physical hosts as where the virtual machines are run, which are the 

clients of the cluster. Also Parallax is able to deduplicate the stored blocks and stores the 

data in a so called shared blockstore. By using the state information available from the 

virtual machines, that are clients to the Parallax application, this information is already 

known to the host machine, thus it is able to housekeep the data more efficient than 

regular SANs. 

 

The second deduplication scenario is by applying deduplication on virtual machine disk 

image files. With such an approach the disk blocks are not mapped directly from a 

physical disk to a virtual machine as in the storage cluster scenario, but the blocks are 

mapped to locations within a virtual disk image file. For such a scenario using classic 

virtual disk image drivers in the hypervisor have to be changed, or deduplication can only 

be performed in an offline manner. Research indicates that block deduplication for virtual 

machines sharing the same version and revision of the operating system and applications 

can allow 80% of deduplication of identical blocks [50]. 

 

5.3.4 Dirty-block tracking and overlays 
Another method for deduplication is the use of dirty or changed block tracking (DBT or 

CBT) in combination with the usage of snapshots [26], [52], [53]. The basic idea is to 

only store the disk-blocks of any virtual machine copy, which have changed since it 

started to deviate from the original virtual machine.  

Of course this method can only be applied on data that has a common ‘ancestry’. Which 

means that the started out with a single original version, which over time forked into 

multiple different revisions. This allows for an (relatively efficient) differences-only 

description of the virtual machine’s disk image. 

The method is already widely used for virtual machine disk images, mostly because in 

practice there are two typical scenarios. The first scenario encompasses a data center 

where many virtual machines are created with a typical common set of functionality. The 

second scenario is with a single virtual machine that is mobile between different locations 

and is copied on a regular basis from one location to the other. 

The first scenario is popular if the virtual machines that are deployed in a data center are 

pre-installed by a single party (like the hosting provider). In this manner they can 

prepopulate images with popular operating system distributions/revisions with popular 

(pre-installed) applications. This enables the delivery of such a virtual machine’s disk 

image as a snapshot. If many of the running virtual machines are based on a single 
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snapshot, all content on the snapshot can easily be deduplicated, as many disk-blocks are 

completely equal and can be shared by multiple virtual machines [54], [55]. 

Only the disk blocks that have changed on a virtual machine since the use of the snapshot 

that it originated from, have to be stored on a per virtual machine individual basis. This 

process is called dirty-block tracking. The blocks that have changed are stored in an 

overlay. 

The second scenario often uses these overlays as a synchronization method. When 

copying a virtual machine from one location to the other, a snapshot is created. This 

snapshot is kept (in a static form) at the location where the virtual machine is being 

executed, but also at the other location(s). All changes to the virtual machines during its 

execution are stored in an overlay. When at a later moment the virtual machine has to be 

copied to another location, only the overlay has to be transferred, since the snapshot 

(which is already there) and the overlay provide all that is necessary to reconstruct the 

virtual machine’s image. 

This method is also used for the so-called “live migration” of virtual machines [53]. 

During the live-migration an initial snapshot is made of the virtual machine, all changes 

at the source location from then on are stored in an overlay. The snapshot is copied from 

the source to the target location. Once the copying was successful, a new (second) 

overlay-instance is created at the source and the first overlay is copied from the source to 

the target. Once this overlay has been copied, another overlay is made and the process is 

repeated. At some point, if there is enough bandwidth and the changes to the virtual 

machine are limited, the overlay becomes so small that it can be copied almost instantly. 

At that point, the virtual machine at the source location is ‘stopped’ and the instance at 

the target location is ‘resumed’, generating the effect that the virtual machine has moved 

from one location to the other in a short instance. 

5.3.5 Filesystem optimization 
Virt-sparsify is a tool developed by Red Hat’s libguestfs-project [56]. This tool is able to 

read the partition information on a virtual disk and detect the installed filesystem on each 

filesystem. Virt-sparsify supports many filesystems and if it understands a filesystem it 

can scan which disk blocks are currently in use by the filesystem. Using this information 

it can also detect which blocks have been discarded e.g. when a file in the filesystem was 

deleted. The discarded blocks can then be zeroed or trimmed from the virtual disk image 

file by virt-sparsify. Also virt-sparsify can detected swap partitions and remove the disk 

blocks used by the swap partition from the virtual disk image. 

 

5.3.6 Filesystem deduplication 
In IBM’s Mirage project a convertor was implemented that could import existing virtual 

machines disk images into Mirage’s storage library for later export [57], [58]. The library 

imports block-based storage, thus virtual disks. But instead of only storing the blocks, an 

analysis of the disk is performed. Mirage detects the inner structure of the disk and 

analyzes the contents. Using this analyzing mechanism, the actual contents of the virtual 

machines’ disks can be cataloged. The catalog keeps track of the partitions, the 

filesystems and files. Mirage’s library thus is file-aware and can identify identical files to 

deduplicate their content. But it also allows for advanced governance of the virtual 

machines. Because it enables the possibility to keep track of which virtual machine has 
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what file, keep track of file-modifications between different revisions, and allows offline 

manipulation of these files. The disks can be exported from Mirage’s storage library as 

block-based images, reconstructed from the library content. 

 

Microsoft also performed a great analysis on file deduplication on many desktop 

computers [59]. The results were that storage consumption could be lowered with 32% by 

using chunk-based deduplication, where chunks varying in size from 8 to 64 Kibibytes. 

Around 25% storage consumption reduction could be achieved if only WFD-based 

(Whole File Detection) deduplication was applied, which only works for completely 

identical files. While chunk-based deduplication also allows for deduplicating files that 

share part of their content (of at least the chunk size). 

5.3.7 File copying and deduplication 
Using virt-mount from the Red Hat’s libguestfs-project it is also possible to inspect a 

virtual machine image disk, find the partitions and detect the filesystems and mount these 

filesystems on a host machine [60]. After mounting these filesystems the files within the 

virtual machine are accessible like any other file, thus allowing using any of the file 

copying and deduplication strategies that were discussed before with the virtual disk 

images. 

 

5.3.8 Infrastructure-as-Code 
Infrastructure-as-Code is are relative new paradigm, it was coined around 2011 and has 

gained a lot of traction with popular projects as Chef, Puppet and CF Engine [61]–[64]. 

With the announcement of Amazon’s EC2 in 2006 and the release of Ruby on Rails Luke 

Kanies announced the release of his research’s project result “Puppet” [65]. The 

development of Puppet inspired developers to release Chef in 2009 really brought 

infrastructure to code. The philosophy behind this development was that infrastructure 

can and should be treated as code and that same professionalism and principles as used in 

software development could and should be applied to infrastructure development. 

Therefore, the many years of software development methodologies should be reapplied to 

the development of infrastructure as code. 

Two important high-level steps are identified for developing infrastructure as code 

identified by Adam Jacob, creator of Chef:  

1. Break the infrastructure down into independent, reusable, network-accessible 

services. 

2. Integrate these services in such a way as to produce the functionality our infra‐ 
structure requires 

 

These principles and new paradigm are now becoming key to virtual machine 

deployment. But unfortunately it doesn’t completely embody an answer to our virtual 

machine distribution problem. But it might be a helpful part to a possible solution. The 

limitation of the current Code as Infrastructure’s applicability is currently limited to the 

generation of the code. It needs manual human intervention that creates the code-recipes 

for the desired virtual machine deployment [66]. But it does have automatized the 

interpretation of recipes for creating the virtual machines itself. This while in our desired 

distribution mechanism the encoding of existing virtual machines into a recipe should be 
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an automatized process. Also Infrastructure-as-Code is focused on creating bare, new 

virtual machines, not yet in existence but only within the programmer’s thought. While in 

our presented scenarios it would involve virtual machines that are already in existence. 

These differences are illustrated in Figure 4. 

 
Figure 4 Currently Infrastructure-as-Code starts as a thought in the programmer’s mind. The programmer writes the 
code recipe, the code can generate a virtual machine. In our scenarios the virtual machine already exists. For 
Infrastructure-as-Code for our scenarios the Code Recipe should be able to encapsulate a pre-existing virtual 
machine. 

The arrows in the figure depict the processes of encoding and decoding (the concept of) a 

virtual machine into code and vice versa. Puppet and chef are providing the software that 

fulfills the right arrow, ‘decoding’ the recipe into a virtual machine [67]. Also another 

solution is available that is able to perform the same transformation from a recipe to a 

virtual machine: Vagrant. Vagrant is developed with developers of (web)applications in 

mind [68]. Their goal is that you can create recipes for producing consistent virtual 

machines for development and production environments [69]–[72]. By creating a virtual 

machine from a recipe (the so-called ‘provisioning’) the idea is that it can be guaranteed 

that the environment in which the developed applications is being deployed is consistent, 

guaranteeing that when it works in a fresh provisioned development vagrant virtual 

machine, it will also work in a fresh provisioned production vagrant virtual machine. 

 

The recipes for building the virtual machines for all three methods rely on bootstrapping 

virtual machine images that contain a base install. The base install is then booted by the 

hypervisor and a terminal connection like Secure Shell (SSH) is used to connect to the 

virtual host. Via this terminal scripts are executed in a scriptable Unix shell, like Bash. 

These scripts contain commands that edit configuration files and install packages via the 

package management system of the guest operating system. 

 

But the ‘encoding’ of a virtual machine is not available via puppet, chef or vagrant. Not 

even third party tools are available to do this encoding process. The only application that 

comes close to providing such a functionality is Docker [73]. Docker is much like 
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vagrant, chef and puppet a form of Infrastructure-as-Code. It downloads a base image to 

start with, it provides a consistent virtual environment for the execution of 

(web)applications and it can use recipes for reproduction of these virtual environments. 

But docker is not actually a virtual machine solution, as is illustrated in Figure 5.  

 
Figure 5 Copy of the diagrams from the Docker website, explaining “What is Docker” [73]. On the left is a 
visualization of the traditional virtual machine stack. At the right there is a visualization of how the Docker stack 
works and is indicated in yellow how Docker containers differs from regular virtual machines. 

Docker doesn’t use a hypervisor or any traditional (virtual) block devices as storage 

provider to the virtual machine, but instead it runs as a regular process and it gives the 

virtual environment access to a jailed chroot on the host’s filesystem via its docker 

engine. This docker engine can record all changes to the filesystem that were performed 

during the execution of the virtual docker environment. By recording these changes, the 

docker engine can actually be used to create the recipe. The recipe then consists of a 

difference-descriptor for the files on the filesystem. By copying these descriptors, the 

environment created within docker can easily be replicated. 

Docker also has the possibility of using DockerFiles. This are recipes as written for 

vagrant and puppet to be executed for docker environments [74]. These DockerFiles are, 

just like many other recipe languages, written as shell-scripts. These shell-scripts are text 

files that can be interpreted and executed by command-line shell applications like Bash. 

 

Apparently Bash and other command-line shell applications are an import part of any the 

current recipe implementations. They are a powerful tools, because they allow access to 

many applications that is available within the virtual environment. The most important 

one of those is probably the package manager. The package manager is an application 

that manages the state of all the applications available within a given (virtual) 

environment, often the operating system. The implementation of package management 

with smart resolving allowed especially various Linux distributions to make the base 

operating system lean and allowed it to put all the middleware and other extra 

components in an on-demand distribution model [75]. This allows for basic 

configurations for virtual machines and their base-images with minimal functionality. 

When extra functionality is requested, the installation of packages is done on an on-

demand basis. This allows tools like virt-customize to manipulate virtual machines using 

the package management software [76]. When functionality is desired from a virtual 

machine, virt-customize executes a shell script within the virtual machine that runs the 

package manager. The package-manager requests the packages from the internet and 

installs them within the virtual machine. 
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If there are multiple virtual machines requesting packages from the internet, there are 

solutions available to avoid requesting the package multiple times. Virt-customize and 

other tools have integrated package caching on the host running the virtual machine. But 

also solutions like Stork are available to share installable packages and avoiding the 

unnecessary retrieval of packages from the internet [77]. 
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6 Virtual Machine Delivery Network 
The Virtual Machine Delivery Network is a new concept that we propose in this research. 

It doesn’t exist yet, but we know what it should do: it should have the functionality and 

strengths of a Content Delivery Network and then apply those to Virtual Machines as a 

content-type to be distributed. Hence instead of the agonistic term ‘Content’ in CDN, the 

choice for ‘Virtual Machine’ in VMDN. By being specifically focused on virtual 

machines as content-type it might be able to mitigate the pitfalls of that current CDNs 

experience for the distribution of virtual machine images. 

 

6.1 Virtual Machine Structure 
For the VMDN it is key to leverage the understanding of the virtual machine’s image 

structure into finding content objects that are better candidates to be cached than the 

original virtual machine image. 

The structure of the virtual machine is made up by several layers that were already 

identified in chapter 5.2. At the lowest layer little information about the inner workings is 

necessary but optimizations are limited. But with each following layer more 

understanding of the used technologies is necessary to extract the cacheable objects. 

Meanwhile, for each of these layers different replication strategies can be used and 

different implementations are necessary to extract the structural objects that make up the 

virtual machine. Also a choice for a specific replication strategy implies that a copy of the 

virtual machine is equal on the associated layer of that strategy, but that lower structural 

layers might differ. 

 

In this chapter we will first discuss the general choices for replication; a copy can be 

based as replication of the original virtual machine at certain level of the structural layers 

that were identified. Then the different replication methods of these layers, the associated 

strategies and the VMDN prototype implementation are discussed in three separate sub-

chapters. These three chapters organized in line with Figure 3 from chapter 5.2. Within 

this structural scheme six different layers were identified, each representing a structural 

layer of a virtual machine. Layers 1 to 3 are all using disk-clusters as a data unit. These 

layers and a strategy that matches these layers and its unit for a possible VMDN strategy 

will be discussed in sub-chapter 6.3. 

In the second layer from the top, layer 4, files are used as a data unit. For this layer we 

have a matching strategy we can be found in sub-chapter 6.4. 

In the top layer, layer 5, the virtual machine’s functionality is the data unit. For this layer 

we have another specific strategy which will be discussed in the last sub-chapter 6.5. 

In each sub-chapter the technical background of the layer is analyzed. The opportunities 

for replication, the benefits and possible issues are discussed and a design for the VMDN 

strategy is presented. Using the design a prototype implementation is introduced. Also the 

pitfalls during development of the prototype will be mentioned and limitations that are a 

result of the general design. 
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6.2 Replication choices 
For replicating the virtual machine image from the source location to the target location, 

it is important to note of which layer the copy at the target location should be a copy. 

The lowest layer in Figure 3 (layer 0) is not relevant for this study and can be ignored. 

Then from the bottom-up the next three layers can be identified (which are numbered 1 to 

3) that all use data-clusters as a unit of data-storage: 

1. The virtual machine image disk-file, also known as a “binary outer” 

representation of the virtual machine, 

2. The virtual disk block device, also known as a “binary inner” representation of the 

virtual machine image’s disk, 

3. The virtual machine image’s filesystem(s), which are the data-clusters that are 

actually in use by the filesystem. 

On top of these three basic layers we find the two other layers that were identified: 

4. Files, the files that are stored within the virtual machine, 

5. Functionality, the packages and data or other forms of descriptions that describe 

and can summarize the purpose of the virtual machine. 

When replicating a virtual machine at a certain layer, it may mean the underlying layers 

are not equal between the source and target. Depending for which purpose a virtual 

machine has to be replicated this difference might have an impact or not. 

This is a question should be considered as part of the context as was depicted in chapter 

2.1 with “what is a copy?” Per scenario the “function” of a virtual machine might be at a 

different structural layer within the virtual machine, depending on how much or if any of 

the lower-level technical implementations are considered of importance. 
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6.3 Strategy 1: Disk clusters 

6.3.1 Technical Background 
The first strategy is based on the technical design of the virtual machine philosophy. 

Because philosophy behind virtual machines is based on re-implementing physical 

hardware in a virtual setting it is possible to focus on the design principles of these 

hardware components. For storage the major hardware component used to be block 

devices, like hard disk drives. The unit of allocation of such a device is a block, or the 

more modern and universal term ‘cluster’. A cluster is a set of bytes that together forms 

the smallest allocable amount of storage on a storage medium. Filesystems store their 

data per cluster and keeps track of what is stored in which cluster. Thus the cluster is a 

unit of storage. 

Two great properties of this unit is that it is universal, all virtual and physical machines 

use it, and that is agnostic, it is just a container of a fixed amount of bytes and ignorant of 

their meaning. This makes this a collection of these units a practical one for storing any 

kind of (virtual) machine and any kind of operating system or filesystem. As long as this 

unit is used, any machine and its content can be handled. 

Unfortunately this unit of storage also has its drawbacks. Since it is agnostic about its 

content, it is not known if the data that is stored within a cluster is still functionally in use 

or not. Also the unit is relatively small, for most (virtual) disks the cluster size is 64 KiB. 

This implies that a single disk of several gigabytes consists of millions of clusters. 

It is known that the majority of currently popular filesystems (like FAT32, NTFS, ext4) 

organize their file data over the clusters in such a way that a file can only start at the 

beginning of a cluster, a file that is spread out over multiple clusters is always cut-off at 

the same fixed locations within the file (linearly with the cluster size) and at most one file 

is stored per cluster and any unused space at the end of a cluster consists of zeroes. 

These properties of clusters and the inner workings of filesystems result in the effect that 

if two disks contain identical files and the same filesystem all content within the clusters 

on the disk that are in use (besides the where the File Allocation Table (FAT) is stored) 

are equal, only their order can be different. 

This property can be used for deduplication of content. Disks with the same filesystem 

that share many equal files will also share many equal clusters. Thus popular files that are 

to be found in many virtual machines will also result in popular set of disk clusters. Also 

files that are recurring multiple times within one filesystem will result in multiple equal 

disk clusters. 

These technical properties with disk clusters as a unit of fixed length, content agnostic 

and recurrent within and over multiple virtual machines’ disk images should allow 

possibilities for optimized deduplication, caching and distribution. 

6.3.2 Design 
The design of a disk cluster based deduplication, caching and distribution mechanism is 

based on several steps: 

1. Analyze a virtual disk image and extract properties like where in the image file 

the actual disk clusters start (the offset) and the disk cluster size used. 

2. Split the image into many parts, each part containing a single cluster from the 

disk. 
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3. Hash all the content of the clusters. Store for each hash the location of its cluster 

on the disk. 

4. Put all clusters’ data and their hashes into a database. Put all locations of hashes 

of disk images into another database. 

5. To extract a disk image from the storage, the hashes for all disk locations are 

collected from the database and the disk cluster with the corresponding hash is 

retrieved. 

Using this mechanism a disk image can be imported for deduplicated storage and 

exported for deployment or distribution. The unit of storage is a cluster, so all stored 

objects are originally 64 KiB and have a hash, e.g. if a MD5 is used for hashing such a 

hash would be 128 bits [78], [79]. 

A virtual machine disk image distribution mechanism could also be cluster-based, using 

an alike approach. A target location requesting a virtual machine’s disk image would first 

have to retrieve the database with all hashes that are used on the disk and their on-disk 

location. Such a database will be small in size compared to the original disk image and is 

unique per virtual machine. This database itself is not a cluster-based file, but a regular 

file and thus can be compressed using regular file-compression methods. Also regular file 

deduplication and caching techniques could be applied for distributing the database file to 

target locations. The target location will after receiving the database reconstruct the disk-

image. These steps, from importing an image, to reconstructing it, are summarized in a 

flow-chart in Figure 6. 
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Figure 6 A flow-chart showing the steps that are followed for strategy 1. The disk-image is analyzed and split into 
many small clusters of data. Each cluster is hashed. Each hash is stored with its found location in a database that 
represents the image.  A hash entry is created with the disk data in a central database containing all the clusters. 

The reconstruction processes can be performed in two different manners: preloaded or 

on-demand. With the preloaded technique all hashes are read from the database for the 

whole disk image. The target location will have a local cache for hashes and disk data. It 

will try to find the data of the hashes it already has from its local cache. The disk data 

from the hashes that are not available in the local cache will have to be retrieved. For the 

retrieval of this data a CDN-like infrastructure could be used. Popular hashes that would 

be requested frequently could be cached on nodes near the target location(s). Less 

popular hashes could be retrieved from caching locations further away or even from the 

source location, where the virtual machine disk image originated from. Using the disk 

data collected using this mechanism the whole virtual machine’s disk image can be 

reassembled at the target location. The disk image could be provided as a regular virtual 

disk image file to current hypervisor software, or a new intermediary virtual disk image 

driver could be written for the hypervisor. Allowing the hypervisor to request the disk 

data directly from the database. In the latter case it would allow for data deduplication for 

multiple virtual machines disk images on a single physical host. 

If using such a new virtual disk image driver for the hypervisor, it would also allow for 

the on-demand disk data retrieval scenario. Since with the database the structure of the 

disk image itself (e.g. the size) are known a dummy disk image could be easily be created 
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for booting the virtual machine. During the execution of the virtual machine, the disk 

locations of all I/O transactions to the virtual disk image are picked up by the 

hypervisor’s virtual disk driver. The disk driver fetches the corresponding hash for the 

location from its database and checks if it has this data already available. If not, the data 

is requested from a remote location and added to the database, just like in the earlier pre-

fetch scenario. Writes that are made to the virtual disk drive have to be directly hashed 

and stored in both database. Using this method would allow to reduce the total amount of 

data that has to be received by the target location, if not all contents on the virtual disk 

drive are used. But obviously it can generate high latencies for disk I/O if disk data is not 

available in the local database. Possibly this problem could be partly mitigated by using 

smart pre-fetching algorithms that could (partially) predict ahead in time which disk 

locations might be requested and already fetch the data from these disk locations. 

6.3.3 Implementation 
For the prototype a simple implementation was built in Java. For the simple prototype 

only the pre-loaded scenario is implemented, using a regular local file storage. Physical 

transfer of the virtual disk image data over the network and usage of the described on-

demand scenario are beyond the scope of this prototype. The implementation was 

focused on handling QCoW2 (QEMU Copy-on-Write 2) and raw disk image files [80]. 

The prototype can check if a file is a QCoW2 disk image file by checking the file’s 

header. If the file is a QCoW2 file then the cluster size of the virtual disk is also read 

from the file header and used. 

Because splitting the data really per cluster would create too many entries to efficiently 

handle in the prototype’s data-storing database a more pragmatic approach was 

necessary. In the implementation the cluster size that will be used in the storage shall not 

be the size of a single cluster. Instead this will be a multiple of the clustersize, e.g. a 

multiplication of eight. This number was found to be relatively optimal in other studies, 

creating the best trade-off because of barely any decrease in finding hash matches [50]. 

The source of this relatively limited negative impact is because most writes to clusters are 

linear. The resulting effect is that a single file often spans multiple clusters, which are 

linearly written during the single file write-transaction. Combined with the fact that many 

disk-transactions are identical over multiple virtual machines, because they are performed 

by e.g. scripts and installers. Also most filesystems buffer their write-transactions before 

writing to the disk, to obtain better disk lay out. These three characteristics contribute 

greatly to the general result that not only single clusters are often to be found identical 

over different virtual disk images, but that even sequential series of clusters often are. 

Thus even though by using this property the amount of possible deduplications are 

reduced a little, it greatly enhances performance and also the efficiency, since the same 

small hash for identification can now correspond to even more stored data. 

 

The QCoW2 file uses a mapping mechanism, since not all clusters are stored at the same 

file’s inner physical location as they are stored on the virtual disk image’s location. To 

track these mapping of the clusters, so-called mapping tables are necessary. These 

mapping tables also have to be stored within the virtual disk image file. These tables are 

spread out through the disk image file at various locations. An overview of this 

mechanism is given in Figure 7. 
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Figure 7 An example ordering of how data might be ordered within a QCoW2-file. At the top there is the 
representation of the virtual disk as it is visible to the guest virtual machine. At the bottom is the storage as could 
be found within the QCoW2 files. The mapping tables are stored between the regular data  and the data itself can 
be stored in any order. 

But luckily the QCoW2-format has been designed in such a way that these tables are the 

same size of a disk cluster. The prototype implementation therefore just ignores the 

existence of these tables all together and handles them as if they would be any other 

regular kind of disk cluster.  

 

The Java prototype implementation depends on two external libraries: 

 MapDB for database storage [81], 

 DSI utilities for handling large files [82]. 

MapDB is used as database storage. This library offers an API like the regular Java Map-

implementations, but instead of storing the Map only in memory it writes it to disk. This 

allows for a trivial database implementation where the Java Objects in the Map are 

written to disk (but only if these Objects are serializeable). In the prototype two database 

formats are used, a shared one for storing the disk data of the cluster in conjunction with 

an identifying hash. The other format is a database per virtual disk image, storing the 

locations of the clusters within the disk with the corresponding hash. Both databases are 

implemented using the HashMap equivalent in MapDB. The advantage for using this 

HashMap, that is technically a HashTree according to the MapDB documentation, is that 

it is fast for lookups if the key is known. Since the key is always known in both of our 

search scenarios; having a disk location or hash as search-key, performance is good when 

reading values from the database. But when adding new (not already existing) disk 

cluster data entries to the database it might get slower as the database grows. 

The DSI utilities are used for reading and writing to the virtual machine disk image files. 

Since the disk image files are raw data, the prototype has to be able to read and write 

bytes to and from the disk image file. But java has set the limitation for its regular file 

bytestream I/O-operations that only allows memory addresses (locations within the file) 

to a maximum of Integer.MAX_VALUE which is a value of 2^31-1. This is done for 

compatibility reasons, but poses a problem for addressing the bytes beyond the 2 

Gigabytes in a file. The DSI utilities solve this issue for the prototype by mapping 

multiple bytestreams in their backend on a single file and presenting them as a single 

bytestream through their API. This allows the prototype to work with virtual machine 

disk images that are larger than 2 Gigabytes. 

To store the disk cluster data within the database an object was necessary that can contain 

bytes is serializeable. Since the ByteBuffer class in Java is not serializable a wrapper was 

written to put byte arrays in an object to store the disk data within the HashMap. 
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The prototype uses MD5 as hashing algorithm. This algorithm has been relatively 

arbitrarily chosen, but is well supported by all Java Virtual Machine implementations and 

the chance on hash-collisions is very low. Since the hashes are always 128 bits long and 

byte arrays cannot be used as keys in HashMap, a wrapper class was also necessary to 

store the hashes. When writing this class a direct easy performance optimization was 

possible. Instead of storing the hashes as byte arrays, like is normal, within the wrapper 

Object, it is stored as a combination of 2 long values. Since longs are 64 bit and the 

hashes are always 128 bit, this allowed for an easy but great performance optimization 

for search operations in the database Maps. 

6.3.4 Usage of Prototype 
The prototype can be executed by importing the binary-analyzer Java-project in Eclipse. 

All dependencies can be automatically resolved using Maven’s dependencies 

management. Within the RebuildFromCache.java five static Strings can be defined. The 

DBfileName is the location of the file which we will be used to store both the hash and 

cluster database. This file is persistent and can be continuously reused when importing 

virtual machine images. The four other entries are parameters that should be changed 

according to which virtual machine images should be added to the cache, or which virtual 

machines are to be extracted and rebuild. If the application will be implemented beyond a 

prototype, such parameters should be settable using an interface. 

When the prototype is executed to import a new disk-image it creates a Java-Object that 

encapsulates all the properties of the disk-image file. The properties are partly set by 

analysis of the file. E.g. it is known in the QCoW2-file format where within the file the 

cluster size of the virtual disk can be retrieved. For each different virtual disk image file-

format that would have to be supported, such a corresponding Java-Class has to be 

created. 

The encapsulated Java-Object for the disk-image is passed on as a parameter to 

CacheDB’s addToCache-method. addToCache retrieves the properties from the passed 

disk-image object and creates a new Hash Database for this disk image. It then iterates 

over the disk-image file, hashing each (set of) cluster(s) and then adding the hash and the 

data from the cluster itself to the shared Cluster Database. The hash is then also stored 

with the location within the disk-file in the Hash Database. 

After adding a disk-image to the database it can also be retrieved. This is done with the 

rebuildFromCache-method. For that method the original name of the disk-image, which 

is used as an identifier, and a target filepath have to be specified. Using the original name 

the set of properties and all locations and their hashes are retrieved from the Hash 

Database. Iterating over the retrieved set of hashes the corresponding cluster data is 

retrieved from the Cluster Database. This data is then written into the target file in a 

sequential manner. 

6.3.5 Limitations 
The prototype has several limitations. The first limitation is connected to using the 

multiplier for handling several clusters combined within one data-Object that is hashed. If 

using an ‘unlucky’ offset this can result in potentially a lot of mismatches for the data. 

This problem could be partly avoided by choosing offsets relatively dynamically, trying 

several different offsets when adding the disk image to the database, choosing an offset 

that would give the best result. Also, because of the multiplier, it is important that data 



 

48 

 

within the filesystem is relatively in-order on the clusters. If files are heavily fragmented 

within the filesystem it is harder to match them to the database. This might be partly 

resolved by defragmenting each filesystem before adding the virtual disk image to the 

database, increasing the chance of alike in-order layout over the disk’s clusters. 

Another issue is that the database with disk data would get slow for adding new data 

clusters with their hash when it would become large. Especially noticing that the data 

clusters are relatively small data sets, this could seriously hurt performance if a lot of disk 

data would have to be processed. 

Also the prototype is at the moment only focused on local application of the strategy 

mechanisms, no network functionality has been implemented. 
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6.4 Strategy 2: Files 

6.4.1 Technical background 
The second strategy relies on comparing and caching files. In contrast to strategy 1, this 

strategy is not aware of any of disk clusters or virtual disk file formats whatsoever. That 

is because this strategy operates on a higher structure of the virtual machine’s image. To 

be able to act on this higher structural layer within the disk image, the image will have to 

be analyzed and understood by the software handling this task. This poses extra 

challenges, but can also directly solve some of the inefficiencies compared to solutions 

that are focused on a lower structural layer. 

The lower structural layers of the source disk image will have to be summarized in a 

meta-description so that the necessary conditions for the storage of the files can be 

recreated at the target location. 

The lower structural layers that would have to be in the meta-description are in order 

from bottom to top of the reference Figure 3: 

1. The virtual disk image file format 

2. The virtual disk’s capacity 

3. The partitioning of the virtual disk and the contents of the master boot sector 

4. The filesystem format and parameters of each partition 

The lower layers can be recreated at the target location from this meta-description and 

offer a platform on which files can be stored. 

A big advantage for this strategy is that many files that are found in various virtual 

machines tend to be exactly equal. Think about files for the operating system and the 

applications. But also data can be equal over vastly different virtual machine installations, 

like graphics or video files. While these equal files might be stored in different ways in 

the lower structure and therefore be hard to deduplicate in strategy 1, with this strategy 

instead they are easy to handle for deduplication. This can result in much more successful 

matches and improve performance. 

Another advantage is that for regular file deduplication and caching already many 

methods are available. So there is no need to reinvent the wheel and those current 

methods can easily be applied. 

A third advantage is that for file deduplication also changes-only file-description is 

possible, which allows to synchronize files that have multiple instances with just (small) 

differences between various revisions. These files could relatively easily be identified 

since of each file the full name and the path are known, which is useful meta-data for 

identification. 

6.4.2 Design 
This strategy relies on interpreting the virtual disk image file as a virtual disk, detecting 

the partitions on the disk and mounting the filesystems on these partitions. So first the 

virtual disk image file format has to be interpreted. Since there are many different virtual 

disk image file formats available, mostly depending on which virtualization hypervisor is 

used, this poses a challenge and a question. 

First the challenge, which is being able to support as much virtual disk image file formats 

as possible when reading a virtual disk image file at the source location. The 

specifications of several formats can be found in public documentation, but for other 
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formats external tools may be necessary. The question is, whether you would want to 

recreate the same virtual disk image file format at a target location. This choice is 

probably mostly correlated with the question if you use the same hypervisor at the source 

location as at the target location. If this is demanded, support for a virtual disk image 

format would also have to be implemented in the software that recreates the disk image 

file at the target location. 

After having a virtual disk available it is key to get the partition data and the boot sector 

from the disk. The boot sector should be copied as a file with binary data, the partition 

table could be in binary or in textual format. 

Using the information from the partition table a bootable disk partition should be 

detectable. It is key that only one operating system is active and that there are not 

multiple bootable partitions. The filesystem on the bootable partition should be detected 

and mounted. Using the information found from the operating system and/or bootloader 

information at this first mountable partition the information about the other partitions can 

found and also be mounted at their corresponding path, or on purpose be ignored if they 

represent e.g. (outdated) swap data. Also this information has to be added to the meta-

data. 

After these steps a complete tree of filesystems can be mounted with all correct paths for 

all files that can be found on the virtual disk and its filesystems. From this tree a full list 

can be compiled of all files, their full path, security properties, their size and a hash. All 

of these files can be added to a regular file storage database for further distribution. The 

file list and the earlier collected meta-data are saved as a unique descriptor for this virtual 

machine. 

 

At the target location the file list and the meta-data are downloaded. Using the meta-data 

a virtual disk image file can be recreated. This virtual disk image can be mounted and 

then partitioned with the partition information from the meta-data. The boot sector has to 

be copied from the meta-data to the virtual disk. The partitions are to be formatted with 

the file-systems described in the meta-data and mounted at their appropriate mount 

points. Then the file-list can be read and all files can be retrieved. For this retrieval 

current content delivery network techniques can be used and a local cache. Also, if a file 

with a matching path and filename are found within the local cache, but the size and hash 

do not match the file could still first be initialized from the local cache and then updated 

from a remote source with the correct revision using a difference-only file syncing 

method. 

After the whole system at the target location has been brought up to date with all the files 

the security properties can be set on all files in the filesystem. 

The result of this method is a copy of the files on the target location as they were on the 

source location. The inner-order of the technical representation on the filesystem can 

differ from the target and the source. But the outer-representation on the filesystems is 

exactly the same. A simplified version of these steps are depicted in  
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Figure 8 A flow-chart showing the steps that are followed for strategy 2. The disk-image is analyzed for its partition 
information and the MBR. The partitions are analyzed for their size and their filesystems and mountpoints are 
retrieved. These data are stored in the Meta-Data file. The filesystems are mounted at their respective 
mountpoints and the files are copied to the file-database. During reconstruction of the image, the disk image and 
filesystems are created. These are mounted at their respective mountpoints, the files are copied from the database 
onto the disk image. 

6.4.3 Implementation 
For the implementation of the prototype the usage of QEMU in combination with 

libguestfs, the FUSE mount system, the rsync synchronization tool and a bash shell 

environment were used. The target virtual machine images for the prototype were default 

installations of Ubuntu Linux 13.10 using a single ext4 filesystem and a separate swap 

partition. 

Libguestfs provides a command-line tool, called guestmount. Guestmount uses virt-

inspector of libguestfs to auto-assess a virtual disk image for its partition information, 

bootable partition and installed operating system. This information can be outputted to a 

file and be used to create the meta-information about the virtual machine’s disk image. 

Guestmount then starts a virtual machine appliance using a simple Linux environment 

(called ‘supermin’) within the KVM virtualization environment [83]. Within this virtual 
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machine it mounts all partitions from the virtual disk. It then exposes the whole 

filesystem tree via its API to a FUSE module that allows the host machine to see the 

filesystem of the virtual machine from the host’s own perspective. 

The prototype has a bash script that can run on the host machine. This bash script can 

copy all the virtual machine’s filesystem data to a simple central file storage on the host 

machine. The prototype doesn’t implement a central database mechanism for the file 

storage, but this could be trivially achieved by using one of the many drop-in solutions 

available. 

The prototype also contains a bash script that uses rsync to make a file description of all 

the virtual machine’s files. The output exists of two files: one large file that contains all 

data from the files on the filesystem in rsync’s own (compressed) data-stream format. 

And a second file that contains a bash script that can, when executed, execute rsync with 

the correct set of parameters to reconstruct all file data from the large data-stream file. 

This rsync method also allows to be applied on multiple (but different) virtual machines 

where files are (expected to be) alike. If you have a virtual machine A and a virtual 

machine B, an output of the data-stream would only have to contain the differences 

between the files on A and B. If you’d then already have an (file-identical) instance of 

virtual machine A at the target location, it would be possible to create virtual machine B 

from the data-stream, or vice versa. 

 

Using KVM virtualization for mounting and accessing the virtual disk in the prototype 

gives some overhead, but is much safer than directly mounting the virtual disk directly in 

the host itself. It would be comparable to plugging in an USB-stick to the host, exposing 

the system to possible malicious low-level attacks. By using the virtual environment as a 

sandbox this risk is mitigated. 

 

At the target location a new virtual disk image can be created using the qemu-img from 

QEMU. Using the virsh tool from libguestfs new partitions can be created on the virtual 

disk. And using virt-make-fs from the libguestfs tools the filesystems can be created on 

the partitions.  Again with libguestfs’s guestmount in conjunction with FUSE the virtual 

machine’s filesystems can be mounted and be accessible to the host. The host can put the 

files into the virtual machine using the file synchronization methods like rsync. 
 

6.4.4 Usage of Prototype 
For the prototype the execution of this strategy is currently done through a manual 

sequence of command-line operations. 

The analysis of the virtual machine disk image is performed with: 
virt-inspector --ro -a oldimage.raw 

 

This command returns an XML file with disk, partition and filesystem information. These 

properties should be noted and stored in the meta-data. 

Next step is to mount the old image through guestmount: 
guestmount –r –a --pid-file guestmount.pid oldimage.raw 

/tmp/mountedimage/ 
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At this point all files of the virtual disk are available at the /tmp/mountedimage/ path. 

These files can be copied using cp or rsync to a remote storage: 
cp –r –a –u –i /tmp/mountedimage/ /var/database/image1/ 

 

This would copy all files that exist on the source disk image into the target location. 

 

Afterwards the virtual disk can be unmounted with: 
guestunmount /tmp/mountedimage/ 

 

For creation of the target disk image, the following steps are necessary: 

First the virtual machine image disk file has to be created. This should be done using the 

meta-data that was retrieved earlier, and could e.g. look like the following command: 

 
qemu-img create -f raw -o preallocation=metadata /tmp/newimage.raw 2G 

(NB: it is important to notify that the preallocation=metadata is not related to our own set 

of ‘meta-data’, it is just a qemu-img commandline option!) 
 

Using the meta-data also the filesystems should be created on the disk, an example could 

be: 
mkfs.ext4 –F /tmp/newimage.raw 

 

When the disk, partitions and filesystems are recreated, it can be mounted. This would be 

trough the usage of guestmount like: 
guestmount –a –i --pid-file guestmount.pid /tmp/newimage.raw 

/tmp/mountedimage/ 

 

When the image is mounted, the file contents could again be copied from the database to 

the image, like: 
cp –r –a /var/database/image1/ /tmp/mountedimage/ 

6.4.5 Limitations 
The prototype was written with Linux hosts and Linux guests in mind. Though it should 

work without any problems with simple windows guests, the host machine does need 

Linux, because libguestfs is only available for this platform. 

The kernel image file has to be readable by the user for guestmount to work. This 

demands a change of file permissions on Ubuntu systems (see libguestfs.org/guestfs-

faq.1.html for more information). The user executing the guestmount applications needs 

access to the KVM kernel subsystem and FUSE kernel module, so it is necessary that this 

user be in the appropriate (c)groups of the host. Setting these permissions demand more 

administrative overhead and extra security management than regular executable 

applications. 

This method can only be applied on virtual machine images of which the virtual disk 

format is supported by libguestfs and where the partition formats are understood by the 

supermin application and the file-properties and permissions are understood by the host’s 

operating system. 

It is important to note that within current file distribution and deduplication infrastructure 

there is in general no security and access management available per file. This might be of 

importance if files within the virtual machine contain intellectual property or private 
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information such as passwords. E.g. for these situations it is important not to use public 

accessible CDN infrastructure for file-distribution. 

Also the prototype is at the moment only focused on local application of the strategy 

mechanisms, no network functionality has been implemented. 
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6.5 Strategy 3: Functionality 

6.5.1 Technical background 
A third strategy depends on the functionality a virtual machine encompasses. With the 

trend to make multiple lean virtual machines for one or a small set of tasks instead of a 

single virtual machine handling many, a virtual machine tends to be kept simple to 

perform a limited and generalized set of functionality. To offer this functionality often a 

single or a few applications are installed. But these applications still depend on an 

installed base system. This base system is an operating system and all kind of support 

libraries that applications depend on. 

The base system will be alike between many various virtual machines, often just the 

latest release or a (long-term) supported older stable major release of one of the few 

popular operating systems. Also the applications tend to be at a given moment to consist 

of the latest release or an older major stable release. 

Most software providers only support a limited set of major releases at a given time and 

have the agreement that they update these major releases with minor updates for bug and 

security fixes. But within these minor updates they won’t provide any new functionality 

or change any functionality. This way they can promise not to break any of their APIs 

and all other applications depending on their interface will continue to work, no matter 

which exact minor revision of their software is used. 

Using this knowledge a new possible strategy appears. Because many of the files on a 

virtual machine are not part of the machine’s unique data, but are part of the base system 

and the applications. If the base system or these applications are often revised, in the 

second strategy (the file-based one) you end up with many different revisions of each file 

in the storage database. This limits the possible deduplication efforts, but this limitation 

could be (partly) avoided if the amount of different revisions were to be reduced. Thus 

instead of describing files per their unique content (data) that they contain, identifying 

them by the functionality of these files (which is equal per major revision) is a first step 

for optimization. 

But files are often not alone to provide a set of functionality. In general a collection of 

files, some executables, library-files, graphical resources and text files make up an 

application that provides this functionality. Since this method is describing the 

functionality anyhow, it is easier to only describe the application, instead of the 

individual files it consists of. But how to know which files are part of which application? 

Luckily there is already a solution in place on many operating systems. Application’s 

files are centrally managed by the operating system’s package manager. Also it has a 

central register of all applications installed and their version information. Open source 

operating systems also offer central package repositories from where an installer for a 

specific application’s version can be retrieved. Private repositories for installers of 

proprietary or custom software distribution can easily be created. 

This strategy also depends on the availability of the second strategy (the one that is file-

based). Because even though much of the functionality of a virtual machine is within the 

base-system and the applications’ files, the unique data and configuration are still stored 

within individual files that are not contained in the installer of an application. Also you 

still need the basic meta-information about the disk, partitioning etcetera for recreating a 

virtual machine at the target location, just as with the second strategy. 
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6.5.2 Design 
The strategy demands knowledge of the installed operating system, the filesystem 

structure and access to all the files within the virtual machine to be able to analyze the 

system. So the design relies just as with the second strategy for detecting the virtual disk 

image format, analyzing the virtual disk for its partitions, mounting the filesystems 

etcetera. It is necessary to have a complete virtual filesystem accessible, just as with the 

second strategy. But instead of analyzing the whole filesystem file-by-file, the 

inspections starts by finding out which operating system and package management 

system is used. With this information a list of installed packages can be retrieved from 

the package management system. After this, the file data which is not to be found in 

packages has to be stored as was done in the second strategy. 

Thus, the analysis of a virtual machine using these steps the results will compile a list of: 

 The meta-description of the second strategy, containing the disk size, partition 

table, boot sector, filesystems and mountpoints. 

 The operating system installed and its version and installation location 

 A list of applications installed and their version information 

 The contents of all configuration files, including a file with the repositories 

configuration from where the application’s installers could be or were retrieved 

 All ‘data’ (files) 

These first three sections of this list can be compiled into a ‘recipe’ for recreating a 

virtual machine at the target location using the installers of the operating system and the 

applications as ‘ingredients’. After executing the recipe, the two last sections, the 

configuration files and data files, can be added to the created virtual machine. The great 

advantage of this method is that these ‘ingredients’ are universal and would only have to 

be downloaded once at the target location while they could but reused many times for the 

recipes of multiple virtual machine, allowing for easy deduplication. 

The major design difference compared to other current functional description methods 

that are currently used in infrastructure-as-code paradigms, is that it allows wrapping an 

existing virtual machine into the descriptive code. While other infrastructure-as-code 

methods only allow to encapsulate new (still to be created) virtual machines within their 

code. 
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Figure 9 A flow-chart showing the steps that are followed for strategy 3. The disk-image is analyzed for its partition 
information and the MBR. The partitions are analyzed for their size and their filesystems and mountpoints are 
retrieved. The filesystems are mounted at their respective mountpoints and a functional description of the virtual 
machine is generated and stored. Using the functional description, a temporary copy is created. Using the 
temporary copy the file-differences between the original and the functional copy can be discovered and copy to the 
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file-database. During reconstruction an image is build using the functional description. The filesystems of this copy 
are mounted and the files from the database are copied to onto the new image. 

6.5.3 Implementation 
The prototype for this third strategy is written as Java application that depends, just like 

the second strategy, on QEMU in combination with libguestfs, the FUSE mount system, 

the rsync synchronization tool and a bash shell environment. Also it depends on virt-tools 

and the package management systems that are used within the virtual machine guests. 

Just as with the second strategy the prototype starts with creating a libguestfs handle on a 

virtual machine disk image. Though this time not trough a native libguestfs command-

line tool, but from a Java application. Therefore it is necessary to initialize a special 

libguestfs-java wrapper that connects to the libguestfs-library using JNI. 

After creating the handle, again the virtual machine image is assessed for partition 

information, filesystems and installed operating system. And it is booted using a simple 

‘supermin’ Linux environment with the KVM (Kernel-based Virtual Machine) 

virtualization environment. Then a specific class of the libguestfs-library is used by the 

prototype, the so-called ‘virt-inspector’. 

Virt-inspector provides many methods to gather a wide variety of information about the 

virtual machine guest. The prototype uses these methods to extract the following 

information: 

 The size of the virtual machine’s virtual disk, 

 The installed operating system and its version, 

 A full list of packages installed within the guest machine. 

Using this information the prototype uses the virt-builder command line tool from 

libguestfs to create a new virtual machine. The collected information is passed on as 

specific parameters to virt-builder, resulting in the creation of a virtual machine with the 

same operating system version installed and all packages as that were on the original 

virtual machine. After the creation of this new virtual machine, both the original and the 

newly created one are mounted on the host with guestmount, as described in the second 

strategy. Then the differences between the files in the ‘data’ and configuration directories 

as they are typically found in the Filesystem Hierarchy Standard, the common directory 

structure and mapping in Posix-compatible operating systems, are analyzed by rsync. 

Rsync writes all these changes to an output file that can easily be used to apply the found 

differences on one of the virtual machines. 

Using this method, the original virtual machine is effectively stored within a small 

commandline functional describing a virt-install, in combination with the output file from 

rsync. Using these two parts the original virtual machine can be relatively easily recreated 

at a target location using an operating system and package installers as extra (but 

reusable) ingredients. 

 

6.5.4 Usage of Prototype 
The prototype can be executed by importing vm-analyzer the Java-project in Eclipse. All 

Java dependencies can be automatically resolved using Maven’s dependencies 

management. Though the libguestfs java-bindings will have to be set manually as a JNI 

dependency. 
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In the Java-class BuildFunctionalCopyRecipe three static Strings can be defined. One 

string ‘source’ with the filepath to the original virtual machine disk image. A ‘target’ for 

the filepath to the intermediate (reproducible) result that is created form the recipe. And a 

filepath for ‘targetdiff’ that will store the file-based differences as is in line with the 

second strategy.  If the application will be implemented beyond a prototype, such 

parameters should be settable using an interface. 

The VirtBuilder will first create a VirtBuilderFromVM-object which is passed the 

‘source’ and ‘target’ parameters. VirtBuilderFromVM then creates a GuestFS-object and 

adds the ‘source’ virtual disk image to this object. Then the GuestFS-objecte is launched, 

which spawns a libguestfs-process using JNI. 

Using the libguestfs-process the (root) partitions, filesystems, mountpoints, operating 

system and a list of installed packages is retrieved. This information is stored as a 

functional description. This functional description can then be used to compile a 

complete virt-builder command using the found information as parameters, e.g. a simple 

version could be: 
virt-builder fedora-20 --size 20G --arch amd64 --hostname example \ 

--install apache,mysql --firstboot /tmp/firstbootscript.sh 

 

This command is executed using a command shell, which will create the virtual disk 

image at the filepath location of ‘target’. 

After the creation of this new virtual machine image from the functional description, a 

second Java-object is created from the BuildFucntionalCopyRecipe: MakeFileDelta. 

MakeFileDelta gets all three arguments passed and mounts both the ‘source’ and the new 

‘target’ virtual disk images using guestmount. This is done through the following shell 

commands: 
guestmount –r –a /tmp/targetimage.raw /tmp/mountedtarget/ 

guestmount –r –a /tmp/sourceimage.raw /tmp/mountedsource/ 

 

This is done twice, for both the ‘source’ and the ‘target'. When both images are mounted, 

rsync is executed, storing the differences between the two in the ‘targetdiff’ file. The 

command that is executed could contain: 
rsync --write-batch=/tmp/file-differences /tmp/mountedsource/ 

/tmp/mountedtarget/ 

 

After executing the prototype, using the functional recipe and the ‘targetdiff’ file can be 

distributed for re-assembly to a target location. The list of packages would normally be at 

least around 10 but up to hundreds of entities, but has been reduced here to just apache 

and mysql for the sake of readability. 

A simple but complete functional recipe would consist of: 
virt-builder fedora-20 --size 20G --arch amd64 --hostname example \ 

--install apache,mysql --firstboot /tmp/firstbootscript.sh 

 

guestmount –r –a /tmp/newimage.raw /tmp/mountedimage/ 

 

rsync --read-batch=/tmp/file-differences /tmp/mountedimage/ 

 

Which would successfully create a functional plus file-level copy of the virtual machine. 
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6.5.5 Limitations 
As many tools from the second strategy implementation are also used in this strategy, 

many of the limitations are shared. Again the prototype works only for Linux hosts and 

guests. Security and administrative overhead is necessary to be able to use the KVM 

virtualization for libguestfs. Also the prototype only functions for Linux distributions 

which are supported and installable via virt-install. 

Libguestfs also had some bugs in its Java-bindings, which were found during the 

development of the prototype. These bugs are now resolved after interaction with the 

libguestfs developers, but are still upstream and not available in the major Linux 

distribution’s stock packages. Thus manual installation of an updated libguestfs is 

necessary. 

Also the prototype is at the moment only focused on local application of the strategy 

mechanisms, no network functionality has been implemented. 
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6.6 Analysis 
A full analysis of the performance each of the different strategies can be considered very 

hard. There are many varieties of possible virtual machine images as input, but also many 

possibilities for the given context. Like which distribution mechanisms are actually in 

place for the delivery of the content, but also the geographical spread and expected use 

case of the virtual machines. The three scenarios introduced in chapter 4 are meant to 

cover a vast array of this very variable input, but many aspects can only be theoretically 

approached with lack of testing availability. Therefore a more theoretical analysis is 

performed in appendix A, but within this chapter there is chosen to analyze only on the 

performance that can be directly judged. It is also import to note that that all judgment of 

the factors is done in a relative manner, the performance of all strategies are always 

compared with one another.  

6.6.1 Support and scope of VM variations 
When comparing the performance and scope of all VM variations, it is obvious that 

strategy 1 scores best. Being completely agnostic to any kind of content that is stored 

within its cluster-based data-unit, it supports all possible kind of virtual machine image 

content. Runner up is strategy 2, using files on filesystems, most virtual machine image 

content will be supported. Though it is possible that in certain situations the partition-

information or filesystems cannot be supported by the VMDN, such situations will be 

very rare. Worst score on this performance factor is for strategy 3. Dependence on 

knowledge and specific support for the virtual machine’s installed operating system, 

package management and applications can be troublesome if non-mainstream solutions 

are used. 

6.6.2 Deduplication of the Operating System 
Deduplication of the content that is part of the operating system is easy to judge for 

strategy 3: if any supported operating system is used, the deduplication will be very 

effective. Many megabytes of the operating system data can be reduced for a single 

virtual machine to a character string of at most several kilobytes. 

Strategy 2 will also be able to deduplicate operating system data, since files that are part 

of the operating system are often relatively static (not changed by the user) and tend not 

to be changed too much between each operating system’s new release. Unfortunately, 

there are many files that make up the operating system as a whole, so much more meta-

information has to be stored for each individual file compared to strategy 3. Therefore 

this strategy scores second best on this performance factor. 

Strategy 1 is least suited for deduplication of the operating system. Even though it also 

profits from the fact that most operating system information is static, the data stored in 

clusters is not guaranteed to be stored in the same order on disk. Thus unfortunate 

mismatches, for which clusters are stored together and hashed, can happen. Also, the 

operating system is often many megabytes large, while each cluster is only a small 

amount of data. This means relatively a lot of meta-data has to be stored in comparison to 

the amount of data that makes up the operating system. 

6.6.3 Deduplication of the Applications 
For deduplication of the virtual machine image content that constitutes the applications, 

the same applies as for the operating system for the very same reasons. Strategy 3 would 
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be, if applicable, the best solution. The second strategy is runner-up, and strategy 1 is the 

least effective of the three. 

6.6.4 Deduplication of the ‘User Data’ 
Deduplication of the content that makes up the ‘User Data’ is done best by strategy 2. 

Since all ‘User Data’ is stored as files, any deduplication can most effectively be done by 

the strategy that operates at this level, thus strategy 2. Strategy 3 is not applicable at all, 

since ‘User Data’ is not within the scope of the functional description of the virtual 

machine image’s contents. Strategy 1 results are less certain. If ‘User Data’ is (in binary-

sense) very repetitive over different virtual machines, or repetitive within one virtual 

machine, it can be effective. But in many day-to-day situations, the ‘User Data’ will be 

varied, and as such strategy 1 does not provide any benefits to this performance factor. 

6.6.5 Deduplication of Revision Information 
If a virtual machine image’s content changes over time, revision information be very 

useful. It can reduce the amount of data necessary to reassemble any current data if 

historical data is available. Revision information can be available at all levels, which 

clusters were changed, which files were changed or which functional aspects have been 

changed. Depending on the context, any of the strategies can therefore be acting on the 

most efficient level to pack the changes. And also the actual impact can differ greatly per 

given situations. For this performance aspect we therefore don’t give a score in this 

chapter. 

6.6.6 Speed of importing VM image 
For this performance factor, strategy 2 and 3 score best. For a typical virtual machine 

image of around 2 GiB, a Linux-based operating system with 1GiB of installed packages 

and 1GiB of User Data, this takes up from 5 to at most 15 minutes. This is because the 

amount of data to be written is limited and can be stored in efficient manners for file-

storage that are already available. Strategy 1 needs 10 to 30 minutes for such an image, 

performance mostly impacted by the small size of clusters, the very large amount of 

clusters to be processed and the fast degrading performance when the HashMap database, 

storing the clusters, has to be reordered when inserting new data. 

6.6.7 Speed of reassembling VM image 
For the speed of reassembly strategy 1 scores best of the three. Reassembly of the 

previously described typical 2 GiB virtual machine can easily be performed within 5 

minutes, which is possible by the linear writing of data to the disk image during the 

reassembly. Strategy 2 takes longer, though it also only has to write data to disk, the data 

is not per se in a linear order. Of course depending on the exact contents, the time 

necessary to reassemble the disk can take from 10 minutes up to half an hour. Strategy 3 

takes longest to reassemble, this because the transactions to disks are a sequence of not 

only writing, but also reading and manipulating data on the disk. Also CPU time is 

necessary to process the installation of packages. Because of this, a simple virtual 

machine image of 2 GiB can take 10 minutes to assemble, but if the packages to be 

installed are using a lot of complex processing, an image of the same size can take also an 

hour or even more. 
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6.6.8 Minimal size for effective cache 
This performance factor was not measured within the experiments. In theory one could 

argue that for each higher level in the virtual machine image’s structure, the building 

blocks become more common. The more common a building block is, the more effective 

it would be to put in cache. If a building block is only used once, caching it has no 

benefit. If it is only used rarely, the benefit is limited. So the hypothesis is that the third 

strategy could benefit most here, but more research on the exact distribution-curve of 

data-elements is necessary. 

6.6.9 Re-usability of data-objects 
This performance factor was also not measured within the experiments. Combined with 

the paragraph above, where it is argued that within the higher level of the virtual machine 

image’s structure more common objects can be found. Which allows for re-usability of 

data-objects when reassembling various virtual machine images throughout time. Thus 

higher re-usability is more probable to be found within the second and third strategy. 

Also strategy 3 allows for re-usage of different versions of the installation packages used. 

This gives the idea that the third strategy could benefit the most, but more data would 

have to be collected to research this performance factor for further investigation. 
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6.7 Results 
It is apparent from our analysis that the best strategy can differ greatly depending on the 

context. In situations where one strategy excels, another might perform horrible, but 

when the context changes it might be the reverse. Also it might appear that neither 

strategy really suits the context as an optimal solution. 

The context can in general be classified within two aspects: the first one is about what 

kind of content does the virtual machine that has to be distributed consist of; the second 

one is for which performance factor(s) are deemed most important in the specific 

distribution scenario. It is apparent that changing one of these aspects can greatly 

influence the performance of any strategy. 

When applying these aspects on the identified scenarios, various weak and strong points 

pop-up in relation to the strategies. For example, for scenario 1, the Academic Research 

Publication, the contents of the virtual machines will very often consist of a popular 

operating system, most installed software packages will be common and User Data will 

be unique per publication. Combined with fact that the speed of both importing and 

reassembly of the virtual machine image are not considered to be of high importance for 

the use cases, but efficient data storage by re-using common components are. This results 

in the third strategy to be considered the best candidate for this given scenario, scoring 

well on all relevant aspects, while its weak points like slow reassembly of the image to be 

of low importance. 

For the second scenario, the Specialized Database Server, the contents of the virtual 

machine will be uncommon, disqualifying the third strategy completely. For any 

deduplication and gaining efficient distribution it is hard to point out without a more 

detailed study whether the first or second strategy would give the best results. 

The third scenario, the WebRTC TURN Server, its contents will be probably very 

common and there would be very little User Data. So the third strategy would be very 

efficient in means of storage and distribution. But the relatively long time it takes to 

assemble a virtual machine in the third strategy, would be not compatible with fast, 

timely response that is demanded from such TURN Servers, disqualifying the third 

strategy on this crucial aspect. So the hypothesis would be that the second strategy would 

probably perform best here, being able to reuse many of the files combined with a faster 

virtual machine assembling mechanism. 
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7 Future work 

7.1 Improving the prototype 
One of the most obvious possibilities for future work is improvement of the prototype. 

Improving the prototype would allow for further and more detailed testing on more 

scenarios, possibly resulting in more performance factors to be found. 

The possible improvements on the prototype could be divided in three possible sets: 

 Functionality 

 Compatibility 

 Performance 

 

The functionality of the prototype is currently limited for strategy 2 and 3. Features like a 

full integration with a generic file-deduplication storage database is not available in the 

current revision. Best would be to finalize those features that are relatively easy 

accomplished by integrating with the current state of the art technologies that are 

available. Also the development of a content-delivery server-prototypes, that would focus 

only on managing caches for the clients, could be developed. Many functionalities could 

easily be implemented by integration with tools like apt-proxy, which can smartly 

manage mirrors to cache software packages for Debian and derivatives. 

Functionality improvements could also be achieved by using new approaches like the 

usage peer-to-peer to share the data-objects that are used to reconstruct the virtual 

machines between physical machines. 

 

Compatibility could be improved by supporting more filesystems, operating systems and 

package-system formats. These improvements could be achieved by further developing 

the used third party tools like libguestfs and supermin. But some of these are also only 

possible by improving the prototype itself. E.g. the meta-data that is collected for current 

partition tables could be adapted to not only support the current (soon to be legacy) 

Master Boot Record (MBR) method, but to also support the new GUID Partition Table 

(GPT). This improved compatibility would make strategy 2 and 3 support more possible 

virtual machine configurations. 

 

The performance improvements could be achieved in two different ways. Or the design 

of the strategies could be further optimized. E.g. using snapshots on functional copies of 

virtual machines that are alike might improve the reconstruction time of virtual-machines 

by re-using these snapshots if configurations reoccur. 

A second method for gaining performance improvements might be by rewriting the 

prototype from Java to another programming language like C++. Java was currently 

chosen because of previous experience with this programming language. But Java has its 

limitations for these kind of applications and is probably not the best-suited programming 

language. Also most third party tools used were written in C++ and offer more 

application programming interfaces in that language. 
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7.2 Build a real application around the VMDN 
A second opportunity for future work for the VMDN revolves around a direct application 

of the VMDN’s features and best strengths. An analogy can be made with one of the 

world’s current largest CDNs: YouTube [84], [85]. 

YouTube is not directly advertised to its users as being a CDN (unlike many CDN-

specialized businesses). But in the end they run one of the largest CDNs in the world to 

provide video-streaming services to their customers [86]. 

The same opportunity might be available for the VMDN. Instead of offering a technical 

service to distribute pre-created not-to-be-modified content like CDNs do, a service to 

distribute end-user created content (ergo virtual machines) in a normalized form to other 

end-users could be offered: YouVM! 

YouVM could be a service that allows any user to perform any kind of computer activity 

within a virtual machine and share this with other users. 

 

First it is important to further look into the analogy of YouVM with YouTube. YouTube 

had several issues to overcome: 

 End-users lack technical knowledge of video (encoding, pre-processing etc.). 

 End-users record video in many different video formats and resolutions. 

 End-users expect any video to playback in their browser without problems. 

For YouVM alike issues apply: 

 End-users lack technical knowledge of virtual machines (hypervisors etc.). 

 End-users run virtual machines in different virtual machine disk formats, 

filesystems, operating systems etc. 

 End-users would expect to be able to run any shared virtual machine. 

 

How did YouTube handle these issues and what is possible for YouVM? Part of the 

answer is to be found in re-asking the question in chapter 2.1:“what is a copy?”. 

YouTube recognized that for the end-user that sharing a pixel-perfect copy is not the 

goal. The end-user just wants to share a video, not pixels. This might not be great for 

100% of the scenarios, as sometimes a user would want to share a high-quality video with 

fine-grained details. But in daily practice it suffices for the vast majority of the users and 

solves all their problems by converting to users’ video file-input to anther video 

playback-output.  

Thus YouTube found the following answers to their questions: 

 YouTube created a simple upload mechanism for end-users. The end-user uploads 

any kind of video file format and resolution, they handle all the backend 

difficulties that are implied for further distribution. 

 YouTube converts and encodes the video in their own internal high quality 

version. This will be the new ‘source’ material of the video, not the file that was 

uploaded. 

 YouTube only caches videos in their pre-configured resolutions and encodes them 

in universal formats that are supported by all major browsers and plug-ins. 

So the to-be-created YouVM should support the following: 

 It should allow for a simple upload mechanism that accepts any kind of virtual 

machine disk image format, operating system, filesystem etc. 
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 It should convert the virtual machine to a standardized format. This might imply 

changing lower structural layers, like filesystems, or changing the version of the 

installed software-packages used, allowing for better distribution. 

 The virtual machine should be offered in a (set of) format(s) that is universally 

accepted by most hypervisors like Open Virtualization Format (OVF) and should 

be directly executable (not possible with current OVF implementations). 

 

By implementing YouVM a real applicable example for usage of the VMDN can be 

shown. Also, by taking control of the virtual machine’s distribution context, just like 

YouTube does, it enables the leverage for using the VMDNs most efficient strategies. 
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8 Conclusion 
The conclusion of our research is about answering the original research question; whether 

a Virtual Machine Delivery Network (VMDN) can be more bandwidth efficient for 

distributing virtual machines than through traditional CDNs. The answer to this is: yes, it 

can be more efficient, but how much greatly depends on the chosen strategy and on the 

applicable context. 

 

The answer derives from the answers to the sub-questions. Already in chapter 3.3 it 

became apparent that bandwidth efficiency optimizations for the distribution of 

traditional (bitwise identical copies) of various virtual machines is non-existent. If no 

older revision of a virtual machine is available at the target location (which would allow 

for usage of difference-only synchronization techniques like rsync) the worst case 

scenario applies: the transfer of all bits (possibly through a compression filter) for the 

greatest network distance possible; from source to target location. Traditional CDNs are 

no answer because they can’t take advantage of overlap between the various virtual 

machines and the rate at which an individual virtual machine would be delivered is too 

low for effective caching. 

 

The bandwidth efficiency can be improved by using a prototype VMDN solution. For this 

prototype three possible virtual machine distribution strategies were identified. The first 

strategy, introduced in chapter 6.3, uses a cluster-based approach, which enables bitwise 

identical copies of virtual machines. The second strategy, introduced in chapter 6.4, is 

file-based and creates virtual machine copies only identical to the file level. The third 

strategy, introduced in chapter 6.5, is functionality-based and creates virtual machine 

copies that are only identical in exposed functionality. This third strategy also has to rely 

on the second strategy for the replication of User Data that is not encompassed within 

functional descriptions. 

 

For the evaluation of the strategies three different scenarios were created. Using these 

scenarios various performance factors were extracted. The three scenarios were chosen to 

be varied in such a way that potential weaknesses on different performance factors could 

be exposed during analysis. During the analysis it became apparent that for per scenario a 

different strategy would be able to give the best results. Strategies’ performance can 

apparently greatly differ per given context. 

 

The bandwidth efficiency with a VMDN to distribute bitwise identical copies of a virtual 

machine can already be much higher by using the first strategy compared to traditional 

distribution methods. But only if an equal virtual machine with the same operating 

system revision and filesystem is requested repeatedly, for which in the best case scenario 

up to 80% of the data blocks can be deduplicated using the first strategy which was 

suggested by literature and also confirmed by the prototype [50]. 

When virtual machines would downloaded on a frequent basis, the initial download of the 

‘popular’ blocks will in the end be relatively negligible and thus only 20% of the bits 

would still have to be downloaded per virtual machine. Of course overhead also would 

have to be added on top of this. An extra possible advantage could be that when 
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requested clusters are not locally available, they could be cached at host more nearby 

than the original source, which would allow for even higher bandwidth efficiency. 

 

The bandwidth efficiency for using VMDNs to distribute non-bitwise copies of a virtual 

machine can be even more efficient. Unfortunately such copies are not always possible, 

since inner knowledge of the virtual machine is necessary. Deduplication at file-level is 

applied with the second strategy. Earlier downloaded files can be re-used, which allows 

in the best case scenario, where a virtual machine has the exact same contents as an 

earlier retrieved instance, to only demand around 1% of the original image size to 

describe all file-contents. Which is the relative size that rsync needs to describe the 

contents of a whole filesystem from the experiment in batch-mode. For virtual machines 

that are not similar, this percentage would grow equally with the dissimilarity. 

 

By using the third VMDN strategy, for which virtual machine support is even more 

constrained to certain operating systems, an extreme bandwidth reduction is possible. If 

the virtual machines are downloaded frequently, the initial download of the operating 

system’s template, package installers and other files only equal around the size of a single 

virtual machine. But after this initial download each comparable virtual machine (the 

same operating system or software packages) will barely generate any new bandwidth 

consumption. Of course these initial downloads don’t have to be from the source 

location, but can be from a server closer to the target. As extra benefit the ratio of which 

files and packages are installed on a virtual machine is also favorable, with a small set of 

packages accounting for most of the installations. 

One of the disadvantages with this strategy are that for the generation of a non-bitwise 

copy of a virtual machine that the template and packages also have to be downloaded at 

the source location. Which makes this strategy only beneficial if these are already 

available at the source location, or if a copy of a virtual machines is at least downloaded 

more than twice to a target location. Another disadvantage is that the reconstruction of a 

virtual machine image can take quite some time. Since the installation of all the packages 

have to be done through execution of the installer scripts. These scripts take processing 

time and the transactions to the disks are in general not linear.  
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Appendix A: Analysis of Strategies 
All three strategies have been tested in a limited experiment with the prototype VMDN 

implementation. Various virtual-machine guests were created to test the various 

performance factors. Some (parts of) the strategies could be performed in an automatic 

manner, like the whole first strategy. But e.g. the second strategy was only performed by 

manually using the appropriate shell commands. Also, for the assessment of e.g. the first 

strategy more and a multitude of data was available from the literature than from our 

single implementation. Also these other researches sometimes had implemented more 

advanced techniques like finding the best cluster-offset per image. Therefore the numbers 

from literature can take precedence when judging the strategy performance. 

 

The analysis of all three strategies will be discussed per strategy in this appendix. For 

each strategy first a table-overview is presented with the performance factors and their 

score, including a small note for each score. After that each performance factor is more 

explicitly discussed and be given an one of the five qualitative scores, ranging from 

double minus (--) to double plus (++). Where possible this indicative score will be further 

quantified for expected typical contexts for virtual machines. Any exact number for the 

score is hard to qualify, since virtual machine guests can vary a lot. But these numbers 

are chosen for most typical are virtual machines: having a single virtual disk, at most 

three disk partitions, no logical volume management, a single operating system, no disk 

or filesystem encryption and a disk size ranging from 2 to 20 gigabytes. For the host 

machine a physical traditional spinning hard disk is assumed, plenty of RAM (Random 

Access Memory) and a CPU (Central Processing Unit) found in typical server-hardware. 

 

After these performance analyses per strategy an analysis for the set of applicable 

scenarios will be performed. Indicating which strategies would be best suited to each 

scenario. 

 

Strategy 1: Clusters 
Strategy 1, the cluster-based approach, is well known the academic world and thus it 

advantages and disadvantages are also partly known from multiple experiments. 

 

Performance factor Performance Score 

Virtual Machine Characteristics  

Support and scope of VM variations ++ (agnostic of content) 

Deduplication of the Operating System + or -- (depending on exact matches or not) 

Deduplication of the Applications -- (easy mismatches of versions) 

Deduplication of the ‘User Data’ -- (with exception of exact copies) 

Deduplication of Revisions -- (often impractical) 

Distribution Factors  

Speed of importing VM image +/- (10 to 30 minutes) 

Speed of reassembling VM image ++ (less than 5 minutes) 

Minimal size for effective cache --  (easily gigabytes to be useful) 

Re-usability of data-objects -- (only exact matches) 
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Support and scope of virtual machine variations 

Strategy 1 is agnostic of its content. The technology only interacts with the disk clusters 

from the virtual disk device. Also all techniques are from the virtual machine’s guest 

perspective like it acts even lower than the hardware interface. Thus on this aspect the 

support and scope for various virtual machines, irrespective of the operating systems and 

filesystems used the score is ‘perfect’: ++ 

 

Deduplication of the Operating System 

Strategy 1 allows for deduplication of the operating system content. It is important to 

notice that the operating system is the first thing installed on a (virtual) system and (as 

earlier described) mostly automated process of scripts and installers. This allows for a 

relatively high deduplication score: +. But it is important to remark that this only applies 

for situations where the operating system and its revision are exactly the same. Luckily 

some of the context is known: According to W3Techs the most popular operating system 

for servers is Linux with around 65% market share [87]. On virtual machines this can be 

expected to be even higher, since it simplifies license issues compared to competing 

operating systems. Then the two largest Linux distributions for servers are Debian and 

CentOS with both around 30% market share. The runner-ups are Ubuntu and Red Hat 

with both around 15% market share. These numbers suggest that around 90% of all 

operating systems on Linux servers are served by just four different distributions. If we 

further split out the details for a typical distribution, using Debian’s Popularity Contest, it 

is visible that i386 and amd64 are by far the most popular platform architectures [88]. 

And when a new major revision of the distribution is released, there is a relatively fast 

uptake of this new revision. It quickly moves to be the dominating revision in general and 

certainly is the primary choice for any new installations. 

Since it is known that the deduplication only works well for a single revision of a single 

operating system distribution it is important to note that this good score directly degrades 

to a bad score as soon as it concerns non-popular operating systems, an outdated version 

or on an uncommon architecture. (A typical IaaS provider should be able to manage this 

context to its advantage for this strategy by only providing a select choice for all of these 

three factors to its customers when creating and installing new virtual machines.) 

 

Deduplication of the Applications 

Strategy 1 is not so suitable for deduplication of applications. Even though deduplication 

can still be applied on the data stored within the clusters, the nature of applications is that 

they can be installed in any order. This reduces the amount of linear overlap of the data in 

the clusters between different virtual machines. Also small minor differences can exist 

between the applications on various virtual machines. This can be differences of different 

minor revisions, or certain patches applied in specific versions but also the usage of 

different compilers or compile flags. Even if these differences are small they can create a 

complete mismatch for deduplication of the data in the clusters. The score for this 

performance factor is thus low: --. 

 

Deduplication of the ‘User Data’  
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Strategy 1 is not so suitable for deduplication of ‘user data’. Even though deduplication 

can still be applied on the data stored within the clusters, it is unlikely that the ‘user data’ 

is written in the same linear patterns, decreasing the likelihood of matches. And it would 

in any case only apply for the situations where multiple virtual machines have exact 

identical common ‘user data’. If no ‘user data’ is common between virtual machines or it 

has some differences between them, this method doesn’t provide any gains. The score for 

this performance factor is thus low: --. 

 

Deduplication of Revision Information 

Strategy 1 is in general unsuitable for deduplicating content that has multiple revisions. If 

a data object changes at random locations, various clusters could change and no match 

for deduplication is possible anymore. 

The exception is for content that never changes at random locations but only consistently 

within a single or a few clusters, while the rest of the used clusters are high in number 

and all static. Or if only data is added to the end of a data object for each new revision 

and all the old data is static. The first situation is rare and as such not applicable. The 

second situation is only possible for certain storage mechanisms, like redirect-on-write. 

But those mechanisms then imply also having to send over all discarded (old) data. So the 

score on this performance factor is in general bad: --. 

 

Speed of importing VM image 

The speed of importing a virtual machine image is quite reasonable for strategy 1. The 

image is read linearly from start to end. If the image is not fragmented on the disk this 

should go quite fast. Calculating a hash for each cluster also goes relatively fast, but 

adding new clusters to a database containing already many hashes is slow. Or the 

database has to grow, which will give a performance hit once a while when the database 

has to be re-ordered, or old entries have to be deleted, which requires a mechanism that 

detects the least used (unpopular) entries and balances the database. The score for this 

performance factor is +/-. 

 

Speed of reassembling VM image 

The speed of retrieving a virtual machine image is good for strategy 1. All the hashes are 

linearly retrieved, the database with clusters is ordered on the hash and can find the data-

objects fast. Writing the data-objects to disk is a linear process and the total size is known 

in advance, so the necessary disk space can already be reserved by the filesystem. This 

makes this performance factor ‘perfect’: ++. 

 

Minimal size for effective cache 

Unfortunately strategy 1 relies on many very small data-objects. Thus the database has to 

contain many objects. Also the curve for matching identical clusters is not ideal. If 

ignoring the clusters filled with zeroes (empty disk space or other unused clusters) the 

distribution is a relatively equal spread of almost all obtained clusters if you have a bare 

virtual machine installation (without applications and ‘user data’). It is not rewarding to 

create a database if you wouldn’t be able to cache at least all these clusters, implying the 

need for a large database to be effective: --. 
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Re-usability of data-objects 

All data obtained for clusters can only be used for matching hashes. Matching clusters 

only appear (as discussed earlier) mostly for exact identical operating system 

distributions of a specific version and architecture, the re-usability is low. No 

replacement of one cluster for the other is possible. Meanwhile the data-objects are very 

small in size and overhead for matching and retrieving will be relatively large. 

 

Strategy 2: Files 
Strategy 2, the file-based approach, is a combination of current file syncing and 

deduplication techniques with know-how of the virtual machine structure. Of both 

techniques empirical data is available about the performance. 

 

Performance factor Performance Score 

Virtual Machine Characteristics  

Support and scope of VM variations + (all major filesystems and OSes) 

Deduplication of the Operating System + (file-based, difference-only possible) 

Deduplication of the Applications + (file-based, difference-only possible) 

Deduplication of the ‘User Data’ ++ (file-based, difference-only possible) 

Deduplication of Revisions +/- (difference-only, not functionality) 

Distribution Factors  

Speed of importing VM image + (5 to 15 minutes) 

Speed of reassembling VM image +/- (10 to 30 minutes) 

Minimal size for effective cache + (very flexible) 

Re-usability of data-objects +/- (difference-only, not functionality) 

 

 

Support and scope of virtual machine variations 

Strategy 2 has to understand the files on a virtual machine’s disk. For this it has to 

understand virtual disk images, disk layouts, partition tables, filesystems, possibly LVM 

(logical volume management), mountpoint configurations etcetera. 

Luckily, of all these aspects there are a limited set of choices. Only a couple of virtual 

disk image formats exists, disk layout is universal, for filesystems there are multiple 

choices but only a few are popular, for LVM there is a limited set of technologies and 

mountpoints are according to Windows’ standard or the Unix standard. For all of these 

components there are good (open source) drivers and/or documentation available to 

implement support. 

This results in this performance factor scoring ‘good’: +. 

 

Deduplication of the Operating System 

Strategy 2 is quite good for deduplicating operating system content. Since most files will 

be identical between different virtual machines as long as they will have the same 

operating system distribution’s version installed, all these files can easily be 

deduplicated. There might even be a possibility to deduplicate between different versions, 

since small differences might be just described by a difference-only-description from a 

common version. The same might apply even with different distributions or platform 
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architectures, since many files are stored on the same path with the same file name and 

could easily be matched for alikeness. 

Of course, deduplication is not possible between whole different operating systems. The 

score of this performance is therefore ‘good’: +. 

Deduplication of the Applications 

Just as with the operating system all identical files of applications can easily be matched 

in strategy 2. No trouble for in which order the applications were installed, the path and 

name of the file will always be consistent and usable. Again alikeness between different 

revisions and distributions can also be checked if path and filename correspond and 

stored as difference-only-descriptions. 

Also the popularity of applications can be indexed per file. Thus allowing for caching 

more popular or universal components of the application, while keeping optional or 

diverse files aside. The score of this performance factor is ‘good’: +. 

 

Deduplication of the ‘User Data’  

Strategy 2 is relatively suitable for deduplication of ‘user data’. Of course, if the content 

‘user data’ is not popular or nothing alike to be found in other virtual machines, there is 

nothing to be gained. But in case there is any likeness of the ‘user data’ between virtual 

machines and it’s popular, this strategy should be able to deduplicate it. It can look for 

identical content and just deduplicate it. Or it can detect identical paths, filenames and try 

to describe any data by difference-only-descriptions from a common revision. The score 

of this performance factor is ‘good’: +. 

 

Deduplication of Revision Information 

Strategy 2 is in general suitable for deduplicating content that has multiple revisions. It 

can leverage the knowledge of path and filename to detect common ancestry between 

files and us it too its advantage. Unfortunately the strategy doesn’t allow for replacing a 

file with another one with equal functionality, because the file is still assessed on its 

content and not on its function. Thus differences between a file’s revisions always have 

to be distributed. The score of this performance factor is +/-. 

 

Speed of importing VM image 

The speed of importing a virtual machine image is quite good for strategy 2. The virtual 

disk image is read file by file, which is not the fastest method since the data is not in-

order on the disk. But if a smart filesystem was used the retrieval of the meta-data and the 

layout of the data on the disk might be quite optimal. Also having files that are larger in 

size can have a positive impact on the average transfer speed. Adding the files to the 

database should be fast, since the files are stored separate of the meta-data and the 

amount of data-objects is limited. The performance factor is ‘good’: +. 

 

Speed of reassembling VM image 

The speed of retrieving a virtual machine image is reasonable for strategy 2. First the 

virtual disk image, the filesystems etcetera have to be created at the target location. All 

the files can be retrieved relatively fast from a database and if large enough this good also 

go with reasonable average transfer speed. But when the files are written to the filesystem 

on the target virtual disk the filesystem has to decide on all the locations, which might be 
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non-linear. Also all the meta-data on the files will have to be applied. This makes this 

performance factor +/-. 

 

Minimal size for effective cache 

Strategy 2 allows for any size of database. All files, whether they are part of the operating 

system, applications or ‘user data’ they can all fairly be judged on their popularity to be 

cached or not. Also the spread of the curve for the popularity of files is not too equal. 

Thus it is possible to just cache just the popular instead of all files. The score of this 

performance factor is ‘good’: +. 

 

Re-usability of data-objects 

As described earlier, sometimes alikeness can be used to cache and reuse some files with 

just a difference-only-description. And of course identical files can be reused. 

Unfortunately no re-usage on functionality is possible with this strategy, which limits re-

usability between different versions of a file. This performance factor scores +/-. 

 

Strategy 3: Functionality 
Strategy 3, the functional approach, is a combination of the second strategy combined 

with knowledge of the packaging system of the operating system within the virtual 

machine. Of this strategy the only empirical data is available than from the prototype, but 

also statistics of the popularity of packages can be used. 

 

Performance factor Performance Score 

Virtual Machine Characteristics  

Support and scope of VM variations - (only certain OSes & package managers) 

Deduplication of the Operating System ++ (functional description) 

Deduplication of the Applications ++ (functional description) 

Deduplication of the ‘User Data’ n.a. (uses strategy 2) 

Deduplication of Revisions ++ (matching functional descriptions) 

Distribution Factors  

Speed of importing VM image + (5 to 10 minutes) 

Speed of reassembling VM image -- (10 to 60 minutes or more) 

Minimal size for effective cache ++ (very flexible) 

Re-usability of data-objects ++ (matching functional descriptions) 

 

 

Support and scope of virtual machine variations 

Strategy 3 inherits all constraints from strategy 2. Only if the strategy has access to the 

files on the virtual machines it can try to assess the functionality. For the assessment it is 

necessary that the strategy can understand which operating system is installed and how 

the packaging mechanism works. Luckily there is a limited set of operating systems 

available, so detection of it should be possible. But between the various operating 

systems there tend to be different packaging mechanisms. This could pose serious limits 

on the strategy for the scope of operating systems that can be supported. 
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An extra limitation is also that it should be possible to recreate the virtual machine 

installation at the target location. This demands that the specific operating system and its 

package mechanism also have to be supported by the virtual machine creation tool that is 

used at the target location. 

This results in this performance factor scoring ‘bad’: -. 

 

Deduplication of the Operating System 

Strategy 3 is ideal for deduplication the operating system. If the operating system can be 

described by a short identifier like its name, version and a list of installed features, an 

exact replica can be generated. This means that within a few kilobytes of textual data 

many megabytes of data can be identified and efficiently deduplicated through re-usage 

of this data for installations of the operating system on multiple virtual machines. 

The score of this performance is therefore ‘perfect’: ++. 

 

Deduplication of the Applications 

If all applications can be described as a list of packages for the package management 

system, using identifiers like names and versions combined with the knowledge for 

which operating system and its version they are meant. Then you can summarize a whole 

virtual machine’s many megabytes of installed applications into just a few kilobyte of 

textual description. The installer packages that are necessary to install the applications 

with the virtual machine also tend to be smaller than the size the take up when installed, 

because they are stored in highly compressed archives. And these installer packages can, 

just like with the operating systems, be re-used for the installation multiple virtual 

machines. 

It is important to note that if an application is not packaged on the virtual machine 

through the package management system, it should be considered ‘User Data’ in this 

context and cannot profit from the gains of this strategy and has to fall back on strategy 2. 

The score of this performance factor is ‘perfect’: ++. 

 

Deduplication of the ‘User Data’  

Strategy 3 is unable to deduplicate any ‘user data’ if it is not packaged. It is advantageous 

to deploy any ‘user data’ in the form of a package that can be handled by the package 

management system, if it is completely static over multiple virtual machines. For regular 

file-based ‘user data’ this strategy has to rely on the implementation of strategy 2. 

The score of this performance factor is here ‘not applicable’. 

 

Deduplication of Revision Information 

Strategy 3 is suitable for deduplication content with multiple revisions. Since for all the 

packages a name and version number are known, revisions can easily be tracked. And 

difference-only description is already available for current package management systems 

when updating from an older to a current version. Also the strategy gives way to 

proactively use the information of revisions to recreate equal functionality at a target 

location why in fact using another revision than the original virtual machine contained. 

This allows for further optimizations in the distribution process. 

The score of this performance factor is ‘perfect’: ++. 
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Speed of importing VM image 

The speed of importing a virtual machine image is quite good for strategy 3. Once the 

virtual machine’s filesystem is accessible, detecting the virtual machine’s operating 

system and its version can often be done by checking a single file. Querying the package 

management system for a list of installed application is also often just a process of 

checking a single or a small set of files. So these steps are fast and the list with functional 

information can be composed fast. But the strategy still has to perform the same steps as 

strategy 2 for indexing the file-data that is not identified by the functional description. 

The score of this performance factor is ‘good’: +. 

 

Speed of reassembling VM image 

The speed of retrieving a virtual machine image can be slow for strategy 3. The retrieval 

of the functional description will be fast. But from this functional description the whole 

virtual machine has to be rebuild locally. So as with strategy 2, the virtual disk image, the 

filesystems etcetera have to be created at the target location. But also an installation 

medium or basic image of the operating system might have to be retrieved, depending on 

the fact if it was already downloaded earlier. Also (some of) the package installers have 

to retrieved, depending on local availability. Also the ‘user data’ has to be downloaded. 

After the downloading all packages have to be sequentially installed, this can consume 

quite some time, because installers use scripts and often have next to writing new data 

also modify existing data, which can be relatively slow on a virtual disk. Afterwards the 

‘user data’ still has to be copied to the virtual machine’s filesystem as in strategy 2. 

This makes this performance factor ‘very bad’: --. 

 

Minimal size for effective cache 

Strategy 3 allows for any size of database. Only popular operating systems and packages 

and their latest (major) revisions have to be cached. This allows for high hit ratios on the 

cache while it can be kept compact. Of course the ‘user data’ is beside the scope of this 

specific cache. 

The score of this performance factor is ‘perfect’: ++. 

 

Re-usability of data-objects 

As described earlier, version information is available and difference-only descriptions are 

already possible. But the greatest strength is that re-usage on functionality is possible 

with this strategy. Versions of packages that are close can be replaced with one another, 

which greatly enhances re-usability. This performance factor scores ++. 

 

Overview 
When collecting the performance factors per strategy together into a single table we get 

the following overview: 

 

Performance factor Strategy 1 

(Clusters) 

Strategy 2 

(Files) 

Strategy 3 

(Functionality) 

Virtual Machine Characteristics    

Support and scope of VM variations ++ + - 
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Deduplication of the Operating 

System 

+ (possibly --) + ++ 

Deduplication of the Applications -- + ++ 

Deduplication of the ‘User Data’ -- ++ n.a. (Strat 2) 

Deduplication of Revisions -- +/- ++ 

Distribution Factors    

Speed of importing VM image +/- + + 

Speed of reassembling VM image ++ +/- -- 

Minimal size for effective cache -- + ++ 

Re-usability of data-objects -- +/- ++ 

 

From this overview already several aspects can be deducted easily: strategy 1 and 

strategy 3 have almost reversed performance characteristics. The factors where strategy 1 

is superior (the support and scope of VM variations, and the speed of retrieving a VM 

image) are the exact factors that are the worst performers for strategy 3 and vice versa. 

While strategy 2 holds the middle grounds, that doesn’t really excel besides the 

deduplication of ‘user data’ but also doesn’t have any really weak points. 

 

Apparently there is not a single strategy that is always better than the other. Thus the best 

performing strategy has to be decided depending on the context. That is why the 

strategies will be discussed using the earlier scenarios. Per scenario another (set of) 

performance factors will be (more) important and fit of each strategy will be assessed for 

that specific scenario. 

It is difficult to quantify the exact performance factor’s result in combination with the 

performance factor’s priority. But in this research we have chosen to adhere to the 

calculation mechanisms that are used normally for risk management, because in risk 

comparable situations arise were multiple influencing factors have to be weighed against 

together to produce a judgment on a good or a bad result . Risk is normally calculated 

through the multiplication of Impact and Probability. This same multiplication is also 

here performed, but then the performance factor’s importance as Impact and the 

strategy’s performance score as occurrence. The multiplication is applied as follow: for a 

low priority the multiplication is zero, for medium it is one and for high it is multiplied 

with two. For critical importance of a performance factor, a text-based notification is in 

place if failing this factor. 

 

Scenario 1: Academic Research Publication 
Scenario 1 is about a virtual machine containing the tools and dataset use for academic 

research and accompanies a scientific paper. If the matrix of importance of the 

performance factor is taken from the scenarios chapter and combined through a process 

of multiplication of importance with the performance score, the following matrix is the 

result: 

Performance factor Strategy 1 

(Clusters) 

Strategy 2 

(Files) 

Strategy 3 

(Functionality) 

Virtual Machine Characteristics    

Support and scope of VM variations + + - 
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Deduplication of the Operating 

System 

---- ++ ++++ 

Deduplication of the Applications ---- ++ ++++ 

Deduplication of the ‘User Data’ 0 0 0 

Deduplication of Revisions ---- 0 ++++ 

Distribution Factors    

Speed of importing VM image 0 0 0 

Speed of reassembling VM image 0 0 0 

Minimal size for effective cache ---- ++ ++++ 

Re-usability of data-objects -- 0 ++ 

 

From the matrix overview it is clear that the best candidate for this context is strategy 3. 

It has a positive score on the performance factors that are of high importance. The less 

scoring performance factors are mostly irrelevant to the context of this scenario. 

 

Scenario 2: Specialized Database Server 
Scenario 2 is a virtual machine for performing a set of specific database operations. If the 

matrix of importance of the performance factor is taken from the scenarios chapter and 

combined through a process of multiplication of importance with the performance score, 

the following matrix is the result: 

Performance factor Strategy 1 

(Clusters) 

Strategy 2 

(Files) 

Strategy 3 

(Functionality) 

Virtual Machine Characteristics    

Support and scope of VM variations ++++ ++ -- 

Deduplication of the Operating 

System 

---- ++ n.a.  

Deduplication of the Applications ---- ++ n.a. 

Deduplication of the ‘User Data’ ---- 0 0 

Deduplication of Revisions 0 0 0 

Distribution Factors    

Speed of importing VM image 0 0 0 

Speed of reassembling VM image ++ 0 -- 

Minimal size for effective cache 0 0 0 

Re-usability of data-objects 0 0 0 

 

From the matrix overview strategy 2 seems to have the best, but still not high, score. It is 

important to note the remarks for the low deduplication scores. For strategy 1 the 

problem is that the operating system will be unique and therefor hard to deduplicate. For 

strategy 3 the problem is also that a non-common operating system and the usage of non-

package management applications disable the applicability of the strategy and render it 

useless. 
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Scenario 3: WebRTC TURN Server 
Scenario 3 is a virtual machine for relaying WebRTC connections. If the matrix of 

importance of the performance factor is taken from the scenarios chapter and combined 

through a process of multiplication of importance with the performance score, the 

following matrix is the result: 

Performance factor Strategy 1 

(Clusters) 

Strategy 2 

(Files) 

Strategy 3 

(Functionality) 

Virtual Machine Characteristics    

Support and scope of VM variations 0 0 0 

Deduplication of the Operating 

System 

++ ++ ++++ 

Deduplication of the Applications ---- ++ ++++ 

Deduplication of the ‘User Data’ 0 0 0 

Deduplication of Revisions 0 0 0 

Distribution Factors    

Speed of importing VM image 0 0 0 

Speed of reassembling VM image ++++ 0 Cannot fulfill 

critical aspect 

Minimal size for effective cache ---- ++ ++++ 

Re-usability of data-objects ---- 0 ++++ 

 

From the matrix we see a mixed result. Strategy 2 seems best suitable overall, but doesn’t 

have extremely well scores. Meanwhile strategy 3 seems to score well on most factors, 

with exception of the most important factor: the retrieval speed of a virtual machine 

image. This most crucial aspect has a bad score. Strategy 1 on the other hand is fast with 

retrieving a virtual machine image, but the gains there might be completely negated by 

not being able to efficiently use a cache or re-using the retrieved data objects. 
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Glossary 
 Bash; The GNU Bourne Again SHell, a commandline shell for Unix/Linux. See 

www.gnu.org/s/bash/ 

 CDN; Content Delivery Network, a party specialized in delivering content of their 

customers to many end-users with high availability and high performance all over 

the world, using a large distributed system of servers. 

 chroot; an operation on Unix/Linux that changes the apparent root directory 

locking the process and its children in a “chroot jail” that cannot access files 

outside the designated directory tree 

 Hypervisor; computer software on a host computers that creates the environment 

in which virtual machines can be run. 

 KVM (Kernel-based Virtual Machine); a Linux kernel module and popular 

hypervisor based on QEMU that provides virtualization to Linux host computers. 

See www.linux-kvm.org 

 Lossy Compression; A compression method that encodes data using inexact 

approximations or discarding of original data, often under the assumption that it 

does not noticeably negatively influences the function of the data. 

 QCoW2; QEMU Copy-on-Write 2 is a format for virtual machine disk image 

storage. See people.gnome.org/~markmc/qcow-image-format.html 

 Rsync; A utility that provides fast incremental file transfer. See rsync.samba.org 

 Supermin; A lean Linux-appliance to boot a virtual configuration. It is best 

comparable to having a virtual machine configuration where supermin is started 

from a small bootable disk. From the regular disks attached to the virtual machine 

is not booted (and thus the installed operating system is not started) but is 

accessible. See libguestfs.org/supermin.1.html 

 User Data; The configuration and data that is neither part of the Operating System 

neither any of the static or data that is part of any Application. In the Linux 

context this would at least include directories like /etc/, /home/, /root/ and 

/var/lib/. In general a specific combination of this data is unique to a single virtual 

machine. 

 Virtsync; A fork from the rsync project that allows the usage of rsync --sparse in 

combination with --inplace, which is normally not supported. See 

www.virtsync.com 

 VMDN; Virtual Machine Delivery Network. A concept derivative of a CDN that 

has been authored in this research. 

 WebRTC; Web Real-Time Communication, an API definition by the World Wide 

Web Consortium (W3C) to allow real-time browser-to-browser applications 

without plugins. See www.webrtc.org 
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